4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
36 # define memAboutToChange(P,M)
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
47 int sqlite3_search_count
= 0;
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
59 int sqlite3_interrupt_count
= 0;
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
70 int sqlite3_sort_count
= 0;
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
81 int sqlite3_max_blobsize
= 0;
82 static void updateMaxBlobsize(Mem
*p
){
83 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
84 sqlite3_max_blobsize
= p
->n
;
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
107 int sqlite3_found_count
= 0;
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
117 # define UPDATE_MAX_BLOBSIZE(P)
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc
, Op
*pOp
, Vdbe
*v
){
140 if( n
==LARGEST_UINT64
) abort(); /* So that n is used, preventing a warning */
145 ** Invoke the VDBE coverage callback, if that callback is defined. This
146 ** feature is used for test suite validation only and does not appear an
147 ** production builds.
149 ** M is the type of branch. I is the direction taken for this instance of
152 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
153 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
154 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
156 ** In other words, if M is 2, then I is either 0 (for fall-through) or
157 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
158 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
159 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
160 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
161 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
162 ** depending on if the operands are less than, equal, or greater than.
164 ** iSrcLine is the source code line (from the __LINE__ macro) that
165 ** generated the VDBE instruction combined with flag bits. The source
166 ** code line number is in the lower 24 bits of iSrcLine and the upper
167 ** 8 bytes are flags. The lower three bits of the flags indicate
168 ** values for I that should never occur. For example, if the branch is
169 ** always taken, the flags should be 0x05 since the fall-through and
170 ** alternate branch are never taken. If a branch is never taken then
171 ** flags should be 0x06 since only the fall-through approach is allowed.
173 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
174 ** interested in equal or not-equal. In other words, I==0 and I==2
175 ** should be treated as equivalent
177 ** Since only a line number is retained, not the filename, this macro
178 ** only works for amalgamation builds. But that is ok, since these macros
179 ** should be no-ops except for special builds used to measure test coverage.
181 #if !defined(SQLITE_VDBE_COVERAGE)
182 # define VdbeBranchTaken(I,M)
184 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
185 static void vdbeTakeBranch(u32 iSrcLine
, u8 I
, u8 M
){
187 assert( I
<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
188 assert( M
<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
189 assert( I
<M
); /* I can only be 2 if M is 3 or 4 */
190 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
192 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
193 ** the flags indicate directions that the branch can never go. If
194 ** a branch really does go in one of those directions, assert right
196 mNever
= iSrcLine
>> 24;
197 assert( (I
& mNever
)==0 );
198 if( sqlite3GlobalConfig
.xVdbeBranch
==0 ) return; /*NO_TEST*/
199 /* Invoke the branch coverage callback with three arguments:
200 ** iSrcLine - the line number of the VdbeCoverage() macro, with
202 ** I - Mask of bits 0x07 indicating which cases are are
203 ** fulfilled by this instance of the jump. 0x01 means
204 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
205 ** impossible cases (ex: if the comparison is never NULL)
206 ** are filled in automatically so that the coverage
207 ** measurement logic does not flag those impossible cases
208 ** as missed coverage.
209 ** M - Type of jump. Same as M argument above
212 if( M
==2 ) I
|= 0x04;
215 if( (mNever
&0x08)!=0 && (I
&0x05)!=0) I
|= 0x05; /*NO_TEST*/
217 sqlite3GlobalConfig
.xVdbeBranch(sqlite3GlobalConfig
.pVdbeBranchArg
,
218 iSrcLine
&0xffffff, I
, M
);
223 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
224 ** a pointer to a dynamically allocated string where some other entity
225 ** is responsible for deallocating that string. Because the register
226 ** does not control the string, it might be deleted without the register
229 ** This routine converts an ephemeral string into a dynamically allocated
230 ** string that the register itself controls. In other words, it
231 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
233 #define Deephemeralize(P) \
234 if( ((P)->flags&MEM_Ephem)!=0 \
235 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
237 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
238 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
241 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
242 ** if we run out of memory.
244 static VdbeCursor
*allocateCursor(
245 Vdbe
*p
, /* The virtual machine */
246 int iCur
, /* Index of the new VdbeCursor */
247 int nField
, /* Number of fields in the table or index */
248 u8 eCurType
/* Type of the new cursor */
250 /* Find the memory cell that will be used to store the blob of memory
251 ** required for this VdbeCursor structure. It is convenient to use a
252 ** vdbe memory cell to manage the memory allocation required for a
253 ** VdbeCursor structure for the following reasons:
255 ** * Sometimes cursor numbers are used for a couple of different
256 ** purposes in a vdbe program. The different uses might require
257 ** different sized allocations. Memory cells provide growable
260 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
261 ** be freed lazily via the sqlite3_release_memory() API. This
262 ** minimizes the number of malloc calls made by the system.
264 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
265 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
266 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
268 Mem
*pMem
= iCur
>0 ? &p
->aMem
[p
->nMem
-iCur
] : p
->aMem
;
273 ROUND8P(sizeof(VdbeCursor
)) + 2*sizeof(u32
)*nField
+
274 (eCurType
==CURTYPE_BTREE
?sqlite3BtreeCursorSize():0);
276 assert( iCur
>=0 && iCur
<p
->nCursor
);
277 if( p
->apCsr
[iCur
] ){ /*OPTIMIZATION-IF-FALSE*/
278 sqlite3VdbeFreeCursorNN(p
, p
->apCsr
[iCur
]);
282 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
283 ** the pMem used to hold space for the cursor has enough storage available
284 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
285 ** to hold cursors, it is faster to in-line the logic. */
286 assert( pMem
->flags
==MEM_Undefined
);
287 assert( (pMem
->flags
& MEM_Dyn
)==0 );
288 assert( pMem
->szMalloc
==0 || pMem
->z
==pMem
->zMalloc
);
289 if( pMem
->szMalloc
<nByte
){
290 if( pMem
->szMalloc
>0 ){
291 sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
293 pMem
->z
= pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, nByte
);
294 if( pMem
->zMalloc
==0 ){
298 pMem
->szMalloc
= nByte
;
301 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->zMalloc
;
302 memset(pCx
, 0, offsetof(VdbeCursor
,pAltCursor
));
303 pCx
->eCurType
= eCurType
;
304 pCx
->nField
= nField
;
305 pCx
->aOffset
= &pCx
->aType
[nField
];
306 if( eCurType
==CURTYPE_BTREE
){
307 pCx
->uc
.pCursor
= (BtCursor
*)
308 &pMem
->z
[ROUND8P(sizeof(VdbeCursor
))+2*sizeof(u32
)*nField
];
309 sqlite3BtreeCursorZero(pCx
->uc
.pCursor
);
315 ** The string in pRec is known to look like an integer and to have a
316 ** floating point value of rValue. Return true and set *piValue to the
317 ** integer value if the string is in range to be an integer. Otherwise,
320 static int alsoAnInt(Mem
*pRec
, double rValue
, i64
*piValue
){
322 iValue
= sqlite3RealToI64(rValue
);
323 if( sqlite3RealSameAsInt(rValue
,iValue
) ){
327 return 0==sqlite3Atoi64(pRec
->z
, piValue
, pRec
->n
, pRec
->enc
);
331 ** Try to convert a value into a numeric representation if we can
332 ** do so without loss of information. In other words, if the string
333 ** looks like a number, convert it into a number. If it does not
334 ** look like a number, leave it alone.
336 ** If the bTryForInt flag is true, then extra effort is made to give
337 ** an integer representation. Strings that look like floating point
338 ** values but which have no fractional component (example: '48.00')
339 ** will have a MEM_Int representation when bTryForInt is true.
341 ** If bTryForInt is false, then if the input string contains a decimal
342 ** point or exponential notation, the result is only MEM_Real, even
343 ** if there is an exact integer representation of the quantity.
345 static void applyNumericAffinity(Mem
*pRec
, int bTryForInt
){
349 assert( (pRec
->flags
& (MEM_Str
|MEM_Int
|MEM_Real
|MEM_IntReal
))==MEM_Str
);
350 rc
= sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
);
352 if( rc
==1 && alsoAnInt(pRec
, rValue
, &pRec
->u
.i
) ){
353 pRec
->flags
|= MEM_Int
;
356 pRec
->flags
|= MEM_Real
;
357 if( bTryForInt
) sqlite3VdbeIntegerAffinity(pRec
);
359 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
360 ** string representation after computing a numeric equivalent, because the
361 ** string representation might not be the canonical representation for the
362 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
363 pRec
->flags
&= ~MEM_Str
;
367 ** Processing is determine by the affinity parameter:
369 ** SQLITE_AFF_INTEGER:
371 ** SQLITE_AFF_NUMERIC:
372 ** Try to convert pRec to an integer representation or a
373 ** floating-point representation if an integer representation
374 ** is not possible. Note that the integer representation is
375 ** always preferred, even if the affinity is REAL, because
376 ** an integer representation is more space efficient on disk.
378 ** SQLITE_AFF_FLEXNUM:
379 ** If the value is text, then try to convert it into a number of
380 ** some kind (integer or real) but do not make any other changes.
383 ** Convert pRec to a text representation.
387 ** No-op. pRec is unchanged.
389 static void applyAffinity(
390 Mem
*pRec
, /* The value to apply affinity to */
391 char affinity
, /* The affinity to be applied */
392 u8 enc
/* Use this text encoding */
394 if( affinity
>=SQLITE_AFF_NUMERIC
){
395 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
396 || affinity
==SQLITE_AFF_NUMERIC
|| affinity
==SQLITE_AFF_FLEXNUM
);
397 if( (pRec
->flags
& MEM_Int
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
398 if( (pRec
->flags
& (MEM_Real
|MEM_IntReal
))==0 ){
399 if( pRec
->flags
& MEM_Str
) applyNumericAffinity(pRec
,1);
400 }else if( affinity
<=SQLITE_AFF_REAL
){
401 sqlite3VdbeIntegerAffinity(pRec
);
404 }else if( affinity
==SQLITE_AFF_TEXT
){
405 /* Only attempt the conversion to TEXT if there is an integer or real
406 ** representation (blob and NULL do not get converted) but no string
407 ** representation. It would be harmless to repeat the conversion if
408 ** there is already a string rep, but it is pointless to waste those
410 if( 0==(pRec
->flags
&MEM_Str
) ){ /*OPTIMIZATION-IF-FALSE*/
411 if( (pRec
->flags
&(MEM_Real
|MEM_Int
|MEM_IntReal
)) ){
412 testcase( pRec
->flags
& MEM_Int
);
413 testcase( pRec
->flags
& MEM_Real
);
414 testcase( pRec
->flags
& MEM_IntReal
);
415 sqlite3VdbeMemStringify(pRec
, enc
, 1);
418 pRec
->flags
&= ~(MEM_Real
|MEM_Int
|MEM_IntReal
);
423 ** Try to convert the type of a function argument or a result column
424 ** into a numeric representation. Use either INTEGER or REAL whichever
425 ** is appropriate. But only do the conversion if it is possible without
426 ** loss of information and return the revised type of the argument.
428 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
429 int eType
= sqlite3_value_type(pVal
);
430 if( eType
==SQLITE_TEXT
){
431 Mem
*pMem
= (Mem
*)pVal
;
432 applyNumericAffinity(pMem
, 0);
433 eType
= sqlite3_value_type(pVal
);
439 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
440 ** not the internal Mem* type.
442 void sqlite3ValueApplyAffinity(
447 applyAffinity((Mem
*)pVal
, affinity
, enc
);
451 ** pMem currently only holds a string type (or maybe a BLOB that we can
452 ** interpret as a string if we want to). Compute its corresponding
453 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
456 static u16 SQLITE_NOINLINE
computeNumericType(Mem
*pMem
){
459 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 );
460 assert( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 );
461 if( ExpandBlob(pMem
) ){
465 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
467 if( rc
==0 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1 ){
473 }else if( rc
==1 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)==0 ){
481 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
484 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
485 ** But it does set pMem->u.r and pMem->u.i appropriately.
487 static u16
numericType(Mem
*pMem
){
488 assert( (pMem
->flags
& MEM_Null
)==0
489 || pMem
->db
==0 || pMem
->db
->mallocFailed
);
490 if( pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
) ){
491 testcase( pMem
->flags
& MEM_Int
);
492 testcase( pMem
->flags
& MEM_Real
);
493 testcase( pMem
->flags
& MEM_IntReal
);
494 return pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
);
496 assert( pMem
->flags
& (MEM_Str
|MEM_Blob
) );
497 testcase( pMem
->flags
& MEM_Str
);
498 testcase( pMem
->flags
& MEM_Blob
);
499 return computeNumericType(pMem
);
505 ** Write a nice string representation of the contents of cell pMem
506 ** into buffer zBuf, length nBuf.
508 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, StrAccum
*pStr
){
510 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
516 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
517 }else if( f
& MEM_Static
){
519 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
520 }else if( f
& MEM_Ephem
){
522 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
526 sqlite3_str_appendf(pStr
, "%cx[", c
);
527 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
528 sqlite3_str_appendf(pStr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
530 sqlite3_str_appendf(pStr
, "|");
531 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
533 sqlite3_str_appendchar(pStr
, 1, (z
<32||z
>126)?'.':z
);
535 sqlite3_str_appendf(pStr
,"]");
537 sqlite3_str_appendf(pStr
, "+%dz",pMem
->u
.nZero
);
539 }else if( f
& MEM_Str
){
544 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
545 }else if( f
& MEM_Static
){
547 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
548 }else if( f
& MEM_Ephem
){
550 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
554 sqlite3_str_appendf(pStr
, " %c%d[", c
, pMem
->n
);
555 for(j
=0; j
<25 && j
<pMem
->n
; j
++){
557 sqlite3_str_appendchar(pStr
, 1, (c
>=0x20&&c
<=0x7f) ? c
: '.');
559 sqlite3_str_appendf(pStr
, "]%s", encnames
[pMem
->enc
]);
561 sqlite3_str_appendf(pStr
, "(0-term)");
569 ** Print the value of a register for tracing purposes:
571 static void memTracePrint(Mem
*p
){
572 if( p
->flags
& MEM_Undefined
){
573 printf(" undefined");
574 }else if( p
->flags
& MEM_Null
){
575 printf(p
->flags
& MEM_Zero
? " NULL-nochng" : " NULL");
576 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
577 printf(" si:%lld", p
->u
.i
);
578 }else if( (p
->flags
& (MEM_IntReal
))!=0 ){
579 printf(" ir:%lld", p
->u
.i
);
580 }else if( p
->flags
& MEM_Int
){
581 printf(" i:%lld", p
->u
.i
);
582 #ifndef SQLITE_OMIT_FLOATING_POINT
583 }else if( p
->flags
& MEM_Real
){
584 printf(" r:%.17g", p
->u
.r
);
586 }else if( sqlite3VdbeMemIsRowSet(p
) ){
591 sqlite3StrAccumInit(&acc
, 0, zBuf
, sizeof(zBuf
), 0);
592 sqlite3VdbeMemPrettyPrint(p
, &acc
);
593 printf(" %s", sqlite3StrAccumFinish(&acc
));
595 if( p
->flags
& MEM_Subtype
) printf(" subtype=0x%02x", p
->eSubtype
);
597 static void registerTrace(int iReg
, Mem
*p
){
598 printf("R[%d] = ", iReg
);
601 printf(" <== R[%d]", (int)(p
->pScopyFrom
- &p
[-iReg
]));
604 sqlite3VdbeCheckMemInvariants(p
);
606 /**/ void sqlite3PrintMem(Mem
*pMem
){
615 ** Show the values of all registers in the virtual machine. Used for
616 ** interactive debugging.
618 void sqlite3VdbeRegisterDump(Vdbe
*v
){
620 for(i
=1; i
<v
->nMem
; i
++) registerTrace(i
, v
->aMem
+i
);
622 #endif /* SQLITE_DEBUG */
626 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
628 # define REGISTER_TRACE(R,M)
633 ** This function is only called from within an assert() expression. It
634 ** checks that the sqlite3.nTransaction variable is correctly set to
635 ** the number of non-transaction savepoints currently in the
636 ** linked list starting at sqlite3.pSavepoint.
640 ** assert( checkSavepointCount(db) );
642 static int checkSavepointCount(sqlite3
*db
){
645 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
646 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
652 ** Return the register of pOp->p2 after first preparing it to be
653 ** overwritten with an integer value.
655 static SQLITE_NOINLINE Mem
*out2PrereleaseWithClear(Mem
*pOut
){
656 sqlite3VdbeMemSetNull(pOut
);
657 pOut
->flags
= MEM_Int
;
660 static Mem
*out2Prerelease(Vdbe
*p
, VdbeOp
*pOp
){
663 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
664 pOut
= &p
->aMem
[pOp
->p2
];
665 memAboutToChange(p
, pOut
);
666 if( VdbeMemDynamic(pOut
) ){ /*OPTIMIZATION-IF-FALSE*/
667 return out2PrereleaseWithClear(pOut
);
669 pOut
->flags
= MEM_Int
;
675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
676 ** with pOp->p3. Return the hash.
678 static u64
filterHash(const Mem
*aMem
, const Op
*pOp
){
682 assert( pOp
->p4type
==P4_INT32
);
683 for(i
=pOp
->p3
, mx
=i
+pOp
->p4
.i
; i
<mx
; i
++){
684 const Mem
*p
= &aMem
[i
];
685 if( p
->flags
& (MEM_Int
|MEM_IntReal
) ){
687 }else if( p
->flags
& MEM_Real
){
688 h
+= sqlite3VdbeIntValue(p
);
689 }else if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
690 /* All strings have the same hash and all blobs have the same hash,
691 ** though, at least, those hashes are different from each other and
693 h
+= 4093 + (p
->flags
& (MEM_Str
|MEM_Blob
));
701 ** For OP_Column, factor out the case where content is loaded from
702 ** overflow pages, so that the code to implement this case is separate
703 ** the common case where all content fits on the page. Factoring out
704 ** the code reduces register pressure and helps the common case
707 static SQLITE_NOINLINE
int vdbeColumnFromOverflow(
708 VdbeCursor
*pC
, /* The BTree cursor from which we are reading */
709 int iCol
, /* The column to read */
710 int t
, /* The serial-type code for the column value */
711 i64 iOffset
, /* Offset to the start of the content value */
712 u32 cacheStatus
, /* Current Vdbe.cacheCtr value */
713 u32 colCacheCtr
, /* Current value of the column cache counter */
714 Mem
*pDest
/* Store the value into this register. */
717 sqlite3
*db
= pDest
->db
;
718 int encoding
= pDest
->enc
;
719 int len
= sqlite3VdbeSerialTypeLen(t
);
720 assert( pC
->eCurType
==CURTYPE_BTREE
);
721 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) return SQLITE_TOOBIG
;
722 if( len
> 4000 && pC
->pKeyInfo
==0 ){
723 /* Cache large column values that are on overflow pages using
724 ** an RCStr (reference counted string) so that if they are reloaded,
725 ** that do not have to be copied a second time. The overhead of
726 ** creating and managing the cache is such that this is only
727 ** profitable for larger TEXT and BLOB values.
729 ** Only do this on table-btrees so that writes to index-btrees do not
730 ** need to clear the cache. This buys performance in the common case
731 ** in exchange for generality.
733 VdbeTxtBlbCache
*pCache
;
735 if( pC
->colCache
==0 ){
736 pC
->pCache
= sqlite3DbMallocZero(db
, sizeof(VdbeTxtBlbCache
) );
737 if( pC
->pCache
==0 ) return SQLITE_NOMEM
;
741 if( pCache
->pCValue
==0
742 || pCache
->iCol
!=iCol
743 || pCache
->cacheStatus
!=cacheStatus
744 || pCache
->colCacheCtr
!=colCacheCtr
745 || pCache
->iOffset
!=sqlite3BtreeOffset(pC
->uc
.pCursor
)
747 if( pCache
->pCValue
) sqlite3RCStrUnref(pCache
->pCValue
);
748 pBuf
= pCache
->pCValue
= sqlite3RCStrNew( len
+3 );
749 if( pBuf
==0 ) return SQLITE_NOMEM
;
750 rc
= sqlite3BtreePayload(pC
->uc
.pCursor
, iOffset
, len
, pBuf
);
756 pCache
->cacheStatus
= cacheStatus
;
757 pCache
->colCacheCtr
= colCacheCtr
;
758 pCache
->iOffset
= sqlite3BtreeOffset(pC
->uc
.pCursor
);
760 pBuf
= pCache
->pCValue
;
763 sqlite3RCStrRef(pBuf
);
765 rc
= sqlite3VdbeMemSetStr(pDest
, pBuf
, len
, encoding
,
767 pDest
->flags
|= MEM_Term
;
769 rc
= sqlite3VdbeMemSetStr(pDest
, pBuf
, len
, 0,
773 rc
= sqlite3VdbeMemFromBtree(pC
->uc
.pCursor
, iOffset
, len
, pDest
);
775 sqlite3VdbeSerialGet((const u8
*)pDest
->z
, t
, pDest
);
776 if( (t
&1)!=0 && encoding
==SQLITE_UTF8
){
778 pDest
->flags
|= MEM_Term
;
781 pDest
->flags
&= ~MEM_Ephem
;
787 ** Return the symbolic name for the data type of a pMem
789 static const char *vdbeMemTypeName(Mem
*pMem
){
790 static const char *azTypes
[] = {
791 /* SQLITE_INTEGER */ "INT",
792 /* SQLITE_FLOAT */ "REAL",
793 /* SQLITE_TEXT */ "TEXT",
794 /* SQLITE_BLOB */ "BLOB",
795 /* SQLITE_NULL */ "NULL"
797 return azTypes
[sqlite3_value_type(pMem
)-1];
801 ** Execute as much of a VDBE program as we can.
802 ** This is the core of sqlite3_step().
805 Vdbe
*p
/* The VDBE */
807 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
808 Op
*pOp
= aOp
; /* Current operation */
810 Op
*pOrigOp
; /* Value of pOp at the top of the loop */
811 int nExtraDelete
= 0; /* Verifies FORDELETE and AUXDELETE flags */
812 u8 iCompareIsInit
= 0; /* iCompare is initialized */
814 int rc
= SQLITE_OK
; /* Value to return */
815 sqlite3
*db
= p
->db
; /* The database */
816 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
817 u8 encoding
= ENC(db
); /* The database encoding */
818 int iCompare
= 0; /* Result of last comparison */
819 u64 nVmStep
= 0; /* Number of virtual machine steps */
820 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
821 u64 nProgressLimit
; /* Invoke xProgress() when nVmStep reaches this */
823 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
824 Mem
*pIn1
= 0; /* 1st input operand */
825 Mem
*pIn2
= 0; /* 2nd input operand */
826 Mem
*pIn3
= 0; /* 3rd input operand */
827 Mem
*pOut
= 0; /* Output operand */
828 u32 colCacheCtr
= 0; /* Column cache counter */
829 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
831 int bStmtScanStatus
= IS_STMT_SCANSTATUS(db
)!=0;
833 /*** INSERT STACK UNION HERE ***/
835 assert( p
->eVdbeState
==VDBE_RUN_STATE
); /* sqlite3_step() verifies this */
836 if( DbMaskNonZero(p
->lockMask
) ){
839 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
841 u32 iPrior
= p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
];
842 assert( 0 < db
->nProgressOps
);
843 nProgressLimit
= db
->nProgressOps
- (iPrior
% db
->nProgressOps
);
845 nProgressLimit
= LARGEST_UINT64
;
848 if( p
->rc
==SQLITE_NOMEM
){
849 /* This happens if a malloc() inside a call to sqlite3_column_text() or
850 ** sqlite3_column_text16() failed. */
853 assert( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_BUSY
);
854 testcase( p
->rc
!=SQLITE_OK
);
856 assert( p
->bIsReader
|| p
->readOnly
!=0 );
858 assert( p
->explain
==0 );
859 db
->busyHandler
.nBusy
= 0;
860 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
861 sqlite3VdbeIOTraceSql(p
);
863 sqlite3BeginBenignMalloc();
865 && (p
->db
->flags
& (SQLITE_VdbeListing
|SQLITE_VdbeEQP
|SQLITE_VdbeTrace
))!=0
869 sqlite3VdbePrintSql(p
);
870 if( p
->db
->flags
& SQLITE_VdbeListing
){
871 printf("VDBE Program Listing:\n");
872 for(i
=0; i
<p
->nOp
; i
++){
873 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
876 if( p
->db
->flags
& SQLITE_VdbeEQP
){
877 for(i
=0; i
<p
->nOp
; i
++){
878 if( aOp
[i
].opcode
==OP_Explain
){
879 if( once
) printf("VDBE Query Plan:\n");
880 printf("%s\n", aOp
[i
].p4
.z
);
885 if( p
->db
->flags
& SQLITE_VdbeTrace
) printf("VDBE Trace:\n");
887 sqlite3EndBenignMalloc();
889 for(pOp
=&aOp
[p
->pc
]; 1; pOp
++){
890 /* Errors are detected by individual opcodes, with an immediate
891 ** jumps to abort_due_to_error. */
892 assert( rc
==SQLITE_OK
);
894 assert( pOp
>=aOp
&& pOp
<&aOp
[p
->nOp
]);
897 #if defined(VDBE_PROFILE)
899 pnCycle
= &pOp
->nCycle
;
900 if( sqlite3NProfileCnt
==0 ) *pnCycle
-= sqlite3Hwtime();
901 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
902 if( bStmtScanStatus
){
904 pnCycle
= &pOp
->nCycle
;
905 *pnCycle
-= sqlite3Hwtime();
909 /* Only allow tracing if SQLITE_DEBUG is defined.
912 if( db
->flags
& SQLITE_VdbeTrace
){
913 sqlite3VdbePrintOp(stdout
, (int)(pOp
- aOp
), pOp
);
914 test_trace_breakpoint((int)(pOp
- aOp
),pOp
,p
);
919 /* Check to see if we need to simulate an interrupt. This only happens
920 ** if we have a special test build.
923 if( sqlite3_interrupt_count
>0 ){
924 sqlite3_interrupt_count
--;
925 if( sqlite3_interrupt_count
==0 ){
926 sqlite3_interrupt(db
);
931 /* Sanity checking on other operands */
934 u8 opProperty
= sqlite3OpcodeProperty
[pOp
->opcode
];
935 if( (opProperty
& OPFLG_IN1
)!=0 ){
937 assert( pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
938 assert( memIsValid(&aMem
[pOp
->p1
]) );
939 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p1
]) );
940 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
942 if( (opProperty
& OPFLG_IN2
)!=0 ){
944 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
945 assert( memIsValid(&aMem
[pOp
->p2
]) );
946 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p2
]) );
947 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
949 if( (opProperty
& OPFLG_IN3
)!=0 ){
951 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
952 assert( memIsValid(&aMem
[pOp
->p3
]) );
953 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p3
]) );
954 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
956 if( (opProperty
& OPFLG_OUT2
)!=0 ){
958 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
959 memAboutToChange(p
, &aMem
[pOp
->p2
]);
961 if( (opProperty
& OPFLG_OUT3
)!=0 ){
963 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
964 memAboutToChange(p
, &aMem
[pOp
->p3
]);
972 switch( pOp
->opcode
){
974 /*****************************************************************************
975 ** What follows is a massive switch statement where each case implements a
976 ** separate instruction in the virtual machine. If we follow the usual
977 ** indentation conventions, each case should be indented by 6 spaces. But
978 ** that is a lot of wasted space on the left margin. So the code within
979 ** the switch statement will break with convention and be flush-left. Another
980 ** big comment (similar to this one) will mark the point in the code where
981 ** we transition back to normal indentation.
983 ** The formatting of each case is important. The makefile for SQLite
984 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
985 ** file looking for lines that begin with "case OP_". The opcodes.h files
986 ** will be filled with #defines that give unique integer values to each
987 ** opcode and the opcodes.c file is filled with an array of strings where
988 ** each string is the symbolic name for the corresponding opcode. If the
989 ** case statement is followed by a comment of the form "/# same as ... #/"
990 ** that comment is used to determine the particular value of the opcode.
992 ** Other keywords in the comment that follows each case are used to
993 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
994 ** Keywords include: in1, in2, in3, out2, out3. See
995 ** the mkopcodeh.awk script for additional information.
997 ** Documentation about VDBE opcodes is generated by scanning this file
998 ** for lines of that contain "Opcode:". That line and all subsequent
999 ** comment lines are used in the generation of the opcode.html documentation
1004 ** Formatting is important to scripts that scan this file.
1005 ** Do not deviate from the formatting style currently in use.
1007 *****************************************************************************/
1009 /* Opcode: Goto * P2 * * *
1011 ** An unconditional jump to address P2.
1012 ** The next instruction executed will be
1013 ** the one at index P2 from the beginning of
1016 ** The P1 parameter is not actually used by this opcode. However, it
1017 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
1018 ** that this Goto is the bottom of a loop and that the lines from P2 down
1019 ** to the current line should be indented for EXPLAIN output.
1021 case OP_Goto
: { /* jump */
1024 /* In debugging mode, when the p5 flags is set on an OP_Goto, that
1025 ** means we should really jump back to the preceding OP_ReleaseReg
1028 assert( pOp
->p2
< (int)(pOp
- aOp
) );
1029 assert( pOp
->p2
> 1 );
1030 pOp
= &aOp
[pOp
->p2
- 2];
1031 assert( pOp
[1].opcode
==OP_ReleaseReg
);
1032 goto check_for_interrupt
;
1036 jump_to_p2_and_check_for_interrupt
:
1037 pOp
= &aOp
[pOp
->p2
- 1];
1039 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
1040 ** OP_VNext, or OP_SorterNext) all jump here upon
1041 ** completion. Check to see if sqlite3_interrupt() has been called
1042 ** or if the progress callback needs to be invoked.
1044 ** This code uses unstructured "goto" statements and does not look clean.
1045 ** But that is not due to sloppy coding habits. The code is written this
1046 ** way for performance, to avoid having to run the interrupt and progress
1047 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
1048 ** faster according to "valgrind --tool=cachegrind" */
1049 check_for_interrupt
:
1050 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
1051 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1052 /* Call the progress callback if it is configured and the required number
1053 ** of VDBE ops have been executed (either since this invocation of
1054 ** sqlite3VdbeExec() or since last time the progress callback was called).
1055 ** If the progress callback returns non-zero, exit the virtual machine with
1056 ** a return code SQLITE_ABORT.
1058 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
1059 assert( db
->nProgressOps
!=0 );
1060 nProgressLimit
+= db
->nProgressOps
;
1061 if( db
->xProgress(db
->pProgressArg
) ){
1062 nProgressLimit
= LARGEST_UINT64
;
1063 rc
= SQLITE_INTERRUPT
;
1064 goto abort_due_to_error
;
1072 /* Opcode: Gosub P1 P2 * * *
1074 ** Write the current address onto register P1
1075 ** and then jump to address P2.
1077 case OP_Gosub
: { /* jump */
1078 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1079 pIn1
= &aMem
[pOp
->p1
];
1080 assert( VdbeMemDynamic(pIn1
)==0 );
1081 memAboutToChange(p
, pIn1
);
1082 pIn1
->flags
= MEM_Int
;
1083 pIn1
->u
.i
= (int)(pOp
-aOp
);
1084 REGISTER_TRACE(pOp
->p1
, pIn1
);
1085 goto jump_to_p2_and_check_for_interrupt
;
1088 /* Opcode: Return P1 P2 P3 * *
1090 ** Jump to the address stored in register P1. If P1 is a return address
1091 ** register, then this accomplishes a return from a subroutine.
1093 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
1094 ** values, otherwise execution falls through to the next opcode, and the
1095 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
1096 ** integer or else an assert() is raised. P3 should be set to 1 when
1097 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1100 ** The value in register P1 is unchanged by this opcode.
1102 ** P2 is not used by the byte-code engine. However, if P2 is positive
1103 ** and also less than the current address, then the "EXPLAIN" output
1104 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1105 ** to be not including the current Return. P2 should be the first opcode
1106 ** in the subroutine from which this opcode is returning. Thus the P2
1107 ** value is a byte-code indentation hint. See tag-20220407a in
1108 ** wherecode.c and shell.c.
1110 case OP_Return
: { /* in1 */
1111 pIn1
= &aMem
[pOp
->p1
];
1112 if( pIn1
->flags
& MEM_Int
){
1113 if( pOp
->p3
){ VdbeBranchTaken(1, 2); }
1114 pOp
= &aOp
[pIn1
->u
.i
];
1115 }else if( ALWAYS(pOp
->p3
) ){
1116 VdbeBranchTaken(0, 2);
1121 /* Opcode: InitCoroutine P1 P2 P3 * *
1123 ** Set up register P1 so that it will Yield to the coroutine
1124 ** located at address P3.
1126 ** If P2!=0 then the coroutine implementation immediately follows
1127 ** this opcode. So jump over the coroutine implementation to
1130 ** See also: EndCoroutine
1132 case OP_InitCoroutine
: { /* jump */
1133 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1134 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
1135 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nOp
);
1136 pOut
= &aMem
[pOp
->p1
];
1137 assert( !VdbeMemDynamic(pOut
) );
1138 pOut
->u
.i
= pOp
->p3
- 1;
1139 pOut
->flags
= MEM_Int
;
1140 if( pOp
->p2
==0 ) break;
1142 /* Most jump operations do a goto to this spot in order to update
1143 ** the pOp pointer. */
1145 assert( pOp
->p2
>0 ); /* There are never any jumps to instruction 0 */
1146 assert( pOp
->p2
<p
->nOp
); /* Jumps must be in range */
1147 pOp
= &aOp
[pOp
->p2
- 1];
1151 /* Opcode: EndCoroutine P1 * * * *
1153 ** The instruction at the address in register P1 is a Yield.
1154 ** Jump to the P2 parameter of that Yield.
1155 ** After the jump, register P1 becomes undefined.
1157 ** See also: InitCoroutine
1159 case OP_EndCoroutine
: { /* in1 */
1161 pIn1
= &aMem
[pOp
->p1
];
1162 assert( pIn1
->flags
==MEM_Int
);
1163 assert( pIn1
->u
.i
>=0 && pIn1
->u
.i
<p
->nOp
);
1164 pCaller
= &aOp
[pIn1
->u
.i
];
1165 assert( pCaller
->opcode
==OP_Yield
);
1166 assert( pCaller
->p2
>=0 && pCaller
->p2
<p
->nOp
);
1167 pOp
= &aOp
[pCaller
->p2
- 1];
1168 pIn1
->flags
= MEM_Undefined
;
1172 /* Opcode: Yield P1 P2 * * *
1174 ** Swap the program counter with the value in register P1. This
1175 ** has the effect of yielding to a coroutine.
1177 ** If the coroutine that is launched by this instruction ends with
1178 ** Yield or Return then continue to the next instruction. But if
1179 ** the coroutine launched by this instruction ends with
1180 ** EndCoroutine, then jump to P2 rather than continuing with the
1181 ** next instruction.
1183 ** See also: InitCoroutine
1185 case OP_Yield
: { /* in1, jump */
1187 pIn1
= &aMem
[pOp
->p1
];
1188 assert( VdbeMemDynamic(pIn1
)==0 );
1189 pIn1
->flags
= MEM_Int
;
1190 pcDest
= (int)pIn1
->u
.i
;
1191 pIn1
->u
.i
= (int)(pOp
- aOp
);
1192 REGISTER_TRACE(pOp
->p1
, pIn1
);
1197 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1198 ** Synopsis: if r[P3]=null halt
1200 ** Check the value in register P3. If it is NULL then Halt using
1201 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1202 ** value in register P3 is not NULL, then this routine is a no-op.
1203 ** The P5 parameter should be 1.
1205 case OP_HaltIfNull
: { /* in3 */
1206 pIn3
= &aMem
[pOp
->p3
];
1208 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1210 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
1211 /* Fall through into OP_Halt */
1212 /* no break */ deliberate_fall_through
1215 /* Opcode: Halt P1 P2 * P4 P5
1217 ** Exit immediately. All open cursors, etc are closed
1220 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1221 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1222 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1223 ** whether or not to rollback the current transaction. Do not rollback
1224 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1225 ** then back out all changes that have occurred during this execution of the
1226 ** VDBE, but do not rollback the transaction.
1228 ** If P4 is not null then it is an error message string.
1230 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1233 ** 1: NOT NULL constraint failed: P4
1234 ** 2: UNIQUE constraint failed: P4
1235 ** 3: CHECK constraint failed: P4
1236 ** 4: FOREIGN KEY constraint failed: P4
1238 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1241 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1242 ** every program. So a jump past the last instruction of the program
1243 ** is the same as executing Halt.
