Snapshot of upstream SQLite 3.45.1
[sqlcipher.git] / src / vtab.c
blobf839216787d84d52999e51272f045fdbb89c7418
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
24 struct VtabCtx {
25 VTable *pVTable; /* The virtual table being constructed */
26 Table *pTab; /* The Table object to which the virtual table belongs */
27 VtabCtx *pPrior; /* Parent context (if any) */
28 int bDeclared; /* True after sqlite3_declare_vtab() is called */
32 ** Construct and install a Module object for a virtual table. When this
33 ** routine is called, it is guaranteed that all appropriate locks are held
34 ** and the module is not already part of the connection.
36 ** If there already exists a module with zName, replace it with the new one.
37 ** If pModule==0, then delete the module zName if it exists.
39 Module *sqlite3VtabCreateModule(
40 sqlite3 *db, /* Database in which module is registered */
41 const char *zName, /* Name assigned to this module */
42 const sqlite3_module *pModule, /* The definition of the module */
43 void *pAux, /* Context pointer for xCreate/xConnect */
44 void (*xDestroy)(void *) /* Module destructor function */
46 Module *pMod;
47 Module *pDel;
48 char *zCopy;
49 if( pModule==0 ){
50 zCopy = (char*)zName;
51 pMod = 0;
52 }else{
53 int nName = sqlite3Strlen30(zName);
54 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1);
55 if( pMod==0 ){
56 sqlite3OomFault(db);
57 return 0;
59 zCopy = (char *)(&pMod[1]);
60 memcpy(zCopy, zName, nName+1);
61 pMod->zName = zCopy;
62 pMod->pModule = pModule;
63 pMod->pAux = pAux;
64 pMod->xDestroy = xDestroy;
65 pMod->pEpoTab = 0;
66 pMod->nRefModule = 1;
68 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
69 if( pDel ){
70 if( pDel==pMod ){
71 sqlite3OomFault(db);
72 sqlite3DbFree(db, pDel);
73 pMod = 0;
74 }else{
75 sqlite3VtabEponymousTableClear(db, pDel);
76 sqlite3VtabModuleUnref(db, pDel);
79 return pMod;
83 ** The actual function that does the work of creating a new module.
84 ** This function implements the sqlite3_create_module() and
85 ** sqlite3_create_module_v2() interfaces.
87 static int createModule(
88 sqlite3 *db, /* Database in which module is registered */
89 const char *zName, /* Name assigned to this module */
90 const sqlite3_module *pModule, /* The definition of the module */
91 void *pAux, /* Context pointer for xCreate/xConnect */
92 void (*xDestroy)(void *) /* Module destructor function */
94 int rc = SQLITE_OK;
96 sqlite3_mutex_enter(db->mutex);
97 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy);
98 rc = sqlite3ApiExit(db, rc);
99 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
100 sqlite3_mutex_leave(db->mutex);
101 return rc;
106 ** External API function used to create a new virtual-table module.
108 int sqlite3_create_module(
109 sqlite3 *db, /* Database in which module is registered */
110 const char *zName, /* Name assigned to this module */
111 const sqlite3_module *pModule, /* The definition of the module */
112 void *pAux /* Context pointer for xCreate/xConnect */
114 #ifdef SQLITE_ENABLE_API_ARMOR
115 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
116 #endif
117 return createModule(db, zName, pModule, pAux, 0);
121 ** External API function used to create a new virtual-table module.
123 int sqlite3_create_module_v2(
124 sqlite3 *db, /* Database in which module is registered */
125 const char *zName, /* Name assigned to this module */
126 const sqlite3_module *pModule, /* The definition of the module */
127 void *pAux, /* Context pointer for xCreate/xConnect */
128 void (*xDestroy)(void *) /* Module destructor function */
130 #ifdef SQLITE_ENABLE_API_ARMOR
131 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
132 #endif
133 return createModule(db, zName, pModule, pAux, xDestroy);
137 ** External API to drop all virtual-table modules, except those named
138 ** on the azNames list.
