Fixes default log output to console for macOS
[sqlcipher.git] / ext / misc / fuzzer.c
blob92b7c0dae0fea5b3548e6b4aea84763180a46f40
1 /*
2 ** 2011 March 24
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Code for a demonstration virtual table that generates variations
14 ** on an input word at increasing edit distances from the original.
16 ** A fuzzer virtual table is created like this:
18 ** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>);
20 ** When it is created, the new fuzzer table must be supplied with the
21 ** name of a "fuzzer data table", which must reside in the same database
22 ** file as the new fuzzer table. The fuzzer data table contains the various
23 ** transformations and their costs that the fuzzer logic uses to generate
24 ** variations.
26 ** The fuzzer data table must contain exactly four columns (more precisely,
27 ** the statement "SELECT * FROM <fuzzer_data_table>" must return records
28 ** that consist of four columns). It does not matter what the columns are
29 ** named.
31 ** Each row in the fuzzer data table represents a single character
32 ** transformation. The left most column of the row (column 0) contains an
33 ** integer value - the identifier of the ruleset to which the transformation
34 ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the
35 ** row (column 0) contains the input character or characters. The third
36 ** column contains the output character or characters. And the fourth column
37 ** contains the integer cost of making the transformation. For example:
39 ** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost);
40 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100);
41 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87);
42 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38);
43 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40);
45 ** The first row inserted into the fuzzer data table by the SQL script
46 ** above indicates that the cost of inserting a letter 'a' is 100. (All
47 ** costs are integers. We recommend that costs be scaled so that the
48 ** average cost is around 100.) The second INSERT statement creates a rule
49 ** saying that the cost of deleting a single letter 'b' is 87. The third
50 ** and fourth INSERT statements mean that the cost of transforming a
51 ** single letter "o" into the two-letter sequence "oe" is 38 and that the
52 ** cost of transforming "oe" back into "o" is 40.
54 ** The contents of the fuzzer data table are loaded into main memory when
55 ** a fuzzer table is first created, and may be internally reloaded by the
56 ** system at any subsequent time. Therefore, the fuzzer data table should be
57 ** populated before the fuzzer table is created and not modified thereafter.
58 ** If you do need to modify the contents of the fuzzer data table, it is
59 ** recommended that the associated fuzzer table be dropped, the fuzzer data
60 ** table edited, and the fuzzer table recreated within a single transaction.
61 ** Alternatively, the fuzzer data table can be edited then the database
62 ** connection can be closed and reopened.
64 ** Once it has been created, the fuzzer table can be queried as follows:
66 ** SELECT word, distance FROM f
67 ** WHERE word MATCH 'abcdefg'
68 ** AND distance<200;
70 ** This first query outputs the string "abcdefg" and all strings that
71 ** can be derived from that string by appling the specified transformations.
72 ** The strings are output together with their total transformation cost
73 ** (called "distance") and appear in order of increasing cost. No string
74 ** is output more than once. If there are multiple ways to transform the
75 ** target string into the output string then the lowest cost transform is
76 ** the one that is returned. In the example, the search is limited to
77 ** strings with a total distance of less than 200.
79 ** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or
80 ** UPDATE on a fuzzer table will throw an error.
82 ** It is important to put some kind of a limit on the fuzzer output. This
83 ** can be either in the form of a LIMIT clause at the end of the query,
84 ** or better, a "distance<NNN" constraint where NNN is some number. The
85 ** running time and memory requirement is exponential in the value of NNN
86 ** so you want to make sure that NNN is not too big. A value of NNN that
87 ** is about twice the average transformation cost seems to give good results.
89 ** The fuzzer table can be useful for tasks such as spelling correction.
90 ** Suppose there is a second table vocabulary(w) where the w column contains
91 ** all correctly spelled words. Let $word be a word you want to look up.
93 ** SELECT vocabulary.w FROM f, vocabulary
94 ** WHERE f.word MATCH $word
95 ** AND f.distance<=200
96 ** AND f.word=vocabulary.w
97 ** LIMIT 20
99 ** The query above gives the 20 closest words to the $word being tested.
100 ** (Note that for good performance, the vocubulary.w column should be
101 ** indexed.)
103 ** A similar query can be used to find all words in the dictionary that
104 ** begin with some prefix $prefix:
106 ** SELECT vocabulary.w FROM f, vocabulary
107 ** WHERE f.word MATCH $prefix
108 ** AND f.distance<=200
109 ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF')
110 ** LIMIT 50
112 ** This last query will show up to 50 words out of the vocabulary that
113 ** match or nearly match the $prefix.
115 ** MULTIPLE RULE SETS
117 ** Normally, the "ruleset" value associated with all character transformations
118 ** in the fuzzer data table is zero. However, if required, the fuzzer table
119 ** allows multiple rulesets to be defined. Each query uses only a single
120 ** ruleset. This allows, for example, a single fuzzer table to support
121 ** multiple languages.