1250 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1253 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
1254 ** something is wrong with the code generator. Raise an assertion in order
1255 ** to bring this to the attention of fuzzers and other testing tools. */
1256 assert( pOp
->p1
!=SQLITE_INTERNAL
);
1258 if( p
->pFrame
&& pOp
->p1
==SQLITE_OK
){
1259 /* Halt the sub-program. Return control to the parent frame. */
1261 p
->pFrame
= pFrame
->pParent
;
1263 sqlite3VdbeSetChanges(db
, p
->nChange
);
1264 pcx
= sqlite3VdbeFrameRestore(pFrame
);
1265 if( pOp
->p2
==OE_Ignore
){
1266 /* Instruction pcx is the OP_Program that invoked the sub-program
1267 ** currently being halted. If the p2 instruction of this OP_Halt
1268 ** instruction is set to OE_Ignore, then the sub-program is throwing
1269 ** an IGNORE exception. In this case jump to the address specified
1270 ** as the p2 of the calling OP_Program. */
1271 pcx
= p
->aOp
[pcx
].p2
-1;
1279 p
->errorAction
= (u8
)pOp
->p2
;
1280 assert( pOp
->p5
<=4 );
1283 static const char * const azType
[] = { "NOT NULL", "UNIQUE", "CHECK",
1285 testcase( pOp
->p5
==1 );
1286 testcase( pOp
->p5
==2 );
1287 testcase( pOp
->p5
==3 );
1288 testcase( pOp
->p5
==4 );
1289 sqlite3VdbeError(p
, "%s constraint failed", azType
[pOp
->p5
-1]);
1291 p
->zErrMsg
= sqlite3MPrintf(db
, "%z: %s", p
->zErrMsg
, pOp
->p4
.z
);
1294 sqlite3VdbeError(p
, "%s", pOp
->p4
.z
);
1296 pcx
= (int)(pOp
- aOp
);
1297 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pcx
, p
->zSql
, p
->zErrMsg
);
1299 rc
= sqlite3VdbeHalt(p
);
1300 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
1301 if( rc
==SQLITE_BUSY
){
1302 p
->rc
= SQLITE_BUSY
;
1304 assert( rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
);
1305 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 || db
->nDeferredImmCons
>0 );
1306 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
1311 /* Opcode: Integer P1 P2 * * *
1312 ** Synopsis: r[P2]=P1
1314 ** The 32-bit integer value P1 is written into register P2.
1316 case OP_Integer
: { /* out2 */
1317 pOut
= out2Prerelease(p
, pOp
);
1318 pOut
->u
.i
= pOp
->p1
;
1322 /* Opcode: Int64 * P2 * P4 *
1323 ** Synopsis: r[P2]=P4
1325 ** P4 is a pointer to a 64-bit integer value.
1326 ** Write that value into register P2.
1328 case OP_Int64
: { /* out2 */
1329 pOut
= out2Prerelease(p
, pOp
);
1330 assert( pOp
->p4
.pI64
!=0 );
1331 pOut
->u
.i
= *pOp
->p4
.pI64
;
1335 #ifndef SQLITE_OMIT_FLOATING_POINT
1336 /* Opcode: Real * P2 * P4 *
1337 ** Synopsis: r[P2]=P4
1339 ** P4 is a pointer to a 64-bit floating point value.
1340 ** Write that value into register P2.
1342 case OP_Real
: { /* same as TK_FLOAT, out2 */
1343 pOut
= out2Prerelease(p
, pOp
);
1344 pOut
->flags
= MEM_Real
;
1345 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
1346 pOut
->u
.r
= *pOp
->p4
.pReal
;
1351 /* Opcode: String8 * P2 * P4 *
1352 ** Synopsis: r[P2]='P4'
1354 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1355 ** into a String opcode before it is executed for the first time. During
1356 ** this transformation, the length of string P4 is computed and stored
1357 ** as the P1 parameter.
1359 case OP_String8
: { /* same as TK_STRING, out2 */
1360 assert( pOp
->p4
.z
!=0 );
1361 pOut
= out2Prerelease(p
, pOp
);
1362 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
1364 #ifndef SQLITE_OMIT_UTF16
1365 if( encoding
!=SQLITE_UTF8
){
1366 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
1367 assert( rc
==SQLITE_OK
|| rc
==SQLITE_TOOBIG
);
1368 if( rc
) goto too_big
;
1369 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
1370 assert( pOut
->szMalloc
>0 && pOut
->zMalloc
==pOut
->z
);
1371 assert( VdbeMemDynamic(pOut
)==0 );
1373 pOut
->flags
|= MEM_Static
;
1374 if( pOp
->p4type
==P4_DYNAMIC
){
1375 sqlite3DbFree(db
, pOp
->p4
.z
);
1377 pOp
->p4type
= P4_DYNAMIC
;
1378 pOp
->p4
.z
= pOut
->z
;
1382 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1385 pOp
->opcode
= OP_String
;
1386 assert( rc
==SQLITE_OK
);
1387 /* Fall through to the next case, OP_String */
1388 /* no break */ deliberate_fall_through
1391 /* Opcode: String P1 P2 P3 P4 P5
1392 ** Synopsis: r[P2]='P4' (len=P1)
1394 ** The string value P4 of length P1 (bytes) is stored in register P2.
1396 ** If P3 is not zero and the content of register P3 is equal to P5, then
1397 ** the datatype of the register P2 is converted to BLOB. The content is
1398 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1399 ** of a string, as if it had been CAST. In other words:
1401 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1403 case OP_String
: { /* out2 */
1404 assert( pOp
->p4
.z
!=0 );
1405 pOut
= out2Prerelease(p
, pOp
);
1406 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
1407 pOut
->z
= pOp
->p4
.z
;
1409 pOut
->enc
= encoding
;
1410 UPDATE_MAX_BLOBSIZE(pOut
);
1411 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1413 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1414 pIn3
= &aMem
[pOp
->p3
];
1415 assert( pIn3
->flags
& MEM_Int
);
1416 if( pIn3
->u
.i
==pOp
->p5
) pOut
->flags
= MEM_Blob
|MEM_Static
|MEM_Term
;
1422 /* Opcode: BeginSubrtn * P2 * * *
1423 ** Synopsis: r[P2]=NULL
1425 ** Mark the beginning of a subroutine that can be entered in-line
1426 ** or that can be called using OP_Gosub. The subroutine should
1427 ** be terminated by an OP_Return instruction that has a P1 operand that
1428 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1429 ** If the subroutine is entered in-line, then the OP_Return will simply
1430 ** fall through. But if the subroutine is entered using OP_Gosub, then
1431 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1433 ** This routine works by loading a NULL into the P2 register. When the
1434 ** return address register contains a NULL, the OP_Return instruction is
1435 ** a no-op that simply falls through to the next instruction (assuming that
1436 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1437 ** entered in-line, then the OP_Return will cause in-line execution to
1438 ** continue. But if the subroutine is entered via OP_Gosub, then the
1439 ** OP_Return will cause a return to the address following the OP_Gosub.
1441 ** This opcode is identical to OP_Null. It has a different name
1442 ** only to make the byte code easier to read and verify.
1444 /* Opcode: Null P1 P2 P3 * *
1445 ** Synopsis: r[P2..P3]=NULL
1447 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1448 ** NULL into register P3 and every register in between P2 and P3. If P3
1449 ** is less than P2 (typically P3 is zero) then only register P2 is
1452 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1453 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1456 case OP_BeginSubrtn
:
1457 case OP_Null
: { /* out2 */
1460 pOut
= out2Prerelease(p
, pOp
);
1461 cnt
= pOp
->p3
-pOp
->p2
;
1462 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1463 pOut
->flags
= nullFlag
= pOp
->p1
? (MEM_Null
|MEM_Cleared
) : MEM_Null
;
1470 memAboutToChange(p
, pOut
);
1471 sqlite3VdbeMemSetNull(pOut
);
1472 pOut
->flags
= nullFlag
;
1479 /* Opcode: SoftNull P1 * * * *
1480 ** Synopsis: r[P1]=NULL
1482 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1483 ** instruction, but do not free any string or blob memory associated with
1484 ** the register, so that if the value was a string or blob that was
1485 ** previously copied using OP_SCopy, the copies will continue to be valid.
1488 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1489 pOut
= &aMem
[pOp
->p1
];
1490 pOut
->flags
= (pOut
->flags
&~(MEM_Undefined
|MEM_AffMask
))|MEM_Null
;
1494 /* Opcode: Blob P1 P2 * P4 *
1495 ** Synopsis: r[P2]=P4 (len=P1)
1497 ** P4 points to a blob of data P1 bytes long. Store this
1498 ** blob in register P2. If P4 is a NULL pointer, then construct
1499 ** a zero-filled blob that is P1 bytes long in P2.
1501 case OP_Blob
: { /* out2 */
1502 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
1503 pOut
= out2Prerelease(p
, pOp
);
1505 sqlite3VdbeMemSetZeroBlob(pOut
, pOp
->p1
);
1506 if( sqlite3VdbeMemExpandBlob(pOut
) ) goto no_mem
;
1508 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
1510 pOut
->enc
= encoding
;
1511 UPDATE_MAX_BLOBSIZE(pOut
);
1515 /* Opcode: Variable P1 P2 * P4 *
1516 ** Synopsis: r[P2]=parameter(P1,P4)
1518 ** Transfer the values of bound parameter P1 into register P2
1520 ** If the parameter is named, then its name appears in P4.
1521 ** The P4 value is used by sqlite3_bind_parameter_name().
1523 case OP_Variable
: { /* out2 */
1524 Mem
*pVar
; /* Value being transferred */
1526 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1527 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==sqlite3VListNumToName(p
->pVList
,pOp
->p1
) );
1528 pVar
= &p
->aVar
[pOp
->p1
- 1];
1529 if( sqlite3VdbeMemTooBig(pVar
) ){
1532 pOut
= &aMem
[pOp
->p2
];
1533 if( VdbeMemDynamic(pOut
) ) sqlite3VdbeMemSetNull(pOut
);
1534 memcpy(pOut
, pVar
, MEMCELLSIZE
);
1535 pOut
->flags
&= ~(MEM_Dyn
|MEM_Ephem
);
1536 pOut
->flags
|= MEM_Static
|MEM_FromBind
;
1537 UPDATE_MAX_BLOBSIZE(pOut
);
1541 /* Opcode: Move P1 P2 P3 * *
1542 ** Synopsis: r[P2@P3]=r[P1@P3]
1544 ** Move the P3 values in register P1..P1+P3-1 over into
1545 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1546 ** left holding a NULL. It is an error for register ranges
1547 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1548 ** for P3 to be less than 1.
1551 int n
; /* Number of registers left to copy */
1552 int p1
; /* Register to copy from */
1553 int p2
; /* Register to copy to */
1558 assert( n
>0 && p1
>0 && p2
>0 );
1559 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1564 assert( pOut
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1565 assert( pIn1
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1566 assert( memIsValid(pIn1
) );
1567 memAboutToChange(p
, pOut
);
1568 sqlite3VdbeMemMove(pOut
, pIn1
);
1570 pIn1
->pScopyFrom
= 0;
1572 for(i
=1; i
<p
->nMem
; i
++){
1573 if( aMem
[i
].pScopyFrom
==pIn1
){
1574 aMem
[i
].pScopyFrom
= pOut
;
1579 Deephemeralize(pOut
);
1580 REGISTER_TRACE(p2
++, pOut
);
1587 /* Opcode: Copy P1 P2 P3 * P5
1588 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1590 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1592 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1593 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1594 ** be merged. The 0x0001 bit is used by the query planner and does not
1595 ** come into play during query execution.
1597 ** This instruction makes a deep copy of the value. A duplicate
1598 ** is made of any string or blob constant. See also OP_SCopy.
1604 pIn1
= &aMem
[pOp
->p1
];
1605 pOut
= &aMem
[pOp
->p2
];
1606 assert( pOut
!=pIn1
);
1608 memAboutToChange(p
, pOut
);
1609 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1610 Deephemeralize(pOut
);
1611 if( (pOut
->flags
& MEM_Subtype
)!=0 && (pOp
->p5
& 0x0002)!=0 ){
1612 pOut
->flags
&= ~MEM_Subtype
;
1615 pOut
->pScopyFrom
= 0;
1617 REGISTER_TRACE(pOp
->p2
+pOp
->p3
-n
, pOut
);
1618 if( (n
--)==0 ) break;
1625 /* Opcode: SCopy P1 P2 * * *
1626 ** Synopsis: r[P2]=r[P1]
1628 ** Make a shallow copy of register P1 into register P2.
1630 ** This instruction makes a shallow copy of the value. If the value
1631 ** is a string or blob, then the copy is only a pointer to the
1632 ** original and hence if the original changes so will the copy.
1633 ** Worse, if the original is deallocated, the copy becomes invalid.
1634 ** Thus the program must guarantee that the original will not change
1635 ** during the lifetime of the copy. Use OP_Copy to make a complete
1638 case OP_SCopy
: { /* out2 */
1639 pIn1
= &aMem
[pOp
->p1
];
1640 pOut
= &aMem
[pOp
->p2
];
1641 assert( pOut
!=pIn1
);
1642 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1644 pOut
->pScopyFrom
= pIn1
;
1645 pOut
->mScopyFlags
= pIn1
->flags
;
1650 /* Opcode: IntCopy P1 P2 * * *
1651 ** Synopsis: r[P2]=r[P1]
1653 ** Transfer the integer value held in register P1 into register P2.
1655 ** This is an optimized version of SCopy that works only for integer
1658 case OP_IntCopy
: { /* out2 */
1659 pIn1
= &aMem
[pOp
->p1
];
1660 assert( (pIn1
->flags
& MEM_Int
)!=0 );
1661 pOut
= &aMem
[pOp
->p2
];
1662 sqlite3VdbeMemSetInt64(pOut
, pIn1
->u
.i
);
1666 /* Opcode: FkCheck * * * * *
1668 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1669 ** foreign key constraint violations. If there are no foreign key
1670 ** constraint violations, this is a no-op.
1672 ** FK constraint violations are also checked when the prepared statement
1673 ** exits. This opcode is used to raise foreign key constraint errors prior
1674 ** to returning results such as a row change count or the result of a
1675 ** RETURNING clause.
1678 if( (rc
= sqlite3VdbeCheckFk(p
,0))!=SQLITE_OK
){
1679 goto abort_due_to_error
;
1684 /* Opcode: ResultRow P1 P2 * * *
1685 ** Synopsis: output=r[P1@P2]
1687 ** The registers P1 through P1+P2-1 contain a single row of
1688 ** results. This opcode causes the sqlite3_step() call to terminate
1689 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1690 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1693 case OP_ResultRow
: {
1694 assert( p
->nResColumn
==pOp
->p2
);
1695 assert( pOp
->p1
>0 || CORRUPT_DB
);
1696 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
1698 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1699 p
->pResultRow
= &aMem
[pOp
->p1
];
1702 Mem
*pMem
= p
->pResultRow
;
1704 for(i
=0; i
<pOp
->p2
; i
++){
1705 assert( memIsValid(&pMem
[i
]) );
1706 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1707 /* The registers in the result will not be used again when the
1708 ** prepared statement restarts. This is because sqlite3_column()
1709 ** APIs might have caused type conversions of made other changes to
1710 ** the register values. Therefore, we can go ahead and break any
1711 ** OP_SCopy dependencies. */
1712 pMem
[i
].pScopyFrom
= 0;
1716 if( db
->mallocFailed
) goto no_mem
;
1717 if( db
->mTrace
& SQLITE_TRACE_ROW
){
1718 db
->trace
.xV2(SQLITE_TRACE_ROW
, db
->pTraceArg
, p
, 0);
1720 p
->pc
= (int)(pOp
- aOp
) + 1;
1725 /* Opcode: Concat P1 P2 P3 * *
1726 ** Synopsis: r[P3]=r[P2]+r[P1]
1728 ** Add the text in register P1 onto the end of the text in
1729 ** register P2 and store the result in register P3.
1730 ** If either the P1 or P2 text are NULL then store NULL in P3.
1734 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1735 ** if P3 is the same register as P2, the implementation is able
1736 ** to avoid a memcpy().
1738 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1739 i64 nByte
; /* Total size of the output string or blob */
1740 u16 flags1
; /* Initial flags for P1 */
1741 u16 flags2
; /* Initial flags for P2 */
1743 pIn1
= &aMem
[pOp
->p1
];
1744 pIn2
= &aMem
[pOp
->p2
];
1745 pOut
= &aMem
[pOp
->p3
];
1746 testcase( pOut
==pIn2
);
1747 assert( pIn1
!=pOut
);
1748 flags1
= pIn1
->flags
;
1749 testcase( flags1
& MEM_Null
);
1750 testcase( pIn2
->flags
& MEM_Null
);
1751 if( (flags1
| pIn2
->flags
) & MEM_Null
){
1752 sqlite3VdbeMemSetNull(pOut
);
1755 if( (flags1
& (MEM_Str
|MEM_Blob
))==0 ){
1756 if( sqlite3VdbeMemStringify(pIn1
,encoding
,0) ) goto no_mem
;
1757 flags1
= pIn1
->flags
& ~MEM_Str
;
1758 }else if( (flags1
& MEM_Zero
)!=0 ){
1759 if( sqlite3VdbeMemExpandBlob(pIn1
) ) goto no_mem
;
1760 flags1
= pIn1
->flags
& ~MEM_Str
;
1762 flags2
= pIn2
->flags
;
1763 if( (flags2
& (MEM_Str
|MEM_Blob
))==0 ){
1764 if( sqlite3VdbeMemStringify(pIn2
,encoding
,0) ) goto no_mem
;
1765 flags2
= pIn2
->flags
& ~MEM_Str
;
1766 }else if( (flags2
& MEM_Zero
)!=0 ){
1767 if( sqlite3VdbeMemExpandBlob(pIn2
) ) goto no_mem
;
1768 flags2
= pIn2
->flags
& ~MEM_Str
;
1770 nByte
= pIn1
->n
+ pIn2
->n
;
1771 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1774 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1777 MemSetTypeFlag(pOut
, MEM_Str
);
1779 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1780 assert( (pIn2
->flags
& MEM_Dyn
) == (flags2
& MEM_Dyn
) );
1781 pIn2
->flags
= flags2
;
1783 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1784 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
1785 pIn1
->flags
= flags1
;
1786 if( encoding
>SQLITE_UTF8
) nByte
&= ~1;
1788 pOut
->z
[nByte
+1] = 0;
1789 pOut
->flags
|= MEM_Term
;
1790 pOut
->n
= (int)nByte
;
1791 pOut
->enc
= encoding
;
1792 UPDATE_MAX_BLOBSIZE(pOut
);
1796 /* Opcode: Add P1 P2 P3 * *
1797 ** Synopsis: r[P3]=r[P1]+r[P2]
1799 ** Add the value in register P1 to the value in register P2
1800 ** and store the result in register P3.
1801 ** If either input is NULL, the result is NULL.
1803 /* Opcode: Multiply P1 P2 P3 * *
1804 ** Synopsis: r[P3]=r[P1]*r[P2]
1807 ** Multiply the value in register P1 by the value in register P2
1808 ** and store the result in register P3.
1809 ** If either input is NULL, the result is NULL.
1811 /* Opcode: Subtract P1 P2 P3 * *
1812 ** Synopsis: r[P3]=r[P2]-r[P1]
1814 ** Subtract the value in register P1 from the value in register P2
1815 ** and store the result in register P3.
1816 ** If either input is NULL, the result is NULL.
1818 /* Opcode: Divide P1 P2 P3 * *
1819 ** Synopsis: r[P3]=r[P2]/r[P1]
1821 ** Divide the value in register P1 by the value in register P2
1822 ** and store the result in register P3 (P3=P2/P1). If the value in
1823 ** register P1 is zero, then the result is NULL. If either input is
1824 ** NULL, the result is NULL.
1826 /* Opcode: Remainder P1 P2 P3 * *
1827 ** Synopsis: r[P3]=r[P2]%r[P1]
1829 ** Compute the remainder after integer register P2 is divided by
1830 ** register P1 and store the result in register P3.
1831 ** If the value in register P1 is zero the result is NULL.
1832 ** If either operand is NULL, the result is NULL.
1834 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1835 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1836 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1837 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1838 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1839 u16 type1
; /* Numeric type of left operand */
1840 u16 type2
; /* Numeric type of right operand */
1841 i64 iA
; /* Integer value of left operand */
1842 i64 iB
; /* Integer value of right operand */
1843 double rA
; /* Real value of left operand */
1844 double rB
; /* Real value of right operand */
1846 pIn1
= &aMem
[pOp
->p1
];
1847 type1
= pIn1
->flags
;
1848 pIn2
= &aMem
[pOp
->p2
];
1849 type2
= pIn2
->flags
;
1850 pOut
= &aMem
[pOp
->p3
];
1851 if( (type1
& type2
& MEM_Int
)!=0 ){
1855 switch( pOp
->opcode
){
1856 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1857 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1858 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1860 if( iA
==0 ) goto arithmetic_result_is_null
;
1861 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1866 if( iA
==0 ) goto arithmetic_result_is_null
;
1867 if( iA
==-1 ) iA
= 1;
1873 MemSetTypeFlag(pOut
, MEM_Int
);
1874 }else if( ((type1
| type2
) & MEM_Null
)!=0 ){
1875 goto arithmetic_result_is_null
;
1877 type1
= numericType(pIn1
);
1878 type2
= numericType(pIn2
);
1879 if( (type1
& type2
& MEM_Int
)!=0 ) goto int_math
;
1881 rA
= sqlite3VdbeRealValue(pIn1
);
1882 rB
= sqlite3VdbeRealValue(pIn2
);
1883 switch( pOp
->opcode
){
1884 case OP_Add
: rB
+= rA
; break;
1885 case OP_Subtract
: rB
-= rA
; break;
1886 case OP_Multiply
: rB
*= rA
; break;
1888 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1889 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1894 iA
= sqlite3VdbeIntValue(pIn1
);
1895 iB
= sqlite3VdbeIntValue(pIn2
);
1896 if( iA
==0 ) goto arithmetic_result_is_null
;
1897 if( iA
==-1 ) iA
= 1;
1898 rB
= (double)(iB
% iA
);
1902 #ifdef SQLITE_OMIT_FLOATING_POINT
1904 MemSetTypeFlag(pOut
, MEM_Int
);
1906 if( sqlite3IsNaN(rB
) ){
1907 goto arithmetic_result_is_null
;
1910 MemSetTypeFlag(pOut
, MEM_Real
);
1915 arithmetic_result_is_null
:
1916 sqlite3VdbeMemSetNull(pOut
);
1920 /* Opcode: CollSeq P1 * * P4
1922 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1923 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1924 ** be returned. This is used by the built-in min(), max() and nullif()
1927 ** If P1 is not zero, then it is a register that a subsequent min() or
1928 ** max() aggregate will set to 1 if the current row is not the minimum or
1929 ** maximum. The P1 register is initialized to 0 by this instruction.
1931 ** The interface used by the implementation of the aforementioned functions
1932 ** to retrieve the collation sequence set by this opcode is not available
1933 ** publicly. Only built-in functions have access to this feature.
1936 assert( pOp
->p4type
==P4_COLLSEQ
);
1938 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1943 /* Opcode: BitAnd P1 P2 P3 * *
1944 ** Synopsis: r[P3]=r[P1]&r[P2]
1946 ** Take the bit-wise AND of the values in register P1 and P2 and
1947 ** store the result in register P3.
1948 ** If either input is NULL, the result is NULL.
1950 /* Opcode: BitOr P1 P2 P3 * *
1951 ** Synopsis: r[P3]=r[P1]|r[P2]
1953 ** Take the bit-wise OR of the values in register P1 and P2 and
1954 ** store the result in register P3.
1955 ** If either input is NULL, the result is NULL.
1957 /* Opcode: ShiftLeft P1 P2 P3 * *
1958 ** Synopsis: r[P3]=r[P2]<<r[P1]
1960 ** Shift the integer value in register P2 to the left by the
1961 ** number of bits specified by the integer in register P1.
1962 ** Store the result in register P3.
1963 ** If either input is NULL, the result is NULL.
1965 /* Opcode: ShiftRight P1 P2 P3 * *
1966 ** Synopsis: r[P3]=r[P2]>>r[P1]
1968 ** Shift the integer value in register P2 to the right by the
1969 ** number of bits specified by the integer in register P1.
1970 ** Store the result in register P3.
1971 ** If either input is NULL, the result is NULL.
1973 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1974 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1975 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1976 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1982 pIn1
= &aMem
[pOp
->p1
];
1983 pIn2
= &aMem
[pOp
->p2
];
1984 pOut
= &aMem
[pOp
->p3
];
1985 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1986 sqlite3VdbeMemSetNull(pOut
);
1989 iA
= sqlite3VdbeIntValue(pIn2
);
1990 iB
= sqlite3VdbeIntValue(pIn1
);
1992 if( op
==OP_BitAnd
){
1994 }else if( op
==OP_BitOr
){
1997 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1999 /* If shifting by a negative amount, shift in the other direction */
2001 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
2002 op
= 2*OP_ShiftLeft
+ 1 - op
;
2003 iB
= iB
>(-64) ? -iB
: 64;
2007 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
2009 memcpy(&uA
, &iA
, sizeof(uA
));
2010 if( op
==OP_ShiftLeft
){
2014 /* Sign-extend on a right shift of a negative number */
2015 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
2017 memcpy(&iA
, &uA
, sizeof(iA
));
2021 MemSetTypeFlag(pOut
, MEM_Int
);
2025 /* Opcode: AddImm P1 P2 * * *
2026 ** Synopsis: r[P1]=r[P1]+P2
2028 ** Add the constant P2 to the value in register P1.
2029 ** The result is always an integer.
2031 ** To force any register to be an integer, just add 0.
2033 case OP_AddImm
: { /* in1 */
2034 pIn1
= &aMem
[pOp
->p1
];
2035 memAboutToChange(p
, pIn1
);
2036 sqlite3VdbeMemIntegerify(pIn1
);
2037 *(u64
*)&pIn1
->u
.i
+= (u64
)pOp
->p2
;
2041 /* Opcode: MustBeInt P1 P2 * * *
2043 ** Force the value in register P1 to be an integer. If the value
2044 ** in P1 is not an integer and cannot be converted into an integer
2045 ** without data loss, then jump immediately to P2, or if P2==0
2046 ** raise an SQLITE_MISMATCH exception.
2048 case OP_MustBeInt
: { /* jump, in1 */
2049 pIn1
= &aMem
[pOp
->p1
];
2050 if( (pIn1
->flags
& MEM_Int
)==0 ){
2051 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
2052 if( (pIn1
->flags
& MEM_Int
)==0 ){
2053 VdbeBranchTaken(1, 2);
2055 rc
= SQLITE_MISMATCH
;
2056 goto abort_due_to_error
;
2062 VdbeBranchTaken(0, 2);
2063 MemSetTypeFlag(pIn1
, MEM_Int
);
2067 #ifndef SQLITE_OMIT_FLOATING_POINT
2068 /* Opcode: RealAffinity P1 * * * *
2070 ** If register P1 holds an integer convert it to a real value.
2072 ** This opcode is used when extracting information from a column that
2073 ** has REAL affinity. Such column values may still be stored as
2074 ** integers, for space efficiency, but after extraction we want them
2075 ** to have only a real value.
2077 case OP_RealAffinity
: { /* in1 */
2078 pIn1
= &aMem
[pOp
->p1
];
2079 if( pIn1
->flags
& (MEM_Int
|MEM_IntReal
) ){
2080 testcase( pIn1
->flags
& MEM_Int
);
2081 testcase( pIn1
->flags
& MEM_IntReal
);
2082 sqlite3VdbeMemRealify(pIn1
);
2083 REGISTER_TRACE(pOp
->p1
, pIn1
);
2089 #ifndef SQLITE_OMIT_CAST
2090 /* Opcode: Cast P1 P2 * * *
2091 ** Synopsis: affinity(r[P1])
2093 ** Force the value in register P1 to be the type defined by P2.
2096 ** <li> P2=='A' → BLOB
2097 ** <li> P2=='B' → TEXT
2098 ** <li> P2=='C' → NUMERIC
2099 ** <li> P2=='D' → INTEGER
2100 ** <li> P2=='E' → REAL
2103 ** A NULL value is not changed by this routine. It remains NULL.
2105 case OP_Cast
: { /* in1 */
2106 assert( pOp
->p2
>=SQLITE_AFF_BLOB
&& pOp
->p2
<=SQLITE_AFF_REAL
);
2107 testcase( pOp
->p2
==SQLITE_AFF_TEXT
);
2108 testcase( pOp
->p2
==SQLITE_AFF_BLOB
);
2109 testcase( pOp
->p2
==SQLITE_AFF_NUMERIC
);
2110 testcase( pOp
->p2
==SQLITE_AFF_INTEGER
);
2111 testcase( pOp
->p2
==SQLITE_AFF_REAL
);
2112 pIn1
= &aMem
[pOp
->p1
];
2113 memAboutToChange(p
, pIn1
);
2114 rc
= ExpandBlob(pIn1
);
2115 if( rc
) goto abort_due_to_error
;
2116 rc
= sqlite3VdbeMemCast(pIn1
, pOp
->p2
, encoding
);
2117 if( rc
) goto abort_due_to_error
;
2118 UPDATE_MAX_BLOBSIZE(pIn1
);
2119 REGISTER_TRACE(pOp
->p1
, pIn1
);
2122 #endif /* SQLITE_OMIT_CAST */
2124 /* Opcode: Eq P1 P2 P3 P4 P5
2125 ** Synopsis: IF r[P3]==r[P1]
2127 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2128 ** jump to address P2.
2130 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2131 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2132 ** to coerce both inputs according to this affinity before the
2133 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2134 ** affinity is used. Note that the affinity conversions are stored
2135 ** back into the input registers P1 and P3. So this opcode can cause
2136 ** persistent changes to registers P1 and P3.
2138 ** Once any conversions have taken place, and neither value is NULL,
2139 ** the values are compared. If both values are blobs then memcmp() is
2140 ** used to determine the results of the comparison. If both values
2141 ** are text, then the appropriate collating function specified in
2142 ** P4 is used to do the comparison. If P4 is not specified then
2143 ** memcmp() is used to compare text string. If both values are
2144 ** numeric, then a numeric comparison is used. If the two values
2145 ** are of different types, then numbers are considered less than
2146 ** strings and strings are considered less than blobs.
2148 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2149 ** true or false and is never NULL. If both operands are NULL then the result
2150 ** of comparison is true. If either operand is NULL then the result is false.
2151 ** If neither operand is NULL the result is the same as it would be if
2152 ** the SQLITE_NULLEQ flag were omitted from P5.
2154 ** This opcode saves the result of comparison for use by the new
2157 /* Opcode: Ne P1 P2 P3 P4 P5
2158 ** Synopsis: IF r[P3]!=r[P1]
2160 ** This works just like the Eq opcode except that the jump is taken if
2161 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2162 ** additional information.
2164 /* Opcode: Lt P1 P2 P3 P4 P5
2165 ** Synopsis: IF r[P3]<r[P1]
2167 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2168 ** jump to address P2.
2170 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2171 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2172 ** bit is clear then fall through if either operand is NULL.
2174 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2175 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2176 ** to coerce both inputs according to this affinity before the
2177 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2178 ** affinity is used. Note that the affinity conversions are stored
2179 ** back into the input registers P1 and P3. So this opcode can cause
2180 ** persistent changes to registers P1 and P3.
2182 ** Once any conversions have taken place, and neither value is NULL,
2183 ** the values are compared. If both values are blobs then memcmp() is
2184 ** used to determine the results of the comparison. If both values
2185 ** are text, then the appropriate collating function specified in
2186 ** P4 is used to do the comparison. If P4 is not specified then
2187 ** memcmp() is used to compare text string. If both values are
2188 ** numeric, then a numeric comparison is used. If the two values
2189 ** are of different types, then numbers are considered less than
2190 ** strings and strings are considered less than blobs.
2192 ** This opcode saves the result of comparison for use by the new
2195 /* Opcode: Le P1 P2 P3 P4 P5
2196 ** Synopsis: IF r[P3]<=r[P1]
2198 ** This works just like the Lt opcode except that the jump is taken if
2199 ** the content of register P3 is less than or equal to the content of
2200 ** register P1. See the Lt opcode for additional information.
2202 /* Opcode: Gt P1 P2 P3 P4 P5
2203 ** Synopsis: IF r[P3]>r[P1]
2205 ** This works just like the Lt opcode except that the jump is taken if
2206 ** the content of register P3 is greater than the content of
2207 ** register P1. See the Lt opcode for additional information.
2209 /* Opcode: Ge P1 P2 P3 P4 P5
2210 ** Synopsis: IF r[P3]>=r[P1]
2212 ** This works just like the Lt opcode except that the jump is taken if
2213 ** the content of register P3 is greater than or equal to the content of
2214 ** register P1. See the Lt opcode for additional information.
2216 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
2217 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
2218 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
2219 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
2220 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
2221 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
2222 int res
, res2
; /* Result of the comparison of pIn1 against pIn3 */
2223 char affinity
; /* Affinity to use for comparison */
2224 u16 flags1
; /* Copy of initial value of pIn1->flags */
2225 u16 flags3
; /* Copy of initial value of pIn3->flags */
2227 pIn1
= &aMem
[pOp
->p1
];
2228 pIn3
= &aMem
[pOp
->p3
];
2229 flags1
= pIn1
->flags
;
2230 flags3
= pIn3
->flags
;
2231 if( (flags1
& flags3
& MEM_Int
)!=0 ){
2232 /* Common case of comparison of two integers */
2233 if( pIn3
->u
.i
> pIn1
->u
.i
){
2234 if( sqlite3aGTb
[pOp
->opcode
] ){
2235 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2239 VVA_ONLY( iCompareIsInit
= 1; )
2240 }else if( pIn3
->u
.i
< pIn1
->u
.i
){
2241 if( sqlite3aLTb
[pOp
->opcode
] ){
2242 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2246 VVA_ONLY( iCompareIsInit
= 1; )
2248 if( sqlite3aEQb
[pOp
->opcode
] ){
2249 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2253 VVA_ONLY( iCompareIsInit
= 1; )
2255 VdbeBranchTaken(0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2258 if( (flags1
| flags3
)&MEM_Null
){
2259 /* One or both operands are NULL */
2260 if( pOp
->p5
& SQLITE_NULLEQ
){
2261 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2262 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2263 ** or not both operands are null.
2265 assert( (flags1
& MEM_Cleared
)==0 );
2266 assert( (pOp
->p5
& SQLITE_JUMPIFNULL
)==0 || CORRUPT_DB
);
2267 testcase( (pOp
->p5
& SQLITE_JUMPIFNULL
)!=0 );
2268 if( (flags1
&flags3
&MEM_Null
)!=0
2269 && (flags3
&MEM_Cleared
)==0
2271 res
= 0; /* Operands are equal */
2273 res
= ((flags3
& MEM_Null
) ? -1 : +1); /* Operands are not equal */
2276 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2277 ** then the result is always NULL.
2278 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2280 VdbeBranchTaken(2,3);
2281 if( pOp
->p5
& SQLITE_JUMPIFNULL
){
2284 iCompare
= 1; /* Operands are not equal */
2285 VVA_ONLY( iCompareIsInit
= 1; )
2289 /* Neither operand is NULL and we couldn't do the special high-speed
2290 ** integer comparison case. So do a general-case comparison. */
2291 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
2292 if( affinity
>=SQLITE_AFF_NUMERIC
){
2293 if( (flags1
| flags3
)&MEM_Str
){
2294 if( (flags1
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2295 applyNumericAffinity(pIn1
,0);
2296 assert( flags3
==pIn3
->flags
|| CORRUPT_DB
);
2297 flags3
= pIn3
->flags
;
2299 if( (flags3
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2300 applyNumericAffinity(pIn3
,0);
2303 }else if( affinity
==SQLITE_AFF_TEXT
&& ((flags1
| flags3
) & MEM_Str
)!=0 ){
2304 if( (flags1
& MEM_Str
)==0 && (flags1
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2305 testcase( pIn1
->flags
& MEM_Int
);
2306 testcase( pIn1
->flags
& MEM_Real
);
2307 testcase( pIn1
->flags
& MEM_IntReal
);
2308 sqlite3VdbeMemStringify(pIn1
, encoding
, 1);
2309 testcase( (flags1
&MEM_Dyn
) != (pIn1
->flags
&MEM_Dyn
) );
2310 flags1
= (pIn1
->flags
& ~MEM_TypeMask
) | (flags1
& MEM_TypeMask
);
2311 if( NEVER(pIn1
==pIn3
) ) flags3
= flags1
| MEM_Str
;
2313 if( (flags3
& MEM_Str
)==0 && (flags3
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2314 testcase( pIn3
->flags
& MEM_Int
);
2315 testcase( pIn3
->flags
& MEM_Real
);
2316 testcase( pIn3
->flags
& MEM_IntReal
);
2317 sqlite3VdbeMemStringify(pIn3
, encoding
, 1);
2318 testcase( (flags3
&MEM_Dyn
) != (pIn3
->flags
&MEM_Dyn
) );
2319 flags3
= (pIn3
->flags
& ~MEM_TypeMask
) | (flags3
& MEM_TypeMask
);
2322 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
2323 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
2326 /* At this point, res is negative, zero, or positive if reg[P1] is
2327 ** less than, equal to, or greater than reg[P3], respectively. Compute
2328 ** the answer to this operator in res2, depending on what the comparison
2329 ** operator actually is. The next block of code depends on the fact
2330 ** that the 6 comparison operators are consecutive integers in this
2331 ** order: NE, EQ, GT, LE, LT, GE */
2332 assert( OP_Eq
==OP_Ne
+1 ); assert( OP_Gt
==OP_Ne
+2 ); assert( OP_Le
==OP_Ne
+3 );
2333 assert( OP_Lt
==OP_Ne
+4 ); assert( OP_Ge
==OP_Ne
+5 );
2335 res2
= sqlite3aLTb
[pOp
->opcode
];
2337 res2
= sqlite3aEQb
[pOp
->opcode
];
2339 res2
= sqlite3aGTb
[pOp
->opcode
];
2342 VVA_ONLY( iCompareIsInit
= 1; )
2344 /* Undo any changes made by applyAffinity() to the input registers. */
2345 assert( (pIn3
->flags
& MEM_Dyn
) == (flags3
& MEM_Dyn
) );
2346 pIn3
->flags
= flags3
;
2347 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
2348 pIn1
->flags
= flags1
;
2350 VdbeBranchTaken(res2
!=0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2357 /* Opcode: ElseEq * P2 * * *
2359 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2360 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2361 ** opcodes are allowed to occur between this instruction and the previous
2364 ** If the result of an OP_Eq comparison on the same two operands as
2365 ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If
2366 ** the result of an OP_Eq comparison on the two previous operands
2367 ** would have been false or NULL, then fall through.
