4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances. This file is solely interested in executing
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement. VDBE programs are
23 ** similar in form to assembly language. The program consists of
24 ** a linear sequence of operations. Each operation has an opcode
25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26 ** is a null-terminated string. Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem. Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value. An implicit conversion from one
33 ** type to the other occurs as necessary.
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files. The formatting
42 ** of the code in this file is, therefore, important. See other comments
43 ** in this file for details. If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
46 #include "sqliteInt.h"
50 ** Invoke this macro on memory cells just prior to changing the
51 ** value of the cell. This macro verifies that shallow copies are
55 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
57 # define memAboutToChange(P,M)
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly. This variable has no function other than to
65 ** help verify the correct operation of the library.
68 int sqlite3_search_count
= 0;
72 ** When this global variable is positive, it gets decremented once before
73 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74 ** field of the sqlite3 structure is set in order to simulate an interrupt.
76 ** This facility is used for testing purposes only. It does not function
77 ** in an ordinary build.
80 int sqlite3_interrupt_count
= 0;
84 ** The next global variable is incremented each type the OP_Sort opcode
85 ** is executed. The test procedures use this information to make sure that
86 ** sorting is occurring or not occurring at appropriate times. This variable
87 ** has no function other than to help verify the correct operation of the
91 int sqlite3_sort_count
= 0;
95 ** The next global variable records the size of the largest MEM_Blob
96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
97 ** use this information to make sure that the zero-blob functionality
98 ** is working correctly. This variable has no function other than to
99 ** help verify the correct operation of the library.
102 int sqlite3_max_blobsize
= 0;
103 static void updateMaxBlobsize(Mem
*p
){
104 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
105 sqlite3_max_blobsize
= p
->n
;
111 ** The next global variable is incremented each type the OP_Found opcode
112 ** is executed. This is used to test whether or not the foreign key
113 ** operation implemented using OP_FkIsZero is working. This variable
114 ** has no function other than to help verify the correct operation of the
118 int sqlite3_found_count
= 0;
122 ** Test a register to see if it exceeds the current maximum blob size.
123 ** If it does, record the new maximum blob size.
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
128 # define UPDATE_MAX_BLOBSIZE(P)
132 ** Convert the given register into a string if it isn't one
133 ** already. Return non-zero if a malloc() fails.
135 #define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
141 ** a pointer to a dynamically allocated string where some other entity
142 ** is responsible for deallocating that string. Because the register
143 ** does not control the string, it might be deleted without the register
146 ** This routine converts an ephemeral string into a dynamically allocated
147 ** string that the register itself controls. In other words, it
148 ** converts an MEM_Ephem string into an MEM_Dyn string.
150 #define Deephemeralize(P) \
151 if( ((P)->flags&MEM_Ephem)!=0 \
152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
154 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155 # define isSorter(x) ((x)->pSorter!=0)
158 ** Argument pMem points at a register that will be passed to a
159 ** user-defined function or returned to the user as the result of a query.
160 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
163 void sqlite3VdbeMemStoreType(Mem
*pMem
){
164 int flags
= pMem
->flags
;
165 if( flags
& MEM_Null
){
166 pMem
->type
= SQLITE_NULL
;
168 else if( flags
& MEM_Int
){
169 pMem
->type
= SQLITE_INTEGER
;
171 else if( flags
& MEM_Real
){
172 pMem
->type
= SQLITE_FLOAT
;
174 else if( flags
& MEM_Str
){
175 pMem
->type
= SQLITE_TEXT
;
177 pMem
->type
= SQLITE_BLOB
;
182 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
183 ** if we run out of memory.
185 static VdbeCursor
*allocateCursor(
186 Vdbe
*p
, /* The virtual machine */
187 int iCur
, /* Index of the new VdbeCursor */
188 int nField
, /* Number of fields in the table or index */
189 int iDb
, /* Database the cursor belongs to, or -1 */
190 int isBtreeCursor
/* True for B-Tree. False for pseudo-table or vtab */
192 /* Find the memory cell that will be used to store the blob of memory
193 ** required for this VdbeCursor structure. It is convenient to use a
194 ** vdbe memory cell to manage the memory allocation required for a
195 ** VdbeCursor structure for the following reasons:
197 ** * Sometimes cursor numbers are used for a couple of different
198 ** purposes in a vdbe program. The different uses might require
199 ** different sized allocations. Memory cells provide growable
202 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
203 ** be freed lazily via the sqlite3_release_memory() API. This
204 ** minimizes the number of malloc calls made by the system.
206 ** Memory cells for cursors are allocated at the top of the address
207 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
208 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
210 Mem
*pMem
= &p
->aMem
[p
->nMem
-iCur
];
215 ROUND8(sizeof(VdbeCursor
)) +
216 (isBtreeCursor
?sqlite3BtreeCursorSize():0) +
217 2*nField
*sizeof(u32
);
219 assert( iCur
<p
->nCursor
);
220 if( p
->apCsr
[iCur
] ){
221 sqlite3VdbeFreeCursor(p
, p
->apCsr
[iCur
]);
224 if( SQLITE_OK
==sqlite3VdbeMemGrow(pMem
, nByte
, 0) ){
225 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->z
;
226 memset(pCx
, 0, sizeof(VdbeCursor
));
228 pCx
->nField
= nField
;
230 pCx
->aType
= (u32
*)&pMem
->z
[ROUND8(sizeof(VdbeCursor
))];
233 pCx
->pCursor
= (BtCursor
*)
234 &pMem
->z
[ROUND8(sizeof(VdbeCursor
))+2*nField
*sizeof(u32
)];
235 sqlite3BtreeCursorZero(pCx
->pCursor
);
242 ** Try to convert a value into a numeric representation if we can
243 ** do so without loss of information. In other words, if the string
244 ** looks like a number, convert it into a number. If it does not
245 ** look like a number, leave it alone.
247 static void applyNumericAffinity(Mem
*pRec
){
248 if( (pRec
->flags
& (MEM_Real
|MEM_Int
))==0 ){
252 if( (pRec
->flags
&MEM_Str
)==0 ) return;
253 if( sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
)==0 ) return;
254 if( 0==sqlite3Atoi64(pRec
->z
, &iValue
, pRec
->n
, enc
) ){
256 pRec
->flags
|= MEM_Int
;
259 pRec
->flags
|= MEM_Real
;
265 ** Processing is determine by the affinity parameter:
267 ** SQLITE_AFF_INTEGER:
269 ** SQLITE_AFF_NUMERIC:
270 ** Try to convert pRec to an integer representation or a
271 ** floating-point representation if an integer representation
272 ** is not possible. Note that the integer representation is
273 ** always preferred, even if the affinity is REAL, because
274 ** an integer representation is more space efficient on disk.
277 ** Convert pRec to a text representation.
280 ** No-op. pRec is unchanged.
282 static void applyAffinity(
283 Mem
*pRec
, /* The value to apply affinity to */
284 char affinity
, /* The affinity to be applied */
285 u8 enc
/* Use this text encoding */
287 if( affinity
==SQLITE_AFF_TEXT
){
288 /* Only attempt the conversion to TEXT if there is an integer or real
289 ** representation (blob and NULL do not get converted) but no string
292 if( 0==(pRec
->flags
&MEM_Str
) && (pRec
->flags
&(MEM_Real
|MEM_Int
)) ){
293 sqlite3VdbeMemStringify(pRec
, enc
);
295 pRec
->flags
&= ~(MEM_Real
|MEM_Int
);
296 }else if( affinity
!=SQLITE_AFF_NONE
){
297 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
298 || affinity
==SQLITE_AFF_NUMERIC
);
299 applyNumericAffinity(pRec
);
300 if( pRec
->flags
& MEM_Real
){
301 sqlite3VdbeIntegerAffinity(pRec
);
307 ** Try to convert the type of a function argument or a result column
308 ** into a numeric representation. Use either INTEGER or REAL whichever
309 ** is appropriate. But only do the conversion if it is possible without
310 ** loss of information and return the revised type of the argument.
312 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
313 Mem
*pMem
= (Mem
*)pVal
;
314 if( pMem
->type
==SQLITE_TEXT
){
315 applyNumericAffinity(pMem
);
316 sqlite3VdbeMemStoreType(pMem
);
322 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
323 ** not the internal Mem* type.
325 void sqlite3ValueApplyAffinity(
330 applyAffinity((Mem
*)pVal
, affinity
, enc
);
335 ** Write a nice string representation of the contents of cell pMem
336 ** into buffer zBuf, length nBuf.
338 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, char *zBuf
){
342 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
349 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
350 }else if( f
& MEM_Static
){
352 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
353 }else if( f
& MEM_Ephem
){
355 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
360 sqlite3_snprintf(100, zCsr
, "%c", c
);
361 zCsr
+= sqlite3Strlen30(zCsr
);
362 sqlite3_snprintf(100, zCsr
, "%d[", pMem
->n
);
363 zCsr
+= sqlite3Strlen30(zCsr
);
364 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
365 sqlite3_snprintf(100, zCsr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
366 zCsr
+= sqlite3Strlen30(zCsr
);
368 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
370 if( z
<32 || z
>126 ) *zCsr
++ = '.';
374 sqlite3_snprintf(100, zCsr
, "]%s", encnames
[pMem
->enc
]);
375 zCsr
+= sqlite3Strlen30(zCsr
);
377 sqlite3_snprintf(100, zCsr
,"+%dz",pMem
->u
.nZero
);
378 zCsr
+= sqlite3Strlen30(zCsr
);
381 }else if( f
& MEM_Str
){
386 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
387 }else if( f
& MEM_Static
){
389 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
390 }else if( f
& MEM_Ephem
){
392 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
397 sqlite3_snprintf(100, &zBuf
[k
], "%d", pMem
->n
);
398 k
+= sqlite3Strlen30(&zBuf
[k
]);
400 for(j
=0; j
<15 && j
<pMem
->n
; j
++){
402 if( c
>=0x20 && c
<0x7f ){
409 sqlite3_snprintf(100,&zBuf
[k
], encnames
[pMem
->enc
]);
410 k
+= sqlite3Strlen30(&zBuf
[k
]);
418 ** Print the value of a register for tracing purposes:
420 static void memTracePrint(FILE *out
, Mem
*p
){
421 if( p
->flags
& MEM_Invalid
){
422 fprintf(out
, " undefined");
423 }else if( p
->flags
& MEM_Null
){
424 fprintf(out
, " NULL");
425 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
426 fprintf(out
, " si:%lld", p
->u
.i
);
427 }else if( p
->flags
& MEM_Int
){
428 fprintf(out
, " i:%lld", p
->u
.i
);
429 #ifndef SQLITE_OMIT_FLOATING_POINT
430 }else if( p
->flags
& MEM_Real
){
431 fprintf(out
, " r:%g", p
->r
);
433 }else if( p
->flags
& MEM_RowSet
){
434 fprintf(out
, " (rowset)");
437 sqlite3VdbeMemPrettyPrint(p
, zBuf
);
439 fprintf(out
, "%s", zBuf
);
442 static void registerTrace(FILE *out
, int iReg
, Mem
*p
){
443 fprintf(out
, "REG[%d] = ", iReg
);
444 memTracePrint(out
, p
);
450 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
452 # define REGISTER_TRACE(R,M)
459 ** hwtime.h contains inline assembler code for implementing
460 ** high-performance timing routines.
467 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
468 ** sqlite3_interrupt() routine has been called. If it has been, then
469 ** processing of the VDBE program is interrupted.
471 ** This macro added to every instruction that does a jump in order to
472 ** implement a loop. This test used to be on every single instruction,
473 ** but that meant we more testing than we needed. By only testing the
474 ** flag on jump instructions, we get a (small) speed improvement.
476 #define CHECK_FOR_INTERRUPT \
477 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
482 ** This function is only called from within an assert() expression. It
483 ** checks that the sqlite3.nTransaction variable is correctly set to
484 ** the number of non-transaction savepoints currently in the
485 ** linked list starting at sqlite3.pSavepoint.
489 ** assert( checkSavepointCount(db) );
491 static int checkSavepointCount(sqlite3
*db
){
494 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
495 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
501 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
502 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
503 ** in memory obtained from sqlite3DbMalloc).
505 static void importVtabErrMsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
507 sqlite3DbFree(db
, p
->zErrMsg
);
508 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
509 sqlite3_free(pVtab
->zErrMsg
);
515 ** Execute as much of a VDBE program as we can then return.
517 ** sqlite3VdbeMakeReady() must be called before this routine in order to
518 ** close the program with a final OP_Halt and to set up the callbacks
519 ** and the error message pointer.
521 ** Whenever a row or result data is available, this routine will either
522 ** invoke the result callback (if there is one) or return with
525 ** If an attempt is made to open a locked database, then this routine
526 ** will either invoke the busy callback (if there is one) or it will
527 ** return SQLITE_BUSY.
529 ** If an error occurs, an error message is written to memory obtained
530 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
531 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
533 ** If the callback ever returns non-zero, then the program exits
534 ** immediately. There will be no error message but the p->rc field is
535 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
537 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
538 ** routine to return SQLITE_ERROR.
540 ** Other fatal errors return SQLITE_ERROR.
542 ** After this routine has finished, sqlite3VdbeFinalize() should be
543 ** used to clean up the mess that was left behind.
546 Vdbe
*p
/* The VDBE */
548 int pc
=0; /* The program counter */
549 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
550 Op
*pOp
; /* Current operation */
551 int rc
= SQLITE_OK
; /* Value to return */
552 sqlite3
*db
= p
->db
; /* The database */
553 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
554 u8 encoding
= ENC(db
); /* The database encoding */
555 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
556 int checkProgress
; /* True if progress callbacks are enabled */
557 int nProgressOps
= 0; /* Opcodes executed since progress callback. */
559 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
560 Mem
*pIn1
= 0; /* 1st input operand */
561 Mem
*pIn2
= 0; /* 2nd input operand */
562 Mem
*pIn3
= 0; /* 3rd input operand */
563 Mem
*pOut
= 0; /* Output operand */
564 int iCompare
= 0; /* Result of last OP_Compare operation */
565 int *aPermute
= 0; /* Permutation of columns for OP_Compare */
566 i64 lastRowid
= db
->lastRowid
; /* Saved value of the last insert ROWID */
568 u64 start
; /* CPU clock count at start of opcode */
569 int origPc
; /* Program counter at start of opcode */
571 /*** INSERT STACK UNION HERE ***/
573 assert( p
->magic
==VDBE_MAGIC_RUN
); /* sqlite3_step() verifies this */
575 if( p
->rc
==SQLITE_NOMEM
){
576 /* This happens if a malloc() inside a call to sqlite3_column_text() or
577 ** sqlite3_column_text16() failed. */
580 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
);
582 assert( p
->explain
==0 );
584 db
->busyHandler
.nBusy
= 0;
586 sqlite3VdbeIOTraceSql(p
);
587 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
588 checkProgress
= db
->xProgress
!=0;
591 sqlite3BeginBenignMalloc();
592 if( p
->pc
==0 && (p
->db
->flags
& SQLITE_VdbeListing
)!=0 ){
594 printf("VDBE Program Listing:\n");
595 sqlite3VdbePrintSql(p
);
596 for(i
=0; i
<p
->nOp
; i
++){
597 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
600 sqlite3EndBenignMalloc();
602 for(pc
=p
->pc
; rc
==SQLITE_OK
; pc
++){
603 assert( pc
>=0 && pc
<p
->nOp
);
604 if( db
->mallocFailed
) goto no_mem
;
607 start
= sqlite3Hwtime();
611 /* Only allow tracing if SQLITE_DEBUG is defined.
616 printf("VDBE Execution Trace:\n");
617 sqlite3VdbePrintSql(p
);
619 sqlite3VdbePrintOp(p
->trace
, pc
, pOp
);
624 /* Check to see if we need to simulate an interrupt. This only happens
625 ** if we have a special test build.
628 if( sqlite3_interrupt_count
>0 ){
629 sqlite3_interrupt_count
--;
630 if( sqlite3_interrupt_count
==0 ){
631 sqlite3_interrupt(db
);
636 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
637 /* Call the progress callback if it is configured and the required number
638 ** of VDBE ops have been executed (either since this invocation of
639 ** sqlite3VdbeExec() or since last time the progress callback was called).
640 ** If the progress callback returns non-zero, exit the virtual machine with
641 ** a return code SQLITE_ABORT.
644 if( db
->nProgressOps
==nProgressOps
){
646 prc
= db
->xProgress(db
->pProgressArg
);
648 rc
= SQLITE_INTERRUPT
;
649 goto vdbe_error_halt
;
657 /* On any opcode with the "out2-prerelease" tag, free any
658 ** external allocations out of mem[p2] and set mem[p2] to be
659 ** an undefined integer. Opcodes will either fill in the integer
660 ** value or convert mem[p2] to a different type.
662 assert( pOp
->opflags
==sqlite3OpcodeProperty
[pOp
->opcode
] );
663 if( pOp
->opflags
& OPFLG_OUT2_PRERELEASE
){
665 assert( pOp
->p2
<=p
->nMem
);
666 pOut
= &aMem
[pOp
->p2
];
667 memAboutToChange(p
, pOut
);
668 VdbeMemRelease(pOut
);
669 pOut
->flags
= MEM_Int
;
672 /* Sanity checking on other operands */
674 if( (pOp
->opflags
& OPFLG_IN1
)!=0 ){
676 assert( pOp
->p1
<=p
->nMem
);
677 assert( memIsValid(&aMem
[pOp
->p1
]) );
678 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
680 if( (pOp
->opflags
& OPFLG_IN2
)!=0 ){
682 assert( pOp
->p2
<=p
->nMem
);
683 assert( memIsValid(&aMem
[pOp
->p2
]) );
684 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
686 if( (pOp
->opflags
& OPFLG_IN3
)!=0 ){
688 assert( pOp
->p3
<=p
->nMem
);
689 assert( memIsValid(&aMem
[pOp
->p3
]) );
690 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
692 if( (pOp
->opflags
& OPFLG_OUT2
)!=0 ){
694 assert( pOp
->p2
<=p
->nMem
);
695 memAboutToChange(p
, &aMem
[pOp
->p2
]);
697 if( (pOp
->opflags
& OPFLG_OUT3
)!=0 ){
699 assert( pOp
->p3
<=p
->nMem
);
700 memAboutToChange(p
, &aMem
[pOp
->p3
]);
704 switch( pOp
->opcode
){
706 /*****************************************************************************
707 ** What follows is a massive switch statement where each case implements a
708 ** separate instruction in the virtual machine. If we follow the usual
709 ** indentation conventions, each case should be indented by 6 spaces. But
710 ** that is a lot of wasted space on the left margin. So the code within
711 ** the switch statement will break with convention and be flush-left. Another
712 ** big comment (similar to this one) will mark the point in the code where
713 ** we transition back to normal indentation.
715 ** The formatting of each case is important. The makefile for SQLite
716 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
717 ** file looking for lines that begin with "case OP_". The opcodes.h files
718 ** will be filled with #defines that give unique integer values to each
719 ** opcode and the opcodes.c file is filled with an array of strings where
720 ** each string is the symbolic name for the corresponding opcode. If the
721 ** case statement is followed by a comment of the form "/# same as ... #/"
722 ** that comment is used to determine the particular value of the opcode.
724 ** Other keywords in the comment that follows each case are used to
725 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
726 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
727 ** the mkopcodeh.awk script for additional information.
729 ** Documentation about VDBE opcodes is generated by scanning this file
730 ** for lines of that contain "Opcode:". That line and all subsequent
731 ** comment lines are used in the generation of the opcode.html documentation
736 ** Formatting is important to scripts that scan this file.
737 ** Do not deviate from the formatting style currently in use.
739 *****************************************************************************/
741 /* Opcode: Goto * P2 * * *
743 ** An unconditional jump to address P2.
744 ** The next instruction executed will be
745 ** the one at index P2 from the beginning of
748 case OP_Goto
: { /* jump */
754 /* Opcode: Gosub P1 P2 * * *
756 ** Write the current address onto register P1
757 ** and then jump to address P2.
759 case OP_Gosub
: { /* jump */
760 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nMem
);
761 pIn1
= &aMem
[pOp
->p1
];
762 assert( (pIn1
->flags
& MEM_Dyn
)==0 );
763 memAboutToChange(p
, pIn1
);
764 pIn1
->flags
= MEM_Int
;
766 REGISTER_TRACE(pOp
->p1
, pIn1
);
771 /* Opcode: Return P1 * * * *
773 ** Jump to the next instruction after the address in register P1.
775 case OP_Return
: { /* in1 */
776 pIn1
= &aMem
[pOp
->p1
];
777 assert( pIn1
->flags
& MEM_Int
);
782 /* Opcode: Yield P1 * * * *
784 ** Swap the program counter with the value in register P1.
786 case OP_Yield
: { /* in1 */
788 pIn1
= &aMem
[pOp
->p1
];
789 assert( (pIn1
->flags
& MEM_Dyn
)==0 );
790 pIn1
->flags
= MEM_Int
;
791 pcDest
= (int)pIn1
->u
.i
;
793 REGISTER_TRACE(pOp
->p1
, pIn1
);
798 /* Opcode: HaltIfNull P1 P2 P3 P4 *
800 ** Check the value in register P3. If it is NULL then Halt using
801 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
802 ** value in register P3 is not NULL, then this routine is a no-op.
804 case OP_HaltIfNull
: { /* in3 */
805 pIn3
= &aMem
[pOp
->p3
];
806 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
807 /* Fall through into OP_Halt */
810 /* Opcode: Halt P1 P2 * P4 *
812 ** Exit immediately. All open cursors, etc are closed
815 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
816 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
817 ** For errors, it can be some other value. If P1!=0 then P2 will determine
818 ** whether or not to rollback the current transaction. Do not rollback
819 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
820 ** then back out all changes that have occurred during this execution of the
821 ** VDBE, but do not rollback the transaction.
823 ** If P4 is not null then it is an error message string.
825 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
826 ** every program. So a jump past the last instruction of the program
827 ** is the same as executing Halt.
830 if( pOp
->p1
==SQLITE_OK
&& p
->pFrame
){
831 /* Halt the sub-program. Return control to the parent frame. */
832 VdbeFrame
*pFrame
= p
->pFrame
;
833 p
->pFrame
= pFrame
->pParent
;
835 sqlite3VdbeSetChanges(db
, p
->nChange
);
836 pc
= sqlite3VdbeFrameRestore(pFrame
);
837 lastRowid
= db
->lastRowid
;
838 if( pOp
->p2
==OE_Ignore
){
839 /* Instruction pc is the OP_Program that invoked the sub-program
840 ** currently being halted. If the p2 instruction of this OP_Halt
841 ** instruction is set to OE_Ignore, then the sub-program is throwing
842 ** an IGNORE exception. In this case jump to the address specified
843 ** as the p2 of the calling OP_Program. */
844 pc
= p
->aOp
[pc
].p2
-1;
852 p
->errorAction
= (u8
)pOp
->p2
;
855 assert( p
->rc
!=SQLITE_OK
);
856 sqlite3SetString(&p
->zErrMsg
, db
, "%s", pOp
->p4
.z
);
857 testcase( sqlite3GlobalConfig
.xLog
!=0 );
858 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pc
, p
->zSql
, pOp
->p4
.z
);
860 testcase( sqlite3GlobalConfig
.xLog
!=0 );
861 sqlite3_log(pOp
->p1
, "constraint failed at %d in [%s]", pc
, p
->zSql
);
863 rc
= sqlite3VdbeHalt(p
);
864 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
865 if( rc
==SQLITE_BUSY
){
866 p
->rc
= rc
= SQLITE_BUSY
;
868 assert( rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
);
869 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 );
870 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
875 /* Opcode: Integer P1 P2 * * *
877 ** The 32-bit integer value P1 is written into register P2.
879 case OP_Integer
: { /* out2-prerelease */
884 /* Opcode: Int64 * P2 * P4 *
886 ** P4 is a pointer to a 64-bit integer value.
887 ** Write that value into register P2.
