remove files generated buy build automatically
[sqlcipher.git] / src / vdbe.c
blobf343e13d4e91784b158810c5b7d44684dfbfa2a5
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances. This file is solely interested in executing
16 ** the VDBE program.
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
19 ** to a VDBE.
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement. VDBE programs are
23 ** similar in form to assembly language. The program consists of
24 ** a linear sequence of operations. Each operation has an opcode
25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26 ** is a null-terminated string. Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem. Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value. An implicit conversion from one
33 ** type to the other occurs as necessary.
34 **
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files. The formatting
42 ** of the code in this file is, therefore, important. See other comments
43 ** in this file for details. If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
46 #include "sqliteInt.h"
47 #include "vdbeInt.h"
50 ** Invoke this macro on memory cells just prior to changing the
51 ** value of the cell. This macro verifies that shallow copies are
52 ** not misused.
54 #ifdef SQLITE_DEBUG
55 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
56 #else
57 # define memAboutToChange(P,M)
58 #endif
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly. This variable has no function other than to
65 ** help verify the correct operation of the library.
67 #ifdef SQLITE_TEST
68 int sqlite3_search_count = 0;
69 #endif
72 ** When this global variable is positive, it gets decremented once before
73 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74 ** field of the sqlite3 structure is set in order to simulate an interrupt.
76 ** This facility is used for testing purposes only. It does not function
77 ** in an ordinary build.
79 #ifdef SQLITE_TEST
80 int sqlite3_interrupt_count = 0;
81 #endif
84 ** The next global variable is incremented each type the OP_Sort opcode
85 ** is executed. The test procedures use this information to make sure that
86 ** sorting is occurring or not occurring at appropriate times. This variable
87 ** has no function other than to help verify the correct operation of the
88 ** library.
90 #ifdef SQLITE_TEST
91 int sqlite3_sort_count = 0;
92 #endif
95 ** The next global variable records the size of the largest MEM_Blob
96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
97 ** use this information to make sure that the zero-blob functionality
98 ** is working correctly. This variable has no function other than to
99 ** help verify the correct operation of the library.
101 #ifdef SQLITE_TEST
102 int sqlite3_max_blobsize = 0;
103 static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
108 #endif
111 ** The next global variable is incremented each type the OP_Found opcode
112 ** is executed. This is used to test whether or not the foreign key
113 ** operation implemented using OP_FkIsZero is working. This variable
114 ** has no function other than to help verify the correct operation of the
115 ** library.
117 #ifdef SQLITE_TEST
118 int sqlite3_found_count = 0;
119 #endif
122 ** Test a register to see if it exceeds the current maximum blob size.
123 ** If it does, record the new maximum blob size.
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
127 #else
128 # define UPDATE_MAX_BLOBSIZE(P)
129 #endif
132 ** Convert the given register into a string if it isn't one
133 ** already. Return non-zero if a malloc() fails.
135 #define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
137 { goto no_mem; }
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
141 ** a pointer to a dynamically allocated string where some other entity
142 ** is responsible for deallocating that string. Because the register
143 ** does not control the string, it might be deleted without the register
144 ** knowing it.
146 ** This routine converts an ephemeral string into a dynamically allocated
147 ** string that the register itself controls. In other words, it
148 ** converts an MEM_Ephem string into an MEM_Dyn string.
150 #define Deephemeralize(P) \
151 if( ((P)->flags&MEM_Ephem)!=0 \
152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
154 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155 # define isSorter(x) ((x)->pSorter!=0)
158 ** Argument pMem points at a register that will be passed to a
159 ** user-defined function or returned to the user as the result of a query.
160 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
161 ** routines.
163 void sqlite3VdbeMemStoreType(Mem *pMem){
164 int flags = pMem->flags;
165 if( flags & MEM_Null ){
166 pMem->type = SQLITE_NULL;
168 else if( flags & MEM_Int ){
169 pMem->type = SQLITE_INTEGER;
171 else if( flags & MEM_Real ){
172 pMem->type = SQLITE_FLOAT;
174 else if( flags & MEM_Str ){
175 pMem->type = SQLITE_TEXT;
176 }else{
177 pMem->type = SQLITE_BLOB;
182 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
183 ** if we run out of memory.
185 static VdbeCursor *allocateCursor(
186 Vdbe *p, /* The virtual machine */
187 int iCur, /* Index of the new VdbeCursor */
188 int nField, /* Number of fields in the table or index */
189 int iDb, /* Database the cursor belongs to, or -1 */
190 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
192 /* Find the memory cell that will be used to store the blob of memory
193 ** required for this VdbeCursor structure. It is convenient to use a
194 ** vdbe memory cell to manage the memory allocation required for a
195 ** VdbeCursor structure for the following reasons:
197 ** * Sometimes cursor numbers are used for a couple of different
198 ** purposes in a vdbe program. The different uses might require
199 ** different sized allocations. Memory cells provide growable
200 ** allocations.
202 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
203 ** be freed lazily via the sqlite3_release_memory() API. This
204 ** minimizes the number of malloc calls made by the system.
206 ** Memory cells for cursors are allocated at the top of the address
207 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
208 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
210 Mem *pMem = &p->aMem[p->nMem-iCur];
212 int nByte;
213 VdbeCursor *pCx = 0;
214 nByte =
215 ROUND8(sizeof(VdbeCursor)) +
216 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
217 2*nField*sizeof(u32);
219 assert( iCur<p->nCursor );
220 if( p->apCsr[iCur] ){
221 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
222 p->apCsr[iCur] = 0;
224 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
225 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
226 memset(pCx, 0, sizeof(VdbeCursor));
227 pCx->iDb = iDb;
228 pCx->nField = nField;
229 if( nField ){
230 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
232 if( isBtreeCursor ){
233 pCx->pCursor = (BtCursor*)
234 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
235 sqlite3BtreeCursorZero(pCx->pCursor);
238 return pCx;
242 ** Try to convert a value into a numeric representation if we can
243 ** do so without loss of information. In other words, if the string
244 ** looks like a number, convert it into a number. If it does not
245 ** look like a number, leave it alone.
247 static void applyNumericAffinity(Mem *pRec){
248 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
249 double rValue;
250 i64 iValue;
251 u8 enc = pRec->enc;
252 if( (pRec->flags&MEM_Str)==0 ) return;
253 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
254 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
255 pRec->u.i = iValue;
256 pRec->flags |= MEM_Int;
257 }else{
258 pRec->r = rValue;
259 pRec->flags |= MEM_Real;
265 ** Processing is determine by the affinity parameter:
267 ** SQLITE_AFF_INTEGER:
268 ** SQLITE_AFF_REAL:
269 ** SQLITE_AFF_NUMERIC:
270 ** Try to convert pRec to an integer representation or a
271 ** floating-point representation if an integer representation
272 ** is not possible. Note that the integer representation is
273 ** always preferred, even if the affinity is REAL, because
274 ** an integer representation is more space efficient on disk.
276 ** SQLITE_AFF_TEXT:
277 ** Convert pRec to a text representation.
279 ** SQLITE_AFF_NONE:
280 ** No-op. pRec is unchanged.
282 static void applyAffinity(
283 Mem *pRec, /* The value to apply affinity to */
284 char affinity, /* The affinity to be applied */
285 u8 enc /* Use this text encoding */
287 if( affinity==SQLITE_AFF_TEXT ){
288 /* Only attempt the conversion to TEXT if there is an integer or real
289 ** representation (blob and NULL do not get converted) but no string
290 ** representation.
292 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
293 sqlite3VdbeMemStringify(pRec, enc);
295 pRec->flags &= ~(MEM_Real|MEM_Int);
296 }else if( affinity!=SQLITE_AFF_NONE ){
297 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
298 || affinity==SQLITE_AFF_NUMERIC );
299 applyNumericAffinity(pRec);
300 if( pRec->flags & MEM_Real ){
301 sqlite3VdbeIntegerAffinity(pRec);
307 ** Try to convert the type of a function argument or a result column
308 ** into a numeric representation. Use either INTEGER or REAL whichever
309 ** is appropriate. But only do the conversion if it is possible without
310 ** loss of information and return the revised type of the argument.
312 int sqlite3_value_numeric_type(sqlite3_value *pVal){
313 Mem *pMem = (Mem*)pVal;
314 if( pMem->type==SQLITE_TEXT ){
315 applyNumericAffinity(pMem);
316 sqlite3VdbeMemStoreType(pMem);
318 return pMem->type;
322 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
323 ** not the internal Mem* type.
325 void sqlite3ValueApplyAffinity(
326 sqlite3_value *pVal,
327 u8 affinity,
328 u8 enc
330 applyAffinity((Mem *)pVal, affinity, enc);
333 #ifdef SQLITE_DEBUG
335 ** Write a nice string representation of the contents of cell pMem
336 ** into buffer zBuf, length nBuf.
338 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
339 char *zCsr = zBuf;
340 int f = pMem->flags;
342 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
344 if( f&MEM_Blob ){
345 int i;
346 char c;
347 if( f & MEM_Dyn ){
348 c = 'z';
349 assert( (f & (MEM_Static|MEM_Ephem))==0 );
350 }else if( f & MEM_Static ){
351 c = 't';
352 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
353 }else if( f & MEM_Ephem ){
354 c = 'e';
355 assert( (f & (MEM_Static|MEM_Dyn))==0 );
356 }else{
357 c = 's';
360 sqlite3_snprintf(100, zCsr, "%c", c);
361 zCsr += sqlite3Strlen30(zCsr);
362 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
363 zCsr += sqlite3Strlen30(zCsr);
364 for(i=0; i<16 && i<pMem->n; i++){
365 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
366 zCsr += sqlite3Strlen30(zCsr);
368 for(i=0; i<16 && i<pMem->n; i++){
369 char z = pMem->z[i];
370 if( z<32 || z>126 ) *zCsr++ = '.';
371 else *zCsr++ = z;
374 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
375 zCsr += sqlite3Strlen30(zCsr);
376 if( f & MEM_Zero ){
377 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
378 zCsr += sqlite3Strlen30(zCsr);
380 *zCsr = '\0';
381 }else if( f & MEM_Str ){
382 int j, k;
383 zBuf[0] = ' ';
384 if( f & MEM_Dyn ){
385 zBuf[1] = 'z';
386 assert( (f & (MEM_Static|MEM_Ephem))==0 );
387 }else if( f & MEM_Static ){
388 zBuf[1] = 't';
389 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
390 }else if( f & MEM_Ephem ){
391 zBuf[1] = 'e';
392 assert( (f & (MEM_Static|MEM_Dyn))==0 );
393 }else{
394 zBuf[1] = 's';
396 k = 2;
397 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
398 k += sqlite3Strlen30(&zBuf[k]);
399 zBuf[k++] = '[';
400 for(j=0; j<15 && j<pMem->n; j++){
401 u8 c = pMem->z[j];
402 if( c>=0x20 && c<0x7f ){
403 zBuf[k++] = c;
404 }else{
405 zBuf[k++] = '.';
408 zBuf[k++] = ']';
409 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
410 k += sqlite3Strlen30(&zBuf[k]);
411 zBuf[k++] = 0;
414 #endif
416 #ifdef SQLITE_DEBUG
418 ** Print the value of a register for tracing purposes:
420 static void memTracePrint(FILE *out, Mem *p){
421 if( p->flags & MEM_Invalid ){
422 fprintf(out, " undefined");
423 }else if( p->flags & MEM_Null ){
424 fprintf(out, " NULL");
425 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
426 fprintf(out, " si:%lld", p->u.i);
427 }else if( p->flags & MEM_Int ){
428 fprintf(out, " i:%lld", p->u.i);
429 #ifndef SQLITE_OMIT_FLOATING_POINT
430 }else if( p->flags & MEM_Real ){
431 fprintf(out, " r:%g", p->r);
432 #endif
433 }else if( p->flags & MEM_RowSet ){
434 fprintf(out, " (rowset)");
435 }else{
436 char zBuf[200];
437 sqlite3VdbeMemPrettyPrint(p, zBuf);
438 fprintf(out, " ");
439 fprintf(out, "%s", zBuf);
442 static void registerTrace(FILE *out, int iReg, Mem *p){
443 fprintf(out, "REG[%d] = ", iReg);
444 memTracePrint(out, p);
445 fprintf(out, "\n");
447 #endif
449 #ifdef SQLITE_DEBUG
450 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
451 #else
452 # define REGISTER_TRACE(R,M)
453 #endif
456 #ifdef VDBE_PROFILE
459 ** hwtime.h contains inline assembler code for implementing
460 ** high-performance timing routines.
462 #include "hwtime.h"
464 #endif
467 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
468 ** sqlite3_interrupt() routine has been called. If it has been, then
469 ** processing of the VDBE program is interrupted.
471 ** This macro added to every instruction that does a jump in order to
472 ** implement a loop. This test used to be on every single instruction,
473 ** but that meant we more testing than we needed. By only testing the
474 ** flag on jump instructions, we get a (small) speed improvement.
476 #define CHECK_FOR_INTERRUPT \
477 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
480 #ifndef NDEBUG
482 ** This function is only called from within an assert() expression. It
483 ** checks that the sqlite3.nTransaction variable is correctly set to
484 ** the number of non-transaction savepoints currently in the
485 ** linked list starting at sqlite3.pSavepoint.
487 ** Usage:
489 ** assert( checkSavepointCount(db) );
491 static int checkSavepointCount(sqlite3 *db){
492 int n = 0;
493 Savepoint *p;
494 for(p=db->pSavepoint; p; p=p->pNext) n++;
495 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
496 return 1;
498 #endif
501 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
502 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
503 ** in memory obtained from sqlite3DbMalloc).
505 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
506 sqlite3 *db = p->db;
507 sqlite3DbFree(db, p->zErrMsg);
508 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
509 sqlite3_free(pVtab->zErrMsg);
510 pVtab->zErrMsg = 0;
515 ** Execute as much of a VDBE program as we can then return.
517 ** sqlite3VdbeMakeReady() must be called before this routine in order to
518 ** close the program with a final OP_Halt and to set up the callbacks
519 ** and the error message pointer.
521 ** Whenever a row or result data is available, this routine will either
522 ** invoke the result callback (if there is one) or return with
523 ** SQLITE_ROW.
525 ** If an attempt is made to open a locked database, then this routine
526 ** will either invoke the busy callback (if there is one) or it will
527 ** return SQLITE_BUSY.
529 ** If an error occurs, an error message is written to memory obtained
530 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
531 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
533 ** If the callback ever returns non-zero, then the program exits
534 ** immediately. There will be no error message but the p->rc field is
535 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
537 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
538 ** routine to return SQLITE_ERROR.
540 ** Other fatal errors return SQLITE_ERROR.
542 ** After this routine has finished, sqlite3VdbeFinalize() should be
543 ** used to clean up the mess that was left behind.
545 int sqlite3VdbeExec(
546 Vdbe *p /* The VDBE */
548 int pc=0; /* The program counter */
549 Op *aOp = p->aOp; /* Copy of p->aOp */
550 Op *pOp; /* Current operation */
551 int rc = SQLITE_OK; /* Value to return */
552 sqlite3 *db = p->db; /* The database */
553 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
554 u8 encoding = ENC(db); /* The database encoding */
555 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
556 int checkProgress; /* True if progress callbacks are enabled */
557 int nProgressOps = 0; /* Opcodes executed since progress callback. */
558 #endif
559 Mem *aMem = p->aMem; /* Copy of p->aMem */
560 Mem *pIn1 = 0; /* 1st input operand */
561 Mem *pIn2 = 0; /* 2nd input operand */
562 Mem *pIn3 = 0; /* 3rd input operand */
563 Mem *pOut = 0; /* Output operand */
564 int iCompare = 0; /* Result of last OP_Compare operation */
565 int *aPermute = 0; /* Permutation of columns for OP_Compare */
566 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
567 #ifdef VDBE_PROFILE
568 u64 start; /* CPU clock count at start of opcode */
569 int origPc; /* Program counter at start of opcode */
570 #endif
571 /*** INSERT STACK UNION HERE ***/
573 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
574 sqlite3VdbeEnter(p);
575 if( p->rc==SQLITE_NOMEM ){
576 /* This happens if a malloc() inside a call to sqlite3_column_text() or
577 ** sqlite3_column_text16() failed. */
578 goto no_mem;
580 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
581 p->rc = SQLITE_OK;
582 assert( p->explain==0 );
583 p->pResultSet = 0;
584 db->busyHandler.nBusy = 0;
585 CHECK_FOR_INTERRUPT;
586 sqlite3VdbeIOTraceSql(p);
587 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
588 checkProgress = db->xProgress!=0;
589 #endif
590 #ifdef SQLITE_DEBUG
591 sqlite3BeginBenignMalloc();
592 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
593 int i;
594 printf("VDBE Program Listing:\n");
595 sqlite3VdbePrintSql(p);
596 for(i=0; i<p->nOp; i++){
597 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
600 sqlite3EndBenignMalloc();
601 #endif
602 for(pc=p->pc; rc==SQLITE_OK; pc++){
603 assert( pc>=0 && pc<p->nOp );
604 if( db->mallocFailed ) goto no_mem;
605 #ifdef VDBE_PROFILE
606 origPc = pc;
607 start = sqlite3Hwtime();
608 #endif
609 pOp = &aOp[pc];
611 /* Only allow tracing if SQLITE_DEBUG is defined.
613 #ifdef SQLITE_DEBUG
614 if( p->trace ){
615 if( pc==0 ){
616 printf("VDBE Execution Trace:\n");
617 sqlite3VdbePrintSql(p);
619 sqlite3VdbePrintOp(p->trace, pc, pOp);
621 #endif
624 /* Check to see if we need to simulate an interrupt. This only happens
625 ** if we have a special test build.
627 #ifdef SQLITE_TEST
628 if( sqlite3_interrupt_count>0 ){
629 sqlite3_interrupt_count--;
630 if( sqlite3_interrupt_count==0 ){
631 sqlite3_interrupt(db);
634 #endif
636 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
637 /* Call the progress callback if it is configured and the required number
638 ** of VDBE ops have been executed (either since this invocation of
639 ** sqlite3VdbeExec() or since last time the progress callback was called).
640 ** If the progress callback returns non-zero, exit the virtual machine with
641 ** a return code SQLITE_ABORT.
643 if( checkProgress ){
644 if( db->nProgressOps==nProgressOps ){
645 int prc;
646 prc = db->xProgress(db->pProgressArg);
647 if( prc!=0 ){
648 rc = SQLITE_INTERRUPT;
649 goto vdbe_error_halt;
651 nProgressOps = 0;
653 nProgressOps++;
655 #endif
657 /* On any opcode with the "out2-prerelease" tag, free any
658 ** external allocations out of mem[p2] and set mem[p2] to be
659 ** an undefined integer. Opcodes will either fill in the integer
660 ** value or convert mem[p2] to a different type.
662 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
663 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
664 assert( pOp->p2>0 );
665 assert( pOp->p2<=p->nMem );
666 pOut = &aMem[pOp->p2];
667 memAboutToChange(p, pOut);
668 VdbeMemRelease(pOut);
669 pOut->flags = MEM_Int;
672 /* Sanity checking on other operands */
673 #ifdef SQLITE_DEBUG
674 if( (pOp->opflags & OPFLG_IN1)!=0 ){
675 assert( pOp->p1>0 );
676 assert( pOp->p1<=p->nMem );
677 assert( memIsValid(&aMem[pOp->p1]) );
678 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
680 if( (pOp->opflags & OPFLG_IN2)!=0 ){
681 assert( pOp->p2>0 );
682 assert( pOp->p2<=p->nMem );
683 assert( memIsValid(&aMem[pOp->p2]) );
684 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
686 if( (pOp->opflags & OPFLG_IN3)!=0 ){
687 assert( pOp->p3>0 );
688 assert( pOp->p3<=p->nMem );
689 assert( memIsValid(&aMem[pOp->p3]) );
690 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
692 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
693 assert( pOp->p2>0 );
694 assert( pOp->p2<=p->nMem );
695 memAboutToChange(p, &aMem[pOp->p2]);
697 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
698 assert( pOp->p3>0 );
699 assert( pOp->p3<=p->nMem );
700 memAboutToChange(p, &aMem[pOp->p3]);
702 #endif
704 switch( pOp->opcode ){
706 /*****************************************************************************
707 ** What follows is a massive switch statement where each case implements a
708 ** separate instruction in the virtual machine. If we follow the usual
709 ** indentation conventions, each case should be indented by 6 spaces. But
710 ** that is a lot of wasted space on the left margin. So the code within
711 ** the switch statement will break with convention and be flush-left. Another
712 ** big comment (similar to this one) will mark the point in the code where
713 ** we transition back to normal indentation.
715 ** The formatting of each case is important. The makefile for SQLite
716 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
717 ** file looking for lines that begin with "case OP_". The opcodes.h files
718 ** will be filled with #defines that give unique integer values to each
719 ** opcode and the opcodes.c file is filled with an array of strings where
720 ** each string is the symbolic name for the corresponding opcode. If the
721 ** case statement is followed by a comment of the form "/# same as ... #/"
722 ** that comment is used to determine the particular value of the opcode.
724 ** Other keywords in the comment that follows each case are used to
725 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
726 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
727 ** the mkopcodeh.awk script for additional information.
729 ** Documentation about VDBE opcodes is generated by scanning this file
730 ** for lines of that contain "Opcode:". That line and all subsequent
731 ** comment lines are used in the generation of the opcode.html documentation
732 ** file.
734 ** SUMMARY:
736 ** Formatting is important to scripts that scan this file.
737 ** Do not deviate from the formatting style currently in use.
739 *****************************************************************************/
741 /* Opcode: Goto * P2 * * *
743 ** An unconditional jump to address P2.
744 ** The next instruction executed will be
745 ** the one at index P2 from the beginning of
746 ** the program.
748 case OP_Goto: { /* jump */
749 CHECK_FOR_INTERRUPT;
750 pc = pOp->p2 - 1;
751 break;
754 /* Opcode: Gosub P1 P2 * * *
756 ** Write the current address onto register P1
757 ** and then jump to address P2.
759 case OP_Gosub: { /* jump */
760 assert( pOp->p1>0 && pOp->p1<=p->nMem );
761 pIn1 = &aMem[pOp->p1];
762 assert( (pIn1->flags & MEM_Dyn)==0 );
763 memAboutToChange(p, pIn1);
764 pIn1->flags = MEM_Int;
765 pIn1->u.i = pc;
766 REGISTER_TRACE(pOp->p1, pIn1);
767 pc = pOp->p2 - 1;
768 break;
771 /* Opcode: Return P1 * * * *
773 ** Jump to the next instruction after the address in register P1.
775 case OP_Return: { /* in1 */
776 pIn1 = &aMem[pOp->p1];
777 assert( pIn1->flags & MEM_Int );
778 pc = (int)pIn1->u.i;
779 break;
782 /* Opcode: Yield P1 * * * *
784 ** Swap the program counter with the value in register P1.
786 case OP_Yield: { /* in1 */
787 int pcDest;
788 pIn1 = &aMem[pOp->p1];
789 assert( (pIn1->flags & MEM_Dyn)==0 );
790 pIn1->flags = MEM_Int;
791 pcDest = (int)pIn1->u.i;
792 pIn1->u.i = pc;
793 REGISTER_TRACE(pOp->p1, pIn1);
794 pc = pcDest;
795 break;
798 /* Opcode: HaltIfNull P1 P2 P3 P4 *
800 ** Check the value in register P3. If it is NULL then Halt using
801 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
802 ** value in register P3 is not NULL, then this routine is a no-op.
804 case OP_HaltIfNull: { /* in3 */
805 pIn3 = &aMem[pOp->p3];
806 if( (pIn3->flags & MEM_Null)==0 ) break;
807 /* Fall through into OP_Halt */
810 /* Opcode: Halt P1 P2 * P4 *
812 ** Exit immediately. All open cursors, etc are closed
813 ** automatically.
815 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
816 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
817 ** For errors, it can be some other value. If P1!=0 then P2 will determine
818 ** whether or not to rollback the current transaction. Do not rollback
819 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
820 ** then back out all changes that have occurred during this execution of the
821 ** VDBE, but do not rollback the transaction.
823 ** If P4 is not null then it is an error message string.
825 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
826 ** every program. So a jump past the last instruction of the program
827 ** is the same as executing Halt.