2369 case OP_ElseEq
: { /* same as TK_ESCAPE, jump */
2372 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2373 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2375 for(iAddr
= (int)(pOp
- aOp
) - 1; ALWAYS(iAddr
>=0); iAddr
--){
2376 if( aOp
[iAddr
].opcode
==OP_ReleaseReg
) continue;
2377 assert( aOp
[iAddr
].opcode
==OP_Lt
|| aOp
[iAddr
].opcode
==OP_Gt
);
2380 #endif /* SQLITE_DEBUG */
2381 assert( iCompareIsInit
);
2382 VdbeBranchTaken(iCompare
==0, 2);
2383 if( iCompare
==0 ) goto jump_to_p2
;
2388 /* Opcode: Permutation * * * P4 *
2390 ** Set the permutation used by the OP_Compare operator in the next
2391 ** instruction. The permutation is stored in the P4 operand.
2393 ** The permutation is only valid for the next opcode which must be
2394 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2396 ** The first integer in the P4 integer array is the length of the array
2397 ** and does not become part of the permutation.
2399 case OP_Permutation
: {
2400 assert( pOp
->p4type
==P4_INTARRAY
);
2401 assert( pOp
->p4
.ai
);
2402 assert( pOp
[1].opcode
==OP_Compare
);
2403 assert( pOp
[1].p5
& OPFLAG_PERMUTE
);
2407 /* Opcode: Compare P1 P2 P3 P4 P5
2408 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2410 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2411 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2412 ** the comparison for use by the next OP_Jump instruct.
2414 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2415 ** determined by the most recent OP_Permutation operator. If the
2416 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2419 ** P4 is a KeyInfo structure that defines collating sequences and sort
2420 ** orders for the comparison. The permutation applies to registers
2421 ** only. The KeyInfo elements are used sequentially.
2423 ** The comparison is a sort comparison, so NULLs compare equal,
2424 ** NULLs are less than numbers, numbers are less than strings,
2425 ** and strings are less than blobs.
2427 ** This opcode must be immediately followed by an OP_Jump opcode.
2434 const KeyInfo
*pKeyInfo
;
2436 CollSeq
*pColl
; /* Collating sequence to use on this term */
2437 int bRev
; /* True for DESCENDING sort order */
2438 u32
*aPermute
; /* The permutation */
2440 if( (pOp
->p5
& OPFLAG_PERMUTE
)==0 ){
2444 assert( pOp
[-1].opcode
==OP_Permutation
);
2445 assert( pOp
[-1].p4type
==P4_INTARRAY
);
2446 aPermute
= pOp
[-1].p4
.ai
+ 1;
2447 assert( aPermute
!=0 );
2450 pKeyInfo
= pOp
->p4
.pKeyInfo
;
2452 assert( pKeyInfo
!=0 );
2458 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>(u32
)mx
) mx
= aPermute
[k
];
2459 assert( p1
>0 && p1
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2460 assert( p2
>0 && p2
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2462 assert( p1
>0 && p1
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2463 assert( p2
>0 && p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2465 #endif /* SQLITE_DEBUG */
2467 idx
= aPermute
? aPermute
[i
] : (u32
)i
;
2468 assert( memIsValid(&aMem
[p1
+idx
]) );
2469 assert( memIsValid(&aMem
[p2
+idx
]) );
2470 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
2471 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
2472 assert( i
<pKeyInfo
->nKeyField
);
2473 pColl
= pKeyInfo
->aColl
[i
];
2474 bRev
= (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
);
2475 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
2476 VVA_ONLY( iCompareIsInit
= 1; )
2478 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
2479 && ((aMem
[p1
+idx
].flags
& MEM_Null
) || (aMem
[p2
+idx
].flags
& MEM_Null
))
2481 iCompare
= -iCompare
;
2483 if( bRev
) iCompare
= -iCompare
;
2487 assert( pOp
[1].opcode
==OP_Jump
);
2491 /* Opcode: Jump P1 P2 P3 * *
2493 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2494 ** in the most recent OP_Compare instruction the P1 vector was less than,
2495 ** equal to, or greater than the P2 vector, respectively.
2497 ** This opcode must immediately follow an OP_Compare opcode.
2499 case OP_Jump
: { /* jump */
2500 assert( pOp
>aOp
&& pOp
[-1].opcode
==OP_Compare
);
2501 assert( iCompareIsInit
);
2503 VdbeBranchTaken(0,4); pOp
= &aOp
[pOp
->p1
- 1];
2504 }else if( iCompare
==0 ){
2505 VdbeBranchTaken(1,4); pOp
= &aOp
[pOp
->p2
- 1];
2507 VdbeBranchTaken(2,4); pOp
= &aOp
[pOp
->p3
- 1];
2512 /* Opcode: And P1 P2 P3 * *
2513 ** Synopsis: r[P3]=(r[P1] && r[P2])
2515 ** Take the logical AND of the values in registers P1 and P2 and
2516 ** write the result into register P3.
2518 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2519 ** the other input is NULL. A NULL and true or two NULLs give
2522 /* Opcode: Or P1 P2 P3 * *
2523 ** Synopsis: r[P3]=(r[P1] || r[P2])
2525 ** Take the logical OR of the values in register P1 and P2 and
2526 ** store the answer in register P3.
2528 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2529 ** even if the other input is NULL. A NULL and false or two NULLs
2530 ** give a NULL output.
2532 case OP_And
: /* same as TK_AND, in1, in2, out3 */
2533 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
2534 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2535 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2537 v1
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], 2);
2538 v2
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p2
], 2);
2539 if( pOp
->opcode
==OP_And
){
2540 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2541 v1
= and_logic
[v1
*3+v2
];
2543 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2544 v1
= or_logic
[v1
*3+v2
];
2546 pOut
= &aMem
[pOp
->p3
];
2548 MemSetTypeFlag(pOut
, MEM_Null
);
2551 MemSetTypeFlag(pOut
, MEM_Int
);
2556 /* Opcode: IsTrue P1 P2 P3 P4 *
2557 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2559 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2560 ** IS NOT FALSE operators.
2562 ** Interpret the value in register P1 as a boolean value. Store that
2563 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2564 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2567 ** The logic is summarized like this:
2570 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2571 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2572 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2573 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2576 case OP_IsTrue
: { /* in1, out2 */
2577 assert( pOp
->p4type
==P4_INT32
);
2578 assert( pOp
->p4
.i
==0 || pOp
->p4
.i
==1 );
2579 assert( pOp
->p3
==0 || pOp
->p3
==1 );
2580 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p2
],
2581 sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
) ^ pOp
->p4
.i
);
2585 /* Opcode: Not P1 P2 * * *
2586 ** Synopsis: r[P2]= !r[P1]
2588 ** Interpret the value in register P1 as a boolean value. Store the
2589 ** boolean complement in register P2. If the value in register P1 is
2590 ** NULL, then a NULL is stored in P2.
2592 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2593 pIn1
= &aMem
[pOp
->p1
];
2594 pOut
= &aMem
[pOp
->p2
];
2595 if( (pIn1
->flags
& MEM_Null
)==0 ){
2596 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeBooleanValue(pIn1
,0));
2598 sqlite3VdbeMemSetNull(pOut
);
2603 /* Opcode: BitNot P1 P2 * * *
2604 ** Synopsis: r[P2]= ~r[P1]
2606 ** Interpret the content of register P1 as an integer. Store the
2607 ** ones-complement of the P1 value into register P2. If P1 holds
2608 ** a NULL then store a NULL in P2.
2610 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2611 pIn1
= &aMem
[pOp
->p1
];
2612 pOut
= &aMem
[pOp
->p2
];
2613 sqlite3VdbeMemSetNull(pOut
);
2614 if( (pIn1
->flags
& MEM_Null
)==0 ){
2615 pOut
->flags
= MEM_Int
;
2616 pOut
->u
.i
= ~sqlite3VdbeIntValue(pIn1
);
2621 /* Opcode: Once P1 P2 * * *
2623 ** Fall through to the next instruction the first time this opcode is
2624 ** encountered on each invocation of the byte-code program. Jump to P2
2625 ** on the second and all subsequent encounters during the same invocation.
2627 ** Top-level programs determine first invocation by comparing the P1
2628 ** operand against the P1 operand on the OP_Init opcode at the beginning
2629 ** of the program. If the P1 values differ, then fall through and make
2630 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2631 ** the same then take the jump.
2633 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2634 ** whether or not the jump should be taken. The bitmask is necessary
2635 ** because the self-altering code trick does not work for recursive
2638 case OP_Once
: { /* jump */
2639 u32 iAddr
; /* Address of this instruction */
2640 assert( p
->aOp
[0].opcode
==OP_Init
);
2642 iAddr
= (int)(pOp
- p
->aOp
);
2643 if( (p
->pFrame
->aOnce
[iAddr
/8] & (1<<(iAddr
& 7)))!=0 ){
2644 VdbeBranchTaken(1, 2);
2647 p
->pFrame
->aOnce
[iAddr
/8] |= 1<<(iAddr
& 7);
2649 if( p
->aOp
[0].p1
==pOp
->p1
){
2650 VdbeBranchTaken(1, 2);
2654 VdbeBranchTaken(0, 2);
2655 pOp
->p1
= p
->aOp
[0].p1
;
2659 /* Opcode: If P1 P2 P3 * *
2661 ** Jump to P2 if the value in register P1 is true. The value
2662 ** is considered true if it is numeric and non-zero. If the value
2663 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2665 case OP_If
: { /* jump, in1 */
2667 c
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
);
2668 VdbeBranchTaken(c
!=0, 2);
2669 if( c
) goto jump_to_p2
;
2673 /* Opcode: IfNot P1 P2 P3 * *
2675 ** Jump to P2 if the value in register P1 is False. The value
2676 ** is considered false if it has a numeric value of zero. If the value
2677 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2679 case OP_IfNot
: { /* jump, in1 */
2681 c
= !sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], !pOp
->p3
);
2682 VdbeBranchTaken(c
!=0, 2);
2683 if( c
) goto jump_to_p2
;
2687 /* Opcode: IsNull P1 P2 * * *
2688 ** Synopsis: if r[P1]==NULL goto P2
2690 ** Jump to P2 if the value in register P1 is NULL.
2692 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2693 pIn1
= &aMem
[pOp
->p1
];
2694 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)!=0, 2);
2695 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2701 /* Opcode: IsType P1 P2 P3 P4 P5
2702 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2704 ** Jump to P2 if the type of a column in a btree is one of the types specified
2705 ** by the P5 bitmask.
2707 ** P1 is normally a cursor on a btree for which the row decode cache is
2708 ** valid through at least column P3. In other words, there should have been
2709 ** a prior OP_Column for column P3 or greater. If the cursor is not valid,
2710 ** then this opcode might give spurious results.
2711 ** The the btree row has fewer than P3 columns, then use P4 as the
2714 ** If P1 is -1, then P3 is a register number and the datatype is taken
2715 ** from the value in that register.
2717 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
2718 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2719 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
2721 ** WARNING: This opcode does not reliably distinguish between NULL and REAL
2722 ** when P1>=0. If the database contains a NaN value, this opcode will think
2723 ** that the datatype is REAL when it should be NULL. When P1<0 and the value
2724 ** is already stored in register P3, then this opcode does reliably
2725 ** distinguish between NULL and REAL. The problem only arises then P1>=0.
2727 ** Take the jump to address P2 if and only if the datatype of the
2728 ** value determined by P1 and P3 corresponds to one of the bits in the
2732 case OP_IsType
: { /* jump */
2737 assert( pOp
->p1
>=(-1) && pOp
->p1
<p
->nCursor
);
2738 assert( pOp
->p1
>=0 || (pOp
->p3
>=0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)) );
2740 pC
= p
->apCsr
[pOp
->p1
];
2742 assert( pOp
->p3
>=0 );
2743 if( pOp
->p3
<pC
->nHdrParsed
){
2744 serialType
= pC
->aType
[pOp
->p3
];
2745 if( serialType
>=12 ){
2747 typeMask
= 0x04; /* SQLITE_TEXT */
2749 typeMask
= 0x08; /* SQLITE_BLOB */
2752 static const unsigned char aMask
[] = {
2753 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
2754 0x01, 0x01, 0x10, 0x10
2756 testcase( serialType
==0 );
2757 testcase( serialType
==1 );
2758 testcase( serialType
==2 );
2759 testcase( serialType
==3 );
2760 testcase( serialType
==4 );
2761 testcase( serialType
==5 );
2762 testcase( serialType
==6 );
2763 testcase( serialType
==7 );
2764 testcase( serialType
==8 );
2765 testcase( serialType
==9 );
2766 testcase( serialType
==10 );
2767 testcase( serialType
==11 );
2768 typeMask
= aMask
[serialType
];
2771 typeMask
= 1 << (pOp
->p4
.i
- 1);
2772 testcase( typeMask
==0x01 );
2773 testcase( typeMask
==0x02 );
2774 testcase( typeMask
==0x04 );
2775 testcase( typeMask
==0x08 );
2776 testcase( typeMask
==0x10 );
2779 assert( memIsValid(&aMem
[pOp
->p3
]) );
2780 typeMask
= 1 << (sqlite3_value_type((sqlite3_value
*)&aMem
[pOp
->p3
])-1);
2781 testcase( typeMask
==0x01 );
2782 testcase( typeMask
==0x02 );
2783 testcase( typeMask
==0x04 );
2784 testcase( typeMask
==0x08 );
2785 testcase( typeMask
==0x10 );
2787 VdbeBranchTaken( (typeMask
& pOp
->p5
)!=0, 2);
2788 if( typeMask
& pOp
->p5
){
2794 /* Opcode: ZeroOrNull P1 P2 P3 * *
2795 ** Synopsis: r[P2] = 0 OR NULL
2797 ** If both registers P1 and P3 are NOT NULL, then store a zero in
2798 ** register P2. If either registers P1 or P3 are NULL then put
2799 ** a NULL in register P2.
2801 case OP_ZeroOrNull
: { /* in1, in2, out2, in3 */
2802 if( (aMem
[pOp
->p1
].flags
& MEM_Null
)!=0
2803 || (aMem
[pOp
->p3
].flags
& MEM_Null
)!=0
2805 sqlite3VdbeMemSetNull(aMem
+ pOp
->p2
);
2807 sqlite3VdbeMemSetInt64(aMem
+ pOp
->p2
, 0);
2812 /* Opcode: NotNull P1 P2 * * *
2813 ** Synopsis: if r[P1]!=NULL goto P2
2815 ** Jump to P2 if the value in register P1 is not NULL.
2817 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2818 pIn1
= &aMem
[pOp
->p1
];
2819 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)==0, 2);
2820 if( (pIn1
->flags
& MEM_Null
)==0 ){
2826 /* Opcode: IfNullRow P1 P2 P3 * *
2827 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2829 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2830 ** If it is, then set register P3 to NULL and jump immediately to P2.
2831 ** If P1 is not on a NULL row, then fall through without making any
2834 ** If P1 is not an open cursor, then this opcode is a no-op.
2836 case OP_IfNullRow
: { /* jump */
2838 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2839 pC
= p
->apCsr
[pOp
->p1
];
2840 if( pC
&& pC
->nullRow
){
2841 sqlite3VdbeMemSetNull(aMem
+ pOp
->p3
);
2847 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2848 /* Opcode: Offset P1 P2 P3 * *
2849 ** Synopsis: r[P3] = sqlite_offset(P1)
2851 ** Store in register r[P3] the byte offset into the database file that is the
2852 ** start of the payload for the record at which that cursor P1 is currently
2855 ** P2 is the column number for the argument to the sqlite_offset() function.
2856 ** This opcode does not use P2 itself, but the P2 value is used by the
2857 ** code generator. The P1, P2, and P3 operands to this opcode are the
2858 ** same as for OP_Column.
2860 ** This opcode is only available if SQLite is compiled with the
2861 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2863 case OP_Offset
: { /* out3 */
2864 VdbeCursor
*pC
; /* The VDBE cursor */
2865 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2866 pC
= p
->apCsr
[pOp
->p1
];
2867 pOut
= &p
->aMem
[pOp
->p3
];
2868 if( pC
==0 || pC
->eCurType
!=CURTYPE_BTREE
){
2869 sqlite3VdbeMemSetNull(pOut
);
2871 if( pC
->deferredMoveto
){
2872 rc
= sqlite3VdbeFinishMoveto(pC
);
2873 if( rc
) goto abort_due_to_error
;
2875 if( sqlite3BtreeEof(pC
->uc
.pCursor
) ){
2876 sqlite3VdbeMemSetNull(pOut
);
2878 sqlite3VdbeMemSetInt64(pOut
, sqlite3BtreeOffset(pC
->uc
.pCursor
));
2883 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2885 /* Opcode: Column P1 P2 P3 P4 P5
2886 ** Synopsis: r[P3]=PX cursor P1 column P2
2888 ** Interpret the data that cursor P1 points to as a structure built using
2889 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2890 ** information about the format of the data.) Extract the P2-th column
2891 ** from this record. If there are less than (P2+1)
2892 ** values in the record, extract a NULL.
2894 ** The value extracted is stored in register P3.
2896 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2897 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2900 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
2901 ** to only be used by the length() function or the equivalent. The content
2902 ** of large blobs is not loaded, thus saving CPU cycles. If the
2903 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
2904 ** typeof() function or the IS NULL or IS NOT NULL operators or the
2905 ** equivalent. In this case, all content loading can be omitted.
2907 case OP_Column
: { /* ncycle */
2908 u32 p2
; /* column number to retrieve */
2909 VdbeCursor
*pC
; /* The VDBE cursor */
2910 BtCursor
*pCrsr
; /* The B-Tree cursor corresponding to pC */
2911 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2912 int len
; /* The length of the serialized data for the column */
2913 int i
; /* Loop counter */
2914 Mem
*pDest
; /* Where to write the extracted value */
2915 Mem sMem
; /* For storing the record being decoded */
2916 const u8
*zData
; /* Part of the record being decoded */
2917 const u8
*zHdr
; /* Next unparsed byte of the header */
2918 const u8
*zEndHdr
; /* Pointer to first byte after the header */
2919 u64 offset64
; /* 64-bit offset */
2920 u32 t
; /* A type code from the record header */
2921 Mem
*pReg
; /* PseudoTable input register */
2923 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2924 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
2925 pC
= p
->apCsr
[pOp
->p1
];
2930 assert( p2
<(u32
)pC
->nField
2931 || (pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
==0) );
2932 aOffset
= pC
->aOffset
;
2933 assert( aOffset
==pC
->aType
+pC
->nField
);
2934 assert( pC
->eCurType
!=CURTYPE_VTAB
);
2935 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
2936 assert( pC
->eCurType
!=CURTYPE_SORTER
);
2938 if( pC
->cacheStatus
!=p
->cacheCtr
){ /*OPTIMIZATION-IF-FALSE*/
2940 if( pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
>0 ){
2941 /* For the special case of as pseudo-cursor, the seekResult field
2942 ** identifies the register that holds the record */
2943 pReg
= &aMem
[pC
->seekResult
];
2944 assert( pReg
->flags
& MEM_Blob
);
2945 assert( memIsValid(pReg
) );
2946 pC
->payloadSize
= pC
->szRow
= pReg
->n
;
2947 pC
->aRow
= (u8
*)pReg
->z
;
2949 pDest
= &aMem
[pOp
->p3
];
2950 memAboutToChange(p
, pDest
);
2951 sqlite3VdbeMemSetNull(pDest
);
2955 pCrsr
= pC
->uc
.pCursor
;
2956 if( pC
->deferredMoveto
){
2958 assert( !pC
->isEphemeral
);
2959 if( pC
->ub
.aAltMap
&& (iMap
= pC
->ub
.aAltMap
[1+p2
])>0 ){
2960 pC
= pC
->pAltCursor
;
2962 goto op_column_restart
;
2964 rc
= sqlite3VdbeFinishMoveto(pC
);
2965 if( rc
) goto abort_due_to_error
;
2966 }else if( sqlite3BtreeCursorHasMoved(pCrsr
) ){
2967 rc
= sqlite3VdbeHandleMovedCursor(pC
);
2968 if( rc
) goto abort_due_to_error
;
2969 goto op_column_restart
;
2971 assert( pC
->eCurType
==CURTYPE_BTREE
);
2973 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2974 pC
->payloadSize
= sqlite3BtreePayloadSize(pCrsr
);
2975 pC
->aRow
= sqlite3BtreePayloadFetch(pCrsr
, &pC
->szRow
);
2976 assert( pC
->szRow
<=pC
->payloadSize
);
2977 assert( pC
->szRow
<=65536 ); /* Maximum page size is 64KiB */
2979 pC
->cacheStatus
= p
->cacheCtr
;
2980 if( (aOffset
[0] = pC
->aRow
[0])<0x80 ){
2983 pC
->iHdrOffset
= sqlite3GetVarint32(pC
->aRow
, aOffset
);
2987 if( pC
->szRow
<aOffset
[0] ){ /*OPTIMIZATION-IF-FALSE*/
2988 /* pC->aRow does not have to hold the entire row, but it does at least
2989 ** need to cover the header of the record. If pC->aRow does not contain
2990 ** the complete header, then set it to zero, forcing the header to be
2991 ** dynamically allocated. */
2995 /* Make sure a corrupt database has not given us an oversize header.
2996 ** Do this now to avoid an oversize memory allocation.
2998 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2999 ** types use so much data space that there can only be 4096 and 32 of
3000 ** them, respectively. So the maximum header length results from a
3001 ** 3-byte type for each of the maximum of 32768 columns plus three
3002 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
3004 if( aOffset
[0] > 98307 || aOffset
[0] > pC
->payloadSize
){
3005 goto op_column_corrupt
;
3008 /* This is an optimization. By skipping over the first few tests
3009 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
3010 ** measurable performance gain.
3012 ** This branch is taken even if aOffset[0]==0. Such a record is never
3013 ** generated by SQLite, and could be considered corruption, but we
3014 ** accept it for historical reasons. When aOffset[0]==0, the code this
3015 ** branch jumps to reads past the end of the record, but never more
3016 ** than a few bytes. Even if the record occurs at the end of the page
3017 ** content area, the "page header" comes after the page content and so
3018 ** this overread is harmless. Similar overreads can occur for a corrupt
3022 assert( pC
->nHdrParsed
<=p2
); /* Conditional skipped */
3023 testcase( aOffset
[0]==0 );
3024 goto op_column_read_header
;
3026 }else if( sqlite3BtreeCursorHasMoved(pC
->uc
.pCursor
) ){
3027 rc
= sqlite3VdbeHandleMovedCursor(pC
);
3028 if( rc
) goto abort_due_to_error
;
3029 goto op_column_restart
;
3032 /* Make sure at least the first p2+1 entries of the header have been
3033 ** parsed and valid information is in aOffset[] and pC->aType[].
3035 if( pC
->nHdrParsed
<=p2
){
3036 /* If there is more header available for parsing in the record, try
3037 ** to extract additional fields up through the p2+1-th field
3039 if( pC
->iHdrOffset
<aOffset
[0] ){
3040 /* Make sure zData points to enough of the record to cover the header. */
3042 memset(&sMem
, 0, sizeof(sMem
));
3043 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pC
->uc
.pCursor
,aOffset
[0],&sMem
);
3044 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3045 zData
= (u8
*)sMem
.z
;
3050 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
3051 op_column_read_header
:
3053 offset64
= aOffset
[i
];
3054 zHdr
= zData
+ pC
->iHdrOffset
;
3055 zEndHdr
= zData
+ aOffset
[0];
3056 testcase( zHdr
>=zEndHdr
);
3058 if( (pC
->aType
[i
] = t
= zHdr
[0])<0x80 ){
3060 offset64
+= sqlite3VdbeOneByteSerialTypeLen(t
);
3062 zHdr
+= sqlite3GetVarint32(zHdr
, &t
);
3064 offset64
+= sqlite3VdbeSerialTypeLen(t
);
3066 aOffset
[++i
] = (u32
)(offset64
& 0xffffffff);
3067 }while( (u32
)i
<=p2
&& zHdr
<zEndHdr
);
3069 /* The record is corrupt if any of the following are true:
3070 ** (1) the bytes of the header extend past the declared header size
3071 ** (2) the entire header was used but not all data was used
3072 ** (3) the end of the data extends beyond the end of the record.
3074 if( (zHdr
>=zEndHdr
&& (zHdr
>zEndHdr
|| offset64
!=pC
->payloadSize
))
3075 || (offset64
> pC
->payloadSize
)
3077 if( aOffset
[0]==0 ){
3081 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
3082 goto op_column_corrupt
;
3087 pC
->iHdrOffset
= (u32
)(zHdr
- zData
);
3088 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
3093 /* If after trying to extract new entries from the header, nHdrParsed is
3094 ** still not up to p2, that means that the record has fewer than p2
3095 ** columns. So the result will be either the default value or a NULL.
3097 if( pC
->nHdrParsed
<=p2
){
3098 pDest
= &aMem
[pOp
->p3
];
3099 memAboutToChange(p
, pDest
);
3100 if( pOp
->p4type
==P4_MEM
){
3101 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
3103 sqlite3VdbeMemSetNull(pDest
);
3111 /* Extract the content for the p2+1-th column. Control can only
3112 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
3115 assert( p2
<pC
->nHdrParsed
);
3116 assert( rc
==SQLITE_OK
);
3117 pDest
= &aMem
[pOp
->p3
];
3118 memAboutToChange(p
, pDest
);
3119 assert( sqlite3VdbeCheckMemInvariants(pDest
) );
3120 if( VdbeMemDynamic(pDest
) ){
3121 sqlite3VdbeMemSetNull(pDest
);
3123 assert( t
==pC
->aType
[p2
] );
3124 if( pC
->szRow
>=aOffset
[p2
+1] ){
3125 /* This is the common case where the desired content fits on the original
3126 ** page - where the content is not on an overflow page */
3127 zData
= pC
->aRow
+ aOffset
[p2
];
3129 sqlite3VdbeSerialGet(zData
, t
, pDest
);
3131 /* If the column value is a string, we need a persistent value, not
3132 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
3133 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
3135 static const u16 aFlag
[] = { MEM_Blob
, MEM_Str
|MEM_Term
};
3136 pDest
->n
= len
= (t
-12)/2;
3137 pDest
->enc
= encoding
;
3138 if( pDest
->szMalloc
< len
+2 ){
3139 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) goto too_big
;
3140 pDest
->flags
= MEM_Null
;
3141 if( sqlite3VdbeMemGrow(pDest
, len
+2, 0) ) goto no_mem
;
3143 pDest
->z
= pDest
->zMalloc
;
3145 memcpy(pDest
->z
, zData
, len
);
3147 pDest
->z
[len
+1] = 0;
3148 pDest
->flags
= aFlag
[t
&1];
3152 pDest
->enc
= encoding
;
3153 assert( pDest
->db
==db
);
3154 /* This branch happens only when content is on overflow pages */
3155 if( ((p5
= (pOp
->p5
& OPFLAG_BYTELENARG
))!=0
3156 && (p5
==OPFLAG_TYPEOFARG
3157 || (t
>=12 && ((t
&1)==0 || p5
==OPFLAG_BYTELENARG
))
3160 || sqlite3VdbeSerialTypeLen(t
)==0
3162 /* Content is irrelevant for
3163 ** 1. the typeof() function,
3164 ** 2. the length(X) function if X is a blob, and
3165 ** 3. if the content length is zero.
3166 ** So we might as well use bogus content rather than reading
3167 ** content from disk.
3169 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3170 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3171 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
3172 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3173 ** and it begins with a bunch of zeros.
3175 sqlite3VdbeSerialGet((u8
*)sqlite3CtypeMap
, t
, pDest
);
3177 rc
= vdbeColumnFromOverflow(pC
, p2
, t
, aOffset
[p2
],
3178 p
->cacheCtr
, colCacheCtr
, pDest
);
3180 if( rc
==SQLITE_NOMEM
) goto no_mem
;
3181 if( rc
==SQLITE_TOOBIG
) goto too_big
;
3182 goto abort_due_to_error
;
3188 UPDATE_MAX_BLOBSIZE(pDest
);
3189 REGISTER_TRACE(pOp
->p3
, pDest
);
3194 pOp
= &aOp
[aOp
[0].p3
-1];
3197 rc
= SQLITE_CORRUPT_BKPT
;
3198 goto abort_due_to_error
;
3202 /* Opcode: TypeCheck P1 P2 P3 P4 *
3203 ** Synopsis: typecheck(r[P1@P2])
3205 ** Apply affinities to the range of P2 registers beginning with P1.
3206 ** Take the affinities from the Table object in P4. If any value
3207 ** cannot be coerced into the correct type, then raise an error.
3209 ** This opcode is similar to OP_Affinity except that this opcode
3210 ** forces the register type to the Table column type. This is used
3211 ** to implement "strict affinity".
3213 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3214 ** is zero. When P3 is non-zero, no type checking occurs for
3215 ** static generated columns. Virtual columns are computed at query time
3216 ** and so they are never checked.
3221 ** <li> P2 should be the number of non-virtual columns in the
3223 ** <li> Table P4 should be a STRICT table.
3226 ** If any precondition is false, an assertion fault occurs.
3228 case OP_TypeCheck
: {
3233 assert( pOp
->p4type
==P4_TABLE
);
3234 pTab
= pOp
->p4
.pTab
;
3235 assert( pTab
->tabFlags
& TF_Strict
);
3236 assert( pTab
->nNVCol
==pOp
->p2
);
3238 pIn1
= &aMem
[pOp
->p1
];
3239 for(i
=0; i
<pTab
->nCol
; i
++){
3240 if( aCol
[i
].colFlags
& COLFLAG_GENERATED
){
3241 if( aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) continue;
3242 if( pOp
->p3
){ pIn1
++; continue; }
3244 assert( pIn1
< &aMem
[pOp
->p1
+pOp
->p2
] );
3245 applyAffinity(pIn1
, aCol
[i
].affinity
, encoding
);
3246 if( (pIn1
->flags
& MEM_Null
)==0 ){
3247 switch( aCol
[i
].eCType
){
3248 case COLTYPE_BLOB
: {
3249 if( (pIn1
->flags
& MEM_Blob
)==0 ) goto vdbe_type_error
;
3252 case COLTYPE_INTEGER
:
3254 if( (pIn1
->flags
& MEM_Int
)==0 ) goto vdbe_type_error
;
3257 case COLTYPE_TEXT
: {
3258 if( (pIn1
->flags
& MEM_Str
)==0 ) goto vdbe_type_error
;
3261 case COLTYPE_REAL
: {
3262 testcase( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==MEM_Real
);
3263 assert( (pIn1
->flags
& MEM_IntReal
)==0 );
3264 if( pIn1
->flags
& MEM_Int
){
3265 /* When applying REAL affinity, if the result is still an MEM_Int
3266 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3267 ** so that we keep the high-resolution integer value but know that
3268 ** the type really wants to be REAL. */
3269 testcase( pIn1
->u
.i
==140737488355328LL );
3270 testcase( pIn1
->u
.i
==140737488355327LL );
3271 testcase( pIn1
->u
.i
==-140737488355328LL );
3272 testcase( pIn1
->u
.i
==-140737488355329LL );
3273 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL){
3274 pIn1
->flags
|= MEM_IntReal
;
3275 pIn1
->flags
&= ~MEM_Int
;
3277 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3278 pIn1
->flags
|= MEM_Real
;
3279 pIn1
->flags
&= ~MEM_Int
;
3281 }else if( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==0 ){
3282 goto vdbe_type_error
;
3287 /* COLTYPE_ANY. Accept anything. */
3292 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3295 assert( pIn1
== &aMem
[pOp
->p1
+pOp
->p2
] );
3299 sqlite3VdbeError(p
, "cannot store %s value in %s column %s.%s",
3300 vdbeMemTypeName(pIn1
), sqlite3StdType
[aCol
[i
].eCType
-1],
3301 pTab
->zName
, aCol
[i
].zCnName
);
3302 rc
= SQLITE_CONSTRAINT_DATATYPE
;
3303 goto abort_due_to_error
;
3306 /* Opcode: Affinity P1 P2 * P4 *
3307 ** Synopsis: affinity(r[P1@P2])
3309 ** Apply affinities to a range of P2 registers starting with P1.
3311 ** P4 is a string that is P2 characters long. The N-th character of the
3312 ** string indicates the column affinity that should be used for the N-th
3313 ** memory cell in the range.
3316 const char *zAffinity
; /* The affinity to be applied */
3318 zAffinity
= pOp
->p4
.z
;
3319 assert( zAffinity
!=0 );
3320 assert( pOp
->p2
>0 );
3321 assert( zAffinity
[pOp
->p2
]==0 );
3322 pIn1
= &aMem
[pOp
->p1
];
3323 while( 1 /*exit-by-break*/ ){
3324 assert( pIn1
<= &p
->aMem
[(p
->nMem
+1 - p
->nCursor
)] );
3325 assert( zAffinity
[0]==SQLITE_AFF_NONE
|| memIsValid(pIn1
) );
3326 applyAffinity(pIn1
, zAffinity
[0], encoding
);
3327 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pIn1
->flags
& MEM_Int
)!=0 ){
3328 /* When applying REAL affinity, if the result is still an MEM_Int
3329 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3330 ** so that we keep the high-resolution integer value but know that
3331 ** the type really wants to be REAL. */
3332 testcase( pIn1
->u
.i
==140737488355328LL );
3333 testcase( pIn1
->u
.i
==140737488355327LL );
3334 testcase( pIn1
->u
.i
==-140737488355328LL );
3335 testcase( pIn1
->u
.i
==-140737488355329LL );
3336 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL ){
3337 pIn1
->flags
|= MEM_IntReal
;
3338 pIn1
->flags
&= ~MEM_Int
;
3340 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3341 pIn1
->flags
|= MEM_Real
;
3342 pIn1
->flags
&= ~(MEM_Int
|MEM_Str
);
3345 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3347 if( zAffinity
[0]==0 ) break;
3353 /* Opcode: MakeRecord P1 P2 P3 P4 *
3354 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3356 ** Convert P2 registers beginning with P1 into the [record format]
3357 ** use as a data record in a database table or as a key
3358 ** in an index. The OP_Column opcode can decode the record later.
3360 ** P4 may be a string that is P2 characters long. The N-th character of the
3361 ** string indicates the column affinity that should be used for the N-th
3362 ** field of the index key.
3364 ** The mapping from character to affinity is given by the SQLITE_AFF_
3365 ** macros defined in sqliteInt.h.
3367 ** If P4 is NULL then all index fields have the affinity BLOB.
3369 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3370 ** compile-time option is enabled:
3372 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3373 ** of the right-most table that can be null-trimmed.
3375 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3376 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3377 ** accept no-change records with serial_type 10. This value is
3378 ** only used inside an assert() and does not affect the end result.
3380 case OP_MakeRecord
: {
3381 Mem
*pRec
; /* The new record */
3382 u64 nData
; /* Number of bytes of data space */
3383 int nHdr
; /* Number of bytes of header space */
3384 i64 nByte
; /* Data space required for this record */
3385 i64 nZero
; /* Number of zero bytes at the end of the record */
3386 int nVarint
; /* Number of bytes in a varint */
3387 u32 serial_type
; /* Type field */
3388 Mem
*pData0
; /* First field to be combined into the record */
3389 Mem
*pLast
; /* Last field of the record */
3390 int nField
; /* Number of fields in the record */
3391 char *zAffinity
; /* The affinity string for the record */
3392 u32 len
; /* Length of a field */
3393 u8
*zHdr
; /* Where to write next byte of the header */
3394 u8
*zPayload
; /* Where to write next byte of the payload */
3396 /* Assuming the record contains N fields, the record format looks
3399 ** ------------------------------------------------------------------------
3400 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3401 ** ------------------------------------------------------------------------
3403 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3406 ** Each type field is a varint representing the serial type of the
3407 ** corresponding data element (see sqlite3VdbeSerialType()). The
3408 ** hdr-size field is also a varint which is the offset from the beginning
3409 ** of the record to data0.
3411 nData
= 0; /* Number of bytes of data space */
3412 nHdr
= 0; /* Number of bytes of header space */
3413 nZero
= 0; /* Number of zero bytes at the end of the record */
3415 zAffinity
= pOp
->p4
.z
;
3416 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=(p
->nMem
+1 - p
->nCursor
)+1 );
3417 pData0
= &aMem
[nField
];
3419 pLast
= &pData0
[nField
-1];
3421 /* Identify the output register */
3422 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
3423 pOut
= &aMem
[pOp
->p3
];
3424 memAboutToChange(p
, pOut
);
3426 /* Apply the requested affinity to all inputs
3428 assert( pData0
<=pLast
);
3432 applyAffinity(pRec
, zAffinity
[0], encoding
);
3433 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pRec
->flags
& MEM_Int
) ){
3434 pRec
->flags
|= MEM_IntReal
;
3435 pRec
->flags
&= ~(MEM_Int
);
3437 REGISTER_TRACE((int)(pRec
-aMem
), pRec
);
3440 assert( zAffinity
[0]==0 || pRec
<=pLast
);
3441 }while( zAffinity
[0] );
3444 #ifdef SQLITE_ENABLE_NULL_TRIM
3445 /* NULLs can be safely trimmed from the end of the record, as long as
3446 ** as the schema format is 2 or more and none of the omitted columns
3447 ** have a non-NULL default value. Also, the record must be left with
3448 ** at least one field. If P5>0 then it will be one more than the
3449 ** index of the right-most column with a non-NULL default value */
3451 while( (pLast
->flags
& MEM_Null
)!=0 && nField
>pOp
->p5
){
3458 /* Loop through the elements that will make up the record to figure
3459 ** out how much space is required for the new record. After this loop,
3460 ** the Mem.uTemp field of each term should hold the serial-type that will
3461 ** be used for that term in the generated record:
3463 ** Mem.uTemp value type
3464 ** --------------- ---------------
3466 ** 1 1-byte signed integer
3467 ** 2 2-byte signed integer
3468 ** 3 3-byte signed integer
3469 ** 4 4-byte signed integer
3470 ** 5 6-byte signed integer
3471 ** 6 8-byte signed integer
3473 ** 8 Integer constant 0
3474 ** 9 Integer constant 1
3475 ** 10,11 reserved for expansion
3476 ** N>=12 and even BLOB
3477 ** N>=13 and odd text
3479 ** The following additional values are computed:
3480 ** nHdr Number of bytes needed for the record header
3481 ** nData Number of bytes of data space needed for the record
3482 ** nZero Zero bytes at the end of the record
3486 assert( memIsValid(pRec
) );
3487 if( pRec
->flags
& MEM_Null
){
3488 if( pRec
->flags
& MEM_Zero
){
3489 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3490 ** table methods that never invoke sqlite3_result_xxxxx() while
3491 ** computing an unchanging column value in an UPDATE statement.