889 case OP_Int64
: { /* out2-prerelease */
890 assert( pOp
->p4
.pI64
!=0 );
891 pOut
->u
.i
= *pOp
->p4
.pI64
;
895 #ifndef SQLITE_OMIT_FLOATING_POINT
896 /* Opcode: Real * P2 * P4 *
898 ** P4 is a pointer to a 64-bit floating point value.
899 ** Write that value into register P2.
901 case OP_Real
: { /* same as TK_FLOAT, out2-prerelease */
902 pOut
->flags
= MEM_Real
;
903 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
904 pOut
->r
= *pOp
->p4
.pReal
;
909 /* Opcode: String8 * P2 * P4 *
911 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
912 ** into an OP_String before it is executed for the first time.
914 case OP_String8
: { /* same as TK_STRING, out2-prerelease */
915 assert( pOp
->p4
.z
!=0 );
916 pOp
->opcode
= OP_String
;
917 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
919 #ifndef SQLITE_OMIT_UTF16
920 if( encoding
!=SQLITE_UTF8
){
921 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
922 if( rc
==SQLITE_TOOBIG
) goto too_big
;
923 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
924 assert( pOut
->zMalloc
==pOut
->z
);
925 assert( pOut
->flags
& MEM_Dyn
);
927 pOut
->flags
|= MEM_Static
;
928 pOut
->flags
&= ~MEM_Dyn
;
929 if( pOp
->p4type
==P4_DYNAMIC
){
930 sqlite3DbFree(db
, pOp
->p4
.z
);
932 pOp
->p4type
= P4_DYNAMIC
;
937 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
940 /* Fall through to the next case, OP_String */
943 /* Opcode: String P1 P2 * P4 *
945 ** The string value P4 of length P1 (bytes) is stored in register P2.
947 case OP_String
: { /* out2-prerelease */
948 assert( pOp
->p4
.z
!=0 );
949 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
952 pOut
->enc
= encoding
;
953 UPDATE_MAX_BLOBSIZE(pOut
);
957 /* Opcode: Null P1 P2 P3 * *
959 ** Write a NULL into registers P2. If P3 greater than P2, then also write
960 ** NULL into register P3 and every register in between P2 and P3. If P3
961 ** is less than P2 (typically P3 is zero) then only register P2 is
964 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
965 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
968 case OP_Null
: { /* out2-prerelease */
971 cnt
= pOp
->p3
-pOp
->p2
;
972 assert( pOp
->p3
<=p
->nMem
);
973 pOut
->flags
= nullFlag
= pOp
->p1
? (MEM_Null
|MEM_Cleared
) : MEM_Null
;
976 memAboutToChange(p
, pOut
);
977 VdbeMemRelease(pOut
);
978 pOut
->flags
= nullFlag
;
985 /* Opcode: Blob P1 P2 * P4
987 ** P4 points to a blob of data P1 bytes long. Store this
988 ** blob in register P2.
990 case OP_Blob
: { /* out2-prerelease */
991 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
992 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
993 pOut
->enc
= encoding
;
994 UPDATE_MAX_BLOBSIZE(pOut
);
998 /* Opcode: Variable P1 P2 * P4 *
1000 ** Transfer the values of bound parameter P1 into register P2
1002 ** If the parameter is named, then its name appears in P4 and P3==1.
1003 ** The P4 value is used by sqlite3_bind_parameter_name().
1005 case OP_Variable
: { /* out2-prerelease */
1006 Mem
*pVar
; /* Value being transferred */
1008 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1009 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==p
->azVar
[pOp
->p1
-1] );
1010 pVar
= &p
->aVar
[pOp
->p1
- 1];
1011 if( sqlite3VdbeMemTooBig(pVar
) ){
1014 sqlite3VdbeMemShallowCopy(pOut
, pVar
, MEM_Static
);
1015 UPDATE_MAX_BLOBSIZE(pOut
);
1019 /* Opcode: Move P1 P2 P3 * *
1021 ** Move the values in register P1..P1+P3 over into
1022 ** registers P2..P2+P3. Registers P1..P1+P3 are
1023 ** left holding a NULL. It is an error for register ranges
1024 ** P1..P1+P3 and P2..P2+P3 to overlap.
1027 char *zMalloc
; /* Holding variable for allocated memory */
1028 int n
; /* Number of registers left to copy */
1029 int p1
; /* Register to copy from */
1030 int p2
; /* Register to copy to */
1035 assert( n
>0 && p1
>0 && p2
>0 );
1036 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1041 assert( pOut
<=&aMem
[p
->nMem
] );
1042 assert( pIn1
<=&aMem
[p
->nMem
] );
1043 assert( memIsValid(pIn1
) );
1044 memAboutToChange(p
, pOut
);
1045 zMalloc
= pOut
->zMalloc
;
1047 sqlite3VdbeMemMove(pOut
, pIn1
);
1049 if( pOut
->pScopyFrom
>=&aMem
[p1
] && pOut
->pScopyFrom
<&aMem
[p1
+pOp
->p3
] ){
1050 pOut
->pScopyFrom
+= p1
- pOp
->p2
;
1053 pIn1
->zMalloc
= zMalloc
;
1054 REGISTER_TRACE(p2
++, pOut
);
1061 /* Opcode: Copy P1 P2 P3 * *
1063 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1065 ** This instruction makes a deep copy of the value. A duplicate
1066 ** is made of any string or blob constant. See also OP_SCopy.
1072 pIn1
= &aMem
[pOp
->p1
];
1073 pOut
= &aMem
[pOp
->p2
];
1074 assert( pOut
!=pIn1
);
1076 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1077 Deephemeralize(pOut
);
1079 pOut
->pScopyFrom
= 0;
1081 REGISTER_TRACE(pOp
->p2
+pOp
->p3
-n
, pOut
);
1082 if( (n
--)==0 ) break;
1089 /* Opcode: SCopy P1 P2 * * *
1091 ** Make a shallow copy of register P1 into register P2.
1093 ** This instruction makes a shallow copy of the value. If the value
1094 ** is a string or blob, then the copy is only a pointer to the
1095 ** original and hence if the original changes so will the copy.
1096 ** Worse, if the original is deallocated, the copy becomes invalid.
1097 ** Thus the program must guarantee that the original will not change
1098 ** during the lifetime of the copy. Use OP_Copy to make a complete
1101 case OP_SCopy
: { /* in1, out2 */
1102 pIn1
= &aMem
[pOp
->p1
];
1103 pOut
= &aMem
[pOp
->p2
];
1104 assert( pOut
!=pIn1
);
1105 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1107 if( pOut
->pScopyFrom
==0 ) pOut
->pScopyFrom
= pIn1
;
1109 REGISTER_TRACE(pOp
->p2
, pOut
);
1113 /* Opcode: ResultRow P1 P2 * * *
1115 ** The registers P1 through P1+P2-1 contain a single row of
1116 ** results. This opcode causes the sqlite3_step() call to terminate
1117 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1118 ** structure to provide access to the top P1 values as the result
1121 case OP_ResultRow
: {
1124 assert( p
->nResColumn
==pOp
->p2
);
1125 assert( pOp
->p1
>0 );
1126 assert( pOp
->p1
+pOp
->p2
<=p
->nMem
+1 );
1128 /* If this statement has violated immediate foreign key constraints, do
1129 ** not return the number of rows modified. And do not RELEASE the statement
1130 ** transaction. It needs to be rolled back. */
1131 if( SQLITE_OK
!=(rc
= sqlite3VdbeCheckFk(p
, 0)) ){
1132 assert( db
->flags
&SQLITE_CountRows
);
1133 assert( p
->usesStmtJournal
);
1137 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1138 ** DML statements invoke this opcode to return the number of rows
1139 ** modified to the user. This is the only way that a VM that
1140 ** opens a statement transaction may invoke this opcode.
1142 ** In case this is such a statement, close any statement transaction
1143 ** opened by this VM before returning control to the user. This is to
1144 ** ensure that statement-transactions are always nested, not overlapping.
1145 ** If the open statement-transaction is not closed here, then the user
1146 ** may step another VM that opens its own statement transaction. This
1147 ** may lead to overlapping statement transactions.
1149 ** The statement transaction is never a top-level transaction. Hence
1150 ** the RELEASE call below can never fail.
1152 assert( p
->iStatement
==0 || db
->flags
&SQLITE_CountRows
);
1153 rc
= sqlite3VdbeCloseStatement(p
, SAVEPOINT_RELEASE
);
1154 if( NEVER(rc
!=SQLITE_OK
) ){
1158 /* Invalidate all ephemeral cursor row caches */
1159 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1161 /* Make sure the results of the current row are \000 terminated
1162 ** and have an assigned type. The results are de-ephemeralized as
1165 pMem
= p
->pResultSet
= &aMem
[pOp
->p1
];
1166 for(i
=0; i
<pOp
->p2
; i
++){
1167 assert( memIsValid(&pMem
[i
]) );
1168 Deephemeralize(&pMem
[i
]);
1169 assert( (pMem
[i
].flags
& MEM_Ephem
)==0
1170 || (pMem
[i
].flags
& (MEM_Str
|MEM_Blob
))==0 );
1171 sqlite3VdbeMemNulTerminate(&pMem
[i
]);
1172 sqlite3VdbeMemStoreType(&pMem
[i
]);
1173 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1175 if( db
->mallocFailed
) goto no_mem
;
1177 /* Return SQLITE_ROW
1184 /* Opcode: Concat P1 P2 P3 * *
1186 ** Add the text in register P1 onto the end of the text in
1187 ** register P2 and store the result in register P3.
1188 ** If either the P1 or P2 text are NULL then store NULL in P3.
1192 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1193 ** if P3 is the same register as P2, the implementation is able
1194 ** to avoid a memcpy().
1196 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1199 pIn1
= &aMem
[pOp
->p1
];
1200 pIn2
= &aMem
[pOp
->p2
];
1201 pOut
= &aMem
[pOp
->p3
];
1202 assert( pIn1
!=pOut
);
1203 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1204 sqlite3VdbeMemSetNull(pOut
);
1207 if( ExpandBlob(pIn1
) || ExpandBlob(pIn2
) ) goto no_mem
;
1208 Stringify(pIn1
, encoding
);
1209 Stringify(pIn2
, encoding
);
1210 nByte
= pIn1
->n
+ pIn2
->n
;
1211 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1214 MemSetTypeFlag(pOut
, MEM_Str
);
1215 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1219 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1221 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1223 pOut
->z
[nByte
+1] = 0;
1224 pOut
->flags
|= MEM_Term
;
1225 pOut
->n
= (int)nByte
;
1226 pOut
->enc
= encoding
;
1227 UPDATE_MAX_BLOBSIZE(pOut
);
1231 /* Opcode: Add P1 P2 P3 * *
1233 ** Add the value in register P1 to the value in register P2
1234 ** and store the result in register P3.
1235 ** If either input is NULL, the result is NULL.
1237 /* Opcode: Multiply P1 P2 P3 * *
1240 ** Multiply the value in register P1 by the value in register P2
1241 ** and store the result in register P3.
1242 ** If either input is NULL, the result is NULL.
1244 /* Opcode: Subtract P1 P2 P3 * *
1246 ** Subtract the value in register P1 from the value in register P2
1247 ** and store the result in register P3.
1248 ** If either input is NULL, the result is NULL.
1250 /* Opcode: Divide P1 P2 P3 * *
1252 ** Divide the value in register P1 by the value in register P2
1253 ** and store the result in register P3 (P3=P2/P1). If the value in
1254 ** register P1 is zero, then the result is NULL. If either input is
1255 ** NULL, the result is NULL.
1257 /* Opcode: Remainder P1 P2 P3 * *
1259 ** Compute the remainder after integer division of the value in
1260 ** register P1 by the value in register P2 and store the result in P3.
1261 ** If the value in register P2 is zero the result is NULL.
1262 ** If either operand is NULL, the result is NULL.
1264 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1265 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1266 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1267 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1268 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1269 char bIntint
; /* Started out as two integer operands */
1270 int flags
; /* Combined MEM_* flags from both inputs */
1271 i64 iA
; /* Integer value of left operand */
1272 i64 iB
; /* Integer value of right operand */
1273 double rA
; /* Real value of left operand */
1274 double rB
; /* Real value of right operand */
1276 pIn1
= &aMem
[pOp
->p1
];
1277 applyNumericAffinity(pIn1
);
1278 pIn2
= &aMem
[pOp
->p2
];
1279 applyNumericAffinity(pIn2
);
1280 pOut
= &aMem
[pOp
->p3
];
1281 flags
= pIn1
->flags
| pIn2
->flags
;
1282 if( (flags
& MEM_Null
)!=0 ) goto arithmetic_result_is_null
;
1283 if( (pIn1
->flags
& pIn2
->flags
& MEM_Int
)==MEM_Int
){
1287 switch( pOp
->opcode
){
1288 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1289 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1290 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1292 if( iA
==0 ) goto arithmetic_result_is_null
;
1293 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1298 if( iA
==0 ) goto arithmetic_result_is_null
;
1299 if( iA
==-1 ) iA
= 1;
1305 MemSetTypeFlag(pOut
, MEM_Int
);
1309 rA
= sqlite3VdbeRealValue(pIn1
);
1310 rB
= sqlite3VdbeRealValue(pIn2
);
1311 switch( pOp
->opcode
){
1312 case OP_Add
: rB
+= rA
; break;
1313 case OP_Subtract
: rB
-= rA
; break;
1314 case OP_Multiply
: rB
*= rA
; break;
1316 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1317 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1324 if( iA
==0 ) goto arithmetic_result_is_null
;
1325 if( iA
==-1 ) iA
= 1;
1326 rB
= (double)(iB
% iA
);
1330 #ifdef SQLITE_OMIT_FLOATING_POINT
1332 MemSetTypeFlag(pOut
, MEM_Int
);
1334 if( sqlite3IsNaN(rB
) ){
1335 goto arithmetic_result_is_null
;
1338 MemSetTypeFlag(pOut
, MEM_Real
);
1339 if( (flags
& MEM_Real
)==0 && !bIntint
){
1340 sqlite3VdbeIntegerAffinity(pOut
);
1346 arithmetic_result_is_null
:
1347 sqlite3VdbeMemSetNull(pOut
);
1351 /* Opcode: CollSeq P1 * * P4
1353 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1354 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1355 ** be returned. This is used by the built-in min(), max() and nullif()
1358 ** If P1 is not zero, then it is a register that a subsequent min() or
1359 ** max() aggregate will set to 1 if the current row is not the minimum or
1360 ** maximum. The P1 register is initialized to 0 by this instruction.
1362 ** The interface used by the implementation of the aforementioned functions
1363 ** to retrieve the collation sequence set by this opcode is not available
1364 ** publicly, only to user functions defined in func.c.
1367 assert( pOp
->p4type
==P4_COLLSEQ
);
1369 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1374 /* Opcode: Function P1 P2 P3 P4 P5
1376 ** Invoke a user function (P4 is a pointer to a Function structure that
1377 ** defines the function) with P5 arguments taken from register P2 and
1378 ** successors. The result of the function is stored in register P3.
1379 ** Register P3 must not be one of the function inputs.
1381 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1382 ** function was determined to be constant at compile time. If the first
1383 ** argument was constant then bit 0 of P1 is set. This is used to determine
1384 ** whether meta data associated with a user function argument using the
1385 ** sqlite3_set_auxdata() API may be safely retained until the next
1386 ** invocation of this opcode.
1388 ** See also: AggStep and AggFinal
1393 sqlite3_context ctx
;
1394 sqlite3_value
**apVal
;
1399 assert( apVal
|| n
==0 );
1400 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
1401 pOut
= &aMem
[pOp
->p3
];
1402 memAboutToChange(p
, pOut
);
1404 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=p
->nMem
+1) );
1405 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
1406 pArg
= &aMem
[pOp
->p2
];
1407 for(i
=0; i
<n
; i
++, pArg
++){
1408 assert( memIsValid(pArg
) );
1410 Deephemeralize(pArg
);
1411 sqlite3VdbeMemStoreType(pArg
);
1412 REGISTER_TRACE(pOp
->p2
+i
, pArg
);
1415 assert( pOp
->p4type
==P4_FUNCDEF
|| pOp
->p4type
==P4_VDBEFUNC
);
1416 if( pOp
->p4type
==P4_FUNCDEF
){
1417 ctx
.pFunc
= pOp
->p4
.pFunc
;
1420 ctx
.pVdbeFunc
= (VdbeFunc
*)pOp
->p4
.pVdbeFunc
;
1421 ctx
.pFunc
= ctx
.pVdbeFunc
->pFunc
;
1424 ctx
.s
.flags
= MEM_Null
;
1429 /* The output cell may already have a buffer allocated. Move
1430 ** the pointer to ctx.s so in case the user-function can use
1431 ** the already allocated buffer instead of allocating a new one.
1433 sqlite3VdbeMemMove(&ctx
.s
, pOut
);
1434 MemSetTypeFlag(&ctx
.s
, MEM_Null
);
1437 if( ctx
.pFunc
->flags
& SQLITE_FUNC_NEEDCOLL
){
1439 assert( pOp
[-1].p4type
==P4_COLLSEQ
);
1440 assert( pOp
[-1].opcode
==OP_CollSeq
);
1441 ctx
.pColl
= pOp
[-1].p4
.pColl
;
1443 db
->lastRowid
= lastRowid
;
1444 (*ctx
.pFunc
->xFunc
)(&ctx
, n
, apVal
); /* IMP: R-24505-23230 */
1445 lastRowid
= db
->lastRowid
;
1447 /* If any auxiliary data functions have been called by this user function,
1448 ** immediately call the destructor for any non-static values.
1450 if( ctx
.pVdbeFunc
){
1451 sqlite3VdbeDeleteAuxData(ctx
.pVdbeFunc
, pOp
->p1
);
1452 pOp
->p4
.pVdbeFunc
= ctx
.pVdbeFunc
;
1453 pOp
->p4type
= P4_VDBEFUNC
;
1456 if( db
->mallocFailed
){
1457 /* Even though a malloc() has failed, the implementation of the
1458 ** user function may have called an sqlite3_result_XXX() function
1459 ** to return a value. The following call releases any resources
1460 ** associated with such a value.
1462 sqlite3VdbeMemRelease(&ctx
.s
);
1466 /* If the function returned an error, throw an exception */
1468 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(&ctx
.s
));
1472 /* Copy the result of the function into register P3 */
1473 sqlite3VdbeChangeEncoding(&ctx
.s
, encoding
);
1474 sqlite3VdbeMemMove(pOut
, &ctx
.s
);
1475 if( sqlite3VdbeMemTooBig(pOut
) ){
1480 /* The app-defined function has done something that as caused this
1481 ** statement to expire. (Perhaps the function called sqlite3_exec()
1482 ** with a CREATE TABLE statement.)
1484 if( p
->expired
) rc
= SQLITE_ABORT
;
1487 REGISTER_TRACE(pOp
->p3
, pOut
);
1488 UPDATE_MAX_BLOBSIZE(pOut
);
1492 /* Opcode: BitAnd P1 P2 P3 * *
1494 ** Take the bit-wise AND of the values in register P1 and P2 and
1495 ** store the result in register P3.
1496 ** If either input is NULL, the result is NULL.
1498 /* Opcode: BitOr P1 P2 P3 * *
1500 ** Take the bit-wise OR of the values in register P1 and P2 and
1501 ** store the result in register P3.
1502 ** If either input is NULL, the result is NULL.
1504 /* Opcode: ShiftLeft P1 P2 P3 * *
1506 ** Shift the integer value in register P2 to the left by the
1507 ** number of bits specified by the integer in register P1.
1508 ** Store the result in register P3.
1509 ** If either input is NULL, the result is NULL.
1511 /* Opcode: ShiftRight P1 P2 P3 * *
1513 ** Shift the integer value in register P2 to the right by the
1514 ** number of bits specified by the integer in register P1.
1515 ** Store the result in register P3.
1516 ** If either input is NULL, the result is NULL.
1518 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1519 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1520 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1521 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1527 pIn1
= &aMem
[pOp
->p1
];
1528 pIn2
= &aMem
[pOp
->p2
];
1529 pOut
= &aMem
[pOp
->p3
];
1530 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1531 sqlite3VdbeMemSetNull(pOut
);
1534 iA
= sqlite3VdbeIntValue(pIn2
);
1535 iB
= sqlite3VdbeIntValue(pIn1
);
1537 if( op
==OP_BitAnd
){
1539 }else if( op
==OP_BitOr
){
1542 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1544 /* If shifting by a negative amount, shift in the other direction */
1546 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
1547 op
= 2*OP_ShiftLeft
+ 1 - op
;
1548 iB
= iB
>(-64) ? -iB
: 64;
1552 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
1554 memcpy(&uA
, &iA
, sizeof(uA
));
1555 if( op
==OP_ShiftLeft
){
1559 /* Sign-extend on a right shift of a negative number */
1560 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
1562 memcpy(&iA
, &uA
, sizeof(iA
));
1566 MemSetTypeFlag(pOut
, MEM_Int
);
1570 /* Opcode: AddImm P1 P2 * * *
1572 ** Add the constant P2 to the value in register P1.
1573 ** The result is always an integer.
1575 ** To force any register to be an integer, just add 0.
1577 case OP_AddImm
: { /* in1 */
1578 pIn1
= &aMem
[pOp
->p1
];
1579 memAboutToChange(p
, pIn1
);
1580 sqlite3VdbeMemIntegerify(pIn1
);
1581 pIn1
->u
.i
+= pOp
->p2
;
1585 /* Opcode: MustBeInt P1 P2 * * *
1587 ** Force the value in register P1 to be an integer. If the value
1588 ** in P1 is not an integer and cannot be converted into an integer
1589 ** without data loss, then jump immediately to P2, or if P2==0
1590 ** raise an SQLITE_MISMATCH exception.
1592 case OP_MustBeInt
: { /* jump, in1 */
1593 pIn1
= &aMem
[pOp
->p1
];
1594 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
1595 if( (pIn1
->flags
& MEM_Int
)==0 ){
1597 rc
= SQLITE_MISMATCH
;
1598 goto abort_due_to_error
;
1603 MemSetTypeFlag(pIn1
, MEM_Int
);
1608 #ifndef SQLITE_OMIT_FLOATING_POINT
1609 /* Opcode: RealAffinity P1 * * * *
1611 ** If register P1 holds an integer convert it to a real value.
1613 ** This opcode is used when extracting information from a column that
1614 ** has REAL affinity. Such column values may still be stored as
1615 ** integers, for space efficiency, but after extraction we want them
1616 ** to have only a real value.
1618 case OP_RealAffinity
: { /* in1 */
1619 pIn1
= &aMem
[pOp
->p1
];
1620 if( pIn1
->flags
& MEM_Int
){
1621 sqlite3VdbeMemRealify(pIn1
);
1627 #ifndef SQLITE_OMIT_CAST
1628 /* Opcode: ToText P1 * * * *
1630 ** Force the value in register P1 to be text.
1631 ** If the value is numeric, convert it to a string using the
1632 ** equivalent of printf(). Blob values are unchanged and
1633 ** are afterwards simply interpreted as text.
1635 ** A NULL value is not changed by this routine. It remains NULL.
1637 case OP_ToText
: { /* same as TK_TO_TEXT, in1 */
1638 pIn1
= &aMem
[pOp
->p1
];
1639 memAboutToChange(p
, pIn1
);
1640 if( pIn1
->flags
& MEM_Null
) break;
1641 assert( MEM_Str
==(MEM_Blob
>>3) );
1642 pIn1
->flags
|= (pIn1
->flags
&MEM_Blob
)>>3;
1643 applyAffinity(pIn1
, SQLITE_AFF_TEXT
, encoding
);
1644 rc
= ExpandBlob(pIn1
);
1645 assert( pIn1
->flags
& MEM_Str
|| db
->mallocFailed
);
1646 pIn1
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_Blob
|MEM_Zero
);
1647 UPDATE_MAX_BLOBSIZE(pIn1
);
1651 /* Opcode: ToBlob P1 * * * *
1653 ** Force the value in register P1 to be a BLOB.