140 int sqlite3_drop_modules(sqlite3 *db, const char** azNames){
141 HashElem *pThis, *pNext;
142 #ifdef SQLITE_ENABLE_API_ARMOR
143 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
144 #endif
145 for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){
146 Module *pMod = (Module*)sqliteHashData(pThis);
147 pNext = sqliteHashNext(pThis);
148 if( azNames ){
149 int ii;
150 for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){}
151 if( azNames[ii]!=0 ) continue;
153 createModule(db, pMod->zName, 0, 0, 0);
155 return SQLITE_OK;
159 ** Decrement the reference count on a Module object. Destroy the
160 ** module when the reference count reaches zero.
162 void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){
163 assert( pMod->nRefModule>0 );
164 pMod->nRefModule--;
165 if( pMod->nRefModule==0 ){
166 if( pMod->xDestroy ){
167 pMod->xDestroy(pMod->pAux);
169 assert( pMod->pEpoTab==0 );
170 sqlite3DbFree(db, pMod);
175 ** Lock the virtual table so that it cannot be disconnected.
176 ** Locks nest. Every lock should have a corresponding unlock.
177 ** If an unlock is omitted, resources leaks will occur.
179 ** If a disconnect is attempted while a virtual table is locked,
180 ** the disconnect is deferred until all locks have been removed.
182 void sqlite3VtabLock(VTable *pVTab){
183 pVTab->nRef++;
188 ** pTab is a pointer to a Table structure representing a virtual-table.
189 ** Return a pointer to the VTable object used by connection db to access
190 ** this virtual-table, if one has been created, or NULL otherwise.
192 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
193 VTable *pVtab;
194 assert( IsVirtual(pTab) );
195 for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
196 return pVtab;
200 ** Decrement the ref-count on a virtual table object. When the ref-count
201 ** reaches zero, call the xDisconnect() method to delete the object.
203 void sqlite3VtabUnlock(VTable *pVTab){
204 sqlite3 *db = pVTab->db;
206 assert( db );
207 assert( pVTab->nRef>0 );
208 assert( db->eOpenState==SQLITE_STATE_OPEN
209 || db->eOpenState==SQLITE_STATE_ZOMBIE );
211 pVTab->nRef--;
212 if( pVTab->nRef==0 ){
213 sqlite3_vtab *p = pVTab->pVtab;
214 if( p ){
215 p->pModule->xDisconnect(p);
217 sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod);
218 sqlite3DbFree(db, pVTab);
223 ** Table p is a virtual table. This function moves all elements in the
224 ** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated
225 ** database connections to be disconnected at the next opportunity.
226 ** Except, if argument db is not NULL, then the entry associated with
227 ** connection db is left in the p->u.vtab.p list.
229 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
230 VTable *pRet = 0;
231 VTable *pVTable;
233 assert( IsVirtual(p) );
234 pVTable = p->u.vtab.p;
235 p->u.vtab.p = 0;
237 /* Assert that the mutex (if any) associated with the BtShared database
238 ** that contains table p is held by the caller. See header comments
239 ** above function sqlite3VtabUnlockList() for an explanation of why
240 ** this makes it safe to access the sqlite3.pDisconnect list of any
241 ** database connection that may have an entry in the p->u.vtab.p list.
243 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
245 while( pVTable ){
246 sqlite3 *db2 = pVTable->db;
247 VTable *pNext = pVTable->pNext;
248 assert( db2 );
249 if( db2==db ){
250 pRet = pVTable;
251 p->u.vtab.p = pRet;
252 pRet->pNext = 0;
253 }else{
254 pVTable->pNext = db2->pDisconnect;
255 db2->pDisconnect = pVTable;
257 pVTable = pNext;
260 assert( !db || pRet );
261 return pRet;
265 ** Table *p is a virtual table. This function removes the VTable object
266 ** for table *p associated with database connection db from the linked
267 ** list in p->pVTab. It also decrements the VTable ref count. This is
268 ** used when closing database connection db to free all of its VTable
269 ** objects without disturbing the rest of the Schema object (which may
270 ** be being used by other shared-cache connections).