829 case OP_Halt: {
830 if( pOp->p1==SQLITE_OK && p->pFrame ){
831 /* Halt the sub-program. Return control to the parent frame. */
832 VdbeFrame *pFrame = p->pFrame;
833 p->pFrame = pFrame->pParent;
834 p->nFrame--;
835 sqlite3VdbeSetChanges(db, p->nChange);
836 pc = sqlite3VdbeFrameRestore(pFrame);
837 lastRowid = db->lastRowid;
838 if( pOp->p2==OE_Ignore ){
839 /* Instruction pc is the OP_Program that invoked the sub-program
840 ** currently being halted. If the p2 instruction of this OP_Halt
841 ** instruction is set to OE_Ignore, then the sub-program is throwing
842 ** an IGNORE exception. In this case jump to the address specified
843 ** as the p2 of the calling OP_Program. */
844 pc = p->aOp[pc].p2-1;
846 aOp = p->aOp;
847 aMem = p->aMem;
848 break;
851 p->rc = pOp->p1;
852 p->errorAction = (u8)pOp->p2;
853 p->pc = pc;
854 if( pOp->p4.z ){
855 assert( p->rc!=SQLITE_OK );
856 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
857 testcase( sqlite3GlobalConfig.xLog!=0 );
858 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
859 }else if( p->rc ){
860 testcase( sqlite3GlobalConfig.xLog!=0 );
861 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
863 rc = sqlite3VdbeHalt(p);
864 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
865 if( rc==SQLITE_BUSY ){
866 p->rc = rc = SQLITE_BUSY;
867 }else{
868 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
869 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
870 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
872 goto vdbe_return;
875 /* Opcode: Integer P1 P2 * * *
877 ** The 32-bit integer value P1 is written into register P2.
879 case OP_Integer: { /* out2-prerelease */
880 pOut->u.i = pOp->p1;
881 break;
884 /* Opcode: Int64 * P2 * P4 *
886 ** P4 is a pointer to a 64-bit integer value.
887 ** Write that value into register P2.
889 case OP_Int64: { /* out2-prerelease */
890 assert( pOp->p4.pI64!=0 );
891 pOut->u.i = *pOp->p4.pI64;
892 break;
895 #ifndef SQLITE_OMIT_FLOATING_POINT
896 /* Opcode: Real * P2 * P4 *
898 ** P4 is a pointer to a 64-bit floating point value.
899 ** Write that value into register P2.
901 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
902 pOut->flags = MEM_Real;
903 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
904 pOut->r = *pOp->p4.pReal;
905 break;
907 #endif
909 /* Opcode: String8 * P2 * P4 *
911 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
912 ** into an OP_String before it is executed for the first time.
914 case OP_String8: { /* same as TK_STRING, out2-prerelease */
915 assert( pOp->p4.z!=0 );
916 pOp->opcode = OP_String;
917 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
919 #ifndef SQLITE_OMIT_UTF16
920 if( encoding!=SQLITE_UTF8 ){
921 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
922 if( rc==SQLITE_TOOBIG ) goto too_big;
923 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
924 assert( pOut->zMalloc==pOut->z );
925 assert( pOut->flags & MEM_Dyn );
926 pOut->zMalloc = 0;
927 pOut->flags |= MEM_Static;
928 pOut->flags &= ~MEM_Dyn;
929 if( pOp->p4type==P4_DYNAMIC ){
930 sqlite3DbFree(db, pOp->p4.z);
932 pOp->p4type = P4_DYNAMIC;
933 pOp->p4.z = pOut->z;
934 pOp->p1 = pOut->n;
936 #endif
937 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
938 goto too_big;
940 /* Fall through to the next case, OP_String */
943 /* Opcode: String P1 P2 * P4 *
945 ** The string value P4 of length P1 (bytes) is stored in register P2.
947 case OP_String: { /* out2-prerelease */
948 assert( pOp->p4.z!=0 );
949 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
950 pOut->z = pOp->p4.z;
951 pOut->n = pOp->p1;
952 pOut->enc = encoding;
953 UPDATE_MAX_BLOBSIZE(pOut);
954 break;
957 /* Opcode: Null P1 P2 P3 * *
959 ** Write a NULL into registers P2. If P3 greater than P2, then also write
960 ** NULL into register P3 and every register in between P2 and P3. If P3
961 ** is less than P2 (typically P3 is zero) then only register P2 is
962 ** set to NULL.
964 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
965 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
966 ** OP_Ne or OP_Eq.
968 case OP_Null: { /* out2-prerelease */
969 int cnt;
970 u16 nullFlag;
971 cnt = pOp->p3-pOp->p2;
972 assert( pOp->p3<=p->nMem );
973 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
974 while( cnt>0 ){
975 pOut++;
976 memAboutToChange(p, pOut);
977 VdbeMemRelease(pOut);
978 pOut->flags = nullFlag;
979 cnt--;
981 break;
985 /* Opcode: Blob P1 P2 * P4
987 ** P4 points to a blob of data P1 bytes long. Store this
988 ** blob in register P2.
990 case OP_Blob: { /* out2-prerelease */
991 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
992 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
993 pOut->enc = encoding;
994 UPDATE_MAX_BLOBSIZE(pOut);
995 break;
998 /* Opcode: Variable P1 P2 * P4 *
1000 ** Transfer the values of bound parameter P1 into register P2
1002 ** If the parameter is named, then its name appears in P4 and P3==1.
1003 ** The P4 value is used by sqlite3_bind_parameter_name().
1005 case OP_Variable: { /* out2-prerelease */
1006 Mem *pVar; /* Value being transferred */
1008 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1009 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1010 pVar = &p->aVar[pOp->p1 - 1];
1011 if( sqlite3VdbeMemTooBig(pVar) ){
1012 goto too_big;
1014 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1015 UPDATE_MAX_BLOBSIZE(pOut);
1016 break;
1019 /* Opcode: Move P1 P2 P3 * *
1021 ** Move the values in register P1..P1+P3 over into
1022 ** registers P2..P2+P3. Registers P1..P1+P3 are
1023 ** left holding a NULL. It is an error for register ranges
1024 ** P1..P1+P3 and P2..P2+P3 to overlap.
1026 case OP_Move: {
1027 char *zMalloc; /* Holding variable for allocated memory */
1028 int n; /* Number of registers left to copy */
1029 int p1; /* Register to copy from */
1030 int p2; /* Register to copy to */
1032 n = pOp->p3 + 1;
1033 p1 = pOp->p1;
1034 p2 = pOp->p2;
1035 assert( n>0 && p1>0 && p2>0 );
1036 assert( p1+n<=p2 || p2+n<=p1 );
1038 pIn1 = &aMem[p1];
1039 pOut = &aMem[p2];
1040 while( n-- ){
1041 assert( pOut<=&aMem[p->nMem] );
1042 assert( pIn1<=&aMem[p->nMem] );
1043 assert( memIsValid(pIn1) );
1044 memAboutToChange(p, pOut);
1045 zMalloc = pOut->zMalloc;
1046 pOut->zMalloc = 0;
1047 sqlite3VdbeMemMove(pOut, pIn1);
1048 #ifdef SQLITE_DEBUG
1049 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1050 pOut->pScopyFrom += p1 - pOp->p2;
1052 #endif
1053 pIn1->zMalloc = zMalloc;
1054 REGISTER_TRACE(p2++, pOut);
1055 pIn1++;
1056 pOut++;
1058 break;
1061 /* Opcode: Copy P1 P2 P3 * *
1063 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1065 ** This instruction makes a deep copy of the value. A duplicate
1066 ** is made of any string or blob constant. See also OP_SCopy.
1068 case OP_Copy: {
1069 int n;
1071 n = pOp->p3;
1072 pIn1 = &aMem[pOp->p1];
1073 pOut = &aMem[pOp->p2];
1074 assert( pOut!=pIn1 );
1075 while( 1 ){
1076 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1077 Deephemeralize(pOut);
1078 #ifdef SQLITE_DEBUG
1079 pOut->pScopyFrom = 0;
1080 #endif
1081 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1082 if( (n--)==0 ) break;
1083 pOut++;
1084 pIn1++;
1086 break;
1089 /* Opcode: SCopy P1 P2 * * *
1091 ** Make a shallow copy of register P1 into register P2.
1093 ** This instruction makes a shallow copy of the value. If the value
1094 ** is a string or blob, then the copy is only a pointer to the
1095 ** original and hence if the original changes so will the copy.
1096 ** Worse, if the original is deallocated, the copy becomes invalid.
1097 ** Thus the program must guarantee that the original will not change
1098 ** during the lifetime of the copy. Use OP_Copy to make a complete
1099 ** copy.
1101 case OP_SCopy: { /* in1, out2 */
1102 pIn1 = &aMem[pOp->p1];
1103 pOut = &aMem[pOp->p2];
1104 assert( pOut!=pIn1 );
1105 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1106 #ifdef SQLITE_DEBUG
1107 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1108 #endif
1109 REGISTER_TRACE(pOp->p2, pOut);
1110 break;
1113 /* Opcode: ResultRow P1 P2 * * *
1115 ** The registers P1 through P1+P2-1 contain a single row of
1116 ** results. This opcode causes the sqlite3_step() call to terminate
1117 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1118 ** structure to provide access to the top P1 values as the result
1119 ** row.
1121 case OP_ResultRow: {
1122 Mem *pMem;
1123 int i;
1124 assert( p->nResColumn==pOp->p2 );
1125 assert( pOp->p1>0 );
1126 assert( pOp->p1+pOp->p2<=p->nMem+1 );
1128 /* If this statement has violated immediate foreign key constraints, do
1129 ** not return the number of rows modified. And do not RELEASE the statement
1130 ** transaction. It needs to be rolled back. */
1131 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1132 assert( db->flags&SQLITE_CountRows );
1133 assert( p->usesStmtJournal );
1134 break;
1137 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1138 ** DML statements invoke this opcode to return the number of rows
1139 ** modified to the user. This is the only way that a VM that
1140 ** opens a statement transaction may invoke this opcode.
1142 ** In case this is such a statement, close any statement transaction
1143 ** opened by this VM before returning control to the user. This is to
1144 ** ensure that statement-transactions are always nested, not overlapping.
1145 ** If the open statement-transaction is not closed here, then the user
1146 ** may step another VM that opens its own statement transaction. This
1147 ** may lead to overlapping statement transactions.
1149 ** The statement transaction is never a top-level transaction. Hence
1150 ** the RELEASE call below can never fail.
1152 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1153 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1154 if( NEVER(rc!=SQLITE_OK) ){
1155 break;
1158 /* Invalidate all ephemeral cursor row caches */
1159 p->cacheCtr = (p->cacheCtr + 2)|1;
1161 /* Make sure the results of the current row are \000 terminated
1162 ** and have an assigned type. The results are de-ephemeralized as
1163 ** a side effect.
1165 pMem = p->pResultSet = &aMem[pOp->p1];
1166 for(i=0; i<pOp->p2; i++){
1167 assert( memIsValid(&pMem[i]) );
1168 Deephemeralize(&pMem[i]);
1169 assert( (pMem[i].flags & MEM_Ephem)==0
1170 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1171 sqlite3VdbeMemNulTerminate(&pMem[i]);
1172 sqlite3VdbeMemStoreType(&pMem[i]);
1173 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1175 if( db->mallocFailed ) goto no_mem;
1177 /* Return SQLITE_ROW
1179 p->pc = pc + 1;
1180 rc = SQLITE_ROW;
1181 goto vdbe_return;
1184 /* Opcode: Concat P1 P2 P3 * *
1186 ** Add the text in register P1 onto the end of the text in
1187 ** register P2 and store the result in register P3.
1188 ** If either the P1 or P2 text are NULL then store NULL in P3.
1190 ** P3 = P2 || P1
1192 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1193 ** if P3 is the same register as P2, the implementation is able
1194 ** to avoid a memcpy().
1196 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1197 i64 nByte;
1199 pIn1 = &aMem[pOp->p1];
1200 pIn2 = &aMem[pOp->p2];
1201 pOut = &aMem[pOp->p3];
1202 assert( pIn1!=pOut );
1203 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1204 sqlite3VdbeMemSetNull(pOut);
1205 break;
1207 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1208 Stringify(pIn1, encoding);
1209 Stringify(pIn2, encoding);
1210 nByte = pIn1->n + pIn2->n;
1211 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1212 goto too_big;
1214 MemSetTypeFlag(pOut, MEM_Str);
1215 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1216 goto no_mem;
1218 if( pOut!=pIn2 ){
1219 memcpy(pOut->z, pIn2->z, pIn2->n);
1221 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1222 pOut->z[nByte] = 0;
1223 pOut->z[nByte+1] = 0;
1224 pOut->flags |= MEM_Term;
1225 pOut->n = (int)nByte;
1226 pOut->enc = encoding;
1227 UPDATE_MAX_BLOBSIZE(pOut);
1228 break;
1231 /* Opcode: Add P1 P2 P3 * *
1233 ** Add the value in register P1 to the value in register P2
1234 ** and store the result in register P3.
1235 ** If either input is NULL, the result is NULL.
1237 /* Opcode: Multiply P1 P2 P3 * *
1240 ** Multiply the value in register P1 by the value in register P2
1241 ** and store the result in register P3.
1242 ** If either input is NULL, the result is NULL.
1244 /* Opcode: Subtract P1 P2 P3 * *
1246 ** Subtract the value in register P1 from the value in register P2
1247 ** and store the result in register P3.
1248 ** If either input is NULL, the result is NULL.
1250 /* Opcode: Divide P1 P2 P3 * *
1252 ** Divide the value in register P1 by the value in register P2
1253 ** and store the result in register P3 (P3=P2/P1). If the value in
1254 ** register P1 is zero, then the result is NULL. If either input is
1255 ** NULL, the result is NULL.
1257 /* Opcode: Remainder P1 P2 P3 * *
1259 ** Compute the remainder after integer division of the value in
1260 ** register P1 by the value in register P2 and store the result in P3.
1261 ** If the value in register P2 is zero the result is NULL.
1262 ** If either operand is NULL, the result is NULL.
1264 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1265 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1266 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1267 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1268 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1269 char bIntint; /* Started out as two integer operands */
1270 int flags; /* Combined MEM_* flags from both inputs */
1271 i64 iA; /* Integer value of left operand */
1272 i64 iB; /* Integer value of right operand */
1273 double rA; /* Real value of left operand */
1274 double rB; /* Real value of right operand */
1276 pIn1 = &aMem[pOp->p1];
1277 applyNumericAffinity(pIn1);
1278 pIn2 = &aMem[pOp->p2];
1279 applyNumericAffinity(pIn2);
1280 pOut = &aMem[pOp->p3];
1281 flags = pIn1->flags | pIn2->flags;
1282 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1283 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
1284 iA = pIn1->u.i;
1285 iB = pIn2->u.i;
1286 bIntint = 1;
1287 switch( pOp->opcode ){
1288 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1289 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1290 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1291 case OP_Divide: {
1292 if( iA==0 ) goto arithmetic_result_is_null;
1293 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1294 iB /= iA;
1295 break;
1297 default: {
1298 if( iA==0 ) goto arithmetic_result_is_null;
1299 if( iA==-1 ) iA = 1;
1300 iB %= iA;
1301 break;
1304 pOut->u.i = iB;
1305 MemSetTypeFlag(pOut, MEM_Int);
1306 }else{
1307 bIntint = 0;
1308 fp_math:
1309 rA = sqlite3VdbeRealValue(pIn1);
1310 rB = sqlite3VdbeRealValue(pIn2);
1311 switch( pOp->opcode ){
1312 case OP_Add: rB += rA; break;
1313 case OP_Subtract: rB -= rA; break;
1314 case OP_Multiply: rB *= rA; break;
1315 case OP_Divide: {
1316 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1317 if( rA==(double)0 ) goto arithmetic_result_is_null;
1318 rB /= rA;
1319 break;
1321 default: {
1322 iA = (i64)rA;
1323 iB = (i64)rB;
1324 if( iA==0 ) goto arithmetic_result_is_null;
1325 if( iA==-1 ) iA = 1;
1326 rB = (double)(iB % iA);
1327 break;
1330 #ifdef SQLITE_OMIT_FLOATING_POINT
1331 pOut->u.i = rB;
1332 MemSetTypeFlag(pOut, MEM_Int);
1333 #else
1334 if( sqlite3IsNaN(rB) ){
1335 goto arithmetic_result_is_null;
1337 pOut->r = rB;
1338 MemSetTypeFlag(pOut, MEM_Real);
1339 if( (flags & MEM_Real)==0 && !bIntint ){
1340 sqlite3VdbeIntegerAffinity(pOut);
1342 #endif
1344 break;
1346 arithmetic_result_is_null:
1347 sqlite3VdbeMemSetNull(pOut);
1348 break;
1351 /* Opcode: CollSeq P1 * * P4
1353 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1354 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1355 ** be returned. This is used by the built-in min(), max() and nullif()
1356 ** functions.
1358 ** If P1 is not zero, then it is a register that a subsequent min() or
1359 ** max() aggregate will set to 1 if the current row is not the minimum or
1360 ** maximum. The P1 register is initialized to 0 by this instruction.
1362 ** The interface used by the implementation of the aforementioned functions
1363 ** to retrieve the collation sequence set by this opcode is not available
1364 ** publicly, only to user functions defined in func.c.
1366 case OP_CollSeq: {
1367 assert( pOp->p4type==P4_COLLSEQ );
1368 if( pOp->p1 ){
1369 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1371 break;
1374 /* Opcode: Function P1 P2 P3 P4 P5
1376 ** Invoke a user function (P4 is a pointer to a Function structure that
1377 ** defines the function) with P5 arguments taken from register P2 and
1378 ** successors. The result of the function is stored in register P3.
1379 ** Register P3 must not be one of the function inputs.
1381 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1382 ** function was determined to be constant at compile time. If the first
1383 ** argument was constant then bit 0 of P1 is set. This is used to determine
1384 ** whether meta data associated with a user function argument using the
1385 ** sqlite3_set_auxdata() API may be safely retained until the next
1386 ** invocation of this opcode.
1388 ** See also: AggStep and AggFinal
1390 case OP_Function: {
1391 int i;
1392 Mem *pArg;
1393 sqlite3_context ctx;
1394 sqlite3_value **apVal;
1395 int n;
1397 n = pOp->p5;
1398 apVal = p->apArg;
1399 assert( apVal || n==0 );
1400 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1401 pOut = &aMem[pOp->p3];
1402 memAboutToChange(p, pOut);
1404 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
1405 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1406 pArg = &aMem[pOp->p2];
1407 for(i=0; i<n; i++, pArg++){
1408 assert( memIsValid(pArg) );
1409 apVal[i] = pArg;
1410 Deephemeralize(pArg);
1411 sqlite3VdbeMemStoreType(pArg);
1412 REGISTER_TRACE(pOp->p2+i, pArg);
1415 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1416 if( pOp->p4type==P4_FUNCDEF ){
1417 ctx.pFunc = pOp->p4.pFunc;
1418 ctx.pVdbeFunc = 0;
1419 }else{
1420 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
1421 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1424 ctx.s.flags = MEM_Null;
1425 ctx.s.db = db;
1426 ctx.s.xDel = 0;
1427 ctx.s.zMalloc = 0;
1429 /* The output cell may already have a buffer allocated. Move
1430 ** the pointer to ctx.s so in case the user-function can use
1431 ** the already allocated buffer instead of allocating a new one.
1433 sqlite3VdbeMemMove(&ctx.s, pOut);
1434 MemSetTypeFlag(&ctx.s, MEM_Null);
1436 ctx.isError = 0;
1437 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
1438 assert( pOp>aOp );
1439 assert( pOp[-1].p4type==P4_COLLSEQ );
1440 assert( pOp[-1].opcode==OP_CollSeq );
1441 ctx.pColl = pOp[-1].p4.pColl;
1443 db->lastRowid = lastRowid;
1444 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
1445 lastRowid = db->lastRowid;
1447 /* If any auxiliary data functions have been called by this user function,
1448 ** immediately call the destructor for any non-static values.
1450 if( ctx.pVdbeFunc ){
1451 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1452 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
1453 pOp->p4type = P4_VDBEFUNC;
1456 if( db->mallocFailed ){
1457 /* Even though a malloc() has failed, the implementation of the
1458 ** user function may have called an sqlite3_result_XXX() function
1459 ** to return a value. The following call releases any resources
1460 ** associated with such a value.
1462 sqlite3VdbeMemRelease(&ctx.s);
1463 goto no_mem;
1466 /* If the function returned an error, throw an exception */
1467 if( ctx.isError ){
1468 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1469 rc = ctx.isError;
1472 /* Copy the result of the function into register P3 */
1473 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1474 sqlite3VdbeMemMove(pOut, &ctx.s);
1475 if( sqlite3VdbeMemTooBig(pOut) ){
1476 goto too_big;
1479 #if 0
1480 /* The app-defined function has done something that as caused this
1481 ** statement to expire. (Perhaps the function called sqlite3_exec()
1482 ** with a CREATE TABLE statement.)
1484 if( p->expired ) rc = SQLITE_ABORT;
1485 #endif
1487 REGISTER_TRACE(pOp->p3, pOut);
1488 UPDATE_MAX_BLOBSIZE(pOut);
1489 break;
1492 /* Opcode: BitAnd P1 P2 P3 * *
1494 ** Take the bit-wise AND of the values in register P1 and P2 and
1495 ** store the result in register P3.
1496 ** If either input is NULL, the result is NULL.
1498 /* Opcode: BitOr P1 P2 P3 * *
1500 ** Take the bit-wise OR of the values in register P1 and P2 and
1501 ** store the result in register P3.
1502 ** If either input is NULL, the result is NULL.
1504 /* Opcode: ShiftLeft P1 P2 P3 * *
1506 ** Shift the integer value in register P2 to the left by the
1507 ** number of bits specified by the integer in register P1.
1508 ** Store the result in register P3.
1509 ** If either input is NULL, the result is NULL.
1511 /* Opcode: ShiftRight P1 P2 P3 * *
1513 ** Shift the integer value in register P2 to the right by the
1514 ** number of bits specified by the integer in register P1.
1515 ** Store the result in register P3.
1516 ** If either input is NULL, the result is NULL.
1518 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1519 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1520 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1521 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1522 i64 iA;
1523 u64 uA;
1524 i64 iB;
1525 u8 op;
1527 pIn1 = &aMem[pOp->p1];
1528 pIn2 = &aMem[pOp->p2];
1529 pOut = &aMem[pOp->p3];
1530 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1531 sqlite3VdbeMemSetNull(pOut);
1532 break;
1534 iA = sqlite3VdbeIntValue(pIn2);
1535 iB = sqlite3VdbeIntValue(pIn1);
1536 op = pOp->opcode;
1537 if( op==OP_BitAnd ){
1538 iA &= iB;
1539 }else if( op==OP_BitOr ){
1540 iA |= iB;
1541 }else if( iB!=0 ){
1542 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1544 /* If shifting by a negative amount, shift in the other direction */
1545 if( iB<0 ){
1546 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1547 op = 2*OP_ShiftLeft + 1 - op;
1548 iB = iB>(-64) ? -iB : 64;
1551 if( iB>=64 ){
1552 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1553 }else{
1554 memcpy(&uA, &iA, sizeof(uA));
1555 if( op==OP_ShiftLeft ){
1556 uA <<= iB;
1557 }else{
1558 uA >>= iB;
1559 /* Sign-extend on a right shift of a negative number */
1560 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1562 memcpy(&iA, &uA, sizeof(iA));
1565 pOut->u.i = iA;
1566 MemSetTypeFlag(pOut, MEM_Int);
1567 break;
1570 /* Opcode: AddImm P1 P2 * * *
1572 ** Add the constant P2 to the value in register P1.
1573 ** The result is always an integer.
1575 ** To force any register to be an integer, just add 0.
1577 case OP_AddImm: { /* in1 */
1578 pIn1 = &aMem[pOp->p1];
1579 memAboutToChange(p, pIn1);
1580 sqlite3VdbeMemIntegerify(pIn1);
1581 pIn1->u.i += pOp->p2;
1582 break;
1585 /* Opcode: MustBeInt P1 P2 * * *
1587 ** Force the value in register P1 to be an integer. If the value
1588 ** in P1 is not an integer and cannot be converted into an integer
1589 ** without data loss, then jump immediately to P2, or if P2==0
1590 ** raise an SQLITE_MISMATCH exception.
1592 case OP_MustBeInt: { /* jump, in1 */
1593 pIn1 = &aMem[pOp->p1];
1594 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1595 if( (pIn1->flags & MEM_Int)==0 ){
1596 if( pOp->p2==0 ){
1597 rc = SQLITE_MISMATCH;
1598 goto abort_due_to_error;
1599 }else{
1600 pc = pOp->p2 - 1;
1602 }else{
1603 MemSetTypeFlag(pIn1, MEM_Int);
1605 break;
1608 #ifndef SQLITE_OMIT_FLOATING_POINT
1609 /* Opcode: RealAffinity P1 * * * *
1611 ** If register P1 holds an integer convert it to a real value.
1613 ** This opcode is used when extracting information from a column that
1614 ** has REAL affinity. Such column values may still be stored as
1615 ** integers, for space efficiency, but after extraction we want them
1616 ** to have only a real value.
1618 case OP_RealAffinity: { /* in1 */
1619 pIn1 = &aMem[pOp->p1];
1620 if( pIn1->flags & MEM_Int ){
1621 sqlite3VdbeMemRealify(pIn1);
1623 break;
1625 #endif
1627 #ifndef SQLITE_OMIT_CAST
1628 /* Opcode: ToText P1 * * * *
1630 ** Force the value in register P1 to be text.