1654 ** If the value is numeric, convert it to a string first.
1655 ** Strings are simply reinterpreted as blobs with no change
1656 ** to the underlying data.
1658 ** A NULL value is not changed by this routine. It remains NULL.
1660 case OP_ToBlob
: { /* same as TK_TO_BLOB, in1 */
1661 pIn1
= &aMem
[pOp
->p1
];
1662 if( pIn1
->flags
& MEM_Null
) break;
1663 if( (pIn1
->flags
& MEM_Blob
)==0 ){
1664 applyAffinity(pIn1
, SQLITE_AFF_TEXT
, encoding
);
1665 assert( pIn1
->flags
& MEM_Str
|| db
->mallocFailed
);
1666 MemSetTypeFlag(pIn1
, MEM_Blob
);
1668 pIn1
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
1670 UPDATE_MAX_BLOBSIZE(pIn1
);
1674 /* Opcode: ToNumeric P1 * * * *
1676 ** Force the value in register P1 to be numeric (either an
1677 ** integer or a floating-point number.)
1678 ** If the value is text or blob, try to convert it to an using the
1679 ** equivalent of atoi() or atof() and store 0 if no such conversion
1682 ** A NULL value is not changed by this routine. It remains NULL.
1684 case OP_ToNumeric
: { /* same as TK_TO_NUMERIC, in1 */
1685 pIn1
= &aMem
[pOp
->p1
];
1686 sqlite3VdbeMemNumerify(pIn1
);
1689 #endif /* SQLITE_OMIT_CAST */
1691 /* Opcode: ToInt P1 * * * *
1693 ** Force the value in register P1 to be an integer. If
1694 ** The value is currently a real number, drop its fractional part.
1695 ** If the value is text or blob, try to convert it to an integer using the
1696 ** equivalent of atoi() and store 0 if no such conversion is possible.
1698 ** A NULL value is not changed by this routine. It remains NULL.
1700 case OP_ToInt
: { /* same as TK_TO_INT, in1 */
1701 pIn1
= &aMem
[pOp
->p1
];
1702 if( (pIn1
->flags
& MEM_Null
)==0 ){
1703 sqlite3VdbeMemIntegerify(pIn1
);
1708 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1709 /* Opcode: ToReal P1 * * * *
1711 ** Force the value in register P1 to be a floating point number.
1712 ** If The value is currently an integer, convert it.
1713 ** If the value is text or blob, try to convert it to an integer using the
1714 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1716 ** A NULL value is not changed by this routine. It remains NULL.
1718 case OP_ToReal
: { /* same as TK_TO_REAL, in1 */
1719 pIn1
= &aMem
[pOp
->p1
];
1720 memAboutToChange(p
, pIn1
);
1721 if( (pIn1
->flags
& MEM_Null
)==0 ){
1722 sqlite3VdbeMemRealify(pIn1
);
1726 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1728 /* Opcode: Lt P1 P2 P3 P4 P5
1730 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1731 ** jump to address P2.
1733 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1734 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1735 ** bit is clear then fall through if either operand is NULL.
1737 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1738 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1739 ** to coerce both inputs according to this affinity before the
1740 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1741 ** affinity is used. Note that the affinity conversions are stored
1742 ** back into the input registers P1 and P3. So this opcode can cause
1743 ** persistent changes to registers P1 and P3.
1745 ** Once any conversions have taken place, and neither value is NULL,
1746 ** the values are compared. If both values are blobs then memcmp() is
1747 ** used to determine the results of the comparison. If both values
1748 ** are text, then the appropriate collating function specified in
1749 ** P4 is used to do the comparison. If P4 is not specified then
1750 ** memcmp() is used to compare text string. If both values are
1751 ** numeric, then a numeric comparison is used. If the two values
1752 ** are of different types, then numbers are considered less than
1753 ** strings and strings are considered less than blobs.
1755 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1756 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1758 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1759 ** equal to one another, provided that they do not have their MEM_Cleared
1762 /* Opcode: Ne P1 P2 P3 P4 P5
1764 ** This works just like the Lt opcode except that the jump is taken if
1765 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1766 ** additional information.
1768 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1769 ** true or false and is never NULL. If both operands are NULL then the result
1770 ** of comparison is false. If either operand is NULL then the result is true.
1771 ** If neither operand is NULL the result is the same as it would be if
1772 ** the SQLITE_NULLEQ flag were omitted from P5.
1774 /* Opcode: Eq P1 P2 P3 P4 P5
1776 ** This works just like the Lt opcode except that the jump is taken if
1777 ** the operands in registers P1 and P3 are equal.
1778 ** See the Lt opcode for additional information.
1780 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1781 ** true or false and is never NULL. If both operands are NULL then the result
1782 ** of comparison is true. If either operand is NULL then the result is false.
1783 ** If neither operand is NULL the result is the same as it would be if
1784 ** the SQLITE_NULLEQ flag were omitted from P5.
1786 /* Opcode: Le P1 P2 P3 P4 P5
1788 ** This works just like the Lt opcode except that the jump is taken if
1789 ** the content of register P3 is less than or equal to the content of
1790 ** register P1. See the Lt opcode for additional information.
1792 /* Opcode: Gt P1 P2 P3 P4 P5
1794 ** This works just like the Lt opcode except that the jump is taken if
1795 ** the content of register P3 is greater than the content of
1796 ** register P1. See the Lt opcode for additional information.
1798 /* Opcode: Ge P1 P2 P3 P4 P5
1800 ** This works just like the Lt opcode except that the jump is taken if
1801 ** the content of register P3 is greater than or equal to the content of
1802 ** register P1. See the Lt opcode for additional information.
1804 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
1805 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
1806 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
1807 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
1808 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
1809 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
1810 int res
; /* Result of the comparison of pIn1 against pIn3 */
1811 char affinity
; /* Affinity to use for comparison */
1812 u16 flags1
; /* Copy of initial value of pIn1->flags */
1813 u16 flags3
; /* Copy of initial value of pIn3->flags */
1815 pIn1
= &aMem
[pOp
->p1
];
1816 pIn3
= &aMem
[pOp
->p3
];
1817 flags1
= pIn1
->flags
;
1818 flags3
= pIn3
->flags
;
1819 if( (flags1
| flags3
)&MEM_Null
){
1820 /* One or both operands are NULL */
1821 if( pOp
->p5
& SQLITE_NULLEQ
){
1822 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1823 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1824 ** or not both operands are null.
1826 assert( pOp
->opcode
==OP_Eq
|| pOp
->opcode
==OP_Ne
);
1827 assert( (flags1
& MEM_Cleared
)==0 );
1828 if( (flags1
&MEM_Null
)!=0
1829 && (flags3
&MEM_Null
)!=0
1830 && (flags3
&MEM_Cleared
)==0
1832 res
= 0; /* Results are equal */
1834 res
= 1; /* Results are not equal */
1837 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1838 ** then the result is always NULL.
1839 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1841 if( pOp
->p5
& SQLITE_STOREP2
){
1842 pOut
= &aMem
[pOp
->p2
];
1843 MemSetTypeFlag(pOut
, MEM_Null
);
1844 REGISTER_TRACE(pOp
->p2
, pOut
);
1845 }else if( pOp
->p5
& SQLITE_JUMPIFNULL
){
1851 /* Neither operand is NULL. Do a comparison. */
1852 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
1854 applyAffinity(pIn1
, affinity
, encoding
);
1855 applyAffinity(pIn3
, affinity
, encoding
);
1856 if( db
->mallocFailed
) goto no_mem
;
1859 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
1862 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
1864 switch( pOp
->opcode
){
1865 case OP_Eq
: res
= res
==0; break;
1866 case OP_Ne
: res
= res
!=0; break;
1867 case OP_Lt
: res
= res
<0; break;
1868 case OP_Le
: res
= res
<=0; break;
1869 case OP_Gt
: res
= res
>0; break;
1870 default: res
= res
>=0; break;
1873 if( pOp
->p5
& SQLITE_STOREP2
){
1874 pOut
= &aMem
[pOp
->p2
];
1875 memAboutToChange(p
, pOut
);
1876 MemSetTypeFlag(pOut
, MEM_Int
);
1878 REGISTER_TRACE(pOp
->p2
, pOut
);
1883 /* Undo any changes made by applyAffinity() to the input registers. */
1884 pIn1
->flags
= (pIn1
->flags
&~MEM_TypeMask
) | (flags1
&MEM_TypeMask
);
1885 pIn3
->flags
= (pIn3
->flags
&~MEM_TypeMask
) | (flags3
&MEM_TypeMask
);
1889 /* Opcode: Permutation * * * P4 *
1891 ** Set the permutation used by the OP_Compare operator to be the array
1892 ** of integers in P4.
1894 ** The permutation is only valid until the next OP_Compare that has
1895 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1896 ** occur immediately prior to the OP_Compare.
1898 case OP_Permutation
: {
1899 assert( pOp
->p4type
==P4_INTARRAY
);
1900 assert( pOp
->p4
.ai
);
1901 aPermute
= pOp
->p4
.ai
;
1905 /* Opcode: Compare P1 P2 P3 P4 P5
1907 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1908 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1909 ** the comparison for use by the next OP_Jump instruct.
1911 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1912 ** determined by the most recent OP_Permutation operator. If the
1913 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1916 ** P4 is a KeyInfo structure that defines collating sequences and sort
1917 ** orders for the comparison. The permutation applies to registers
1918 ** only. The KeyInfo elements are used sequentially.
1920 ** The comparison is a sort comparison, so NULLs compare equal,
1921 ** NULLs are less than numbers, numbers are less than strings,
1922 ** and strings are less than blobs.
1929 const KeyInfo
*pKeyInfo
;
1931 CollSeq
*pColl
; /* Collating sequence to use on this term */
1932 int bRev
; /* True for DESCENDING sort order */
1934 if( (pOp
->p5
& OPFLAG_PERMUTE
)==0 ) aPermute
= 0;
1936 pKeyInfo
= pOp
->p4
.pKeyInfo
;
1938 assert( pKeyInfo
!=0 );
1944 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>mx
) mx
= aPermute
[k
];
1945 assert( p1
>0 && p1
+mx
<=p
->nMem
+1 );
1946 assert( p2
>0 && p2
+mx
<=p
->nMem
+1 );
1948 assert( p1
>0 && p1
+n
<=p
->nMem
+1 );
1949 assert( p2
>0 && p2
+n
<=p
->nMem
+1 );
1951 #endif /* SQLITE_DEBUG */
1953 idx
= aPermute
? aPermute
[i
] : i
;
1954 assert( memIsValid(&aMem
[p1
+idx
]) );
1955 assert( memIsValid(&aMem
[p2
+idx
]) );
1956 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
1957 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
1958 assert( i
<pKeyInfo
->nField
);
1959 pColl
= pKeyInfo
->aColl
[i
];
1960 bRev
= pKeyInfo
->aSortOrder
[i
];
1961 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
1963 if( bRev
) iCompare
= -iCompare
;
1971 /* Opcode: Jump P1 P2 P3 * *
1973 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1974 ** in the most recent OP_Compare instruction the P1 vector was less than
1975 ** equal to, or greater than the P2 vector, respectively.
1977 case OP_Jump
: { /* jump */
1980 }else if( iCompare
==0 ){
1988 /* Opcode: And P1 P2 P3 * *
1990 ** Take the logical AND of the values in registers P1 and P2 and
1991 ** write the result into register P3.
1993 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1994 ** the other input is NULL. A NULL and true or two NULLs give
1997 /* Opcode: Or P1 P2 P3 * *
1999 ** Take the logical OR of the values in register P1 and P2 and
2000 ** store the answer in register P3.
2002 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2003 ** even if the other input is NULL. A NULL and false or two NULLs
2004 ** give a NULL output.
2006 case OP_And
: /* same as TK_AND, in1, in2, out3 */
2007 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
2008 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2009 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2011 pIn1
= &aMem
[pOp
->p1
];
2012 if( pIn1
->flags
& MEM_Null
){
2015 v1
= sqlite3VdbeIntValue(pIn1
)!=0;
2017 pIn2
= &aMem
[pOp
->p2
];
2018 if( pIn2
->flags
& MEM_Null
){
2021 v2
= sqlite3VdbeIntValue(pIn2
)!=0;
2023 if( pOp
->opcode
==OP_And
){
2024 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2025 v1
= and_logic
[v1
*3+v2
];
2027 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2028 v1
= or_logic
[v1
*3+v2
];
2030 pOut
= &aMem
[pOp
->p3
];
2032 MemSetTypeFlag(pOut
, MEM_Null
);
2035 MemSetTypeFlag(pOut
, MEM_Int
);
2040 /* Opcode: Not P1 P2 * * *
2042 ** Interpret the value in register P1 as a boolean value. Store the
2043 ** boolean complement in register P2. If the value in register P1 is
2044 ** NULL, then a NULL is stored in P2.
2046 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2047 pIn1
= &aMem
[pOp
->p1
];
2048 pOut
= &aMem
[pOp
->p2
];
2049 if( pIn1
->flags
& MEM_Null
){
2050 sqlite3VdbeMemSetNull(pOut
);
2052 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeIntValue(pIn1
));
2057 /* Opcode: BitNot P1 P2 * * *
2059 ** Interpret the content of register P1 as an integer. Store the
2060 ** ones-complement of the P1 value into register P2. If P1 holds
2061 ** a NULL then store a NULL in P2.
2063 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2064 pIn1
= &aMem
[pOp
->p1
];
2065 pOut
= &aMem
[pOp
->p2
];
2066 if( pIn1
->flags
& MEM_Null
){
2067 sqlite3VdbeMemSetNull(pOut
);
2069 sqlite3VdbeMemSetInt64(pOut
, ~sqlite3VdbeIntValue(pIn1
));
2074 /* Opcode: Once P1 P2 * * *
2076 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2077 ** set the flag and fall through to the next instruction.
2079 case OP_Once
: { /* jump */
2080 assert( pOp
->p1
<p
->nOnceFlag
);
2081 if( p
->aOnceFlag
[pOp
->p1
] ){
2084 p
->aOnceFlag
[pOp
->p1
] = 1;
2089 /* Opcode: If P1 P2 P3 * *
2091 ** Jump to P2 if the value in register P1 is true. The value
2092 ** is considered true if it is numeric and non-zero. If the value
2093 ** in P1 is NULL then take the jump if P3 is non-zero.
2095 /* Opcode: IfNot P1 P2 P3 * *
2097 ** Jump to P2 if the value in register P1 is False. The value
2098 ** is considered false if it has a numeric value of zero. If the value
2099 ** in P1 is NULL then take the jump if P3 is zero.
2101 case OP_If
: /* jump, in1 */
2102 case OP_IfNot
: { /* jump, in1 */
2104 pIn1
= &aMem
[pOp
->p1
];
2105 if( pIn1
->flags
& MEM_Null
){
2108 #ifdef SQLITE_OMIT_FLOATING_POINT
2109 c
= sqlite3VdbeIntValue(pIn1
)!=0;
2111 c
= sqlite3VdbeRealValue(pIn1
)!=0.0;
2113 if( pOp
->opcode
==OP_IfNot
) c
= !c
;
2121 /* Opcode: IsNull P1 P2 * * *
2123 ** Jump to P2 if the value in register P1 is NULL.
2125 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2126 pIn1
= &aMem
[pOp
->p1
];
2127 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2133 /* Opcode: NotNull P1 P2 * * *
2135 ** Jump to P2 if the value in register P1 is not NULL.
2137 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2138 pIn1
= &aMem
[pOp
->p1
];
2139 if( (pIn1
->flags
& MEM_Null
)==0 ){
2145 /* Opcode: Column P1 P2 P3 P4 P5
2147 ** Interpret the data that cursor P1 points to as a structure built using
2148 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2149 ** information about the format of the data.) Extract the P2-th column
2150 ** from this record. If there are less that (P2+1)
2151 ** values in the record, extract a NULL.
2153 ** The value extracted is stored in register P3.
2155 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2156 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2159 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2160 ** then the cache of the cursor is reset prior to extracting the column.
2161 ** The first OP_Column against a pseudo-table after the value of the content
2162 ** register has changed should have this bit set.
2164 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2165 ** the result is guaranteed to only be used as the argument of a length()
2166 ** or typeof() function, respectively. The loading of large blobs can be
2167 ** skipped for length() and all content loading can be skipped for typeof().
2170 u32 payloadSize
; /* Number of bytes in the record */
2171 i64 payloadSize64
; /* Number of bytes in the record */
2172 int p1
; /* P1 value of the opcode */
2173 int p2
; /* column number to retrieve */
2174 VdbeCursor
*pC
; /* The VDBE cursor */
2175 char *zRec
; /* Pointer to complete record-data */
2176 BtCursor
*pCrsr
; /* The BTree cursor */
2177 u32
*aType
; /* aType[i] holds the numeric type of the i-th column */
2178 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2179 int nField
; /* number of fields in the record */
2180 int len
; /* The length of the serialized data for the column */
2181 int i
; /* Loop counter */
2182 char *zData
; /* Part of the record being decoded */
2183 Mem
*pDest
; /* Where to write the extracted value */
2184 Mem sMem
; /* For storing the record being decoded */
2185 u8
*zIdx
; /* Index into header */
2186 u8
*zEndHdr
; /* Pointer to first byte after the header */
2187 u32 offset
; /* Offset into the data */
2188 u32 szField
; /* Number of bytes in the content of a field */
2189 int szHdr
; /* Size of the header size field at start of record */
2190 int avail
; /* Number of bytes of available data */
2191 u32 t
; /* A type code from the record header */
2192 Mem
*pReg
; /* PseudoTable input register */
2198 memset(&sMem
, 0, sizeof(sMem
));
2199 assert( p1
<p
->nCursor
);
2200 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
2201 pDest
= &aMem
[pOp
->p3
];
2202 memAboutToChange(p
, pDest
);
2205 /* This block sets the variable payloadSize to be the total number of
2206 ** bytes in the record.
2208 ** zRec is set to be the complete text of the record if it is available.
2209 ** The complete record text is always available for pseudo-tables
2210 ** If the record is stored in a cursor, the complete record text
2211 ** might be available in the pC->aRow cache. Or it might not be.
2212 ** If the data is unavailable, zRec is set to NULL.
2214 ** We also compute the number of columns in the record. For cursors,
2215 ** the number of columns is stored in the VdbeCursor.nField element.
2219 #ifndef SQLITE_OMIT_VIRTUALTABLE
2220 assert( pC
->pVtabCursor
==0 );
2222 pCrsr
= pC
->pCursor
;
2224 /* The record is stored in a B-Tree */
2225 rc
= sqlite3VdbeCursorMoveto(pC
);
2226 if( rc
) goto abort_due_to_error
;
2229 }else if( pC
->cacheStatus
==p
->cacheCtr
){
2230 payloadSize
= pC
->payloadSize
;
2231 zRec
= (char*)pC
->aRow
;
2232 }else if( pC
->isIndex
){
2233 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2234 VVA_ONLY(rc
=) sqlite3BtreeKeySize(pCrsr
, &payloadSize64
);
2235 assert( rc
==SQLITE_OK
); /* True because of CursorMoveto() call above */
2236 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2237 ** payload size, so it is impossible for payloadSize64 to be
2238 ** larger than 32 bits. */
2239 assert( (payloadSize64
& SQLITE_MAX_U32
)==(u64
)payloadSize64
);
2240 payloadSize
= (u32
)payloadSize64
;
2242 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2243 VVA_ONLY(rc
=) sqlite3BtreeDataSize(pCrsr
, &payloadSize
);
2244 assert( rc
==SQLITE_OK
); /* DataSize() cannot fail */
2246 }else if( ALWAYS(pC
->pseudoTableReg
>0) ){
2247 pReg
= &aMem
[pC
->pseudoTableReg
];
2248 if( pC
->multiPseudo
){
2249 sqlite3VdbeMemShallowCopy(pDest
, pReg
+p2
, MEM_Ephem
);
2250 Deephemeralize(pDest
);
2253 assert( pReg
->flags
& MEM_Blob
);
2254 assert( memIsValid(pReg
) );
2255 payloadSize
= pReg
->n
;
2257 pC
->cacheStatus
= (pOp
->p5
&OPFLAG_CLEARCACHE
) ? CACHE_STALE
: p
->cacheCtr
;
2258 assert( payloadSize
==0 || zRec
!=0 );
2260 /* Consider the row to be NULL */
2264 /* If payloadSize is 0, then just store a NULL. This can happen because of
2265 ** nullRow or because of a corrupt database. */
2266 if( payloadSize
==0 ){
2267 MemSetTypeFlag(pDest
, MEM_Null
);
2270 assert( db
->aLimit
[SQLITE_LIMIT_LENGTH
]>=0 );
2271 if( payloadSize
> (u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2275 nField
= pC
->nField
;
2276 assert( p2
<nField
);
2278 /* Read and parse the table header. Store the results of the parse
2279 ** into the record header cache fields of the cursor.
2282 if( pC
->cacheStatus
==p
->cacheCtr
){
2283 aOffset
= pC
->aOffset
;
2287 pC
->aOffset
= aOffset
= &aType
[nField
];
2288 pC
->payloadSize
= payloadSize
;
2289 pC
->cacheStatus
= p
->cacheCtr
;
2291 /* Figure out how many bytes are in the header */
2296 zData
= (char*)sqlite3BtreeKeyFetch(pCrsr
, &avail
);
2298 zData
= (char*)sqlite3BtreeDataFetch(pCrsr
, &avail
);
2300 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2301 ** save the payload in the pC->aRow cache. That will save us from
2302 ** having to make additional calls to fetch the content portion of
2306 if( payloadSize
<= (u32
)avail
){
2308 pC
->aRow
= (u8
*)zData
;
2313 /* The following assert is true in all cases except when
2314 ** the database file has been corrupted externally.
2315 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2316 szHdr
= getVarint32((u8
*)zData
, offset
);
2318 /* Make sure a corrupt database has not given us an oversize header.
2319 ** Do this now to avoid an oversize memory allocation.
2321 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2322 ** types use so much data space that there can only be 4096 and 32 of
2323 ** them, respectively. So the maximum header length results from a
2324 ** 3-byte type for each of the maximum of 32768 columns plus three
2325 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2327 if( offset
> 98307 ){
2328 rc
= SQLITE_CORRUPT_BKPT
;
2332 /* Compute in len the number of bytes of data we need to read in order
2333 ** to get nField type values. offset is an upper bound on this. But
2334 ** nField might be significantly less than the true number of columns
2335 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2336 ** We want to minimize len in order to limit the size of the memory
2337 ** allocation, especially if a corrupt database file has caused offset
2338 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2339 ** still exceed Robson memory allocation limits on some configurations.
2340 ** On systems that cannot tolerate large memory allocations, nField*5+3
2341 ** will likely be much smaller since nField will likely be less than
2342 ** 20 or so. This insures that Robson memory allocation limits are
2343 ** not exceeded even for corrupt database files.
2346 if( len
> (int)offset
) len
= (int)offset
;
2348 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2349 ** record header in most cases. But they will fail to get the complete
2350 ** record header if the record header does not fit on a single page
2351 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2352 ** acquire the complete header text.
2354 if( !zRec
&& avail
<len
){
2357 rc
= sqlite3VdbeMemFromBtree(pCrsr
, 0, len
, pC
->isIndex
, &sMem
);
2358 if( rc
!=SQLITE_OK
){
2363 zEndHdr
= (u8
*)&zData
[len
];
2364 zIdx
= (u8
*)&zData
[szHdr
];
2366 /* Scan the header and use it to fill in the aType[] and aOffset[]
2367 ** arrays. aType[i] will contain the type integer for the i-th
2368 ** column and aOffset[i] will contain the offset from the beginning
2369 ** of the record to the start of the data for the i-th column
2371 for(i
=0; i
<nField
; i
++){
2373 aOffset
[i
] = offset
;
2378 zIdx
+= sqlite3GetVarint32(zIdx
, &t
);
2381 szField
= sqlite3VdbeSerialTypeLen(t
);
2383 if( offset
<szField
){ /* True if offset overflows */
2384 zIdx
= &zEndHdr
[1]; /* Forces SQLITE_CORRUPT return below */
2388 /* If i is less that nField, then there are fewer fields in this
2389 ** record than SetNumColumns indicated there are columns in the
2390 ** table. Set the offset for any extra columns not present in
2391 ** the record to 0. This tells code below to store the default value
2392 ** for the column instead of deserializing a value from the record.