123 ** By default, only the rules from ruleset 0 are used. To specify an
124 ** alternative ruleset, a "ruleset = ?" expression must be added to the
125 ** WHERE clause of a SELECT, where ? is the identifier of the desired
126 ** ruleset. For example:
128 ** SELECT vocabulary.w FROM f, vocabulary
129 ** WHERE f.word MATCH $word
130 ** AND f.distance<=200
131 ** AND f.word=vocabulary.w
132 ** AND f.ruleset=1 -- Specify the ruleset to use here
133 ** LIMIT 20
135 ** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset
136 ** 0 is used.
138 ** LIMITS
140 ** The maximum ruleset number is 2147483647. The maximum length of either
141 ** of the strings in the second or third column of the fuzzer data table
142 ** is 50 bytes. The maximum cost on a rule is 1000.
144 #include "sqlite3ext.h"
145 SQLITE_EXTENSION_INIT1
147 /* If SQLITE_DEBUG is not defined, disable assert statements. */
148 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
149 # define NDEBUG
150 #endif
152 #include <stdlib.h>
153 #include <string.h>
154 #include <assert.h>
155 #include <stdio.h>
157 #ifndef SQLITE_OMIT_VIRTUALTABLE
160 ** Forward declaration of objects used by this implementation
162 typedef struct fuzzer_vtab fuzzer_vtab;
163 typedef struct fuzzer_cursor fuzzer_cursor;
164 typedef struct fuzzer_rule fuzzer_rule;
165 typedef struct fuzzer_seen fuzzer_seen;
166 typedef struct fuzzer_stem fuzzer_stem;
169 ** Various types.
171 ** fuzzer_cost is the "cost" of an edit operation.
173 ** fuzzer_len is the length of a matching string.
175 ** fuzzer_ruleid is an ruleset identifier.
177 typedef int fuzzer_cost;
178 typedef signed char fuzzer_len;
179 typedef int fuzzer_ruleid;
182 ** Limits
184 #define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */
185 #define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */
186 #define FUZZER_MX_COST 1000 /* Maximum single-rule cost */
187 #define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */
191 ** Each transformation rule is stored as an instance of this object.
192 ** All rules are kept on a linked list sorted by rCost.
194 struct fuzzer_rule {
195 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */
196 char *zFrom; /* Transform from */
197 fuzzer_cost rCost; /* Cost of this transformation */
198 fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */
199 fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */
200 char zTo[4]; /* Transform to (extra space appended) */
204 ** A stem object is used to generate variants. It is also used to record
205 ** previously generated outputs.
207 ** Every stem is added to a hash table as it is output. Generation of
208 ** duplicate stems is suppressed.
210 ** Active stems (those that might generate new outputs) are kepts on a linked
211 ** list sorted by increasing cost. The cost is the sum of rBaseCost and
212 ** pRule->rCost.
214 struct fuzzer_stem {
215 char *zBasis; /* Word being fuzzed */
216 const fuzzer_rule *pRule; /* Current rule to apply */
217 fuzzer_stem *pNext; /* Next stem in rCost order */
218 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */
219 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */
220 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */
221 fuzzer_len nBasis; /* Length of the zBasis string */
222 fuzzer_len n; /* Apply pRule at this character offset */
226 ** A fuzzer virtual-table object
228 struct fuzzer_vtab {
229 sqlite3_vtab base; /* Base class - must be first */
230 char *zClassName; /* Name of this class. Default: "fuzzer" */
231 fuzzer_rule *pRule; /* All active rules in this fuzzer */
232 int nCursor; /* Number of active cursors */
235 #define FUZZER_HASH 4001 /* Hash table size */
236 #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */
238 /* A fuzzer cursor object */
239 struct fuzzer_cursor {
240 sqlite3_vtab_cursor base; /* Base class - must be first */
241 sqlite3_int64 iRowid; /* The rowid of the current word */
242 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */
243 fuzzer_cost rLimit; /* Maximum cost of any term */
244 fuzzer_stem *pStem; /* Stem with smallest rCostX */
245 fuzzer_stem *pDone; /* Stems already processed to completion */
246 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */
247 int mxQueue; /* Largest used index in aQueue[] */
248 char *zBuf; /* Temporary use buffer */
249 int nBuf; /* Bytes allocated for zBuf */
250 int nStem; /* Number of stems allocated */
251 int iRuleset; /* Only process rules from this ruleset */
252 fuzzer_rule nullRule; /* Null rule used first */
253 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */
257 ** The two input rule lists are both sorted in order of increasing
258 ** cost. Merge them together into a single list, sorted by cost, and
259 ** return a pointer to the head of that list.