1631 ** If the value is numeric, convert it to a string using the
1632 ** equivalent of printf(). Blob values are unchanged and
1633 ** are afterwards simply interpreted as text.
1635 ** A NULL value is not changed by this routine. It remains NULL.
1637 case OP_ToText: { /* same as TK_TO_TEXT, in1 */
1638 pIn1 = &aMem[pOp->p1];
1639 memAboutToChange(p, pIn1);
1640 if( pIn1->flags & MEM_Null ) break;
1641 assert( MEM_Str==(MEM_Blob>>3) );
1642 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1643 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1644 rc = ExpandBlob(pIn1);
1645 assert( pIn1->flags & MEM_Str || db->mallocFailed );
1646 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
1647 UPDATE_MAX_BLOBSIZE(pIn1);
1648 break;
1651 /* Opcode: ToBlob P1 * * * *
1653 ** Force the value in register P1 to be a BLOB.
1654 ** If the value is numeric, convert it to a string first.
1655 ** Strings are simply reinterpreted as blobs with no change
1656 ** to the underlying data.
1658 ** A NULL value is not changed by this routine. It remains NULL.
1660 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
1661 pIn1 = &aMem[pOp->p1];
1662 if( pIn1->flags & MEM_Null ) break;
1663 if( (pIn1->flags & MEM_Blob)==0 ){
1664 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1665 assert( pIn1->flags & MEM_Str || db->mallocFailed );
1666 MemSetTypeFlag(pIn1, MEM_Blob);
1667 }else{
1668 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
1670 UPDATE_MAX_BLOBSIZE(pIn1);
1671 break;
1674 /* Opcode: ToNumeric P1 * * * *
1676 ** Force the value in register P1 to be numeric (either an
1677 ** integer or a floating-point number.)
1678 ** If the value is text or blob, try to convert it to an using the
1679 ** equivalent of atoi() or atof() and store 0 if no such conversion
1680 ** is possible.
1682 ** A NULL value is not changed by this routine. It remains NULL.
1684 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
1685 pIn1 = &aMem[pOp->p1];
1686 sqlite3VdbeMemNumerify(pIn1);
1687 break;
1689 #endif /* SQLITE_OMIT_CAST */
1691 /* Opcode: ToInt P1 * * * *
1693 ** Force the value in register P1 to be an integer. If
1694 ** The value is currently a real number, drop its fractional part.
1695 ** If the value is text or blob, try to convert it to an integer using the
1696 ** equivalent of atoi() and store 0 if no such conversion is possible.
1698 ** A NULL value is not changed by this routine. It remains NULL.
1700 case OP_ToInt: { /* same as TK_TO_INT, in1 */
1701 pIn1 = &aMem[pOp->p1];
1702 if( (pIn1->flags & MEM_Null)==0 ){
1703 sqlite3VdbeMemIntegerify(pIn1);
1705 break;
1708 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1709 /* Opcode: ToReal P1 * * * *
1711 ** Force the value in register P1 to be a floating point number.
1712 ** If The value is currently an integer, convert it.
1713 ** If the value is text or blob, try to convert it to an integer using the
1714 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1716 ** A NULL value is not changed by this routine. It remains NULL.
1718 case OP_ToReal: { /* same as TK_TO_REAL, in1 */
1719 pIn1 = &aMem[pOp->p1];
1720 memAboutToChange(p, pIn1);
1721 if( (pIn1->flags & MEM_Null)==0 ){
1722 sqlite3VdbeMemRealify(pIn1);
1724 break;
1726 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1728 /* Opcode: Lt P1 P2 P3 P4 P5
1730 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1731 ** jump to address P2.
1733 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1734 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1735 ** bit is clear then fall through if either operand is NULL.
1737 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1738 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1739 ** to coerce both inputs according to this affinity before the
1740 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1741 ** affinity is used. Note that the affinity conversions are stored
1742 ** back into the input registers P1 and P3. So this opcode can cause
1743 ** persistent changes to registers P1 and P3.
1745 ** Once any conversions have taken place, and neither value is NULL,
1746 ** the values are compared. If both values are blobs then memcmp() is
1747 ** used to determine the results of the comparison. If both values
1748 ** are text, then the appropriate collating function specified in
1749 ** P4 is used to do the comparison. If P4 is not specified then
1750 ** memcmp() is used to compare text string. If both values are
1751 ** numeric, then a numeric comparison is used. If the two values
1752 ** are of different types, then numbers are considered less than
1753 ** strings and strings are considered less than blobs.
1755 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1756 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1758 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1759 ** equal to one another, provided that they do not have their MEM_Cleared
1760 ** bit set.
1762 /* Opcode: Ne P1 P2 P3 P4 P5
1764 ** This works just like the Lt opcode except that the jump is taken if
1765 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1766 ** additional information.
1768 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1769 ** true or false and is never NULL. If both operands are NULL then the result
1770 ** of comparison is false. If either operand is NULL then the result is true.
1771 ** If neither operand is NULL the result is the same as it would be if
1772 ** the SQLITE_NULLEQ flag were omitted from P5.
1774 /* Opcode: Eq P1 P2 P3 P4 P5
1776 ** This works just like the Lt opcode except that the jump is taken if
1777 ** the operands in registers P1 and P3 are equal.
1778 ** See the Lt opcode for additional information.
1780 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1781 ** true or false and is never NULL. If both operands are NULL then the result
1782 ** of comparison is true. If either operand is NULL then the result is false.
1783 ** If neither operand is NULL the result is the same as it would be if
1784 ** the SQLITE_NULLEQ flag were omitted from P5.
1786 /* Opcode: Le P1 P2 P3 P4 P5
1788 ** This works just like the Lt opcode except that the jump is taken if
1789 ** the content of register P3 is less than or equal to the content of
1790 ** register P1. See the Lt opcode for additional information.
1792 /* Opcode: Gt P1 P2 P3 P4 P5
1794 ** This works just like the Lt opcode except that the jump is taken if
1795 ** the content of register P3 is greater than the content of
1796 ** register P1. See the Lt opcode for additional information.
1798 /* Opcode: Ge P1 P2 P3 P4 P5
1800 ** This works just like the Lt opcode except that the jump is taken if
1801 ** the content of register P3 is greater than or equal to the content of
1802 ** register P1. See the Lt opcode for additional information.
1804 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1805 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1806 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1807 case OP_Le: /* same as TK_LE, jump, in1, in3 */
1808 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1809 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
1810 int res; /* Result of the comparison of pIn1 against pIn3 */
1811 char affinity; /* Affinity to use for comparison */
1812 u16 flags1; /* Copy of initial value of pIn1->flags */
1813 u16 flags3; /* Copy of initial value of pIn3->flags */
1815 pIn1 = &aMem[pOp->p1];
1816 pIn3 = &aMem[pOp->p3];
1817 flags1 = pIn1->flags;
1818 flags3 = pIn3->flags;
1819 if( (flags1 | flags3)&MEM_Null ){
1820 /* One or both operands are NULL */
1821 if( pOp->p5 & SQLITE_NULLEQ ){
1822 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1823 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1824 ** or not both operands are null.
1826 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1827 assert( (flags1 & MEM_Cleared)==0 );
1828 if( (flags1&MEM_Null)!=0
1829 && (flags3&MEM_Null)!=0
1830 && (flags3&MEM_Cleared)==0
1832 res = 0; /* Results are equal */
1833 }else{
1834 res = 1; /* Results are not equal */
1836 }else{
1837 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1838 ** then the result is always NULL.
1839 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1841 if( pOp->p5 & SQLITE_STOREP2 ){
1842 pOut = &aMem[pOp->p2];
1843 MemSetTypeFlag(pOut, MEM_Null);
1844 REGISTER_TRACE(pOp->p2, pOut);
1845 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1846 pc = pOp->p2-1;
1848 break;
1850 }else{
1851 /* Neither operand is NULL. Do a comparison. */
1852 affinity = pOp->p5 & SQLITE_AFF_MASK;
1853 if( affinity ){
1854 applyAffinity(pIn1, affinity, encoding);
1855 applyAffinity(pIn3, affinity, encoding);
1856 if( db->mallocFailed ) goto no_mem;
1859 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1860 ExpandBlob(pIn1);
1861 ExpandBlob(pIn3);
1862 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1864 switch( pOp->opcode ){
1865 case OP_Eq: res = res==0; break;
1866 case OP_Ne: res = res!=0; break;
1867 case OP_Lt: res = res<0; break;
1868 case OP_Le: res = res<=0; break;
1869 case OP_Gt: res = res>0; break;
1870 default: res = res>=0; break;
1873 if( pOp->p5 & SQLITE_STOREP2 ){
1874 pOut = &aMem[pOp->p2];
1875 memAboutToChange(p, pOut);
1876 MemSetTypeFlag(pOut, MEM_Int);
1877 pOut->u.i = res;
1878 REGISTER_TRACE(pOp->p2, pOut);
1879 }else if( res ){
1880 pc = pOp->p2-1;
1883 /* Undo any changes made by applyAffinity() to the input registers. */
1884 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1885 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
1886 break;
1889 /* Opcode: Permutation * * * P4 *
1891 ** Set the permutation used by the OP_Compare operator to be the array
1892 ** of integers in P4.
1894 ** The permutation is only valid until the next OP_Compare that has
1895 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
1896 ** occur immediately prior to the OP_Compare.
1898 case OP_Permutation: {
1899 assert( pOp->p4type==P4_INTARRAY );
1900 assert( pOp->p4.ai );
1901 aPermute = pOp->p4.ai;
1902 break;
1905 /* Opcode: Compare P1 P2 P3 P4 P5
1907 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1908 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1909 ** the comparison for use by the next OP_Jump instruct.
1911 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
1912 ** determined by the most recent OP_Permutation operator. If the
1913 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
1914 ** order.
1916 ** P4 is a KeyInfo structure that defines collating sequences and sort
1917 ** orders for the comparison. The permutation applies to registers
1918 ** only. The KeyInfo elements are used sequentially.
1920 ** The comparison is a sort comparison, so NULLs compare equal,
1921 ** NULLs are less than numbers, numbers are less than strings,
1922 ** and strings are less than blobs.
1924 case OP_Compare: {
1925 int n;
1926 int i;
1927 int p1;
1928 int p2;
1929 const KeyInfo *pKeyInfo;
1930 int idx;
1931 CollSeq *pColl; /* Collating sequence to use on this term */
1932 int bRev; /* True for DESCENDING sort order */
1934 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
1935 n = pOp->p3;
1936 pKeyInfo = pOp->p4.pKeyInfo;
1937 assert( n>0 );
1938 assert( pKeyInfo!=0 );
1939 p1 = pOp->p1;
1940 p2 = pOp->p2;
1941 #if SQLITE_DEBUG
1942 if( aPermute ){
1943 int k, mx = 0;
1944 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1945 assert( p1>0 && p1+mx<=p->nMem+1 );
1946 assert( p2>0 && p2+mx<=p->nMem+1 );
1947 }else{
1948 assert( p1>0 && p1+n<=p->nMem+1 );
1949 assert( p2>0 && p2+n<=p->nMem+1 );
1951 #endif /* SQLITE_DEBUG */
1952 for(i=0; i<n; i++){
1953 idx = aPermute ? aPermute[i] : i;
1954 assert( memIsValid(&aMem[p1+idx]) );
1955 assert( memIsValid(&aMem[p2+idx]) );
1956 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1957 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
1958 assert( i<pKeyInfo->nField );
1959 pColl = pKeyInfo->aColl[i];
1960 bRev = pKeyInfo->aSortOrder[i];
1961 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
1962 if( iCompare ){
1963 if( bRev ) iCompare = -iCompare;
1964 break;
1967 aPermute = 0;
1968 break;
1971 /* Opcode: Jump P1 P2 P3 * *
1973 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1974 ** in the most recent OP_Compare instruction the P1 vector was less than
1975 ** equal to, or greater than the P2 vector, respectively.
1977 case OP_Jump: { /* jump */
1978 if( iCompare<0 ){
1979 pc = pOp->p1 - 1;
1980 }else if( iCompare==0 ){
1981 pc = pOp->p2 - 1;
1982 }else{
1983 pc = pOp->p3 - 1;
1985 break;
1988 /* Opcode: And P1 P2 P3 * *
1990 ** Take the logical AND of the values in registers P1 and P2 and
1991 ** write the result into register P3.
1993 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1994 ** the other input is NULL. A NULL and true or two NULLs give
1995 ** a NULL output.
1997 /* Opcode: Or P1 P2 P3 * *
1999 ** Take the logical OR of the values in register P1 and P2 and
2000 ** store the answer in register P3.
2002 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2003 ** even if the other input is NULL. A NULL and false or two NULLs
2004 ** give a NULL output.
2006 case OP_And: /* same as TK_AND, in1, in2, out3 */
2007 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2008 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2009 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2011 pIn1 = &aMem[pOp->p1];
2012 if( pIn1->flags & MEM_Null ){
2013 v1 = 2;
2014 }else{
2015 v1 = sqlite3VdbeIntValue(pIn1)!=0;
2017 pIn2 = &aMem[pOp->p2];
2018 if( pIn2->flags & MEM_Null ){
2019 v2 = 2;
2020 }else{
2021 v2 = sqlite3VdbeIntValue(pIn2)!=0;
2023 if( pOp->opcode==OP_And ){
2024 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2025 v1 = and_logic[v1*3+v2];
2026 }else{
2027 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2028 v1 = or_logic[v1*3+v2];
2030 pOut = &aMem[pOp->p3];
2031 if( v1==2 ){
2032 MemSetTypeFlag(pOut, MEM_Null);
2033 }else{
2034 pOut->u.i = v1;
2035 MemSetTypeFlag(pOut, MEM_Int);
2037 break;
2040 /* Opcode: Not P1 P2 * * *
2042 ** Interpret the value in register P1 as a boolean value. Store the
2043 ** boolean complement in register P2. If the value in register P1 is
2044 ** NULL, then a NULL is stored in P2.
2046 case OP_Not: { /* same as TK_NOT, in1, out2 */
2047 pIn1 = &aMem[pOp->p1];
2048 pOut = &aMem[pOp->p2];
2049 if( pIn1->flags & MEM_Null ){
2050 sqlite3VdbeMemSetNull(pOut);
2051 }else{
2052 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2054 break;
2057 /* Opcode: BitNot P1 P2 * * *
2059 ** Interpret the content of register P1 as an integer. Store the
2060 ** ones-complement of the P1 value into register P2. If P1 holds
2061 ** a NULL then store a NULL in P2.
2063 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2064 pIn1 = &aMem[pOp->p1];
2065 pOut = &aMem[pOp->p2];
2066 if( pIn1->flags & MEM_Null ){
2067 sqlite3VdbeMemSetNull(pOut);
2068 }else{
2069 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2071 break;
2074 /* Opcode: Once P1 P2 * * *
2076 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2077 ** set the flag and fall through to the next instruction.
2079 case OP_Once: { /* jump */
2080 assert( pOp->p1<p->nOnceFlag );
2081 if( p->aOnceFlag[pOp->p1] ){
2082 pc = pOp->p2-1;
2083 }else{
2084 p->aOnceFlag[pOp->p1] = 1;
2086 break;
2089 /* Opcode: If P1 P2 P3 * *
2091 ** Jump to P2 if the value in register P1 is true. The value
2092 ** is considered true if it is numeric and non-zero. If the value
2093 ** in P1 is NULL then take the jump if P3 is non-zero.
2095 /* Opcode: IfNot P1 P2 P3 * *
2097 ** Jump to P2 if the value in register P1 is False. The value
2098 ** is considered false if it has a numeric value of zero. If the value
2099 ** in P1 is NULL then take the jump if P3 is zero.
2101 case OP_If: /* jump, in1 */
2102 case OP_IfNot: { /* jump, in1 */
2103 int c;
2104 pIn1 = &aMem[pOp->p1];
2105 if( pIn1->flags & MEM_Null ){
2106 c = pOp->p3;
2107 }else{
2108 #ifdef SQLITE_OMIT_FLOATING_POINT
2109 c = sqlite3VdbeIntValue(pIn1)!=0;
2110 #else
2111 c = sqlite3VdbeRealValue(pIn1)!=0.0;
2112 #endif
2113 if( pOp->opcode==OP_IfNot ) c = !c;
2115 if( c ){
2116 pc = pOp->p2-1;
2118 break;
2121 /* Opcode: IsNull P1 P2 * * *
2123 ** Jump to P2 if the value in register P1 is NULL.
2125 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2126 pIn1 = &aMem[pOp->p1];
2127 if( (pIn1->flags & MEM_Null)!=0 ){
2128 pc = pOp->p2 - 1;
2130 break;
2133 /* Opcode: NotNull P1 P2 * * *
2135 ** Jump to P2 if the value in register P1 is not NULL.
2137 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2138 pIn1 = &aMem[pOp->p1];
2139 if( (pIn1->flags & MEM_Null)==0 ){
2140 pc = pOp->p2 - 1;
2142 break;
2145 /* Opcode: Column P1 P2 P3 P4 P5
2147 ** Interpret the data that cursor P1 points to as a structure built using
2148 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2149 ** information about the format of the data.) Extract the P2-th column
2150 ** from this record. If there are less that (P2+1)
2151 ** values in the record, extract a NULL.
2153 ** The value extracted is stored in register P3.
2155 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2156 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2157 ** the result.
2159 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2160 ** then the cache of the cursor is reset prior to extracting the column.
2161 ** The first OP_Column against a pseudo-table after the value of the content
2162 ** register has changed should have this bit set.
2164 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2165 ** the result is guaranteed to only be used as the argument of a length()
2166 ** or typeof() function, respectively. The loading of large blobs can be
2167 ** skipped for length() and all content loading can be skipped for typeof().
2169 case OP_Column: {
2170 u32 payloadSize; /* Number of bytes in the record */
2171 i64 payloadSize64; /* Number of bytes in the record */
2172 int p1; /* P1 value of the opcode */
2173 int p2; /* column number to retrieve */
2174 VdbeCursor *pC; /* The VDBE cursor */
2175 char *zRec; /* Pointer to complete record-data */
2176 BtCursor *pCrsr; /* The BTree cursor */
2177 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2178 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2179 int nField; /* number of fields in the record */
2180 int len; /* The length of the serialized data for the column */
2181 int i; /* Loop counter */
2182 char *zData; /* Part of the record being decoded */
2183 Mem *pDest; /* Where to write the extracted value */
2184 Mem sMem; /* For storing the record being decoded */
2185 u8 *zIdx; /* Index into header */
2186 u8 *zEndHdr; /* Pointer to first byte after the header */
2187 u32 offset; /* Offset into the data */
2188 u32 szField; /* Number of bytes in the content of a field */
2189 int szHdr; /* Size of the header size field at start of record */
2190 int avail; /* Number of bytes of available data */
2191 u32 t; /* A type code from the record header */
2192 Mem *pReg; /* PseudoTable input register */
2195 p1 = pOp->p1;
2196 p2 = pOp->p2;
2197 pC = 0;
2198 memset(&sMem, 0, sizeof(sMem));
2199 assert( p1<p->nCursor );
2200 assert( pOp->p3>0 && pOp->p3<=p->nMem );
2201 pDest = &aMem[pOp->p3];
2202 memAboutToChange(p, pDest);
2203 zRec = 0;
2205 /* This block sets the variable payloadSize to be the total number of
2206 ** bytes in the record.
2208 ** zRec is set to be the complete text of the record if it is available.
2209 ** The complete record text is always available for pseudo-tables
2210 ** If the record is stored in a cursor, the complete record text
2211 ** might be available in the pC->aRow cache. Or it might not be.
2212 ** If the data is unavailable, zRec is set to NULL.
2214 ** We also compute the number of columns in the record. For cursors,
2215 ** the number of columns is stored in the VdbeCursor.nField element.
2217 pC = p->apCsr[p1];
2218 assert( pC!=0 );
2219 #ifndef SQLITE_OMIT_VIRTUALTABLE
2220 assert( pC->pVtabCursor==0 );
2221 #endif
2222 pCrsr = pC->pCursor;
2223 if( pCrsr!=0 ){
2224 /* The record is stored in a B-Tree */
2225 rc = sqlite3VdbeCursorMoveto(pC);
2226 if( rc ) goto abort_due_to_error;
2227 if( pC->nullRow ){
2228 payloadSize = 0;
2229 }else if( pC->cacheStatus==p->cacheCtr ){
2230 payloadSize = pC->payloadSize;
2231 zRec = (char*)pC->aRow;
2232 }else if( pC->isIndex ){
2233 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2234 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2235 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2236 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2237 ** payload size, so it is impossible for payloadSize64 to be
2238 ** larger than 32 bits. */
2239 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2240 payloadSize = (u32)payloadSize64;
2241 }else{
2242 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2243 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
2244 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2246 }else if( ALWAYS(pC->pseudoTableReg>0) ){
2247 pReg = &aMem[pC->pseudoTableReg];
2248 if( pC->multiPseudo ){
2249 sqlite3VdbeMemShallowCopy(pDest, pReg+p2, MEM_Ephem);
2250 Deephemeralize(pDest);
2251 goto op_column_out;
2253 assert( pReg->flags & MEM_Blob );
2254 assert( memIsValid(pReg) );
2255 payloadSize = pReg->n;
2256 zRec = pReg->z;
2257 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
2258 assert( payloadSize==0 || zRec!=0 );
2259 }else{
2260 /* Consider the row to be NULL */
2261 payloadSize = 0;
2264 /* If payloadSize is 0, then just store a NULL. This can happen because of
2265 ** nullRow or because of a corrupt database. */
2266 if( payloadSize==0 ){
2267 MemSetTypeFlag(pDest, MEM_Null);
2268 goto op_column_out;
2270 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2271 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2272 goto too_big;
2275 nField = pC->nField;
2276 assert( p2<nField );
2278 /* Read and parse the table header. Store the results of the parse
2279 ** into the record header cache fields of the cursor.
2281 aType = pC->aType;
2282 if( pC->cacheStatus==p->cacheCtr ){
2283 aOffset = pC->aOffset;
2284 }else{
2285 assert(aType);
2286 avail = 0;
2287 pC->aOffset = aOffset = &aType[nField];
2288 pC->payloadSize = payloadSize;
2289 pC->cacheStatus = p->cacheCtr;
2291 /* Figure out how many bytes are in the header */
2292 if( zRec ){
2293 zData = zRec;
2294 }else{
2295 if( pC->isIndex ){
2296 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2297 }else{
2298 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2300 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2301 ** save the payload in the pC->aRow cache. That will save us from
2302 ** having to make additional calls to fetch the content portion of
2303 ** the record.
2305 assert( avail>=0 );
2306 if( payloadSize <= (u32)avail ){
2307 zRec = zData;
2308 pC->aRow = (u8*)zData;
2309 }else{
2310 pC->aRow = 0;
2313 /* The following assert is true in all cases except when
2314 ** the database file has been corrupted externally.
2315 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2316 szHdr = getVarint32((u8*)zData, offset);
2318 /* Make sure a corrupt database has not given us an oversize header.
2319 ** Do this now to avoid an oversize memory allocation.
2321 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2322 ** types use so much data space that there can only be 4096 and 32 of
2323 ** them, respectively. So the maximum header length results from a
2324 ** 3-byte type for each of the maximum of 32768 columns plus three
2325 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2327 if( offset > 98307 ){
2328 rc = SQLITE_CORRUPT_BKPT;
2329 goto op_column_out;
2332 /* Compute in len the number of bytes of data we need to read in order
2333 ** to get nField type values. offset is an upper bound on this. But
2334 ** nField might be significantly less than the true number of columns
2335 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2336 ** We want to minimize len in order to limit the size of the memory
2337 ** allocation, especially if a corrupt database file has caused offset
2338 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2339 ** still exceed Robson memory allocation limits on some configurations.
2340 ** On systems that cannot tolerate large memory allocations, nField*5+3
2341 ** will likely be much smaller since nField will likely be less than
2342 ** 20 or so. This insures that Robson memory allocation limits are
2343 ** not exceeded even for corrupt database files.
2345 len = nField*5 + 3;
2346 if( len > (int)offset ) len = (int)offset;
2348 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2349 ** record header in most cases. But they will fail to get the complete
2350 ** record header if the record header does not fit on a single page
2351 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2352 ** acquire the complete header text.