2397 sqlite3VdbeMemRelease(&sMem
);
2398 sMem
.flags
= MEM_Null
;
2400 /* If we have read more header data than was contained in the header,
2401 ** or if the end of the last field appears to be past the end of the
2402 ** record, or if the end of the last field appears to be before the end
2403 ** of the record (when all fields present), then we must be dealing
2404 ** with a corrupt database.
2406 if( (zIdx
> zEndHdr
) || (offset
> payloadSize
)
2407 || (zIdx
==zEndHdr
&& offset
!=payloadSize
) ){
2408 rc
= SQLITE_CORRUPT_BKPT
;
2413 /* Get the column information. If aOffset[p2] is non-zero, then
2414 ** deserialize the value from the record. If aOffset[p2] is zero,
2415 ** then there are not enough fields in the record to satisfy the
2416 ** request. In this case, set the value NULL or to P4 if P4 is
2417 ** a pointer to a Mem object.
2420 assert( rc
==SQLITE_OK
);
2422 /* This is the common case where the whole row fits on a single page */
2423 VdbeMemRelease(pDest
);
2424 sqlite3VdbeSerialGet((u8
*)&zRec
[aOffset
[p2
]], aType
[p2
], pDest
);
2426 /* This branch happens only when the row overflows onto multiple pages */
2428 if( (pOp
->p5
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
))!=0
2429 && ((t
>=12 && (t
&1)==0) || (pOp
->p5
& OPFLAG_TYPEOFARG
)!=0)
2431 /* Content is irrelevant for the typeof() function and for
2432 ** the length(X) function if X is a blob. So we might as well use
2433 ** bogus content rather than reading content from disk. NULL works
2434 ** for text and blob and whatever is in the payloadSize64 variable
2435 ** will work for everything else. */
2436 zData
= t
<12 ? (char*)&payloadSize64
: 0;
2438 len
= sqlite3VdbeSerialTypeLen(t
);
2439 sqlite3VdbeMemMove(&sMem
, pDest
);
2440 rc
= sqlite3VdbeMemFromBtree(pCrsr
, aOffset
[p2
], len
, pC
->isIndex
,
2442 if( rc
!=SQLITE_OK
){
2447 sqlite3VdbeSerialGet((u8
*)zData
, t
, pDest
);
2449 pDest
->enc
= encoding
;
2451 if( pOp
->p4type
==P4_MEM
){
2452 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
2454 MemSetTypeFlag(pDest
, MEM_Null
);
2458 /* If we dynamically allocated space to hold the data (in the
2459 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2460 ** dynamically allocated space over to the pDest structure.
2461 ** This prevents a memory copy.
2464 assert( sMem
.z
==sMem
.zMalloc
);
2465 assert( !(pDest
->flags
& MEM_Dyn
) );
2466 assert( !(pDest
->flags
& (MEM_Blob
|MEM_Str
)) || pDest
->z
==sMem
.z
);
2467 pDest
->flags
&= ~(MEM_Ephem
|MEM_Static
);
2468 pDest
->flags
|= MEM_Term
;
2470 pDest
->zMalloc
= sMem
.zMalloc
;
2473 rc
= sqlite3VdbeMemMakeWriteable(pDest
);
2476 UPDATE_MAX_BLOBSIZE(pDest
);
2477 REGISTER_TRACE(pOp
->p3
, pDest
);
2481 /* Opcode: Affinity P1 P2 * P4 *
2483 ** Apply affinities to a range of P2 registers starting with P1.
2485 ** P4 is a string that is P2 characters long. The nth character of the
2486 ** string indicates the column affinity that should be used for the nth
2487 ** memory cell in the range.
2490 const char *zAffinity
; /* The affinity to be applied */
2491 char cAff
; /* A single character of affinity */
2493 zAffinity
= pOp
->p4
.z
;
2494 assert( zAffinity
!=0 );
2495 assert( zAffinity
[pOp
->p2
]==0 );
2496 pIn1
= &aMem
[pOp
->p1
];
2497 while( (cAff
= *(zAffinity
++))!=0 ){
2498 assert( pIn1
<= &p
->aMem
[p
->nMem
] );
2499 assert( memIsValid(pIn1
) );
2501 applyAffinity(pIn1
, cAff
, encoding
);
2507 /* Opcode: MakeRecord P1 P2 P3 P4 *
2509 ** Convert P2 registers beginning with P1 into the [record format]
2510 ** use as a data record in a database table or as a key
2511 ** in an index. The OP_Column opcode can decode the record later.
2513 ** P4 may be a string that is P2 characters long. The nth character of the
2514 ** string indicates the column affinity that should be used for the nth
2515 ** field of the index key.
2517 ** The mapping from character to affinity is given by the SQLITE_AFF_
2518 ** macros defined in sqliteInt.h.
2520 ** If P4 is NULL then all index fields have the affinity NONE.
2522 case OP_MakeRecord
: {
2523 u8
*zNewRecord
; /* A buffer to hold the data for the new record */
2524 Mem
*pRec
; /* The new record */
2525 u64 nData
; /* Number of bytes of data space */
2526 int nHdr
; /* Number of bytes of header space */
2527 i64 nByte
; /* Data space required for this record */
2528 int nZero
; /* Number of zero bytes at the end of the record */
2529 int nVarint
; /* Number of bytes in a varint */
2530 u32 serial_type
; /* Type field */
2531 Mem
*pData0
; /* First field to be combined into the record */
2532 Mem
*pLast
; /* Last field of the record */
2533 int nField
; /* Number of fields in the record */
2534 char *zAffinity
; /* The affinity string for the record */
2535 int file_format
; /* File format to use for encoding */
2536 int i
; /* Space used in zNewRecord[] */
2537 int len
; /* Length of a field */
2539 /* Assuming the record contains N fields, the record format looks
2542 ** ------------------------------------------------------------------------
2543 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2544 ** ------------------------------------------------------------------------
2546 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2549 ** Each type field is a varint representing the serial type of the
2550 ** corresponding data element (see sqlite3VdbeSerialType()). The
2551 ** hdr-size field is also a varint which is the offset from the beginning
2552 ** of the record to data0.
2554 nData
= 0; /* Number of bytes of data space */
2555 nHdr
= 0; /* Number of bytes of header space */
2556 nZero
= 0; /* Number of zero bytes at the end of the record */
2558 zAffinity
= pOp
->p4
.z
;
2559 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=p
->nMem
+1 );
2560 pData0
= &aMem
[nField
];
2562 pLast
= &pData0
[nField
-1];
2563 file_format
= p
->minWriteFileFormat
;
2565 /* Identify the output register */
2566 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
2567 pOut
= &aMem
[pOp
->p3
];
2568 memAboutToChange(p
, pOut
);
2570 /* Loop through the elements that will make up the record to figure
2571 ** out how much space is required for the new record.
2573 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){
2574 assert( memIsValid(pRec
) );
2576 applyAffinity(pRec
, zAffinity
[pRec
-pData0
], encoding
);
2578 if( pRec
->flags
&MEM_Zero
&& pRec
->n
>0 ){
2579 sqlite3VdbeMemExpandBlob(pRec
);
2581 serial_type
= sqlite3VdbeSerialType(pRec
, file_format
);
2582 len
= sqlite3VdbeSerialTypeLen(serial_type
);
2584 nHdr
+= sqlite3VarintLen(serial_type
);
2585 if( pRec
->flags
& MEM_Zero
){
2586 /* Only pure zero-filled BLOBs can be input to this Opcode.
2587 ** We do not allow blobs with a prefix and a zero-filled tail. */
2588 nZero
+= pRec
->u
.nZero
;
2594 /* Add the initial header varint and total the size */
2595 nHdr
+= nVarint
= sqlite3VarintLen(nHdr
);
2596 if( nVarint
<sqlite3VarintLen(nHdr
) ){
2599 nByte
= nHdr
+nData
-nZero
;
2600 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2604 /* Make sure the output register has a buffer large enough to store
2605 ** the new record. The output register (pOp->p3) is not allowed to
2606 ** be one of the input registers (because the following call to
2607 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2609 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
, 0) ){
2612 zNewRecord
= (u8
*)pOut
->z
;
2614 /* Write the record */
2615 i
= putVarint32(zNewRecord
, nHdr
);
2616 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){
2617 serial_type
= sqlite3VdbeSerialType(pRec
, file_format
);
2618 i
+= putVarint32(&zNewRecord
[i
], serial_type
); /* serial type */
2620 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){ /* serial data */
2621 i
+= sqlite3VdbeSerialPut(&zNewRecord
[i
], (int)(nByte
-i
), pRec
,file_format
);
2625 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
2626 pOut
->n
= (int)nByte
;
2627 pOut
->flags
= MEM_Blob
| MEM_Dyn
;
2630 pOut
->u
.nZero
= nZero
;
2631 pOut
->flags
|= MEM_Zero
;
2633 pOut
->enc
= SQLITE_UTF8
; /* In case the blob is ever converted to text */
2634 REGISTER_TRACE(pOp
->p3
, pOut
);
2635 UPDATE_MAX_BLOBSIZE(pOut
);
2639 /* Opcode: Count P1 P2 * * *
2641 ** Store the number of entries (an integer value) in the table or index
2642 ** opened by cursor P1 in register P2
2644 #ifndef SQLITE_OMIT_BTREECOUNT
2645 case OP_Count
: { /* out2-prerelease */
2649 pCrsr
= p
->apCsr
[pOp
->p1
]->pCursor
;
2650 if( ALWAYS(pCrsr
) ){
2651 rc
= sqlite3BtreeCount(pCrsr
, &nEntry
);
2660 /* Opcode: Savepoint P1 * * P4 *
2662 ** Open, release or rollback the savepoint named by parameter P4, depending
2663 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2664 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2666 case OP_Savepoint
: {
2667 int p1
; /* Value of P1 operand */
2668 char *zName
; /* Name of savepoint */
2671 Savepoint
*pSavepoint
;
2679 /* Assert that the p1 parameter is valid. Also that if there is no open
2680 ** transaction, then there cannot be any savepoints.
2682 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
2683 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
2684 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
2685 assert( checkSavepointCount(db
) );
2687 if( p1
==SAVEPOINT_BEGIN
){
2688 if( db
->writeVdbeCnt
>0 ){
2689 /* A new savepoint cannot be created if there are active write
2690 ** statements (i.e. open read/write incremental blob handles).
2692 sqlite3SetString(&p
->zErrMsg
, db
, "cannot open savepoint - "
2693 "SQL statements in progress");
2696 nName
= sqlite3Strlen30(zName
);
2698 #ifndef SQLITE_OMIT_VIRTUALTABLE
2699 /* This call is Ok even if this savepoint is actually a transaction
2700 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2701 ** If this is a transaction savepoint being opened, it is guaranteed
2702 ** that the db->aVTrans[] array is empty. */
2703 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
2704 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
2705 db
->nStatement
+db
->nSavepoint
);
2706 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2709 /* Create a new savepoint structure. */
2710 pNew
= sqlite3DbMallocRaw(db
, sizeof(Savepoint
)+nName
+1);
2712 pNew
->zName
= (char *)&pNew
[1];
2713 memcpy(pNew
->zName
, zName
, nName
+1);
2715 /* If there is no open transaction, then mark this as a special
2716 ** "transaction savepoint". */
2717 if( db
->autoCommit
){
2719 db
->isTransactionSavepoint
= 1;
2724 /* Link the new savepoint into the database handle's list. */
2725 pNew
->pNext
= db
->pSavepoint
;
2726 db
->pSavepoint
= pNew
;
2727 pNew
->nDeferredCons
= db
->nDeferredCons
;
2733 /* Find the named savepoint. If there is no such savepoint, then an
2734 ** an error is returned to the user. */
2736 pSavepoint
= db
->pSavepoint
;
2737 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
2738 pSavepoint
= pSavepoint
->pNext
2743 sqlite3SetString(&p
->zErrMsg
, db
, "no such savepoint: %s", zName
);
2745 }else if( db
->writeVdbeCnt
>0 && p1
==SAVEPOINT_RELEASE
){
2746 /* It is not possible to release (commit) a savepoint if there are
2747 ** active write statements.
2749 sqlite3SetString(&p
->zErrMsg
, db
,
2750 "cannot release savepoint - SQL statements in progress"
2755 /* Determine whether or not this is a transaction savepoint. If so,
2756 ** and this is a RELEASE command, then the current transaction
2759 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
2760 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
2761 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
2765 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
2768 p
->rc
= rc
= SQLITE_BUSY
;
2771 db
->isTransactionSavepoint
= 0;
2774 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
2775 if( p1
==SAVEPOINT_ROLLBACK
){
2776 for(ii
=0; ii
<db
->nDb
; ii
++){
2777 sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
, SQLITE_ABORT
);
2780 for(ii
=0; ii
<db
->nDb
; ii
++){
2781 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
2782 if( rc
!=SQLITE_OK
){
2783 goto abort_due_to_error
;
2786 if( p1
==SAVEPOINT_ROLLBACK
&& (db
->flags
&SQLITE_InternChanges
)!=0 ){
2787 sqlite3ExpirePreparedStatements(db
);
2788 sqlite3ResetAllSchemasOfConnection(db
);
2789 db
->flags
= (db
->flags
| SQLITE_InternChanges
);
2793 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2794 ** savepoints nested inside of the savepoint being operated on. */
2795 while( db
->pSavepoint
!=pSavepoint
){
2796 pTmp
= db
->pSavepoint
;
2797 db
->pSavepoint
= pTmp
->pNext
;
2798 sqlite3DbFree(db
, pTmp
);
2802 /* If it is a RELEASE, then destroy the savepoint being operated on
2803 ** too. If it is a ROLLBACK TO, then set the number of deferred
2804 ** constraint violations present in the database to the value stored
2805 ** when the savepoint was created. */
2806 if( p1
==SAVEPOINT_RELEASE
){
2807 assert( pSavepoint
==db
->pSavepoint
);
2808 db
->pSavepoint
= pSavepoint
->pNext
;
2809 sqlite3DbFree(db
, pSavepoint
);
2810 if( !isTransaction
){
2814 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
2817 if( !isTransaction
){
2818 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
2819 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2827 /* Opcode: AutoCommit P1 P2 * * *
2829 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2830 ** back any currently active btree transactions. If there are any active
2831 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2832 ** there are active writing VMs or active VMs that use shared cache.
2834 ** This instruction causes the VM to halt.
2836 case OP_AutoCommit
: {
2837 int desiredAutoCommit
;
2841 desiredAutoCommit
= pOp
->p1
;
2842 iRollback
= pOp
->p2
;
2843 turnOnAC
= desiredAutoCommit
&& !db
->autoCommit
;
2844 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
2845 assert( desiredAutoCommit
==1 || iRollback
==0 );
2846 assert( db
->activeVdbeCnt
>0 ); /* At least this one VM is active */
2849 if( turnOnAC
&& iRollback
&& db
->activeVdbeCnt
>1 ){
2850 /* If this instruction implements a ROLLBACK and other VMs are
2851 ** still running, and a transaction is active, return an error indicating
2852 ** that the other VMs must complete first.
2854 sqlite3SetString(&p
->zErrMsg
, db
, "cannot rollback transaction - "
2855 "SQL statements in progress");
2859 if( turnOnAC
&& !iRollback
&& db
->writeVdbeCnt
>0 ){
2860 /* If this instruction implements a COMMIT and other VMs are writing
2861 ** return an error indicating that the other VMs must complete first.
2863 sqlite3SetString(&p
->zErrMsg
, db
, "cannot commit transaction - "
2864 "SQL statements in progress");
2866 }else if( desiredAutoCommit
!=db
->autoCommit
){
2868 assert( desiredAutoCommit
==1 );
2869 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
2871 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
2874 db
->autoCommit
= (u8
)desiredAutoCommit
;
2875 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
2877 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
2878 p
->rc
= rc
= SQLITE_BUSY
;
2882 assert( db
->nStatement
==0 );
2883 sqlite3CloseSavepoints(db
);
2884 if( p
->rc
==SQLITE_OK
){
2891 sqlite3SetString(&p
->zErrMsg
, db
,
2892 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
2893 (iRollback
)?"cannot rollback - no transaction is active":
2894 "cannot commit - no transaction is active"));
2901 /* Opcode: Transaction P1 P2 * * *
2903 ** Begin a transaction. The transaction ends when a Commit or Rollback
2904 ** opcode is encountered. Depending on the ON CONFLICT setting, the
2905 ** transaction might also be rolled back if an error is encountered.
2907 ** P1 is the index of the database file on which the transaction is
2908 ** started. Index 0 is the main database file and index 1 is the
2909 ** file used for temporary tables. Indices of 2 or more are used for
2910 ** attached databases.
2912 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
2913 ** obtained on the database file when a write-transaction is started. No
2914 ** other process can start another write transaction while this transaction is
2915 ** underway. Starting a write transaction also creates a rollback journal. A
2916 ** write transaction must be started before any changes can be made to the
2917 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2920 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2921 ** true (this flag is set if the Vdbe may modify more than one row and may
2922 ** throw an ABORT exception), a statement transaction may also be opened.
2923 ** More specifically, a statement transaction is opened iff the database
2924 ** connection is currently not in autocommit mode, or if there are other
2925 ** active statements. A statement transaction allows the changes made by this
2926 ** VDBE to be rolled back after an error without having to roll back the
2927 ** entire transaction. If no error is encountered, the statement transaction
2928 ** will automatically commit when the VDBE halts.
2930 ** If P2 is zero, then a read-lock is obtained on the database file.
2932 case OP_Transaction
: {
2935 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
2936 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
2937 pBt
= db
->aDb
[pOp
->p1
].pBt
;
2940 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
);
2941 if( rc
==SQLITE_BUSY
){
2943 p
->rc
= rc
= SQLITE_BUSY
;
2946 if( rc
!=SQLITE_OK
){
2947 goto abort_due_to_error
;
2950 if( pOp
->p2
&& p
->usesStmtJournal
2951 && (db
->autoCommit
==0 || db
->activeVdbeCnt
>1)
2953 assert( sqlite3BtreeIsInTrans(pBt
) );
2954 if( p
->iStatement
==0 ){
2955 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
2957 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
2960 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
2961 if( rc
==SQLITE_OK
){
2962 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
2965 /* Store the current value of the database handles deferred constraint
2966 ** counter. If the statement transaction needs to be rolled back,
2967 ** the value of this counter needs to be restored too. */
2968 p
->nStmtDefCons
= db
->nDeferredCons
;
2974 /* Opcode: ReadCookie P1 P2 P3 * *
2976 ** Read cookie number P3 from database P1 and write it into register P2.
2977 ** P3==1 is the schema version. P3==2 is the database format.
2978 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
2979 ** the main database file and P1==1 is the database file used to store
2980 ** temporary tables.
2982 ** There must be a read-lock on the database (either a transaction
2983 ** must be started or there must be an open cursor) before
2984 ** executing this instruction.
2986 case OP_ReadCookie
: { /* out2-prerelease */
2993 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
2994 assert( iDb
>=0 && iDb
<db
->nDb
);
2995 assert( db
->aDb
[iDb
].pBt
!=0 );
2996 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
2998 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
3003 /* Opcode: SetCookie P1 P2 P3 * *
3005 ** Write the content of register P3 (interpreted as an integer)
3006 ** into cookie number P2 of database P1. P2==1 is the schema version.
3007 ** P2==2 is the database format. P2==3 is the recommended pager cache
3008 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3009 ** database file used to store temporary tables.
3011 ** A transaction must be started before executing this opcode.
3013 case OP_SetCookie
: { /* in3 */
3015 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
3016 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3017 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
3018 pDb
= &db
->aDb
[pOp
->p1
];
3019 assert( pDb
->pBt
!=0 );
3020 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
3021 pIn3
= &aMem
[pOp
->p3
];
3022 sqlite3VdbeMemIntegerify(pIn3
);
3023 /* See note about index shifting on OP_ReadCookie */
3024 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, (int)pIn3
->u
.i
);
3025 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
3026 /* When the schema cookie changes, record the new cookie internally */
3027 pDb
->pSchema
->schema_cookie
= (int)pIn3
->u
.i
;
3028 db
->flags
|= SQLITE_InternChanges
;
3029 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
3030 /* Record changes in the file format */
3031 pDb
->pSchema
->file_format
= (u8
)pIn3
->u
.i
;
3034 /* Invalidate all prepared statements whenever the TEMP database
3035 ** schema is changed. Ticket #1644 */
3036 sqlite3ExpirePreparedStatements(db
);
3042 /* Opcode: VerifyCookie P1 P2 P3 * *
3044 ** Check the value of global database parameter number 0 (the
3045 ** schema version) and make sure it is equal to P2 and that the
3046 ** generation counter on the local schema parse equals P3.
3048 ** P1 is the database number which is 0 for the main database file
3049 ** and 1 for the file holding temporary tables and some higher number
3050 ** for auxiliary databases.
3052 ** The cookie changes its value whenever the database schema changes.
3053 ** This operation is used to detect when that the cookie has changed
3054 ** and that the current process needs to reread the schema.
3056 ** Either a transaction needs to have been started or an OP_Open needs
3057 ** to be executed (to establish a read lock) before this opcode is
3060 case OP_VerifyCookie
: {
3065 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3066 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
3067 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
3068 pBt
= db
->aDb
[pOp
->p1
].pBt
;
3070 sqlite3BtreeGetMeta(pBt
, BTREE_SCHEMA_VERSION
, (u32
*)&iMeta
);
3071 iGen
= db
->aDb
[pOp
->p1
].pSchema
->iGeneration
;
3075 if( iMeta
!=pOp
->p2
|| iGen
!=pOp
->p3
){
3076 sqlite3DbFree(db
, p
->zErrMsg
);
3077 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
3078 /* If the schema-cookie from the database file matches the cookie
3079 ** stored with the in-memory representation of the schema, do
3080 ** not reload the schema from the database file.
3082 ** If virtual-tables are in use, this is not just an optimization.
3083 ** Often, v-tables store their data in other SQLite tables, which
3084 ** are queried from within xNext() and other v-table methods using
3085 ** prepared queries. If such a query is out-of-date, we do not want to
3086 ** discard the database schema, as the user code implementing the
3087 ** v-table would have to be ready for the sqlite3_vtab structure itself
3088 ** to be invalidated whenever sqlite3_step() is called from within
3089 ** a v-table method.
3091 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
3092 sqlite3ResetOneSchema(db
, pOp
->p1
);
3101 /* Opcode: OpenRead P1 P2 P3 P4 P5
3103 ** Open a read-only cursor for the database table whose root page is
3104 ** P2 in a database file. The database file is determined by P3.
3105 ** P3==0 means the main database, P3==1 means the database used for
3106 ** temporary tables, and P3>1 means used the corresponding attached
3107 ** database. Give the new cursor an identifier of P1. The P1
3108 ** values need not be contiguous but all P1 values should be small integers.
3109 ** It is an error for P1 to be negative.
3111 ** If P5!=0 then use the content of register P2 as the root page, not
3112 ** the value of P2 itself.
3114 ** There will be a read lock on the database whenever there is an
3115 ** open cursor. If the database was unlocked prior to this instruction
3116 ** then a read lock is acquired as part of this instruction. A read
3117 ** lock allows other processes to read the database but prohibits
3118 ** any other process from modifying the database. The read lock is
3119 ** released when all cursors are closed. If this instruction attempts
3120 ** to get a read lock but fails, the script terminates with an
3121 ** SQLITE_BUSY error code.
3123 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3124 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3125 ** structure, then said structure defines the content and collating
3126 ** sequence of the index being opened. Otherwise, if P4 is an integer
3127 ** value, it is set to the number of columns in the table.