272 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
273 VTable **ppVTab;
275 assert( IsVirtual(p) );
276 assert( sqlite3BtreeHoldsAllMutexes(db) );
277 assert( sqlite3_mutex_held(db->mutex) );
279 for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){
280 if( (*ppVTab)->db==db ){
281 VTable *pVTab = *ppVTab;
282 *ppVTab = pVTab->pNext;
283 sqlite3VtabUnlock(pVTab);
284 break;
291 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
293 ** This function may only be called when the mutexes associated with all
294 ** shared b-tree databases opened using connection db are held by the
295 ** caller. This is done to protect the sqlite3.pDisconnect list. The
296 ** sqlite3.pDisconnect list is accessed only as follows:
298 ** 1) By this function. In this case, all BtShared mutexes and the mutex
299 ** associated with the database handle itself must be held.
301 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
302 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
303 ** associated with the database the virtual table is stored in is held
304 ** or, if the virtual table is stored in a non-sharable database, then
305 ** the database handle mutex is held.
307 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
308 ** by multiple threads. It is thread-safe.
310 void sqlite3VtabUnlockList(sqlite3 *db){
311 VTable *p = db->pDisconnect;
313 assert( sqlite3BtreeHoldsAllMutexes(db) );
314 assert( sqlite3_mutex_held(db->mutex) );
316 if( p ){
317 db->pDisconnect = 0;
318 do {
319 VTable *pNext = p->pNext;
320 sqlite3VtabUnlock(p);
321 p = pNext;
322 }while( p );
327 ** Clear any and all virtual-table information from the Table record.
328 ** This routine is called, for example, just before deleting the Table
329 ** record.
331 ** Since it is a virtual-table, the Table structure contains a pointer
332 ** to the head of a linked list of VTable structures. Each VTable
333 ** structure is associated with a single sqlite3* user of the schema.
334 ** The reference count of the VTable structure associated with database
335 ** connection db is decremented immediately (which may lead to the
336 ** structure being xDisconnected and free). Any other VTable structures
337 ** in the list are moved to the sqlite3.pDisconnect list of the associated
338 ** database connection.
340 void sqlite3VtabClear(sqlite3 *db, Table *p){
341 assert( IsVirtual(p) );
342 assert( db!=0 );
343 if( db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
344 if( p->u.vtab.azArg ){
345 int i;
346 for(i=0; i<p->u.vtab.nArg; i++){
347 if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]);
349 sqlite3DbFree(db, p->u.vtab.azArg);
354 ** Add a new module argument to pTable->u.vtab.azArg[].
355 ** The string is not copied - the pointer is stored. The
356 ** string will be freed automatically when the table is
357 ** deleted.
359 static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){
360 sqlite3_int64 nBytes;
361 char **azModuleArg;
362 sqlite3 *db = pParse->db;
364 assert( IsVirtual(pTable) );
365 nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg);
366 if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){
367 sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName);
369 azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes);
370 if( azModuleArg==0 ){
371 sqlite3DbFree(db, zArg);
372 }else{
373 int i = pTable->u.vtab.nArg++;
374 azModuleArg[i] = zArg;
375 azModuleArg[i+1] = 0;
376 pTable->u.vtab.azArg = azModuleArg;
381 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
382 ** statement. The module name has been parsed, but the optional list
383 ** of parameters that follow the module name are still pending.
385 void sqlite3VtabBeginParse(
386 Parse *pParse, /* Parsing context */
387 Token *pName1, /* Name of new table, or database name */
388 Token *pName2, /* Name of new table or NULL */
389 Token *pModuleName, /* Name of the module for the virtual table */
390 int ifNotExists /* No error if the table already exists */
392 Table *pTable; /* The new virtual table */
393 sqlite3 *db; /* Database connection */
395 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
396 pTable = pParse->pNewTable;
397 if( pTable==0 ) return;
398 assert( 0==pTable->pIndex );
399 pTable->eTabType = TABTYP_VTAB;
401 db = pParse->db;
403 assert( pTable->u.vtab.nArg==0 );
404 addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName));
405 addModuleArgument(pParse, pTable, 0);
406 addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName));
407 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
408 || (pParse->sNameToken.z==pName1->z && pName2->z==0)
410 pParse->sNameToken.n = (int)(
411 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
414 #ifndef SQLITE_OMIT_AUTHORIZATION
415 /* Creating a virtual table invokes the authorization callback twice.