2354 if( !zRec && avail<len ){
2355 sMem.flags = 0;
2356 sMem.db = 0;
2357 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
2358 if( rc!=SQLITE_OK ){
2359 goto op_column_out;
2361 zData = sMem.z;
2363 zEndHdr = (u8 *)&zData[len];
2364 zIdx = (u8 *)&zData[szHdr];
2366 /* Scan the header and use it to fill in the aType[] and aOffset[]
2367 ** arrays. aType[i] will contain the type integer for the i-th
2368 ** column and aOffset[i] will contain the offset from the beginning
2369 ** of the record to the start of the data for the i-th column
2371 for(i=0; i<nField; i++){
2372 if( zIdx<zEndHdr ){
2373 aOffset[i] = offset;
2374 if( zIdx[0]<0x80 ){
2375 t = zIdx[0];
2376 zIdx++;
2377 }else{
2378 zIdx += sqlite3GetVarint32(zIdx, &t);
2380 aType[i] = t;
2381 szField = sqlite3VdbeSerialTypeLen(t);
2382 offset += szField;
2383 if( offset<szField ){ /* True if offset overflows */
2384 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2385 break;
2387 }else{
2388 /* If i is less that nField, then there are fewer fields in this
2389 ** record than SetNumColumns indicated there are columns in the
2390 ** table. Set the offset for any extra columns not present in
2391 ** the record to 0. This tells code below to store the default value
2392 ** for the column instead of deserializing a value from the record.
2394 aOffset[i] = 0;
2397 sqlite3VdbeMemRelease(&sMem);
2398 sMem.flags = MEM_Null;
2400 /* If we have read more header data than was contained in the header,
2401 ** or if the end of the last field appears to be past the end of the
2402 ** record, or if the end of the last field appears to be before the end
2403 ** of the record (when all fields present), then we must be dealing
2404 ** with a corrupt database.
2406 if( (zIdx > zEndHdr) || (offset > payloadSize)
2407 || (zIdx==zEndHdr && offset!=payloadSize) ){
2408 rc = SQLITE_CORRUPT_BKPT;
2409 goto op_column_out;
2413 /* Get the column information. If aOffset[p2] is non-zero, then
2414 ** deserialize the value from the record. If aOffset[p2] is zero,
2415 ** then there are not enough fields in the record to satisfy the
2416 ** request. In this case, set the value NULL or to P4 if P4 is
2417 ** a pointer to a Mem object.
2419 if( aOffset[p2] ){
2420 assert( rc==SQLITE_OK );
2421 if( zRec ){
2422 /* This is the common case where the whole row fits on a single page */
2423 VdbeMemRelease(pDest);
2424 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
2425 }else{
2426 /* This branch happens only when the row overflows onto multiple pages */
2427 t = aType[p2];
2428 if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2429 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
2431 /* Content is irrelevant for the typeof() function and for
2432 ** the length(X) function if X is a blob. So we might as well use
2433 ** bogus content rather than reading content from disk. NULL works
2434 ** for text and blob and whatever is in the payloadSize64 variable
2435 ** will work for everything else. */
2436 zData = t<12 ? (char*)&payloadSize64 : 0;
2437 }else{
2438 len = sqlite3VdbeSerialTypeLen(t);
2439 sqlite3VdbeMemMove(&sMem, pDest);
2440 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
2441 &sMem);
2442 if( rc!=SQLITE_OK ){
2443 goto op_column_out;
2445 zData = sMem.z;
2447 sqlite3VdbeSerialGet((u8*)zData, t, pDest);
2449 pDest->enc = encoding;
2450 }else{
2451 if( pOp->p4type==P4_MEM ){
2452 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2453 }else{
2454 MemSetTypeFlag(pDest, MEM_Null);
2458 /* If we dynamically allocated space to hold the data (in the
2459 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2460 ** dynamically allocated space over to the pDest structure.
2461 ** This prevents a memory copy.
2463 if( sMem.zMalloc ){
2464 assert( sMem.z==sMem.zMalloc );
2465 assert( !(pDest->flags & MEM_Dyn) );
2466 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2467 pDest->flags &= ~(MEM_Ephem|MEM_Static);
2468 pDest->flags |= MEM_Term;
2469 pDest->z = sMem.z;
2470 pDest->zMalloc = sMem.zMalloc;
2473 rc = sqlite3VdbeMemMakeWriteable(pDest);
2475 op_column_out:
2476 UPDATE_MAX_BLOBSIZE(pDest);
2477 REGISTER_TRACE(pOp->p3, pDest);
2478 break;
2481 /* Opcode: Affinity P1 P2 * P4 *
2483 ** Apply affinities to a range of P2 registers starting with P1.
2485 ** P4 is a string that is P2 characters long. The nth character of the
2486 ** string indicates the column affinity that should be used for the nth
2487 ** memory cell in the range.
2489 case OP_Affinity: {
2490 const char *zAffinity; /* The affinity to be applied */
2491 char cAff; /* A single character of affinity */
2493 zAffinity = pOp->p4.z;
2494 assert( zAffinity!=0 );
2495 assert( zAffinity[pOp->p2]==0 );
2496 pIn1 = &aMem[pOp->p1];
2497 while( (cAff = *(zAffinity++))!=0 ){
2498 assert( pIn1 <= &p->aMem[p->nMem] );
2499 assert( memIsValid(pIn1) );
2500 ExpandBlob(pIn1);
2501 applyAffinity(pIn1, cAff, encoding);
2502 pIn1++;
2504 break;
2507 /* Opcode: MakeRecord P1 P2 P3 P4 *
2509 ** Convert P2 registers beginning with P1 into the [record format]
2510 ** use as a data record in a database table or as a key
2511 ** in an index. The OP_Column opcode can decode the record later.
2513 ** P4 may be a string that is P2 characters long. The nth character of the
2514 ** string indicates the column affinity that should be used for the nth
2515 ** field of the index key.
2517 ** The mapping from character to affinity is given by the SQLITE_AFF_
2518 ** macros defined in sqliteInt.h.
2520 ** If P4 is NULL then all index fields have the affinity NONE.
2522 case OP_MakeRecord: {
2523 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2524 Mem *pRec; /* The new record */
2525 u64 nData; /* Number of bytes of data space */
2526 int nHdr; /* Number of bytes of header space */
2527 i64 nByte; /* Data space required for this record */
2528 int nZero; /* Number of zero bytes at the end of the record */
2529 int nVarint; /* Number of bytes in a varint */
2530 u32 serial_type; /* Type field */
2531 Mem *pData0; /* First field to be combined into the record */
2532 Mem *pLast; /* Last field of the record */
2533 int nField; /* Number of fields in the record */
2534 char *zAffinity; /* The affinity string for the record */
2535 int file_format; /* File format to use for encoding */
2536 int i; /* Space used in zNewRecord[] */
2537 int len; /* Length of a field */
2539 /* Assuming the record contains N fields, the record format looks
2540 ** like this:
2542 ** ------------------------------------------------------------------------
2543 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2544 ** ------------------------------------------------------------------------
2546 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2547 ** and so froth.
2549 ** Each type field is a varint representing the serial type of the
2550 ** corresponding data element (see sqlite3VdbeSerialType()). The
2551 ** hdr-size field is also a varint which is the offset from the beginning
2552 ** of the record to data0.
2554 nData = 0; /* Number of bytes of data space */
2555 nHdr = 0; /* Number of bytes of header space */
2556 nZero = 0; /* Number of zero bytes at the end of the record */
2557 nField = pOp->p1;
2558 zAffinity = pOp->p4.z;
2559 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
2560 pData0 = &aMem[nField];
2561 nField = pOp->p2;
2562 pLast = &pData0[nField-1];
2563 file_format = p->minWriteFileFormat;
2565 /* Identify the output register */
2566 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2567 pOut = &aMem[pOp->p3];
2568 memAboutToChange(p, pOut);
2570 /* Loop through the elements that will make up the record to figure
2571 ** out how much space is required for the new record.
2573 for(pRec=pData0; pRec<=pLast; pRec++){
2574 assert( memIsValid(pRec) );
2575 if( zAffinity ){
2576 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2578 if( pRec->flags&MEM_Zero && pRec->n>0 ){
2579 sqlite3VdbeMemExpandBlob(pRec);
2581 serial_type = sqlite3VdbeSerialType(pRec, file_format);
2582 len = sqlite3VdbeSerialTypeLen(serial_type);
2583 nData += len;
2584 nHdr += sqlite3VarintLen(serial_type);
2585 if( pRec->flags & MEM_Zero ){
2586 /* Only pure zero-filled BLOBs can be input to this Opcode.
2587 ** We do not allow blobs with a prefix and a zero-filled tail. */
2588 nZero += pRec->u.nZero;
2589 }else if( len ){
2590 nZero = 0;
2594 /* Add the initial header varint and total the size */
2595 nHdr += nVarint = sqlite3VarintLen(nHdr);
2596 if( nVarint<sqlite3VarintLen(nHdr) ){
2597 nHdr++;
2599 nByte = nHdr+nData-nZero;
2600 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2601 goto too_big;
2604 /* Make sure the output register has a buffer large enough to store
2605 ** the new record. The output register (pOp->p3) is not allowed to
2606 ** be one of the input registers (because the following call to
2607 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2609 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
2610 goto no_mem;
2612 zNewRecord = (u8 *)pOut->z;
2614 /* Write the record */
2615 i = putVarint32(zNewRecord, nHdr);
2616 for(pRec=pData0; pRec<=pLast; pRec++){
2617 serial_type = sqlite3VdbeSerialType(pRec, file_format);
2618 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2620 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
2621 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
2623 assert( i==nByte );
2625 assert( pOp->p3>0 && pOp->p3<=p->nMem );
2626 pOut->n = (int)nByte;
2627 pOut->flags = MEM_Blob | MEM_Dyn;
2628 pOut->xDel = 0;
2629 if( nZero ){
2630 pOut->u.nZero = nZero;
2631 pOut->flags |= MEM_Zero;
2633 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2634 REGISTER_TRACE(pOp->p3, pOut);
2635 UPDATE_MAX_BLOBSIZE(pOut);
2636 break;
2639 /* Opcode: Count P1 P2 * * *
2641 ** Store the number of entries (an integer value) in the table or index
2642 ** opened by cursor P1 in register P2
2644 #ifndef SQLITE_OMIT_BTREECOUNT
2645 case OP_Count: { /* out2-prerelease */
2646 i64 nEntry;
2647 BtCursor *pCrsr;
2649 pCrsr = p->apCsr[pOp->p1]->pCursor;
2650 if( ALWAYS(pCrsr) ){
2651 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2652 }else{
2653 nEntry = 0;
2655 pOut->u.i = nEntry;
2656 break;
2658 #endif
2660 /* Opcode: Savepoint P1 * * P4 *
2662 ** Open, release or rollback the savepoint named by parameter P4, depending
2663 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2664 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2666 case OP_Savepoint: {
2667 int p1; /* Value of P1 operand */
2668 char *zName; /* Name of savepoint */
2669 int nName;
2670 Savepoint *pNew;
2671 Savepoint *pSavepoint;
2672 Savepoint *pTmp;
2673 int iSavepoint;
2674 int ii;
2676 p1 = pOp->p1;
2677 zName = pOp->p4.z;
2679 /* Assert that the p1 parameter is valid. Also that if there is no open
2680 ** transaction, then there cannot be any savepoints.
2682 assert( db->pSavepoint==0 || db->autoCommit==0 );
2683 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2684 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2685 assert( checkSavepointCount(db) );
2687 if( p1==SAVEPOINT_BEGIN ){
2688 if( db->writeVdbeCnt>0 ){
2689 /* A new savepoint cannot be created if there are active write
2690 ** statements (i.e. open read/write incremental blob handles).
2692 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2693 "SQL statements in progress");
2694 rc = SQLITE_BUSY;
2695 }else{
2696 nName = sqlite3Strlen30(zName);
2698 #ifndef SQLITE_OMIT_VIRTUALTABLE
2699 /* This call is Ok even if this savepoint is actually a transaction
2700 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2701 ** If this is a transaction savepoint being opened, it is guaranteed
2702 ** that the db->aVTrans[] array is empty. */
2703 assert( db->autoCommit==0 || db->nVTrans==0 );
2704 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2705 db->nStatement+db->nSavepoint);
2706 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2707 #endif
2709 /* Create a new savepoint structure. */
2710 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2711 if( pNew ){
2712 pNew->zName = (char *)&pNew[1];
2713 memcpy(pNew->zName, zName, nName+1);
2715 /* If there is no open transaction, then mark this as a special
2716 ** "transaction savepoint". */
2717 if( db->autoCommit ){
2718 db->autoCommit = 0;
2719 db->isTransactionSavepoint = 1;
2720 }else{
2721 db->nSavepoint++;
2724 /* Link the new savepoint into the database handle's list. */
2725 pNew->pNext = db->pSavepoint;
2726 db->pSavepoint = pNew;
2727 pNew->nDeferredCons = db->nDeferredCons;
2730 }else{
2731 iSavepoint = 0;
2733 /* Find the named savepoint. If there is no such savepoint, then an
2734 ** an error is returned to the user. */
2735 for(
2736 pSavepoint = db->pSavepoint;
2737 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2738 pSavepoint = pSavepoint->pNext
2740 iSavepoint++;
2742 if( !pSavepoint ){
2743 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2744 rc = SQLITE_ERROR;
2745 }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
2746 /* It is not possible to release (commit) a savepoint if there are
2747 ** active write statements.
2749 sqlite3SetString(&p->zErrMsg, db,
2750 "cannot release savepoint - SQL statements in progress"
2752 rc = SQLITE_BUSY;
2753 }else{
2755 /* Determine whether or not this is a transaction savepoint. If so,
2756 ** and this is a RELEASE command, then the current transaction
2757 ** is committed.
2759 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2760 if( isTransaction && p1==SAVEPOINT_RELEASE ){
2761 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2762 goto vdbe_return;
2764 db->autoCommit = 1;
2765 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2766 p->pc = pc;
2767 db->autoCommit = 0;
2768 p->rc = rc = SQLITE_BUSY;
2769 goto vdbe_return;
2771 db->isTransactionSavepoint = 0;
2772 rc = p->rc;
2773 }else{
2774 iSavepoint = db->nSavepoint - iSavepoint - 1;
2775 if( p1==SAVEPOINT_ROLLBACK ){
2776 for(ii=0; ii<db->nDb; ii++){
2777 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2780 for(ii=0; ii<db->nDb; ii++){
2781 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2782 if( rc!=SQLITE_OK ){
2783 goto abort_due_to_error;
2786 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
2787 sqlite3ExpirePreparedStatements(db);
2788 sqlite3ResetAllSchemasOfConnection(db);
2789 db->flags = (db->flags | SQLITE_InternChanges);
2793 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2794 ** savepoints nested inside of the savepoint being operated on. */
2795 while( db->pSavepoint!=pSavepoint ){
2796 pTmp = db->pSavepoint;
2797 db->pSavepoint = pTmp->pNext;
2798 sqlite3DbFree(db, pTmp);
2799 db->nSavepoint--;
2802 /* If it is a RELEASE, then destroy the savepoint being operated on
2803 ** too. If it is a ROLLBACK TO, then set the number of deferred
2804 ** constraint violations present in the database to the value stored
2805 ** when the savepoint was created. */
2806 if( p1==SAVEPOINT_RELEASE ){
2807 assert( pSavepoint==db->pSavepoint );
2808 db->pSavepoint = pSavepoint->pNext;
2809 sqlite3DbFree(db, pSavepoint);
2810 if( !isTransaction ){
2811 db->nSavepoint--;
2813 }else{
2814 db->nDeferredCons = pSavepoint->nDeferredCons;
2817 if( !isTransaction ){
2818 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2819 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2824 break;
2827 /* Opcode: AutoCommit P1 P2 * * *
2829 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2830 ** back any currently active btree transactions. If there are any active
2831 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2832 ** there are active writing VMs or active VMs that use shared cache.
2834 ** This instruction causes the VM to halt.
2836 case OP_AutoCommit: {
2837 int desiredAutoCommit;
2838 int iRollback;
2839 int turnOnAC;
2841 desiredAutoCommit = pOp->p1;
2842 iRollback = pOp->p2;
2843 turnOnAC = desiredAutoCommit && !db->autoCommit;
2844 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2845 assert( desiredAutoCommit==1 || iRollback==0 );
2846 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
2848 #if 0
2849 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
2850 /* If this instruction implements a ROLLBACK and other VMs are
2851 ** still running, and a transaction is active, return an error indicating
2852 ** that the other VMs must complete first.
2854 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2855 "SQL statements in progress");
2856 rc = SQLITE_BUSY;
2857 }else
2858 #endif
2859 if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
2860 /* If this instruction implements a COMMIT and other VMs are writing
2861 ** return an error indicating that the other VMs must complete first.
2863 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2864 "SQL statements in progress");
2865 rc = SQLITE_BUSY;
2866 }else if( desiredAutoCommit!=db->autoCommit ){
2867 if( iRollback ){
2868 assert( desiredAutoCommit==1 );
2869 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2870 db->autoCommit = 1;
2871 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2872 goto vdbe_return;
2873 }else{
2874 db->autoCommit = (u8)desiredAutoCommit;
2875 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2876 p->pc = pc;
2877 db->autoCommit = (u8)(1-desiredAutoCommit);
2878 p->rc = rc = SQLITE_BUSY;
2879 goto vdbe_return;
2882 assert( db->nStatement==0 );
2883 sqlite3CloseSavepoints(db);
2884 if( p->rc==SQLITE_OK ){
2885 rc = SQLITE_DONE;
2886 }else{
2887 rc = SQLITE_ERROR;
2889 goto vdbe_return;
2890 }else{
2891 sqlite3SetString(&p->zErrMsg, db,
2892 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2893 (iRollback)?"cannot rollback - no transaction is active":
2894 "cannot commit - no transaction is active"));
2896 rc = SQLITE_ERROR;
2898 break;
2901 /* Opcode: Transaction P1 P2 * * *
2903 ** Begin a transaction. The transaction ends when a Commit or Rollback
2904 ** opcode is encountered. Depending on the ON CONFLICT setting, the
2905 ** transaction might also be rolled back if an error is encountered.
2907 ** P1 is the index of the database file on which the transaction is
2908 ** started. Index 0 is the main database file and index 1 is the
2909 ** file used for temporary tables. Indices of 2 or more are used for
2910 ** attached databases.
2912 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
2913 ** obtained on the database file when a write-transaction is started. No
2914 ** other process can start another write transaction while this transaction is
2915 ** underway. Starting a write transaction also creates a rollback journal. A
2916 ** write transaction must be started before any changes can be made to the
2917 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2918 ** on the file.
2920 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2921 ** true (this flag is set if the Vdbe may modify more than one row and may
2922 ** throw an ABORT exception), a statement transaction may also be opened.
2923 ** More specifically, a statement transaction is opened iff the database
2924 ** connection is currently not in autocommit mode, or if there are other
2925 ** active statements. A statement transaction allows the changes made by this
2926 ** VDBE to be rolled back after an error without having to roll back the
2927 ** entire transaction. If no error is encountered, the statement transaction
2928 ** will automatically commit when the VDBE halts.
2930 ** If P2 is zero, then a read-lock is obtained on the database file.
2932 case OP_Transaction: {
2933 Btree *pBt;
2935 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2936 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2937 pBt = db->aDb[pOp->p1].pBt;
2939 if( pBt ){
2940 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2941 if( rc==SQLITE_BUSY ){
2942 p->pc = pc;
2943 p->rc = rc = SQLITE_BUSY;
2944 goto vdbe_return;
2946 if( rc!=SQLITE_OK ){
2947 goto abort_due_to_error;
2950 if( pOp->p2 && p->usesStmtJournal
2951 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2953 assert( sqlite3BtreeIsInTrans(pBt) );
2954 if( p->iStatement==0 ){
2955 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2956 db->nStatement++;
2957 p->iStatement = db->nSavepoint + db->nStatement;
2960 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
2961 if( rc==SQLITE_OK ){
2962 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2965 /* Store the current value of the database handles deferred constraint
2966 ** counter. If the statement transaction needs to be rolled back,
2967 ** the value of this counter needs to be restored too. */
2968 p->nStmtDefCons = db->nDeferredCons;
2971 break;
2974 /* Opcode: ReadCookie P1 P2 P3 * *
2976 ** Read cookie number P3 from database P1 and write it into register P2.
2977 ** P3==1 is the schema version. P3==2 is the database format.
2978 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
2979 ** the main database file and P1==1 is the database file used to store
2980 ** temporary tables.
2982 ** There must be a read-lock on the database (either a transaction
2983 ** must be started or there must be an open cursor) before
2984 ** executing this instruction.
2986 case OP_ReadCookie: { /* out2-prerelease */
2987 int iMeta;
2988 int iDb;
2989 int iCookie;
2991 iDb = pOp->p1;
2992 iCookie = pOp->p3;
2993 assert( pOp->p3<SQLITE_N_BTREE_META );
2994 assert( iDb>=0 && iDb<db->nDb );
2995 assert( db->aDb[iDb].pBt!=0 );
2996 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
2998 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
2999 pOut->u.i = iMeta;
3000 break;
3003 /* Opcode: SetCookie P1 P2 P3 * *
3005 ** Write the content of register P3 (interpreted as an integer)
3006 ** into cookie number P2 of database P1. P2==1 is the schema version.
3007 ** P2==2 is the database format. P2==3 is the recommended pager cache
3008 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3009 ** database file used to store temporary tables.
3011 ** A transaction must be started before executing this opcode.
3013 case OP_SetCookie: { /* in3 */
3014 Db *pDb;
3015 assert( pOp->p2<SQLITE_N_BTREE_META );
3016 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3017 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
3018 pDb = &db->aDb[pOp->p1];
3019 assert( pDb->pBt!=0 );
3020 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3021 pIn3 = &aMem[pOp->p3];
3022 sqlite3VdbeMemIntegerify(pIn3);
3023 /* See note about index shifting on OP_ReadCookie */
3024 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3025 if( pOp->p2==BTREE_SCHEMA_VERSION ){
3026 /* When the schema cookie changes, record the new cookie internally */
3027 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
3028 db->flags |= SQLITE_InternChanges;
3029 }else if( pOp->p2==BTREE_FILE_FORMAT ){
3030 /* Record changes in the file format */
3031 pDb->pSchema->file_format = (u8)pIn3->u.i;
3033 if( pOp->p1==1 ){
3034 /* Invalidate all prepared statements whenever the TEMP database
3035 ** schema is changed. Ticket #1644 */
3036 sqlite3ExpirePreparedStatements(db);
3037 p->expired = 0;
3039 break;
3042 /* Opcode: VerifyCookie P1 P2 P3 * *
3044 ** Check the value of global database parameter number 0 (the
3045 ** schema version) and make sure it is equal to P2 and that the
3046 ** generation counter on the local schema parse equals P3.
3048 ** P1 is the database number which is 0 for the main database file
3049 ** and 1 for the file holding temporary tables and some higher number
3050 ** for auxiliary databases.
3052 ** The cookie changes its value whenever the database schema changes.
3053 ** This operation is used to detect when that the cookie has changed
3054 ** and that the current process needs to reread the schema.
3056 ** Either a transaction needs to have been started or an OP_Open needs
3057 ** to be executed (to establish a read lock) before this opcode is
3058 ** invoked.
3060 case OP_VerifyCookie: {
3061 int iMeta;
3062 int iGen;
3063 Btree *pBt;
3065 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3066 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
3067 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3068 pBt = db->aDb[pOp->p1].pBt;
3069 if( pBt ){
3070 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3071 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3072 }else{
3073 iGen = iMeta = 0;
3075 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
3076 sqlite3DbFree(db, p->zErrMsg);
3077 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3078 /* If the schema-cookie from the database file matches the cookie
3079 ** stored with the in-memory representation of the schema, do
3080 ** not reload the schema from the database file.
3082 ** If virtual-tables are in use, this is not just an optimization.
3083 ** Often, v-tables store their data in other SQLite tables, which
3084 ** are queried from within xNext() and other v-table methods using
3085 ** prepared queries. If such a query is out-of-date, we do not want to
3086 ** discard the database schema, as the user code implementing the
3087 ** v-table would have to be ready for the sqlite3_vtab structure itself
3088 ** to be invalidated whenever sqlite3_step() is called from within
3089 ** a v-table method.
3091 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3092 sqlite3ResetOneSchema(db, pOp->p1);
3095 p->expired = 1;
3096 rc = SQLITE_SCHEMA;
3098 break;
3101 /* Opcode: OpenRead P1 P2 P3 P4 P5
3103 ** Open a read-only cursor for the database table whose root page is
3104 ** P2 in a database file. The database file is determined by P3.
3105 ** P3==0 means the main database, P3==1 means the database used for
3106 ** temporary tables, and P3>1 means used the corresponding attached
3107 ** database. Give the new cursor an identifier of P1. The P1
3108 ** values need not be contiguous but all P1 values should be small integers.
3109 ** It is an error for P1 to be negative.
3111 ** If P5!=0 then use the content of register P2 as the root page, not
3112 ** the value of P2 itself.
3114 ** There will be a read lock on the database whenever there is an
3115 ** open cursor. If the database was unlocked prior to this instruction
3116 ** then a read lock is acquired as part of this instruction. A read
3117 ** lock allows other processes to read the database but prohibits
3118 ** any other process from modifying the database. The read lock is
3119 ** released when all cursors are closed. If this instruction attempts
3120 ** to get a read lock but fails, the script terminates with an
3121 ** SQLITE_BUSY error code.