3129 ** See also OpenWrite.
3131 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3133 ** Open a read/write cursor named P1 on the table or index whose root
3134 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3137 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3138 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3139 ** structure, then said structure defines the content and collating
3140 ** sequence of the index being opened. Otherwise, if P4 is an integer
3141 ** value, it is set to the number of columns in the table, or to the
3142 ** largest index of any column of the table that is actually used.
3144 ** This instruction works just like OpenRead except that it opens the cursor
3145 ** in read/write mode. For a given table, there can be one or more read-only
3146 ** cursors or a single read/write cursor but not both.
3148 ** See also OpenRead.
3151 case OP_OpenWrite
: {
3161 assert( (pOp
->p5
&(OPFLAG_P2ISREG
|OPFLAG_BULKCSR
))==pOp
->p5
);
3162 assert( pOp
->opcode
==OP_OpenWrite
|| pOp
->p5
==0 );
3173 assert( iDb
>=0 && iDb
<db
->nDb
);
3174 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
3175 pDb
= &db
->aDb
[iDb
];
3178 if( pOp
->opcode
==OP_OpenWrite
){
3180 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3181 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
3182 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
3187 if( pOp
->p5
& OPFLAG_P2ISREG
){
3189 assert( p2
<=p
->nMem
);
3191 assert( memIsValid(pIn2
) );
3192 assert( (pIn2
->flags
& MEM_Int
)!=0 );
3193 sqlite3VdbeMemIntegerify(pIn2
);
3194 p2
= (int)pIn2
->u
.i
;
3195 /* The p2 value always comes from a prior OP_CreateTable opcode and
3196 ** that opcode will always set the p2 value to 2 or more or else fail.
3197 ** If there were a failure, the prepared statement would have halted
3198 ** before reaching this instruction. */
3200 rc
= SQLITE_CORRUPT_BKPT
;
3201 goto abort_due_to_error
;
3204 if( pOp
->p4type
==P4_KEYINFO
){
3205 pKeyInfo
= pOp
->p4
.pKeyInfo
;
3206 pKeyInfo
->enc
= ENC(p
->db
);
3207 nField
= pKeyInfo
->nField
+1;
3208 }else if( pOp
->p4type
==P4_INT32
){
3211 assert( pOp
->p1
>=0 );
3212 pCur
= allocateCursor(p
, pOp
->p1
, nField
, iDb
, 1);
3213 if( pCur
==0 ) goto no_mem
;
3215 pCur
->isOrdered
= 1;
3216 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->pCursor
);
3217 pCur
->pKeyInfo
= pKeyInfo
;
3218 assert( OPFLAG_BULKCSR
==BTREE_BULKLOAD
);
3219 sqlite3BtreeCursorHints(pCur
->pCursor
, (pOp
->p5
& OPFLAG_BULKCSR
));
3221 /* Since it performs no memory allocation or IO, the only value that
3222 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3223 assert( rc
==SQLITE_OK
);
3225 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3226 ** SQLite used to check if the root-page flags were sane at this point
3227 ** and report database corruption if they were not, but this check has
3228 ** since moved into the btree layer. */
3229 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
3230 pCur
->isIndex
= !pCur
->isTable
;
3234 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3236 ** Open a new cursor P1 to a transient table.
3237 ** The cursor is always opened read/write even if
3238 ** the main database is read-only. The ephemeral
3239 ** table is deleted automatically when the cursor is closed.
3241 ** P2 is the number of columns in the ephemeral table.
3242 ** The cursor points to a BTree table if P4==0 and to a BTree index
3243 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3244 ** that defines the format of keys in the index.
3246 ** This opcode was once called OpenTemp. But that created
3247 ** confusion because the term "temp table", might refer either
3248 ** to a TEMP table at the SQL level, or to a table opened by
3249 ** this opcode. Then this opcode was call OpenVirtual. But
3250 ** that created confusion with the whole virtual-table idea.
3252 ** The P5 parameter can be a mask of the BTREE_* flags defined
3253 ** in btree.h. These flags control aspects of the operation of
3254 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3255 ** added automatically.
3257 /* Opcode: OpenAutoindex P1 P2 * P4 *
3259 ** This opcode works the same as OP_OpenEphemeral. It has a
3260 ** different name to distinguish its use. Tables created using
3261 ** by this opcode will be used for automatically created transient
3262 ** indices in joins.
3264 case OP_OpenAutoindex
:
3265 case OP_OpenEphemeral
: {
3267 static const int vfsFlags
=
3268 SQLITE_OPEN_READWRITE
|
3269 SQLITE_OPEN_CREATE
|
3270 SQLITE_OPEN_EXCLUSIVE
|
3271 SQLITE_OPEN_DELETEONCLOSE
|
3272 SQLITE_OPEN_TRANSIENT_DB
;
3274 assert( pOp
->p1
>=0 );
3275 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, 1);
3276 if( pCx
==0 ) goto no_mem
;
3278 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->pBt
,
3279 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
, vfsFlags
);
3280 if( rc
==SQLITE_OK
){
3281 rc
= sqlite3BtreeBeginTrans(pCx
->pBt
, 1);
3283 if( rc
==SQLITE_OK
){
3284 /* If a transient index is required, create it by calling
3285 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3286 ** opening it. If a transient table is required, just use the
3287 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3289 if( pOp
->p4
.pKeyInfo
){
3291 assert( pOp
->p4type
==P4_KEYINFO
);
3292 rc
= sqlite3BtreeCreateTable(pCx
->pBt
, &pgno
, BTREE_BLOBKEY
| pOp
->p5
);
3293 if( rc
==SQLITE_OK
){
3294 assert( pgno
==MASTER_ROOT
+1 );
3295 rc
= sqlite3BtreeCursor(pCx
->pBt
, pgno
, 1,
3296 (KeyInfo
*)pOp
->p4
.z
, pCx
->pCursor
);
3297 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
3298 pCx
->pKeyInfo
->enc
= ENC(p
->db
);
3302 rc
= sqlite3BtreeCursor(pCx
->pBt
, MASTER_ROOT
, 1, 0, pCx
->pCursor
);
3306 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
3307 pCx
->isIndex
= !pCx
->isTable
;
3311 /* Opcode: SorterOpen P1 P2 * P4 *
3313 ** This opcode works like OP_OpenEphemeral except that it opens
3314 ** a transient index that is specifically designed to sort large
3315 ** tables using an external merge-sort algorithm.
3317 case OP_SorterOpen
: {
3320 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, 1);
3321 if( pCx
==0 ) goto no_mem
;
3322 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
3323 pCx
->pKeyInfo
->enc
= ENC(p
->db
);
3325 rc
= sqlite3VdbeSorterInit(db
, pCx
);
3329 /* Opcode: OpenPseudo P1 P2 P3 * P5
3331 ** Open a new cursor that points to a fake table that contains a single
3332 ** row of data. The content of that one row in the content of memory
3333 ** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
3334 ** MEM_Blob content contained in register P2. When P5==1, then the
3335 ** row is represented by P3 consecutive registers beginning with P2.
3337 ** A pseudo-table created by this opcode is used to hold a single
3338 ** row output from the sorter so that the row can be decomposed into
3339 ** individual columns using the OP_Column opcode. The OP_Column opcode
3340 ** is the only cursor opcode that works with a pseudo-table.
3342 ** P3 is the number of fields in the records that will be stored by
3343 ** the pseudo-table.
3345 case OP_OpenPseudo
: {
3348 assert( pOp
->p1
>=0 );
3349 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, -1, 0);
3350 if( pCx
==0 ) goto no_mem
;
3352 pCx
->pseudoTableReg
= pOp
->p2
;
3355 pCx
->multiPseudo
= pOp
->p5
;
3359 /* Opcode: Close P1 * * * *
3361 ** Close a cursor previously opened as P1. If P1 is not
3362 ** currently open, this instruction is a no-op.
3365 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3366 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
3367 p
->apCsr
[pOp
->p1
] = 0;
3371 /* Opcode: SeekGe P1 P2 P3 P4 *
3373 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3374 ** use the value in register P3 as the key. If cursor P1 refers
3375 ** to an SQL index, then P3 is the first in an array of P4 registers
3376 ** that are used as an unpacked index key.
3378 ** Reposition cursor P1 so that it points to the smallest entry that
3379 ** is greater than or equal to the key value. If there are no records
3380 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3382 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3384 /* Opcode: SeekGt P1 P2 P3 P4 *
3386 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3387 ** use the value in register P3 as a key. If cursor P1 refers
3388 ** to an SQL index, then P3 is the first in an array of P4 registers
3389 ** that are used as an unpacked index key.
3391 ** Reposition cursor P1 so that it points to the smallest entry that
3392 ** is greater than the key value. If there are no records greater than
3393 ** the key and P2 is not zero, then jump to P2.
3395 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3397 /* Opcode: SeekLt P1 P2 P3 P4 *
3399 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3400 ** use the value in register P3 as a key. If cursor P1 refers
3401 ** to an SQL index, then P3 is the first in an array of P4 registers
3402 ** that are used as an unpacked index key.
3404 ** Reposition cursor P1 so that it points to the largest entry that
3405 ** is less than the key value. If there are no records less than
3406 ** the key and P2 is not zero, then jump to P2.
3408 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3410 /* Opcode: SeekLe P1 P2 P3 P4 *
3412 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3413 ** use the value in register P3 as a key. If cursor P1 refers
3414 ** to an SQL index, then P3 is the first in an array of P4 registers
3415 ** that are used as an unpacked index key.
3417 ** Reposition cursor P1 so that it points to the largest entry that
3418 ** is less than or equal to the key value. If there are no records
3419 ** less than or equal to the key and P2 is not zero, then jump to P2.
3421 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3423 case OP_SeekLt
: /* jump, in3 */
3424 case OP_SeekLe
: /* jump, in3 */
3425 case OP_SeekGe
: /* jump, in3 */
3426 case OP_SeekGt
: { /* jump, in3 */
3432 i64 iKey
; /* The rowid we are to seek to */
3434 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3435 assert( pOp
->p2
!=0 );
3436 pC
= p
->apCsr
[pOp
->p1
];
3438 assert( pC
->pseudoTableReg
==0 );
3439 assert( OP_SeekLe
== OP_SeekLt
+1 );
3440 assert( OP_SeekGe
== OP_SeekLt
+2 );
3441 assert( OP_SeekGt
== OP_SeekLt
+3 );
3442 assert( pC
->isOrdered
);
3443 if( ALWAYS(pC
->pCursor
!=0) ){
3447 /* The input value in P3 might be of any type: integer, real, string,
3448 ** blob, or NULL. But it needs to be an integer before we can do
3449 ** the seek, so covert it. */
3450 pIn3
= &aMem
[pOp
->p3
];
3451 applyNumericAffinity(pIn3
);
3452 iKey
= sqlite3VdbeIntValue(pIn3
);
3453 pC
->rowidIsValid
= 0;
3455 /* If the P3 value could not be converted into an integer without
3456 ** loss of information, then special processing is required... */
3457 if( (pIn3
->flags
& MEM_Int
)==0 ){
3458 if( (pIn3
->flags
& MEM_Real
)==0 ){
3459 /* If the P3 value cannot be converted into any kind of a number,
3460 ** then the seek is not possible, so jump to P2 */
3464 /* If we reach this point, then the P3 value must be a floating
3466 assert( (pIn3
->flags
& MEM_Real
)!=0 );
3468 if( iKey
==SMALLEST_INT64
&& (pIn3
->r
<(double)iKey
|| pIn3
->r
>0) ){
3469 /* The P3 value is too large in magnitude to be expressed as an
3473 if( oc
>=OP_SeekGe
){ assert( oc
==OP_SeekGe
|| oc
==OP_SeekGt
);
3474 rc
= sqlite3BtreeFirst(pC
->pCursor
, &res
);
3475 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3478 if( oc
<=OP_SeekLe
){ assert( oc
==OP_SeekLt
|| oc
==OP_SeekLe
);
3479 rc
= sqlite3BtreeLast(pC
->pCursor
, &res
);
3480 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3487 }else if( oc
==OP_SeekLt
|| oc
==OP_SeekGe
){
3488 /* Use the ceiling() function to convert real->int */
3489 if( pIn3
->r
> (double)iKey
) iKey
++;
3491 /* Use the floor() function to convert real->int */
3492 assert( oc
==OP_SeekLe
|| oc
==OP_SeekGt
);
3493 if( pIn3
->r
< (double)iKey
) iKey
--;
3496 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, 0, (u64
)iKey
, 0, &res
);
3497 if( rc
!=SQLITE_OK
){
3498 goto abort_due_to_error
;
3501 pC
->rowidIsValid
= 1;
3502 pC
->lastRowid
= iKey
;
3506 assert( pOp
->p4type
==P4_INT32
);
3508 r
.pKeyInfo
= pC
->pKeyInfo
;
3509 r
.nField
= (u16
)nField
;
3511 /* The next line of code computes as follows, only faster:
3512 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3513 ** r.flags = UNPACKED_INCRKEY;
3518 r
.flags
= (u8
)(UNPACKED_INCRKEY
* (1 & (oc
- OP_SeekLt
)));
3519 assert( oc
!=OP_SeekGt
|| r
.flags
==UNPACKED_INCRKEY
);
3520 assert( oc
!=OP_SeekLe
|| r
.flags
==UNPACKED_INCRKEY
);
3521 assert( oc
!=OP_SeekGe
|| r
.flags
==0 );
3522 assert( oc
!=OP_SeekLt
|| r
.flags
==0 );
3524 r
.aMem
= &aMem
[pOp
->p3
];
3526 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3529 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, &r
, 0, 0, &res
);
3530 if( rc
!=SQLITE_OK
){
3531 goto abort_due_to_error
;
3533 pC
->rowidIsValid
= 0;
3535 pC
->deferredMoveto
= 0;
3536 pC
->cacheStatus
= CACHE_STALE
;
3538 sqlite3_search_count
++;
3540 if( oc
>=OP_SeekGe
){ assert( oc
==OP_SeekGe
|| oc
==OP_SeekGt
);
3541 if( res
<0 || (res
==0 && oc
==OP_SeekGt
) ){
3542 rc
= sqlite3BtreeNext(pC
->pCursor
, &res
);
3543 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3544 pC
->rowidIsValid
= 0;
3549 assert( oc
==OP_SeekLt
|| oc
==OP_SeekLe
);
3550 if( res
>0 || (res
==0 && oc
==OP_SeekLt
) ){
3551 rc
= sqlite3BtreePrevious(pC
->pCursor
, &res
);
3552 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3553 pC
->rowidIsValid
= 0;
3555 /* res might be negative because the table is empty. Check to
3556 ** see if this is the case.
3558 res
= sqlite3BtreeEof(pC
->pCursor
);
3561 assert( pOp
->p2
>0 );
3566 /* This happens when attempting to open the sqlite3_master table
3567 ** for read access returns SQLITE_EMPTY. In this case always
3568 ** take the jump (since there are no records in the table).
3575 /* Opcode: Seek P1 P2 * * *
3577 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3578 ** for P1 to move so that it points to the rowid given by P2.
3580 ** This is actually a deferred seek. Nothing actually happens until
3581 ** the cursor is used to read a record. That way, if no reads
3582 ** occur, no unnecessary I/O happens.
3584 case OP_Seek
: { /* in2 */
3587 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3588 pC
= p
->apCsr
[pOp
->p1
];
3590 if( ALWAYS(pC
->pCursor
!=0) ){
3591 assert( pC
->isTable
);
3593 pIn2
= &aMem
[pOp
->p2
];
3594 pC
->movetoTarget
= sqlite3VdbeIntValue(pIn2
);
3595 pC
->rowidIsValid
= 0;
3596 pC
->deferredMoveto
= 1;
3602 /* Opcode: Found P1 P2 P3 P4 *
3604 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3605 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3608 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3609 ** is a prefix of any entry in P1 then a jump is made to P2 and
3610 ** P1 is left pointing at the matching entry.
3612 /* Opcode: NotFound P1 P2 P3 P4 *
3614 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3615 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3618 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3619 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3620 ** does contain an entry whose prefix matches the P3/P4 record then control
3621 ** falls through to the next instruction and P1 is left pointing at the
3624 ** See also: Found, NotExists, IsUnique
3626 case OP_NotFound
: /* jump, in3 */
3627 case OP_Found
: { /* jump, in3 */
3632 UnpackedRecord
*pIdxKey
;
3634 char aTempRec
[ROUND8(sizeof(UnpackedRecord
)) + sizeof(Mem
)*3 + 7];
3637 sqlite3_found_count
++;
3641 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3642 assert( pOp
->p4type
==P4_INT32
);
3643 pC
= p
->apCsr
[pOp
->p1
];
3645 pIn3
= &aMem
[pOp
->p3
];
3646 if( ALWAYS(pC
->pCursor
!=0) ){
3648 assert( pC
->isTable
==0 );
3650 r
.pKeyInfo
= pC
->pKeyInfo
;
3651 r
.nField
= (u16
)pOp
->p4
.i
;
3654 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3656 r
.flags
= UNPACKED_PREFIX_MATCH
;
3659 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(
3660 pC
->pKeyInfo
, aTempRec
, sizeof(aTempRec
), &pFree
3662 if( pIdxKey
==0 ) goto no_mem
;
3663 assert( pIn3
->flags
& MEM_Blob
);
3664 assert( (pIn3
->flags
& MEM_Zero
)==0 ); /* zeroblobs already expanded */
3665 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, pIn3
->n
, pIn3
->z
, pIdxKey
);
3666 pIdxKey
->flags
|= UNPACKED_PREFIX_MATCH
;
3668 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, pIdxKey
, 0, 0, &res
);
3670 sqlite3DbFree(db
, pFree
);
3672 if( rc
!=SQLITE_OK
){
3675 alreadyExists
= (res
==0);
3676 pC
->deferredMoveto
= 0;
3677 pC
->cacheStatus
= CACHE_STALE
;
3679 if( pOp
->opcode
==OP_Found
){
3680 if( alreadyExists
) pc
= pOp
->p2
- 1;
3682 if( !alreadyExists
) pc
= pOp
->p2
- 1;
3687 /* Opcode: IsUnique P1 P2 P3 P4 *
3689 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3690 ** no data and where the key are records generated by OP_MakeRecord with
3691 ** the list field being the integer ROWID of the entry that the index
3694 ** The P3 register contains an integer record number. Call this record
3695 ** number R. Register P4 is the first in a set of N contiguous registers
3696 ** that make up an unpacked index key that can be used with cursor P1.
3697 ** The value of N can be inferred from the cursor. N includes the rowid
3698 ** value appended to the end of the index record. This rowid value may
3699 ** or may not be the same as R.
3701 ** If any of the N registers beginning with register P4 contains a NULL
3702 ** value, jump immediately to P2.
3704 ** Otherwise, this instruction checks if cursor P1 contains an entry
3705 ** where the first (N-1) fields match but the rowid value at the end
3706 ** of the index entry is not R. If there is no such entry, control jumps
3707 ** to instruction P2. Otherwise, the rowid of the conflicting index
3708 ** entry is copied to register P3 and control falls through to the next
3711 ** See also: NotFound, NotExists, Found
3713 case OP_IsUnique
: { /* jump, in3 */
3719 UnpackedRecord r
; /* B-Tree index search key */
3720 i64 R
; /* Rowid stored in register P3 */
3722 pIn3
= &aMem
[pOp
->p3
];
3723 aMx
= &aMem
[pOp
->p4
.i
];
3724 /* Assert that the values of parameters P1 and P4 are in range. */
3725 assert( pOp
->p4type
==P4_INT32
);
3726 assert( pOp
->p4
.i
>0 && pOp
->p4
.i
<=p
->nMem
);
3727 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3729 /* Find the index cursor. */
3730 pCx
= p
->apCsr
[pOp
->p1
];
3731 assert( pCx
->deferredMoveto
==0 );
3732 pCx
->seekResult
= 0;
3733 pCx
->cacheStatus
= CACHE_STALE
;
3734 pCrsr
= pCx
->pCursor
;
3736 /* If any of the values are NULL, take the jump. */
3737 nField
= pCx
->pKeyInfo
->nField
;
3738 for(ii
=0; ii
<nField
; ii
++){
3739 if( aMx
[ii
].flags
& MEM_Null
){
3745 assert( (aMx
[nField
].flags
& MEM_Null
)==0 );
3748 /* Populate the index search key. */
3749 r
.pKeyInfo
= pCx
->pKeyInfo
;
3750 r
.nField
= nField
+ 1;
3751 r
.flags
= UNPACKED_PREFIX_SEARCH
;
3754 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3757 /* Extract the value of R from register P3. */
3758 sqlite3VdbeMemIntegerify(pIn3
);
3761 /* Search the B-Tree index. If no conflicting record is found, jump
3762 ** to P2. Otherwise, copy the rowid of the conflicting record to
3763 ** register P3 and fall through to the next instruction. */
3764 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, &r
, 0, 0, &pCx
->seekResult
);
3765 if( (r
.flags
& UNPACKED_PREFIX_SEARCH
) || r
.rowid
==R
){
3768 pIn3
->u
.i
= r
.rowid
;
3774 /* Opcode: NotExists P1 P2 P3 * *
3776 ** Use the content of register P3 as an integer key. If a record
3777 ** with that key does not exist in table of P1, then jump to P2.
3778 ** If the record does exist, then fall through. The cursor is left
3779 ** pointing to the record if it exists.
3781 ** The difference between this operation and NotFound is that this
3782 ** operation assumes the key is an integer and that P1 is a table whereas
3783 ** NotFound assumes key is a blob constructed from MakeRecord and
3786 ** See also: Found, NotFound, IsUnique
3788 case OP_NotExists
: { /* jump, in3 */
3794 pIn3
= &aMem
[pOp
->p3
];
3795 assert( pIn3
->flags
& MEM_Int
);
3796 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3797 pC
= p
->apCsr
[pOp
->p1
];
3799 assert( pC
->isTable
);
3800 assert( pC
->pseudoTableReg
==0 );
3801 pCrsr
= pC
->pCursor
;
3802 if( ALWAYS(pCrsr
!=0) ){
3805 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, 0, iKey
, 0, &res
);
3806 pC
->lastRowid
= pIn3
->u
.i
;
3807 pC
->rowidIsValid
= res
==0 ?1:0;
3809 pC
->cacheStatus
= CACHE_STALE
;
3810 pC
->deferredMoveto
= 0;
3813 assert( pC
->rowidIsValid
==0 );
3815 pC
->seekResult
= res
;
3817 /* This happens when an attempt to open a read cursor on the
3818 ** sqlite_master table returns SQLITE_EMPTY.
3821 assert( pC
->rowidIsValid
==0 );
3827 /* Opcode: Sequence P1 P2 * * *
3829 ** Find the next available sequence number for cursor P1.
3830 ** Write the sequence number into register P2.
3831 ** The sequence number on the cursor is incremented after this
3834 case OP_Sequence
: { /* out2-prerelease */
3835 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3836 assert( p
->apCsr
[pOp
->p1
]!=0 );
3837 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
3842 /* Opcode: NewRowid P1 P2 P3 * *
3844 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3845 ** The record number is not previously used as a key in the database
3846 ** table that cursor P1 points to. The new record number is written
3847 ** written to register P2.
3849 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3850 ** the largest previously generated record number. No new record numbers are
3851 ** allowed to be less than this value. When this value reaches its maximum,
3852 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3853 ** generated record number. This P3 mechanism is used to help implement the
3854 ** AUTOINCREMENT feature.
3856 case OP_NewRowid
: { /* out2-prerelease */
3857 i64 v
; /* The new rowid */
3858 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
3859 int res
; /* Result of an sqlite3BtreeLast() */
3860 int cnt
; /* Counter to limit the number of searches */
3861 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
3862 VdbeFrame
*pFrame
; /* Root frame of VDBE */
3866 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3867 pC
= p
->apCsr
[pOp
->p1
];
3869 if( NEVER(pC
->pCursor
==0) ){
3870 /* The zero initialization above is all that is needed */
3872 /* The next rowid or record number (different terms for the same
3873 ** thing) is obtained in a two-step algorithm.