261 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){
262 fuzzer_rule head;
263 fuzzer_rule *pTail;
265 pTail = &head;
266 while( pA && pB ){
267 if( pA->rCost<=pB->rCost ){
268 pTail->pNext = pA;
269 pTail = pA;
270 pA = pA->pNext;
271 }else{
272 pTail->pNext = pB;
273 pTail = pB;
274 pB = pB->pNext;
277 if( pA==0 ){
278 pTail->pNext = pB;
279 }else{
280 pTail->pNext = pA;
282 return head.pNext;
286 ** Statement pStmt currently points to a row in the fuzzer data table. This
287 ** function allocates and populates a fuzzer_rule structure according to
288 ** the content of the row.
290 ** If successful, *ppRule is set to point to the new object and SQLITE_OK
291 ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point
292 ** to an error message and an SQLite error code returned.
294 static int fuzzerLoadOneRule(
295 fuzzer_vtab *p, /* Fuzzer virtual table handle */
296 sqlite3_stmt *pStmt, /* Base rule on statements current row */
297 fuzzer_rule **ppRule, /* OUT: New rule object */
298 char **pzErr /* OUT: Error message */
300 sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0);
301 const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1);
302 const char *zTo = (const char *)sqlite3_column_text(pStmt, 2);
303 int nCost = sqlite3_column_int(pStmt, 3);
305 int rc = SQLITE_OK; /* Return code */
306 int nFrom; /* Size of string zFrom, in bytes */
307 int nTo; /* Size of string zTo, in bytes */
308 fuzzer_rule *pRule = 0; /* New rule object to return */
310 if( zFrom==0 ) zFrom = "";
311 if( zTo==0 ) zTo = "";
312 nFrom = (int)strlen(zFrom);
313 nTo = (int)strlen(zTo);
315 /* Silently ignore null transformations */
316 if( strcmp(zFrom, zTo)==0 ){
317 *ppRule = 0;
318 return SQLITE_OK;
321 if( nCost<=0 || nCost>FUZZER_MX_COST ){
322 *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d",
323 p->zClassName, FUZZER_MX_COST
325 rc = SQLITE_ERROR;
326 }else
327 if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){
328 *pzErr = sqlite3_mprintf("%s: maximum string length is %d",
329 p->zClassName, FUZZER_MX_LENGTH
331 rc = SQLITE_ERROR;
332 }else
333 if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){
334 *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d",
335 p->zClassName, FUZZER_MX_RULEID
337 rc = SQLITE_ERROR;
338 }else{
340 pRule = sqlite3_malloc64( sizeof(*pRule) + nFrom + nTo );
341 if( pRule==0 ){
342 rc = SQLITE_NOMEM;
343 }else{
344 memset(pRule, 0, sizeof(*pRule));
345 pRule->zFrom = pRule->zTo;
346 pRule->zFrom += nTo + 1;
347 pRule->nFrom = (fuzzer_len)nFrom;
348 memcpy(pRule->zFrom, zFrom, nFrom+1);
349 memcpy(pRule->zTo, zTo, nTo+1);
350 pRule->nTo = (fuzzer_len)nTo;
351 pRule->rCost = nCost;
352 pRule->iRuleset = (int)iRuleset;
356 *ppRule = pRule;
357 return rc;
361 ** Load the content of the fuzzer data table into memory.
363 static int fuzzerLoadRules(
364 sqlite3 *db, /* Database handle */
365 fuzzer_vtab *p, /* Virtual fuzzer table to configure */
366 const char *zDb, /* Database containing rules data */
367 const char *zData, /* Table containing rules data */
368 char **pzErr /* OUT: Error message */
370 int rc = SQLITE_OK; /* Return code */
371 char *zSql; /* SELECT used to read from rules table */
372 fuzzer_rule *pHead = 0;
374 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData);
375 if( zSql==0 ){
376 rc = SQLITE_NOMEM;
377 }else{
378 int rc2; /* finalize() return code */
379 sqlite3_stmt *pStmt = 0;
380 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
381 if( rc!=SQLITE_OK ){
382 *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db));
383 }else if( sqlite3_column_count(pStmt)!=4 ){
384 *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4",
385 p->zClassName, zData, sqlite3_column_count(pStmt)
387 rc = SQLITE_ERROR;
388 }else{
389 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
390 fuzzer_rule *pRule = 0;
391 rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr);
392 if( pRule ){
393 pRule->pNext = pHead;
394 pHead = pRule;
398 rc2 = sqlite3_finalize(pStmt);
399 if( rc==SQLITE_OK ) rc = rc2;
401 sqlite3_free(zSql);
403 /* All rules are now in a singly linked list starting at pHead. This
404 ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to
405 ** point to the head of the sorted list.