3492 ** Give such values a special internal-use-only serial-type of 10
3493 ** so that they can be passed through to xUpdate and have
3494 ** a true sqlite3_value_nochange(). */
3495 #ifndef SQLITE_ENABLE_NULL_TRIM
3496 assert( pOp
->p5
==OPFLAG_NOCHNG_MAGIC
|| CORRUPT_DB
);
3503 }else if( pRec
->flags
& (MEM_Int
|MEM_IntReal
) ){
3504 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3507 testcase( pRec
->flags
& MEM_Int
);
3508 testcase( pRec
->flags
& MEM_IntReal
);
3515 testcase( uu
==127 ); testcase( uu
==128 );
3516 testcase( uu
==32767 ); testcase( uu
==32768 );
3517 testcase( uu
==8388607 ); testcase( uu
==8388608 );
3518 testcase( uu
==2147483647 ); testcase( uu
==2147483648LL );
3519 testcase( uu
==140737488355327LL ); testcase( uu
==140737488355328LL );
3521 if( (i
&1)==i
&& p
->minWriteFileFormat
>=4 ){
3522 pRec
->uTemp
= 8+(u32
)uu
;
3527 }else if( uu
<=32767 ){
3530 }else if( uu
<=8388607 ){
3533 }else if( uu
<=2147483647 ){
3536 }else if( uu
<=140737488355327LL ){
3541 if( pRec
->flags
& MEM_IntReal
){
3542 /* If the value is IntReal and is going to take up 8 bytes to store
3543 ** as an integer, then we might as well make it an 8-byte floating
3545 pRec
->u
.r
= (double)pRec
->u
.i
;
3546 pRec
->flags
&= ~MEM_IntReal
;
3547 pRec
->flags
|= MEM_Real
;
3553 }else if( pRec
->flags
& MEM_Real
){
3558 assert( db
->mallocFailed
|| pRec
->flags
&(MEM_Str
|MEM_Blob
) );
3559 assert( pRec
->n
>=0 );
3561 serial_type
= (len
*2) + 12 + ((pRec
->flags
& MEM_Str
)!=0);
3562 if( pRec
->flags
& MEM_Zero
){
3563 serial_type
+= pRec
->u
.nZero
*2;
3565 if( sqlite3VdbeMemExpandBlob(pRec
) ) goto no_mem
;
3566 len
+= pRec
->u
.nZero
;
3568 nZero
+= pRec
->u
.nZero
;
3572 nHdr
+= sqlite3VarintLen(serial_type
);
3573 pRec
->uTemp
= serial_type
;
3575 if( pRec
==pData0
) break;
3579 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3580 ** which determines the total number of bytes in the header. The varint
3581 ** value is the size of the header in bytes including the size varint
3583 testcase( nHdr
==126 );
3584 testcase( nHdr
==127 );
3586 /* The common case */
3589 /* Rare case of a really large header */
3590 nVarint
= sqlite3VarintLen(nHdr
);
3592 if( nVarint
<sqlite3VarintLen(nHdr
) ) nHdr
++;
3596 /* Make sure the output register has a buffer large enough to store
3597 ** the new record. The output register (pOp->p3) is not allowed to
3598 ** be one of the input registers (because the following call to
3599 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3601 if( nByte
+nZero
<=pOut
->szMalloc
){
3602 /* The output register is already large enough to hold the record.
3603 ** No error checks or buffer enlargement is required */
3604 pOut
->z
= pOut
->zMalloc
;
3606 /* Need to make sure that the output is not too big and then enlarge
3607 ** the output register to hold the full result */
3608 if( nByte
+nZero
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
3611 if( sqlite3VdbeMemClearAndResize(pOut
, (int)nByte
) ){
3615 pOut
->n
= (int)nByte
;
3616 pOut
->flags
= MEM_Blob
;
3618 pOut
->u
.nZero
= nZero
;
3619 pOut
->flags
|= MEM_Zero
;
3621 UPDATE_MAX_BLOBSIZE(pOut
);
3622 zHdr
= (u8
*)pOut
->z
;
3623 zPayload
= zHdr
+ nHdr
;
3625 /* Write the record */
3629 zHdr
+= sqlite3PutVarint(zHdr
,nHdr
);
3631 assert( pData0
<=pLast
);
3633 while( 1 /*exit-by-break*/ ){
3634 serial_type
= pRec
->uTemp
;
3635 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3636 ** additional varints, one per column.
3637 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3638 ** immediately follow the header. */
3639 if( serial_type
<=7 ){
3640 *(zHdr
++) = serial_type
;
3641 if( serial_type
==0 ){
3642 /* NULL value. No change in zPayload */
3645 if( serial_type
==7 ){
3646 assert( sizeof(v
)==sizeof(pRec
->u
.r
) );
3647 memcpy(&v
, &pRec
->u
.r
, sizeof(v
));
3648 swapMixedEndianFloat(v
);
3652 len
= sqlite3SmallTypeSizes
[serial_type
];
3653 assert( len
>=1 && len
<=8 && len
!=5 && len
!=7 );
3655 default: zPayload
[7] = (u8
)(v
&0xff); v
>>= 8;
3656 zPayload
[6] = (u8
)(v
&0xff); v
>>= 8;
3657 case 6: zPayload
[5] = (u8
)(v
&0xff); v
>>= 8;
3658 zPayload
[4] = (u8
)(v
&0xff); v
>>= 8;
3659 case 4: zPayload
[3] = (u8
)(v
&0xff); v
>>= 8;
3660 case 3: zPayload
[2] = (u8
)(v
&0xff); v
>>= 8;
3661 case 2: zPayload
[1] = (u8
)(v
&0xff); v
>>= 8;
3662 case 1: zPayload
[0] = (u8
)(v
&0xff);
3666 }else if( serial_type
<0x80 ){
3667 *(zHdr
++) = serial_type
;
3668 if( serial_type
>=14 && pRec
->n
>0 ){
3669 assert( pRec
->z
!=0 );
3670 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3671 zPayload
+= pRec
->n
;
3674 zHdr
+= sqlite3PutVarint(zHdr
, serial_type
);
3676 assert( pRec
->z
!=0 );
3677 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3678 zPayload
+= pRec
->n
;
3681 if( pRec
==pLast
) break;
3684 assert( nHdr
==(int)(zHdr
- (u8
*)pOut
->z
) );
3685 assert( nByte
==(int)(zPayload
- (u8
*)pOut
->z
) );
3687 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
3688 REGISTER_TRACE(pOp
->p3
, pOut
);
3692 /* Opcode: Count P1 P2 P3 * *
3693 ** Synopsis: r[P2]=count()
3695 ** Store the number of entries (an integer value) in the table or index
3696 ** opened by cursor P1 in register P2.
3698 ** If P3==0, then an exact count is obtained, which involves visiting
3699 ** every btree page of the table. But if P3 is non-zero, an estimate
3700 ** is returned based on the current cursor position.
3702 case OP_Count
: { /* out2 */
3706 assert( p
->apCsr
[pOp
->p1
]->eCurType
==CURTYPE_BTREE
);
3707 pCrsr
= p
->apCsr
[pOp
->p1
]->uc
.pCursor
;
3710 nEntry
= sqlite3BtreeRowCountEst(pCrsr
);
3712 nEntry
= 0; /* Not needed. Only used to silence a warning. */
3713 rc
= sqlite3BtreeCount(db
, pCrsr
, &nEntry
);
3714 if( rc
) goto abort_due_to_error
;
3716 pOut
= out2Prerelease(p
, pOp
);
3718 goto check_for_interrupt
;
3721 /* Opcode: Savepoint P1 * * P4 *
3723 ** Open, release or rollback the savepoint named by parameter P4, depending
3724 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3725 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3726 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3728 case OP_Savepoint
: {
3729 int p1
; /* Value of P1 operand */
3730 char *zName
; /* Name of savepoint */
3733 Savepoint
*pSavepoint
;
3741 /* Assert that the p1 parameter is valid. Also that if there is no open
3742 ** transaction, then there cannot be any savepoints.
3744 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
3745 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
3746 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
3747 assert( checkSavepointCount(db
) );
3748 assert( p
->bIsReader
);
3750 if( p1
==SAVEPOINT_BEGIN
){
3751 if( db
->nVdbeWrite
>0 ){
3752 /* A new savepoint cannot be created if there are active write
3753 ** statements (i.e. open read/write incremental blob handles).
3755 sqlite3VdbeError(p
, "cannot open savepoint - SQL statements in progress");
3758 nName
= sqlite3Strlen30(zName
);
3760 #ifndef SQLITE_OMIT_VIRTUALTABLE
3761 /* This call is Ok even if this savepoint is actually a transaction
3762 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3763 ** If this is a transaction savepoint being opened, it is guaranteed
3764 ** that the db->aVTrans[] array is empty. */
3765 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
3766 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
3767 db
->nStatement
+db
->nSavepoint
);
3768 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3771 /* Create a new savepoint structure. */
3772 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Savepoint
)+nName
+1);
3774 pNew
->zName
= (char *)&pNew
[1];
3775 memcpy(pNew
->zName
, zName
, nName
+1);
3777 /* If there is no open transaction, then mark this as a special
3778 ** "transaction savepoint". */
3779 if( db
->autoCommit
){
3781 db
->isTransactionSavepoint
= 1;
3786 /* Link the new savepoint into the database handle's list. */
3787 pNew
->pNext
= db
->pSavepoint
;
3788 db
->pSavepoint
= pNew
;
3789 pNew
->nDeferredCons
= db
->nDeferredCons
;
3790 pNew
->nDeferredImmCons
= db
->nDeferredImmCons
;
3794 assert( p1
==SAVEPOINT_RELEASE
|| p1
==SAVEPOINT_ROLLBACK
);
3797 /* Find the named savepoint. If there is no such savepoint, then an
3798 ** an error is returned to the user. */
3800 pSavepoint
= db
->pSavepoint
;
3801 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
3802 pSavepoint
= pSavepoint
->pNext
3807 sqlite3VdbeError(p
, "no such savepoint: %s", zName
);
3809 }else if( db
->nVdbeWrite
>0 && p1
==SAVEPOINT_RELEASE
){
3810 /* It is not possible to release (commit) a savepoint if there are
3811 ** active write statements.
3813 sqlite3VdbeError(p
, "cannot release savepoint - "
3814 "SQL statements in progress");
3818 /* Determine whether or not this is a transaction savepoint. If so,
3819 ** and this is a RELEASE command, then the current transaction
3822 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
3823 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
3824 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3828 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3829 p
->pc
= (int)(pOp
- aOp
);
3831 p
->rc
= rc
= SQLITE_BUSY
;
3838 db
->isTransactionSavepoint
= 0;
3842 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
3843 if( p1
==SAVEPOINT_ROLLBACK
){
3844 isSchemaChange
= (db
->mDbFlags
& DBFLAG_SchemaChange
)!=0;
3845 for(ii
=0; ii
<db
->nDb
; ii
++){
3846 rc
= sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
,
3847 SQLITE_ABORT_ROLLBACK
,
3849 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3852 assert( p1
==SAVEPOINT_RELEASE
);
3855 for(ii
=0; ii
<db
->nDb
; ii
++){
3856 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
3857 if( rc
!=SQLITE_OK
){
3858 goto abort_due_to_error
;
3861 if( isSchemaChange
){
3862 sqlite3ExpirePreparedStatements(db
, 0);
3863 sqlite3ResetAllSchemasOfConnection(db
);
3864 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3867 if( rc
) goto abort_due_to_error
;
3869 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3870 ** savepoints nested inside of the savepoint being operated on. */
3871 while( db
->pSavepoint
!=pSavepoint
){
3872 pTmp
= db
->pSavepoint
;
3873 db
->pSavepoint
= pTmp
->pNext
;
3874 sqlite3DbFree(db
, pTmp
);
3878 /* If it is a RELEASE, then destroy the savepoint being operated on
3879 ** too. If it is a ROLLBACK TO, then set the number of deferred
3880 ** constraint violations present in the database to the value stored
3881 ** when the savepoint was created. */
3882 if( p1
==SAVEPOINT_RELEASE
){
3883 assert( pSavepoint
==db
->pSavepoint
);
3884 db
->pSavepoint
= pSavepoint
->pNext
;
3885 sqlite3DbFree(db
, pSavepoint
);
3886 if( !isTransaction
){
3890 assert( p1
==SAVEPOINT_ROLLBACK
);
3891 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
3892 db
->nDeferredImmCons
= pSavepoint
->nDeferredImmCons
;
3895 if( !isTransaction
|| p1
==SAVEPOINT_ROLLBACK
){
3896 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
3897 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3901 if( rc
) goto abort_due_to_error
;
3902 if( p
->eVdbeState
==VDBE_HALT_STATE
){
3909 /* Opcode: AutoCommit P1 P2 * * *
3911 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3912 ** back any currently active btree transactions. If there are any active
3913 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3914 ** there are active writing VMs or active VMs that use shared cache.
3916 ** This instruction causes the VM to halt.
3918 case OP_AutoCommit
: {
3919 int desiredAutoCommit
;
3922 desiredAutoCommit
= pOp
->p1
;
3923 iRollback
= pOp
->p2
;
3924 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
3925 assert( desiredAutoCommit
==1 || iRollback
==0 );
3926 assert( db
->nVdbeActive
>0 ); /* At least this one VM is active */
3927 assert( p
->bIsReader
);
3929 if( desiredAutoCommit
!=db
->autoCommit
){
3931 assert( desiredAutoCommit
==1 );
3932 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3934 }else if( desiredAutoCommit
&& db
->nVdbeWrite
>0 ){
3935 /* If this instruction implements a COMMIT and other VMs are writing
3936 ** return an error indicating that the other VMs must complete first.
3938 sqlite3VdbeError(p
, "cannot commit transaction - "
3939 "SQL statements in progress");
3941 goto abort_due_to_error
;
3942 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3945 db
->autoCommit
= (u8
)desiredAutoCommit
;
3947 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3948 p
->pc
= (int)(pOp
- aOp
);
3949 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
3950 p
->rc
= rc
= SQLITE_BUSY
;
3953 sqlite3CloseSavepoints(db
);
3954 if( p
->rc
==SQLITE_OK
){
3962 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
3963 (iRollback
)?"cannot rollback - no transaction is active":
3964 "cannot commit - no transaction is active"));
3967 goto abort_due_to_error
;
3969 /*NOTREACHED*/ assert(0);
3972 /* Opcode: Transaction P1 P2 P3 P4 P5
3974 ** Begin a transaction on database P1 if a transaction is not already
3976 ** If P2 is non-zero, then a write-transaction is started, or if a
3977 ** read-transaction is already active, it is upgraded to a write-transaction.
3978 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3979 ** then an exclusive transaction is started.
3981 ** P1 is the index of the database file on which the transaction is
3982 ** started. Index 0 is the main database file and index 1 is the
3983 ** file used for temporary tables. Indices of 2 or more are used for
3984 ** attached databases.
3986 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3987 ** true (this flag is set if the Vdbe may modify more than one row and may
3988 ** throw an ABORT exception), a statement transaction may also be opened.
3989 ** More specifically, a statement transaction is opened iff the database
3990 ** connection is currently not in autocommit mode, or if there are other
3991 ** active statements. A statement transaction allows the changes made by this
3992 ** VDBE to be rolled back after an error without having to roll back the
3993 ** entire transaction. If no error is encountered, the statement transaction
3994 ** will automatically commit when the VDBE halts.
3996 ** If P5!=0 then this opcode also checks the schema cookie against P3
3997 ** and the schema generation counter against P4.
3998 ** The cookie changes its value whenever the database schema changes.
3999 ** This operation is used to detect when that the cookie has changed
4000 ** and that the current process needs to reread the schema. If the schema
4001 ** cookie in P3 differs from the schema cookie in the database header or
4002 ** if the schema generation counter in P4 differs from the current
4003 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
4004 ** halts. The sqlite3_step() wrapper function might then reprepare the
4005 ** statement and rerun it from the beginning.
4007 case OP_Transaction
: {
4012 assert( p
->bIsReader
);
4013 assert( p
->readOnly
==0 || pOp
->p2
==0 );
4014 assert( pOp
->p2
>=0 && pOp
->p2
<=2 );
4015 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4016 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
4017 assert( rc
==SQLITE_OK
);
4018 if( pOp
->p2
&& (db
->flags
& (SQLITE_QueryOnly
|SQLITE_CorruptRdOnly
))!=0 ){
4019 if( db
->flags
& SQLITE_QueryOnly
){
4020 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
4021 rc
= SQLITE_READONLY
;
4023 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
4025 rc
= SQLITE_CORRUPT
;
4027 goto abort_due_to_error
;
4029 pDb
= &db
->aDb
[pOp
->p1
];
4033 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
, &iMeta
);
4034 testcase( rc
==SQLITE_BUSY_SNAPSHOT
);
4035 testcase( rc
==SQLITE_BUSY_RECOVERY
);
4036 if( rc
!=SQLITE_OK
){
4037 if( (rc
&0xff)==SQLITE_BUSY
){
4038 p
->pc
= (int)(pOp
- aOp
);
4042 goto abort_due_to_error
;
4045 if( p
->usesStmtJournal
4047 && (db
->autoCommit
==0 || db
->nVdbeRead
>1)
4049 assert( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
);
4050 if( p
->iStatement
==0 ){
4051 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
4053 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
4056 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
4057 if( rc
==SQLITE_OK
){
4058 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
4061 /* Store the current value of the database handles deferred constraint
4062 ** counter. If the statement transaction needs to be rolled back,
4063 ** the value of this counter needs to be restored too. */
4064 p
->nStmtDefCons
= db
->nDeferredCons
;
4065 p
->nStmtDefImmCons
= db
->nDeferredImmCons
;
4068 assert( pOp
->p5
==0 || pOp
->p4type
==P4_INT32
);
4071 && (iMeta
!=pOp
->p3
|| pDb
->pSchema
->iGeneration
!=pOp
->p4
.i
)
4074 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
4075 ** version is checked to ensure that the schema has not changed since the
4076 ** SQL statement was prepared.
4078 sqlite3DbFree(db
, p
->zErrMsg
);
4079 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
4080 /* If the schema-cookie from the database file matches the cookie
4081 ** stored with the in-memory representation of the schema, do
4082 ** not reload the schema from the database file.
4084 ** If virtual-tables are in use, this is not just an optimization.
4085 ** Often, v-tables store their data in other SQLite tables, which
4086 ** are queried from within xNext() and other v-table methods using
4087 ** prepared queries. If such a query is out-of-date, we do not want to
4088 ** discard the database schema, as the user code implementing the
4089 ** v-table would have to be ready for the sqlite3_vtab structure itself
4090 ** to be invalidated whenever sqlite3_step() is called from within
4091 ** a v-table method.
4093 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
4094 sqlite3ResetOneSchema(db
, pOp
->p1
);
4099 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
4100 ** from being modified in sqlite3VdbeHalt(). If this statement is
4101 ** reprepared, changeCntOn will be set again. */
4104 if( rc
) goto abort_due_to_error
;
4108 /* Opcode: ReadCookie P1 P2 P3 * *
4110 ** Read cookie number P3 from database P1 and write it into register P2.
4111 ** P3==1 is the schema version. P3==2 is the database format.
4112 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
4113 ** the main database file and P1==1 is the database file used to store
4114 ** temporary tables.
4116 ** There must be a read-lock on the database (either a transaction
4117 ** must be started or there must be an open cursor) before
4118 ** executing this instruction.
4120 case OP_ReadCookie
: { /* out2 */
4125 assert( p
->bIsReader
);
4128 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
4129 assert( iDb
>=0 && iDb
<db
->nDb
);
4130 assert( db
->aDb
[iDb
].pBt
!=0 );
4131 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4133 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
4134 pOut
= out2Prerelease(p
, pOp
);
4139 /* Opcode: SetCookie P1 P2 P3 * P5
4141 ** Write the integer value P3 into cookie number P2 of database P1.
4142 ** P2==1 is the schema version. P2==2 is the database format.
4143 ** P2==3 is the recommended pager cache
4144 ** size, and so forth. P1==0 is the main database file and P1==1 is the
4145 ** database file used to store temporary tables.
4147 ** A transaction must be started before executing this opcode.
4149 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
4150 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
4151 ** has P5 set to 1, so that the internal schema version will be different
4152 ** from the database schema version, resulting in a schema reset.
4154 case OP_SetCookie
: {
4157 sqlite3VdbeIncrWriteCounter(p
, 0);
4158 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
4159 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4160 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
4161 assert( p
->readOnly
==0 );
4162 pDb
= &db
->aDb
[pOp
->p1
];
4163 assert( pDb
->pBt
!=0 );
4164 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
4165 /* See note about index shifting on OP_ReadCookie */
4166 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, pOp
->p3
);
4167 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
4168 /* When the schema cookie changes, record the new cookie internally */
4169 *(u32
*)&pDb
->pSchema
->schema_cookie
= *(u32
*)&pOp
->p3
- pOp
->p5
;
4170 db
->mDbFlags
|= DBFLAG_SchemaChange
;
4171 sqlite3FkClearTriggerCache(db
, pOp
->p1
);
4172 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
4173 /* Record changes in the file format */
4174 pDb
->pSchema
->file_format
= pOp
->p3
;
4177 /* Invalidate all prepared statements whenever the TEMP database
4178 ** schema is changed. Ticket #1644 */
4179 sqlite3ExpirePreparedStatements(db
, 0);
4182 if( rc
) goto abort_due_to_error
;
4186 /* Opcode: OpenRead P1 P2 P3 P4 P5
4187 ** Synopsis: root=P2 iDb=P3
4189 ** Open a read-only cursor for the database table whose root page is
4190 ** P2 in a database file. The database file is determined by P3.
4191 ** P3==0 means the main database, P3==1 means the database used for
4192 ** temporary tables, and P3>1 means used the corresponding attached
4193 ** database. Give the new cursor an identifier of P1. The P1
4194 ** values need not be contiguous but all P1 values should be small integers.
4195 ** It is an error for P1 to be negative.
4199 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4200 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4201 ** of OP_SeekLE/OP_IdxLT)
4204 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4205 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4206 ** object, then table being opened must be an [index b-tree] where the
4207 ** KeyInfo object defines the content and collating
4208 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4209 ** value, then the table being opened must be a [table b-tree] with a
4210 ** number of columns no less than the value of P4.
4212 ** See also: OpenWrite, ReopenIdx
4214 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4215 ** Synopsis: root=P2 iDb=P3
4217 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4218 ** checks to see if the cursor on P1 is already open on the same
4219 ** b-tree and if it is this opcode becomes a no-op. In other words,
4220 ** if the cursor is already open, do not reopen it.
4222 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4223 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4224 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4229 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4230 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4231 ** of OP_SeekLE/OP_IdxLT)
4234 ** See also: OP_OpenRead, OP_OpenWrite
4236 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4237 ** Synopsis: root=P2 iDb=P3
4239 ** Open a read/write cursor named P1 on the table or index whose root
4240 ** page is P2 (or whose root page is held in register P2 if the
4241 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4243 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4244 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4245 ** object, then table being opened must be an [index b-tree] where the
4246 ** KeyInfo object defines the content and collating
4247 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4248 ** value, then the table being opened must be a [table b-tree] with a
4249 ** number of columns no less than the value of P4.
4253 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4254 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4255 ** of OP_SeekLE/OP_IdxLT)
4256 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4257 ** and subsequently delete entries in an index btree. This is a
4258 ** hint to the storage engine that the storage engine is allowed to
4259 ** ignore. The hint is not used by the official SQLite b*tree storage
4260 ** engine, but is used by COMDB2.
4261 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4262 ** as the root page, not the value of P2 itself.
4265 ** This instruction works like OpenRead except that it opens the cursor
4266 ** in read/write mode.
4268 ** See also: OP_OpenRead, OP_ReopenIdx
4270 case OP_ReopenIdx
: { /* ncycle */
4280 assert( pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4281 assert( pOp
->p4type
==P4_KEYINFO
);
4282 pCur
= p
->apCsr
[pOp
->p1
];
4283 if( pCur
&& pCur
->pgnoRoot
==(u32
)pOp
->p2
){
4284 assert( pCur
->iDb
==pOp
->p3
); /* Guaranteed by the code generator */
4285 assert( pCur
->eCurType
==CURTYPE_BTREE
);
4286 sqlite3BtreeClearCursor(pCur
->uc
.pCursor
);
4287 goto open_cursor_set_hints
;
4289 /* If the cursor is not currently open or is open on a different
4290 ** index, then fall through into OP_OpenRead to force a reopen */
4291 case OP_OpenRead
: /* ncycle */
4294 assert( pOp
->opcode
==OP_OpenWrite
|| pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4295 assert( p
->bIsReader
);
4296 assert( pOp
->opcode
==OP_OpenRead
|| pOp
->opcode
==OP_ReopenIdx
4297 || p
->readOnly
==0 );
4299 if( p
->expired
==1 ){
4300 rc
= SQLITE_ABORT_ROLLBACK
;
4301 goto abort_due_to_error
;
4308 assert( iDb
>=0 && iDb
<db
->nDb
);
4309 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4310 pDb
= &db
->aDb
[iDb
];
4313 if( pOp
->opcode
==OP_OpenWrite
){
4314 assert( OPFLAG_FORDELETE
==BTREE_FORDELETE
);
4315 wrFlag
= BTREE_WRCSR
| (pOp
->p5
& OPFLAG_FORDELETE
);
4316 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
4317 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
4318 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
4323 if( pOp
->p5
& OPFLAG_P2ISREG
){
4325 assert( p2
<=(u32
)(p
->nMem
+1 - p
->nCursor
) );
4326 assert( pOp
->opcode
==OP_OpenWrite
);
4328 assert( memIsValid(pIn2
) );
4329 assert( (pIn2
->flags
& MEM_Int
)!=0 );
4330 sqlite3VdbeMemIntegerify(pIn2
);
4331 p2
= (int)pIn2
->u
.i
;
4332 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4333 ** that opcode will always set the p2 value to 2 or more or else fail.
4334 ** If there were a failure, the prepared statement would have halted
4335 ** before reaching this instruction. */
4338 if( pOp
->p4type
==P4_KEYINFO
){
4339 pKeyInfo
= pOp
->p4
.pKeyInfo
;
4340 assert( pKeyInfo
->enc
==ENC(db
) );
4341 assert( pKeyInfo
->db
==db
);
4342 nField
= pKeyInfo
->nAllField
;
4343 }else if( pOp
->p4type
==P4_INT32
){
4346 assert( pOp
->p1
>=0 );
4347 assert( nField
>=0 );
4348 testcase( nField
==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4349 pCur
= allocateCursor(p
, pOp
->p1
, nField
, CURTYPE_BTREE
);
4350 if( pCur
==0 ) goto no_mem
;
4353 pCur
->isOrdered
= 1;
4354 pCur
->pgnoRoot
= p2
;
4356 pCur
->wrFlag
= wrFlag
;
4358 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->uc
.pCursor
);
4359 pCur
->pKeyInfo
= pKeyInfo
;
4360 /* Set the VdbeCursor.isTable variable. Previous versions of
4361 ** SQLite used to check if the root-page flags were sane at this point
4362 ** and report database corruption if they were not, but this check has
4363 ** since moved into the btree layer. */
4364 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
4366 open_cursor_set_hints
:
4367 assert( OPFLAG_BULKCSR
==BTREE_BULKLOAD
);
4368 assert( OPFLAG_SEEKEQ
==BTREE_SEEK_EQ
);
4369 testcase( pOp
->p5
& OPFLAG_BULKCSR
);
4370 testcase( pOp
->p2
& OPFLAG_SEEKEQ
);
4371 sqlite3BtreeCursorHintFlags(pCur
->uc
.pCursor
,
4372 (pOp
->p5
& (OPFLAG_BULKCSR
|OPFLAG_SEEKEQ
)));
4373 if( rc
) goto abort_due_to_error
;
4377 /* Opcode: OpenDup P1 P2 * * *
4379 ** Open a new cursor P1 that points to the same ephemeral table as
4380 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4381 ** opcode. Only ephemeral cursors may be duplicated.
4383 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4385 case OP_OpenDup
: { /* ncycle */
4386 VdbeCursor
*pOrig
; /* The original cursor to be duplicated */
4387 VdbeCursor
*pCx
; /* The new cursor */
4389 pOrig
= p
->apCsr
[pOp
->p2
];
4391 assert( pOrig
->isEphemeral
); /* Only ephemeral cursors can be duplicated */
4393 pCx
= allocateCursor(p
, pOp
->p1
, pOrig
->nField
, CURTYPE_BTREE
);
4394 if( pCx
==0 ) goto no_mem
;
4396 pCx
->isEphemeral
= 1;
4397 pCx
->pKeyInfo
= pOrig
->pKeyInfo
;
4398 pCx
->isTable
= pOrig
->isTable
;
4399 pCx
->pgnoRoot
= pOrig
->pgnoRoot
;
4400 pCx
->isOrdered
= pOrig
->isOrdered
;
4401 pCx
->ub
.pBtx
= pOrig
->ub
.pBtx
;
4404 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4405 pCx
->pKeyInfo
, pCx
->uc
.pCursor
);
4406 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4407 ** opened for a database. Since there is already an open cursor when this
4408 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4409 assert( rc
==SQLITE_OK
);
4414 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4415 ** Synopsis: nColumn=P2
4417 ** Open a new cursor P1 to a transient table.
4418 ** The cursor is always opened read/write even if
4419 ** the main database is read-only. The ephemeral
4420 ** table is deleted automatically when the cursor is closed.
4422 ** If the cursor P1 is already opened on an ephemeral table, the table
4423 ** is cleared (all content is erased).
4425 ** P2 is the number of columns in the ephemeral table.
4426 ** The cursor points to a BTree table if P4==0 and to a BTree index
4427 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4428 ** that defines the format of keys in the index.
4430 ** The P5 parameter can be a mask of the BTREE_* flags defined
4431 ** in btree.h. These flags control aspects of the operation of
4432 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4433 ** added automatically.
4435 ** If P3 is positive, then reg[P3] is modified slightly so that it
4436 ** can be used as zero-length data for OP_Insert. This is an optimization
4437 ** that avoids an extra OP_Blob opcode to initialize that register.
4439 /* Opcode: OpenAutoindex P1 P2 * P4 *
4440 ** Synopsis: nColumn=P2
4442 ** This opcode works the same as OP_OpenEphemeral. It has a
4443 ** different name to distinguish its use. Tables created using
4444 ** by this opcode will be used for automatically created transient
4445 ** indices in joins.
4447 case OP_OpenAutoindex
: /* ncycle */
4448 case OP_OpenEphemeral
: { /* ncycle */
4452 static const int vfsFlags
=
4453 SQLITE_OPEN_READWRITE
|
4454 SQLITE_OPEN_CREATE
|
4455 SQLITE_OPEN_EXCLUSIVE
|
4456 SQLITE_OPEN_DELETEONCLOSE
|
4457 SQLITE_OPEN_TRANSIENT_DB
;
4458 assert( pOp
->p1
>=0 );
4459 assert( pOp
->p2
>=0 );
4461 /* Make register reg[P3] into a value that can be used as the data
4462 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4463 assert( pOp
->p2
==0 ); /* Only used when number of columns is zero */
4464 assert( pOp
->opcode
==OP_OpenEphemeral
);
4465 assert( aMem
[pOp
->p3
].flags
& MEM_Null
);
4466 aMem
[pOp
->p3
].n
= 0;
4467 aMem
[pOp
->p3
].z
= "";
4469 pCx
= p
->apCsr
[pOp
->p1
];
4470 if( pCx
&& !pCx
->noReuse
&& ALWAYS(pOp
->p2
<=pCx
->nField
) ){
4471 /* If the ephemeral table is already open and has no duplicates from
4472 ** OP_OpenDup, then erase all existing content so that the table is
4473 ** empty again, rather than creating a new table. */
4474 assert( pCx
->isEphemeral
);
4476 pCx
->cacheStatus
= CACHE_STALE
;
4477 rc
= sqlite3BtreeClearTable(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, 0);
4479 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_BTREE
);
4480 if( pCx
==0 ) goto no_mem
;
4481 pCx
->isEphemeral
= 1;
4482 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->ub
.pBtx
,
4483 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
,
4485 if( rc
==SQLITE_OK
){
4486 rc
= sqlite3BtreeBeginTrans(pCx
->ub
.pBtx
, 1, 0);
4487 if( rc
==SQLITE_OK
){
4488 /* If a transient index is required, create it by calling
4489 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4490 ** opening it. If a transient table is required, just use the
4491 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4493 if( (pCx
->pKeyInfo
= pKeyInfo
= pOp
->p4
.pKeyInfo
)!=0 ){
4494 assert( pOp
->p4type
==P4_KEYINFO
);
4495 rc
= sqlite3BtreeCreateTable(pCx
->ub
.pBtx
, &pCx
->pgnoRoot
,
4496 BTREE_BLOBKEY
| pOp
->p5
);
4497 if( rc
==SQLITE_OK
){
4498 assert( pCx
->pgnoRoot
==SCHEMA_ROOT
+1 );
4499 assert( pKeyInfo
->db
==db
);
4500 assert( pKeyInfo
->enc
==ENC(db
) );
4501 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4502 pKeyInfo
, pCx
->uc
.pCursor
);
4506 pCx
->pgnoRoot
= SCHEMA_ROOT
;
4507 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, SCHEMA_ROOT
, BTREE_WRCSR
,
4508 0, pCx
->uc
.pCursor
);
4512 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
4514 sqlite3BtreeClose(pCx
->ub
.pBtx
);
4518 if( rc
) goto abort_due_to_error
;
4523 /* Opcode: SorterOpen P1 P2 P3 P4 *
4525 ** This opcode works like OP_OpenEphemeral except that it opens
4526 ** a transient index that is specifically designed to sort large
4527 ** tables using an external merge-sort algorithm.
4529 ** If argument P3 is non-zero, then it indicates that the sorter may
4530 ** assume that a stable sort considering the first P3 fields of each
4531 ** key is sufficient to produce the required results.
4533 case OP_SorterOpen
: {
4536 assert( pOp
->p1
>=0 );
4537 assert( pOp
->p2
>=0 );
4538 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_SORTER
);
4539 if( pCx
==0 ) goto no_mem
;
4540 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
4541 assert( pCx
->pKeyInfo
->db
==db
);
4542 assert( pCx
->pKeyInfo
->enc
==ENC(db
) );
4543 rc
= sqlite3VdbeSorterInit(db
, pOp
->p3
, pCx
);
4544 if( rc
) goto abort_due_to_error
;
4548 /* Opcode: SequenceTest P1 P2 * * *
4549 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4551 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4552 ** to P2. Regardless of whether or not the jump is taken, increment the
4553 ** the sequence value.
4555 case OP_SequenceTest
: {
4557 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4558 pC
= p
->apCsr
[pOp
->p1
];
4559 assert( isSorter(pC
) );
4560 if( (pC
->seqCount
++)==0 ){
4566 /* Opcode: OpenPseudo P1 P2 P3 * *
4567 ** Synopsis: P3 columns in r[P2]
4569 ** Open a new cursor that points to a fake table that contains a single
4570 ** row of data. The content of that one row is the content of memory
4571 ** register P2. In other words, cursor P1 becomes an alias for the
4572 ** MEM_Blob content contained in register P2.
4574 ** A pseudo-table created by this opcode is used to hold a single
4575 ** row output from the sorter so that the row can be decomposed into
4576 ** individual columns using the OP_Column opcode. The OP_Column opcode
4577 ** is the only cursor opcode that works with a pseudo-table.
4579 ** P3 is the number of fields in the records that will be stored by
4580 ** the pseudo-table.
4582 case OP_OpenPseudo
: {
4585 assert( pOp
->p1
>=0 );
4586 assert( pOp
->p3
>=0 );
4587 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, CURTYPE_PSEUDO
);
4588 if( pCx
==0 ) goto no_mem
;
4590 pCx
->seekResult
= pOp
->p2
;
4592 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4593 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4594 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4595 ** which is a performance optimization */
4596 pCx
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
4597 assert( pOp
->p5
==0 );
4601 /* Opcode: Close P1 * * * *
4603 ** Close a cursor previously opened as P1. If P1 is not
4604 ** currently open, this instruction is a no-op.
4606 case OP_Close
: { /* ncycle */
4607 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4608 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
4609 p
->apCsr
[pOp
->p1
] = 0;
4613 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4614 /* Opcode: ColumnsUsed P1 * * P4 *
4616 ** This opcode (which only exists if SQLite was compiled with
4617 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4618 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4619 ** (P4_INT64) in which the first 63 bits are one for each of the
4620 ** first 63 columns of the table or index that are actually used
4621 ** by the cursor. The high-order bit is set if any column after
4622 ** the 64th is used.