3875 ** First we attempt to find the largest existing rowid and add one
3876 ** to that. But if the largest existing rowid is already the maximum
3877 ** positive integer, we have to fall through to the second
3878 ** probabilistic algorithm
3880 ** The second algorithm is to select a rowid at random and see if
3881 ** it already exists in the table. If it does not exist, we have
3882 ** succeeded. If the random rowid does exist, we select a new one
3883 ** and try again, up to 100 times.
3885 assert( pC
->isTable
);
3887 #ifdef SQLITE_32BIT_ROWID
3888 # define MAX_ROWID 0x7fffffff
3890 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3891 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3892 ** to provide the constant while making all compilers happy.
3894 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3897 if( !pC
->useRandomRowid
){
3898 v
= sqlite3BtreeGetCachedRowid(pC
->pCursor
);
3900 rc
= sqlite3BtreeLast(pC
->pCursor
, &res
);
3901 if( rc
!=SQLITE_OK
){
3902 goto abort_due_to_error
;
3905 v
= 1; /* IMP: R-61914-48074 */
3907 assert( sqlite3BtreeCursorIsValid(pC
->pCursor
) );
3908 rc
= sqlite3BtreeKeySize(pC
->pCursor
, &v
);
3909 assert( rc
==SQLITE_OK
); /* Cannot fail following BtreeLast() */
3911 pC
->useRandomRowid
= 1;
3913 v
++; /* IMP: R-29538-34987 */
3918 #ifndef SQLITE_OMIT_AUTOINCREMENT
3920 /* Assert that P3 is a valid memory cell. */
3921 assert( pOp
->p3
>0 );
3923 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
3924 /* Assert that P3 is a valid memory cell. */
3925 assert( pOp
->p3
<=pFrame
->nMem
);
3926 pMem
= &pFrame
->aMem
[pOp
->p3
];
3928 /* Assert that P3 is a valid memory cell. */
3929 assert( pOp
->p3
<=p
->nMem
);
3930 pMem
= &aMem
[pOp
->p3
];
3931 memAboutToChange(p
, pMem
);
3933 assert( memIsValid(pMem
) );
3935 REGISTER_TRACE(pOp
->p3
, pMem
);
3936 sqlite3VdbeMemIntegerify(pMem
);
3937 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
3938 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
3939 rc
= SQLITE_FULL
; /* IMP: R-12275-61338 */
3940 goto abort_due_to_error
;
3942 if( v
<pMem
->u
.i
+1 ){
3949 sqlite3BtreeSetCachedRowid(pC
->pCursor
, v
<MAX_ROWID
? v
+1 : 0);
3951 if( pC
->useRandomRowid
){
3952 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3953 ** largest possible integer (9223372036854775807) then the database
3954 ** engine starts picking positive candidate ROWIDs at random until
3955 ** it finds one that is not previously used. */
3956 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
3957 ** an AUTOINCREMENT table. */
3958 /* on the first attempt, simply do one more than previous */
3960 v
&= (MAX_ROWID
>>1); /* ensure doesn't go negative */
3961 v
++; /* ensure non-zero */
3963 while( ((rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, 0, (u64
)v
,
3964 0, &res
))==SQLITE_OK
)
3967 /* collision - try another random rowid */
3968 sqlite3_randomness(sizeof(v
), &v
);
3970 /* try "small" random rowids for the initial attempts */
3973 v
&= (MAX_ROWID
>>1); /* ensure doesn't go negative */
3975 v
++; /* ensure non-zero */
3977 if( rc
==SQLITE_OK
&& res
==0 ){
3978 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
3979 goto abort_due_to_error
;
3981 assert( v
>0 ); /* EV: R-40812-03570 */
3983 pC
->rowidIsValid
= 0;
3984 pC
->deferredMoveto
= 0;
3985 pC
->cacheStatus
= CACHE_STALE
;
3991 /* Opcode: Insert P1 P2 P3 P4 P5
3993 ** Write an entry into the table of cursor P1. A new entry is
3994 ** created if it doesn't already exist or the data for an existing
3995 ** entry is overwritten. The data is the value MEM_Blob stored in register
3996 ** number P2. The key is stored in register P3. The key must
3999 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4000 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
4001 ** then rowid is stored for subsequent return by the
4002 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4004 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4005 ** the last seek operation (OP_NotExists) was a success, then this
4006 ** operation will not attempt to find the appropriate row before doing
4007 ** the insert but will instead overwrite the row that the cursor is
4008 ** currently pointing to. Presumably, the prior OP_NotExists opcode
4009 ** has already positioned the cursor correctly. This is an optimization
4010 ** that boosts performance by avoiding redundant seeks.
4012 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4013 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4014 ** is part of an INSERT operation. The difference is only important to
4017 ** Parameter P4 may point to a string containing the table-name, or
4018 ** may be NULL. If it is not NULL, then the update-hook
4019 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4021 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4022 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4023 ** and register P2 becomes ephemeral. If the cursor is changed, the
4024 ** value of register P2 will then change. Make sure this does not
4025 ** cause any problems.)
4027 ** This instruction only works on tables. The equivalent instruction
4028 ** for indices is OP_IdxInsert.
4030 /* Opcode: InsertInt P1 P2 P3 P4 P5
4032 ** This works exactly like OP_Insert except that the key is the
4033 ** integer value P3, not the value of the integer stored in register P3.
4036 case OP_InsertInt
: {
4037 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
4038 Mem
*pKey
; /* MEM cell holding key for the record */
4039 i64 iKey
; /* The integer ROWID or key for the record to be inserted */
4040 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
4041 int nZero
; /* Number of zero-bytes to append */
4042 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4043 const char *zDb
; /* database name - used by the update hook */
4044 const char *zTbl
; /* Table name - used by the opdate hook */
4045 int op
; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4047 pData
= &aMem
[pOp
->p2
];
4048 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4049 assert( memIsValid(pData
) );
4050 pC
= p
->apCsr
[pOp
->p1
];
4052 assert( pC
->pCursor
!=0 );
4053 assert( pC
->pseudoTableReg
==0 );
4054 assert( pC
->isTable
);
4055 REGISTER_TRACE(pOp
->p2
, pData
);
4057 if( pOp
->opcode
==OP_Insert
){
4058 pKey
= &aMem
[pOp
->p3
];
4059 assert( pKey
->flags
& MEM_Int
);
4060 assert( memIsValid(pKey
) );
4061 REGISTER_TRACE(pOp
->p3
, pKey
);
4064 assert( pOp
->opcode
==OP_InsertInt
);
4068 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
4069 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= lastRowid
= iKey
;
4070 if( pData
->flags
& MEM_Null
){
4074 assert( pData
->flags
& (MEM_Blob
|MEM_Str
) );
4076 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
4077 if( pData
->flags
& MEM_Zero
){
4078 nZero
= pData
->u
.nZero
;
4082 sqlite3BtreeSetCachedRowid(pC
->pCursor
, 0);
4083 rc
= sqlite3BtreeInsert(pC
->pCursor
, 0, iKey
,
4084 pData
->z
, pData
->n
, nZero
,
4085 pOp
->p5
& OPFLAG_APPEND
, seekResult
4087 pC
->rowidIsValid
= 0;
4088 pC
->deferredMoveto
= 0;
4089 pC
->cacheStatus
= CACHE_STALE
;
4091 /* Invoke the update-hook if required. */
4092 if( rc
==SQLITE_OK
&& db
->xUpdateCallback
&& pOp
->p4
.z
){
4093 zDb
= db
->aDb
[pC
->iDb
].zName
;
4095 op
= ((pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
);
4096 assert( pC
->isTable
);
4097 db
->xUpdateCallback(db
->pUpdateArg
, op
, zDb
, zTbl
, iKey
);
4098 assert( pC
->iDb
>=0 );
4103 /* Opcode: Delete P1 P2 * P4 *
4105 ** Delete the record at which the P1 cursor is currently pointing.
4107 ** The cursor will be left pointing at either the next or the previous
4108 ** record in the table. If it is left pointing at the next record, then
4109 ** the next Next instruction will be a no-op. Hence it is OK to delete
4110 ** a record from within an Next loop.
4112 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4113 ** incremented (otherwise not).
4115 ** P1 must not be pseudo-table. It has to be a real table with
4118 ** If P4 is not NULL, then it is the name of the table that P1 is
4119 ** pointing to. The update hook will be invoked, if it exists.
4120 ** If P4 is not NULL then the P1 cursor must have been positioned
4121 ** using OP_NotFound prior to invoking this opcode.
4128 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4129 pC
= p
->apCsr
[pOp
->p1
];
4131 assert( pC
->pCursor
!=0 ); /* Only valid for real tables, no pseudotables */
4133 /* If the update-hook will be invoked, set iKey to the rowid of the
4134 ** row being deleted.
4136 if( db
->xUpdateCallback
&& pOp
->p4
.z
){
4137 assert( pC
->isTable
);
4138 assert( pC
->rowidIsValid
); /* lastRowid set by previous OP_NotFound */
4139 iKey
= pC
->lastRowid
;
4142 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4143 ** OP_Column on the same table without any intervening operations that
4144 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4145 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4146 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4147 ** to guard against future changes to the code generator.
4149 assert( pC
->deferredMoveto
==0 );
4150 rc
= sqlite3VdbeCursorMoveto(pC
);
4151 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
4153 sqlite3BtreeSetCachedRowid(pC
->pCursor
, 0);
4154 rc
= sqlite3BtreeDelete(pC
->pCursor
);
4155 pC
->cacheStatus
= CACHE_STALE
;
4157 /* Invoke the update-hook if required. */
4158 if( rc
==SQLITE_OK
&& db
->xUpdateCallback
&& pOp
->p4
.z
){
4159 const char *zDb
= db
->aDb
[pC
->iDb
].zName
;
4160 const char *zTbl
= pOp
->p4
.z
;
4161 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, zTbl
, iKey
);
4162 assert( pC
->iDb
>=0 );
4164 if( pOp
->p2
& OPFLAG_NCHANGE
) p
->nChange
++;
4167 /* Opcode: ResetCount * * * * *
4169 ** The value of the change counter is copied to the database handle
4170 ** change counter (returned by subsequent calls to sqlite3_changes()).
4171 ** Then the VMs internal change counter resets to 0.
4172 ** This is used by trigger programs.
4174 case OP_ResetCount
: {
4175 sqlite3VdbeSetChanges(db
, p
->nChange
);
4180 /* Opcode: SorterCompare P1 P2 P3
4182 ** P1 is a sorter cursor. This instruction compares the record blob in
4183 ** register P3 with the entry that the sorter cursor currently points to.
4184 ** If, excluding the rowid fields at the end, the two records are a match,
4185 ** fall through to the next instruction. Otherwise, jump to instruction P2.
4187 case OP_SorterCompare
: {
4191 pC
= p
->apCsr
[pOp
->p1
];
4192 assert( isSorter(pC
) );
4193 pIn3
= &aMem
[pOp
->p3
];
4194 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, &res
);
4201 /* Opcode: SorterData P1 P2 * * *
4203 ** Write into register P2 the current sorter data for sorter cursor P1.
4205 case OP_SorterData
: {
4208 pOut
= &aMem
[pOp
->p2
];
4209 pC
= p
->apCsr
[pOp
->p1
];
4210 assert( pC
->isSorter
);
4211 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
4215 /* Opcode: RowData P1 P2 * * *
4217 ** Write into register P2 the complete row data for cursor P1.
4218 ** There is no interpretation of the data.
4219 ** It is just copied onto the P2 register exactly as
4220 ** it is found in the database file.
4222 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4223 ** of a real table, not a pseudo-table.
4225 /* Opcode: RowKey P1 P2 * * *
4227 ** Write into register P2 the complete row key for cursor P1.
4228 ** There is no interpretation of the data.
4229 ** The key is copied onto the P3 register exactly as
4230 ** it is found in the database file.
4232 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4233 ** of a real table, not a pseudo-table.
4242 pOut
= &aMem
[pOp
->p2
];
4243 memAboutToChange(p
, pOut
);
4245 /* Note that RowKey and RowData are really exactly the same instruction */
4246 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4247 pC
= p
->apCsr
[pOp
->p1
];
4248 assert( pC
->isSorter
==0 );
4249 assert( pC
->isTable
|| pOp
->opcode
!=OP_RowData
);
4250 assert( pC
->isIndex
|| pOp
->opcode
==OP_RowData
);
4252 assert( pC
->nullRow
==0 );
4253 assert( pC
->pseudoTableReg
==0 );
4254 assert( pC
->pCursor
!=0 );
4255 pCrsr
= pC
->pCursor
;
4256 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
4258 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4259 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4260 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4261 ** a no-op and can never fail. But we leave it in place as a safety.
4263 assert( pC
->deferredMoveto
==0 );
4264 rc
= sqlite3VdbeCursorMoveto(pC
);
4265 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
4268 assert( !pC
->isTable
);
4269 VVA_ONLY(rc
=) sqlite3BtreeKeySize(pCrsr
, &n64
);
4270 assert( rc
==SQLITE_OK
); /* True because of CursorMoveto() call above */
4271 if( n64
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4276 VVA_ONLY(rc
=) sqlite3BtreeDataSize(pCrsr
, &n
);
4277 assert( rc
==SQLITE_OK
); /* DataSize() cannot fail */
4278 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4282 if( sqlite3VdbeMemGrow(pOut
, n
, 0) ){
4286 MemSetTypeFlag(pOut
, MEM_Blob
);
4288 rc
= sqlite3BtreeKey(pCrsr
, 0, n
, pOut
->z
);
4290 rc
= sqlite3BtreeData(pCrsr
, 0, n
, pOut
->z
);
4292 pOut
->enc
= SQLITE_UTF8
; /* In case the blob is ever cast to text */
4293 UPDATE_MAX_BLOBSIZE(pOut
);
4297 /* Opcode: Rowid P1 P2 * * *
4299 ** Store in register P2 an integer which is the key of the table entry that
4300 ** P1 is currently point to.
4302 ** P1 can be either an ordinary table or a virtual table. There used to
4303 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4304 ** one opcode now works for both table types.
4306 case OP_Rowid
: { /* out2-prerelease */
4309 sqlite3_vtab
*pVtab
;
4310 const sqlite3_module
*pModule
;
4312 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4313 pC
= p
->apCsr
[pOp
->p1
];
4315 assert( pC
->pseudoTableReg
==0 || pC
->nullRow
);
4317 pOut
->flags
= MEM_Null
;
4319 }else if( pC
->deferredMoveto
){
4320 v
= pC
->movetoTarget
;
4321 #ifndef SQLITE_OMIT_VIRTUALTABLE
4322 }else if( pC
->pVtabCursor
){
4323 pVtab
= pC
->pVtabCursor
->pVtab
;
4324 pModule
= pVtab
->pModule
;
4325 assert( pModule
->xRowid
);
4326 rc
= pModule
->xRowid(pC
->pVtabCursor
, &v
);
4327 importVtabErrMsg(p
, pVtab
);
4328 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4330 assert( pC
->pCursor
!=0 );
4331 rc
= sqlite3VdbeCursorMoveto(pC
);
4332 if( rc
) goto abort_due_to_error
;
4333 if( pC
->rowidIsValid
){
4336 rc
= sqlite3BtreeKeySize(pC
->pCursor
, &v
);
4337 assert( rc
==SQLITE_OK
); /* Always so because of CursorMoveto() above */
4344 /* Opcode: NullRow P1 * * * *
4346 ** Move the cursor P1 to a null row. Any OP_Column operations
4347 ** that occur while the cursor is on the null row will always
4353 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4354 pC
= p
->apCsr
[pOp
->p1
];
4357 pC
->rowidIsValid
= 0;
4358 assert( pC
->pCursor
|| pC
->pVtabCursor
);
4360 sqlite3BtreeClearCursor(pC
->pCursor
);
4365 /* Opcode: Last P1 P2 * * *
4367 ** The next use of the Rowid or Column or Next instruction for P1
4368 ** will refer to the last entry in the database table or index.
4369 ** If the table or index is empty and P2>0, then jump immediately to P2.
4370 ** If P2 is 0 or if the table or index is not empty, fall through
4371 ** to the following instruction.
4373 case OP_Last
: { /* jump */
4378 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4379 pC
= p
->apCsr
[pOp
->p1
];
4381 pCrsr
= pC
->pCursor
;
4383 if( ALWAYS(pCrsr
!=0) ){
4384 rc
= sqlite3BtreeLast(pCrsr
, &res
);
4386 pC
->nullRow
= (u8
)res
;
4387 pC
->deferredMoveto
= 0;
4388 pC
->rowidIsValid
= 0;
4389 pC
->cacheStatus
= CACHE_STALE
;
4390 if( pOp
->p2
>0 && res
){
4397 /* Opcode: Sort P1 P2 * * *
4399 ** This opcode does exactly the same thing as OP_Rewind except that
4400 ** it increments an undocumented global variable used for testing.
4402 ** Sorting is accomplished by writing records into a sorting index,
4403 ** then rewinding that index and playing it back from beginning to
4404 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4405 ** rewinding so that the global variable will be incremented and
4406 ** regression tests can determine whether or not the optimizer is
4407 ** correctly optimizing out sorts.
4409 case OP_SorterSort
: /* jump */
4410 case OP_Sort
: { /* jump */
4412 sqlite3_sort_count
++;
4413 sqlite3_search_count
--;
4415 p
->aCounter
[SQLITE_STMTSTATUS_SORT
-1]++;
4416 /* Fall through into OP_Rewind */
4418 /* Opcode: Rewind P1 P2 * * *
4420 ** The next use of the Rowid or Column or Next instruction for P1
4421 ** will refer to the first entry in the database table or index.
4422 ** If the table or index is empty and P2>0, then jump immediately to P2.
4423 ** If P2 is 0 or if the table or index is not empty, fall through
4424 ** to the following instruction.
4426 case OP_Rewind
: { /* jump */
4431 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4432 pC
= p
->apCsr
[pOp
->p1
];
4434 assert( pC
->isSorter
==(pOp
->opcode
==OP_SorterSort
) );
4437 rc
= sqlite3VdbeSorterRewind(db
, pC
, &res
);
4439 pCrsr
= pC
->pCursor
;
4441 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
4442 pC
->atFirst
= res
==0 ?1:0;
4443 pC
->deferredMoveto
= 0;
4444 pC
->cacheStatus
= CACHE_STALE
;
4445 pC
->rowidIsValid
= 0;
4447 pC
->nullRow
= (u8
)res
;
4448 assert( pOp
->p2
>0 && pOp
->p2
<p
->nOp
);
4455 /* Opcode: Next P1 P2 * P4 P5
4457 ** Advance cursor P1 so that it points to the next key/data pair in its
4458 ** table or index. If there are no more key/value pairs then fall through
4459 ** to the following instruction. But if the cursor advance was successful,
4460 ** jump immediately to P2.
4462 ** The P1 cursor must be for a real table, not a pseudo-table.
4464 ** P4 is always of type P4_ADVANCE. The function pointer points to
4465 ** sqlite3BtreeNext().
4467 ** If P5 is positive and the jump is taken, then event counter
4468 ** number P5-1 in the prepared statement is incremented.
4472 /* Opcode: Prev P1 P2 * * P5
4474 ** Back up cursor P1 so that it points to the previous key/data pair in its
4475 ** table or index. If there is no previous key/value pairs then fall through
4476 ** to the following instruction. But if the cursor backup was successful,
4477 ** jump immediately to P2.
4479 ** The P1 cursor must be for a real table, not a pseudo-table.
4481 ** P4 is always of type P4_ADVANCE. The function pointer points to
4482 ** sqlite3BtreePrevious().
4484 ** If P5 is positive and the jump is taken, then event counter
4485 ** number P5-1 in the prepared statement is incremented.
4487 case OP_SorterNext
: /* jump */
4488 case OP_Prev
: /* jump */
4489 case OP_Next
: { /* jump */
4493 CHECK_FOR_INTERRUPT
;
4494 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4495 assert( pOp
->p5
<=ArraySize(p
->aCounter
) );
4496 pC
= p
->apCsr
[pOp
->p1
];
4498 break; /* See ticket #2273 */
4500 assert( pC
->isSorter
==(pOp
->opcode
==OP_SorterNext
) );
4502 assert( pOp
->opcode
==OP_SorterNext
);
4503 rc
= sqlite3VdbeSorterNext(db
, pC
, &res
);
4506 assert( pC
->deferredMoveto
==0 );
4507 assert( pC
->pCursor
);
4508 assert( pOp
->opcode
!=OP_Next
|| pOp
->p4
.xAdvance
==sqlite3BtreeNext
);
4509 assert( pOp
->opcode
!=OP_Prev
|| pOp
->p4
.xAdvance
==sqlite3BtreePrevious
);
4510 rc
= pOp
->p4
.xAdvance(pC
->pCursor
, &res
);
4512 pC
->nullRow
= (u8
)res
;
4513 pC
->cacheStatus
= CACHE_STALE
;
4516 if( pOp
->p5
) p
->aCounter
[pOp
->p5
-1]++;
4518 sqlite3_search_count
++;
4521 pC
->rowidIsValid
= 0;
4525 /* Opcode: IdxInsert P1 P2 P3 * P5
4527 ** Register P2 holds an SQL index key made using the
4528 ** MakeRecord instructions. This opcode writes that key
4529 ** into the index P1. Data for the entry is nil.
4531 ** P3 is a flag that provides a hint to the b-tree layer that this
4532 ** insert is likely to be an append.
4534 ** This instruction only works for indices. The equivalent instruction
4535 ** for tables is OP_Insert.
4537 case OP_SorterInsert
: /* in2 */
4538 case OP_IdxInsert
: { /* in2 */
4544 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4545 pC
= p
->apCsr
[pOp
->p1
];
4547 assert( pC
->isSorter
==(pOp
->opcode
==OP_SorterInsert
) );
4548 pIn2
= &aMem
[pOp
->p2
];
4549 assert( pIn2
->flags
& MEM_Blob
);
4550 pCrsr
= pC
->pCursor
;
4551 if( ALWAYS(pCrsr
!=0) ){
4552 assert( pC
->isTable
==0 );
4553 rc
= ExpandBlob(pIn2
);
4554 if( rc
==SQLITE_OK
){
4556 rc
= sqlite3VdbeSorterWrite(db
, pC
, pIn2
);
4560 rc
= sqlite3BtreeInsert(pCrsr
, zKey
, nKey
, "", 0, 0, pOp
->p3
,
4561 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
4563 assert( pC
->deferredMoveto
==0 );
4564 pC
->cacheStatus
= CACHE_STALE
;
4571 /* Opcode: IdxDelete P1 P2 P3 * *
4573 ** The content of P3 registers starting at register P2 form
4574 ** an unpacked index key. This opcode removes that entry from the
4575 ** index opened by cursor P1.
4577 case OP_IdxDelete
: {
4583 assert( pOp
->p3
>0 );
4584 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=p
->nMem
+1 );
4585 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4586 pC
= p
->apCsr
[pOp
->p1
];
4588 pCrsr
= pC
->pCursor
;
4589 if( ALWAYS(pCrsr
!=0) ){
4590 r
.pKeyInfo
= pC
->pKeyInfo
;
4591 r
.nField
= (u16
)pOp
->p3
;
4593 r
.aMem
= &aMem
[pOp
->p2
];
4595 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4597 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, &r
, 0, 0, &res
);
4598 if( rc
==SQLITE_OK
&& res
==0 ){
4599 rc
= sqlite3BtreeDelete(pCrsr
);
4601 assert( pC
->deferredMoveto
==0 );
4602 pC
->cacheStatus
= CACHE_STALE
;
4607 /* Opcode: IdxRowid P1 P2 * * *
4609 ** Write into register P2 an integer which is the last entry in the record at
4610 ** the end of the index key pointed to by cursor P1. This integer should be
4611 ** the rowid of the table entry to which this index entry points.
4613 ** See also: Rowid, MakeRecord.