3123 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3124 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3125 ** structure, then said structure defines the content and collating
3126 ** sequence of the index being opened. Otherwise, if P4 is an integer
3127 ** value, it is set to the number of columns in the table.
3129 ** See also OpenWrite.
3131 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3133 ** Open a read/write cursor named P1 on the table or index whose root
3134 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3135 ** root page.
3137 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3138 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3139 ** structure, then said structure defines the content and collating
3140 ** sequence of the index being opened. Otherwise, if P4 is an integer
3141 ** value, it is set to the number of columns in the table, or to the
3142 ** largest index of any column of the table that is actually used.
3144 ** This instruction works just like OpenRead except that it opens the cursor
3145 ** in read/write mode. For a given table, there can be one or more read-only
3146 ** cursors or a single read/write cursor but not both.
3148 ** See also OpenRead.
3150 case OP_OpenRead:
3151 case OP_OpenWrite: {
3152 int nField;
3153 KeyInfo *pKeyInfo;
3154 int p2;
3155 int iDb;
3156 int wrFlag;
3157 Btree *pX;
3158 VdbeCursor *pCur;
3159 Db *pDb;
3161 assert( (pOp->p5&(OPFLAG_P2ISREG|OPFLAG_BULKCSR))==pOp->p5 );
3162 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 );
3164 if( p->expired ){
3165 rc = SQLITE_ABORT;
3166 break;
3169 nField = 0;
3170 pKeyInfo = 0;
3171 p2 = pOp->p2;
3172 iDb = pOp->p3;
3173 assert( iDb>=0 && iDb<db->nDb );
3174 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
3175 pDb = &db->aDb[iDb];
3176 pX = pDb->pBt;
3177 assert( pX!=0 );
3178 if( pOp->opcode==OP_OpenWrite ){
3179 wrFlag = 1;
3180 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3181 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3182 p->minWriteFileFormat = pDb->pSchema->file_format;
3184 }else{
3185 wrFlag = 0;
3187 if( pOp->p5 & OPFLAG_P2ISREG ){
3188 assert( p2>0 );
3189 assert( p2<=p->nMem );
3190 pIn2 = &aMem[p2];
3191 assert( memIsValid(pIn2) );
3192 assert( (pIn2->flags & MEM_Int)!=0 );
3193 sqlite3VdbeMemIntegerify(pIn2);
3194 p2 = (int)pIn2->u.i;
3195 /* The p2 value always comes from a prior OP_CreateTable opcode and
3196 ** that opcode will always set the p2 value to 2 or more or else fail.
3197 ** If there were a failure, the prepared statement would have halted
3198 ** before reaching this instruction. */
3199 if( NEVER(p2<2) ) {
3200 rc = SQLITE_CORRUPT_BKPT;
3201 goto abort_due_to_error;
3204 if( pOp->p4type==P4_KEYINFO ){
3205 pKeyInfo = pOp->p4.pKeyInfo;
3206 pKeyInfo->enc = ENC(p->db);
3207 nField = pKeyInfo->nField+1;
3208 }else if( pOp->p4type==P4_INT32 ){
3209 nField = pOp->p4.i;
3211 assert( pOp->p1>=0 );
3212 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3213 if( pCur==0 ) goto no_mem;
3214 pCur->nullRow = 1;
3215 pCur->isOrdered = 1;
3216 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3217 pCur->pKeyInfo = pKeyInfo;
3218 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3219 sqlite3BtreeCursorHints(pCur->pCursor, (pOp->p5 & OPFLAG_BULKCSR));
3221 /* Since it performs no memory allocation or IO, the only value that
3222 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3223 assert( rc==SQLITE_OK );
3225 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3226 ** SQLite used to check if the root-page flags were sane at this point
3227 ** and report database corruption if they were not, but this check has
3228 ** since moved into the btree layer. */
3229 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3230 pCur->isIndex = !pCur->isTable;
3231 break;
3234 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3236 ** Open a new cursor P1 to a transient table.
3237 ** The cursor is always opened read/write even if
3238 ** the main database is read-only. The ephemeral
3239 ** table is deleted automatically when the cursor is closed.
3241 ** P2 is the number of columns in the ephemeral table.
3242 ** The cursor points to a BTree table if P4==0 and to a BTree index
3243 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3244 ** that defines the format of keys in the index.
3246 ** This opcode was once called OpenTemp. But that created
3247 ** confusion because the term "temp table", might refer either
3248 ** to a TEMP table at the SQL level, or to a table opened by
3249 ** this opcode. Then this opcode was call OpenVirtual. But
3250 ** that created confusion with the whole virtual-table idea.
3252 ** The P5 parameter can be a mask of the BTREE_* flags defined
3253 ** in btree.h. These flags control aspects of the operation of
3254 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3255 ** added automatically.
3257 /* Opcode: OpenAutoindex P1 P2 * P4 *
3259 ** This opcode works the same as OP_OpenEphemeral. It has a
3260 ** different name to distinguish its use. Tables created using
3261 ** by this opcode will be used for automatically created transient
3262 ** indices in joins.
3264 case OP_OpenAutoindex:
3265 case OP_OpenEphemeral: {
3266 VdbeCursor *pCx;
3267 static const int vfsFlags =
3268 SQLITE_OPEN_READWRITE |
3269 SQLITE_OPEN_CREATE |
3270 SQLITE_OPEN_EXCLUSIVE |
3271 SQLITE_OPEN_DELETEONCLOSE |
3272 SQLITE_OPEN_TRANSIENT_DB;
3274 assert( pOp->p1>=0 );
3275 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3276 if( pCx==0 ) goto no_mem;
3277 pCx->nullRow = 1;
3278 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3279 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3280 if( rc==SQLITE_OK ){
3281 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3283 if( rc==SQLITE_OK ){
3284 /* If a transient index is required, create it by calling
3285 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3286 ** opening it. If a transient table is required, just use the
3287 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3289 if( pOp->p4.pKeyInfo ){
3290 int pgno;
3291 assert( pOp->p4type==P4_KEYINFO );
3292 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3293 if( rc==SQLITE_OK ){
3294 assert( pgno==MASTER_ROOT+1 );
3295 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
3296 (KeyInfo*)pOp->p4.z, pCx->pCursor);
3297 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3298 pCx->pKeyInfo->enc = ENC(p->db);
3300 pCx->isTable = 0;
3301 }else{
3302 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3303 pCx->isTable = 1;
3306 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3307 pCx->isIndex = !pCx->isTable;
3308 break;
3311 /* Opcode: SorterOpen P1 P2 * P4 *
3313 ** This opcode works like OP_OpenEphemeral except that it opens
3314 ** a transient index that is specifically designed to sort large
3315 ** tables using an external merge-sort algorithm.
3317 case OP_SorterOpen: {
3318 VdbeCursor *pCx;
3320 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3321 if( pCx==0 ) goto no_mem;
3322 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3323 pCx->pKeyInfo->enc = ENC(p->db);
3324 pCx->isSorter = 1;
3325 rc = sqlite3VdbeSorterInit(db, pCx);
3326 break;
3329 /* Opcode: OpenPseudo P1 P2 P3 * P5
3331 ** Open a new cursor that points to a fake table that contains a single
3332 ** row of data. The content of that one row in the content of memory
3333 ** register P2 when P5==0. In other words, cursor P1 becomes an alias for the
3334 ** MEM_Blob content contained in register P2. When P5==1, then the
3335 ** row is represented by P3 consecutive registers beginning with P2.
3337 ** A pseudo-table created by this opcode is used to hold a single
3338 ** row output from the sorter so that the row can be decomposed into
3339 ** individual columns using the OP_Column opcode. The OP_Column opcode
3340 ** is the only cursor opcode that works with a pseudo-table.
3342 ** P3 is the number of fields in the records that will be stored by
3343 ** the pseudo-table.
3345 case OP_OpenPseudo: {
3346 VdbeCursor *pCx;
3348 assert( pOp->p1>=0 );
3349 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3350 if( pCx==0 ) goto no_mem;
3351 pCx->nullRow = 1;
3352 pCx->pseudoTableReg = pOp->p2;
3353 pCx->isTable = 1;
3354 pCx->isIndex = 0;
3355 pCx->multiPseudo = pOp->p5;
3356 break;
3359 /* Opcode: Close P1 * * * *
3361 ** Close a cursor previously opened as P1. If P1 is not
3362 ** currently open, this instruction is a no-op.
3364 case OP_Close: {
3365 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3366 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3367 p->apCsr[pOp->p1] = 0;
3368 break;
3371 /* Opcode: SeekGe P1 P2 P3 P4 *
3373 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3374 ** use the value in register P3 as the key. If cursor P1 refers
3375 ** to an SQL index, then P3 is the first in an array of P4 registers
3376 ** that are used as an unpacked index key.
3378 ** Reposition cursor P1 so that it points to the smallest entry that
3379 ** is greater than or equal to the key value. If there are no records
3380 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3382 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3384 /* Opcode: SeekGt P1 P2 P3 P4 *
3386 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3387 ** use the value in register P3 as a key. If cursor P1 refers
3388 ** to an SQL index, then P3 is the first in an array of P4 registers
3389 ** that are used as an unpacked index key.
3391 ** Reposition cursor P1 so that it points to the smallest entry that
3392 ** is greater than the key value. If there are no records greater than
3393 ** the key and P2 is not zero, then jump to P2.
3395 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3397 /* Opcode: SeekLt P1 P2 P3 P4 *
3399 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3400 ** use the value in register P3 as a key. If cursor P1 refers
3401 ** to an SQL index, then P3 is the first in an array of P4 registers
3402 ** that are used as an unpacked index key.
3404 ** Reposition cursor P1 so that it points to the largest entry that
3405 ** is less than the key value. If there are no records less than
3406 ** the key and P2 is not zero, then jump to P2.
3408 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3410 /* Opcode: SeekLe P1 P2 P3 P4 *
3412 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3413 ** use the value in register P3 as a key. If cursor P1 refers
3414 ** to an SQL index, then P3 is the first in an array of P4 registers
3415 ** that are used as an unpacked index key.
3417 ** Reposition cursor P1 so that it points to the largest entry that
3418 ** is less than or equal to the key value. If there are no records
3419 ** less than or equal to the key and P2 is not zero, then jump to P2.
3421 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3423 case OP_SeekLt: /* jump, in3 */
3424 case OP_SeekLe: /* jump, in3 */
3425 case OP_SeekGe: /* jump, in3 */
3426 case OP_SeekGt: { /* jump, in3 */
3427 int res;
3428 int oc;
3429 VdbeCursor *pC;
3430 UnpackedRecord r;
3431 int nField;
3432 i64 iKey; /* The rowid we are to seek to */
3434 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3435 assert( pOp->p2!=0 );
3436 pC = p->apCsr[pOp->p1];
3437 assert( pC!=0 );
3438 assert( pC->pseudoTableReg==0 );
3439 assert( OP_SeekLe == OP_SeekLt+1 );
3440 assert( OP_SeekGe == OP_SeekLt+2 );
3441 assert( OP_SeekGt == OP_SeekLt+3 );
3442 assert( pC->isOrdered );
3443 if( ALWAYS(pC->pCursor!=0) ){
3444 oc = pOp->opcode;
3445 pC->nullRow = 0;
3446 if( pC->isTable ){
3447 /* The input value in P3 might be of any type: integer, real, string,
3448 ** blob, or NULL. But it needs to be an integer before we can do
3449 ** the seek, so covert it. */
3450 pIn3 = &aMem[pOp->p3];
3451 applyNumericAffinity(pIn3);
3452 iKey = sqlite3VdbeIntValue(pIn3);
3453 pC->rowidIsValid = 0;
3455 /* If the P3 value could not be converted into an integer without
3456 ** loss of information, then special processing is required... */
3457 if( (pIn3->flags & MEM_Int)==0 ){
3458 if( (pIn3->flags & MEM_Real)==0 ){
3459 /* If the P3 value cannot be converted into any kind of a number,
3460 ** then the seek is not possible, so jump to P2 */
3461 pc = pOp->p2 - 1;
3462 break;
3464 /* If we reach this point, then the P3 value must be a floating
3465 ** point number. */
3466 assert( (pIn3->flags & MEM_Real)!=0 );
3468 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
3469 /* The P3 value is too large in magnitude to be expressed as an
3470 ** integer. */
3471 res = 1;
3472 if( pIn3->r<0 ){
3473 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
3474 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3475 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3477 }else{
3478 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
3479 rc = sqlite3BtreeLast(pC->pCursor, &res);
3480 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3483 if( res ){
3484 pc = pOp->p2 - 1;
3486 break;
3487 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3488 /* Use the ceiling() function to convert real->int */
3489 if( pIn3->r > (double)iKey ) iKey++;
3490 }else{
3491 /* Use the floor() function to convert real->int */
3492 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3493 if( pIn3->r < (double)iKey ) iKey--;
3496 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3497 if( rc!=SQLITE_OK ){
3498 goto abort_due_to_error;
3500 if( res==0 ){
3501 pC->rowidIsValid = 1;
3502 pC->lastRowid = iKey;
3504 }else{
3505 nField = pOp->p4.i;
3506 assert( pOp->p4type==P4_INT32 );
3507 assert( nField>0 );
3508 r.pKeyInfo = pC->pKeyInfo;
3509 r.nField = (u16)nField;
3511 /* The next line of code computes as follows, only faster:
3512 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3513 ** r.flags = UNPACKED_INCRKEY;
3514 ** }else{
3515 ** r.flags = 0;
3516 ** }
3518 r.flags = (u8)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
3519 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3520 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3521 assert( oc!=OP_SeekGe || r.flags==0 );
3522 assert( oc!=OP_SeekLt || r.flags==0 );
3524 r.aMem = &aMem[pOp->p3];
3525 #ifdef SQLITE_DEBUG
3526 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3527 #endif
3528 ExpandBlob(r.aMem);
3529 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3530 if( rc!=SQLITE_OK ){
3531 goto abort_due_to_error;
3533 pC->rowidIsValid = 0;
3535 pC->deferredMoveto = 0;
3536 pC->cacheStatus = CACHE_STALE;
3537 #ifdef SQLITE_TEST
3538 sqlite3_search_count++;
3539 #endif
3540 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
3541 if( res<0 || (res==0 && oc==OP_SeekGt) ){
3542 rc = sqlite3BtreeNext(pC->pCursor, &res);
3543 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3544 pC->rowidIsValid = 0;
3545 }else{
3546 res = 0;
3548 }else{
3549 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3550 if( res>0 || (res==0 && oc==OP_SeekLt) ){
3551 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3552 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3553 pC->rowidIsValid = 0;
3554 }else{
3555 /* res might be negative because the table is empty. Check to
3556 ** see if this is the case.
3558 res = sqlite3BtreeEof(pC->pCursor);
3561 assert( pOp->p2>0 );
3562 if( res ){
3563 pc = pOp->p2 - 1;
3565 }else{
3566 /* This happens when attempting to open the sqlite3_master table
3567 ** for read access returns SQLITE_EMPTY. In this case always
3568 ** take the jump (since there are no records in the table).
3570 pc = pOp->p2 - 1;
3572 break;
3575 /* Opcode: Seek P1 P2 * * *
3577 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3578 ** for P1 to move so that it points to the rowid given by P2.
3580 ** This is actually a deferred seek. Nothing actually happens until
3581 ** the cursor is used to read a record. That way, if no reads
3582 ** occur, no unnecessary I/O happens.
3584 case OP_Seek: { /* in2 */
3585 VdbeCursor *pC;
3587 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3588 pC = p->apCsr[pOp->p1];
3589 assert( pC!=0 );
3590 if( ALWAYS(pC->pCursor!=0) ){
3591 assert( pC->isTable );
3592 pC->nullRow = 0;
3593 pIn2 = &aMem[pOp->p2];
3594 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3595 pC->rowidIsValid = 0;
3596 pC->deferredMoveto = 1;
3598 break;
3602 /* Opcode: Found P1 P2 P3 P4 *
3604 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3605 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3606 ** record.
3608 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3609 ** is a prefix of any entry in P1 then a jump is made to P2 and
3610 ** P1 is left pointing at the matching entry.
3612 /* Opcode: NotFound P1 P2 P3 P4 *
3614 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3615 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3616 ** record.
3618 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3619 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3620 ** does contain an entry whose prefix matches the P3/P4 record then control
3621 ** falls through to the next instruction and P1 is left pointing at the
3622 ** matching entry.
3624 ** See also: Found, NotExists, IsUnique
3626 case OP_NotFound: /* jump, in3 */
3627 case OP_Found: { /* jump, in3 */
3628 int alreadyExists;
3629 VdbeCursor *pC;
3630 int res;
3631 char *pFree;
3632 UnpackedRecord *pIdxKey;
3633 UnpackedRecord r;
3634 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3636 #ifdef SQLITE_TEST
3637 sqlite3_found_count++;
3638 #endif
3640 alreadyExists = 0;
3641 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3642 assert( pOp->p4type==P4_INT32 );
3643 pC = p->apCsr[pOp->p1];
3644 assert( pC!=0 );
3645 pIn3 = &aMem[pOp->p3];
3646 if( ALWAYS(pC->pCursor!=0) ){
3648 assert( pC->isTable==0 );
3649 if( pOp->p4.i>0 ){
3650 r.pKeyInfo = pC->pKeyInfo;
3651 r.nField = (u16)pOp->p4.i;
3652 r.aMem = pIn3;
3653 #ifdef SQLITE_DEBUG
3654 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3655 #endif
3656 r.flags = UNPACKED_PREFIX_MATCH;
3657 pIdxKey = &r;
3658 }else{
3659 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3660 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3662 if( pIdxKey==0 ) goto no_mem;
3663 assert( pIn3->flags & MEM_Blob );
3664 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
3665 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3666 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
3668 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3669 if( pOp->p4.i==0 ){
3670 sqlite3DbFree(db, pFree);
3672 if( rc!=SQLITE_OK ){
3673 break;
3675 alreadyExists = (res==0);
3676 pC->deferredMoveto = 0;
3677 pC->cacheStatus = CACHE_STALE;
3679 if( pOp->opcode==OP_Found ){
3680 if( alreadyExists ) pc = pOp->p2 - 1;
3681 }else{
3682 if( !alreadyExists ) pc = pOp->p2 - 1;
3684 break;
3687 /* Opcode: IsUnique P1 P2 P3 P4 *
3689 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3690 ** no data and where the key are records generated by OP_MakeRecord with
3691 ** the list field being the integer ROWID of the entry that the index
3692 ** entry refers to.
3694 ** The P3 register contains an integer record number. Call this record
3695 ** number R. Register P4 is the first in a set of N contiguous registers
3696 ** that make up an unpacked index key that can be used with cursor P1.
3697 ** The value of N can be inferred from the cursor. N includes the rowid
3698 ** value appended to the end of the index record. This rowid value may
3699 ** or may not be the same as R.
3701 ** If any of the N registers beginning with register P4 contains a NULL
3702 ** value, jump immediately to P2.
3704 ** Otherwise, this instruction checks if cursor P1 contains an entry
3705 ** where the first (N-1) fields match but the rowid value at the end
3706 ** of the index entry is not R. If there is no such entry, control jumps
3707 ** to instruction P2. Otherwise, the rowid of the conflicting index
3708 ** entry is copied to register P3 and control falls through to the next
3709 ** instruction.
3711 ** See also: NotFound, NotExists, Found
3713 case OP_IsUnique: { /* jump, in3 */
3714 u16 ii;
3715 VdbeCursor *pCx;
3716 BtCursor *pCrsr;
3717 u16 nField;
3718 Mem *aMx;
3719 UnpackedRecord r; /* B-Tree index search key */
3720 i64 R; /* Rowid stored in register P3 */
3722 pIn3 = &aMem[pOp->p3];
3723 aMx = &aMem[pOp->p4.i];
3724 /* Assert that the values of parameters P1 and P4 are in range. */
3725 assert( pOp->p4type==P4_INT32 );
3726 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
3727 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3729 /* Find the index cursor. */
3730 pCx = p->apCsr[pOp->p1];
3731 assert( pCx->deferredMoveto==0 );
3732 pCx->seekResult = 0;
3733 pCx->cacheStatus = CACHE_STALE;
3734 pCrsr = pCx->pCursor;
3736 /* If any of the values are NULL, take the jump. */
3737 nField = pCx->pKeyInfo->nField;
3738 for(ii=0; ii<nField; ii++){
3739 if( aMx[ii].flags & MEM_Null ){
3740 pc = pOp->p2 - 1;
3741 pCrsr = 0;
3742 break;
3745 assert( (aMx[nField].flags & MEM_Null)==0 );
3747 if( pCrsr!=0 ){
3748 /* Populate the index search key. */
3749 r.pKeyInfo = pCx->pKeyInfo;
3750 r.nField = nField + 1;
3751 r.flags = UNPACKED_PREFIX_SEARCH;
3752 r.aMem = aMx;
3753 #ifdef SQLITE_DEBUG
3754 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3755 #endif
3757 /* Extract the value of R from register P3. */
3758 sqlite3VdbeMemIntegerify(pIn3);
3759 R = pIn3->u.i;
3761 /* Search the B-Tree index. If no conflicting record is found, jump
3762 ** to P2. Otherwise, copy the rowid of the conflicting record to
3763 ** register P3 and fall through to the next instruction. */
3764 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3765 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
3766 pc = pOp->p2 - 1;
3767 }else{
3768 pIn3->u.i = r.rowid;
3771 break;
3774 /* Opcode: NotExists P1 P2 P3 * *
3776 ** Use the content of register P3 as an integer key. If a record
3777 ** with that key does not exist in table of P1, then jump to P2.
3778 ** If the record does exist, then fall through. The cursor is left
3779 ** pointing to the record if it exists.
3781 ** The difference between this operation and NotFound is that this
3782 ** operation assumes the key is an integer and that P1 is a table whereas
3783 ** NotFound assumes key is a blob constructed from MakeRecord and
3784 ** P1 is an index.
3786 ** See also: Found, NotFound, IsUnique
3788 case OP_NotExists: { /* jump, in3 */
3789 VdbeCursor *pC;
3790 BtCursor *pCrsr;
3791 int res;
3792 u64 iKey;
3794 pIn3 = &aMem[pOp->p3];
3795 assert( pIn3->flags & MEM_Int );
3796 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3797 pC = p->apCsr[pOp->p1];
3798 assert( pC!=0 );
3799 assert( pC->isTable );
3800 assert( pC->pseudoTableReg==0 );
3801 pCrsr = pC->pCursor;
3802 if( ALWAYS(pCrsr!=0) ){
3803 res = 0;
3804 iKey = pIn3->u.i;
3805 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3806 pC->lastRowid = pIn3->u.i;
3807 pC->rowidIsValid = res==0 ?1:0;
3808 pC->nullRow = 0;
3809 pC->cacheStatus = CACHE_STALE;
3810 pC->deferredMoveto = 0;
3811 if( res!=0 ){
3812 pc = pOp->p2 - 1;
3813 assert( pC->rowidIsValid==0 );
3815 pC->seekResult = res;
3816 }else{
3817 /* This happens when an attempt to open a read cursor on the
3818 ** sqlite_master table returns SQLITE_EMPTY.
3820 pc = pOp->p2 - 1;
3821 assert( pC->rowidIsValid==0 );
3822 pC->seekResult = 0;
3824 break;
3827 /* Opcode: Sequence P1 P2 * * *
3829 ** Find the next available sequence number for cursor P1.
3830 ** Write the sequence number into register P2.
3831 ** The sequence number on the cursor is incremented after this
3832 ** instruction.
3834 case OP_Sequence: { /* out2-prerelease */
3835 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3836 assert( p->apCsr[pOp->p1]!=0 );
3837 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3838 break;
3842 /* Opcode: NewRowid P1 P2 P3 * *
3844 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3845 ** The record number is not previously used as a key in the database
3846 ** table that cursor P1 points to. The new record number is written
3847 ** written to register P2.
3849 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3850 ** the largest previously generated record number. No new record numbers are
3851 ** allowed to be less than this value. When this value reaches its maximum,
3852 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3853 ** generated record number. This P3 mechanism is used to help implement the
3854 ** AUTOINCREMENT feature.
3856 case OP_NewRowid: { /* out2-prerelease */
3857 i64 v; /* The new rowid */
3858 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3859 int res; /* Result of an sqlite3BtreeLast() */
3860 int cnt; /* Counter to limit the number of searches */
3861 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
3862 VdbeFrame *pFrame; /* Root frame of VDBE */
3864 v = 0;
3865 res = 0;
3866 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3867 pC = p->apCsr[pOp->p1];
3868 assert( pC!=0 );
3869 if( NEVER(pC->pCursor==0) ){
3870 /* The zero initialization above is all that is needed */
3871 }else{
3872 /* The next rowid or record number (different terms for the same
3873 ** thing) is obtained in a two-step algorithm.