4624 case OP_ColumnsUsed
: {
4626 pC
= p
->apCsr
[pOp
->p1
];
4627 assert( pC
->eCurType
==CURTYPE_BTREE
);
4628 pC
->maskUsed
= *(u64
*)pOp
->p4
.pI64
;
4633 /* Opcode: SeekGE P1 P2 P3 P4 *
4634 ** Synopsis: key=r[P3@P4]
4636 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4637 ** use the value in register P3 as the key. If cursor P1 refers
4638 ** to an SQL index, then P3 is the first in an array of P4 registers
4639 ** that are used as an unpacked index key.
4641 ** Reposition cursor P1 so that it points to the smallest entry that
4642 ** is greater than or equal to the key value. If there are no records
4643 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4645 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4646 ** opcode will either land on a record that exactly matches the key, or
4647 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4648 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4649 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4650 ** IdxGT opcode will be used on subsequent loop iterations. The
4651 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4652 ** is an equality search.
4654 ** This opcode leaves the cursor configured to move in forward order,
4655 ** from the beginning toward the end. In other words, the cursor is
4656 ** configured to use Next, not Prev.
4658 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4660 /* Opcode: SeekGT P1 P2 P3 P4 *
4661 ** Synopsis: key=r[P3@P4]
4663 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4664 ** use the value in register P3 as a key. If cursor P1 refers
4665 ** to an SQL index, then P3 is the first in an array of P4 registers
4666 ** that are used as an unpacked index key.
4668 ** Reposition cursor P1 so that it points to the smallest entry that
4669 ** is greater than the key value. If there are no records greater than
4670 ** the key and P2 is not zero, then jump to P2.
4672 ** This opcode leaves the cursor configured to move in forward order,
4673 ** from the beginning toward the end. In other words, the cursor is
4674 ** configured to use Next, not Prev.
4676 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4678 /* Opcode: SeekLT P1 P2 P3 P4 *
4679 ** Synopsis: key=r[P3@P4]
4681 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4682 ** use the value in register P3 as a key. If cursor P1 refers
4683 ** to an SQL index, then P3 is the first in an array of P4 registers
4684 ** that are used as an unpacked index key.
4686 ** Reposition cursor P1 so that it points to the largest entry that
4687 ** is less than the key value. If there are no records less than
4688 ** the key and P2 is not zero, then jump to P2.
4690 ** This opcode leaves the cursor configured to move in reverse order,
4691 ** from the end toward the beginning. In other words, the cursor is
4692 ** configured to use Prev, not Next.
4694 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4696 /* Opcode: SeekLE P1 P2 P3 P4 *
4697 ** Synopsis: key=r[P3@P4]
4699 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4700 ** use the value in register P3 as a key. If cursor P1 refers
4701 ** to an SQL index, then P3 is the first in an array of P4 registers
4702 ** that are used as an unpacked index key.
4704 ** Reposition cursor P1 so that it points to the largest entry that
4705 ** is less than or equal to the key value. If there are no records
4706 ** less than or equal to the key and P2 is not zero, then jump to P2.
4708 ** This opcode leaves the cursor configured to move in reverse order,
4709 ** from the end toward the beginning. In other words, the cursor is
4710 ** configured to use Prev, not Next.
4712 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4713 ** opcode will either land on a record that exactly matches the key, or
4714 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4715 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4716 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4717 ** IdxGE opcode will be used on subsequent loop iterations. The
4718 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4719 ** is an equality search.
4721 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4723 case OP_SeekLT
: /* jump, in3, group, ncycle */
4724 case OP_SeekLE
: /* jump, in3, group, ncycle */
4725 case OP_SeekGE
: /* jump, in3, group, ncycle */
4726 case OP_SeekGT
: { /* jump, in3, group, ncycle */
4727 int res
; /* Comparison result */
4728 int oc
; /* Opcode */
4729 VdbeCursor
*pC
; /* The cursor to seek */
4730 UnpackedRecord r
; /* The key to seek for */
4731 int nField
; /* Number of columns or fields in the key */
4732 i64 iKey
; /* The rowid we are to seek to */
4733 int eqOnly
; /* Only interested in == results */
4735 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4736 assert( pOp
->p2
!=0 );
4737 pC
= p
->apCsr
[pOp
->p1
];
4739 assert( pC
->eCurType
==CURTYPE_BTREE
);
4740 assert( OP_SeekLE
== OP_SeekLT
+1 );
4741 assert( OP_SeekGE
== OP_SeekLT
+2 );
4742 assert( OP_SeekGT
== OP_SeekLT
+3 );
4743 assert( pC
->isOrdered
);
4744 assert( pC
->uc
.pCursor
!=0 );
4749 pC
->seekOp
= pOp
->opcode
;
4752 pC
->deferredMoveto
= 0;
4753 pC
->cacheStatus
= CACHE_STALE
;
4755 u16 flags3
, newType
;
4756 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4757 assert( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
)==0
4760 /* The input value in P3 might be of any type: integer, real, string,
4761 ** blob, or NULL. But it needs to be an integer before we can do
4762 ** the seek, so convert it. */
4763 pIn3
= &aMem
[pOp
->p3
];
4764 flags3
= pIn3
->flags
;
4765 if( (flags3
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Str
))==MEM_Str
){
4766 applyNumericAffinity(pIn3
, 0);
4768 iKey
= sqlite3VdbeIntValue(pIn3
); /* Get the integer key value */
4769 newType
= pIn3
->flags
; /* Record the type after applying numeric affinity */
4770 pIn3
->flags
= flags3
; /* But convert the type back to its original */
4772 /* If the P3 value could not be converted into an integer without
4773 ** loss of information, then special processing is required... */
4774 if( (newType
& (MEM_Int
|MEM_IntReal
))==0 ){
4776 if( (newType
& MEM_Real
)==0 ){
4777 if( (newType
& MEM_Null
) || oc
>=OP_SeekGE
){
4778 VdbeBranchTaken(1,2);
4781 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
4782 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
4783 goto seek_not_found
;
4786 c
= sqlite3IntFloatCompare(iKey
, pIn3
->u
.r
);
4788 /* If the approximation iKey is larger than the actual real search
4789 ** term, substitute >= for > and < for <=. e.g. if the search term
4790 ** is 4.9 and the integer approximation 5:
4792 ** (x > 4.9) -> (x >= 5)
4793 ** (x <= 4.9) -> (x < 5)
4796 assert( OP_SeekGE
==(OP_SeekGT
-1) );
4797 assert( OP_SeekLT
==(OP_SeekLE
-1) );
4798 assert( (OP_SeekLE
& 0x0001)==(OP_SeekGT
& 0x0001) );
4799 if( (oc
& 0x0001)==(OP_SeekGT
& 0x0001) ) oc
--;
4802 /* If the approximation iKey is smaller than the actual real search
4803 ** term, substitute <= for < and > for >=. */
4805 assert( OP_SeekLE
==(OP_SeekLT
+1) );
4806 assert( OP_SeekGT
==(OP_SeekGE
+1) );
4807 assert( (OP_SeekLT
& 0x0001)==(OP_SeekGE
& 0x0001) );
4808 if( (oc
& 0x0001)==(OP_SeekLT
& 0x0001) ) oc
++;
4811 rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)iKey
, 0, &res
);
4812 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
4813 if( rc
!=SQLITE_OK
){
4814 goto abort_due_to_error
;
4817 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4818 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4819 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4820 ** with the same key.
4822 if( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
) ){
4824 assert( pOp
->opcode
==OP_SeekGE
|| pOp
->opcode
==OP_SeekLE
);
4825 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4826 assert( pOp
->opcode
==OP_SeekGE
|| pOp
[1].opcode
==OP_IdxLT
);
4827 assert( pOp
->opcode
==OP_SeekLE
|| pOp
[1].opcode
==OP_IdxGT
);
4828 assert( pOp
[1].p1
==pOp
[0].p1
);
4829 assert( pOp
[1].p2
==pOp
[0].p2
);
4830 assert( pOp
[1].p3
==pOp
[0].p3
);
4831 assert( pOp
[1].p4
.i
==pOp
[0].p4
.i
);
4835 assert( pOp
->p4type
==P4_INT32
);
4837 r
.pKeyInfo
= pC
->pKeyInfo
;
4838 r
.nField
= (u16
)nField
;
4840 /* The next line of code computes as follows, only faster:
4841 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4842 ** r.default_rc = -1;
4844 ** r.default_rc = +1;
4847 r
.default_rc
= ((1 & (oc
- OP_SeekLT
)) ? -1 : +1);
4848 assert( oc
!=OP_SeekGT
|| r
.default_rc
==-1 );
4849 assert( oc
!=OP_SeekLE
|| r
.default_rc
==-1 );
4850 assert( oc
!=OP_SeekGE
|| r
.default_rc
==+1 );
4851 assert( oc
!=OP_SeekLT
|| r
.default_rc
==+1 );
4853 r
.aMem
= &aMem
[pOp
->p3
];
4857 for(i
=0; i
<r
.nField
; i
++){
4858 assert( memIsValid(&r
.aMem
[i
]) );
4859 if( i
>0 ) REGISTER_TRACE(pOp
->p3
+i
, &r
.aMem
[i
]);
4864 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &res
);
4865 if( rc
!=SQLITE_OK
){
4866 goto abort_due_to_error
;
4868 if( eqOnly
&& r
.eqSeen
==0 ){
4870 goto seek_not_found
;
4874 sqlite3_search_count
++;
4876 if( oc
>=OP_SeekGE
){ assert( oc
==OP_SeekGE
|| oc
==OP_SeekGT
);
4877 if( res
<0 || (res
==0 && oc
==OP_SeekGT
) ){
4879 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
4880 if( rc
!=SQLITE_OK
){
4881 if( rc
==SQLITE_DONE
){
4885 goto abort_due_to_error
;
4892 assert( oc
==OP_SeekLT
|| oc
==OP_SeekLE
);
4893 if( res
>0 || (res
==0 && oc
==OP_SeekLT
) ){
4895 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, 0);
4896 if( rc
!=SQLITE_OK
){
4897 if( rc
==SQLITE_DONE
){
4901 goto abort_due_to_error
;
4905 /* res might be negative because the table is empty. Check to
4906 ** see if this is the case.
4908 res
= sqlite3BtreeEof(pC
->uc
.pCursor
);
4912 assert( pOp
->p2
>0 );
4913 VdbeBranchTaken(res
!=0,2);
4917 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4918 pOp
++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4924 /* Opcode: SeekScan P1 P2 * * P5
4925 ** Synopsis: Scan-ahead up to P1 rows
4927 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4928 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4929 ** checked by assert() statements.
4931 ** This opcode uses the P1 through P4 operands of the subsequent
4932 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4933 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4934 ** the P1, P2 and P5 operands of this opcode are also used, and are called
4935 ** This.P1, This.P2 and This.P5.
4937 ** This opcode helps to optimize IN operators on a multi-column index
4938 ** where the IN operator is on the later terms of the index by avoiding
4939 ** unnecessary seeks on the btree, substituting steps to the next row
4940 ** of the b-tree instead. A correct answer is obtained if this opcode
4941 ** is omitted or is a no-op.
4943 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4944 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4945 ** to. Call this SeekGE.P3/P4 row the "target".
4947 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4948 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4950 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4951 ** might be the target row, or it might be near and slightly before the
4952 ** target row, or it might be after the target row. If the cursor is
4953 ** currently before the target row, then this opcode attempts to position
4954 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4955 ** on the cursor between 1 and This.P1 times.
4957 ** The This.P5 parameter is a flag that indicates what to do if the
4958 ** cursor ends up pointing at a valid row that is past the target
4959 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
4960 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
4961 ** case occurs when there are no inequality constraints to the right of
4962 ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case
4963 ** occurs when there are inequality constraints to the right of the IN
4964 ** operator. In that case, the This.P2 will point either directly to or
4965 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4968 ** Possible outcomes from this opcode:<ol>
4970 ** <li> If the cursor is initially not pointed to any valid row, then
4971 ** fall through into the subsequent OP_SeekGE opcode.
4973 ** <li> If the cursor is left pointing to a row that is before the target
4974 ** row, even after making as many as This.P1 calls to
4975 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4977 ** <li> If the cursor is left pointing at the target row, either because it
4978 ** was at the target row to begin with or because one or more
4979 ** sqlite3BtreeNext() calls moved the cursor to the target row,
4980 ** then jump to This.P2..,
4982 ** <li> If the cursor started out before the target row and a call to
4983 ** to sqlite3BtreeNext() moved the cursor off the end of the index
4984 ** (indicating that the target row definitely does not exist in the
4985 ** btree) then jump to SeekGE.P2, ending the loop.
4987 ** <li> If the cursor ends up on a valid row that is past the target row
4988 ** (indicating that the target row does not exist in the btree) then
4989 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4992 case OP_SeekScan
: { /* ncycle */
4998 assert( pOp
[1].opcode
==OP_SeekGE
);
5000 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
5001 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
5002 ** opcode past the OP_SeekGE itself. */
5003 assert( pOp
->p2
>=(int)(pOp
-aOp
)+2 );
5006 /* There are no inequality constraints following the IN constraint. */
5007 assert( pOp
[1].p1
==aOp
[pOp
->p2
-1].p1
);
5008 assert( pOp
[1].p2
==aOp
[pOp
->p2
-1].p2
);
5009 assert( pOp
[1].p3
==aOp
[pOp
->p2
-1].p3
);
5010 assert( aOp
[pOp
->p2
-1].opcode
==OP_IdxGT
5011 || aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
5012 testcase( aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
5014 /* There are inequality constraints. */
5015 assert( pOp
->p2
==(int)(pOp
-aOp
)+2 );
5016 assert( aOp
[pOp
->p2
-1].opcode
==OP_SeekGE
);
5020 assert( pOp
->p1
>0 );
5021 pC
= p
->apCsr
[pOp
[1].p1
];
5023 assert( pC
->eCurType
==CURTYPE_BTREE
);
5024 assert( !pC
->isTable
);
5025 if( !sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
) ){
5027 if( db
->flags
&SQLITE_VdbeTrace
){
5028 printf("... cursor not valid - fall through\n");
5035 r
.pKeyInfo
= pC
->pKeyInfo
;
5036 r
.nField
= (u16
)pOp
[1].p4
.i
;
5038 r
.aMem
= &aMem
[pOp
[1].p3
];
5042 for(i
=0; i
<r
.nField
; i
++){
5043 assert( memIsValid(&r
.aMem
[i
]) );
5044 REGISTER_TRACE(pOp
[1].p3
+i
, &aMem
[pOp
[1].p3
+i
]);
5048 res
= 0; /* Not needed. Only used to silence a warning. */
5050 rc
= sqlite3VdbeIdxKeyCompare(db
, pC
, &r
, &res
);
5051 if( rc
) goto abort_due_to_error
;
5052 if( res
>0 && pOp
->p5
==0 ){
5053 seekscan_search_fail
:
5054 /* Jump to SeekGE.P2, ending the loop */
5056 if( db
->flags
&SQLITE_VdbeTrace
){
5057 printf("... %d steps and then skip\n", pOp
->p1
- nStep
);
5060 VdbeBranchTaken(1,3);
5065 /* Jump to This.P2, bypassing the OP_SeekGE opcode */
5067 if( db
->flags
&SQLITE_VdbeTrace
){
5068 printf("... %d steps and then success\n", pOp
->p1
- nStep
);
5071 VdbeBranchTaken(2,3);
5077 if( db
->flags
&SQLITE_VdbeTrace
){
5078 printf("... fall through after %d steps\n", pOp
->p1
);
5081 VdbeBranchTaken(0,3);
5085 pC
->cacheStatus
= CACHE_STALE
;
5086 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
5088 if( rc
==SQLITE_DONE
){
5090 goto seekscan_search_fail
;
5092 goto abort_due_to_error
;
5101 /* Opcode: SeekHit P1 P2 P3 * *
5102 ** Synopsis: set P2<=seekHit<=P3
5104 ** Increase or decrease the seekHit value for cursor P1, if necessary,
5105 ** so that it is no less than P2 and no greater than P3.
5107 ** The seekHit integer represents the maximum of terms in an index for which
5108 ** there is known to be at least one match. If the seekHit value is smaller
5109 ** than the total number of equality terms in an index lookup, then the
5110 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
5111 ** early, thus saving work. This is part of the IN-early-out optimization.
5113 ** P1 must be a valid b-tree cursor.
5115 case OP_SeekHit
: { /* ncycle */
5117 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5118 pC
= p
->apCsr
[pOp
->p1
];
5120 assert( pOp
->p3
>=pOp
->p2
);
5121 if( pC
->seekHit
<pOp
->p2
){
5123 if( db
->flags
&SQLITE_VdbeTrace
){
5124 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p2
);
5127 pC
->seekHit
= pOp
->p2
;
5128 }else if( pC
->seekHit
>pOp
->p3
){
5130 if( db
->flags
&SQLITE_VdbeTrace
){
5131 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p3
);
5134 pC
->seekHit
= pOp
->p3
;
5139 /* Opcode: IfNotOpen P1 P2 * * *
5140 ** Synopsis: if( !csr[P1] ) goto P2
5142 ** If cursor P1 is not open or if P1 is set to a NULL row using the
5143 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
5145 case OP_IfNotOpen
: { /* jump */
5148 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5149 pCur
= p
->apCsr
[pOp
->p1
];
5150 VdbeBranchTaken(pCur
==0 || pCur
->nullRow
, 2);
5151 if( pCur
==0 || pCur
->nullRow
){
5152 goto jump_to_p2_and_check_for_interrupt
;
5157 /* Opcode: Found P1 P2 P3 P4 *
5158 ** Synopsis: key=r[P3@P4]
5160 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5161 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5164 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5165 ** is a prefix of any entry in P1 then a jump is made to P2 and
5166 ** P1 is left pointing at the matching entry.
5168 ** This operation leaves the cursor in a state where it can be
5169 ** advanced in the forward direction. The Next instruction will work,
5170 ** but not the Prev instruction.
5172 ** See also: NotFound, NoConflict, NotExists. SeekGe
5174 /* Opcode: NotFound P1 P2 P3 P4 *
5175 ** Synopsis: key=r[P3@P4]
5177 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5178 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5181 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5182 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
5183 ** does contain an entry whose prefix matches the P3/P4 record then control
5184 ** falls through to the next instruction and P1 is left pointing at the
5187 ** This operation leaves the cursor in a state where it cannot be
5188 ** advanced in either direction. In other words, the Next and Prev
5189 ** opcodes do not work after this operation.
5191 ** See also: Found, NotExists, NoConflict, IfNoHope
5193 /* Opcode: IfNoHope P1 P2 P3 P4 *
5194 ** Synopsis: key=r[P3@P4]
5196 ** Register P3 is the first of P4 registers that form an unpacked
5197 ** record. Cursor P1 is an index btree. P2 is a jump destination.
5198 ** In other words, the operands to this opcode are the same as the
5199 ** operands to OP_NotFound and OP_IdxGT.
5201 ** This opcode is an optimization attempt only. If this opcode always
5202 ** falls through, the correct answer is still obtained, but extra work
5205 ** A value of N in the seekHit flag of cursor P1 means that there exists
5206 ** a key P3:N that will match some record in the index. We want to know
5207 ** if it is possible for a record P3:P4 to match some record in the
5208 ** index. If it is not possible, we can skip some work. So if seekHit
5209 ** is less than P4, attempt to find out if a match is possible by running
5212 ** This opcode is used in IN clause processing for a multi-column key.
5213 ** If an IN clause is attached to an element of the key other than the
5214 ** left-most element, and if there are no matches on the most recent
5215 ** seek over the whole key, then it might be that one of the key element
5216 ** to the left is prohibiting a match, and hence there is "no hope" of
5217 ** any match regardless of how many IN clause elements are checked.
5218 ** In such a case, we abandon the IN clause search early, using this
5219 ** opcode. The opcode name comes from the fact that the
5220 ** jump is taken if there is "no hope" of achieving a match.
5222 ** See also: NotFound, SeekHit
5224 /* Opcode: NoConflict P1 P2 P3 P4 *
5225 ** Synopsis: key=r[P3@P4]
5227 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5228 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5231 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5232 ** contains any NULL value, jump immediately to P2. If all terms of the
5233 ** record are not-NULL then a check is done to determine if any row in the
5234 ** P1 index btree has a matching key prefix. If there are no matches, jump
5235 ** immediately to P2. If there is a match, fall through and leave the P1
5236 ** cursor pointing to the matching row.
5238 ** This opcode is similar to OP_NotFound with the exceptions that the
5239 ** branch is always taken if any part of the search key input is NULL.
5241 ** This operation leaves the cursor in a state where it cannot be
5242 ** advanced in either direction. In other words, the Next and Prev
5243 ** opcodes do not work after this operation.
5245 ** See also: NotFound, Found, NotExists
5247 case OP_IfNoHope
: { /* jump, in3, ncycle */
5249 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5250 pC
= p
->apCsr
[pOp
->p1
];
5253 if( db
->flags
&SQLITE_VdbeTrace
){
5254 printf("seekHit is %d\n", pC
->seekHit
);
5257 if( pC
->seekHit
>=pOp
->p4
.i
) break;
5258 /* Fall through into OP_NotFound */
5259 /* no break */ deliberate_fall_through
5261 case OP_NoConflict
: /* jump, in3, ncycle */
5262 case OP_NotFound
: /* jump, in3, ncycle */
5263 case OP_Found
: { /* jump, in3, ncycle */
5267 UnpackedRecord
*pIdxKey
;
5271 if( pOp
->opcode
!=OP_NoConflict
) sqlite3_found_count
++;
5274 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5275 assert( pOp
->p4type
==P4_INT32
);
5276 pC
= p
->apCsr
[pOp
->p1
];
5279 pC
->seekOp
= pOp
->opcode
;
5281 r
.aMem
= &aMem
[pOp
->p3
];
5282 assert( pC
->eCurType
==CURTYPE_BTREE
);
5283 assert( pC
->uc
.pCursor
!=0 );
5284 assert( pC
->isTable
==0 );
5285 r
.nField
= (u16
)pOp
->p4
.i
;
5287 /* Key values in an array of registers */
5288 r
.pKeyInfo
= pC
->pKeyInfo
;
5291 for(ii
=0; ii
<r
.nField
; ii
++){
5292 assert( memIsValid(&r
.aMem
[ii
]) );
5293 assert( (r
.aMem
[ii
].flags
& MEM_Zero
)==0 || r
.aMem
[ii
].n
==0 );
5294 if( ii
) REGISTER_TRACE(pOp
->p3
+ii
, &r
.aMem
[ii
]);
5297 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &pC
->seekResult
);
5299 /* Composite key generated by OP_MakeRecord */
5300 assert( r
.aMem
->flags
& MEM_Blob
);
5301 assert( pOp
->opcode
!=OP_NoConflict
);
5302 rc
= ExpandBlob(r
.aMem
);
5303 assert( rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
5304 if( rc
) goto no_mem
;
5305 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pC
->pKeyInfo
);
5306 if( pIdxKey
==0 ) goto no_mem
;
5307 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, r
.aMem
->n
, r
.aMem
->z
, pIdxKey
);
5308 pIdxKey
->default_rc
= 0;
5309 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, pIdxKey
, &pC
->seekResult
);
5310 sqlite3DbFreeNN(db
, pIdxKey
);
5312 if( rc
!=SQLITE_OK
){
5313 goto abort_due_to_error
;
5315 alreadyExists
= (pC
->seekResult
==0);
5316 pC
->nullRow
= 1-alreadyExists
;
5317 pC
->deferredMoveto
= 0;
5318 pC
->cacheStatus
= CACHE_STALE
;
5319 if( pOp
->opcode
==OP_Found
){
5320 VdbeBranchTaken(alreadyExists
!=0,2);
5321 if( alreadyExists
) goto jump_to_p2
;
5323 if( !alreadyExists
){
5324 VdbeBranchTaken(1,2);
5327 if( pOp
->opcode
==OP_NoConflict
){
5328 /* For the OP_NoConflict opcode, take the jump if any of the
5329 ** input fields are NULL, since any key with a NULL will not
5331 for(ii
=0; ii
<r
.nField
; ii
++){
5332 if( r
.aMem
[ii
].flags
& MEM_Null
){
5333 VdbeBranchTaken(1,2);
5338 VdbeBranchTaken(0,2);
5339 if( pOp
->opcode
==OP_IfNoHope
){
5340 pC
->seekHit
= pOp
->p4
.i
;
5346 /* Opcode: SeekRowid P1 P2 P3 * *
5347 ** Synopsis: intkey=r[P3]
5349 ** P1 is the index of a cursor open on an SQL table btree (with integer
5350 ** keys). If register P3 does not contain an integer or if P1 does not
5351 ** contain a record with rowid P3 then jump immediately to P2.
5352 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5353 ** a record with rowid P3 then
5354 ** leave the cursor pointing at that record and fall through to the next
5357 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5358 ** the P3 register must be guaranteed to contain an integer value. With this
5359 ** opcode, register P3 might not contain an integer.
5361 ** The OP_NotFound opcode performs the same operation on index btrees
5362 ** (with arbitrary multi-value keys).
5364 ** This opcode leaves the cursor in a state where it cannot be advanced
5365 ** in either direction. In other words, the Next and Prev opcodes will
5366 ** not work following this opcode.
5368 ** See also: Found, NotFound, NoConflict, SeekRowid
5370 /* Opcode: NotExists P1 P2 P3 * *
5371 ** Synopsis: intkey=r[P3]
5373 ** P1 is the index of a cursor open on an SQL table btree (with integer
5374 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5375 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5376 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5377 ** leave the cursor pointing at that record and fall through to the next
5380 ** The OP_SeekRowid opcode performs the same operation but also allows the
5381 ** P3 register to contain a non-integer value, in which case the jump is
5382 ** always taken. This opcode requires that P3 always contain an integer.
5384 ** The OP_NotFound opcode performs the same operation on index btrees
5385 ** (with arbitrary multi-value keys).
5387 ** This opcode leaves the cursor in a state where it cannot be advanced
5388 ** in either direction. In other words, the Next and Prev opcodes will
5389 ** not work following this opcode.
5391 ** See also: Found, NotFound, NoConflict, SeekRowid
5393 case OP_SeekRowid
: { /* jump, in3, ncycle */
5399 pIn3
= &aMem
[pOp
->p3
];
5400 testcase( pIn3
->flags
& MEM_Int
);
5401 testcase( pIn3
->flags
& MEM_IntReal
);
5402 testcase( pIn3
->flags
& MEM_Real
);
5403 testcase( (pIn3
->flags
& (MEM_Str
|MEM_Int
))==MEM_Str
);
5404 if( (pIn3
->flags
& (MEM_Int
|MEM_IntReal
))==0 ){
5405 /* If pIn3->u.i does not contain an integer, compute iKey as the
5406 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5407 ** into an integer without loss of information. Take care to avoid
5408 ** changing the datatype of pIn3, however, as it is used by other
5409 ** parts of the prepared statement. */
5411 applyAffinity(&x
, SQLITE_AFF_NUMERIC
, encoding
);
5412 if( (x
.flags
& MEM_Int
)==0 ) goto jump_to_p2
;
5414 goto notExistsWithKey
;
5416 /* Fall through into OP_NotExists */
5417 /* no break */ deliberate_fall_through
5418 case OP_NotExists
: /* jump, in3, ncycle */
5419 pIn3
= &aMem
[pOp
->p3
];
5420 assert( (pIn3
->flags
& MEM_Int
)!=0 || pOp
->opcode
==OP_SeekRowid
);
5421 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5424 pC
= p
->apCsr
[pOp
->p1
];
5427 if( pOp
->opcode
==OP_SeekRowid
) pC
->seekOp
= OP_SeekRowid
;
5429 assert( pC
->isTable
);
5430 assert( pC
->eCurType
==CURTYPE_BTREE
);
5431 pCrsr
= pC
->uc
.pCursor
;
5434 rc
= sqlite3BtreeTableMoveto(pCrsr
, iKey
, 0, &res
);
5435 assert( rc
==SQLITE_OK
|| res
==0 );
5436 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
5438 pC
->cacheStatus
= CACHE_STALE
;
5439 pC
->deferredMoveto
= 0;
5440 VdbeBranchTaken(res
!=0,2);
5441 pC
->seekResult
= res
;
5443 assert( rc
==SQLITE_OK
);
5445 rc
= SQLITE_CORRUPT_BKPT
;
5450 if( rc
) goto abort_due_to_error
;
5454 /* Opcode: Sequence P1 P2 * * *
5455 ** Synopsis: r[P2]=cursor[P1].ctr++
5457 ** Find the next available sequence number for cursor P1.
5458 ** Write the sequence number into register P2.
5459 ** The sequence number on the cursor is incremented after this
5462 case OP_Sequence
: { /* out2 */
5463 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5464 assert( p
->apCsr
[pOp
->p1
]!=0 );
5465 assert( p
->apCsr
[pOp
->p1
]->eCurType
!=CURTYPE_VTAB
);
5466 pOut
= out2Prerelease(p
, pOp
);
5467 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
5472 /* Opcode: NewRowid P1 P2 P3 * *
5473 ** Synopsis: r[P2]=rowid
5475 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5476 ** The record number is not previously used as a key in the database
5477 ** table that cursor P1 points to. The new record number is written
5478 ** written to register P2.
5480 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5481 ** the largest previously generated record number. No new record numbers are
5482 ** allowed to be less than this value. When this value reaches its maximum,
5483 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5484 ** generated record number. This P3 mechanism is used to help implement the
5485 ** AUTOINCREMENT feature.
5487 case OP_NewRowid
: { /* out2 */
5488 i64 v
; /* The new rowid */
5489 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
5490 int res
; /* Result of an sqlite3BtreeLast() */
5491 int cnt
; /* Counter to limit the number of searches */
5492 #ifndef SQLITE_OMIT_AUTOINCREMENT
5493 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
5494 VdbeFrame
*pFrame
; /* Root frame of VDBE */
5499 pOut
= out2Prerelease(p
, pOp
);
5500 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5501 pC
= p
->apCsr
[pOp
->p1
];
5503 assert( pC
->isTable
);
5504 assert( pC
->eCurType
==CURTYPE_BTREE
);
5505 assert( pC
->uc
.pCursor
!=0 );
5507 /* The next rowid or record number (different terms for the same
5508 ** thing) is obtained in a two-step algorithm.
5510 ** First we attempt to find the largest existing rowid and add one
5511 ** to that. But if the largest existing rowid is already the maximum
5512 ** positive integer, we have to fall through to the second
5513 ** probabilistic algorithm
5515 ** The second algorithm is to select a rowid at random and see if
5516 ** it already exists in the table. If it does not exist, we have
5517 ** succeeded. If the random rowid does exist, we select a new one
5518 ** and try again, up to 100 times.
5520 assert( pC
->isTable
);
5522 #ifdef SQLITE_32BIT_ROWID
5523 # define MAX_ROWID 0x7fffffff
5525 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5526 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5527 ** to provide the constant while making all compilers happy.
5529 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5532 if( !pC
->useRandomRowid
){
5533 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
5534 if( rc
!=SQLITE_OK
){
5535 goto abort_due_to_error
;
5538 v
= 1; /* IMP: R-61914-48074 */
5540 assert( sqlite3BtreeCursorIsValid(pC
->uc
.pCursor
) );
5541 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5543 pC
->useRandomRowid
= 1;
5545 v
++; /* IMP: R-29538-34987 */
5550 #ifndef SQLITE_OMIT_AUTOINCREMENT
5552 /* Assert that P3 is a valid memory cell. */
5553 assert( pOp
->p3
>0 );
5555 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5556 /* Assert that P3 is a valid memory cell. */
5557 assert( pOp
->p3
<=pFrame
->nMem
);
5558 pMem
= &pFrame
->aMem
[pOp
->p3
];
5560 /* Assert that P3 is a valid memory cell. */
5561 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
5562 pMem
= &aMem
[pOp
->p3
];
5563 memAboutToChange(p
, pMem
);
5565 assert( memIsValid(pMem
) );
5567 REGISTER_TRACE(pOp
->p3
, pMem
);
5568 sqlite3VdbeMemIntegerify(pMem
);
5569 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
5570 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
5571 rc
= SQLITE_FULL
; /* IMP: R-17817-00630 */
5572 goto abort_due_to_error
;
5574 if( v
<pMem
->u
.i
+1 ){
5580 if( pC
->useRandomRowid
){
5581 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5582 ** largest possible integer (9223372036854775807) then the database
5583 ** engine starts picking positive candidate ROWIDs at random until
5584 ** it finds one that is not previously used. */
5585 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
5586 ** an AUTOINCREMENT table. */
5589 sqlite3_randomness(sizeof(v
), &v
);
5590 v
&= (MAX_ROWID
>>1); v
++; /* Ensure that v is greater than zero */
5591 }while( ((rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)v
,
5592 0, &res
))==SQLITE_OK
)
5595 if( rc
) goto abort_due_to_error
;
5597 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
5598 goto abort_due_to_error
;
5600 assert( v
>0 ); /* EV: R-40812-03570 */
5602 pC
->deferredMoveto
= 0;
5603 pC
->cacheStatus
= CACHE_STALE
;
5609 /* Opcode: Insert P1 P2 P3 P4 P5
5610 ** Synopsis: intkey=r[P3] data=r[P2]
5612 ** Write an entry into the table of cursor P1. A new entry is
5613 ** created if it doesn't already exist or the data for an existing
5614 ** entry is overwritten. The data is the value MEM_Blob stored in register
5615 ** number P2. The key is stored in register P3. The key must
5618 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5619 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5620 ** then rowid is stored for subsequent return by the
5621 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5623 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5624 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5625 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5626 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5628 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5629 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5630 ** is part of an INSERT operation. The difference is only important to
5633 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5634 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5635 ** following a successful insert.
5637 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5638 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5639 ** and register P2 becomes ephemeral. If the cursor is changed, the
5640 ** value of register P2 will then change. Make sure this does not
5641 ** cause any problems.)
5643 ** This instruction only works on tables. The equivalent instruction
5644 ** for indices is OP_IdxInsert.
5647 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
5648 Mem
*pKey
; /* MEM cell holding key for the record */
5649 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
5650 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5651 const char *zDb
; /* database name - used by the update hook */
5652 Table
*pTab
; /* Table structure - used by update and pre-update hooks */
5653 BtreePayload x
; /* Payload to be inserted */
5655 pData
= &aMem
[pOp
->p2
];
5656 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5657 assert( memIsValid(pData
) );
5658 pC
= p
->apCsr
[pOp
->p1
];
5660 assert( pC
->eCurType
==CURTYPE_BTREE
);
5661 assert( pC
->deferredMoveto
==0 );
5662 assert( pC
->uc
.pCursor
!=0 );
5663 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || pC
->isTable
);
5664 assert( pOp
->p4type
==P4_TABLE
|| pOp
->p4type
>=P4_STATIC
);
5665 REGISTER_TRACE(pOp
->p2
, pData
);
5666 sqlite3VdbeIncrWriteCounter(p
, pC
);
5668 pKey
= &aMem
[pOp
->p3
];
5669 assert( pKey
->flags
& MEM_Int
);
5670 assert( memIsValid(pKey
) );
5671 REGISTER_TRACE(pOp
->p3
, pKey
);
5674 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5675 assert( pC
->iDb
>=0 );
5676 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5677 pTab
= pOp
->p4
.pTab
;
5678 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || HasRowid(pTab
) );
5684 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5685 /* Invoke the pre-update hook, if any */
5687 if( db
->xPreUpdateCallback
&& !(pOp
->p5
& OPFLAG_ISUPDATE
) ){
5688 sqlite3VdbePreUpdateHook(p
,pC
,SQLITE_INSERT
,zDb
,pTab
,x
.nKey
,pOp
->p2
,-1);
5690 if( db
->xUpdateCallback
==0 || pTab
->aCol
==0 ){
5691 /* Prevent post-update hook from running in cases when it should not */
5695 if( pOp
->p5
& OPFLAG_ISNOOP
) break;
5698 assert( (pOp
->p5
& OPFLAG_LASTROWID
)==0 || (pOp
->p5
& OPFLAG_NCHANGE
)!=0 );
5699 if( pOp
->p5
& OPFLAG_NCHANGE
){
5701 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= x
.nKey
;
5703 assert( (pData
->flags
& (MEM_Blob
|MEM_Str
))!=0 || pData
->n
==0 );
5706 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
5707 if( pData
->flags
& MEM_Zero
){
5708 x
.nZero
= pData
->u
.nZero
;
5713 assert( BTREE_PREFORMAT
==OPFLAG_PREFORMAT
);
5714 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
5715 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
5718 pC
->deferredMoveto
= 0;
5719 pC
->cacheStatus
= CACHE_STALE
;
5722 /* Invoke the update-hook if required. */
5723 if( rc
) goto abort_due_to_error
;
5725 assert( db
->xUpdateCallback
!=0 );
5726 assert( pTab
->aCol
!=0 );
5727 db
->xUpdateCallback(db
->pUpdateArg
,
5728 (pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
,
5729 zDb
, pTab
->zName
, x
.nKey
);
5734 /* Opcode: RowCell P1 P2 P3 * *
5736 ** P1 and P2 are both open cursors. Both must be opened on the same type
5737 ** of table - intkey or index. This opcode is used as part of copying
5738 ** the current row from P2 into P1. If the cursors are opened on intkey
5739 ** tables, register P3 contains the rowid to use with the new record in
5740 ** P1. If they are opened on index tables, P3 is not used.