4615 case OP_IdxRowid
: { /* out2-prerelease */
4620 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4621 pC
= p
->apCsr
[pOp
->p1
];
4623 pCrsr
= pC
->pCursor
;
4624 pOut
->flags
= MEM_Null
;
4625 if( ALWAYS(pCrsr
!=0) ){
4626 rc
= sqlite3VdbeCursorMoveto(pC
);
4627 if( NEVER(rc
) ) goto abort_due_to_error
;
4628 assert( pC
->deferredMoveto
==0 );
4629 assert( pC
->isTable
==0 );
4631 rc
= sqlite3VdbeIdxRowid(db
, pCrsr
, &rowid
);
4632 if( rc
!=SQLITE_OK
){
4633 goto abort_due_to_error
;
4636 pOut
->flags
= MEM_Int
;
4642 /* Opcode: IdxGE P1 P2 P3 P4 P5
4644 ** The P4 register values beginning with P3 form an unpacked index
4645 ** key that omits the ROWID. Compare this key value against the index
4646 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4648 ** If the P1 index entry is greater than or equal to the key value
4649 ** then jump to P2. Otherwise fall through to the next instruction.
4651 ** If P5 is non-zero then the key value is increased by an epsilon
4652 ** prior to the comparison. This make the opcode work like IdxGT except
4653 ** that if the key from register P3 is a prefix of the key in the cursor,
4654 ** the result is false whereas it would be true with IdxGT.
4656 /* Opcode: IdxLT P1 P2 P3 P4 P5
4658 ** The P4 register values beginning with P3 form an unpacked index
4659 ** key that omits the ROWID. Compare this key value against the index
4660 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4662 ** If the P1 index entry is less than the key value then jump to P2.
4663 ** Otherwise fall through to the next instruction.
4665 ** If P5 is non-zero then the key value is increased by an epsilon prior
4666 ** to the comparison. This makes the opcode work like IdxLE.
4668 case OP_IdxLT
: /* jump */
4669 case OP_IdxGE
: { /* jump */
4674 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4675 pC
= p
->apCsr
[pOp
->p1
];
4677 assert( pC
->isOrdered
);
4678 if( ALWAYS(pC
->pCursor
!=0) ){
4679 assert( pC
->deferredMoveto
==0 );
4680 assert( pOp
->p5
==0 || pOp
->p5
==1 );
4681 assert( pOp
->p4type
==P4_INT32
);
4682 r
.pKeyInfo
= pC
->pKeyInfo
;
4683 r
.nField
= (u16
)pOp
->p4
.i
;
4685 r
.flags
= UNPACKED_INCRKEY
| UNPACKED_PREFIX_MATCH
;
4687 r
.flags
= UNPACKED_PREFIX_MATCH
;
4689 r
.aMem
= &aMem
[pOp
->p3
];
4691 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4693 rc
= sqlite3VdbeIdxKeyCompare(pC
, &r
, &res
);
4694 if( pOp
->opcode
==OP_IdxLT
){
4697 assert( pOp
->opcode
==OP_IdxGE
);
4707 /* Opcode: Destroy P1 P2 P3 * *
4709 ** Delete an entire database table or index whose root page in the database
4710 ** file is given by P1.
4712 ** The table being destroyed is in the main database file if P3==0. If
4713 ** P3==1 then the table to be clear is in the auxiliary database file
4714 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4716 ** If AUTOVACUUM is enabled then it is possible that another root page
4717 ** might be moved into the newly deleted root page in order to keep all
4718 ** root pages contiguous at the beginning of the database. The former
4719 ** value of the root page that moved - its value before the move occurred -
4720 ** is stored in register P2. If no page
4721 ** movement was required (because the table being dropped was already
4722 ** the last one in the database) then a zero is stored in register P2.
4723 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4727 case OP_Destroy
: { /* out2-prerelease */
4733 #ifndef SQLITE_OMIT_VIRTUALTABLE
4735 for(pVdbe
=db
->pVdbe
; pVdbe
; pVdbe
= pVdbe
->pNext
){
4736 if( pVdbe
->magic
==VDBE_MAGIC_RUN
&& pVdbe
->inVtabMethod
<2 && pVdbe
->pc
>=0 ){
4741 iCnt
= db
->activeVdbeCnt
;
4743 pOut
->flags
= MEM_Null
;
4746 p
->errorAction
= OE_Abort
;
4750 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
4751 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
4752 pOut
->flags
= MEM_Int
;
4754 #ifndef SQLITE_OMIT_AUTOVACUUM
4755 if( rc
==SQLITE_OK
&& iMoved
!=0 ){
4756 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
4757 /* All OP_Destroy operations occur on the same btree */
4758 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
4759 resetSchemaOnFault
= iDb
+1;
4766 /* Opcode: Clear P1 P2 P3
4768 ** Delete all contents of the database table or index whose root page
4769 ** in the database file is given by P1. But, unlike Destroy, do not
4770 ** remove the table or index from the database file.
4772 ** The table being clear is in the main database file if P2==0. If
4773 ** P2==1 then the table to be clear is in the auxiliary database file
4774 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4776 ** If the P3 value is non-zero, then the table referred to must be an
4777 ** intkey table (an SQL table, not an index). In this case the row change
4778 ** count is incremented by the number of rows in the table being cleared.
4779 ** If P3 is greater than zero, then the value stored in register P3 is
4780 ** also incremented by the number of rows in the table being cleared.
4782 ** See also: Destroy
4788 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p2
))!=0 );
4789 rc
= sqlite3BtreeClearTable(
4790 db
->aDb
[pOp
->p2
].pBt
, pOp
->p1
, (pOp
->p3
? &nChange
: 0)
4793 p
->nChange
+= nChange
;
4795 assert( memIsValid(&aMem
[pOp
->p3
]) );
4796 memAboutToChange(p
, &aMem
[pOp
->p3
]);
4797 aMem
[pOp
->p3
].u
.i
+= nChange
;
4803 /* Opcode: CreateTable P1 P2 * * *
4805 ** Allocate a new table in the main database file if P1==0 or in the
4806 ** auxiliary database file if P1==1 or in an attached database if
4807 ** P1>1. Write the root page number of the new table into
4810 ** The difference between a table and an index is this: A table must
4811 ** have a 4-byte integer key and can have arbitrary data. An index
4812 ** has an arbitrary key but no data.
4814 ** See also: CreateIndex
4816 /* Opcode: CreateIndex P1 P2 * * *
4818 ** Allocate a new index in the main database file if P1==0 or in the
4819 ** auxiliary database file if P1==1 or in an attached database if
4820 ** P1>1. Write the root page number of the new table into
4823 ** See documentation on OP_CreateTable for additional information.
4825 case OP_CreateIndex
: /* out2-prerelease */
4826 case OP_CreateTable
: { /* out2-prerelease */
4832 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4833 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
4834 pDb
= &db
->aDb
[pOp
->p1
];
4835 assert( pDb
->pBt
!=0 );
4836 if( pOp
->opcode
==OP_CreateTable
){
4837 /* flags = BTREE_INTKEY; */
4838 flags
= BTREE_INTKEY
;
4840 flags
= BTREE_BLOBKEY
;
4842 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, flags
);
4847 /* Opcode: ParseSchema P1 * * P4 *
4849 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4850 ** that match the WHERE clause P4.
4852 ** This opcode invokes the parser to create a new virtual machine,
4853 ** then runs the new virtual machine. It is thus a re-entrant opcode.
4855 case OP_ParseSchema
: {
4857 const char *zMaster
;
4861 /* Any prepared statement that invokes this opcode will hold mutexes
4862 ** on every btree. This is a prerequisite for invoking
4863 ** sqlite3InitCallback().
4866 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
4867 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
4872 assert( iDb
>=0 && iDb
<db
->nDb
);
4873 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
) );
4874 /* Used to be a conditional */ {
4875 zMaster
= SCHEMA_TABLE(iDb
);
4877 initData
.iDb
= pOp
->p1
;
4878 initData
.pzErrMsg
= &p
->zErrMsg
;
4879 zSql
= sqlite3MPrintf(db
,
4880 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4881 db
->aDb
[iDb
].zName
, zMaster
, pOp
->p4
.z
);
4885 assert( db
->init
.busy
==0 );
4887 initData
.rc
= SQLITE_OK
;
4888 assert( !db
->mallocFailed
);
4889 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
4890 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
4891 sqlite3DbFree(db
, zSql
);
4895 if( rc
) sqlite3ResetAllSchemasOfConnection(db
);
4896 if( rc
==SQLITE_NOMEM
){
4902 #if !defined(SQLITE_OMIT_ANALYZE)
4903 /* Opcode: LoadAnalysis P1 * * * *
4905 ** Read the sqlite_stat1 table for database P1 and load the content
4906 ** of that table into the internal index hash table. This will cause
4907 ** the analysis to be used when preparing all subsequent queries.
4909 case OP_LoadAnalysis
: {
4910 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4911 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
4914 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4916 /* Opcode: DropTable P1 * * P4 *
4918 ** Remove the internal (in-memory) data structures that describe
4919 ** the table named P4 in database P1. This is called after a table
4920 ** is dropped in order to keep the internal representation of the
4921 ** schema consistent with what is on disk.
4923 case OP_DropTable
: {
4924 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
4928 /* Opcode: DropIndex P1 * * P4 *
4930 ** Remove the internal (in-memory) data structures that describe
4931 ** the index named P4 in database P1. This is called after an index
4932 ** is dropped in order to keep the internal representation of the
4933 ** schema consistent with what is on disk.
4935 case OP_DropIndex
: {
4936 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
4940 /* Opcode: DropTrigger P1 * * P4 *
4942 ** Remove the internal (in-memory) data structures that describe
4943 ** the trigger named P4 in database P1. This is called after a trigger
4944 ** is dropped in order to keep the internal representation of the
4945 ** schema consistent with what is on disk.
4947 case OP_DropTrigger
: {
4948 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
4953 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4954 /* Opcode: IntegrityCk P1 P2 P3 * P5
4956 ** Do an analysis of the currently open database. Store in
4957 ** register P1 the text of an error message describing any problems.
4958 ** If no problems are found, store a NULL in register P1.
4960 ** The register P3 contains the maximum number of allowed errors.
4961 ** At most reg(P3) errors will be reported.
4962 ** In other words, the analysis stops as soon as reg(P1) errors are
4963 ** seen. Reg(P1) is updated with the number of errors remaining.
4965 ** The root page numbers of all tables in the database are integer
4966 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
4969 ** If P5 is not zero, the check is done on the auxiliary database
4970 ** file, not the main database file.
4972 ** This opcode is used to implement the integrity_check pragma.
4974 case OP_IntegrityCk
: {
4975 int nRoot
; /* Number of tables to check. (Number of root pages.) */
4976 int *aRoot
; /* Array of rootpage numbers for tables to be checked */
4977 int j
; /* Loop counter */
4978 int nErr
; /* Number of errors reported */
4979 char *z
; /* Text of the error report */
4980 Mem
*pnErr
; /* Register keeping track of errors remaining */
4984 aRoot
= sqlite3DbMallocRaw(db
, sizeof(int)*(nRoot
+1) );
4985 if( aRoot
==0 ) goto no_mem
;
4986 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
4987 pnErr
= &aMem
[pOp
->p3
];
4988 assert( (pnErr
->flags
& MEM_Int
)!=0 );
4989 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
4990 pIn1
= &aMem
[pOp
->p1
];
4991 for(j
=0; j
<nRoot
; j
++){
4992 aRoot
[j
] = (int)sqlite3VdbeIntValue(&pIn1
[j
]);
4995 assert( pOp
->p5
<db
->nDb
);
4996 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p5
))!=0 );
4997 z
= sqlite3BtreeIntegrityCheck(db
->aDb
[pOp
->p5
].pBt
, aRoot
, nRoot
,
4998 (int)pnErr
->u
.i
, &nErr
);
4999 sqlite3DbFree(db
, aRoot
);
5001 sqlite3VdbeMemSetNull(pIn1
);
5007 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
5009 UPDATE_MAX_BLOBSIZE(pIn1
);
5010 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
5013 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5015 /* Opcode: RowSetAdd P1 P2 * * *
5017 ** Insert the integer value held by register P2 into a boolean index
5018 ** held in register P1.
5020 ** An assertion fails if P2 is not an integer.
5022 case OP_RowSetAdd
: { /* in1, in2 */
5023 pIn1
= &aMem
[pOp
->p1
];
5024 pIn2
= &aMem
[pOp
->p2
];
5025 assert( (pIn2
->flags
& MEM_Int
)!=0 );
5026 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
5027 sqlite3VdbeMemSetRowSet(pIn1
);
5028 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
5030 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn2
->u
.i
);
5034 /* Opcode: RowSetRead P1 P2 P3 * *
5036 ** Extract the smallest value from boolean index P1 and put that value into
5037 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5038 ** unchanged and jump to instruction P2.
5040 case OP_RowSetRead
: { /* jump, in1, out3 */
5042 CHECK_FOR_INTERRUPT
;
5043 pIn1
= &aMem
[pOp
->p1
];
5044 if( (pIn1
->flags
& MEM_RowSet
)==0
5045 || sqlite3RowSetNext(pIn1
->u
.pRowSet
, &val
)==0
5047 /* The boolean index is empty */
5048 sqlite3VdbeMemSetNull(pIn1
);
5051 /* A value was pulled from the index */
5052 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
5057 /* Opcode: RowSetTest P1 P2 P3 P4
5059 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5060 ** contains a RowSet object and that RowSet object contains
5061 ** the value held in P3, jump to register P2. Otherwise, insert the
5062 ** integer in P3 into the RowSet and continue on to the
5065 ** The RowSet object is optimized for the case where successive sets
5066 ** of integers, where each set contains no duplicates. Each set
5067 ** of values is identified by a unique P4 value. The first set
5068 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5069 ** non-negative. For non-negative values of P4 only the lower 4
5070 ** bits are significant.
5072 ** This allows optimizations: (a) when P4==0 there is no need to test
5073 ** the rowset object for P3, as it is guaranteed not to contain it,
5074 ** (b) when P4==-1 there is no need to insert the value, as it will
5075 ** never be tested for, and (c) when a value that is part of set X is
5076 ** inserted, there is no need to search to see if the same value was
5077 ** previously inserted as part of set X (only if it was previously
5078 ** inserted as part of some other set).
5080 case OP_RowSetTest
: { /* jump, in1, in3 */
5084 pIn1
= &aMem
[pOp
->p1
];
5085 pIn3
= &aMem
[pOp
->p3
];
5087 assert( pIn3
->flags
&MEM_Int
);
5089 /* If there is anything other than a rowset object in memory cell P1,
5090 ** delete it now and initialize P1 with an empty rowset
5092 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
5093 sqlite3VdbeMemSetRowSet(pIn1
);
5094 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
5097 assert( pOp
->p4type
==P4_INT32
);
5098 assert( iSet
==-1 || iSet
>=0 );
5100 exists
= sqlite3RowSetTest(pIn1
->u
.pRowSet
,
5101 (u8
)(iSet
>=0 ? iSet
& 0xf : 0xff),
5109 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn3
->u
.i
);
5115 #ifndef SQLITE_OMIT_TRIGGER
5117 /* Opcode: Program P1 P2 P3 P4 *
5119 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5121 ** P1 contains the address of the memory cell that contains the first memory
5122 ** cell in an array of values used as arguments to the sub-program. P2
5123 ** contains the address to jump to if the sub-program throws an IGNORE
5124 ** exception using the RAISE() function. Register P3 contains the address
5125 ** of a memory cell in this (the parent) VM that is used to allocate the
5126 ** memory required by the sub-vdbe at runtime.
5128 ** P4 is a pointer to the VM containing the trigger program.
5130 case OP_Program
: { /* jump */
5131 int nMem
; /* Number of memory registers for sub-program */
5132 int nByte
; /* Bytes of runtime space required for sub-program */
5133 Mem
*pRt
; /* Register to allocate runtime space */
5134 Mem
*pMem
; /* Used to iterate through memory cells */
5135 Mem
*pEnd
; /* Last memory cell in new array */
5136 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
5137 SubProgram
*pProgram
; /* Sub-program to execute */
5138 void *t
; /* Token identifying trigger */
5140 pProgram
= pOp
->p4
.pProgram
;
5141 pRt
= &aMem
[pOp
->p3
];
5142 assert( pProgram
->nOp
>0 );
5144 /* If the p5 flag is clear, then recursive invocation of triggers is
5145 ** disabled for backwards compatibility (p5 is set if this sub-program
5146 ** is really a trigger, not a foreign key action, and the flag set
5147 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5149 ** It is recursive invocation of triggers, at the SQL level, that is
5150 ** disabled. In some cases a single trigger may generate more than one
5151 ** SubProgram (if the trigger may be executed with more than one different
5152 ** ON CONFLICT algorithm). SubProgram structures associated with a
5153 ** single trigger all have the same value for the SubProgram.token
5156 t
= pProgram
->token
;
5157 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
5161 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
5163 sqlite3SetString(&p
->zErrMsg
, db
, "too many levels of trigger recursion");
5167 /* Register pRt is used to store the memory required to save the state
5168 ** of the current program, and the memory required at runtime to execute
5169 ** the trigger program. If this trigger has been fired before, then pRt
5170 ** is already allocated. Otherwise, it must be initialized. */
5171 if( (pRt
->flags
&MEM_Frame
)==0 ){
5172 /* SubProgram.nMem is set to the number of memory cells used by the
5173 ** program stored in SubProgram.aOp. As well as these, one memory
5174 ** cell is required for each cursor used by the program. Set local
5175 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5177 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
5178 nByte
= ROUND8(sizeof(VdbeFrame
))
5179 + nMem
* sizeof(Mem
)
5180 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
5181 + pProgram
->nOnce
* sizeof(u8
);
5182 pFrame
= sqlite3DbMallocZero(db
, nByte
);
5186 sqlite3VdbeMemRelease(pRt
);
5187 pRt
->flags
= MEM_Frame
;
5188 pRt
->u
.pFrame
= pFrame
;
5191 pFrame
->nChildMem
= nMem
;
5192 pFrame
->nChildCsr
= pProgram
->nCsr
;
5194 pFrame
->aMem
= p
->aMem
;
5195 pFrame
->nMem
= p
->nMem
;
5196 pFrame
->apCsr
= p
->apCsr
;
5197 pFrame
->nCursor
= p
->nCursor
;
5198 pFrame
->aOp
= p
->aOp
;
5199 pFrame
->nOp
= p
->nOp
;
5200 pFrame
->token
= pProgram
->token
;
5201 pFrame
->aOnceFlag
= p
->aOnceFlag
;
5202 pFrame
->nOnceFlag
= p
->nOnceFlag
;
5204 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
5205 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
5206 pMem
->flags
= MEM_Invalid
;
5210 pFrame
= pRt
->u
.pFrame
;
5211 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
);
5212 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
5213 assert( pc
==pFrame
->pc
);
5217 pFrame
->pParent
= p
->pFrame
;
5218 pFrame
->lastRowid
= lastRowid
;
5219 pFrame
->nChange
= p
->nChange
;
5222 p
->aMem
= aMem
= &VdbeFrameMem(pFrame
)[-1];
5223 p
->nMem
= pFrame
->nChildMem
;
5224 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
5225 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
+1];
5226 p
->aOp
= aOp
= pProgram
->aOp
;
5227 p
->nOp
= pProgram
->nOp
;
5228 p
->aOnceFlag
= (u8
*)&p
->apCsr
[p
->nCursor
];
5229 p
->nOnceFlag
= pProgram
->nOnce
;
5231 memset(p
->aOnceFlag
, 0, p
->nOnceFlag
);
5236 /* Opcode: Param P1 P2 * * *
5238 ** This opcode is only ever present in sub-programs called via the
5239 ** OP_Program instruction. Copy a value currently stored in a memory
5240 ** cell of the calling (parent) frame to cell P2 in the current frames
5241 ** address space. This is used by trigger programs to access the new.*
5242 ** and old.* values.
5244 ** The address of the cell in the parent frame is determined by adding
5245 ** the value of the P1 argument to the value of the P1 argument to the
5246 ** calling OP_Program instruction.
5248 case OP_Param
: { /* out2-prerelease */
5252 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
5253 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
5257 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5259 #ifndef SQLITE_OMIT_FOREIGN_KEY
5260 /* Opcode: FkCounter P1 P2 * * *
5262 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5263 ** If P1 is non-zero, the database constraint counter is incremented
5264 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5265 ** statement counter is incremented (immediate foreign key constraints).
5267 case OP_FkCounter
: {
5269 db
->nDeferredCons
+= pOp
->p2
;
5271 p
->nFkConstraint
+= pOp
->p2
;
5276 /* Opcode: FkIfZero P1 P2 * * *
5278 ** This opcode tests if a foreign key constraint-counter is currently zero.
5279 ** If so, jump to instruction P2. Otherwise, fall through to the next
5282 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5283 ** is zero (the one that counts deferred constraint violations). If P1 is
5284 ** zero, the jump is taken if the statement constraint-counter is zero
5285 ** (immediate foreign key constraint violations).
5287 case OP_FkIfZero
: { /* jump */
5289 if( db
->nDeferredCons
==0 ) pc
= pOp
->p2
-1;
5291 if( p
->nFkConstraint
==0 ) pc
= pOp
->p2
-1;
5295 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5297 #ifndef SQLITE_OMIT_AUTOINCREMENT
5298 /* Opcode: MemMax P1 P2 * * *
5300 ** P1 is a register in the root frame of this VM (the root frame is
5301 ** different from the current frame if this instruction is being executed
5302 ** within a sub-program). Set the value of register P1 to the maximum of
5303 ** its current value and the value in register P2.
5305 ** This instruction throws an error if the memory cell is not initially
5308 case OP_MemMax
: { /* in2 */
5312 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5313 pIn1
= &pFrame
->aMem
[pOp
->p1
];
5315 pIn1
= &aMem
[pOp
->p1
];
5317 assert( memIsValid(pIn1
) );
5318 sqlite3VdbeMemIntegerify(pIn1
);
5319 pIn2
= &aMem
[pOp
->p2
];
5320 sqlite3VdbeMemIntegerify(pIn2
);
5321 if( pIn1
->u
.i
<pIn2
->u
.i
){
5322 pIn1
->u
.i
= pIn2
->u
.i
;
5326 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5328 /* Opcode: IfPos P1 P2 * * *
5330 ** If the value of register P1 is 1 or greater, jump to P2.
5332 ** It is illegal to use this instruction on a register that does
5333 ** not contain an integer. An assertion fault will result if you try.
5335 case OP_IfPos
: { /* jump, in1 */
5336 pIn1
= &aMem
[pOp
->p1
];
5337 assert( pIn1
->flags
&MEM_Int
);
5344 /* Opcode: IfNeg P1 P2 * * *
5346 ** If the value of register P1 is less than zero, jump to P2.
5348 ** It is illegal to use this instruction on a register that does
5349 ** not contain an integer. An assertion fault will result if you try.
5351 case OP_IfNeg
: { /* jump, in1 */
5352 pIn1
= &aMem
[pOp
->p1
];
5353 assert( pIn1
->flags
&MEM_Int
);
5360 /* Opcode: IfZero P1 P2 P3 * *
5362 ** The register P1 must contain an integer. Add literal P3 to the
5363 ** value in register P1. If the result is exactly 0, jump to P2.
5365 ** It is illegal to use this instruction on a register that does
5366 ** not contain an integer. An assertion fault will result if you try.
5368 case OP_IfZero
: { /* jump, in1 */
5369 pIn1
= &aMem
[pOp
->p1
];
5370 assert( pIn1
->flags
&MEM_Int
);
5371 pIn1
->u
.i
+= pOp
->p3
;
5378 /* Opcode: AggStep * P2 P3 P4 P5
5380 ** Execute the step function for an aggregate. The
5381 ** function has P5 arguments. P4 is a pointer to the FuncDef
5382 ** structure that specifies the function. Use register
5383 ** P3 as the accumulator.