3875 ** First we attempt to find the largest existing rowid and add one
3876 ** to that. But if the largest existing rowid is already the maximum
3877 ** positive integer, we have to fall through to the second
3878 ** probabilistic algorithm
3880 ** The second algorithm is to select a rowid at random and see if
3881 ** it already exists in the table. If it does not exist, we have
3882 ** succeeded. If the random rowid does exist, we select a new one
3883 ** and try again, up to 100 times.
3885 assert( pC->isTable );
3887 #ifdef SQLITE_32BIT_ROWID
3888 # define MAX_ROWID 0x7fffffff
3889 #else
3890 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3891 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3892 ** to provide the constant while making all compilers happy.
3894 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3895 #endif
3897 if( !pC->useRandomRowid ){
3898 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3899 if( v==0 ){
3900 rc = sqlite3BtreeLast(pC->pCursor, &res);
3901 if( rc!=SQLITE_OK ){
3902 goto abort_due_to_error;
3904 if( res ){
3905 v = 1; /* IMP: R-61914-48074 */
3906 }else{
3907 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3908 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3909 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
3910 if( v>=MAX_ROWID ){
3911 pC->useRandomRowid = 1;
3912 }else{
3913 v++; /* IMP: R-29538-34987 */
3918 #ifndef SQLITE_OMIT_AUTOINCREMENT
3919 if( pOp->p3 ){
3920 /* Assert that P3 is a valid memory cell. */
3921 assert( pOp->p3>0 );
3922 if( p->pFrame ){
3923 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
3924 /* Assert that P3 is a valid memory cell. */
3925 assert( pOp->p3<=pFrame->nMem );
3926 pMem = &pFrame->aMem[pOp->p3];
3927 }else{
3928 /* Assert that P3 is a valid memory cell. */
3929 assert( pOp->p3<=p->nMem );
3930 pMem = &aMem[pOp->p3];
3931 memAboutToChange(p, pMem);
3933 assert( memIsValid(pMem) );
3935 REGISTER_TRACE(pOp->p3, pMem);
3936 sqlite3VdbeMemIntegerify(pMem);
3937 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
3938 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3939 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
3940 goto abort_due_to_error;
3942 if( v<pMem->u.i+1 ){
3943 v = pMem->u.i + 1;
3945 pMem->u.i = v;
3947 #endif
3949 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
3951 if( pC->useRandomRowid ){
3952 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3953 ** largest possible integer (9223372036854775807) then the database
3954 ** engine starts picking positive candidate ROWIDs at random until
3955 ** it finds one that is not previously used. */
3956 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3957 ** an AUTOINCREMENT table. */
3958 /* on the first attempt, simply do one more than previous */
3959 v = lastRowid;
3960 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3961 v++; /* ensure non-zero */
3962 cnt = 0;
3963 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3964 0, &res))==SQLITE_OK)
3965 && (res==0)
3966 && (++cnt<100)){
3967 /* collision - try another random rowid */
3968 sqlite3_randomness(sizeof(v), &v);
3969 if( cnt<5 ){
3970 /* try "small" random rowids for the initial attempts */
3971 v &= 0xffffff;
3972 }else{
3973 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3975 v++; /* ensure non-zero */
3977 if( rc==SQLITE_OK && res==0 ){
3978 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
3979 goto abort_due_to_error;
3981 assert( v>0 ); /* EV: R-40812-03570 */
3983 pC->rowidIsValid = 0;
3984 pC->deferredMoveto = 0;
3985 pC->cacheStatus = CACHE_STALE;
3987 pOut->u.i = v;
3988 break;
3991 /* Opcode: Insert P1 P2 P3 P4 P5
3993 ** Write an entry into the table of cursor P1. A new entry is
3994 ** created if it doesn't already exist or the data for an existing
3995 ** entry is overwritten. The data is the value MEM_Blob stored in register
3996 ** number P2. The key is stored in register P3. The key must
3997 ** be a MEM_Int.
3999 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4000 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
4001 ** then rowid is stored for subsequent return by the
4002 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4004 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4005 ** the last seek operation (OP_NotExists) was a success, then this
4006 ** operation will not attempt to find the appropriate row before doing
4007 ** the insert but will instead overwrite the row that the cursor is
4008 ** currently pointing to. Presumably, the prior OP_NotExists opcode
4009 ** has already positioned the cursor correctly. This is an optimization
4010 ** that boosts performance by avoiding redundant seeks.
4012 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4013 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4014 ** is part of an INSERT operation. The difference is only important to
4015 ** the update hook.
4017 ** Parameter P4 may point to a string containing the table-name, or
4018 ** may be NULL. If it is not NULL, then the update-hook
4019 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4021 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4022 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4023 ** and register P2 becomes ephemeral. If the cursor is changed, the
4024 ** value of register P2 will then change. Make sure this does not
4025 ** cause any problems.)
4027 ** This instruction only works on tables. The equivalent instruction
4028 ** for indices is OP_IdxInsert.
4030 /* Opcode: InsertInt P1 P2 P3 P4 P5
4032 ** This works exactly like OP_Insert except that the key is the
4033 ** integer value P3, not the value of the integer stored in register P3.
4035 case OP_Insert:
4036 case OP_InsertInt: {
4037 Mem *pData; /* MEM cell holding data for the record to be inserted */
4038 Mem *pKey; /* MEM cell holding key for the record */
4039 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4040 VdbeCursor *pC; /* Cursor to table into which insert is written */
4041 int nZero; /* Number of zero-bytes to append */
4042 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4043 const char *zDb; /* database name - used by the update hook */
4044 const char *zTbl; /* Table name - used by the opdate hook */
4045 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4047 pData = &aMem[pOp->p2];
4048 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4049 assert( memIsValid(pData) );
4050 pC = p->apCsr[pOp->p1];
4051 assert( pC!=0 );
4052 assert( pC->pCursor!=0 );
4053 assert( pC->pseudoTableReg==0 );
4054 assert( pC->isTable );
4055 REGISTER_TRACE(pOp->p2, pData);
4057 if( pOp->opcode==OP_Insert ){
4058 pKey = &aMem[pOp->p3];
4059 assert( pKey->flags & MEM_Int );
4060 assert( memIsValid(pKey) );
4061 REGISTER_TRACE(pOp->p3, pKey);
4062 iKey = pKey->u.i;
4063 }else{
4064 assert( pOp->opcode==OP_InsertInt );
4065 iKey = pOp->p3;
4068 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4069 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4070 if( pData->flags & MEM_Null ){
4071 pData->z = 0;
4072 pData->n = 0;
4073 }else{
4074 assert( pData->flags & (MEM_Blob|MEM_Str) );
4076 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4077 if( pData->flags & MEM_Zero ){
4078 nZero = pData->u.nZero;
4079 }else{
4080 nZero = 0;
4082 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4083 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4084 pData->z, pData->n, nZero,
4085 pOp->p5 & OPFLAG_APPEND, seekResult
4087 pC->rowidIsValid = 0;
4088 pC->deferredMoveto = 0;
4089 pC->cacheStatus = CACHE_STALE;
4091 /* Invoke the update-hook if required. */
4092 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4093 zDb = db->aDb[pC->iDb].zName;
4094 zTbl = pOp->p4.z;
4095 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4096 assert( pC->isTable );
4097 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4098 assert( pC->iDb>=0 );
4100 break;
4103 /* Opcode: Delete P1 P2 * P4 *
4105 ** Delete the record at which the P1 cursor is currently pointing.
4107 ** The cursor will be left pointing at either the next or the previous
4108 ** record in the table. If it is left pointing at the next record, then
4109 ** the next Next instruction will be a no-op. Hence it is OK to delete
4110 ** a record from within an Next loop.
4112 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4113 ** incremented (otherwise not).
4115 ** P1 must not be pseudo-table. It has to be a real table with
4116 ** multiple rows.
4118 ** If P4 is not NULL, then it is the name of the table that P1 is
4119 ** pointing to. The update hook will be invoked, if it exists.
4120 ** If P4 is not NULL then the P1 cursor must have been positioned
4121 ** using OP_NotFound prior to invoking this opcode.
4123 case OP_Delete: {
4124 i64 iKey;
4125 VdbeCursor *pC;
4127 iKey = 0;
4128 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4129 pC = p->apCsr[pOp->p1];
4130 assert( pC!=0 );
4131 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
4133 /* If the update-hook will be invoked, set iKey to the rowid of the
4134 ** row being deleted.
4136 if( db->xUpdateCallback && pOp->p4.z ){
4137 assert( pC->isTable );
4138 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4139 iKey = pC->lastRowid;
4142 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4143 ** OP_Column on the same table without any intervening operations that
4144 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4145 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4146 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4147 ** to guard against future changes to the code generator.
4149 assert( pC->deferredMoveto==0 );
4150 rc = sqlite3VdbeCursorMoveto(pC);
4151 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4153 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4154 rc = sqlite3BtreeDelete(pC->pCursor);
4155 pC->cacheStatus = CACHE_STALE;
4157 /* Invoke the update-hook if required. */
4158 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4159 const char *zDb = db->aDb[pC->iDb].zName;
4160 const char *zTbl = pOp->p4.z;
4161 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4162 assert( pC->iDb>=0 );
4164 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4165 break;
4167 /* Opcode: ResetCount * * * * *
4169 ** The value of the change counter is copied to the database handle
4170 ** change counter (returned by subsequent calls to sqlite3_changes()).
4171 ** Then the VMs internal change counter resets to 0.
4172 ** This is used by trigger programs.
4174 case OP_ResetCount: {
4175 sqlite3VdbeSetChanges(db, p->nChange);
4176 p->nChange = 0;
4177 break;
4180 /* Opcode: SorterCompare P1 P2 P3
4182 ** P1 is a sorter cursor. This instruction compares the record blob in
4183 ** register P3 with the entry that the sorter cursor currently points to.
4184 ** If, excluding the rowid fields at the end, the two records are a match,
4185 ** fall through to the next instruction. Otherwise, jump to instruction P2.
4187 case OP_SorterCompare: {
4188 VdbeCursor *pC;
4189 int res;
4191 pC = p->apCsr[pOp->p1];
4192 assert( isSorter(pC) );
4193 pIn3 = &aMem[pOp->p3];
4194 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4195 if( res ){
4196 pc = pOp->p2-1;
4198 break;
4201 /* Opcode: SorterData P1 P2 * * *
4203 ** Write into register P2 the current sorter data for sorter cursor P1.
4205 case OP_SorterData: {
4206 VdbeCursor *pC;
4208 pOut = &aMem[pOp->p2];
4209 pC = p->apCsr[pOp->p1];
4210 assert( pC->isSorter );
4211 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4212 break;
4215 /* Opcode: RowData P1 P2 * * *
4217 ** Write into register P2 the complete row data for cursor P1.
4218 ** There is no interpretation of the data.
4219 ** It is just copied onto the P2 register exactly as
4220 ** it is found in the database file.
4222 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4223 ** of a real table, not a pseudo-table.
4225 /* Opcode: RowKey P1 P2 * * *
4227 ** Write into register P2 the complete row key for cursor P1.
4228 ** There is no interpretation of the data.
4229 ** The key is copied onto the P3 register exactly as
4230 ** it is found in the database file.
4232 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4233 ** of a real table, not a pseudo-table.
4235 case OP_RowKey:
4236 case OP_RowData: {
4237 VdbeCursor *pC;
4238 BtCursor *pCrsr;
4239 u32 n;
4240 i64 n64;
4242 pOut = &aMem[pOp->p2];
4243 memAboutToChange(p, pOut);
4245 /* Note that RowKey and RowData are really exactly the same instruction */
4246 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4247 pC = p->apCsr[pOp->p1];
4248 assert( pC->isSorter==0 );
4249 assert( pC->isTable || pOp->opcode!=OP_RowData );
4250 assert( pC->isIndex || pOp->opcode==OP_RowData );
4251 assert( pC!=0 );
4252 assert( pC->nullRow==0 );
4253 assert( pC->pseudoTableReg==0 );
4254 assert( pC->pCursor!=0 );
4255 pCrsr = pC->pCursor;
4256 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4258 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4259 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4260 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4261 ** a no-op and can never fail. But we leave it in place as a safety.
4263 assert( pC->deferredMoveto==0 );
4264 rc = sqlite3VdbeCursorMoveto(pC);
4265 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4267 if( pC->isIndex ){
4268 assert( !pC->isTable );
4269 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4270 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
4271 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4272 goto too_big;
4274 n = (u32)n64;
4275 }else{
4276 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4277 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
4278 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4279 goto too_big;
4282 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4283 goto no_mem;
4285 pOut->n = n;
4286 MemSetTypeFlag(pOut, MEM_Blob);
4287 if( pC->isIndex ){
4288 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4289 }else{
4290 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4292 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
4293 UPDATE_MAX_BLOBSIZE(pOut);
4294 break;
4297 /* Opcode: Rowid P1 P2 * * *
4299 ** Store in register P2 an integer which is the key of the table entry that
4300 ** P1 is currently point to.
4302 ** P1 can be either an ordinary table or a virtual table. There used to
4303 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4304 ** one opcode now works for both table types.
4306 case OP_Rowid: { /* out2-prerelease */
4307 VdbeCursor *pC;
4308 i64 v;
4309 sqlite3_vtab *pVtab;
4310 const sqlite3_module *pModule;
4312 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4313 pC = p->apCsr[pOp->p1];
4314 assert( pC!=0 );
4315 assert( pC->pseudoTableReg==0 || pC->nullRow );
4316 if( pC->nullRow ){
4317 pOut->flags = MEM_Null;
4318 break;
4319 }else if( pC->deferredMoveto ){
4320 v = pC->movetoTarget;
4321 #ifndef SQLITE_OMIT_VIRTUALTABLE
4322 }else if( pC->pVtabCursor ){
4323 pVtab = pC->pVtabCursor->pVtab;
4324 pModule = pVtab->pModule;
4325 assert( pModule->xRowid );
4326 rc = pModule->xRowid(pC->pVtabCursor, &v);
4327 importVtabErrMsg(p, pVtab);
4328 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4329 }else{
4330 assert( pC->pCursor!=0 );
4331 rc = sqlite3VdbeCursorMoveto(pC);
4332 if( rc ) goto abort_due_to_error;
4333 if( pC->rowidIsValid ){
4334 v = pC->lastRowid;
4335 }else{
4336 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4337 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
4340 pOut->u.i = v;
4341 break;
4344 /* Opcode: NullRow P1 * * * *
4346 ** Move the cursor P1 to a null row. Any OP_Column operations
4347 ** that occur while the cursor is on the null row will always
4348 ** write a NULL.
4350 case OP_NullRow: {
4351 VdbeCursor *pC;
4353 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4354 pC = p->apCsr[pOp->p1];
4355 assert( pC!=0 );
4356 pC->nullRow = 1;
4357 pC->rowidIsValid = 0;
4358 assert( pC->pCursor || pC->pVtabCursor );
4359 if( pC->pCursor ){
4360 sqlite3BtreeClearCursor(pC->pCursor);
4362 break;
4365 /* Opcode: Last P1 P2 * * *
4367 ** The next use of the Rowid or Column or Next instruction for P1
4368 ** will refer to the last entry in the database table or index.
4369 ** If the table or index is empty and P2>0, then jump immediately to P2.
4370 ** If P2 is 0 or if the table or index is not empty, fall through
4371 ** to the following instruction.
4373 case OP_Last: { /* jump */
4374 VdbeCursor *pC;
4375 BtCursor *pCrsr;
4376 int res;
4378 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4379 pC = p->apCsr[pOp->p1];
4380 assert( pC!=0 );
4381 pCrsr = pC->pCursor;
4382 res = 0;
4383 if( ALWAYS(pCrsr!=0) ){
4384 rc = sqlite3BtreeLast(pCrsr, &res);
4386 pC->nullRow = (u8)res;
4387 pC->deferredMoveto = 0;
4388 pC->rowidIsValid = 0;
4389 pC->cacheStatus = CACHE_STALE;
4390 if( pOp->p2>0 && res ){
4391 pc = pOp->p2 - 1;
4393 break;
4397 /* Opcode: Sort P1 P2 * * *
4399 ** This opcode does exactly the same thing as OP_Rewind except that
4400 ** it increments an undocumented global variable used for testing.
4402 ** Sorting is accomplished by writing records into a sorting index,
4403 ** then rewinding that index and playing it back from beginning to
4404 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4405 ** rewinding so that the global variable will be incremented and
4406 ** regression tests can determine whether or not the optimizer is
4407 ** correctly optimizing out sorts.
4409 case OP_SorterSort: /* jump */
4410 case OP_Sort: { /* jump */
4411 #ifdef SQLITE_TEST
4412 sqlite3_sort_count++;
4413 sqlite3_search_count--;
4414 #endif
4415 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
4416 /* Fall through into OP_Rewind */
4418 /* Opcode: Rewind P1 P2 * * *
4420 ** The next use of the Rowid or Column or Next instruction for P1
4421 ** will refer to the first entry in the database table or index.
4422 ** If the table or index is empty and P2>0, then jump immediately to P2.
4423 ** If P2 is 0 or if the table or index is not empty, fall through
4424 ** to the following instruction.
4426 case OP_Rewind: { /* jump */
4427 VdbeCursor *pC;
4428 BtCursor *pCrsr;
4429 int res;
4431 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4432 pC = p->apCsr[pOp->p1];
4433 assert( pC!=0 );
4434 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
4435 res = 1;
4436 if( isSorter(pC) ){
4437 rc = sqlite3VdbeSorterRewind(db, pC, &res);
4438 }else{
4439 pCrsr = pC->pCursor;
4440 assert( pCrsr );
4441 rc = sqlite3BtreeFirst(pCrsr, &res);
4442 pC->atFirst = res==0 ?1:0;
4443 pC->deferredMoveto = 0;
4444 pC->cacheStatus = CACHE_STALE;
4445 pC->rowidIsValid = 0;
4447 pC->nullRow = (u8)res;
4448 assert( pOp->p2>0 && pOp->p2<p->nOp );
4449 if( res ){
4450 pc = pOp->p2 - 1;
4452 break;
4455 /* Opcode: Next P1 P2 * P4 P5
4457 ** Advance cursor P1 so that it points to the next key/data pair in its
4458 ** table or index. If there are no more key/value pairs then fall through
4459 ** to the following instruction. But if the cursor advance was successful,
4460 ** jump immediately to P2.
4462 ** The P1 cursor must be for a real table, not a pseudo-table.
4464 ** P4 is always of type P4_ADVANCE. The function pointer points to
4465 ** sqlite3BtreeNext().
4467 ** If P5 is positive and the jump is taken, then event counter
4468 ** number P5-1 in the prepared statement is incremented.
4470 ** See also: Prev
4472 /* Opcode: Prev P1 P2 * * P5
4474 ** Back up cursor P1 so that it points to the previous key/data pair in its
4475 ** table or index. If there is no previous key/value pairs then fall through
4476 ** to the following instruction. But if the cursor backup was successful,
4477 ** jump immediately to P2.
4479 ** The P1 cursor must be for a real table, not a pseudo-table.
4481 ** P4 is always of type P4_ADVANCE. The function pointer points to
4482 ** sqlite3BtreePrevious().
4484 ** If P5 is positive and the jump is taken, then event counter
4485 ** number P5-1 in the prepared statement is incremented.
4487 case OP_SorterNext: /* jump */
4488 case OP_Prev: /* jump */
4489 case OP_Next: { /* jump */
4490 VdbeCursor *pC;
4491 int res;
4493 CHECK_FOR_INTERRUPT;
4494 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4495 assert( pOp->p5<=ArraySize(p->aCounter) );
4496 pC = p->apCsr[pOp->p1];
4497 if( pC==0 ){
4498 break; /* See ticket #2273 */
4500 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
4501 if( isSorter(pC) ){
4502 assert( pOp->opcode==OP_SorterNext );
4503 rc = sqlite3VdbeSorterNext(db, pC, &res);
4504 }else{
4505 res = 1;
4506 assert( pC->deferredMoveto==0 );
4507 assert( pC->pCursor );
4508 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4509 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4510 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4512 pC->nullRow = (u8)res;
4513 pC->cacheStatus = CACHE_STALE;
4514 if( res==0 ){
4515 pc = pOp->p2 - 1;
4516 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
4517 #ifdef SQLITE_TEST
4518 sqlite3_search_count++;
4519 #endif
4521 pC->rowidIsValid = 0;
4522 break;
4525 /* Opcode: IdxInsert P1 P2 P3 * P5
4527 ** Register P2 holds an SQL index key made using the
4528 ** MakeRecord instructions. This opcode writes that key
4529 ** into the index P1. Data for the entry is nil.
4531 ** P3 is a flag that provides a hint to the b-tree layer that this
4532 ** insert is likely to be an append.
4534 ** This instruction only works for indices. The equivalent instruction
4535 ** for tables is OP_Insert.
4537 case OP_SorterInsert: /* in2 */
4538 case OP_IdxInsert: { /* in2 */
4539 VdbeCursor *pC;
4540 BtCursor *pCrsr;
4541 int nKey;
4542 const char *zKey;
4544 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4545 pC = p->apCsr[pOp->p1];
4546 assert( pC!=0 );
4547 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
4548 pIn2 = &aMem[pOp->p2];
4549 assert( pIn2->flags & MEM_Blob );
4550 pCrsr = pC->pCursor;
4551 if( ALWAYS(pCrsr!=0) ){
4552 assert( pC->isTable==0 );
4553 rc = ExpandBlob(pIn2);
4554 if( rc==SQLITE_OK ){
4555 if( isSorter(pC) ){
4556 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4557 }else{
4558 nKey = pIn2->n;
4559 zKey = pIn2->z;
4560 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4561 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4563 assert( pC->deferredMoveto==0 );
4564 pC->cacheStatus = CACHE_STALE;
4568 break;
4571 /* Opcode: IdxDelete P1 P2 P3 * *
4573 ** The content of P3 registers starting at register P2 form
4574 ** an unpacked index key. This opcode removes that entry from the
4575 ** index opened by cursor P1.
4577 case OP_IdxDelete: {
4578 VdbeCursor *pC;
4579 BtCursor *pCrsr;
4580 int res;
4581 UnpackedRecord r;
4583 assert( pOp->p3>0 );
4584 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
4585 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4586 pC = p->apCsr[pOp->p1];
4587 assert( pC!=0 );
4588 pCrsr = pC->pCursor;
4589 if( ALWAYS(pCrsr!=0) ){
4590 r.pKeyInfo = pC->pKeyInfo;
4591 r.nField = (u16)pOp->p3;
4592 r.flags = 0;
4593 r.aMem = &aMem[pOp->p2];
4594 #ifdef SQLITE_DEBUG
4595 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4596 #endif
4597 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4598 if( rc==SQLITE_OK && res==0 ){
4599 rc = sqlite3BtreeDelete(pCrsr);
4601 assert( pC->deferredMoveto==0 );
4602 pC->cacheStatus = CACHE_STALE;
4604 break;
4607 /* Opcode: IdxRowid P1 P2 * * *
4609 ** Write into register P2 an integer which is the last entry in the record at
4610 ** the end of the index key pointed to by cursor P1. This integer should be
4611 ** the rowid of the table entry to which this index entry points.
4613 ** See also: Rowid, MakeRecord.
4615 case OP_IdxRowid: { /* out2-prerelease */
4616 BtCursor *pCrsr;
4617 VdbeCursor *pC;
4618 i64 rowid;
4620 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4621 pC = p->apCsr[pOp->p1];
4622 assert( pC!=0 );
4623 pCrsr = pC->pCursor;
4624 pOut->flags = MEM_Null;
4625 if( ALWAYS(pCrsr!=0) ){
4626 rc = sqlite3VdbeCursorMoveto(pC);
4627 if( NEVER(rc) ) goto abort_due_to_error;
4628 assert( pC->deferredMoveto==0 );
4629 assert( pC->isTable==0 );
4630 if( !pC->nullRow ){
4631 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4632 if( rc!=SQLITE_OK ){
4633 goto abort_due_to_error;
4635 pOut->u.i = rowid;
4636 pOut->flags = MEM_Int;
4639 break;
4642 /* Opcode: IdxGE P1 P2 P3 P4 P5
4644 ** The P4 register values beginning with P3 form an unpacked index
4645 ** key that omits the ROWID. Compare this key value against the index
4646 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4648 ** If the P1 index entry is greater than or equal to the key value
4649 ** then jump to P2. Otherwise fall through to the next instruction.
4651 ** If P5 is non-zero then the key value is increased by an epsilon
4652 ** prior to the comparison. This make the opcode work like IdxGT except
4653 ** that if the key from register P3 is a prefix of the key in the cursor,
4654 ** the result is false whereas it would be true with IdxGT.
4656 /* Opcode: IdxLT P1 P2 P3 P4 P5
4658 ** The P4 register values beginning with P3 form an unpacked index
4659 ** key that omits the ROWID. Compare this key value against the index
4660 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4662 ** If the P1 index entry is less than the key value then jump to P2.
4663 ** Otherwise fall through to the next instruction.
4665 ** If P5 is non-zero then the key value is increased by an epsilon prior
4666 ** to the comparison. This makes the opcode work like IdxLE.