416 ** The first invocation, to obtain permission to INSERT a row into the
417 ** sqlite_schema table, has already been made by sqlite3StartTable().
418 ** The second call, to obtain permission to create the table, is made now.
420 if( pTable->u.vtab.azArg ){
421 int iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
422 assert( iDb>=0 ); /* The database the table is being created in */
423 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
424 pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName);
426 #endif
430 ** This routine takes the module argument that has been accumulating
431 ** in pParse->zArg[] and appends it to the list of arguments on the
432 ** virtual table currently under construction in pParse->pTable.
434 static void addArgumentToVtab(Parse *pParse){
435 if( pParse->sArg.z && pParse->pNewTable ){
436 const char *z = (const char*)pParse->sArg.z;
437 int n = pParse->sArg.n;
438 sqlite3 *db = pParse->db;
439 addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
444 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
445 ** has been completely parsed.
447 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
448 Table *pTab = pParse->pNewTable; /* The table being constructed */
449 sqlite3 *db = pParse->db; /* The database connection */
451 if( pTab==0 ) return;
452 assert( IsVirtual(pTab) );
453 addArgumentToVtab(pParse);
454 pParse->sArg.z = 0;
455 if( pTab->u.vtab.nArg<1 ) return;
457 /* If the CREATE VIRTUAL TABLE statement is being entered for the
458 ** first time (in other words if the virtual table is actually being
459 ** created now instead of just being read out of sqlite_schema) then
460 ** do additional initialization work and store the statement text
461 ** in the sqlite_schema table.
463 if( !db->init.busy ){
464 char *zStmt;
465 char *zWhere;
466 int iDb;
467 int iReg;
468 Vdbe *v;
470 sqlite3MayAbort(pParse);
472 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
473 if( pEnd ){
474 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
476 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
478 /* A slot for the record has already been allocated in the
479 ** schema table. We just need to update that slot with all
480 ** the information we've collected.
482 ** The VM register number pParse->regRowid holds the rowid of an
483 ** entry in the sqlite_schema table that was created for this vtab
484 ** by sqlite3StartTable().
486 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
487 sqlite3NestedParse(pParse,
488 "UPDATE %Q." LEGACY_SCHEMA_TABLE " "
489 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
490 "WHERE rowid=#%d",
491 db->aDb[iDb].zDbSName,
492 pTab->zName,
493 pTab->zName,
494 zStmt,
495 pParse->regRowid
497 v = sqlite3GetVdbe(pParse);
498 sqlite3ChangeCookie(pParse, iDb);
500 sqlite3VdbeAddOp0(v, OP_Expire);
501 zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt);
502 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0);
503 sqlite3DbFree(db, zStmt);
505 iReg = ++pParse->nMem;
506 sqlite3VdbeLoadString(v, iReg, pTab->zName);
507 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
508 }else{
509 /* If we are rereading the sqlite_schema table create the in-memory
510 ** record of the table. */
511 Table *pOld;
512 Schema *pSchema = pTab->pSchema;
513 const char *zName = pTab->zName;
514 assert( zName!=0 );
515 sqlite3MarkAllShadowTablesOf(db, pTab);
516 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
517 if( pOld ){
518 sqlite3OomFault(db);
519 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
520 return;
522 pParse->pNewTable = 0;
527 ** The parser calls this routine when it sees the first token
528 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
530 void sqlite3VtabArgInit(Parse *pParse){
531 addArgumentToVtab(pParse);
532 pParse->sArg.z = 0;
533 pParse->sArg.n = 0;
537 ** The parser calls this routine for each token after the first token
538 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
540 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
541 Token *pArg = &pParse->sArg;
542 if( pArg->z==0 ){
543 pArg->z = p->z;
544 pArg->n = p->n;
545 }else{
546 assert(pArg->z <= p->z);
547 pArg->n = (int)(&p->z[p->n] - pArg->z);
552 ** Invoke a virtual table constructor (either xCreate or xConnect). The
553 ** pointer to the function to invoke is passed as the fourth parameter
554 ** to this procedure.