5385 ** The P5 arguments are taken from register P2 and its
5393 sqlite3_context ctx
;
5394 sqlite3_value
**apVal
;
5398 pRec
= &aMem
[pOp
->p2
];
5400 assert( apVal
|| n
==0 );
5401 for(i
=0; i
<n
; i
++, pRec
++){
5402 assert( memIsValid(pRec
) );
5404 memAboutToChange(p
, pRec
);
5405 sqlite3VdbeMemStoreType(pRec
);
5407 ctx
.pFunc
= pOp
->p4
.pFunc
;
5408 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
5409 ctx
.pMem
= pMem
= &aMem
[pOp
->p3
];
5411 ctx
.s
.flags
= MEM_Null
;
5419 if( ctx
.pFunc
->flags
& SQLITE_FUNC_NEEDCOLL
){
5420 assert( pOp
>p
->aOp
);
5421 assert( pOp
[-1].p4type
==P4_COLLSEQ
);
5422 assert( pOp
[-1].opcode
==OP_CollSeq
);
5423 ctx
.pColl
= pOp
[-1].p4
.pColl
;
5425 (ctx
.pFunc
->xStep
)(&ctx
, n
, apVal
); /* IMP: R-24505-23230 */
5427 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(&ctx
.s
));
5431 assert( pOp
[-1].opcode
==OP_CollSeq
);
5433 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
5436 sqlite3VdbeMemRelease(&ctx
.s
);
5441 /* Opcode: AggFinal P1 P2 * P4 *
5443 ** Execute the finalizer function for an aggregate. P1 is
5444 ** the memory location that is the accumulator for the aggregate.
5446 ** P2 is the number of arguments that the step function takes and
5447 ** P4 is a pointer to the FuncDef for this function. The P2
5448 ** argument is not used by this opcode. It is only there to disambiguate
5449 ** functions that can take varying numbers of arguments. The
5450 ** P4 argument is only needed for the degenerate case where
5451 ** the step function was not previously called.
5455 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nMem
);
5456 pMem
= &aMem
[pOp
->p1
];
5457 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
5458 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
5460 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(pMem
));
5462 sqlite3VdbeChangeEncoding(pMem
, encoding
);
5463 UPDATE_MAX_BLOBSIZE(pMem
);
5464 if( sqlite3VdbeMemTooBig(pMem
) ){
5470 #ifndef SQLITE_OMIT_WAL
5471 /* Opcode: Checkpoint P1 P2 P3 * *
5473 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5474 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5475 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5476 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5477 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5478 ** in the WAL that have been checkpointed after the checkpoint
5479 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5480 ** mem[P3+2] are initialized to -1.
5482 case OP_Checkpoint
: {
5483 int i
; /* Loop counter */
5484 int aRes
[3]; /* Results */
5485 Mem
*pMem
; /* Write results here */
5488 aRes
[1] = aRes
[2] = -1;
5489 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
5490 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
5491 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
5493 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
5494 if( rc
==SQLITE_BUSY
){
5498 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
5499 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
5505 #ifndef SQLITE_OMIT_PRAGMA
5506 /* Opcode: JournalMode P1 P2 P3 * P5
5508 ** Change the journal mode of database P1 to P3. P3 must be one of the
5509 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5510 ** modes (delete, truncate, persist, off and memory), this is a simple
5511 ** operation. No IO is required.
5513 ** If changing into or out of WAL mode the procedure is more complicated.
5515 ** Write a string containing the final journal-mode to register P2.
5517 case OP_JournalMode
: { /* out2-prerelease */
5518 Btree
*pBt
; /* Btree to change journal mode of */
5519 Pager
*pPager
; /* Pager associated with pBt */
5520 int eNew
; /* New journal mode */
5521 int eOld
; /* The old journal mode */
5522 #ifndef SQLITE_OMIT_WAL
5523 const char *zFilename
; /* Name of database file for pPager */
5527 assert( eNew
==PAGER_JOURNALMODE_DELETE
5528 || eNew
==PAGER_JOURNALMODE_TRUNCATE
5529 || eNew
==PAGER_JOURNALMODE_PERSIST
5530 || eNew
==PAGER_JOURNALMODE_OFF
5531 || eNew
==PAGER_JOURNALMODE_MEMORY
5532 || eNew
==PAGER_JOURNALMODE_WAL
5533 || eNew
==PAGER_JOURNALMODE_QUERY
5535 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5537 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5538 pPager
= sqlite3BtreePager(pBt
);
5539 eOld
= sqlite3PagerGetJournalMode(pPager
);
5540 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
5541 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
5543 #ifndef SQLITE_OMIT_WAL
5544 zFilename
= sqlite3PagerFilename(pPager
, 1);
5546 /* Do not allow a transition to journal_mode=WAL for a database
5547 ** in temporary storage or if the VFS does not support shared memory
5549 if( eNew
==PAGER_JOURNALMODE_WAL
5550 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
5551 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
5557 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
5559 if( !db
->autoCommit
|| db
->activeVdbeCnt
>1 ){
5561 sqlite3SetString(&p
->zErrMsg
, db
,
5562 "cannot change %s wal mode from within a transaction",
5563 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
5568 if( eOld
==PAGER_JOURNALMODE_WAL
){
5569 /* If leaving WAL mode, close the log file. If successful, the call
5570 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5571 ** file. An EXCLUSIVE lock may still be held on the database file
5572 ** after a successful return.
5574 rc
= sqlite3PagerCloseWal(pPager
);
5575 if( rc
==SQLITE_OK
){
5576 sqlite3PagerSetJournalMode(pPager
, eNew
);
5578 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
5579 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5580 ** as an intermediate */
5581 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
5584 /* Open a transaction on the database file. Regardless of the journal
5585 ** mode, this transaction always uses a rollback journal.
5587 assert( sqlite3BtreeIsInTrans(pBt
)==0 );
5588 if( rc
==SQLITE_OK
){
5589 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
5593 #endif /* ifndef SQLITE_OMIT_WAL */
5598 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
5600 pOut
= &aMem
[pOp
->p2
];
5601 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
5602 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
5603 pOut
->n
= sqlite3Strlen30(pOut
->z
);
5604 pOut
->enc
= SQLITE_UTF8
;
5605 sqlite3VdbeChangeEncoding(pOut
, encoding
);
5608 #endif /* SQLITE_OMIT_PRAGMA */
5610 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5611 /* Opcode: Vacuum * * * * *
5613 ** Vacuum the entire database. This opcode will cause other virtual
5614 ** machines to be created and run. It may not be called from within
5618 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
);
5623 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5624 /* Opcode: IncrVacuum P1 P2 * * *
5626 ** Perform a single step of the incremental vacuum procedure on
5627 ** the P1 database. If the vacuum has finished, jump to instruction
5628 ** P2. Otherwise, fall through to the next instruction.
5630 case OP_IncrVacuum
: { /* jump */
5633 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5634 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
5635 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5636 rc
= sqlite3BtreeIncrVacuum(pBt
);
5637 if( rc
==SQLITE_DONE
){
5645 /* Opcode: Expire P1 * * * *
5647 ** Cause precompiled statements to become expired. An expired statement
5648 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5649 ** (via sqlite3_step()).
5651 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5652 ** then only the currently executing statement is affected.
5656 sqlite3ExpirePreparedStatements(db
);
5663 #ifndef SQLITE_OMIT_SHARED_CACHE
5664 /* Opcode: TableLock P1 P2 P3 P4 *
5666 ** Obtain a lock on a particular table. This instruction is only used when
5667 ** the shared-cache feature is enabled.
5669 ** P1 is the index of the database in sqlite3.aDb[] of the database
5670 ** on which the lock is acquired. A readlock is obtained if P3==0 or
5671 ** a write lock if P3==1.
5673 ** P2 contains the root-page of the table to lock.
5675 ** P4 contains a pointer to the name of the table being locked. This is only
5676 ** used to generate an error message if the lock cannot be obtained.
5678 case OP_TableLock
: {
5679 u8 isWriteLock
= (u8
)pOp
->p3
;
5680 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommitted
) ){
5682 assert( p1
>=0 && p1
<db
->nDb
);
5683 assert( (p
->btreeMask
& (((yDbMask
)1)<<p1
))!=0 );
5684 assert( isWriteLock
==0 || isWriteLock
==1 );
5685 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
5686 if( (rc
&0xFF)==SQLITE_LOCKED
){
5687 const char *z
= pOp
->p4
.z
;
5688 sqlite3SetString(&p
->zErrMsg
, db
, "database table is locked: %s", z
);
5693 #endif /* SQLITE_OMIT_SHARED_CACHE */
5695 #ifndef SQLITE_OMIT_VIRTUALTABLE
5696 /* Opcode: VBegin * * * P4 *
5698 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5699 ** xBegin method for that table.
5701 ** Also, whether or not P4 is set, check that this is not being called from
5702 ** within a callback to a virtual table xSync() method. If it is, the error
5703 ** code will be set to SQLITE_LOCKED.
5707 pVTab
= pOp
->p4
.pVtab
;
5708 rc
= sqlite3VtabBegin(db
, pVTab
);
5709 if( pVTab
) importVtabErrMsg(p
, pVTab
->pVtab
);
5712 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5714 #ifndef SQLITE_OMIT_VIRTUALTABLE
5715 /* Opcode: VCreate P1 * * P4 *
5717 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5721 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, pOp
->p4
.z
, &p
->zErrMsg
);
5724 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5726 #ifndef SQLITE_OMIT_VIRTUALTABLE
5727 /* Opcode: VDestroy P1 * * P4 *
5729 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5733 p
->inVtabMethod
= 2;
5734 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
5735 p
->inVtabMethod
= 0;
5738 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5740 #ifndef SQLITE_OMIT_VIRTUALTABLE
5741 /* Opcode: VOpen P1 * * P4 *
5743 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5744 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5745 ** table and stores that cursor in P1.
5749 sqlite3_vtab_cursor
*pVtabCursor
;
5750 sqlite3_vtab
*pVtab
;
5751 sqlite3_module
*pModule
;
5755 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5756 pModule
= (sqlite3_module
*)pVtab
->pModule
;
5757 assert(pVtab
&& pModule
);
5758 rc
= pModule
->xOpen(pVtab
, &pVtabCursor
);
5759 importVtabErrMsg(p
, pVtab
);
5760 if( SQLITE_OK
==rc
){
5761 /* Initialize sqlite3_vtab_cursor base class */
5762 pVtabCursor
->pVtab
= pVtab
;
5764 /* Initialize vdbe cursor object */
5765 pCur
= allocateCursor(p
, pOp
->p1
, 0, -1, 0);
5767 pCur
->pVtabCursor
= pVtabCursor
;
5768 pCur
->pModule
= pVtabCursor
->pVtab
->pModule
;
5770 db
->mallocFailed
= 1;
5771 pModule
->xClose(pVtabCursor
);
5776 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5778 #ifndef SQLITE_OMIT_VIRTUALTABLE
5779 /* Opcode: VFilter P1 P2 P3 P4 *
5781 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5782 ** the filtered result set is empty.
5784 ** P4 is either NULL or a string that was generated by the xBestIndex
5785 ** method of the module. The interpretation of the P4 string is left
5786 ** to the module implementation.
5788 ** This opcode invokes the xFilter method on the virtual table specified
5789 ** by P1. The integer query plan parameter to xFilter is stored in register
5790 ** P3. Register P3+1 stores the argc parameter to be passed to the
5791 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5792 ** additional parameters which are passed to
5793 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5795 ** A jump is made to P2 if the result set after filtering would be empty.
5797 case OP_VFilter
: { /* jump */
5800 const sqlite3_module
*pModule
;
5803 sqlite3_vtab_cursor
*pVtabCursor
;
5804 sqlite3_vtab
*pVtab
;
5810 pQuery
= &aMem
[pOp
->p3
];
5812 pCur
= p
->apCsr
[pOp
->p1
];
5813 assert( memIsValid(pQuery
) );
5814 REGISTER_TRACE(pOp
->p3
, pQuery
);
5815 assert( pCur
->pVtabCursor
);
5816 pVtabCursor
= pCur
->pVtabCursor
;
5817 pVtab
= pVtabCursor
->pVtab
;
5818 pModule
= pVtab
->pModule
;
5820 /* Grab the index number and argc parameters */
5821 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
5822 nArg
= (int)pArgc
->u
.i
;
5823 iQuery
= (int)pQuery
->u
.i
;
5825 /* Invoke the xFilter method */
5829 for(i
= 0; i
<nArg
; i
++){
5830 apArg
[i
] = &pArgc
[i
+1];
5831 sqlite3VdbeMemStoreType(apArg
[i
]);
5834 p
->inVtabMethod
= 1;
5835 rc
= pModule
->xFilter(pVtabCursor
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
5836 p
->inVtabMethod
= 0;
5837 importVtabErrMsg(p
, pVtab
);
5838 if( rc
==SQLITE_OK
){
5839 res
= pModule
->xEof(pVtabCursor
);
5850 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5852 #ifndef SQLITE_OMIT_VIRTUALTABLE
5853 /* Opcode: VColumn P1 P2 P3 * *
5855 ** Store the value of the P2-th column of
5856 ** the row of the virtual-table that the
5857 ** P1 cursor is pointing to into register P3.
5860 sqlite3_vtab
*pVtab
;
5861 const sqlite3_module
*pModule
;
5863 sqlite3_context sContext
;
5865 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
5866 assert( pCur
->pVtabCursor
);
5867 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
5868 pDest
= &aMem
[pOp
->p3
];
5869 memAboutToChange(p
, pDest
);
5870 if( pCur
->nullRow
){
5871 sqlite3VdbeMemSetNull(pDest
);
5874 pVtab
= pCur
->pVtabCursor
->pVtab
;
5875 pModule
= pVtab
->pModule
;
5876 assert( pModule
->xColumn
);
5877 memset(&sContext
, 0, sizeof(sContext
));
5879 /* The output cell may already have a buffer allocated. Move
5880 ** the current contents to sContext.s so in case the user-function
5881 ** can use the already allocated buffer instead of allocating a
5884 sqlite3VdbeMemMove(&sContext
.s
, pDest
);
5885 MemSetTypeFlag(&sContext
.s
, MEM_Null
);
5887 rc
= pModule
->xColumn(pCur
->pVtabCursor
, &sContext
, pOp
->p2
);
5888 importVtabErrMsg(p
, pVtab
);
5889 if( sContext
.isError
){
5890 rc
= sContext
.isError
;
5893 /* Copy the result of the function to the P3 register. We
5894 ** do this regardless of whether or not an error occurred to ensure any
5895 ** dynamic allocation in sContext.s (a Mem struct) is released.
5897 sqlite3VdbeChangeEncoding(&sContext
.s
, encoding
);
5898 sqlite3VdbeMemMove(pDest
, &sContext
.s
);
5899 REGISTER_TRACE(pOp
->p3
, pDest
);
5900 UPDATE_MAX_BLOBSIZE(pDest
);
5902 if( sqlite3VdbeMemTooBig(pDest
) ){
5907 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5909 #ifndef SQLITE_OMIT_VIRTUALTABLE
5910 /* Opcode: VNext P1 P2 * * *
5912 ** Advance virtual table P1 to the next row in its result set and
5913 ** jump to instruction P2. Or, if the virtual table has reached
5914 ** the end of its result set, then fall through to the next instruction.
5916 case OP_VNext
: { /* jump */
5917 sqlite3_vtab
*pVtab
;
5918 const sqlite3_module
*pModule
;
5923 pCur
= p
->apCsr
[pOp
->p1
];
5924 assert( pCur
->pVtabCursor
);
5925 if( pCur
->nullRow
){
5928 pVtab
= pCur
->pVtabCursor
->pVtab
;
5929 pModule
= pVtab
->pModule
;
5930 assert( pModule
->xNext
);
5932 /* Invoke the xNext() method of the module. There is no way for the
5933 ** underlying implementation to return an error if one occurs during
5934 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5935 ** data is available) and the error code returned when xColumn or
5936 ** some other method is next invoked on the save virtual table cursor.
5938 p
->inVtabMethod
= 1;
5939 rc
= pModule
->xNext(pCur
->pVtabCursor
);
5940 p
->inVtabMethod
= 0;
5941 importVtabErrMsg(p
, pVtab
);
5942 if( rc
==SQLITE_OK
){
5943 res
= pModule
->xEof(pCur
->pVtabCursor
);
5947 /* If there is data, jump to P2 */
5952 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5954 #ifndef SQLITE_OMIT_VIRTUALTABLE
5955 /* Opcode: VRename P1 * * P4 *
5957 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5958 ** This opcode invokes the corresponding xRename method. The value
5959 ** in register P1 is passed as the zName argument to the xRename method.
5962 sqlite3_vtab
*pVtab
;
5965 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5966 pName
= &aMem
[pOp
->p1
];
5967 assert( pVtab
->pModule
->xRename
);
5968 assert( memIsValid(pName
) );
5969 REGISTER_TRACE(pOp
->p1
, pName
);
5970 assert( pName
->flags
& MEM_Str
);
5971 testcase( pName
->enc
==SQLITE_UTF8
);
5972 testcase( pName
->enc
==SQLITE_UTF16BE
);
5973 testcase( pName
->enc
==SQLITE_UTF16LE
);
5974 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
5975 if( rc
==SQLITE_OK
){
5976 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
5977 importVtabErrMsg(p
, pVtab
);
5984 #ifndef SQLITE_OMIT_VIRTUALTABLE
5985 /* Opcode: VUpdate P1 P2 P3 P4 *
5987 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5988 ** This opcode invokes the corresponding xUpdate method. P2 values
5989 ** are contiguous memory cells starting at P3 to pass to the xUpdate
5990 ** invocation. The value in register (P3+P2-1) corresponds to the
5991 ** p2th element of the argv array passed to xUpdate.
5993 ** The xUpdate method will do a DELETE or an INSERT or both.
5994 ** The argv[0] element (which corresponds to memory cell P3)
5995 ** is the rowid of a row to delete. If argv[0] is NULL then no
5996 ** deletion occurs. The argv[1] element is the rowid of the new
5997 ** row. This can be NULL to have the virtual table select the new
5998 ** rowid for itself. The subsequent elements in the array are
5999 ** the values of columns in the new row.
6001 ** If P2==1 then no insert is performed. argv[0] is the rowid of
6004 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6005 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6006 ** is set to the value of the rowid for the row just inserted.
6009 sqlite3_vtab
*pVtab
;
6010 sqlite3_module
*pModule
;
6017 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
6018 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
6020 pVtab
= pOp
->p4
.pVtab
->pVtab
;
6021 pModule
= (sqlite3_module
*)pVtab
->pModule
;
6023 assert( pOp
->p4type
==P4_VTAB
);
6024 if( ALWAYS(pModule
->xUpdate
) ){
6025 u8 vtabOnConflict
= db
->vtabOnConflict
;
6027 pX
= &aMem
[pOp
->p3
];
6028 for(i
=0; i
<nArg
; i
++){
6029 assert( memIsValid(pX
) );
6030 memAboutToChange(p
, pX
);
6031 sqlite3VdbeMemStoreType(pX
);
6035 db
->vtabOnConflict
= pOp
->p5
;
6036 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
6037 db
->vtabOnConflict
= vtabOnConflict
;
6038 importVtabErrMsg(p
, pVtab
);
6039 if( rc
==SQLITE_OK
&& pOp
->p1
){
6040 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
6041 db
->lastRowid
= lastRowid
= rowid
;
6043 if( (rc
&0xff)==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
6044 if( pOp
->p5
==OE_Ignore
){
6047 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
6055 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6057 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6058 /* Opcode: Pagecount P1 P2 * * *
6060 ** Write the current number of pages in database P1 to memory cell P2.
6062 case OP_Pagecount
: { /* out2-prerelease */
6063 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
6069 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6070 /* Opcode: MaxPgcnt P1 P2 P3 * *
6072 ** Try to set the maximum page count for database P1 to the value in P3.
6073 ** Do not let the maximum page count fall below the current page count and
6074 ** do not change the maximum page count value if P3==0.
6076 ** Store the maximum page count after the change in register P2.
6078 case OP_MaxPgcnt
: { /* out2-prerelease */
6079 unsigned int newMax
;
6082 pBt
= db
->aDb
[pOp
->p1
].pBt
;
6085 newMax
= sqlite3BtreeLastPage(pBt
);
6086 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
6088 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
6094 #ifndef SQLITE_OMIT_TRACE
6095 /* Opcode: Trace * * * P4 *
6097 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6098 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6106 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
6108 z
= sqlite3VdbeExpandSql(p
, zTrace
);
6109 db
->xTrace(db
->pTraceArg
, z
);
6110 sqlite3DbFree(db
, z
);
6113 if( (db
->flags
& SQLITE_SqlTrace
)!=0
6114 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
6116 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
6118 #endif /* SQLITE_DEBUG */
6124 /* Opcode: Noop * * * * *
6126 ** Do nothing. This instruction is often useful as a jump
6130 ** The magic Explain opcode are only inserted when explain==2 (which
6131 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6132 ** This opcode records information from the optimizer. It is the
6133 ** the same as a no-op. This opcodesnever appears in a real VM program.
6135 default: { /* This is really OP_Noop and OP_Explain */
6136 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
6140 /*****************************************************************************
6141 ** The cases of the switch statement above this line should all be indented
6142 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6143 ** readability. From this point on down, the normal indentation rules are
6145 *****************************************************************************/
6150 u64 elapsed
= sqlite3Hwtime() - start
;
6151 pOp
->cycles
+= elapsed
;
6154 fprintf(stdout
, "%10llu ", elapsed
);
6155 sqlite3VdbePrintOp(stdout
, origPc
, &aOp
[origPc
]);
6160 /* The following code adds nothing to the actual functionality
6161 ** of the program. It is only here for testing and debugging.
6162 ** On the other hand, it does burn CPU cycles every time through
6163 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6166 assert( pc
>=-1 && pc
<p
->nOp
);
6170 if( rc
!=0 ) fprintf(p
->trace
,"rc=%d\n",rc
);
6171 if( pOp
->opflags
& (OPFLG_OUT2_PRERELEASE
|OPFLG_OUT2
) ){
6172 registerTrace(p
->trace
, pOp
->p2
, &aMem
[pOp
->p2
]);
6174 if( pOp
->opflags
& OPFLG_OUT3
){
6175 registerTrace(p
->trace
, pOp
->p3
, &aMem
[pOp
->p3
]);
6178 #endif /* SQLITE_DEBUG */
6180 } /* The end of the for(;;) loop the loops through opcodes */
6182 /* If we reach this point, it means that execution is finished with
6183 ** an error of some kind.
6188 testcase( sqlite3GlobalConfig
.xLog
!=0 );
6189 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
6190 pc
, p
->zSql
, p
->zErrMsg
);
6192 if( rc
==SQLITE_IOERR_NOMEM
) db
->mallocFailed
= 1;
6194 if( resetSchemaOnFault
>0 ){
6195 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
6198 /* This is the only way out of this procedure. We have to
6199 ** release the mutexes on btrees that were acquired at the
6202 db
->lastRowid
= lastRowid
;
6203 sqlite3VdbeLeave(p
);
6206 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6210 sqlite3SetString(&p
->zErrMsg
, db
, "string or blob too big");
6212 goto vdbe_error_halt
;
6214 /* Jump to here if a malloc() fails.
6217 db
->mallocFailed
= 1;
6218 sqlite3SetString(&p
->zErrMsg
, db
, "out of memory");
6220 goto vdbe_error_halt
;
6222 /* Jump to here for any other kind of fatal error. The "rc" variable
6223 ** should hold the error number.
6226 assert( p
->zErrMsg
==0 );
6227 if( db
->mallocFailed
) rc
= SQLITE_NOMEM
;
6228 if( rc
!=SQLITE_IOERR_NOMEM
){
6229 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3ErrStr(rc
));
6231 goto vdbe_error_halt
;
6233 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6236 abort_due_to_interrupt
:
6237 assert( db
->u1
.isInterrupted
);
6238 rc
= SQLITE_INTERRUPT
;
6240 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3ErrStr(rc
));
6241 goto vdbe_error_halt
;