4668 case OP_IdxLT: /* jump */
4669 case OP_IdxGE: { /* jump */
4670 VdbeCursor *pC;
4671 int res;
4672 UnpackedRecord r;
4674 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4675 pC = p->apCsr[pOp->p1];
4676 assert( pC!=0 );
4677 assert( pC->isOrdered );
4678 if( ALWAYS(pC->pCursor!=0) ){
4679 assert( pC->deferredMoveto==0 );
4680 assert( pOp->p5==0 || pOp->p5==1 );
4681 assert( pOp->p4type==P4_INT32 );
4682 r.pKeyInfo = pC->pKeyInfo;
4683 r.nField = (u16)pOp->p4.i;
4684 if( pOp->p5 ){
4685 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
4686 }else{
4687 r.flags = UNPACKED_PREFIX_MATCH;
4689 r.aMem = &aMem[pOp->p3];
4690 #ifdef SQLITE_DEBUG
4691 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4692 #endif
4693 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
4694 if( pOp->opcode==OP_IdxLT ){
4695 res = -res;
4696 }else{
4697 assert( pOp->opcode==OP_IdxGE );
4698 res++;
4700 if( res>0 ){
4701 pc = pOp->p2 - 1 ;
4704 break;
4707 /* Opcode: Destroy P1 P2 P3 * *
4709 ** Delete an entire database table or index whose root page in the database
4710 ** file is given by P1.
4712 ** The table being destroyed is in the main database file if P3==0. If
4713 ** P3==1 then the table to be clear is in the auxiliary database file
4714 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4716 ** If AUTOVACUUM is enabled then it is possible that another root page
4717 ** might be moved into the newly deleted root page in order to keep all
4718 ** root pages contiguous at the beginning of the database. The former
4719 ** value of the root page that moved - its value before the move occurred -
4720 ** is stored in register P2. If no page
4721 ** movement was required (because the table being dropped was already
4722 ** the last one in the database) then a zero is stored in register P2.
4723 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4725 ** See also: Clear
4727 case OP_Destroy: { /* out2-prerelease */
4728 int iMoved;
4729 int iCnt;
4730 Vdbe *pVdbe;
4731 int iDb;
4733 #ifndef SQLITE_OMIT_VIRTUALTABLE
4734 iCnt = 0;
4735 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4736 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4737 iCnt++;
4740 #else
4741 iCnt = db->activeVdbeCnt;
4742 #endif
4743 pOut->flags = MEM_Null;
4744 if( iCnt>1 ){
4745 rc = SQLITE_LOCKED;
4746 p->errorAction = OE_Abort;
4747 }else{
4748 iDb = pOp->p3;
4749 assert( iCnt==1 );
4750 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
4751 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4752 pOut->flags = MEM_Int;
4753 pOut->u.i = iMoved;
4754 #ifndef SQLITE_OMIT_AUTOVACUUM
4755 if( rc==SQLITE_OK && iMoved!=0 ){
4756 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4757 /* All OP_Destroy operations occur on the same btree */
4758 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4759 resetSchemaOnFault = iDb+1;
4761 #endif
4763 break;
4766 /* Opcode: Clear P1 P2 P3
4768 ** Delete all contents of the database table or index whose root page
4769 ** in the database file is given by P1. But, unlike Destroy, do not
4770 ** remove the table or index from the database file.
4772 ** The table being clear is in the main database file if P2==0. If
4773 ** P2==1 then the table to be clear is in the auxiliary database file
4774 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4776 ** If the P3 value is non-zero, then the table referred to must be an
4777 ** intkey table (an SQL table, not an index). In this case the row change
4778 ** count is incremented by the number of rows in the table being cleared.
4779 ** If P3 is greater than zero, then the value stored in register P3 is
4780 ** also incremented by the number of rows in the table being cleared.
4782 ** See also: Destroy
4784 case OP_Clear: {
4785 int nChange;
4787 nChange = 0;
4788 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
4789 rc = sqlite3BtreeClearTable(
4790 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4792 if( pOp->p3 ){
4793 p->nChange += nChange;
4794 if( pOp->p3>0 ){
4795 assert( memIsValid(&aMem[pOp->p3]) );
4796 memAboutToChange(p, &aMem[pOp->p3]);
4797 aMem[pOp->p3].u.i += nChange;
4800 break;
4803 /* Opcode: CreateTable P1 P2 * * *
4805 ** Allocate a new table in the main database file if P1==0 or in the
4806 ** auxiliary database file if P1==1 or in an attached database if
4807 ** P1>1. Write the root page number of the new table into
4808 ** register P2
4810 ** The difference between a table and an index is this: A table must
4811 ** have a 4-byte integer key and can have arbitrary data. An index
4812 ** has an arbitrary key but no data.
4814 ** See also: CreateIndex
4816 /* Opcode: CreateIndex P1 P2 * * *
4818 ** Allocate a new index in the main database file if P1==0 or in the
4819 ** auxiliary database file if P1==1 or in an attached database if
4820 ** P1>1. Write the root page number of the new table into
4821 ** register P2.
4823 ** See documentation on OP_CreateTable for additional information.
4825 case OP_CreateIndex: /* out2-prerelease */
4826 case OP_CreateTable: { /* out2-prerelease */
4827 int pgno;
4828 int flags;
4829 Db *pDb;
4831 pgno = 0;
4832 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4833 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
4834 pDb = &db->aDb[pOp->p1];
4835 assert( pDb->pBt!=0 );
4836 if( pOp->opcode==OP_CreateTable ){
4837 /* flags = BTREE_INTKEY; */
4838 flags = BTREE_INTKEY;
4839 }else{
4840 flags = BTREE_BLOBKEY;
4842 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4843 pOut->u.i = pgno;
4844 break;
4847 /* Opcode: ParseSchema P1 * * P4 *
4849 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4850 ** that match the WHERE clause P4.
4852 ** This opcode invokes the parser to create a new virtual machine,
4853 ** then runs the new virtual machine. It is thus a re-entrant opcode.
4855 case OP_ParseSchema: {
4856 int iDb;
4857 const char *zMaster;
4858 char *zSql;
4859 InitData initData;
4861 /* Any prepared statement that invokes this opcode will hold mutexes
4862 ** on every btree. This is a prerequisite for invoking
4863 ** sqlite3InitCallback().
4865 #ifdef SQLITE_DEBUG
4866 for(iDb=0; iDb<db->nDb; iDb++){
4867 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4869 #endif
4871 iDb = pOp->p1;
4872 assert( iDb>=0 && iDb<db->nDb );
4873 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
4874 /* Used to be a conditional */ {
4875 zMaster = SCHEMA_TABLE(iDb);
4876 initData.db = db;
4877 initData.iDb = pOp->p1;
4878 initData.pzErrMsg = &p->zErrMsg;
4879 zSql = sqlite3MPrintf(db,
4880 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4881 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4882 if( zSql==0 ){
4883 rc = SQLITE_NOMEM;
4884 }else{
4885 assert( db->init.busy==0 );
4886 db->init.busy = 1;
4887 initData.rc = SQLITE_OK;
4888 assert( !db->mallocFailed );
4889 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4890 if( rc==SQLITE_OK ) rc = initData.rc;
4891 sqlite3DbFree(db, zSql);
4892 db->init.busy = 0;
4895 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
4896 if( rc==SQLITE_NOMEM ){
4897 goto no_mem;
4899 break;
4902 #if !defined(SQLITE_OMIT_ANALYZE)
4903 /* Opcode: LoadAnalysis P1 * * * *
4905 ** Read the sqlite_stat1 table for database P1 and load the content
4906 ** of that table into the internal index hash table. This will cause
4907 ** the analysis to be used when preparing all subsequent queries.
4909 case OP_LoadAnalysis: {
4910 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4911 rc = sqlite3AnalysisLoad(db, pOp->p1);
4912 break;
4914 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4916 /* Opcode: DropTable P1 * * P4 *
4918 ** Remove the internal (in-memory) data structures that describe
4919 ** the table named P4 in database P1. This is called after a table
4920 ** is dropped in order to keep the internal representation of the
4921 ** schema consistent with what is on disk.
4923 case OP_DropTable: {
4924 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
4925 break;
4928 /* Opcode: DropIndex P1 * * P4 *
4930 ** Remove the internal (in-memory) data structures that describe
4931 ** the index named P4 in database P1. This is called after an index
4932 ** is dropped in order to keep the internal representation of the
4933 ** schema consistent with what is on disk.
4935 case OP_DropIndex: {
4936 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
4937 break;
4940 /* Opcode: DropTrigger P1 * * P4 *
4942 ** Remove the internal (in-memory) data structures that describe
4943 ** the trigger named P4 in database P1. This is called after a trigger
4944 ** is dropped in order to keep the internal representation of the
4945 ** schema consistent with what is on disk.
4947 case OP_DropTrigger: {
4948 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
4949 break;
4953 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4954 /* Opcode: IntegrityCk P1 P2 P3 * P5
4956 ** Do an analysis of the currently open database. Store in
4957 ** register P1 the text of an error message describing any problems.
4958 ** If no problems are found, store a NULL in register P1.
4960 ** The register P3 contains the maximum number of allowed errors.
4961 ** At most reg(P3) errors will be reported.
4962 ** In other words, the analysis stops as soon as reg(P1) errors are
4963 ** seen. Reg(P1) is updated with the number of errors remaining.
4965 ** The root page numbers of all tables in the database are integer
4966 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
4967 ** total.
4969 ** If P5 is not zero, the check is done on the auxiliary database
4970 ** file, not the main database file.
4972 ** This opcode is used to implement the integrity_check pragma.
4974 case OP_IntegrityCk: {
4975 int nRoot; /* Number of tables to check. (Number of root pages.) */
4976 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4977 int j; /* Loop counter */
4978 int nErr; /* Number of errors reported */
4979 char *z; /* Text of the error report */
4980 Mem *pnErr; /* Register keeping track of errors remaining */
4982 nRoot = pOp->p2;
4983 assert( nRoot>0 );
4984 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
4985 if( aRoot==0 ) goto no_mem;
4986 assert( pOp->p3>0 && pOp->p3<=p->nMem );
4987 pnErr = &aMem[pOp->p3];
4988 assert( (pnErr->flags & MEM_Int)!=0 );
4989 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
4990 pIn1 = &aMem[pOp->p1];
4991 for(j=0; j<nRoot; j++){
4992 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
4994 aRoot[j] = 0;
4995 assert( pOp->p5<db->nDb );
4996 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
4997 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
4998 (int)pnErr->u.i, &nErr);
4999 sqlite3DbFree(db, aRoot);
5000 pnErr->u.i -= nErr;
5001 sqlite3VdbeMemSetNull(pIn1);
5002 if( nErr==0 ){
5003 assert( z==0 );
5004 }else if( z==0 ){
5005 goto no_mem;
5006 }else{
5007 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5009 UPDATE_MAX_BLOBSIZE(pIn1);
5010 sqlite3VdbeChangeEncoding(pIn1, encoding);
5011 break;
5013 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5015 /* Opcode: RowSetAdd P1 P2 * * *
5017 ** Insert the integer value held by register P2 into a boolean index
5018 ** held in register P1.
5020 ** An assertion fails if P2 is not an integer.
5022 case OP_RowSetAdd: { /* in1, in2 */
5023 pIn1 = &aMem[pOp->p1];
5024 pIn2 = &aMem[pOp->p2];
5025 assert( (pIn2->flags & MEM_Int)!=0 );
5026 if( (pIn1->flags & MEM_RowSet)==0 ){
5027 sqlite3VdbeMemSetRowSet(pIn1);
5028 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5030 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5031 break;
5034 /* Opcode: RowSetRead P1 P2 P3 * *
5036 ** Extract the smallest value from boolean index P1 and put that value into
5037 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5038 ** unchanged and jump to instruction P2.
5040 case OP_RowSetRead: { /* jump, in1, out3 */
5041 i64 val;
5042 CHECK_FOR_INTERRUPT;
5043 pIn1 = &aMem[pOp->p1];
5044 if( (pIn1->flags & MEM_RowSet)==0
5045 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5047 /* The boolean index is empty */
5048 sqlite3VdbeMemSetNull(pIn1);
5049 pc = pOp->p2 - 1;
5050 }else{
5051 /* A value was pulled from the index */
5052 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5054 break;
5057 /* Opcode: RowSetTest P1 P2 P3 P4
5059 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5060 ** contains a RowSet object and that RowSet object contains
5061 ** the value held in P3, jump to register P2. Otherwise, insert the
5062 ** integer in P3 into the RowSet and continue on to the
5063 ** next opcode.
5065 ** The RowSet object is optimized for the case where successive sets
5066 ** of integers, where each set contains no duplicates. Each set
5067 ** of values is identified by a unique P4 value. The first set
5068 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5069 ** non-negative. For non-negative values of P4 only the lower 4
5070 ** bits are significant.
5072 ** This allows optimizations: (a) when P4==0 there is no need to test
5073 ** the rowset object for P3, as it is guaranteed not to contain it,
5074 ** (b) when P4==-1 there is no need to insert the value, as it will
5075 ** never be tested for, and (c) when a value that is part of set X is
5076 ** inserted, there is no need to search to see if the same value was
5077 ** previously inserted as part of set X (only if it was previously
5078 ** inserted as part of some other set).
5080 case OP_RowSetTest: { /* jump, in1, in3 */
5081 int iSet;
5082 int exists;
5084 pIn1 = &aMem[pOp->p1];
5085 pIn3 = &aMem[pOp->p3];
5086 iSet = pOp->p4.i;
5087 assert( pIn3->flags&MEM_Int );
5089 /* If there is anything other than a rowset object in memory cell P1,
5090 ** delete it now and initialize P1 with an empty rowset
5092 if( (pIn1->flags & MEM_RowSet)==0 ){
5093 sqlite3VdbeMemSetRowSet(pIn1);
5094 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5097 assert( pOp->p4type==P4_INT32 );
5098 assert( iSet==-1 || iSet>=0 );
5099 if( iSet ){
5100 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5101 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
5102 pIn3->u.i);
5103 if( exists ){
5104 pc = pOp->p2 - 1;
5105 break;
5108 if( iSet>=0 ){
5109 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5111 break;
5115 #ifndef SQLITE_OMIT_TRIGGER
5117 /* Opcode: Program P1 P2 P3 P4 *
5119 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5121 ** P1 contains the address of the memory cell that contains the first memory
5122 ** cell in an array of values used as arguments to the sub-program. P2
5123 ** contains the address to jump to if the sub-program throws an IGNORE
5124 ** exception using the RAISE() function. Register P3 contains the address
5125 ** of a memory cell in this (the parent) VM that is used to allocate the
5126 ** memory required by the sub-vdbe at runtime.
5128 ** P4 is a pointer to the VM containing the trigger program.
5130 case OP_Program: { /* jump */
5131 int nMem; /* Number of memory registers for sub-program */
5132 int nByte; /* Bytes of runtime space required for sub-program */
5133 Mem *pRt; /* Register to allocate runtime space */
5134 Mem *pMem; /* Used to iterate through memory cells */
5135 Mem *pEnd; /* Last memory cell in new array */
5136 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5137 SubProgram *pProgram; /* Sub-program to execute */
5138 void *t; /* Token identifying trigger */
5140 pProgram = pOp->p4.pProgram;
5141 pRt = &aMem[pOp->p3];
5142 assert( pProgram->nOp>0 );
5144 /* If the p5 flag is clear, then recursive invocation of triggers is
5145 ** disabled for backwards compatibility (p5 is set if this sub-program
5146 ** is really a trigger, not a foreign key action, and the flag set
5147 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5149 ** It is recursive invocation of triggers, at the SQL level, that is
5150 ** disabled. In some cases a single trigger may generate more than one
5151 ** SubProgram (if the trigger may be executed with more than one different
5152 ** ON CONFLICT algorithm). SubProgram structures associated with a
5153 ** single trigger all have the same value for the SubProgram.token
5154 ** variable. */
5155 if( pOp->p5 ){
5156 t = pProgram->token;
5157 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5158 if( pFrame ) break;
5161 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5162 rc = SQLITE_ERROR;
5163 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5164 break;
5167 /* Register pRt is used to store the memory required to save the state
5168 ** of the current program, and the memory required at runtime to execute
5169 ** the trigger program. If this trigger has been fired before, then pRt
5170 ** is already allocated. Otherwise, it must be initialized. */
5171 if( (pRt->flags&MEM_Frame)==0 ){
5172 /* SubProgram.nMem is set to the number of memory cells used by the
5173 ** program stored in SubProgram.aOp. As well as these, one memory
5174 ** cell is required for each cursor used by the program. Set local
5175 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5177 nMem = pProgram->nMem + pProgram->nCsr;
5178 nByte = ROUND8(sizeof(VdbeFrame))
5179 + nMem * sizeof(Mem)
5180 + pProgram->nCsr * sizeof(VdbeCursor *)
5181 + pProgram->nOnce * sizeof(u8);
5182 pFrame = sqlite3DbMallocZero(db, nByte);
5183 if( !pFrame ){
5184 goto no_mem;
5186 sqlite3VdbeMemRelease(pRt);
5187 pRt->flags = MEM_Frame;
5188 pRt->u.pFrame = pFrame;
5190 pFrame->v = p;
5191 pFrame->nChildMem = nMem;
5192 pFrame->nChildCsr = pProgram->nCsr;
5193 pFrame->pc = pc;
5194 pFrame->aMem = p->aMem;
5195 pFrame->nMem = p->nMem;
5196 pFrame->apCsr = p->apCsr;
5197 pFrame->nCursor = p->nCursor;
5198 pFrame->aOp = p->aOp;
5199 pFrame->nOp = p->nOp;
5200 pFrame->token = pProgram->token;
5201 pFrame->aOnceFlag = p->aOnceFlag;
5202 pFrame->nOnceFlag = p->nOnceFlag;
5204 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5205 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5206 pMem->flags = MEM_Invalid;
5207 pMem->db = db;
5209 }else{
5210 pFrame = pRt->u.pFrame;
5211 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5212 assert( pProgram->nCsr==pFrame->nChildCsr );
5213 assert( pc==pFrame->pc );
5216 p->nFrame++;
5217 pFrame->pParent = p->pFrame;
5218 pFrame->lastRowid = lastRowid;
5219 pFrame->nChange = p->nChange;
5220 p->nChange = 0;
5221 p->pFrame = pFrame;
5222 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5223 p->nMem = pFrame->nChildMem;
5224 p->nCursor = (u16)pFrame->nChildCsr;
5225 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5226 p->aOp = aOp = pProgram->aOp;
5227 p->nOp = pProgram->nOp;
5228 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5229 p->nOnceFlag = pProgram->nOnce;
5230 pc = -1;
5231 memset(p->aOnceFlag, 0, p->nOnceFlag);
5233 break;
5236 /* Opcode: Param P1 P2 * * *
5238 ** This opcode is only ever present in sub-programs called via the
5239 ** OP_Program instruction. Copy a value currently stored in a memory
5240 ** cell of the calling (parent) frame to cell P2 in the current frames
5241 ** address space. This is used by trigger programs to access the new.*
5242 ** and old.* values.
5244 ** The address of the cell in the parent frame is determined by adding
5245 ** the value of the P1 argument to the value of the P1 argument to the
5246 ** calling OP_Program instruction.
5248 case OP_Param: { /* out2-prerelease */
5249 VdbeFrame *pFrame;
5250 Mem *pIn;
5251 pFrame = p->pFrame;
5252 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5253 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5254 break;
5257 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5259 #ifndef SQLITE_OMIT_FOREIGN_KEY
5260 /* Opcode: FkCounter P1 P2 * * *
5262 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5263 ** If P1 is non-zero, the database constraint counter is incremented
5264 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5265 ** statement counter is incremented (immediate foreign key constraints).
5267 case OP_FkCounter: {
5268 if( pOp->p1 ){
5269 db->nDeferredCons += pOp->p2;
5270 }else{
5271 p->nFkConstraint += pOp->p2;
5273 break;
5276 /* Opcode: FkIfZero P1 P2 * * *
5278 ** This opcode tests if a foreign key constraint-counter is currently zero.
5279 ** If so, jump to instruction P2. Otherwise, fall through to the next
5280 ** instruction.
5282 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5283 ** is zero (the one that counts deferred constraint violations). If P1 is
5284 ** zero, the jump is taken if the statement constraint-counter is zero
5285 ** (immediate foreign key constraint violations).
5287 case OP_FkIfZero: { /* jump */
5288 if( pOp->p1 ){
5289 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5290 }else{
5291 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
5293 break;
5295 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5297 #ifndef SQLITE_OMIT_AUTOINCREMENT
5298 /* Opcode: MemMax P1 P2 * * *
5300 ** P1 is a register in the root frame of this VM (the root frame is
5301 ** different from the current frame if this instruction is being executed
5302 ** within a sub-program). Set the value of register P1 to the maximum of
5303 ** its current value and the value in register P2.
5305 ** This instruction throws an error if the memory cell is not initially
5306 ** an integer.
5308 case OP_MemMax: { /* in2 */
5309 Mem *pIn1;
5310 VdbeFrame *pFrame;
5311 if( p->pFrame ){
5312 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5313 pIn1 = &pFrame->aMem[pOp->p1];
5314 }else{
5315 pIn1 = &aMem[pOp->p1];
5317 assert( memIsValid(pIn1) );
5318 sqlite3VdbeMemIntegerify(pIn1);
5319 pIn2 = &aMem[pOp->p2];
5320 sqlite3VdbeMemIntegerify(pIn2);
5321 if( pIn1->u.i<pIn2->u.i){
5322 pIn1->u.i = pIn2->u.i;
5324 break;
5326 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5328 /* Opcode: IfPos P1 P2 * * *
5330 ** If the value of register P1 is 1 or greater, jump to P2.
5332 ** It is illegal to use this instruction on a register that does
5333 ** not contain an integer. An assertion fault will result if you try.
5335 case OP_IfPos: { /* jump, in1 */
5336 pIn1 = &aMem[pOp->p1];
5337 assert( pIn1->flags&MEM_Int );
5338 if( pIn1->u.i>0 ){
5339 pc = pOp->p2 - 1;
5341 break;
5344 /* Opcode: IfNeg P1 P2 * * *
5346 ** If the value of register P1 is less than zero, jump to P2.
5348 ** It is illegal to use this instruction on a register that does
5349 ** not contain an integer. An assertion fault will result if you try.
5351 case OP_IfNeg: { /* jump, in1 */
5352 pIn1 = &aMem[pOp->p1];
5353 assert( pIn1->flags&MEM_Int );
5354 if( pIn1->u.i<0 ){
5355 pc = pOp->p2 - 1;
5357 break;
5360 /* Opcode: IfZero P1 P2 P3 * *
5362 ** The register P1 must contain an integer. Add literal P3 to the
5363 ** value in register P1. If the result is exactly 0, jump to P2.
5365 ** It is illegal to use this instruction on a register that does
5366 ** not contain an integer. An assertion fault will result if you try.
5368 case OP_IfZero: { /* jump, in1 */
5369 pIn1 = &aMem[pOp->p1];
5370 assert( pIn1->flags&MEM_Int );
5371 pIn1->u.i += pOp->p3;
5372 if( pIn1->u.i==0 ){
5373 pc = pOp->p2 - 1;
5375 break;
5378 /* Opcode: AggStep * P2 P3 P4 P5
5380 ** Execute the step function for an aggregate. The
5381 ** function has P5 arguments. P4 is a pointer to the FuncDef
5382 ** structure that specifies the function. Use register
5383 ** P3 as the accumulator.
5385 ** The P5 arguments are taken from register P2 and its
5386 ** successors.
5388 case OP_AggStep: {
5389 int n;
5390 int i;
5391 Mem *pMem;
5392 Mem *pRec;
5393 sqlite3_context ctx;
5394 sqlite3_value **apVal;
5396 n = pOp->p5;
5397 assert( n>=0 );
5398 pRec = &aMem[pOp->p2];
5399 apVal = p->apArg;
5400 assert( apVal || n==0 );
5401 for(i=0; i<n; i++, pRec++){
5402 assert( memIsValid(pRec) );
5403 apVal[i] = pRec;
5404 memAboutToChange(p, pRec);
5405 sqlite3VdbeMemStoreType(pRec);
5407 ctx.pFunc = pOp->p4.pFunc;
5408 assert( pOp->p3>0 && pOp->p3<=p->nMem );
5409 ctx.pMem = pMem = &aMem[pOp->p3];
5410 pMem->n++;
5411 ctx.s.flags = MEM_Null;
5412 ctx.s.z = 0;
5413 ctx.s.zMalloc = 0;
5414 ctx.s.xDel = 0;
5415 ctx.s.db = db;
5416 ctx.isError = 0;
5417 ctx.pColl = 0;
5418 ctx.skipFlag = 0;
5419 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
5420 assert( pOp>p->aOp );
5421 assert( pOp[-1].p4type==P4_COLLSEQ );
5422 assert( pOp[-1].opcode==OP_CollSeq );
5423 ctx.pColl = pOp[-1].p4.pColl;
5425 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
5426 if( ctx.isError ){
5427 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
5428 rc = ctx.isError;
5430 if( ctx.skipFlag ){
5431 assert( pOp[-1].opcode==OP_CollSeq );
5432 i = pOp[-1].p1;
5433 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5436 sqlite3VdbeMemRelease(&ctx.s);
5438 break;
5441 /* Opcode: AggFinal P1 P2 * P4 *
5443 ** Execute the finalizer function for an aggregate. P1 is
5444 ** the memory location that is the accumulator for the aggregate.