5742 ** This opcode must be followed by either an Insert or InsertIdx opcode
5743 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5746 VdbeCursor
*pDest
; /* Cursor to write to */
5747 VdbeCursor
*pSrc
; /* Cursor to read from */
5748 i64 iKey
; /* Rowid value to insert with */
5749 assert( pOp
[1].opcode
==OP_Insert
|| pOp
[1].opcode
==OP_IdxInsert
);
5750 assert( pOp
[1].opcode
==OP_Insert
|| pOp
->p3
==0 );
5751 assert( pOp
[1].opcode
==OP_IdxInsert
|| pOp
->p3
>0 );
5752 assert( pOp
[1].p5
& OPFLAG_PREFORMAT
);
5753 pDest
= p
->apCsr
[pOp
->p1
];
5754 pSrc
= p
->apCsr
[pOp
->p2
];
5755 iKey
= pOp
->p3
? aMem
[pOp
->p3
].u
.i
: 0;
5756 rc
= sqlite3BtreeTransferRow(pDest
->uc
.pCursor
, pSrc
->uc
.pCursor
, iKey
);
5757 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
5761 /* Opcode: Delete P1 P2 P3 P4 P5
5763 ** Delete the record at which the P1 cursor is currently pointing.
5765 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5766 ** the cursor will be left pointing at either the next or the previous
5767 ** record in the table. If it is left pointing at the next record, then
5768 ** the next Next instruction will be a no-op. As a result, in this case
5769 ** it is ok to delete a record from within a Next loop. If
5770 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5771 ** left in an undefined state.
5773 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5774 ** delete is one of several associated with deleting a table row and
5775 ** all its associated index entries. Exactly one of those deletes is
5776 ** the "primary" delete. The others are all on OPFLAG_FORDELETE
5777 ** cursors or else are marked with the AUXDELETE flag.
5779 ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then
5780 ** the row change count is incremented (otherwise not).
5782 ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the
5783 ** pre-update-hook for deletes is run, but the btree is otherwise unchanged.
5784 ** This happens when the OP_Delete is to be shortly followed by an OP_Insert
5785 ** with the same key, causing the btree entry to be overwritten.
5787 ** P1 must not be pseudo-table. It has to be a real table with
5790 ** If P4 is not NULL then it points to a Table object. In this case either
5791 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5792 ** have been positioned using OP_NotFound prior to invoking this opcode in
5793 ** this case. Specifically, if one is configured, the pre-update hook is
5794 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5795 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5797 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5798 ** of the memory cell that contains the value that the rowid of the row will
5799 ** be set to by the update.
5808 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5809 pC
= p
->apCsr
[pOp
->p1
];
5811 assert( pC
->eCurType
==CURTYPE_BTREE
);
5812 assert( pC
->uc
.pCursor
!=0 );
5813 assert( pC
->deferredMoveto
==0 );
5814 sqlite3VdbeIncrWriteCounter(p
, pC
);
5817 if( pOp
->p4type
==P4_TABLE
5818 && HasRowid(pOp
->p4
.pTab
)
5820 && sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
)
5822 /* If p5 is zero, the seek operation that positioned the cursor prior to
5823 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5824 ** the row that is being deleted */
5825 i64 iKey
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5826 assert( CORRUPT_DB
|| pC
->movetoTarget
==iKey
);
5830 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5831 ** the name of the db to pass as to it. Also set local pTab to a copy
5832 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5833 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5834 ** VdbeCursor.movetoTarget to the current rowid. */
5835 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5836 assert( pC
->iDb
>=0 );
5837 assert( pOp
->p4
.pTab
!=0 );
5838 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5839 pTab
= pOp
->p4
.pTab
;
5840 if( (pOp
->p5
& OPFLAG_SAVEPOSITION
)!=0 && pC
->isTable
){
5841 pC
->movetoTarget
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5848 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5849 /* Invoke the pre-update-hook if required. */
5850 assert( db
->xPreUpdateCallback
==0 || pTab
==pOp
->p4
.pTab
);
5851 if( db
->xPreUpdateCallback
&& pTab
){
5852 assert( !(opflags
& OPFLAG_ISUPDATE
)
5853 || HasRowid(pTab
)==0
5854 || (aMem
[pOp
->p3
].flags
& MEM_Int
)
5856 sqlite3VdbePreUpdateHook(p
, pC
,
5857 (opflags
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_DELETE
,
5858 zDb
, pTab
, pC
->movetoTarget
,
5862 if( opflags
& OPFLAG_ISNOOP
) break;
5865 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5866 assert( (pOp
->p5
& ~(OPFLAG_SAVEPOSITION
|OPFLAG_AUXDELETE
))==0 );
5867 assert( OPFLAG_SAVEPOSITION
==BTREE_SAVEPOSITION
);
5868 assert( OPFLAG_AUXDELETE
==BTREE_AUXDELETE
);
5872 if( pC
->isEphemeral
==0
5873 && (pOp
->p5
& OPFLAG_AUXDELETE
)==0
5874 && (pC
->wrFlag
& OPFLAG_FORDELETE
)==0
5878 if( pOp
->p2
& OPFLAG_NCHANGE
){
5884 rc
= sqlite3BtreeDelete(pC
->uc
.pCursor
, pOp
->p5
);
5885 pC
->cacheStatus
= CACHE_STALE
;
5888 if( rc
) goto abort_due_to_error
;
5890 /* Invoke the update-hook if required. */
5891 if( opflags
& OPFLAG_NCHANGE
){
5893 if( db
->xUpdateCallback
&& ALWAYS(pTab
!=0) && HasRowid(pTab
) ){
5894 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, pTab
->zName
,
5896 assert( pC
->iDb
>=0 );
5902 /* Opcode: ResetCount * * * * *
5904 ** The value of the change counter is copied to the database handle
5905 ** change counter (returned by subsequent calls to sqlite3_changes()).
5906 ** Then the VMs internal change counter resets to 0.
5907 ** This is used by trigger programs.
5909 case OP_ResetCount
: {
5910 sqlite3VdbeSetChanges(db
, p
->nChange
);
5915 /* Opcode: SorterCompare P1 P2 P3 P4
5916 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5918 ** P1 is a sorter cursor. This instruction compares a prefix of the
5919 ** record blob in register P3 against a prefix of the entry that
5920 ** the sorter cursor currently points to. Only the first P4 fields
5921 ** of r[P3] and the sorter record are compared.
5923 ** If either P3 or the sorter contains a NULL in one of their significant
5924 ** fields (not counting the P4 fields at the end which are ignored) then
5925 ** the comparison is assumed to be equal.
5927 ** Fall through to next instruction if the two records compare equal to
5928 ** each other. Jump to P2 if they are different.
5930 case OP_SorterCompare
: {
5935 pC
= p
->apCsr
[pOp
->p1
];
5936 assert( isSorter(pC
) );
5937 assert( pOp
->p4type
==P4_INT32
);
5938 pIn3
= &aMem
[pOp
->p3
];
5939 nKeyCol
= pOp
->p4
.i
;
5941 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, nKeyCol
, &res
);
5942 VdbeBranchTaken(res
!=0,2);
5943 if( rc
) goto abort_due_to_error
;
5944 if( res
) goto jump_to_p2
;
5948 /* Opcode: SorterData P1 P2 P3 * *
5949 ** Synopsis: r[P2]=data
5951 ** Write into register P2 the current sorter data for sorter cursor P1.
5952 ** Then clear the column header cache on cursor P3.
5954 ** This opcode is normally used to move a record out of the sorter and into
5955 ** a register that is the source for a pseudo-table cursor created using
5956 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5957 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5958 ** us from having to issue a separate NullRow instruction to clear that cache.
5960 case OP_SorterData
: { /* ncycle */
5963 pOut
= &aMem
[pOp
->p2
];
5964 pC
= p
->apCsr
[pOp
->p1
];
5965 assert( isSorter(pC
) );
5966 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
5967 assert( rc
!=SQLITE_OK
|| (pOut
->flags
& MEM_Blob
) );
5968 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5969 if( rc
) goto abort_due_to_error
;
5970 p
->apCsr
[pOp
->p3
]->cacheStatus
= CACHE_STALE
;
5974 /* Opcode: RowData P1 P2 P3 * *
5975 ** Synopsis: r[P2]=data
5977 ** Write into register P2 the complete row content for the row at
5978 ** which cursor P1 is currently pointing.
5979 ** There is no interpretation of the data.
5980 ** It is just copied onto the P2 register exactly as
5981 ** it is found in the database file.
5983 ** If cursor P1 is an index, then the content is the key of the row.
5984 ** If cursor P2 is a table, then the content extracted is the data.
5986 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5987 ** of a real table, not a pseudo-table.
5989 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5990 ** into the database page. That means that the content of the output
5991 ** register will be invalidated as soon as the cursor moves - including
5992 ** moves caused by other cursors that "save" the current cursors
5993 ** position in order that they can write to the same table. If P3==0
5994 ** then a copy of the data is made into memory. P3!=0 is faster, but
5997 ** If P3!=0 then the content of the P2 register is unsuitable for use
5998 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5999 ** The P2 register content is invalidated by opcodes like OP_Function or
6000 ** by any use of another cursor pointing to the same table.
6007 pOut
= out2Prerelease(p
, pOp
);
6009 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6010 pC
= p
->apCsr
[pOp
->p1
];
6012 assert( pC
->eCurType
==CURTYPE_BTREE
);
6013 assert( isSorter(pC
)==0 );
6014 assert( pC
->nullRow
==0 );
6015 assert( pC
->uc
.pCursor
!=0 );
6016 pCrsr
= pC
->uc
.pCursor
;
6018 /* The OP_RowData opcodes always follow OP_NotExists or
6019 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
6020 ** that might invalidate the cursor.
6021 ** If this where not the case, on of the following assert()s
6022 ** would fail. Should this ever change (because of changes in the code
6023 ** generator) then the fix would be to insert a call to
6024 ** sqlite3VdbeCursorMoveto().
6026 assert( pC
->deferredMoveto
==0 );
6027 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
6029 n
= sqlite3BtreePayloadSize(pCrsr
);
6030 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
6034 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCrsr
, n
, pOut
);
6035 if( rc
) goto abort_due_to_error
;
6036 if( !pOp
->p3
) Deephemeralize(pOut
);
6037 UPDATE_MAX_BLOBSIZE(pOut
);
6038 REGISTER_TRACE(pOp
->p2
, pOut
);
6042 /* Opcode: Rowid P1 P2 * * *
6043 ** Synopsis: r[P2]=PX rowid of P1
6045 ** Store in register P2 an integer which is the key of the table entry that
6046 ** P1 is currently point to.
6048 ** P1 can be either an ordinary table or a virtual table. There used to
6049 ** be a separate OP_VRowid opcode for use with virtual tables, but this
6050 ** one opcode now works for both table types.
6052 case OP_Rowid
: { /* out2, ncycle */
6055 sqlite3_vtab
*pVtab
;
6056 const sqlite3_module
*pModule
;
6058 pOut
= out2Prerelease(p
, pOp
);
6059 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6060 pC
= p
->apCsr
[pOp
->p1
];
6062 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
6064 pOut
->flags
= MEM_Null
;
6066 }else if( pC
->deferredMoveto
){
6067 v
= pC
->movetoTarget
;
6068 #ifndef SQLITE_OMIT_VIRTUALTABLE
6069 }else if( pC
->eCurType
==CURTYPE_VTAB
){
6070 assert( pC
->uc
.pVCur
!=0 );
6071 pVtab
= pC
->uc
.pVCur
->pVtab
;
6072 pModule
= pVtab
->pModule
;
6073 assert( pModule
->xRowid
);
6074 rc
= pModule
->xRowid(pC
->uc
.pVCur
, &v
);
6075 sqlite3VtabImportErrmsg(p
, pVtab
);
6076 if( rc
) goto abort_due_to_error
;
6077 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6079 assert( pC
->eCurType
==CURTYPE_BTREE
);
6080 assert( pC
->uc
.pCursor
!=0 );
6081 rc
= sqlite3VdbeCursorRestore(pC
);
6082 if( rc
) goto abort_due_to_error
;
6084 pOut
->flags
= MEM_Null
;
6087 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
6093 /* Opcode: NullRow P1 * * * *
6095 ** Move the cursor P1 to a null row. Any OP_Column operations
6096 ** that occur while the cursor is on the null row will always
6099 ** If cursor P1 is not previously opened, open it now to a special
6100 ** pseudo-cursor that always returns NULL for every column.
6105 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6106 pC
= p
->apCsr
[pOp
->p1
];
6108 /* If the cursor is not already open, create a special kind of
6109 ** pseudo-cursor that always gives null rows. */
6110 pC
= allocateCursor(p
, pOp
->p1
, 1, CURTYPE_PSEUDO
);
6111 if( pC
==0 ) goto no_mem
;
6115 pC
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
6118 pC
->cacheStatus
= CACHE_STALE
;
6119 if( pC
->eCurType
==CURTYPE_BTREE
){
6120 assert( pC
->uc
.pCursor
!=0 );
6121 sqlite3BtreeClearCursor(pC
->uc
.pCursor
);
6124 if( pC
->seekOp
==0 ) pC
->seekOp
= OP_NullRow
;
6129 /* Opcode: SeekEnd P1 * * * *
6131 ** Position cursor P1 at the end of the btree for the purpose of
6132 ** appending a new entry onto the btree.
6134 ** It is assumed that the cursor is used only for appending and so
6135 ** if the cursor is valid, then the cursor must already be pointing
6136 ** at the end of the btree and so no changes are made to
6139 /* Opcode: Last P1 P2 * * *
6141 ** The next use of the Rowid or Column or Prev instruction for P1
6142 ** will refer to the last entry in the database table or index.
6143 ** If the table or index is empty and P2>0, then jump immediately to P2.
6144 ** If P2 is 0 or if the table or index is not empty, fall through
6145 ** to the following instruction.
6147 ** This opcode leaves the cursor configured to move in reverse order,
6148 ** from the end toward the beginning. In other words, the cursor is
6149 ** configured to use Prev, not Next.
6151 case OP_SeekEnd
: /* ncycle */
6152 case OP_Last
: { /* jump, ncycle */
6157 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6158 pC
= p
->apCsr
[pOp
->p1
];
6160 assert( pC
->eCurType
==CURTYPE_BTREE
);
6161 pCrsr
= pC
->uc
.pCursor
;
6165 pC
->seekOp
= pOp
->opcode
;
6167 if( pOp
->opcode
==OP_SeekEnd
){
6168 assert( pOp
->p2
==0 );
6169 pC
->seekResult
= -1;
6170 if( sqlite3BtreeCursorIsValidNN(pCrsr
) ){
6174 rc
= sqlite3BtreeLast(pCrsr
, &res
);
6175 pC
->nullRow
= (u8
)res
;
6176 pC
->deferredMoveto
= 0;
6177 pC
->cacheStatus
= CACHE_STALE
;
6178 if( rc
) goto abort_due_to_error
;
6180 VdbeBranchTaken(res
!=0,2);
6181 if( res
) goto jump_to_p2
;
6186 /* Opcode: IfSmaller P1 P2 P3 * *
6188 ** Estimate the number of rows in the table P1. Jump to P2 if that
6189 ** estimate is less than approximately 2**(0.1*P3).
6191 case OP_IfSmaller
: { /* jump */
6197 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6198 pC
= p
->apCsr
[pOp
->p1
];
6200 pCrsr
= pC
->uc
.pCursor
;
6202 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6203 if( rc
) goto abort_due_to_error
;
6205 sz
= sqlite3BtreeRowCountEst(pCrsr
);
6206 if( ALWAYS(sz
>=0) && sqlite3LogEst((u64
)sz
)<pOp
->p3
) res
= 1;
6208 VdbeBranchTaken(res
!=0,2);
6209 if( res
) goto jump_to_p2
;
6214 /* Opcode: SorterSort P1 P2 * * *
6216 ** After all records have been inserted into the Sorter object
6217 ** identified by P1, invoke this opcode to actually do the sorting.
6218 ** Jump to P2 if there are no records to be sorted.
6220 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6221 ** for Sorter objects.
6223 /* Opcode: Sort P1 P2 * * *
6225 ** This opcode does exactly the same thing as OP_Rewind except that
6226 ** it increments an undocumented global variable used for testing.
6228 ** Sorting is accomplished by writing records into a sorting index,
6229 ** then rewinding that index and playing it back from beginning to
6230 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
6231 ** rewinding so that the global variable will be incremented and
6232 ** regression tests can determine whether or not the optimizer is
6233 ** correctly optimizing out sorts.
6235 case OP_SorterSort
: /* jump ncycle */
6236 case OP_Sort
: { /* jump ncycle */
6238 sqlite3_sort_count
++;
6239 sqlite3_search_count
--;
6241 p
->aCounter
[SQLITE_STMTSTATUS_SORT
]++;
6242 /* Fall through into OP_Rewind */
6243 /* no break */ deliberate_fall_through
6245 /* Opcode: Rewind P1 P2 * * *
6247 ** The next use of the Rowid or Column or Next instruction for P1
6248 ** will refer to the first entry in the database table or index.
6249 ** If the table or index is empty, jump immediately to P2.
6250 ** If the table or index is not empty, fall through to the following
6253 ** If P2 is zero, that is an assertion that the P1 table is never
6254 ** empty and hence the jump will never be taken.
6256 ** This opcode leaves the cursor configured to move in forward order,
6257 ** from the beginning toward the end. In other words, the cursor is
6258 ** configured to use Next, not Prev.
6260 case OP_Rewind
: { /* jump, ncycle */
6265 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6266 assert( pOp
->p5
==0 );
6267 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
6269 pC
= p
->apCsr
[pOp
->p1
];
6271 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterSort
) );
6274 pC
->seekOp
= OP_Rewind
;
6277 rc
= sqlite3VdbeSorterRewind(pC
, &res
);
6279 assert( pC
->eCurType
==CURTYPE_BTREE
);
6280 pCrsr
= pC
->uc
.pCursor
;
6282 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6283 pC
->deferredMoveto
= 0;
6284 pC
->cacheStatus
= CACHE_STALE
;
6286 if( rc
) goto abort_due_to_error
;
6287 pC
->nullRow
= (u8
)res
;
6289 VdbeBranchTaken(res
!=0,2);
6290 if( res
) goto jump_to_p2
;
6295 /* Opcode: Next P1 P2 P3 * P5
6297 ** Advance cursor P1 so that it points to the next key/data pair in its
6298 ** table or index. If there are no more key/value pairs then fall through
6299 ** to the following instruction. But if the cursor advance was successful,
6300 ** jump immediately to P2.
6302 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6303 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6304 ** to follow SeekLT, SeekLE, or OP_Last.
6306 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6307 ** been opened prior to this opcode or the program will segfault.
6309 ** The P3 value is a hint to the btree implementation. If P3==1, that
6310 ** means P1 is an SQL index and that this instruction could have been
6311 ** omitted if that index had been unique. P3 is usually 0. P3 is
6312 ** always either 0 or 1.
6314 ** If P5 is positive and the jump is taken, then event counter
6315 ** number P5-1 in the prepared statement is incremented.
6319 /* Opcode: Prev P1 P2 P3 * P5
6321 ** Back up cursor P1 so that it points to the previous key/data pair in its
6322 ** table or index. If there is no previous key/value pairs then fall through
6323 ** to the following instruction. But if the cursor backup was successful,
6324 ** jump immediately to P2.
6327 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6328 ** OP_Last opcode used to position the cursor. Prev is not allowed
6329 ** to follow SeekGT, SeekGE, or OP_Rewind.
6331 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6332 ** not open then the behavior is undefined.
6334 ** The P3 value is a hint to the btree implementation. If P3==1, that
6335 ** means P1 is an SQL index and that this instruction could have been
6336 ** omitted if that index had been unique. P3 is usually 0. P3 is
6337 ** always either 0 or 1.
6339 ** If P5 is positive and the jump is taken, then event counter
6340 ** number P5-1 in the prepared statement is incremented.
6342 /* Opcode: SorterNext P1 P2 * * P5
6344 ** This opcode works just like OP_Next except that P1 must be a
6345 ** sorter object for which the OP_SorterSort opcode has been
6346 ** invoked. This opcode advances the cursor to the next sorted
6347 ** record, or jumps to P2 if there are no more sorted records.
6349 case OP_SorterNext
: { /* jump */
6352 pC
= p
->apCsr
[pOp
->p1
];
6353 assert( isSorter(pC
) );
6354 rc
= sqlite3VdbeSorterNext(db
, pC
);
6357 case OP_Prev
: /* jump, ncycle */
6358 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6360 || pOp
->p5
==SQLITE_STMTSTATUS_FULLSCAN_STEP
6361 || pOp
->p5
==SQLITE_STMTSTATUS_AUTOINDEX
);
6362 pC
= p
->apCsr
[pOp
->p1
];
6364 assert( pC
->deferredMoveto
==0 );
6365 assert( pC
->eCurType
==CURTYPE_BTREE
);
6366 assert( pC
->seekOp
==OP_SeekLT
|| pC
->seekOp
==OP_SeekLE
6367 || pC
->seekOp
==OP_Last
|| pC
->seekOp
==OP_IfNoHope
6368 || pC
->seekOp
==OP_NullRow
);
6369 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, pOp
->p3
);
6372 case OP_Next
: /* jump, ncycle */
6373 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6375 || pOp
->p5
==SQLITE_STMTSTATUS_FULLSCAN_STEP
6376 || pOp
->p5
==SQLITE_STMTSTATUS_AUTOINDEX
);
6377 pC
= p
->apCsr
[pOp
->p1
];
6379 assert( pC
->deferredMoveto
==0 );
6380 assert( pC
->eCurType
==CURTYPE_BTREE
);
6381 assert( pC
->seekOp
==OP_SeekGT
|| pC
->seekOp
==OP_SeekGE
6382 || pC
->seekOp
==OP_Rewind
|| pC
->seekOp
==OP_Found
6383 || pC
->seekOp
==OP_NullRow
|| pC
->seekOp
==OP_SeekRowid
6384 || pC
->seekOp
==OP_IfNoHope
);
6385 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, pOp
->p3
);
6388 pC
->cacheStatus
= CACHE_STALE
;
6389 VdbeBranchTaken(rc
==SQLITE_OK
,2);
6390 if( rc
==SQLITE_OK
){
6392 p
->aCounter
[pOp
->p5
]++;
6394 sqlite3_search_count
++;
6396 goto jump_to_p2_and_check_for_interrupt
;
6398 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
6401 goto check_for_interrupt
;
6404 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6405 ** Synopsis: key=r[P2]
6407 ** Register P2 holds an SQL index key made using the
6408 ** MakeRecord instructions. This opcode writes that key
6409 ** into the index P1. Data for the entry is nil.
6411 ** If P4 is not zero, then it is the number of values in the unpacked
6412 ** key of reg(P2). In that case, P3 is the index of the first register
6413 ** for the unpacked key. The availability of the unpacked key can sometimes
6414 ** be an optimization.
6416 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6417 ** that this insert is likely to be an append.
6419 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6420 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6421 ** then the change counter is unchanged.
6423 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6424 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6425 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6426 ** seeks on the cursor or if the most recent seek used a key equivalent
6429 ** This instruction only works for indices. The equivalent instruction
6430 ** for tables is OP_Insert.
6432 case OP_IdxInsert
: { /* in2 */
6436 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6437 pC
= p
->apCsr
[pOp
->p1
];
6438 sqlite3VdbeIncrWriteCounter(p
, pC
);
6440 assert( !isSorter(pC
) );
6441 pIn2
= &aMem
[pOp
->p2
];
6442 assert( (pIn2
->flags
& MEM_Blob
) || (pOp
->p5
& OPFLAG_PREFORMAT
) );
6443 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
6444 assert( pC
->eCurType
==CURTYPE_BTREE
);
6445 assert( pC
->isTable
==0 );
6446 rc
= ExpandBlob(pIn2
);
6447 if( rc
) goto abort_due_to_error
;
6450 x
.aMem
= aMem
+ pOp
->p3
;
6451 x
.nMem
= (u16
)pOp
->p4
.i
;
6452 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
6453 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
6454 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
6456 assert( pC
->deferredMoveto
==0 );
6457 pC
->cacheStatus
= CACHE_STALE
;
6458 if( rc
) goto abort_due_to_error
;
6462 /* Opcode: SorterInsert P1 P2 * * *
6463 ** Synopsis: key=r[P2]
6465 ** Register P2 holds an SQL index key made using the
6466 ** MakeRecord instructions. This opcode writes that key
6467 ** into the sorter P1. Data for the entry is nil.
6469 case OP_SorterInsert
: { /* in2 */
6472 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6473 pC
= p
->apCsr
[pOp
->p1
];
6474 sqlite3VdbeIncrWriteCounter(p
, pC
);
6476 assert( isSorter(pC
) );
6477 pIn2
= &aMem
[pOp
->p2
];
6478 assert( pIn2
->flags
& MEM_Blob
);
6479 assert( pC
->isTable
==0 );
6480 rc
= ExpandBlob(pIn2
);
6481 if( rc
) goto abort_due_to_error
;
6482 rc
= sqlite3VdbeSorterWrite(pC
, pIn2
);
6483 if( rc
) goto abort_due_to_error
;
6487 /* Opcode: IdxDelete P1 P2 P3 * P5
6488 ** Synopsis: key=r[P2@P3]
6490 ** The content of P3 registers starting at register P2 form
6491 ** an unpacked index key. This opcode removes that entry from the
6492 ** index opened by cursor P1.
6494 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6495 ** if no matching index entry is found. This happens when running
6496 ** an UPDATE or DELETE statement and the index entry to be updated
6497 ** or deleted is not found. For some uses of IdxDelete
6498 ** (example: the EXCEPT operator) it does not matter that no matching
6499 ** entry is found. For those cases, P5 is zero. Also, do not raise
6500 ** this (self-correcting and non-critical) error if in writable_schema mode.
6502 case OP_IdxDelete
: {
6508 assert( pOp
->p3
>0 );
6509 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)+1 );
6510 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6511 pC
= p
->apCsr
[pOp
->p1
];
6513 assert( pC
->eCurType
==CURTYPE_BTREE
);
6514 sqlite3VdbeIncrWriteCounter(p
, pC
);
6515 pCrsr
= pC
->uc
.pCursor
;
6517 r
.pKeyInfo
= pC
->pKeyInfo
;
6518 r
.nField
= (u16
)pOp
->p3
;
6520 r
.aMem
= &aMem
[pOp
->p2
];
6521 rc
= sqlite3BtreeIndexMoveto(pCrsr
, &r
, &res
);
6522 if( rc
) goto abort_due_to_error
;
6524 rc
= sqlite3BtreeDelete(pCrsr
, BTREE_AUXDELETE
);
6525 if( rc
) goto abort_due_to_error
;
6526 }else if( pOp
->p5
&& !sqlite3WritableSchema(db
) ){
6527 rc
= sqlite3ReportError(SQLITE_CORRUPT_INDEX
, __LINE__
, "index corruption");
6528 goto abort_due_to_error
;
6530 assert( pC
->deferredMoveto
==0 );
6531 pC
->cacheStatus
= CACHE_STALE
;
6536 /* Opcode: DeferredSeek P1 * P3 P4 *
6537 ** Synopsis: Move P3 to P1.rowid if needed
6539 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6540 ** table. This opcode does a deferred seek of the P3 table cursor
6541 ** to the row that corresponds to the current row of P1.
6543 ** This is a deferred seek. Nothing actually happens until
6544 ** the cursor is used to read a record. That way, if no reads
6545 ** occur, no unnecessary I/O happens.
6547 ** P4 may be an array of integers (type P4_INTARRAY) containing
6548 ** one entry for each column in the P3 table. If array entry a(i)
6549 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6550 ** equivalent to performing the deferred seek and then reading column i
6551 ** from P1. This information is stored in P3 and used to redirect
6552 ** reads against P3 over to P1, thus possibly avoiding the need to
6553 ** seek and read cursor P3.
6555 /* Opcode: IdxRowid P1 P2 * * *
6556 ** Synopsis: r[P2]=rowid
6558 ** Write into register P2 an integer which is the last entry in the record at
6559 ** the end of the index key pointed to by cursor P1. This integer should be
6560 ** the rowid of the table entry to which this index entry points.
6562 ** See also: Rowid, MakeRecord.
6564 case OP_DeferredSeek
: /* ncycle */
6565 case OP_IdxRowid
: { /* out2, ncycle */
6566 VdbeCursor
*pC
; /* The P1 index cursor */
6567 VdbeCursor
*pTabCur
; /* The P2 table cursor (OP_DeferredSeek only) */
6568 i64 rowid
; /* Rowid that P1 current points to */
6570 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6571 pC
= p
->apCsr
[pOp
->p1
];
6573 assert( pC
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(pC
) );
6574 assert( pC
->uc
.pCursor
!=0 );
6575 assert( pC
->isTable
==0 || IsNullCursor(pC
) );
6576 assert( pC
->deferredMoveto
==0 );
6577 assert( !pC
->nullRow
|| pOp
->opcode
==OP_IdxRowid
);
6579 /* The IdxRowid and Seek opcodes are combined because of the commonality
6580 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6581 rc
= sqlite3VdbeCursorRestore(pC
);
6583 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6584 ** since it was last positioned and an error (e.g. OOM or an IO error)
6585 ** occurs while trying to reposition it. */
6586 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
6589 rowid
= 0; /* Not needed. Only used to silence a warning. */
6590 rc
= sqlite3VdbeIdxRowid(db
, pC
->uc
.pCursor
, &rowid
);
6591 if( rc
!=SQLITE_OK
){
6592 goto abort_due_to_error
;
6594 if( pOp
->opcode
==OP_DeferredSeek
){
6595 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nCursor
);
6596 pTabCur
= p
->apCsr
[pOp
->p3
];
6597 assert( pTabCur
!=0 );
6598 assert( pTabCur
->eCurType
==CURTYPE_BTREE
);
6599 assert( pTabCur
->uc
.pCursor
!=0 );
6600 assert( pTabCur
->isTable
);
6601 pTabCur
->nullRow
= 0;
6602 pTabCur
->movetoTarget
= rowid
;
6603 pTabCur
->deferredMoveto
= 1;
6604 pTabCur
->cacheStatus
= CACHE_STALE
;
6605 assert( pOp
->p4type
==P4_INTARRAY
|| pOp
->p4
.ai
==0 );
6606 assert( !pTabCur
->isEphemeral
);
6607 pTabCur
->ub
.aAltMap
= pOp
->p4
.ai
;
6608 assert( !pC
->isEphemeral
);
6609 pTabCur
->pAltCursor
= pC
;
6611 pOut
= out2Prerelease(p
, pOp
);
6615 assert( pOp
->opcode
==OP_IdxRowid
);
6616 sqlite3VdbeMemSetNull(&aMem
[pOp
->p2
]);
6621 /* Opcode: FinishSeek P1 * * * *
6623 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6624 ** seek operation now, without further delay. If the cursor seek has
6625 ** already occurred, this instruction is a no-op.
6627 case OP_FinishSeek
: { /* ncycle */
6628 VdbeCursor
*pC
; /* The P1 index cursor */
6630 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6631 pC
= p
->apCsr
[pOp
->p1
];
6632 if( pC
->deferredMoveto
){
6633 rc
= sqlite3VdbeFinishMoveto(pC
);
6634 if( rc
) goto abort_due_to_error
;
6639 /* Opcode: IdxGE P1 P2 P3 P4 *
6640 ** Synopsis: key=r[P3@P4]
6642 ** The P4 register values beginning with P3 form an unpacked index
6643 ** key that omits the PRIMARY KEY. Compare this key value against the index
6644 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6645 ** fields at the end.
6647 ** If the P1 index entry is greater than or equal to the key value
6648 ** then jump to P2. Otherwise fall through to the next instruction.
6650 /* Opcode: IdxGT P1 P2 P3 P4 *
6651 ** Synopsis: key=r[P3@P4]
6653 ** The P4 register values beginning with P3 form an unpacked index
6654 ** key that omits the PRIMARY KEY. Compare this key value against the index
6655 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6656 ** fields at the end.
6658 ** If the P1 index entry is greater than the key value
6659 ** then jump to P2. Otherwise fall through to the next instruction.
6661 /* Opcode: IdxLT P1 P2 P3 P4 *
6662 ** Synopsis: key=r[P3@P4]
6664 ** The P4 register values beginning with P3 form an unpacked index
6665 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6666 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6667 ** ROWID on the P1 index.
6669 ** If the P1 index entry is less than the key value then jump to P2.
6670 ** Otherwise fall through to the next instruction.
6672 /* Opcode: IdxLE P1 P2 P3 P4 *
6673 ** Synopsis: key=r[P3@P4]
6675 ** The P4 register values beginning with P3 form an unpacked index
6676 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6677 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6678 ** ROWID on the P1 index.
6680 ** If the P1 index entry is less than or equal to the key value then jump
6681 ** to P2. Otherwise fall through to the next instruction.
6683 case OP_IdxLE
: /* jump, ncycle */
6684 case OP_IdxGT
: /* jump, ncycle */
6685 case OP_IdxLT
: /* jump, ncycle */
6686 case OP_IdxGE
: { /* jump, ncycle */
6691 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6692 pC
= p
->apCsr
[pOp
->p1
];
6694 assert( pC
->isOrdered
);
6695 assert( pC
->eCurType
==CURTYPE_BTREE
);
6696 assert( pC
->uc
.pCursor
!=0);
6697 assert( pC
->deferredMoveto
==0 );
6698 assert( pOp
->p4type
==P4_INT32
);
6699 r
.pKeyInfo
= pC
->pKeyInfo
;
6700 r
.nField
= (u16
)pOp
->p4
.i
;
6701 if( pOp
->opcode
<OP_IdxLT
){
6702 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxGT
);
6705 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxLT
);
6708 r
.aMem
= &aMem
[pOp
->p3
];
6712 for(i
=0; i
<r
.nField
; i
++){
6713 assert( memIsValid(&r
.aMem
[i
]) );
6714 REGISTER_TRACE(pOp
->p3
+i
, &aMem
[pOp
->p3
+i
]);
6719 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6725 assert( pC
->eCurType
==CURTYPE_BTREE
);
6726 pCur
= pC
->uc
.pCursor
;
6727 assert( sqlite3BtreeCursorIsValid(pCur
) );
6728 nCellKey
= sqlite3BtreePayloadSize(pCur
);
6729 /* nCellKey will always be between 0 and 0xffffffff because of the way
6730 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6731 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
6732 rc
= SQLITE_CORRUPT_BKPT
;
6733 goto abort_due_to_error
;
6735 sqlite3VdbeMemInit(&m
, db
, 0);
6736 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
6737 if( rc
) goto abort_due_to_error
;
6738 res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, &r
, 0);
6739 sqlite3VdbeMemReleaseMalloc(&m
);
6741 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6743 assert( (OP_IdxLE
&1)==(OP_IdxLT
&1) && (OP_IdxGE
&1)==(OP_IdxGT
&1) );
6744 if( (pOp
->opcode
&1)==(OP_IdxLT
&1) ){
6745 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxLT
);
6748 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxGT
);
6751 VdbeBranchTaken(res
>0,2);
6752 assert( rc
==SQLITE_OK
);
6753 if( res
>0 ) goto jump_to_p2
;
6757 /* Opcode: Destroy P1 P2 P3 * *
6759 ** Delete an entire database table or index whose root page in the database
6760 ** file is given by P1.
6762 ** The table being destroyed is in the main database file if P3==0. If
6763 ** P3==1 then the table to be destroyed is in the auxiliary database file
6764 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6766 ** If AUTOVACUUM is enabled then it is possible that another root page
6767 ** might be moved into the newly deleted root page in order to keep all
6768 ** root pages contiguous at the beginning of the database. The former
6769 ** value of the root page that moved - its value before the move occurred -
6770 ** is stored in register P2. If no page movement was required (because the
6771 ** table being dropped was already the last one in the database) then a
6772 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6773 ** is stored in register P2.
6775 ** This opcode throws an error if there are any active reader VMs when
6776 ** it is invoked. This is done to avoid the difficulty associated with
6777 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6778 ** database. This error is thrown even if the database is not an AUTOVACUUM
6779 ** db in order to avoid introducing an incompatibility between autovacuum
6780 ** and non-autovacuum modes.
6784 case OP_Destroy
: { /* out2 */
6788 sqlite3VdbeIncrWriteCounter(p
, 0);
6789 assert( p
->readOnly
==0 );
6790 assert( pOp
->p1
>1 );
6791 pOut
= out2Prerelease(p
, pOp
);
6792 pOut
->flags
= MEM_Null
;
6793 if( db
->nVdbeRead
> db
->nVDestroy
+1 ){
6795 p
->errorAction
= OE_Abort
;
6796 goto abort_due_to_error
;
6799 assert( DbMaskTest(p
->btreeMask
, iDb
) );
6800 iMoved
= 0; /* Not needed. Only to silence a warning. */
6801 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
6802 pOut
->flags
= MEM_Int
;
6804 if( rc
) goto abort_due_to_error
;
6805 #ifndef SQLITE_OMIT_AUTOVACUUM
6807 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
6808 /* All OP_Destroy operations occur on the same btree */
6809 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
6810 resetSchemaOnFault
= iDb
+1;
6817 /* Opcode: Clear P1 P2 P3
6819 ** Delete all contents of the database table or index whose root page
6820 ** in the database file is given by P1. But, unlike Destroy, do not
6821 ** remove the table or index from the database file.
6823 ** The table being cleared is in the main database file if P2==0. If
6824 ** P2==1 then the table to be cleared is in the auxiliary database file
6825 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6827 ** If the P3 value is non-zero, then the row change count is incremented
6828 ** by the number of rows in the table being cleared. If P3 is greater
6829 ** than zero, then the value stored in register P3 is also incremented
6830 ** by the number of rows in the table being cleared.