556 static int vtabCallConstructor(
557 sqlite3 *db,
558 Table *pTab,
559 Module *pMod,
560 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
561 char **pzErr
563 VtabCtx sCtx;
564 VTable *pVTable;
565 int rc;
566 const char *const*azArg;
567 int nArg = pTab->u.vtab.nArg;
568 char *zErr = 0;
569 char *zModuleName;
570 int iDb;
571 VtabCtx *pCtx;
573 assert( IsVirtual(pTab) );
574 azArg = (const char *const*)pTab->u.vtab.azArg;
576 /* Check that the virtual-table is not already being initialized */
577 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
578 if( pCtx->pTab==pTab ){
579 *pzErr = sqlite3MPrintf(db,
580 "vtable constructor called recursively: %s", pTab->zName
582 return SQLITE_LOCKED;
586 zModuleName = sqlite3DbStrDup(db, pTab->zName);
587 if( !zModuleName ){
588 return SQLITE_NOMEM_BKPT;
591 pVTable = sqlite3MallocZero(sizeof(VTable));
592 if( !pVTable ){
593 sqlite3OomFault(db);
594 sqlite3DbFree(db, zModuleName);
595 return SQLITE_NOMEM_BKPT;
597 pVTable->db = db;
598 pVTable->pMod = pMod;
599 pVTable->eVtabRisk = SQLITE_VTABRISK_Normal;
601 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
602 pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName;
604 /* Invoke the virtual table constructor */
605 assert( &db->pVtabCtx );
606 assert( xConstruct );
607 sCtx.pTab = pTab;
608 sCtx.pVTable = pVTable;
609 sCtx.pPrior = db->pVtabCtx;
610 sCtx.bDeclared = 0;
611 db->pVtabCtx = &sCtx;
612 pTab->nTabRef++;
613 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
614 sqlite3DeleteTable(db, pTab);
615 db->pVtabCtx = sCtx.pPrior;
616 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
617 assert( sCtx.pTab==pTab );
619 if( SQLITE_OK!=rc ){
620 if( zErr==0 ){
621 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
622 }else {
623 *pzErr = sqlite3MPrintf(db, "%s", zErr);
624 sqlite3_free(zErr);
626 sqlite3DbFree(db, pVTable);
627 }else if( ALWAYS(pVTable->pVtab) ){
628 /* Justification of ALWAYS(): A correct vtab constructor must allocate
629 ** the sqlite3_vtab object if successful. */
630 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
631 pVTable->pVtab->pModule = pMod->pModule;
632 pMod->nRefModule++;
633 pVTable->nRef = 1;
634 if( sCtx.bDeclared==0 ){
635 const char *zFormat = "vtable constructor did not declare schema: %s";
636 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
637 sqlite3VtabUnlock(pVTable);
638 rc = SQLITE_ERROR;
639 }else{
640 int iCol;
641 u16 oooHidden = 0;
642 /* If everything went according to plan, link the new VTable structure
643 ** into the linked list headed by pTab->u.vtab.p. Then loop through the
644 ** columns of the table to see if any of them contain the token "hidden".
645 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
646 ** the type string. */
647 pVTable->pNext = pTab->u.vtab.p;
648 pTab->u.vtab.p = pVTable;
650 for(iCol=0; iCol<pTab->nCol; iCol++){
651 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], "");
652 int nType;
653 int i = 0;
654 nType = sqlite3Strlen30(zType);
655 for(i=0; i<nType; i++){
656 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6)
657 && (i==0 || zType[i-1]==' ')
658 && (zType[i+6]=='\0' || zType[i+6]==' ')
660 break;
663 if( i<nType ){
664 int j;
665 int nDel = 6 + (zType[i+6] ? 1 : 0);
666 for(j=i; (j+nDel)<=nType; j++){
667 zType[j] = zType[j+nDel];
669 if( zType[i]=='\0' && i>0 ){
670 assert(zType[i-1]==' ');
671 zType[i-1] = '\0';
673 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
674 pTab->tabFlags |= TF_HasHidden;
675 oooHidden = TF_OOOHidden;
676 }else{
677 pTab->tabFlags |= oooHidden;
683 sqlite3DbFree(db, zModuleName);
684 return rc;
688 ** This function is invoked by the parser to call the xConnect() method
689 ** of the virtual table pTab. If an error occurs, an error code is returned
690 ** and an error left in pParse.