5446 ** P2 is the number of arguments that the step function takes and
5447 ** P4 is a pointer to the FuncDef for this function. The P2
5448 ** argument is not used by this opcode. It is only there to disambiguate
5449 ** functions that can take varying numbers of arguments. The
5450 ** P4 argument is only needed for the degenerate case where
5451 ** the step function was not previously called.
5453 case OP_AggFinal: {
5454 Mem *pMem;
5455 assert( pOp->p1>0 && pOp->p1<=p->nMem );
5456 pMem = &aMem[pOp->p1];
5457 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5458 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5459 if( rc ){
5460 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
5462 sqlite3VdbeChangeEncoding(pMem, encoding);
5463 UPDATE_MAX_BLOBSIZE(pMem);
5464 if( sqlite3VdbeMemTooBig(pMem) ){
5465 goto too_big;
5467 break;
5470 #ifndef SQLITE_OMIT_WAL
5471 /* Opcode: Checkpoint P1 P2 P3 * *
5473 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5474 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5475 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5476 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5477 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5478 ** in the WAL that have been checkpointed after the checkpoint
5479 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5480 ** mem[P3+2] are initialized to -1.
5482 case OP_Checkpoint: {
5483 int i; /* Loop counter */
5484 int aRes[3]; /* Results */
5485 Mem *pMem; /* Write results here */
5487 aRes[0] = 0;
5488 aRes[1] = aRes[2] = -1;
5489 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5490 || pOp->p2==SQLITE_CHECKPOINT_FULL
5491 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5493 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5494 if( rc==SQLITE_BUSY ){
5495 rc = SQLITE_OK;
5496 aRes[0] = 1;
5498 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5499 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5501 break;
5503 #endif
5505 #ifndef SQLITE_OMIT_PRAGMA
5506 /* Opcode: JournalMode P1 P2 P3 * P5
5508 ** Change the journal mode of database P1 to P3. P3 must be one of the
5509 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5510 ** modes (delete, truncate, persist, off and memory), this is a simple
5511 ** operation. No IO is required.
5513 ** If changing into or out of WAL mode the procedure is more complicated.
5515 ** Write a string containing the final journal-mode to register P2.
5517 case OP_JournalMode: { /* out2-prerelease */
5518 Btree *pBt; /* Btree to change journal mode of */
5519 Pager *pPager; /* Pager associated with pBt */
5520 int eNew; /* New journal mode */
5521 int eOld; /* The old journal mode */
5522 #ifndef SQLITE_OMIT_WAL
5523 const char *zFilename; /* Name of database file for pPager */
5524 #endif
5526 eNew = pOp->p3;
5527 assert( eNew==PAGER_JOURNALMODE_DELETE
5528 || eNew==PAGER_JOURNALMODE_TRUNCATE
5529 || eNew==PAGER_JOURNALMODE_PERSIST
5530 || eNew==PAGER_JOURNALMODE_OFF
5531 || eNew==PAGER_JOURNALMODE_MEMORY
5532 || eNew==PAGER_JOURNALMODE_WAL
5533 || eNew==PAGER_JOURNALMODE_QUERY
5535 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5537 pBt = db->aDb[pOp->p1].pBt;
5538 pPager = sqlite3BtreePager(pBt);
5539 eOld = sqlite3PagerGetJournalMode(pPager);
5540 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5541 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5543 #ifndef SQLITE_OMIT_WAL
5544 zFilename = sqlite3PagerFilename(pPager, 1);
5546 /* Do not allow a transition to journal_mode=WAL for a database
5547 ** in temporary storage or if the VFS does not support shared memory
5549 if( eNew==PAGER_JOURNALMODE_WAL
5550 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
5551 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
5553 eNew = eOld;
5556 if( (eNew!=eOld)
5557 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5559 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5560 rc = SQLITE_ERROR;
5561 sqlite3SetString(&p->zErrMsg, db,
5562 "cannot change %s wal mode from within a transaction",
5563 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5565 break;
5566 }else{
5568 if( eOld==PAGER_JOURNALMODE_WAL ){
5569 /* If leaving WAL mode, close the log file. If successful, the call
5570 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5571 ** file. An EXCLUSIVE lock may still be held on the database file
5572 ** after a successful return.
5574 rc = sqlite3PagerCloseWal(pPager);
5575 if( rc==SQLITE_OK ){
5576 sqlite3PagerSetJournalMode(pPager, eNew);
5578 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5579 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5580 ** as an intermediate */
5581 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5584 /* Open a transaction on the database file. Regardless of the journal
5585 ** mode, this transaction always uses a rollback journal.
5587 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5588 if( rc==SQLITE_OK ){
5589 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5593 #endif /* ifndef SQLITE_OMIT_WAL */
5595 if( rc ){
5596 eNew = eOld;
5598 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5600 pOut = &aMem[pOp->p2];
5601 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5602 pOut->z = (char *)sqlite3JournalModename(eNew);
5603 pOut->n = sqlite3Strlen30(pOut->z);
5604 pOut->enc = SQLITE_UTF8;
5605 sqlite3VdbeChangeEncoding(pOut, encoding);
5606 break;
5608 #endif /* SQLITE_OMIT_PRAGMA */
5610 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5611 /* Opcode: Vacuum * * * * *
5613 ** Vacuum the entire database. This opcode will cause other virtual
5614 ** machines to be created and run. It may not be called from within
5615 ** a transaction.
5617 case OP_Vacuum: {
5618 rc = sqlite3RunVacuum(&p->zErrMsg, db);
5619 break;
5621 #endif
5623 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5624 /* Opcode: IncrVacuum P1 P2 * * *
5626 ** Perform a single step of the incremental vacuum procedure on
5627 ** the P1 database. If the vacuum has finished, jump to instruction
5628 ** P2. Otherwise, fall through to the next instruction.
5630 case OP_IncrVacuum: { /* jump */
5631 Btree *pBt;
5633 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5634 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
5635 pBt = db->aDb[pOp->p1].pBt;
5636 rc = sqlite3BtreeIncrVacuum(pBt);
5637 if( rc==SQLITE_DONE ){
5638 pc = pOp->p2 - 1;
5639 rc = SQLITE_OK;
5641 break;
5643 #endif
5645 /* Opcode: Expire P1 * * * *
5647 ** Cause precompiled statements to become expired. An expired statement
5648 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5649 ** (via sqlite3_step()).
5651 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5652 ** then only the currently executing statement is affected.
5654 case OP_Expire: {
5655 if( !pOp->p1 ){
5656 sqlite3ExpirePreparedStatements(db);
5657 }else{
5658 p->expired = 1;
5660 break;
5663 #ifndef SQLITE_OMIT_SHARED_CACHE
5664 /* Opcode: TableLock P1 P2 P3 P4 *
5666 ** Obtain a lock on a particular table. This instruction is only used when
5667 ** the shared-cache feature is enabled.
5669 ** P1 is the index of the database in sqlite3.aDb[] of the database
5670 ** on which the lock is acquired. A readlock is obtained if P3==0 or
5671 ** a write lock if P3==1.
5673 ** P2 contains the root-page of the table to lock.
5675 ** P4 contains a pointer to the name of the table being locked. This is only
5676 ** used to generate an error message if the lock cannot be obtained.
5678 case OP_TableLock: {
5679 u8 isWriteLock = (u8)pOp->p3;
5680 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5681 int p1 = pOp->p1;
5682 assert( p1>=0 && p1<db->nDb );
5683 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
5684 assert( isWriteLock==0 || isWriteLock==1 );
5685 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5686 if( (rc&0xFF)==SQLITE_LOCKED ){
5687 const char *z = pOp->p4.z;
5688 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5691 break;
5693 #endif /* SQLITE_OMIT_SHARED_CACHE */
5695 #ifndef SQLITE_OMIT_VIRTUALTABLE
5696 /* Opcode: VBegin * * * P4 *
5698 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5699 ** xBegin method for that table.
5701 ** Also, whether or not P4 is set, check that this is not being called from
5702 ** within a callback to a virtual table xSync() method. If it is, the error
5703 ** code will be set to SQLITE_LOCKED.
5705 case OP_VBegin: {
5706 VTable *pVTab;
5707 pVTab = pOp->p4.pVtab;
5708 rc = sqlite3VtabBegin(db, pVTab);
5709 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
5710 break;
5712 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5714 #ifndef SQLITE_OMIT_VIRTUALTABLE
5715 /* Opcode: VCreate P1 * * P4 *
5717 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5718 ** for that table.
5720 case OP_VCreate: {
5721 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
5722 break;
5724 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5726 #ifndef SQLITE_OMIT_VIRTUALTABLE
5727 /* Opcode: VDestroy P1 * * P4 *
5729 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5730 ** of that table.
5732 case OP_VDestroy: {
5733 p->inVtabMethod = 2;
5734 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5735 p->inVtabMethod = 0;
5736 break;
5738 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5740 #ifndef SQLITE_OMIT_VIRTUALTABLE
5741 /* Opcode: VOpen P1 * * P4 *
5743 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5744 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5745 ** table and stores that cursor in P1.
5747 case OP_VOpen: {
5748 VdbeCursor *pCur;
5749 sqlite3_vtab_cursor *pVtabCursor;
5750 sqlite3_vtab *pVtab;
5751 sqlite3_module *pModule;
5753 pCur = 0;
5754 pVtabCursor = 0;
5755 pVtab = pOp->p4.pVtab->pVtab;
5756 pModule = (sqlite3_module *)pVtab->pModule;
5757 assert(pVtab && pModule);
5758 rc = pModule->xOpen(pVtab, &pVtabCursor);
5759 importVtabErrMsg(p, pVtab);
5760 if( SQLITE_OK==rc ){
5761 /* Initialize sqlite3_vtab_cursor base class */
5762 pVtabCursor->pVtab = pVtab;
5764 /* Initialize vdbe cursor object */
5765 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
5766 if( pCur ){
5767 pCur->pVtabCursor = pVtabCursor;
5768 pCur->pModule = pVtabCursor->pVtab->pModule;
5769 }else{
5770 db->mallocFailed = 1;
5771 pModule->xClose(pVtabCursor);
5774 break;
5776 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5778 #ifndef SQLITE_OMIT_VIRTUALTABLE
5779 /* Opcode: VFilter P1 P2 P3 P4 *
5781 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5782 ** the filtered result set is empty.
5784 ** P4 is either NULL or a string that was generated by the xBestIndex
5785 ** method of the module. The interpretation of the P4 string is left
5786 ** to the module implementation.
5788 ** This opcode invokes the xFilter method on the virtual table specified
5789 ** by P1. The integer query plan parameter to xFilter is stored in register
5790 ** P3. Register P3+1 stores the argc parameter to be passed to the
5791 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5792 ** additional parameters which are passed to
5793 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5795 ** A jump is made to P2 if the result set after filtering would be empty.
5797 case OP_VFilter: { /* jump */
5798 int nArg;
5799 int iQuery;
5800 const sqlite3_module *pModule;
5801 Mem *pQuery;
5802 Mem *pArgc;
5803 sqlite3_vtab_cursor *pVtabCursor;
5804 sqlite3_vtab *pVtab;
5805 VdbeCursor *pCur;
5806 int res;
5807 int i;
5808 Mem **apArg;
5810 pQuery = &aMem[pOp->p3];
5811 pArgc = &pQuery[1];
5812 pCur = p->apCsr[pOp->p1];
5813 assert( memIsValid(pQuery) );
5814 REGISTER_TRACE(pOp->p3, pQuery);
5815 assert( pCur->pVtabCursor );
5816 pVtabCursor = pCur->pVtabCursor;
5817 pVtab = pVtabCursor->pVtab;
5818 pModule = pVtab->pModule;
5820 /* Grab the index number and argc parameters */
5821 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
5822 nArg = (int)pArgc->u.i;
5823 iQuery = (int)pQuery->u.i;
5825 /* Invoke the xFilter method */
5827 res = 0;
5828 apArg = p->apArg;
5829 for(i = 0; i<nArg; i++){
5830 apArg[i] = &pArgc[i+1];
5831 sqlite3VdbeMemStoreType(apArg[i]);
5834 p->inVtabMethod = 1;
5835 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
5836 p->inVtabMethod = 0;
5837 importVtabErrMsg(p, pVtab);
5838 if( rc==SQLITE_OK ){
5839 res = pModule->xEof(pVtabCursor);
5842 if( res ){
5843 pc = pOp->p2 - 1;
5846 pCur->nullRow = 0;
5848 break;
5850 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5852 #ifndef SQLITE_OMIT_VIRTUALTABLE
5853 /* Opcode: VColumn P1 P2 P3 * *
5855 ** Store the value of the P2-th column of
5856 ** the row of the virtual-table that the
5857 ** P1 cursor is pointing to into register P3.
5859 case OP_VColumn: {
5860 sqlite3_vtab *pVtab;
5861 const sqlite3_module *pModule;
5862 Mem *pDest;
5863 sqlite3_context sContext;
5865 VdbeCursor *pCur = p->apCsr[pOp->p1];
5866 assert( pCur->pVtabCursor );
5867 assert( pOp->p3>0 && pOp->p3<=p->nMem );
5868 pDest = &aMem[pOp->p3];
5869 memAboutToChange(p, pDest);
5870 if( pCur->nullRow ){
5871 sqlite3VdbeMemSetNull(pDest);
5872 break;
5874 pVtab = pCur->pVtabCursor->pVtab;
5875 pModule = pVtab->pModule;
5876 assert( pModule->xColumn );
5877 memset(&sContext, 0, sizeof(sContext));
5879 /* The output cell may already have a buffer allocated. Move
5880 ** the current contents to sContext.s so in case the user-function
5881 ** can use the already allocated buffer instead of allocating a
5882 ** new one.
5884 sqlite3VdbeMemMove(&sContext.s, pDest);
5885 MemSetTypeFlag(&sContext.s, MEM_Null);
5887 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
5888 importVtabErrMsg(p, pVtab);
5889 if( sContext.isError ){
5890 rc = sContext.isError;
5893 /* Copy the result of the function to the P3 register. We
5894 ** do this regardless of whether or not an error occurred to ensure any
5895 ** dynamic allocation in sContext.s (a Mem struct) is released.
5897 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
5898 sqlite3VdbeMemMove(pDest, &sContext.s);
5899 REGISTER_TRACE(pOp->p3, pDest);
5900 UPDATE_MAX_BLOBSIZE(pDest);
5902 if( sqlite3VdbeMemTooBig(pDest) ){
5903 goto too_big;
5905 break;
5907 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5909 #ifndef SQLITE_OMIT_VIRTUALTABLE
5910 /* Opcode: VNext P1 P2 * * *
5912 ** Advance virtual table P1 to the next row in its result set and
5913 ** jump to instruction P2. Or, if the virtual table has reached
5914 ** the end of its result set, then fall through to the next instruction.
5916 case OP_VNext: { /* jump */
5917 sqlite3_vtab *pVtab;
5918 const sqlite3_module *pModule;
5919 int res;
5920 VdbeCursor *pCur;
5922 res = 0;
5923 pCur = p->apCsr[pOp->p1];
5924 assert( pCur->pVtabCursor );
5925 if( pCur->nullRow ){
5926 break;
5928 pVtab = pCur->pVtabCursor->pVtab;
5929 pModule = pVtab->pModule;
5930 assert( pModule->xNext );
5932 /* Invoke the xNext() method of the module. There is no way for the
5933 ** underlying implementation to return an error if one occurs during
5934 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5935 ** data is available) and the error code returned when xColumn or
5936 ** some other method is next invoked on the save virtual table cursor.
5938 p->inVtabMethod = 1;
5939 rc = pModule->xNext(pCur->pVtabCursor);
5940 p->inVtabMethod = 0;
5941 importVtabErrMsg(p, pVtab);
5942 if( rc==SQLITE_OK ){
5943 res = pModule->xEof(pCur->pVtabCursor);
5946 if( !res ){
5947 /* If there is data, jump to P2 */
5948 pc = pOp->p2 - 1;
5950 break;
5952 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5954 #ifndef SQLITE_OMIT_VIRTUALTABLE
5955 /* Opcode: VRename P1 * * P4 *
5957 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5958 ** This opcode invokes the corresponding xRename method. The value
5959 ** in register P1 is passed as the zName argument to the xRename method.
5961 case OP_VRename: {
5962 sqlite3_vtab *pVtab;
5963 Mem *pName;
5965 pVtab = pOp->p4.pVtab->pVtab;
5966 pName = &aMem[pOp->p1];
5967 assert( pVtab->pModule->xRename );
5968 assert( memIsValid(pName) );
5969 REGISTER_TRACE(pOp->p1, pName);
5970 assert( pName->flags & MEM_Str );
5971 testcase( pName->enc==SQLITE_UTF8 );
5972 testcase( pName->enc==SQLITE_UTF16BE );
5973 testcase( pName->enc==SQLITE_UTF16LE );
5974 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
5975 if( rc==SQLITE_OK ){
5976 rc = pVtab->pModule->xRename(pVtab, pName->z);
5977 importVtabErrMsg(p, pVtab);
5978 p->expired = 0;
5980 break;
5982 #endif
5984 #ifndef SQLITE_OMIT_VIRTUALTABLE
5985 /* Opcode: VUpdate P1 P2 P3 P4 *
5987 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5988 ** This opcode invokes the corresponding xUpdate method. P2 values
5989 ** are contiguous memory cells starting at P3 to pass to the xUpdate
5990 ** invocation. The value in register (P3+P2-1) corresponds to the
5991 ** p2th element of the argv array passed to xUpdate.
5993 ** The xUpdate method will do a DELETE or an INSERT or both.
5994 ** The argv[0] element (which corresponds to memory cell P3)
5995 ** is the rowid of a row to delete. If argv[0] is NULL then no
5996 ** deletion occurs. The argv[1] element is the rowid of the new
5997 ** row. This can be NULL to have the virtual table select the new
5998 ** rowid for itself. The subsequent elements in the array are
5999 ** the values of columns in the new row.
6001 ** If P2==1 then no insert is performed. argv[0] is the rowid of
6002 ** a row to delete.
6004 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6005 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6006 ** is set to the value of the rowid for the row just inserted.
6008 case OP_VUpdate: {
6009 sqlite3_vtab *pVtab;
6010 sqlite3_module *pModule;
6011 int nArg;
6012 int i;
6013 sqlite_int64 rowid;
6014 Mem **apArg;
6015 Mem *pX;
6017 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6018 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6020 pVtab = pOp->p4.pVtab->pVtab;
6021 pModule = (sqlite3_module *)pVtab->pModule;
6022 nArg = pOp->p2;
6023 assert( pOp->p4type==P4_VTAB );
6024 if( ALWAYS(pModule->xUpdate) ){
6025 u8 vtabOnConflict = db->vtabOnConflict;
6026 apArg = p->apArg;
6027 pX = &aMem[pOp->p3];
6028 for(i=0; i<nArg; i++){
6029 assert( memIsValid(pX) );
6030 memAboutToChange(p, pX);
6031 sqlite3VdbeMemStoreType(pX);
6032 apArg[i] = pX;
6033 pX++;
6035 db->vtabOnConflict = pOp->p5;
6036 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6037 db->vtabOnConflict = vtabOnConflict;
6038 importVtabErrMsg(p, pVtab);
6039 if( rc==SQLITE_OK && pOp->p1 ){
6040 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6041 db->lastRowid = lastRowid = rowid;
6043 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6044 if( pOp->p5==OE_Ignore ){
6045 rc = SQLITE_OK;
6046 }else{
6047 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6049 }else{
6050 p->nChange++;
6053 break;
6055 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6057 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6058 /* Opcode: Pagecount P1 P2 * * *
6060 ** Write the current number of pages in database P1 to memory cell P2.
6062 case OP_Pagecount: { /* out2-prerelease */
6063 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6064 break;
6066 #endif
6069 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6070 /* Opcode: MaxPgcnt P1 P2 P3 * *
6072 ** Try to set the maximum page count for database P1 to the value in P3.
6073 ** Do not let the maximum page count fall below the current page count and
6074 ** do not change the maximum page count value if P3==0.
6076 ** Store the maximum page count after the change in register P2.
6078 case OP_MaxPgcnt: { /* out2-prerelease */
6079 unsigned int newMax;
6080 Btree *pBt;
6082 pBt = db->aDb[pOp->p1].pBt;
6083 newMax = 0;
6084 if( pOp->p3 ){
6085 newMax = sqlite3BtreeLastPage(pBt);
6086 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6088 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6089 break;
6091 #endif
6094 #ifndef SQLITE_OMIT_TRACE
6095 /* Opcode: Trace * * * P4 *
6097 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6098 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6100 case OP_Trace: {
6101 char *zTrace;
6102 char *z;
6104 if( db->xTrace
6105 && !p->doingRerun
6106 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6108 z = sqlite3VdbeExpandSql(p, zTrace);
6109 db->xTrace(db->pTraceArg, z);
6110 sqlite3DbFree(db, z);
6112 #ifdef SQLITE_DEBUG
6113 if( (db->flags & SQLITE_SqlTrace)!=0
6114 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6116 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6118 #endif /* SQLITE_DEBUG */
6119 break;
6121 #endif
6124 /* Opcode: Noop * * * * *
6126 ** Do nothing. This instruction is often useful as a jump
6127 ** destination.
6130 ** The magic Explain opcode are only inserted when explain==2 (which
6131 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6132 ** This opcode records information from the optimizer. It is the
6133 ** the same as a no-op. This opcodesnever appears in a real VM program.
6135 default: { /* This is really OP_Noop and OP_Explain */
6136 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6137 break;
6140 /*****************************************************************************
6141 ** The cases of the switch statement above this line should all be indented
6142 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6143 ** readability. From this point on down, the normal indentation rules are
6144 ** restored.
6145 *****************************************************************************/
6148 #ifdef VDBE_PROFILE
6150 u64 elapsed = sqlite3Hwtime() - start;
6151 pOp->cycles += elapsed;
6152 pOp->cnt++;
6153 #if 0
6154 fprintf(stdout, "%10llu ", elapsed);
6155 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
6156 #endif
6158 #endif
6160 /* The following code adds nothing to the actual functionality
6161 ** of the program. It is only here for testing and debugging.
6162 ** On the other hand, it does burn CPU cycles every time through
6163 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6165 #ifndef NDEBUG
6166 assert( pc>=-1 && pc<p->nOp );
6168 #ifdef SQLITE_DEBUG
6169 if( p->trace ){
6170 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
6171 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6172 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
6174 if( pOp->opflags & OPFLG_OUT3 ){
6175 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
6178 #endif /* SQLITE_DEBUG */
6179 #endif /* NDEBUG */
6180 } /* The end of the for(;;) loop the loops through opcodes */
6182 /* If we reach this point, it means that execution is finished with
6183 ** an error of some kind.
6185 vdbe_error_halt:
6186 assert( rc );
6187 p->rc = rc;
6188 testcase( sqlite3GlobalConfig.xLog!=0 );
6189 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6190 pc, p->zSql, p->zErrMsg);
6191 sqlite3VdbeHalt(p);
6192 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6193 rc = SQLITE_ERROR;
6194 if( resetSchemaOnFault>0 ){
6195 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6198 /* This is the only way out of this procedure. We have to
6199 ** release the mutexes on btrees that were acquired at the
6200 ** top. */
6201 vdbe_return:
6202 db->lastRowid = lastRowid;
6203 sqlite3VdbeLeave(p);
6204 return rc;
6206 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6207 ** is encountered.
6209 too_big:
6210 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
6211 rc = SQLITE_TOOBIG;
6212 goto vdbe_error_halt;
6214 /* Jump to here if a malloc() fails.
6216 no_mem:
6217 db->mallocFailed = 1;
6218 sqlite3SetString(&p->zErrMsg, db, "out of memory");
6219 rc = SQLITE_NOMEM;
6220 goto vdbe_error_halt;
6222 /* Jump to here for any other kind of fatal error. The "rc" variable
6223 ** should hold the error number.
6225 abort_due_to_error:
6226 assert( p->zErrMsg==0 );
6227 if( db->mallocFailed ) rc = SQLITE_NOMEM;
6228 if( rc!=SQLITE_IOERR_NOMEM ){
6229 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6231 goto vdbe_error_halt;
6233 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6234 ** flag.
6236 abort_due_to_interrupt:
6237 assert( db->u1.isInterrupted );
6238 rc = SQLITE_INTERRUPT;
6239 p->rc = rc;
6240 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6241 goto vdbe_error_halt;