407 if( rc==SQLITE_OK ){
408 unsigned int i;
409 fuzzer_rule *pX;
410 fuzzer_rule *a[15];
411 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0;
412 while( (pX = pHead)!=0 ){
413 pHead = pX->pNext;
414 pX->pNext = 0;
415 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){
416 pX = fuzzerMergeRules(a[i], pX);
417 a[i] = 0;
419 a[i] = fuzzerMergeRules(a[i], pX);
421 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){
422 pX = fuzzerMergeRules(a[i], pX);
424 p->pRule = fuzzerMergeRules(p->pRule, pX);
425 }else{
426 /* An error has occurred. Setting p->pRule to point to the head of the
427 ** allocated list ensures that the list will be cleaned up in this case.
429 assert( p->pRule==0 );
430 p->pRule = pHead;
433 return rc;
437 ** This function converts an SQL quoted string into an unquoted string
438 ** and returns a pointer to a buffer allocated using sqlite3_malloc()
439 ** containing the result. The caller should eventually free this buffer
440 ** using sqlite3_free.
442 ** Examples:
444 ** "abc" becomes abc
445 ** 'xyz' becomes xyz
446 ** [pqr] becomes pqr
447 ** `mno` becomes mno
449 static char *fuzzerDequote(const char *zIn){
450 sqlite3_int64 nIn; /* Size of input string, in bytes */
451 char *zOut; /* Output (dequoted) string */
453 nIn = strlen(zIn);
454 zOut = sqlite3_malloc64(nIn+1);
455 if( zOut ){
456 char q = zIn[0]; /* Quote character (if any ) */
458 if( q!='[' && q!= '\'' && q!='"' && q!='`' ){
459 memcpy(zOut, zIn, (size_t)(nIn+1));
460 }else{
461 int iOut = 0; /* Index of next byte to write to output */
462 int iIn; /* Index of next byte to read from input */
464 if( q=='[' ) q = ']';
465 for(iIn=1; iIn<nIn; iIn++){
466 if( zIn[iIn]==q ) iIn++;
467 zOut[iOut++] = zIn[iIn];
470 assert( (int)strlen(zOut)<=nIn );
472 return zOut;
476 ** xDisconnect/xDestroy method for the fuzzer module.
478 static int fuzzerDisconnect(sqlite3_vtab *pVtab){
479 fuzzer_vtab *p = (fuzzer_vtab*)pVtab;
480 assert( p->nCursor==0 );
481 while( p->pRule ){
482 fuzzer_rule *pRule = p->pRule;
483 p->pRule = pRule->pNext;
484 sqlite3_free(pRule);
486 sqlite3_free(p);
487 return SQLITE_OK;
491 ** xConnect/xCreate method for the fuzzer module. Arguments are:
493 ** argv[0] -> module name ("fuzzer")
494 ** argv[1] -> database name
495 ** argv[2] -> table name
496 ** argv[3] -> fuzzer rule table name
498 static int fuzzerConnect(
499 sqlite3 *db,
500 void *pAux,
501 int argc, const char *const*argv,
502 sqlite3_vtab **ppVtab,
503 char **pzErr
505 int rc = SQLITE_OK; /* Return code */
506 fuzzer_vtab *pNew = 0; /* New virtual table */
507 const char *zModule = argv[0];
508 const char *zDb = argv[1];
510 if( argc!=4 ){
511 *pzErr = sqlite3_mprintf(
512 "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule
514 rc = SQLITE_ERROR;
515 }else{
516 sqlite3_int64 nModule; /* Length of zModule, in bytes */
518 nModule = strlen(zModule);
519 pNew = sqlite3_malloc64( sizeof(*pNew) + nModule + 1);
520 if( pNew==0 ){
521 rc = SQLITE_NOMEM;
522 }else{
523 char *zTab; /* Dequoted name of fuzzer data table */
525 memset(pNew, 0, sizeof(*pNew));
526 pNew->zClassName = (char*)&pNew[1];
527 memcpy(pNew->zClassName, zModule, (size_t)(nModule+1));
529 zTab = fuzzerDequote(argv[3]);
530 if( zTab==0 ){
531 rc = SQLITE_NOMEM;
532 }else{
533 rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr);
534 sqlite3_free(zTab);
537 if( rc==SQLITE_OK ){
538 rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)");
540 if( rc!=SQLITE_OK ){
541 fuzzerDisconnect((sqlite3_vtab *)pNew);
542 pNew = 0;
543 }else{
544 sqlite3_vtab_config(db, SQLITE_VTAB_INNOCUOUS);
549 *ppVtab = (sqlite3_vtab *)pNew;
550 return rc;
554 ** Open a new fuzzer cursor.