692 ** This call is a no-op if table pTab is not a virtual table.
694 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
695 sqlite3 *db = pParse->db;
696 const char *zMod;
697 Module *pMod;
698 int rc;
700 assert( pTab );
701 assert( IsVirtual(pTab) );
702 if( sqlite3GetVTable(db, pTab) ){
703 return SQLITE_OK;
706 /* Locate the required virtual table module */
707 zMod = pTab->u.vtab.azArg[0];
708 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
710 if( !pMod ){
711 const char *zModule = pTab->u.vtab.azArg[0];
712 sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
713 rc = SQLITE_ERROR;
714 }else{
715 char *zErr = 0;
716 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
717 if( rc!=SQLITE_OK ){
718 sqlite3ErrorMsg(pParse, "%s", zErr);
719 pParse->rc = rc;
721 sqlite3DbFree(db, zErr);
724 return rc;
727 ** Grow the db->aVTrans[] array so that there is room for at least one
728 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
730 static int growVTrans(sqlite3 *db){
731 const int ARRAY_INCR = 5;
733 /* Grow the sqlite3.aVTrans array if required */
734 if( (db->nVTrans%ARRAY_INCR)==0 ){
735 VTable **aVTrans;
736 sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)*
737 ((sqlite3_int64)db->nVTrans + ARRAY_INCR);
738 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
739 if( !aVTrans ){
740 return SQLITE_NOMEM_BKPT;
742 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
743 db->aVTrans = aVTrans;
746 return SQLITE_OK;
750 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
751 ** have already been reserved using growVTrans().
753 static void addToVTrans(sqlite3 *db, VTable *pVTab){
754 /* Add pVtab to the end of sqlite3.aVTrans */
755 db->aVTrans[db->nVTrans++] = pVTab;
756 sqlite3VtabLock(pVTab);
760 ** This function is invoked by the vdbe to call the xCreate method
761 ** of the virtual table named zTab in database iDb.
763 ** If an error occurs, *pzErr is set to point to an English language
764 ** description of the error and an SQLITE_XXX error code is returned.
765 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
767 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
768 int rc = SQLITE_OK;
769 Table *pTab;
770 Module *pMod;
771 const char *zMod;
773 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
774 assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p );
776 /* Locate the required virtual table module */
777 zMod = pTab->u.vtab.azArg[0];
778 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
780 /* If the module has been registered and includes a Create method,
781 ** invoke it now. If the module has not been registered, return an
782 ** error. Otherwise, do nothing.
784 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
785 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
786 rc = SQLITE_ERROR;
787 }else{
788 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
791 /* Justification of ALWAYS(): The xConstructor method is required to
792 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
793 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
794 rc = growVTrans(db);
795 if( rc==SQLITE_OK ){
796 addToVTrans(db, sqlite3GetVTable(db, pTab));
800 return rc;
804 ** This function is used to set the schema of a virtual table. It is only
805 ** valid to call this function from within the xCreate() or xConnect() of a
806 ** virtual table module.