6832 ** See also: Destroy
6837 sqlite3VdbeIncrWriteCounter(p
, 0);
6839 assert( p
->readOnly
==0 );
6840 assert( DbMaskTest(p
->btreeMask
, pOp
->p2
) );
6841 rc
= sqlite3BtreeClearTable(db
->aDb
[pOp
->p2
].pBt
, (u32
)pOp
->p1
, &nChange
);
6843 p
->nChange
+= nChange
;
6845 assert( memIsValid(&aMem
[pOp
->p3
]) );
6846 memAboutToChange(p
, &aMem
[pOp
->p3
]);
6847 aMem
[pOp
->p3
].u
.i
+= nChange
;
6850 if( rc
) goto abort_due_to_error
;
6854 /* Opcode: ResetSorter P1 * * * *
6856 ** Delete all contents from the ephemeral table or sorter
6857 ** that is open on cursor P1.
6859 ** This opcode only works for cursors used for sorting and
6860 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6862 case OP_ResetSorter
: {
6865 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6866 pC
= p
->apCsr
[pOp
->p1
];
6869 sqlite3VdbeSorterReset(db
, pC
->uc
.pSorter
);
6871 assert( pC
->eCurType
==CURTYPE_BTREE
);
6872 assert( pC
->isEphemeral
);
6873 rc
= sqlite3BtreeClearTableOfCursor(pC
->uc
.pCursor
);
6874 if( rc
) goto abort_due_to_error
;
6879 /* Opcode: CreateBtree P1 P2 P3 * *
6880 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6882 ** Allocate a new b-tree in the main database file if P1==0 or in the
6883 ** TEMP database file if P1==1 or in an attached database if
6884 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6885 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6886 ** The root page number of the new b-tree is stored in register P2.
6888 case OP_CreateBtree
: { /* out2 */
6892 sqlite3VdbeIncrWriteCounter(p
, 0);
6893 pOut
= out2Prerelease(p
, pOp
);
6895 assert( pOp
->p3
==BTREE_INTKEY
|| pOp
->p3
==BTREE_BLOBKEY
);
6896 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6897 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
6898 assert( p
->readOnly
==0 );
6899 pDb
= &db
->aDb
[pOp
->p1
];
6900 assert( pDb
->pBt
!=0 );
6901 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, pOp
->p3
);
6902 if( rc
) goto abort_due_to_error
;
6907 /* Opcode: SqlExec * * * P4 *
6909 ** Run the SQL statement or statements specified in the P4 string.
6910 ** Disable Auth and Trace callbacks while those statements are running if
6915 #ifndef SQLITE_OMIT_AUTHORIZATION
6916 sqlite3_xauth xAuth
;
6920 sqlite3VdbeIncrWriteCounter(p
, 0);
6923 #ifndef SQLITE_OMIT_AUTHORIZATION
6926 mTrace
= db
->mTrace
;
6928 #ifndef SQLITE_OMIT_AUTHORIZATION
6933 rc
= sqlite3_exec(db
, pOp
->p4
.z
, 0, 0, &zErr
);
6935 #ifndef SQLITE_OMIT_AUTHORIZATION
6938 db
->mTrace
= mTrace
;
6940 sqlite3VdbeError(p
, "%s", zErr
);
6942 if( rc
==SQLITE_NOMEM
) goto no_mem
;
6943 goto abort_due_to_error
;
6948 /* Opcode: ParseSchema P1 * * P4 *
6950 ** Read and parse all entries from the schema table of database P1
6951 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6952 ** entire schema for P1 is reparsed.
6954 ** This opcode invokes the parser to create a new virtual machine,
6955 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6957 case OP_ParseSchema
: {
6959 const char *zSchema
;
6963 /* Any prepared statement that invokes this opcode will hold mutexes
6964 ** on every btree. This is a prerequisite for invoking
6965 ** sqlite3InitCallback().
6968 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
6969 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
6974 assert( iDb
>=0 && iDb
<db
->nDb
);
6975 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
)
6977 || (CORRUPT_DB
&& (db
->flags
& SQLITE_NoSchemaError
)!=0) );
6979 #ifndef SQLITE_OMIT_ALTERTABLE
6981 sqlite3SchemaClear(db
->aDb
[iDb
].pSchema
);
6982 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
6983 rc
= sqlite3InitOne(db
, iDb
, &p
->zErrMsg
, pOp
->p5
);
6984 db
->mDbFlags
|= DBFLAG_SchemaChange
;
6989 zSchema
= LEGACY_SCHEMA_TABLE
;
6992 initData
.pzErrMsg
= &p
->zErrMsg
;
6993 initData
.mInitFlags
= 0;
6994 initData
.mxPage
= sqlite3BtreeLastPage(db
->aDb
[iDb
].pBt
);
6995 zSql
= sqlite3MPrintf(db
,
6996 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6997 db
->aDb
[iDb
].zDbSName
, zSchema
, pOp
->p4
.z
);
6999 rc
= SQLITE_NOMEM_BKPT
;
7001 assert( db
->init
.busy
==0 );
7003 initData
.rc
= SQLITE_OK
;
7004 initData
.nInitRow
= 0;
7005 assert( !db
->mallocFailed
);
7006 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
7007 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
7008 if( rc
==SQLITE_OK
&& initData
.nInitRow
==0 ){
7009 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
7010 ** at least one SQL statement. Any less than that indicates that
7011 ** the sqlite_schema table is corrupt. */
7012 rc
= SQLITE_CORRUPT_BKPT
;
7014 sqlite3DbFreeNN(db
, zSql
);
7019 sqlite3ResetAllSchemasOfConnection(db
);
7020 if( rc
==SQLITE_NOMEM
){
7023 goto abort_due_to_error
;
7028 #if !defined(SQLITE_OMIT_ANALYZE)
7029 /* Opcode: LoadAnalysis P1 * * * *
7031 ** Read the sqlite_stat1 table for database P1 and load the content
7032 ** of that table into the internal index hash table. This will cause
7033 ** the analysis to be used when preparing all subsequent queries.
7035 case OP_LoadAnalysis
: {
7036 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7037 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
7038 if( rc
) goto abort_due_to_error
;
7041 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
7043 /* Opcode: DropTable P1 * * P4 *
7045 ** Remove the internal (in-memory) data structures that describe
7046 ** the table named P4 in database P1. This is called after a table
7047 ** is dropped from disk (using the Destroy opcode) in order to keep
7048 ** the internal representation of the
7049 ** schema consistent with what is on disk.
7051 case OP_DropTable
: {
7052 sqlite3VdbeIncrWriteCounter(p
, 0);
7053 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
7057 /* Opcode: DropIndex P1 * * P4 *
7059 ** Remove the internal (in-memory) data structures that describe
7060 ** the index named P4 in database P1. This is called after an index
7061 ** is dropped from disk (using the Destroy opcode)
7062 ** in order to keep the internal representation of the
7063 ** schema consistent with what is on disk.
7065 case OP_DropIndex
: {
7066 sqlite3VdbeIncrWriteCounter(p
, 0);
7067 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
7071 /* Opcode: DropTrigger P1 * * P4 *
7073 ** Remove the internal (in-memory) data structures that describe
7074 ** the trigger named P4 in database P1. This is called after a trigger
7075 ** is dropped from disk (using the Destroy opcode) in order to keep
7076 ** the internal representation of the
7077 ** schema consistent with what is on disk.
7079 case OP_DropTrigger
: {
7080 sqlite3VdbeIncrWriteCounter(p
, 0);
7081 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
7086 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7087 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
7089 ** Do an analysis of the currently open database. Store in
7090 ** register P1 the text of an error message describing any problems.
7091 ** If no problems are found, store a NULL in register P1.
7093 ** The register P3 contains one less than the maximum number of allowed errors.
7094 ** At most reg(P3) errors will be reported.
7095 ** In other words, the analysis stops as soon as reg(P1) errors are
7096 ** seen. Reg(P1) is updated with the number of errors remaining.
7098 ** The root page numbers of all tables in the database are integers
7099 ** stored in P4_INTARRAY argument.
7101 ** If P5 is not zero, the check is done on the auxiliary database
7102 ** file, not the main database file.
7104 ** This opcode is used to implement the integrity_check pragma.
7106 case OP_IntegrityCk
: {
7107 int nRoot
; /* Number of tables to check. (Number of root pages.) */
7108 Pgno
*aRoot
; /* Array of rootpage numbers for tables to be checked */
7109 int nErr
; /* Number of errors reported */
7110 char *z
; /* Text of the error report */
7111 Mem
*pnErr
; /* Register keeping track of errors remaining */
7113 assert( p
->bIsReader
);
7117 assert( aRoot
[0]==(Pgno
)nRoot
);
7118 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7119 pnErr
= &aMem
[pOp
->p3
];
7120 assert( (pnErr
->flags
& MEM_Int
)!=0 );
7121 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
7122 pIn1
= &aMem
[pOp
->p1
];
7123 assert( pOp
->p5
<db
->nDb
);
7124 assert( DbMaskTest(p
->btreeMask
, pOp
->p5
) );
7125 rc
= sqlite3BtreeIntegrityCheck(db
, db
->aDb
[pOp
->p5
].pBt
, &aRoot
[1], nRoot
,
7126 (int)pnErr
->u
.i
+1, &nErr
, &z
);
7127 sqlite3VdbeMemSetNull(pIn1
);
7132 goto abort_due_to_error
;
7134 pnErr
->u
.i
-= nErr
-1;
7135 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
7137 UPDATE_MAX_BLOBSIZE(pIn1
);
7138 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
7139 goto check_for_interrupt
;
7141 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7143 /* Opcode: RowSetAdd P1 P2 * * *
7144 ** Synopsis: rowset(P1)=r[P2]
7146 ** Insert the integer value held by register P2 into a RowSet object
7147 ** held in register P1.
7149 ** An assertion fails if P2 is not an integer.
7151 case OP_RowSetAdd
: { /* in1, in2 */
7152 pIn1
= &aMem
[pOp
->p1
];
7153 pIn2
= &aMem
[pOp
->p2
];
7154 assert( (pIn2
->flags
& MEM_Int
)!=0 );
7155 if( (pIn1
->flags
& MEM_Blob
)==0 ){
7156 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
7158 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
7159 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn2
->u
.i
);
7163 /* Opcode: RowSetRead P1 P2 P3 * *
7164 ** Synopsis: r[P3]=rowset(P1)
7166 ** Extract the smallest value from the RowSet object in P1
7167 ** and put that value into register P3.
7168 ** Or, if RowSet object P1 is initially empty, leave P3
7169 ** unchanged and jump to instruction P2.
7171 case OP_RowSetRead
: { /* jump, in1, out3 */
7174 pIn1
= &aMem
[pOp
->p1
];
7175 assert( (pIn1
->flags
& MEM_Blob
)==0 || sqlite3VdbeMemIsRowSet(pIn1
) );
7176 if( (pIn1
->flags
& MEM_Blob
)==0
7177 || sqlite3RowSetNext((RowSet
*)pIn1
->z
, &val
)==0
7179 /* The boolean index is empty */
7180 sqlite3VdbeMemSetNull(pIn1
);
7181 VdbeBranchTaken(1,2);
7182 goto jump_to_p2_and_check_for_interrupt
;
7184 /* A value was pulled from the index */
7185 VdbeBranchTaken(0,2);
7186 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
7188 goto check_for_interrupt
;
7191 /* Opcode: RowSetTest P1 P2 P3 P4
7192 ** Synopsis: if r[P3] in rowset(P1) goto P2
7194 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
7195 ** contains a RowSet object and that RowSet object contains
7196 ** the value held in P3, jump to register P2. Otherwise, insert the
7197 ** integer in P3 into the RowSet and continue on to the
7200 ** The RowSet object is optimized for the case where sets of integers
7201 ** are inserted in distinct phases, which each set contains no duplicates.
7202 ** Each set is identified by a unique P4 value. The first set
7203 ** must have P4==0, the final set must have P4==-1, and for all other sets
7206 ** This allows optimizations: (a) when P4==0 there is no need to test
7207 ** the RowSet object for P3, as it is guaranteed not to contain it,
7208 ** (b) when P4==-1 there is no need to insert the value, as it will
7209 ** never be tested for, and (c) when a value that is part of set X is
7210 ** inserted, there is no need to search to see if the same value was
7211 ** previously inserted as part of set X (only if it was previously
7212 ** inserted as part of some other set).
7214 case OP_RowSetTest
: { /* jump, in1, in3 */
7218 pIn1
= &aMem
[pOp
->p1
];
7219 pIn3
= &aMem
[pOp
->p3
];
7221 assert( pIn3
->flags
&MEM_Int
);
7223 /* If there is anything other than a rowset object in memory cell P1,
7224 ** delete it now and initialize P1 with an empty rowset
7226 if( (pIn1
->flags
& MEM_Blob
)==0 ){
7227 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
7229 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
7230 assert( pOp
->p4type
==P4_INT32
);
7231 assert( iSet
==-1 || iSet
>=0 );
7233 exists
= sqlite3RowSetTest((RowSet
*)pIn1
->z
, iSet
, pIn3
->u
.i
);
7234 VdbeBranchTaken(exists
!=0,2);
7235 if( exists
) goto jump_to_p2
;
7238 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn3
->u
.i
);
7244 #ifndef SQLITE_OMIT_TRIGGER
7246 /* Opcode: Program P1 P2 P3 P4 P5
7248 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7250 ** P1 contains the address of the memory cell that contains the first memory
7251 ** cell in an array of values used as arguments to the sub-program. P2
7252 ** contains the address to jump to if the sub-program throws an IGNORE
7253 ** exception using the RAISE() function. Register P3 contains the address
7254 ** of a memory cell in this (the parent) VM that is used to allocate the
7255 ** memory required by the sub-vdbe at runtime.
7257 ** P4 is a pointer to the VM containing the trigger program.
7259 ** If P5 is non-zero, then recursive program invocation is enabled.
7261 case OP_Program
: { /* jump */
7262 int nMem
; /* Number of memory registers for sub-program */
7263 int nByte
; /* Bytes of runtime space required for sub-program */
7264 Mem
*pRt
; /* Register to allocate runtime space */
7265 Mem
*pMem
; /* Used to iterate through memory cells */
7266 Mem
*pEnd
; /* Last memory cell in new array */
7267 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
7268 SubProgram
*pProgram
; /* Sub-program to execute */
7269 void *t
; /* Token identifying trigger */
7271 pProgram
= pOp
->p4
.pProgram
;
7272 pRt
= &aMem
[pOp
->p3
];
7273 assert( pProgram
->nOp
>0 );
7275 /* If the p5 flag is clear, then recursive invocation of triggers is
7276 ** disabled for backwards compatibility (p5 is set if this sub-program
7277 ** is really a trigger, not a foreign key action, and the flag set
7278 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7280 ** It is recursive invocation of triggers, at the SQL level, that is
7281 ** disabled. In some cases a single trigger may generate more than one
7282 ** SubProgram (if the trigger may be executed with more than one different
7283 ** ON CONFLICT algorithm). SubProgram structures associated with a
7284 ** single trigger all have the same value for the SubProgram.token
7287 t
= pProgram
->token
;
7288 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
7292 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
7294 sqlite3VdbeError(p
, "too many levels of trigger recursion");
7295 goto abort_due_to_error
;
7298 /* Register pRt is used to store the memory required to save the state
7299 ** of the current program, and the memory required at runtime to execute
7300 ** the trigger program. If this trigger has been fired before, then pRt
7301 ** is already allocated. Otherwise, it must be initialized. */
7302 if( (pRt
->flags
&MEM_Blob
)==0 ){
7303 /* SubProgram.nMem is set to the number of memory cells used by the
7304 ** program stored in SubProgram.aOp. As well as these, one memory
7305 ** cell is required for each cursor used by the program. Set local
7306 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7308 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
7310 if( pProgram
->nCsr
==0 ) nMem
++;
7311 nByte
= ROUND8(sizeof(VdbeFrame
))
7312 + nMem
* sizeof(Mem
)
7313 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
7314 + (pProgram
->nOp
+ 7)/8;
7315 pFrame
= sqlite3DbMallocZero(db
, nByte
);
7319 sqlite3VdbeMemRelease(pRt
);
7320 pRt
->flags
= MEM_Blob
|MEM_Dyn
;
7321 pRt
->z
= (char*)pFrame
;
7323 pRt
->xDel
= sqlite3VdbeFrameMemDel
;
7326 pFrame
->nChildMem
= nMem
;
7327 pFrame
->nChildCsr
= pProgram
->nCsr
;
7328 pFrame
->pc
= (int)(pOp
- aOp
);
7329 pFrame
->aMem
= p
->aMem
;
7330 pFrame
->nMem
= p
->nMem
;
7331 pFrame
->apCsr
= p
->apCsr
;
7332 pFrame
->nCursor
= p
->nCursor
;
7333 pFrame
->aOp
= p
->aOp
;
7334 pFrame
->nOp
= p
->nOp
;
7335 pFrame
->token
= pProgram
->token
;
7337 pFrame
->iFrameMagic
= SQLITE_FRAME_MAGIC
;
7340 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
7341 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
7342 pMem
->flags
= MEM_Undefined
;
7346 pFrame
= (VdbeFrame
*)pRt
->z
;
7347 assert( pRt
->xDel
==sqlite3VdbeFrameMemDel
);
7348 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
7349 || (pProgram
->nCsr
==0 && pProgram
->nMem
+1==pFrame
->nChildMem
) );
7350 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
7351 assert( (int)(pOp
- aOp
)==pFrame
->pc
);
7355 pFrame
->pParent
= p
->pFrame
;
7356 pFrame
->lastRowid
= db
->lastRowid
;
7357 pFrame
->nChange
= p
->nChange
;
7358 pFrame
->nDbChange
= p
->db
->nChange
;
7359 assert( pFrame
->pAuxData
==0 );
7360 pFrame
->pAuxData
= p
->pAuxData
;
7364 p
->aMem
= aMem
= VdbeFrameMem(pFrame
);
7365 p
->nMem
= pFrame
->nChildMem
;
7366 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
7367 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
];
7368 pFrame
->aOnce
= (u8
*)&p
->apCsr
[pProgram
->nCsr
];
7369 memset(pFrame
->aOnce
, 0, (pProgram
->nOp
+ 7)/8);
7370 p
->aOp
= aOp
= pProgram
->aOp
;
7371 p
->nOp
= pProgram
->nOp
;
7373 /* Verify that second and subsequent executions of the same trigger do not
7374 ** try to reuse register values from the first use. */
7377 for(i
=0; i
<p
->nMem
; i
++){
7378 aMem
[i
].pScopyFrom
= 0; /* Prevent false-positive AboutToChange() errs */
7379 MemSetTypeFlag(&aMem
[i
], MEM_Undefined
); /* Fault if this reg is reused */
7384 goto check_for_interrupt
;
7387 /* Opcode: Param P1 P2 * * *
7389 ** This opcode is only ever present in sub-programs called via the
7390 ** OP_Program instruction. Copy a value currently stored in a memory
7391 ** cell of the calling (parent) frame to cell P2 in the current frames
7392 ** address space. This is used by trigger programs to access the new.*
7393 ** and old.* values.
7395 ** The address of the cell in the parent frame is determined by adding
7396 ** the value of the P1 argument to the value of the P1 argument to the
7397 ** calling OP_Program instruction.
7399 case OP_Param
: { /* out2 */
7402 pOut
= out2Prerelease(p
, pOp
);
7404 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
7405 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
7409 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7411 #ifndef SQLITE_OMIT_FOREIGN_KEY
7412 /* Opcode: FkCounter P1 P2 * * *
7413 ** Synopsis: fkctr[P1]+=P2
7415 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7416 ** If P1 is non-zero, the database constraint counter is incremented
7417 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7418 ** statement counter is incremented (immediate foreign key constraints).
7420 case OP_FkCounter
: {
7421 if( db
->flags
& SQLITE_DeferFKs
){
7422 db
->nDeferredImmCons
+= pOp
->p2
;
7423 }else if( pOp
->p1
){
7424 db
->nDeferredCons
+= pOp
->p2
;
7426 p
->nFkConstraint
+= pOp
->p2
;
7431 /* Opcode: FkIfZero P1 P2 * * *
7432 ** Synopsis: if fkctr[P1]==0 goto P2
7434 ** This opcode tests if a foreign key constraint-counter is currently zero.
7435 ** If so, jump to instruction P2. Otherwise, fall through to the next
7438 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7439 ** is zero (the one that counts deferred constraint violations). If P1 is
7440 ** zero, the jump is taken if the statement constraint-counter is zero
7441 ** (immediate foreign key constraint violations).
7443 case OP_FkIfZero
: { /* jump */
7445 VdbeBranchTaken(db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0, 2);
7446 if( db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7448 VdbeBranchTaken(p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0, 2);
7449 if( p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7453 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7455 #ifndef SQLITE_OMIT_AUTOINCREMENT
7456 /* Opcode: MemMax P1 P2 * * *
7457 ** Synopsis: r[P1]=max(r[P1],r[P2])
7459 ** P1 is a register in the root frame of this VM (the root frame is
7460 ** different from the current frame if this instruction is being executed
7461 ** within a sub-program). Set the value of register P1 to the maximum of
7462 ** its current value and the value in register P2.
7464 ** This instruction throws an error if the memory cell is not initially
7467 case OP_MemMax
: { /* in2 */
7470 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
7471 pIn1
= &pFrame
->aMem
[pOp
->p1
];
7473 pIn1
= &aMem
[pOp
->p1
];
7475 assert( memIsValid(pIn1
) );
7476 sqlite3VdbeMemIntegerify(pIn1
);
7477 pIn2
= &aMem
[pOp
->p2
];
7478 sqlite3VdbeMemIntegerify(pIn2
);
7479 if( pIn1
->u
.i
<pIn2
->u
.i
){
7480 pIn1
->u
.i
= pIn2
->u
.i
;
7484 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7486 /* Opcode: IfPos P1 P2 P3 * *
7487 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7489 ** Register P1 must contain an integer.
7490 ** If the value of register P1 is 1 or greater, subtract P3 from the
7491 ** value in P1 and jump to P2.
7493 ** If the initial value of register P1 is less than 1, then the
7494 ** value is unchanged and control passes through to the next instruction.
7496 case OP_IfPos
: { /* jump, in1 */
7497 pIn1
= &aMem
[pOp
->p1
];
7498 assert( pIn1
->flags
&MEM_Int
);
7499 VdbeBranchTaken( pIn1
->u
.i
>0, 2);
7501 pIn1
->u
.i
-= pOp
->p3
;
7507 /* Opcode: OffsetLimit P1 P2 P3 * *
7508 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7510 ** This opcode performs a commonly used computation associated with
7511 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
7512 ** holds the offset counter. The opcode computes the combined value
7513 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7514 ** value computed is the total number of rows that will need to be
7515 ** visited in order to complete the query.
7517 ** If r[P3] is zero or negative, that means there is no OFFSET
7518 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7520 ** if r[P1] is zero or negative, that means there is no LIMIT
7521 ** and r[P2] is set to -1.
7523 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7525 case OP_OffsetLimit
: { /* in1, out2, in3 */
7527 pIn1
= &aMem
[pOp
->p1
];
7528 pIn3
= &aMem
[pOp
->p3
];
7529 pOut
= out2Prerelease(p
, pOp
);
7530 assert( pIn1
->flags
& MEM_Int
);
7531 assert( pIn3
->flags
& MEM_Int
);
7533 if( x
<=0 || sqlite3AddInt64(&x
, pIn3
->u
.i
>0?pIn3
->u
.i
:0) ){
7534 /* If the LIMIT is less than or equal to zero, loop forever. This
7535 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7536 ** also loop forever. This is undocumented. In fact, one could argue
7537 ** that the loop should terminate. But assuming 1 billion iterations
7538 ** per second (far exceeding the capabilities of any current hardware)
7539 ** it would take nearly 300 years to actually reach the limit. So
7540 ** looping forever is a reasonable approximation. */
7548 /* Opcode: IfNotZero P1 P2 * * *
7549 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7551 ** Register P1 must contain an integer. If the content of register P1 is
7552 ** initially greater than zero, then decrement the value in register P1.
7553 ** If it is non-zero (negative or positive) and then also jump to P2.
7554 ** If register P1 is initially zero, leave it unchanged and fall through.
7556 case OP_IfNotZero
: { /* jump, in1 */
7557 pIn1
= &aMem
[pOp
->p1
];
7558 assert( pIn1
->flags
&MEM_Int
);
7559 VdbeBranchTaken(pIn1
->u
.i
<0, 2);
7561 if( pIn1
->u
.i
>0 ) pIn1
->u
.i
--;
7567 /* Opcode: DecrJumpZero P1 P2 * * *
7568 ** Synopsis: if (--r[P1])==0 goto P2
7570 ** Register P1 must hold an integer. Decrement the value in P1
7571 ** and jump to P2 if the new value is exactly zero.
7573 case OP_DecrJumpZero
: { /* jump, in1 */
7574 pIn1
= &aMem
[pOp
->p1
];
7575 assert( pIn1
->flags
&MEM_Int
);
7576 if( pIn1
->u
.i
>SMALLEST_INT64
) pIn1
->u
.i
--;
7577 VdbeBranchTaken(pIn1
->u
.i
==0, 2);
7578 if( pIn1
->u
.i
==0 ) goto jump_to_p2
;
7583 /* Opcode: AggStep * P2 P3 P4 P5
7584 ** Synopsis: accum=r[P3] step(r[P2@P5])
7586 ** Execute the xStep function for an aggregate.
7587 ** The function has P5 arguments. P4 is a pointer to the
7588 ** FuncDef structure that specifies the function. Register P3 is the
7591 ** The P5 arguments are taken from register P2 and its
7594 /* Opcode: AggInverse * P2 P3 P4 P5
7595 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7597 ** Execute the xInverse function for an aggregate.
7598 ** The function has P5 arguments. P4 is a pointer to the
7599 ** FuncDef structure that specifies the function. Register P3 is the
7602 ** The P5 arguments are taken from register P2 and its
7605 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7606 ** Synopsis: accum=r[P3] step(r[P2@P5])
7608 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7609 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7610 ** FuncDef structure that specifies the function. Register P3 is the
7613 ** The P5 arguments are taken from register P2 and its
7616 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7617 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7618 ** the opcode is changed. In this way, the initialization of the
7619 ** sqlite3_context only happens once, instead of on each call to the
7625 sqlite3_context
*pCtx
;
7627 assert( pOp
->p4type
==P4_FUNCDEF
);
7629 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7630 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1) );
7631 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
7632 pCtx
= sqlite3DbMallocRawNN(db
, n
*sizeof(sqlite3_value
*) +
7633 (sizeof(pCtx
[0]) + sizeof(Mem
) - sizeof(sqlite3_value
*)));
7634 if( pCtx
==0 ) goto no_mem
;
7636 pCtx
->pOut
= (Mem
*)&(pCtx
->argv
[n
]);
7637 sqlite3VdbeMemInit(pCtx
->pOut
, db
, MEM_Null
);
7638 pCtx
->pFunc
= pOp
->p4
.pFunc
;
7639 pCtx
->iOp
= (int)(pOp
- aOp
);
7643 pCtx
->enc
= encoding
;
7645 pOp
->p4type
= P4_FUNCCTX
;
7646 pOp
->p4
.pCtx
= pCtx
;
7648 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7649 assert( pOp
->p1
==(pOp
->opcode
==OP_AggInverse
) );
7651 pOp
->opcode
= OP_AggStep1
;
7652 /* Fall through into OP_AggStep */
7653 /* no break */ deliberate_fall_through
7657 sqlite3_context
*pCtx
;
7660 assert( pOp
->p4type
==P4_FUNCCTX
);
7661 pCtx
= pOp
->p4
.pCtx
;
7662 pMem
= &aMem
[pOp
->p3
];
7666 /* This is an OP_AggInverse call. Verify that xStep has always
7667 ** been called at least once prior to any xInverse call. */
7668 assert( pMem
->uTemp
==0x1122e0e3 );
7670 /* This is an OP_AggStep call. Mark it as such. */
7671 pMem
->uTemp
= 0x1122e0e3;
7675 /* If this function is inside of a trigger, the register array in aMem[]
7676 ** might change from one evaluation to the next. The next block of code
7677 ** checks to see if the register array has changed, and if so it
7678 ** reinitializes the relevant parts of the sqlite3_context object */
7679 if( pCtx
->pMem
!= pMem
){
7681 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
7685 for(i
=0; i
<pCtx
->argc
; i
++){
7686 assert( memIsValid(pCtx
->argv
[i
]) );
7687 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
7692 assert( pCtx
->pOut
->flags
==MEM_Null
);
7693 assert( pCtx
->isError
==0 );
7694 assert( pCtx
->skipFlag
==0 );
7695 #ifndef SQLITE_OMIT_WINDOWFUNC
7697 (pCtx
->pFunc
->xInverse
)(pCtx
,pCtx
->argc
,pCtx
->argv
);
7700 (pCtx
->pFunc
->xSFunc
)(pCtx
,pCtx
->argc
,pCtx
->argv
); /* IMP: R-24505-23230 */
7702 if( pCtx
->isError
){
7703 if( pCtx
->isError
>0 ){
7704 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pCtx
->pOut
));
7707 if( pCtx
->skipFlag
){
7708 assert( pOp
[-1].opcode
==OP_CollSeq
);
7710 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
7713 sqlite3VdbeMemRelease(pCtx
->pOut
);
7714 pCtx
->pOut
->flags
= MEM_Null
;
7716 if( rc
) goto abort_due_to_error
;
7718 assert( pCtx
->pOut
->flags
==MEM_Null
);
7719 assert( pCtx
->skipFlag
==0 );
7723 /* Opcode: AggFinal P1 P2 * P4 *
7724 ** Synopsis: accum=r[P1] N=P2
7726 ** P1 is the memory location that is the accumulator for an aggregate
7727 ** or window function. Execute the finalizer function
7728 ** for an aggregate and store the result in P1.
7730 ** P2 is the number of arguments that the step function takes and
7731 ** P4 is a pointer to the FuncDef for this function. The P2
7732 ** argument is not used by this opcode. It is only there to disambiguate
7733 ** functions that can take varying numbers of arguments. The
7734 ** P4 argument is only needed for the case where
7735 ** the step function was not previously called.
7737 /* Opcode: AggValue * P2 P3 P4 *
7738 ** Synopsis: r[P3]=value N=P2
7740 ** Invoke the xValue() function and store the result in register P3.
7742 ** P2 is the number of arguments that the step function takes and
7743 ** P4 is a pointer to the FuncDef for this function. The P2
7744 ** argument is not used by this opcode. It is only there to disambiguate
7745 ** functions that can take varying numbers of arguments. The
7746 ** P4 argument is only needed for the case where
7747 ** the step function was not previously called.
7752 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
7753 assert( pOp
->p3
==0 || pOp
->opcode
==OP_AggValue
);
7754 pMem
= &aMem
[pOp
->p1
];
7755 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
7756 #ifndef SQLITE_OMIT_WINDOWFUNC
7758 memAboutToChange(p
, &aMem
[pOp
->p3
]);
7759 rc
= sqlite3VdbeMemAggValue(pMem
, &aMem
[pOp
->p3
], pOp
->p4
.pFunc
);
7760 pMem
= &aMem
[pOp
->p3
];
7764 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
7768 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pMem
));
7769 goto abort_due_to_error
;
7771 sqlite3VdbeChangeEncoding(pMem
, encoding
);
7772 UPDATE_MAX_BLOBSIZE(pMem
);
7773 REGISTER_TRACE((int)(pMem
-aMem
), pMem
);
7777 #ifndef SQLITE_OMIT_WAL
7778 /* Opcode: Checkpoint P1 P2 P3 * *
7780 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7781 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7782 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7783 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7784 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7785 ** in the WAL that have been checkpointed after the checkpoint
7786 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7787 ** mem[P3+2] are initialized to -1.
7789 case OP_Checkpoint
: {
7790 int i
; /* Loop counter */
7791 int aRes
[3]; /* Results */
7792 Mem
*pMem
; /* Write results here */
7794 assert( p
->readOnly
==0 );
7796 aRes
[1] = aRes
[2] = -1;
7797 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
7798 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
7799 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
7800 || pOp
->p2
==SQLITE_CHECKPOINT_TRUNCATE
7802 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
7804 if( rc
!=SQLITE_BUSY
) goto abort_due_to_error
;
7808 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
7809 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
7815 #ifndef SQLITE_OMIT_PRAGMA
7816 /* Opcode: JournalMode P1 P2 P3 * *
7818 ** Change the journal mode of database P1 to P3. P3 must be one of the
7819 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7820 ** modes (delete, truncate, persist, off and memory), this is a simple
7821 ** operation. No IO is required.
7823 ** If changing into or out of WAL mode the procedure is more complicated.
7825 ** Write a string containing the final journal-mode to register P2.
7827 case OP_JournalMode
: { /* out2 */
7828 Btree
*pBt
; /* Btree to change journal mode of */
7829 Pager
*pPager
; /* Pager associated with pBt */
7830 int eNew
; /* New journal mode */
7831 int eOld
; /* The old journal mode */
7832 #ifndef SQLITE_OMIT_WAL
7833 const char *zFilename
; /* Name of database file for pPager */
7836 pOut
= out2Prerelease(p
, pOp
);
7838 assert( eNew
==PAGER_JOURNALMODE_DELETE
7839 || eNew
==PAGER_JOURNALMODE_TRUNCATE
7840 || eNew
==PAGER_JOURNALMODE_PERSIST
7841 || eNew
==PAGER_JOURNALMODE_OFF
7842 || eNew
==PAGER_JOURNALMODE_MEMORY
7843 || eNew
==PAGER_JOURNALMODE_WAL
7844 || eNew
==PAGER_JOURNALMODE_QUERY
7846 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7847 assert( p
->readOnly
==0 );
7849 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7850 pPager
= sqlite3BtreePager(pBt
);
7851 eOld
= sqlite3PagerGetJournalMode(pPager
);
7852 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
7853 assert( sqlite3BtreeHoldsMutex(pBt
) );
7854 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
7856 #ifndef SQLITE_OMIT_WAL
7857 zFilename
= sqlite3PagerFilename(pPager
, 1);
7859 /* Do not allow a transition to journal_mode=WAL for a database
7860 ** in temporary storage or if the VFS does not support shared memory
7862 if( eNew
==PAGER_JOURNALMODE_WAL
7863 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
7864 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
7870 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
7872 if( !db
->autoCommit
|| db
->nVdbeRead
>1 ){
7875 "cannot change %s wal mode from within a transaction",
7876 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
7878 goto abort_due_to_error
;
7881 if( eOld
==PAGER_JOURNALMODE_WAL
){
7882 /* If leaving WAL mode, close the log file. If successful, the call
7883 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7884 ** file. An EXCLUSIVE lock may still be held on the database file
7885 ** after a successful return.
7887 rc
= sqlite3PagerCloseWal(pPager
, db
);
7888 if( rc
==SQLITE_OK
){
7889 sqlite3PagerSetJournalMode(pPager
, eNew
);
7891 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
7892 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7893 ** as an intermediate */
7894 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
7897 /* Open a transaction on the database file. Regardless of the journal
7898 ** mode, this transaction always uses a rollback journal.
7900 assert( sqlite3BtreeTxnState(pBt
)!=SQLITE_TXN_WRITE
);
7901 if( rc
==SQLITE_OK
){
7902 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
7906 #endif /* ifndef SQLITE_OMIT_WAL */
7908 if( rc
) eNew
= eOld
;
7909 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
7911 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
7912 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
7913 pOut
->n
= sqlite3Strlen30(pOut
->z
);
7914 pOut
->enc
= SQLITE_UTF8
;
7915 sqlite3VdbeChangeEncoding(pOut
, encoding
);
7916 if( rc
) goto abort_due_to_error
;
7919 #endif /* SQLITE_OMIT_PRAGMA */
7921 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7922 /* Opcode: Vacuum P1 P2 * * *
7924 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7925 ** for an attached database. The "temp" database may not be vacuumed.
7927 ** If P2 is not zero, then it is a register holding a string which is
7928 ** the file into which the result of vacuum should be written. When
7929 ** P2 is zero, the vacuum overwrites the original database.
7932 assert( p
->readOnly
==0 );
7933 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
, pOp
->p1
,
7934 pOp
->p2
? &aMem
[pOp
->p2
] : 0);
7935 if( rc
) goto abort_due_to_error
;
7940 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7941 /* Opcode: IncrVacuum P1 P2 * * *
7943 ** Perform a single step of the incremental vacuum procedure on
7944 ** the P1 database. If the vacuum has finished, jump to instruction
7945 ** P2. Otherwise, fall through to the next instruction.
7947 case OP_IncrVacuum
: { /* jump */
7950 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7951 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
7952 assert( p
->readOnly
==0 );
7953 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7954 rc
= sqlite3BtreeIncrVacuum(pBt
);
7955 VdbeBranchTaken(rc
==SQLITE_DONE
,2);
7957 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
7965 /* Opcode: Expire P1 P2 * * *
7967 ** Cause precompiled statements to expire. When an expired statement
7968 ** is executed using sqlite3_step() it will either automatically
7969 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7970 ** or it will fail with SQLITE_SCHEMA.
7972 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7973 ** then only the currently executing statement is expired.
7975 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7976 ** then running SQL statements are allowed to continue to run to completion.
7977 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7978 ** that might help the statement run faster but which does not affect the
7979 ** correctness of operation.
7982 assert( pOp
->p2
==0 || pOp
->p2
==1 );
7984 sqlite3ExpirePreparedStatements(db
, pOp
->p2
);
7986 p
->expired
= pOp
->p2
+1;
7991 /* Opcode: CursorLock P1 * * * *
7993 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7994 ** written by an other cursor.