556 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
557 fuzzer_vtab *p = (fuzzer_vtab*)pVTab;
558 fuzzer_cursor *pCur;
559 pCur = sqlite3_malloc( sizeof(*pCur) );
560 if( pCur==0 ) return SQLITE_NOMEM;
561 memset(pCur, 0, sizeof(*pCur));
562 pCur->pVtab = p;
563 *ppCursor = &pCur->base;
564 p->nCursor++;
565 return SQLITE_OK;
569 ** Free all stems in a list.
571 static void fuzzerClearStemList(fuzzer_stem *pStem){
572 while( pStem ){
573 fuzzer_stem *pNext = pStem->pNext;
574 sqlite3_free(pStem);
575 pStem = pNext;
580 ** Free up all the memory allocated by a cursor. Set it rLimit to 0
581 ** to indicate that it is at EOF.
583 static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){
584 int i;
585 fuzzerClearStemList(pCur->pStem);
586 fuzzerClearStemList(pCur->pDone);
587 for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]);
588 pCur->rLimit = (fuzzer_cost)0;
589 if( clearHash && pCur->nStem ){
590 pCur->mxQueue = 0;
591 pCur->pStem = 0;
592 pCur->pDone = 0;
593 memset(pCur->aQueue, 0, sizeof(pCur->aQueue));
594 memset(pCur->apHash, 0, sizeof(pCur->apHash));
596 pCur->nStem = 0;
600 ** Close a fuzzer cursor.
602 static int fuzzerClose(sqlite3_vtab_cursor *cur){
603 fuzzer_cursor *pCur = (fuzzer_cursor *)cur;
604 fuzzerClearCursor(pCur, 0);
605 sqlite3_free(pCur->zBuf);
606 pCur->pVtab->nCursor--;
607 sqlite3_free(pCur);
608 return SQLITE_OK;
612 ** Compute the current output term for a fuzzer_stem.
614 static int fuzzerRender(
615 fuzzer_stem *pStem, /* The stem to be rendered */
616 char **pzBuf, /* Write results into this buffer. realloc if needed */
617 int *pnBuf /* Size of the buffer */
619 const fuzzer_rule *pRule = pStem->pRule;
620 int n; /* Size of output term without nul-term */
621 char *z; /* Buffer to assemble output term in */
623 n = pStem->nBasis + pRule->nTo - pRule->nFrom;
624 if( (*pnBuf)<n+1 ){
625 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100);
626 if( (*pzBuf)==0 ) return SQLITE_NOMEM;
627 (*pnBuf) = n+100;
629 n = pStem->n;
630 z = *pzBuf;
631 if( n<0 ){
632 memcpy(z, pStem->zBasis, pStem->nBasis+1);
633 }else{
634 memcpy(z, pStem->zBasis, n);
635 memcpy(&z[n], pRule->zTo, pRule->nTo);
636 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom],
637 pStem->nBasis-n-pRule->nFrom+1);
640 assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 );
641 return SQLITE_OK;
645 ** Compute a hash on zBasis.
647 static unsigned int fuzzerHash(const char *z){
648 unsigned int h = 0;
649 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); }
650 return h % FUZZER_HASH;
654 ** Current cost of a stem
656 static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){
657 return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost;
660 #if 0
662 ** Print a description of a fuzzer_stem on stderr.
664 static void fuzzerStemPrint(
665 const char *zPrefix,
666 fuzzer_stem *pStem,
667 const char *zSuffix
669 if( pStem->n<0 ){
670 fprintf(stderr, "%s[%s](%d)-->self%s",
671 zPrefix,
672 pStem->zBasis, pStem->rBaseCost,
673 zSuffix
675 }else{
676 char *zBuf = 0;
677 int nBuf = 0;
678 if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return;
679 fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s",
680 zPrefix,
681 pStem->zBasis, pStem->rBaseCost, zBuf, pStem->,
682 zSuffix
684 sqlite3_free(zBuf);
687 #endif
690 ** Return 1 if the string to which the cursor is point has already
691 ** been emitted. Return 0 if not. Return -1 on a memory allocation
692 ** failures.
694 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){
695 unsigned int h;
696 fuzzer_stem *pLookup;
698 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
699 return -1;
701 h = fuzzerHash(pCur->zBuf);
702 pLookup = pCur->apHash[h];
703 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){
704 pLookup = pLookup->pHash;
706 return pLookup!=0;
710 ** If argument pRule is NULL, this function returns false.
712 ** Otherwise, it returns true if rule pRule should be skipped. A rule
713 ** should be skipped if it does not belong to rule-set iRuleset, or if
714 ** applying it to stem pStem would create a string longer than
715 ** FUZZER_MX_OUTPUT_LENGTH bytes.