808 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
809 VtabCtx *pCtx;
810 int rc = SQLITE_OK;
811 Table *pTab;
812 Parse sParse;
813 int initBusy;
815 #ifdef SQLITE_ENABLE_API_ARMOR
816 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
817 return SQLITE_MISUSE_BKPT;
819 #endif
820 sqlite3_mutex_enter(db->mutex);
821 pCtx = db->pVtabCtx;
822 if( !pCtx || pCtx->bDeclared ){
823 sqlite3Error(db, SQLITE_MISUSE_BKPT);
824 sqlite3_mutex_leave(db->mutex);
825 return SQLITE_MISUSE_BKPT;
827 pTab = pCtx->pTab;
828 assert( IsVirtual(pTab) );
830 sqlite3ParseObjectInit(&sParse, db);
831 sParse.eParseMode = PARSE_MODE_DECLARE_VTAB;
832 sParse.disableTriggers = 1;
833 /* We should never be able to reach this point while loading the
834 ** schema. Nevertheless, defend against that (turn off db->init.busy)
835 ** in case a bug arises. */
836 assert( db->init.busy==0 );
837 initBusy = db->init.busy;
838 db->init.busy = 0;
839 sParse.nQueryLoop = 1;
840 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable)
841 && ALWAYS(sParse.pNewTable!=0)
842 && ALWAYS(!db->mallocFailed)
843 && IsOrdinaryTable(sParse.pNewTable)
845 assert( sParse.zErrMsg==0 );
846 if( !pTab->aCol ){
847 Table *pNew = sParse.pNewTable;
848 Index *pIdx;
849 pTab->aCol = pNew->aCol;
850 sqlite3ExprListDelete(db, pNew->u.tab.pDfltList);
851 pTab->nNVCol = pTab->nCol = pNew->nCol;
852 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid);
853 pNew->nCol = 0;
854 pNew->aCol = 0;
855 assert( pTab->pIndex==0 );
856 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 );
857 if( !HasRowid(pNew)
858 && pCtx->pVTable->pMod->pModule->xUpdate!=0
859 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1
861 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0)
862 ** or else must have a single-column PRIMARY KEY */
863 rc = SQLITE_ERROR;
865 pIdx = pNew->pIndex;
866 if( pIdx ){
867 assert( pIdx->pNext==0 );
868 pTab->pIndex = pIdx;
869 pNew->pIndex = 0;
870 pIdx->pTable = pTab;
873 pCtx->bDeclared = 1;
874 }else{
875 sqlite3ErrorWithMsg(db, SQLITE_ERROR,
876 (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg);
877 sqlite3DbFree(db, sParse.zErrMsg);
878 rc = SQLITE_ERROR;
880 sParse.eParseMode = PARSE_MODE_NORMAL;
882 if( sParse.pVdbe ){
883 sqlite3VdbeFinalize(sParse.pVdbe);
885 sqlite3DeleteTable(db, sParse.pNewTable);
886 sqlite3ParseObjectReset(&sParse);
887 db->init.busy = initBusy;
889 assert( (rc&0xff)==rc );
890 rc = sqlite3ApiExit(db, rc);
891 sqlite3_mutex_leave(db->mutex);
892 return rc;
896 ** This function is invoked by the vdbe to call the xDestroy method
897 ** of the virtual table named zTab in database iDb. This occurs
898 ** when a DROP TABLE is mentioned.
900 ** This call is a no-op if zTab is not a virtual table.
902 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
903 int rc = SQLITE_OK;
904 Table *pTab;
906 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
907 if( ALWAYS(pTab!=0)
908 && ALWAYS(IsVirtual(pTab))
909 && ALWAYS(pTab->u.vtab.p!=0)
911 VTable *p;
912 int (*xDestroy)(sqlite3_vtab *);
913 for(p=pTab->u.vtab.p; p; p=p->pNext){
914 assert( p->pVtab );
915 if( p->pVtab->nRef>0 ){
916 return SQLITE_LOCKED;
919 p = vtabDisconnectAll(db, pTab);
920 xDestroy = p->pMod->pModule->xDestroy;
921 if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect;
922 assert( xDestroy!=0 );
923 pTab->nTabRef++;
924 rc = xDestroy(p->pVtab);
925 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
926 if( rc==SQLITE_OK ){
927 assert( pTab->u.vtab.p==p && p->pNext==0 );
928 p->pVtab = 0;
929 pTab->u.vtab.p = 0;
930 sqlite3VtabUnlock(p);
932 sqlite3DeleteTable(db, pTab);
935 return rc;
939 ** This function invokes either the xRollback or xCommit method
940 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
941 ** called is identified by the second argument, "offset", which is
942 ** the offset of the method to call in the sqlite3_module structure.
944 ** The array is cleared after invoking the callbacks.