7996 case OP_CursorLock
: {
7998 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
7999 pC
= p
->apCsr
[pOp
->p1
];
8001 assert( pC
->eCurType
==CURTYPE_BTREE
);
8002 sqlite3BtreeCursorPin(pC
->uc
.pCursor
);
8006 /* Opcode: CursorUnlock P1 * * * *
8008 ** Unlock the btree to which cursor P1 is pointing so that it can be
8009 ** written by other cursors.
8011 case OP_CursorUnlock
: {
8013 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
8014 pC
= p
->apCsr
[pOp
->p1
];
8016 assert( pC
->eCurType
==CURTYPE_BTREE
);
8017 sqlite3BtreeCursorUnpin(pC
->uc
.pCursor
);
8021 #ifndef SQLITE_OMIT_SHARED_CACHE
8022 /* Opcode: TableLock P1 P2 P3 P4 *
8023 ** Synopsis: iDb=P1 root=P2 write=P3
8025 ** Obtain a lock on a particular table. This instruction is only used when
8026 ** the shared-cache feature is enabled.
8028 ** P1 is the index of the database in sqlite3.aDb[] of the database
8029 ** on which the lock is acquired. A readlock is obtained if P3==0 or
8030 ** a write lock if P3==1.
8032 ** P2 contains the root-page of the table to lock.
8034 ** P4 contains a pointer to the name of the table being locked. This is only
8035 ** used to generate an error message if the lock cannot be obtained.
8037 case OP_TableLock
: {
8038 u8 isWriteLock
= (u8
)pOp
->p3
;
8039 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommit
) ){
8041 assert( p1
>=0 && p1
<db
->nDb
);
8042 assert( DbMaskTest(p
->btreeMask
, p1
) );
8043 assert( isWriteLock
==0 || isWriteLock
==1 );
8044 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
8046 if( (rc
&0xFF)==SQLITE_LOCKED
){
8047 const char *z
= pOp
->p4
.z
;
8048 sqlite3VdbeError(p
, "database table is locked: %s", z
);
8050 goto abort_due_to_error
;
8055 #endif /* SQLITE_OMIT_SHARED_CACHE */
8057 #ifndef SQLITE_OMIT_VIRTUALTABLE
8058 /* Opcode: VBegin * * * P4 *
8060 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
8061 ** xBegin method for that table.
8063 ** Also, whether or not P4 is set, check that this is not being called from
8064 ** within a callback to a virtual table xSync() method. If it is, the error
8065 ** code will be set to SQLITE_LOCKED.
8069 pVTab
= pOp
->p4
.pVtab
;
8070 rc
= sqlite3VtabBegin(db
, pVTab
);
8071 if( pVTab
) sqlite3VtabImportErrmsg(p
, pVTab
->pVtab
);
8072 if( rc
) goto abort_due_to_error
;
8075 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8077 #ifndef SQLITE_OMIT_VIRTUALTABLE
8078 /* Opcode: VCreate P1 P2 * * *
8080 ** P2 is a register that holds the name of a virtual table in database
8081 ** P1. Call the xCreate method for that table.
8084 Mem sMem
; /* For storing the record being decoded */
8085 const char *zTab
; /* Name of the virtual table */
8087 memset(&sMem
, 0, sizeof(sMem
));
8089 /* Because P2 is always a static string, it is impossible for the
8090 ** sqlite3VdbeMemCopy() to fail */
8091 assert( (aMem
[pOp
->p2
].flags
& MEM_Str
)!=0 );
8092 assert( (aMem
[pOp
->p2
].flags
& MEM_Static
)!=0 );
8093 rc
= sqlite3VdbeMemCopy(&sMem
, &aMem
[pOp
->p2
]);
8094 assert( rc
==SQLITE_OK
);
8095 zTab
= (const char*)sqlite3_value_text(&sMem
);
8096 assert( zTab
|| db
->mallocFailed
);
8098 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, zTab
, &p
->zErrMsg
);
8100 sqlite3VdbeMemRelease(&sMem
);
8101 if( rc
) goto abort_due_to_error
;
8104 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8106 #ifndef SQLITE_OMIT_VIRTUALTABLE
8107 /* Opcode: VDestroy P1 * * P4 *
8109 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
8114 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
8116 assert( p
->errorAction
==OE_Abort
&& p
->usesStmtJournal
);
8117 if( rc
) goto abort_due_to_error
;
8120 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8122 #ifndef SQLITE_OMIT_VIRTUALTABLE
8123 /* Opcode: VOpen P1 * * P4 *
8125 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8126 ** P1 is a cursor number. This opcode opens a cursor to the virtual
8127 ** table and stores that cursor in P1.
8129 case OP_VOpen
: { /* ncycle */
8131 sqlite3_vtab_cursor
*pVCur
;
8132 sqlite3_vtab
*pVtab
;
8133 const sqlite3_module
*pModule
;
8135 assert( p
->bIsReader
);
8138 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8139 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
8141 goto abort_due_to_error
;
8143 pModule
= pVtab
->pModule
;
8144 rc
= pModule
->xOpen(pVtab
, &pVCur
);
8145 sqlite3VtabImportErrmsg(p
, pVtab
);
8146 if( rc
) goto abort_due_to_error
;
8148 /* Initialize sqlite3_vtab_cursor base class */
8149 pVCur
->pVtab
= pVtab
;
8151 /* Initialize vdbe cursor object */
8152 pCur
= allocateCursor(p
, pOp
->p1
, 0, CURTYPE_VTAB
);
8154 pCur
->uc
.pVCur
= pVCur
;
8157 assert( db
->mallocFailed
);
8158 pModule
->xClose(pVCur
);
8163 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8165 #ifndef SQLITE_OMIT_VIRTUALTABLE
8166 /* Opcode: VCheck P1 P2 P3 P4 *
8168 ** P4 is a pointer to a Table object that is a virtual table in schema P1
8169 ** that supports the xIntegrity() method. This opcode runs the xIntegrity()
8170 ** method for that virtual table, using P3 as the integer argument. If
8171 ** an error is reported back, the table name is prepended to the error
8172 ** message and that message is stored in P2. If no errors are seen,
8173 ** register P2 is set to NULL.
8175 case OP_VCheck
: { /* out2 */
8177 sqlite3_vtab
*pVtab
;
8178 const sqlite3_module
*pModule
;
8181 pOut
= &aMem
[pOp
->p2
];
8182 sqlite3VdbeMemSetNull(pOut
); /* Innocent until proven guilty */
8183 assert( pOp
->p4type
==P4_TABLEREF
);
8184 pTab
= pOp
->p4
.pTab
;
8186 assert( pTab
->nTabRef
>0 );
8187 assert( IsVirtual(pTab
) );
8188 if( pTab
->u
.vtab
.p
==0 ) break;
8189 pVtab
= pTab
->u
.vtab
.p
->pVtab
;
8191 pModule
= pVtab
->pModule
;
8192 assert( pModule
!=0 );
8193 assert( pModule
->iVersion
>=4 );
8194 assert( pModule
->xIntegrity
!=0 );
8195 sqlite3VtabLock(pTab
->u
.vtab
.p
);
8196 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
8197 rc
= pModule
->xIntegrity(pVtab
, db
->aDb
[pOp
->p1
].zDbSName
, pTab
->zName
,
8199 sqlite3VtabUnlock(pTab
->u
.vtab
.p
);
8202 goto abort_due_to_error
;
8205 sqlite3VdbeMemSetStr(pOut
, zErr
, -1, SQLITE_UTF8
, sqlite3_free
);
8209 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8211 #ifndef SQLITE_OMIT_VIRTUALTABLE
8212 /* Opcode: VInitIn P1 P2 P3 * *
8213 ** Synopsis: r[P2]=ValueList(P1,P3)
8215 ** Set register P2 to be a pointer to a ValueList object for cursor P1
8216 ** with cache register P3 and output register P3+1. This ValueList object
8217 ** can be used as the first argument to sqlite3_vtab_in_first() and
8218 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
8219 ** cursor. Register P3 is used to hold the values returned by
8220 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
8222 case OP_VInitIn
: { /* out2, ncycle */
8223 VdbeCursor
*pC
; /* The cursor containing the RHS values */
8224 ValueList
*pRhs
; /* New ValueList object to put in reg[P2] */
8226 pC
= p
->apCsr
[pOp
->p1
];
8227 pRhs
= sqlite3_malloc64( sizeof(*pRhs
) );
8228 if( pRhs
==0 ) goto no_mem
;
8229 pRhs
->pCsr
= pC
->uc
.pCursor
;
8230 pRhs
->pOut
= &aMem
[pOp
->p3
];
8231 pOut
= out2Prerelease(p
, pOp
);
8232 pOut
->flags
= MEM_Null
;
8233 sqlite3VdbeMemSetPointer(pOut
, pRhs
, "ValueList", sqlite3VdbeValueListFree
);
8236 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8239 #ifndef SQLITE_OMIT_VIRTUALTABLE
8240 /* Opcode: VFilter P1 P2 P3 P4 *
8241 ** Synopsis: iplan=r[P3] zplan='P4'
8243 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
8244 ** the filtered result set is empty.
8246 ** P4 is either NULL or a string that was generated by the xBestIndex
8247 ** method of the module. The interpretation of the P4 string is left
8248 ** to the module implementation.
8250 ** This opcode invokes the xFilter method on the virtual table specified
8251 ** by P1. The integer query plan parameter to xFilter is stored in register
8252 ** P3. Register P3+1 stores the argc parameter to be passed to the
8253 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8254 ** additional parameters which are passed to
8255 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8257 ** A jump is made to P2 if the result set after filtering would be empty.
8259 case OP_VFilter
: { /* jump, ncycle */
8262 const sqlite3_module
*pModule
;
8265 sqlite3_vtab_cursor
*pVCur
;
8266 sqlite3_vtab
*pVtab
;
8272 pQuery
= &aMem
[pOp
->p3
];
8274 pCur
= p
->apCsr
[pOp
->p1
];
8275 assert( memIsValid(pQuery
) );
8276 REGISTER_TRACE(pOp
->p3
, pQuery
);
8278 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8279 pVCur
= pCur
->uc
.pVCur
;
8280 pVtab
= pVCur
->pVtab
;
8281 pModule
= pVtab
->pModule
;
8283 /* Grab the index number and argc parameters */
8284 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
8285 nArg
= (int)pArgc
->u
.i
;
8286 iQuery
= (int)pQuery
->u
.i
;
8288 /* Invoke the xFilter method */
8290 for(i
= 0; i
<nArg
; i
++){
8291 apArg
[i
] = &pArgc
[i
+1];
8293 rc
= pModule
->xFilter(pVCur
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
8294 sqlite3VtabImportErrmsg(p
, pVtab
);
8295 if( rc
) goto abort_due_to_error
;
8296 res
= pModule
->xEof(pVCur
);
8298 VdbeBranchTaken(res
!=0,2);
8299 if( res
) goto jump_to_p2
;
8302 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8304 #ifndef SQLITE_OMIT_VIRTUALTABLE
8305 /* Opcode: VColumn P1 P2 P3 * P5
8306 ** Synopsis: r[P3]=vcolumn(P2)
8308 ** Store in register P3 the value of the P2-th column of
8309 ** the current row of the virtual-table of cursor P1.
8311 ** If the VColumn opcode is being used to fetch the value of
8312 ** an unchanging column during an UPDATE operation, then the P5
8313 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
8314 ** function to return true inside the xColumn method of the virtual
8315 ** table implementation. The P5 column might also contain other
8316 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8317 ** unused by OP_VColumn.
8319 case OP_VColumn
: { /* ncycle */
8320 sqlite3_vtab
*pVtab
;
8321 const sqlite3_module
*pModule
;
8323 sqlite3_context sContext
;
8326 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
8328 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
8329 pDest
= &aMem
[pOp
->p3
];
8330 memAboutToChange(p
, pDest
);
8331 if( pCur
->nullRow
){
8332 sqlite3VdbeMemSetNull(pDest
);
8335 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8336 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8337 pModule
= pVtab
->pModule
;
8338 assert( pModule
->xColumn
);
8339 memset(&sContext
, 0, sizeof(sContext
));
8340 sContext
.pOut
= pDest
;
8341 sContext
.enc
= encoding
;
8342 nullFunc
.pUserData
= 0;
8343 nullFunc
.funcFlags
= SQLITE_RESULT_SUBTYPE
;
8344 sContext
.pFunc
= &nullFunc
;
8345 assert( pOp
->p5
==OPFLAG_NOCHNG
|| pOp
->p5
==0 );
8346 if( pOp
->p5
& OPFLAG_NOCHNG
){
8347 sqlite3VdbeMemSetNull(pDest
);
8348 pDest
->flags
= MEM_Null
|MEM_Zero
;
8351 MemSetTypeFlag(pDest
, MEM_Null
);
8353 rc
= pModule
->xColumn(pCur
->uc
.pVCur
, &sContext
, pOp
->p2
);
8354 sqlite3VtabImportErrmsg(p
, pVtab
);
8355 if( sContext
.isError
>0 ){
8356 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pDest
));
8357 rc
= sContext
.isError
;
8359 sqlite3VdbeChangeEncoding(pDest
, encoding
);
8360 REGISTER_TRACE(pOp
->p3
, pDest
);
8361 UPDATE_MAX_BLOBSIZE(pDest
);
8363 if( rc
) goto abort_due_to_error
;
8366 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8368 #ifndef SQLITE_OMIT_VIRTUALTABLE
8369 /* Opcode: VNext P1 P2 * * *
8371 ** Advance virtual table P1 to the next row in its result set and
8372 ** jump to instruction P2. Or, if the virtual table has reached
8373 ** the end of its result set, then fall through to the next instruction.
8375 case OP_VNext
: { /* jump, ncycle */
8376 sqlite3_vtab
*pVtab
;
8377 const sqlite3_module
*pModule
;
8381 pCur
= p
->apCsr
[pOp
->p1
];
8383 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8384 if( pCur
->nullRow
){
8387 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8388 pModule
= pVtab
->pModule
;
8389 assert( pModule
->xNext
);
8391 /* Invoke the xNext() method of the module. There is no way for the
8392 ** underlying implementation to return an error if one occurs during
8393 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8394 ** data is available) and the error code returned when xColumn or
8395 ** some other method is next invoked on the save virtual table cursor.
8397 rc
= pModule
->xNext(pCur
->uc
.pVCur
);
8398 sqlite3VtabImportErrmsg(p
, pVtab
);
8399 if( rc
) goto abort_due_to_error
;
8400 res
= pModule
->xEof(pCur
->uc
.pVCur
);
8401 VdbeBranchTaken(!res
,2);
8403 /* If there is data, jump to P2 */
8404 goto jump_to_p2_and_check_for_interrupt
;
8406 goto check_for_interrupt
;
8408 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8410 #ifndef SQLITE_OMIT_VIRTUALTABLE
8411 /* Opcode: VRename P1 * * P4 *
8413 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8414 ** This opcode invokes the corresponding xRename method. The value
8415 ** in register P1 is passed as the zName argument to the xRename method.
8418 sqlite3_vtab
*pVtab
;
8422 isLegacy
= (db
->flags
& SQLITE_LegacyAlter
);
8423 db
->flags
|= SQLITE_LegacyAlter
;
8424 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8425 pName
= &aMem
[pOp
->p1
];
8426 assert( pVtab
->pModule
->xRename
);
8427 assert( memIsValid(pName
) );
8428 assert( p
->readOnly
==0 );
8429 REGISTER_TRACE(pOp
->p1
, pName
);
8430 assert( pName
->flags
& MEM_Str
);
8431 testcase( pName
->enc
==SQLITE_UTF8
);
8432 testcase( pName
->enc
==SQLITE_UTF16BE
);
8433 testcase( pName
->enc
==SQLITE_UTF16LE
);
8434 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
8435 if( rc
) goto abort_due_to_error
;
8436 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
8437 if( isLegacy
==0 ) db
->flags
&= ~(u64
)SQLITE_LegacyAlter
;
8438 sqlite3VtabImportErrmsg(p
, pVtab
);
8440 if( rc
) goto abort_due_to_error
;
8445 #ifndef SQLITE_OMIT_VIRTUALTABLE
8446 /* Opcode: VUpdate P1 P2 P3 P4 P5
8447 ** Synopsis: data=r[P3@P2]
8449 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8450 ** This opcode invokes the corresponding xUpdate method. P2 values
8451 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8452 ** invocation. The value in register (P3+P2-1) corresponds to the
8453 ** p2th element of the argv array passed to xUpdate.
8455 ** The xUpdate method will do a DELETE or an INSERT or both.
8456 ** The argv[0] element (which corresponds to memory cell P3)
8457 ** is the rowid of a row to delete. If argv[0] is NULL then no
8458 ** deletion occurs. The argv[1] element is the rowid of the new
8459 ** row. This can be NULL to have the virtual table select the new
8460 ** rowid for itself. The subsequent elements in the array are
8461 ** the values of columns in the new row.
8463 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8466 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8467 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8468 ** is set to the value of the rowid for the row just inserted.
8470 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8471 ** apply in the case of a constraint failure on an insert or update.
8474 sqlite3_vtab
*pVtab
;
8475 const sqlite3_module
*pModule
;
8478 sqlite_int64 rowid
= 0;
8482 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
8483 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
8485 assert( p
->readOnly
==0 );
8486 if( db
->mallocFailed
) goto no_mem
;
8487 sqlite3VdbeIncrWriteCounter(p
, 0);
8488 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8489 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
8491 goto abort_due_to_error
;
8493 pModule
= pVtab
->pModule
;
8495 assert( pOp
->p4type
==P4_VTAB
);
8496 if( ALWAYS(pModule
->xUpdate
) ){
8497 u8 vtabOnConflict
= db
->vtabOnConflict
;
8499 pX
= &aMem
[pOp
->p3
];
8500 for(i
=0; i
<nArg
; i
++){
8501 assert( memIsValid(pX
) );
8502 memAboutToChange(p
, pX
);
8506 db
->vtabOnConflict
= pOp
->p5
;
8507 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
8508 db
->vtabOnConflict
= vtabOnConflict
;
8509 sqlite3VtabImportErrmsg(p
, pVtab
);
8510 if( rc
==SQLITE_OK
&& pOp
->p1
){
8511 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
8512 db
->lastRowid
= rowid
;
8514 if( (rc
&0xff)==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
8515 if( pOp
->p5
==OE_Ignore
){
8518 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
8523 if( rc
) goto abort_due_to_error
;
8527 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8529 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8530 /* Opcode: Pagecount P1 P2 * * *
8532 ** Write the current number of pages in database P1 to memory cell P2.
8534 case OP_Pagecount
: { /* out2 */
8535 pOut
= out2Prerelease(p
, pOp
);
8536 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
8542 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8543 /* Opcode: MaxPgcnt P1 P2 P3 * *
8545 ** Try to set the maximum page count for database P1 to the value in P3.
8546 ** Do not let the maximum page count fall below the current page count and
8547 ** do not change the maximum page count value if P3==0.
8549 ** Store the maximum page count after the change in register P2.
8551 case OP_MaxPgcnt
: { /* out2 */
8552 unsigned int newMax
;
8555 pOut
= out2Prerelease(p
, pOp
);
8556 pBt
= db
->aDb
[pOp
->p1
].pBt
;
8559 newMax
= sqlite3BtreeLastPage(pBt
);
8560 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
8562 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
8567 /* Opcode: Function P1 P2 P3 P4 *
8568 ** Synopsis: r[P3]=func(r[P2@NP])
8570 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8571 ** contains a pointer to the function to be run) with arguments taken
8572 ** from register P2 and successors. The number of arguments is in
8573 ** the sqlite3_context object that P4 points to.
8574 ** The result of the function is stored
8575 ** in register P3. Register P3 must not be one of the function inputs.
8577 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8578 ** function was determined to be constant at compile time. If the first
8579 ** argument was constant then bit 0 of P1 is set. This is used to determine
8580 ** whether meta data associated with a user function argument using the
8581 ** sqlite3_set_auxdata() API may be safely retained until the next
8582 ** invocation of this opcode.
8584 ** See also: AggStep, AggFinal, PureFunc
8586 /* Opcode: PureFunc P1 P2 P3 P4 *
8587 ** Synopsis: r[P3]=func(r[P2@NP])
8589 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8590 ** contains a pointer to the function to be run) with arguments taken
8591 ** from register P2 and successors. The number of arguments is in
8592 ** the sqlite3_context object that P4 points to.
8593 ** The result of the function is stored
8594 ** in register P3. Register P3 must not be one of the function inputs.
8596 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8597 ** function was determined to be constant at compile time. If the first
8598 ** argument was constant then bit 0 of P1 is set. This is used to determine
8599 ** whether meta data associated with a user function argument using the
8600 ** sqlite3_set_auxdata() API may be safely retained until the next
8601 ** invocation of this opcode.
8603 ** This opcode works exactly like OP_Function. The only difference is in
8604 ** its name. This opcode is used in places where the function must be
8605 ** purely non-deterministic. Some built-in date/time functions can be
8606 ** either deterministic of non-deterministic, depending on their arguments.
8607 ** When those function are used in a non-deterministic way, they will check
8608 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8609 ** if they were, they throw an error.
8611 ** See also: AggStep, AggFinal, Function
8613 case OP_PureFunc
: /* group */
8614 case OP_Function
: { /* group */
8616 sqlite3_context
*pCtx
;
8618 assert( pOp
->p4type
==P4_FUNCCTX
);
8619 pCtx
= pOp
->p4
.pCtx
;
8621 /* If this function is inside of a trigger, the register array in aMem[]
8622 ** might change from one evaluation to the next. The next block of code
8623 ** checks to see if the register array has changed, and if so it
8624 ** reinitializes the relevant parts of the sqlite3_context object */
8625 pOut
= &aMem
[pOp
->p3
];
8626 if( pCtx
->pOut
!= pOut
){
8629 pCtx
->enc
= encoding
;
8630 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
8632 assert( pCtx
->pVdbe
==p
);
8634 memAboutToChange(p
, pOut
);
8636 for(i
=0; i
<pCtx
->argc
; i
++){
8637 assert( memIsValid(pCtx
->argv
[i
]) );
8638 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
8641 MemSetTypeFlag(pOut
, MEM_Null
);
8642 assert( pCtx
->isError
==0 );
8643 (*pCtx
->pFunc
->xSFunc
)(pCtx
, pCtx
->argc
, pCtx
->argv
);/* IMP: R-24505-23230 */
8645 /* If the function returned an error, throw an exception */
8646 if( pCtx
->isError
){
8647 if( pCtx
->isError
>0 ){
8648 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pOut
));
8651 sqlite3VdbeDeleteAuxData(db
, &p
->pAuxData
, pCtx
->iOp
, pOp
->p1
);
8653 if( rc
) goto abort_due_to_error
;
8656 assert( (pOut
->flags
&MEM_Str
)==0
8657 || pOut
->enc
==encoding
8658 || db
->mallocFailed
);
8659 assert( !sqlite3VdbeMemTooBig(pOut
) );
8661 REGISTER_TRACE(pOp
->p3
, pOut
);
8662 UPDATE_MAX_BLOBSIZE(pOut
);
8666 /* Opcode: ClrSubtype P1 * * * *
8667 ** Synopsis: r[P1].subtype = 0
8669 ** Clear the subtype from register P1.
8671 case OP_ClrSubtype
: { /* in1 */
8672 pIn1
= &aMem
[pOp
->p1
];
8673 pIn1
->flags
&= ~MEM_Subtype
;
8677 /* Opcode: GetSubtype P1 P2 * * *
8678 ** Synopsis: r[P2] = r[P1].subtype
8680 ** Extract the subtype value from register P1 and write that subtype
8681 ** into register P2. If P1 has no subtype, then P1 gets a NULL.
8683 case OP_GetSubtype
: { /* in1 out2 */
8684 pIn1
= &aMem
[pOp
->p1
];
8685 pOut
= &aMem
[pOp
->p2
];
8686 if( pIn1
->flags
& MEM_Subtype
){
8687 sqlite3VdbeMemSetInt64(pOut
, pIn1
->eSubtype
);
8689 sqlite3VdbeMemSetNull(pOut
);
8694 /* Opcode: SetSubtype P1 P2 * * *
8695 ** Synopsis: r[P2].subtype = r[P1]
8697 ** Set the subtype value of register P2 to the integer from register P1.
8698 ** If P1 is NULL, clear the subtype from p2.
8700 case OP_SetSubtype
: { /* in1 out2 */
8701 pIn1
= &aMem
[pOp
->p1
];
8702 pOut
= &aMem
[pOp
->p2
];
8703 if( pIn1
->flags
& MEM_Null
){
8704 pOut
->flags
&= ~MEM_Subtype
;
8706 assert( pIn1
->flags
& MEM_Int
);
8707 pOut
->flags
|= MEM_Subtype
;
8708 pOut
->eSubtype
= (u8
)(pIn1
->u
.i
& 0xff);
8713 /* Opcode: FilterAdd P1 * P3 P4 *
8714 ** Synopsis: filter(P1) += key(P3@P4)
8716 ** Compute a hash on the P4 registers starting with r[P3] and
8717 ** add that hash to the bloom filter contained in r[P1].
8719 case OP_FilterAdd
: {
8722 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8723 pIn1
= &aMem
[pOp
->p1
];
8724 assert( pIn1
->flags
& MEM_Blob
);
8725 assert( pIn1
->n
>0 );
8726 h
= filterHash(aMem
, pOp
);
8728 if( db
->flags
&SQLITE_VdbeTrace
){
8730 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8731 registerTrace(ii
, &aMem
[ii
]);
8733 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8737 pIn1
->z
[h
/8] |= 1<<(h
&7);
8741 /* Opcode: Filter P1 P2 P3 P4 *
8742 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8744 ** Compute a hash on the key contained in the P4 registers starting
8745 ** with r[P3]. Check to see if that hash is found in the
8746 ** bloom filter hosted by register P1. If it is not present then
8747 ** maybe jump to P2. Otherwise fall through.
8749 ** False negatives are harmless. It is always safe to fall through,
8750 ** even if the value is in the bloom filter. A false negative causes
8751 ** more CPU cycles to be used, but it should still yield the correct
8752 ** answer. However, an incorrect answer may well arise from a
8753 ** false positive - if the jump is taken when it should fall through.
8755 case OP_Filter
: { /* jump */
8758 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8759 pIn1
= &aMem
[pOp
->p1
];
8760 assert( (pIn1
->flags
& MEM_Blob
)!=0 );
8761 assert( pIn1
->n
>= 1 );
8762 h
= filterHash(aMem
, pOp
);
8764 if( db
->flags
&SQLITE_VdbeTrace
){
8766 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8767 registerTrace(ii
, &aMem
[ii
]);
8769 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8773 if( (pIn1
->z
[h
/8] & (1<<(h
&7)))==0 ){
8774 VdbeBranchTaken(1, 2);
8775 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_HIT
]++;
8778 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_MISS
]++;
8779 VdbeBranchTaken(0, 2);
8784 /* Opcode: Trace P1 P2 * P4 *
8786 ** Write P4 on the statement trace output if statement tracing is
8789 ** Operand P1 must be 0x7fffffff and P2 must positive.
8791 /* Opcode: Init P1 P2 P3 P4 *
8792 ** Synopsis: Start at P2
8794 ** Programs contain a single instance of this opcode as the very first
8797 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8798 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8799 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8801 ** If P2 is not zero, jump to instruction P2.
8803 ** Increment the value of P1 so that OP_Once opcodes will jump the
8804 ** first time they are evaluated for this run.
8806 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8807 ** error is encountered.
8810 case OP_Init
: { /* jump */
8812 #ifndef SQLITE_OMIT_TRACE
8816 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8817 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8819 ** This assert() provides evidence for:
8820 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8821 ** would have been returned by the legacy sqlite3_trace() interface by
8822 ** using the X argument when X begins with "--" and invoking
8823 ** sqlite3_expanded_sql(P) otherwise.
8825 assert( pOp
->p4
.z
==0 || strncmp(pOp
->p4
.z
, "-" "- ", 3)==0 );
8827 /* OP_Init is always instruction 0 */
8828 assert( pOp
==p
->aOp
|| pOp
->opcode
==OP_Trace
);
8830 #ifndef SQLITE_OMIT_TRACE
8831 if( (db
->mTrace
& (SQLITE_TRACE_STMT
|SQLITE_TRACE_LEGACY
))!=0
8832 && p
->minWriteFileFormat
!=254 /* tag-20220401a */
8833 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8835 #ifndef SQLITE_OMIT_DEPRECATED
8836 if( db
->mTrace
& SQLITE_TRACE_LEGACY
){
8837 char *z
= sqlite3VdbeExpandSql(p
, zTrace
);
8838 db
->trace
.xLegacy(db
->pTraceArg
, z
);
8842 if( db
->nVdbeExec
>1 ){
8843 char *z
= sqlite3MPrintf(db
, "-- %s", zTrace
);
8844 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, z
);
8845 sqlite3DbFree(db
, z
);
8847 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, zTrace
);
8850 #ifdef SQLITE_USE_FCNTL_TRACE
8851 zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
);
8854 for(j
=0; j
<db
->nDb
; j
++){
8855 if( DbMaskTest(p
->btreeMask
, j
)==0 ) continue;
8856 sqlite3_file_control(db
, db
->aDb
[j
].zDbSName
, SQLITE_FCNTL_TRACE
, zTrace
);
8859 #endif /* SQLITE_USE_FCNTL_TRACE */
8861 if( (db
->flags
& SQLITE_SqlTrace
)!=0
8862 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8864 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
8866 #endif /* SQLITE_DEBUG */
8867 #endif /* SQLITE_OMIT_TRACE */
8868 assert( pOp
->p2
>0 );
8869 if( pOp
->p1
>=sqlite3GlobalConfig
.iOnceResetThreshold
){
8870 if( pOp
->opcode
==OP_Trace
) break;
8871 for(i
=1; i
<p
->nOp
; i
++){
8872 if( p
->aOp
[i
].opcode
==OP_Once
) p
->aOp
[i
].p1
= 0;
8877 p
->aCounter
[SQLITE_STMTSTATUS_RUN
]++;
8881 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8882 /* Opcode: CursorHint P1 * * P4 *
8884 ** Provide a hint to cursor P1 that it only needs to return rows that
8885 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8886 ** to values currently held in registers. TK_COLUMN terms in the P4
8887 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8889 case OP_CursorHint
: {
8892 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
8893 assert( pOp
->p4type
==P4_EXPR
);
8894 pC
= p
->apCsr
[pOp
->p1
];
8896 assert( pC
->eCurType
==CURTYPE_BTREE
);
8897 sqlite3BtreeCursorHint(pC
->uc
.pCursor
, BTREE_HINT_RANGE
,
8898 pOp
->p4
.pExpr
, aMem
);
8902 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8905 /* Opcode: Abortable * * * * *
8907 ** Verify that an Abort can happen. Assert if an Abort at this point
8908 ** might cause database corruption. This opcode only appears in debugging
8911 ** An Abort is safe if either there have been no writes, or if there is
8912 ** an active statement journal.
8914 case OP_Abortable
: {
8915 sqlite3VdbeAssertAbortable(p
);
8921 /* Opcode: ReleaseReg P1 P2 P3 * P5
8922 ** Synopsis: release r[P1@P2] mask P3
8924 ** Release registers from service. Any content that was in the
8925 ** the registers is unreliable after this opcode completes.
8927 ** The registers released will be the P2 registers starting at P1,
8928 ** except if bit ii of P3 set, then do not release register P1+ii.
8929 ** In other words, P3 is a mask of registers to preserve.
8931 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8932 ** that if the content of the released register was set using OP_SCopy,
8933 ** a change to the value of the source register for the OP_SCopy will no longer
8934 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8936 ** If P5 is set, then all released registers have their type set
8937 ** to MEM_Undefined so that any subsequent attempt to read the released
8938 ** register (before it is reinitialized) will generate an assertion fault.
8940 ** P5 ought to be set on every call to this opcode.
8941 ** However, there are places in the code generator will release registers
8942 ** before their are used, under the (valid) assumption that the registers
8943 ** will not be reallocated for some other purpose before they are used and
8944 ** hence are safe to release.
8946 ** This opcode is only available in testing and debugging builds. It is
8947 ** not generated for release builds. The purpose of this opcode is to help
8948 ** validate the generated bytecode. This opcode does not actually contribute
8949 ** to computing an answer.
8951 case OP_ReleaseReg
: {
8955 assert( pOp
->p1
>0 );
8956 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
8957 pMem
= &aMem
[pOp
->p1
];
8958 constMask
= pOp
->p3
;
8959 for(i
=0; i
<pOp
->p2
; i
++, pMem
++){
8960 if( i
>=32 || (constMask
& MASKBIT32(i
))==0 ){
8961 pMem
->pScopyFrom
= 0;
8962 if( i
<32 && pOp
->p5
) MemSetTypeFlag(pMem
, MEM_Undefined
);
8969 /* Opcode: Noop * * * * *
8971 ** Do nothing. This instruction is often useful as a jump
8975 ** The magic Explain opcode are only inserted when explain==2 (which
8976 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8977 ** This opcode records information from the optimizer. It is the
8978 ** the same as a no-op. This opcodesnever appears in a real VM program.
8980 default: { /* This is really OP_Noop, OP_Explain */
8981 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
8986 /*****************************************************************************
8987 ** The cases of the switch statement above this line should all be indented
8988 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8989 ** readability. From this point on down, the normal indentation rules are
8991 *****************************************************************************/
8994 #if defined(VDBE_PROFILE)
8995 *pnCycle
+= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
8997 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
8999 *pnCycle
+= sqlite3Hwtime();
9004 /* The following code adds nothing to the actual functionality
9005 ** of the program. It is only here for testing and debugging.
9006 ** On the other hand, it does burn CPU cycles every time through
9007 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
9010 assert( pOp
>=&aOp
[-1] && pOp
<&aOp
[p
->nOp
-1] );
9013 if( db
->flags
& SQLITE_VdbeTrace
){
9014 u8 opProperty
= sqlite3OpcodeProperty
[pOrigOp
->opcode
];
9015 if( rc
!=0 ) printf("rc=%d\n",rc
);
9016 if( opProperty
& (OPFLG_OUT2
) ){
9017 registerTrace(pOrigOp
->p2
, &aMem
[pOrigOp
->p2
]);
9019 if( opProperty
& OPFLG_OUT3
){
9020 registerTrace(pOrigOp
->p3
, &aMem
[pOrigOp
->p3
]);
9022 if( opProperty
==0xff ){
9023 /* Never happens. This code exists to avoid a harmless linkage
9024 ** warning about sqlite3VdbeRegisterDump() being defined but not
9026 sqlite3VdbeRegisterDump(p
);
9029 #endif /* SQLITE_DEBUG */
9031 } /* The end of the for(;;) loop the loops through opcodes */
9033 /* If we reach this point, it means that execution is finished with
9034 ** an error of some kind.
9037 if( db
->mallocFailed
){
9038 rc
= SQLITE_NOMEM_BKPT
;
9039 }else if( rc
==SQLITE_IOERR_CORRUPTFS
){
9040 rc
= SQLITE_CORRUPT_BKPT
;
9044 if( db
->flags
& SQLITE_VdbeTrace
){
9045 const char *zTrace
= p
->zSql
;
9047 if( aOp
[0].opcode
==OP_Trace
){
9048 zTrace
= aOp
[0].p4
.z
;
9050 if( zTrace
==0 ) zTrace
= "???";
9052 printf("ABORT-due-to-error (rc=%d): %s\n", rc
, zTrace
);
9055 if( p
->zErrMsg
==0 && rc
!=SQLITE_IOERR_NOMEM
){
9056 sqlite3VdbeError(p
, "%s", sqlite3ErrStr(rc
));
9059 sqlite3SystemError(db
, rc
);
9060 testcase( sqlite3GlobalConfig
.xLog
!=0 );
9061 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
9062 (int)(pOp
- aOp
), p
->zSql
, p
->zErrMsg
);
9063 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
9064 if( rc
==SQLITE_IOERR_NOMEM
) sqlite3OomFault(db
);
9065 if( rc
==SQLITE_CORRUPT
&& db
->autoCommit
==0 ){
9066 db
->flags
|= SQLITE_CorruptRdOnly
;
9069 if( resetSchemaOnFault
>0 ){
9070 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
9073 /* This is the only way out of this procedure. We have to
9074 ** release the mutexes on btrees that were acquired at the
9077 #if defined(VDBE_PROFILE)
9079 *pnCycle
+= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
9082 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
9084 *pnCycle
+= sqlite3Hwtime();
9089 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
9090 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
9091 nProgressLimit
+= db
->nProgressOps
;
9092 if( db
->xProgress(db
->pProgressArg
) ){
9093 nProgressLimit
= LARGEST_UINT64
;
9094 rc
= SQLITE_INTERRUPT
;
9095 goto abort_due_to_error
;
9099 p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
] += (int)nVmStep
;
9100 if( DbMaskNonZero(p
->lockMask
) ){
9101 sqlite3VdbeLeave(p
);
9103 assert( rc
!=SQLITE_OK
|| nExtraDelete
==0
9104 || sqlite3_strlike("DELETE%",p
->zSql
,0)!=0
9108 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
9112 sqlite3VdbeError(p
, "string or blob too big");
9114 goto abort_due_to_error
;
9116 /* Jump to here if a malloc() fails.
9119 sqlite3OomFault(db
);
9120 sqlite3VdbeError(p
, "out of memory");
9121 rc
= SQLITE_NOMEM_BKPT
;
9122 goto abort_due_to_error
;
9124 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
9127 abort_due_to_interrupt
:
9128 assert( AtomicLoad(&db
->u1
.isInterrupted
) );
9129 rc
= SQLITE_INTERRUPT
;
9130 goto abort_due_to_error
;