717 static int fuzzerSkipRule(
718 const fuzzer_rule *pRule, /* Determine whether or not to skip this */
719 fuzzer_stem *pStem, /* Stem rule may be applied to */
720 int iRuleset /* Rule-set used by the current query */
722 return pRule && (
723 (pRule->iRuleset!=iRuleset)
724 || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH
729 ** Advance a fuzzer_stem to its next value. Return 0 if there are
730 ** no more values that can be generated by this fuzzer_stem. Return
731 ** -1 on a memory allocation failure.
733 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){
734 const fuzzer_rule *pRule;
735 while( (pRule = pStem->pRule)!=0 ){
736 assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset );
737 while( pStem->n < pStem->nBasis - pRule->nFrom ){
738 pStem->n++;
739 if( pRule->nFrom==0
740 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0
742 /* Found a rewrite case. Make sure it is not a duplicate */
743 int rc = fuzzerSeen(pCur, pStem);
744 if( rc<0 ) return -1;
745 if( rc==0 ){
746 fuzzerCost(pStem);
747 return 1;
751 pStem->n = -1;
753 pRule = pRule->pNext;
754 }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) );
755 pStem->pRule = pRule;
756 if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0;
758 return 0;
762 ** The two input stem lists are both sorted in order of increasing
763 ** rCostX. Merge them together into a single list, sorted by rCostX, and
764 ** return a pointer to the head of that new list.
766 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){
767 fuzzer_stem head;
768 fuzzer_stem *pTail;
770 pTail = &head;
771 while( pA && pB ){
772 if( pA->rCostX<=pB->rCostX ){
773 pTail->pNext = pA;
774 pTail = pA;
775 pA = pA->pNext;
776 }else{
777 pTail->pNext = pB;
778 pTail = pB;
779 pB = pB->pNext;
782 if( pA==0 ){
783 pTail->pNext = pB;
784 }else{
785 pTail->pNext = pA;
787 return head.pNext;
791 ** Load pCur->pStem with the lowest-cost stem. Return a pointer
792 ** to the lowest-cost stem.
794 static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){
795 fuzzer_stem *pBest, *pX;
796 int iBest;
797 int i;
799 if( pCur->pStem==0 ){
800 iBest = -1;
801 pBest = 0;
802 for(i=0; i<=pCur->mxQueue; i++){
803 pX = pCur->aQueue[i];
804 if( pX==0 ) continue;
805 if( pBest==0 || pBest->rCostX>pX->rCostX ){
806 pBest = pX;
807 iBest = i;
810 if( pBest ){
811 pCur->aQueue[iBest] = pBest->pNext;
812 pBest->pNext = 0;
813 pCur->pStem = pBest;
816 return pCur->pStem;
820 ** Insert pNew into queue of pending stems. Then find the stem
821 ** with the lowest rCostX and move it into pCur->pStem.
822 ** list. The insert is done such the pNew is in the correct order
823 ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost.
825 static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){
826 fuzzer_stem *pX;
827 int i;
829 /* If pCur->pStem exists and is greater than pNew, then make pNew
830 ** the new pCur->pStem and insert the old pCur->pStem instead.
832 if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){
833 pNew->pNext = 0;
834 pCur->pStem = pNew;
835 pNew = pX;
838 /* Insert the new value */
839 pNew->pNext = 0;
840 pX = pNew;
841 for(i=0; i<=pCur->mxQueue; i++){
842 if( pCur->aQueue[i] ){
843 pX = fuzzerMergeStems(pX, pCur->aQueue[i]);
844 pCur->aQueue[i] = 0;
845 }else{
846 pCur->aQueue[i] = pX;
847 break;
850 if( i>pCur->mxQueue ){
851 if( i<FUZZER_NQUEUE ){
852 pCur->mxQueue = i;
853 pCur->aQueue[i] = pX;
854 }else{
855 assert( pCur->mxQueue==FUZZER_NQUEUE-1 );
856 pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]);
857 pCur->aQueue[FUZZER_NQUEUE-1] = pX;
861 return fuzzerLowestCostStem(pCur);
865 ** Allocate a new fuzzer_stem. Add it to the hash table but do not
866 ** link it into either the pCur->pStem or pCur->pDone lists.
868 static fuzzer_stem *fuzzerNewStem(
869 fuzzer_cursor *pCur,
870 const char *zWord,
871 fuzzer_cost rBaseCost
873 fuzzer_stem *pNew;
874 fuzzer_rule *pRule;
875 unsigned int h;
877 pNew = sqlite3_malloc64( sizeof(*pNew) + strlen(zWord) + 1 );
878 if( pNew==0 ) return 0;
879 memset(pNew, 0, sizeof(*pNew));
880 pNew->zBasis = (char*)&pNew[1];
881 pNew->nBasis = (fuzzer_len)strlen(zWord);
882 memcpy(pNew->zBasis, zWord, pNew->nBasis+1);
883 pRule = pCur->pVtab->pRule;
884 while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){
885 pRule = pRule->pNext;
887 pNew->pRule = pRule;
888 pNew->n = -1;
889 pNew->rBaseCost = pNew->rCostX = rBaseCost;
890 h = fuzzerHash(pNew->zBasis);
891 pNew->pHash = pCur->apHash[h];
892 pCur->apHash[h] = pNew;
893 pCur->nStem++;
894 return pNew;
899 ** Advance a cursor to its next row of output
901 static int fuzzerNext(sqlite3_vtab_cursor *cur){
902 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
903 int rc;
904 fuzzer_stem *pStem, *pNew;
906 pCur->iRowid++;
908 /* Use the element the cursor is currently point to to create
909 ** a new stem and insert the new stem into the priority queue.
911 pStem = pCur->pStem;
912 if( pStem->rCostX>0 ){
913 rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf);
914 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM;
915 pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX);
916 if( pNew ){
917 if( fuzzerAdvance(pCur, pNew)==0 ){
918 pNew->pNext = pCur->pDone;
919 pCur->pDone = pNew;
920 }else{
921 if( fuzzerInsert(pCur, pNew)==pNew ){
922 return SQLITE_OK;
925 }else{
926 return SQLITE_NOMEM;
930 /* Adjust the priority queue so that the first element of the
931 ** stem list is the next lowest cost word.
933 while( (pStem = pCur->pStem)!=0 ){
934 int res = fuzzerAdvance(pCur, pStem);
935 if( res<0 ){
936 return SQLITE_NOMEM;
937 }else if( res>0 ){
938 pCur->pStem = 0;
939 pStem = fuzzerInsert(pCur, pStem);
940 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){
941 if( rc<0 ) return SQLITE_NOMEM;
942 continue;
944 return SQLITE_OK; /* New word found */
946 pCur->pStem = 0;
947 pStem->pNext = pCur->pDone;
948 pCur->pDone = pStem;
949 if( fuzzerLowestCostStem(pCur) ){
950 rc = fuzzerSeen(pCur, pCur->pStem);
951 if( rc<0 ) return SQLITE_NOMEM;
952 if( rc==0 ){
953 return SQLITE_OK;
958 /* Reach this point only if queue has been exhausted and there is
959 ** nothing left to be output. */
960 pCur->rLimit = (fuzzer_cost)0;
961 return SQLITE_OK;
965 ** Called to "rewind" a cursor back to the beginning so that
966 ** it starts its output over again. Always called at least once
967 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call.
969 static int fuzzerFilter(
970 sqlite3_vtab_cursor *pVtabCursor,
971 int idxNum, const char *idxStr,
972 int argc, sqlite3_value **argv
974 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor;
975 const char *zWord = "";
976 fuzzer_stem *pStem;
977 int idx;
979 fuzzerClearCursor(pCur, 1);
980 pCur->rLimit = 2147483647;
981 idx = 0;
982 if( idxNum & 1 ){
983 zWord = (const char*)sqlite3_value_text(argv[0]);
984 idx++;
986 if( idxNum & 2 ){
987 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]);
988 idx++;
990 if( idxNum & 4 ){
991 pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]);
992 idx++;
994 pCur->nullRule.pNext = pCur->pVtab->pRule;
995 pCur->nullRule.rCost = 0;
996 pCur->nullRule.nFrom = 0;
997 pCur->nullRule.nTo = 0;
998 pCur->nullRule.zFrom = "";
999 pCur->iRowid = 1;
1000 assert( pCur->pStem==0 );
1002 /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this
1003 ** query will return zero rows. */
1004 if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){
1005 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0);
1006 if( pStem==0 ) return SQLITE_NOMEM;
1007 pStem->pRule = &pCur->nullRule;
1008 pStem->n = pStem->nBasis;
1009 }else{
1010 pCur->rLimit = 0;
1013 return SQLITE_OK;
1017 ** Only the word and distance columns have values. All other columns
1018 ** return NULL
1020 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
1021 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1022 if( i==0 ){
1023 /* the "word" column */
1024 if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){
1025 return SQLITE_NOMEM;
1027 sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT);
1028 }else if( i==1 ){
1029 /* the "distance" column */
1030 sqlite3_result_int(ctx, pCur->pStem->rCostX);
1031 }else{
1032 /* All other columns are NULL */
1033 sqlite3_result_null(ctx);
1035 return SQLITE_OK;
1039 ** The rowid.
1041 static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){
1042 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1043 *pRowid = pCur->iRowid;
1044 return SQLITE_OK;
1048 ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal
1049 ** that the cursor has nothing more to output.
1051 static int fuzzerEof(sqlite3_vtab_cursor *cur){
1052 fuzzer_cursor *pCur = (fuzzer_cursor*)cur;
1053 return pCur->rLimit<=(fuzzer_cost)0;
1057 ** Search for terms of these forms:
1059 ** (A) word MATCH $str
1060 ** (B1) distance < $value
1061 ** (B2) distance <= $value
1062 ** (C) ruleid == $ruleid
1064 ** The distance< and distance<= are both treated as distance<=.
1065 ** The query plan number is a bit vector:
1067 ** bit 1: Term of the form (A) found
1068 ** bit 2: Term like (B1) or (B2) found
1069 ** bit 3: Term like (C) found
1071 ** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set
1072 ** then $value is in filter.argv[0] if bit-1 is clear and is in
1073 ** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is
1074 ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in
1075 ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in
1076 ** filter.argv[2] if both bit-1 and bit-2 are set.
1078 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
1079 int iPlan = 0;
1080 int iDistTerm = -1;
1081 int iRulesetTerm = -1;
1082 int i;
1083 int seenMatch = 0;
1084 const struct sqlite3_index_constraint *pConstraint;
1085 double rCost = 1e12;
1087 pConstraint = pIdxInfo->aConstraint;
1088 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){
1089 if( pConstraint->iColumn==0
1090 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){
1091 seenMatch = 1;
1093 if( pConstraint->usable==0 ) continue;
1094 if( (iPlan & 1)==0
1095 && pConstraint->iColumn==0
1096 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH
1098 iPlan |= 1;
1099 pIdxInfo->aConstraintUsage[i].argvIndex = 1;
1100 pIdxInfo->aConstraintUsage[i].omit = 1;
1101 rCost /= 1e6;
1103 if( (iPlan & 2)==0
1104 && pConstraint->iColumn==1
1105 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT
1106 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE)
1108 iPlan |= 2;
1109 iDistTerm = i;
1110 rCost /= 10.0;
1112 if( (iPlan & 4)==0
1113 && pConstraint->iColumn==2
1114 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ
1116 iPlan |= 4;
1117 pIdxInfo->aConstraintUsage[i].omit = 1;
1118 iRulesetTerm = i;
1119 rCost /= 10.0;
1122 if( iPlan & 2 ){
1123 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0);
1125 if( iPlan & 4 ){
1126 int idx = 1;
1127 if( iPlan & 1 ) idx++;
1128 if( iPlan & 2 ) idx++;
1129 pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx;
1131 pIdxInfo->idxNum = iPlan;
1132 if( pIdxInfo->nOrderBy==1
1133 && pIdxInfo->aOrderBy[0].iColumn==1
1134 && pIdxInfo->aOrderBy[0].desc==0
1136 pIdxInfo->orderByConsumed = 1;
1138 if( seenMatch && (iPlan&1)==0 ) rCost = 1e99;
1139 pIdxInfo->estimatedCost = rCost;
1141 return SQLITE_OK;
1145 ** A virtual table module that implements the "fuzzer".
1147 static sqlite3_module fuzzerModule = {
1148 0, /* iVersion */
1149 fuzzerConnect,
1150 fuzzerConnect,
1151 fuzzerBestIndex,
1152 fuzzerDisconnect,
1153 fuzzerDisconnect,
1154 fuzzerOpen, /* xOpen - open a cursor */
1155 fuzzerClose, /* xClose - close a cursor */
1156 fuzzerFilter, /* xFilter - configure scan constraints */
1157 fuzzerNext, /* xNext - advance a cursor */
1158 fuzzerEof, /* xEof - check for end of scan */
1159 fuzzerColumn, /* xColumn - read data */
1160 fuzzerRowid, /* xRowid - read data */
1161 0, /* xUpdate */
1162 0, /* xBegin */
1163 0, /* xSync */
1164 0, /* xCommit */
1165 0, /* xRollback */
1166 0, /* xFindMethod */
1167 0, /* xRename */
1168 0, /* xSavepoint */
1169 0, /* xRelease */
1170 0, /* xRollbackTo */
1171 0, /* xShadowName */
1172 0 /* xIntegrity */
1175 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1178 #ifdef _WIN32
1179 __declspec(dllexport)
1180 #endif
1181 int sqlite3_fuzzer_init(
1182 sqlite3 *db,
1183 char **pzErrMsg,
1184 const sqlite3_api_routines *pApi
1186 int rc = SQLITE_OK;
1187 SQLITE_EXTENSION_INIT2(pApi);
1188 #ifndef SQLITE_OMIT_VIRTUALTABLE
1189 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0);
1190 #endif
1191 return rc;