946 static void callFinaliser(sqlite3 *db, int offset){
947 int i;
948 if( db->aVTrans ){
949 VTable **aVTrans = db->aVTrans;
950 db->aVTrans = 0;
951 for(i=0; i<db->nVTrans; i++){
952 VTable *pVTab = aVTrans[i];
953 sqlite3_vtab *p = pVTab->pVtab;
954 if( p ){
955 int (*x)(sqlite3_vtab *);
956 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
957 if( x ) x(p);
959 pVTab->iSavepoint = 0;
960 sqlite3VtabUnlock(pVTab);
962 sqlite3DbFree(db, aVTrans);
963 db->nVTrans = 0;
968 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
969 ** array. Return the error code for the first error that occurs, or
970 ** SQLITE_OK if all xSync operations are successful.
972 ** If an error message is available, leave it in p->zErrMsg.
974 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
975 int i;
976 int rc = SQLITE_OK;
977 VTable **aVTrans = db->aVTrans;
979 db->aVTrans = 0;
980 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
981 int (*x)(sqlite3_vtab *);
982 sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
983 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
984 rc = x(pVtab);
985 sqlite3VtabImportErrmsg(p, pVtab);
988 db->aVTrans = aVTrans;
989 return rc;
993 ** Invoke the xRollback method of all virtual tables in the
994 ** sqlite3.aVTrans array. Then clear the array itself.
996 int sqlite3VtabRollback(sqlite3 *db){
997 callFinaliser(db, offsetof(sqlite3_module,xRollback));
998 return SQLITE_OK;
1002 ** Invoke the xCommit method of all virtual tables in the
1003 ** sqlite3.aVTrans array. Then clear the array itself.
1005 int sqlite3VtabCommit(sqlite3 *db){
1006 callFinaliser(db, offsetof(sqlite3_module,xCommit));
1007 return SQLITE_OK;
1011 ** If the virtual table pVtab supports the transaction interface
1012 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
1013 ** not currently open, invoke the xBegin method now.
1015 ** If the xBegin call is successful, place the sqlite3_vtab pointer
1016 ** in the sqlite3.aVTrans array.
1018 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
1019 int rc = SQLITE_OK;
1020 const sqlite3_module *pModule;
1022 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
1023 ** than zero, then this function is being called from within a
1024 ** virtual module xSync() callback. It is illegal to write to
1025 ** virtual module tables in this case, so return SQLITE_LOCKED.
1027 if( sqlite3VtabInSync(db) ){
1028 return SQLITE_LOCKED;
1030 if( !pVTab ){
1031 return SQLITE_OK;
1033 pModule = pVTab->pVtab->pModule;
1035 if( pModule->xBegin ){
1036 int i;
1038 /* If pVtab is already in the aVTrans array, return early */
1039 for(i=0; i<db->nVTrans; i++){
1040 if( db->aVTrans[i]==pVTab ){
1041 return SQLITE_OK;
1045 /* Invoke the xBegin method. If successful, add the vtab to the
1046 ** sqlite3.aVTrans[] array. */
1047 rc = growVTrans(db);
1048 if( rc==SQLITE_OK ){
1049 rc = pModule->xBegin(pVTab->pVtab);
1050 if( rc==SQLITE_OK ){
1051 int iSvpt = db->nStatement + db->nSavepoint;
1052 addToVTrans(db, pVTab);
1053 if( iSvpt && pModule->xSavepoint ){
1054 pVTab->iSavepoint = iSvpt;
1055 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1);
1060 return rc;
1064 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
1065 ** virtual tables that currently have an open transaction. Pass iSavepoint
1066 ** as the second argument to the virtual table method invoked.
1068 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
1069 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
1070 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
1071 ** an open transaction is invoked.
1073 ** If any virtual table method returns an error code other than SQLITE_OK,
1074 ** processing is abandoned and the error returned to the caller of this
1075 ** function immediately. If all calls to virtual table methods are successful,
1076 ** SQLITE_OK is returned.
1078 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
1079 int rc = SQLITE_OK;
1081 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
1082 assert( iSavepoint>=-1 );
1083 if( db->aVTrans ){
1084 int i;
1085 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
1086 VTable *pVTab = db->aVTrans[i];
1087 const sqlite3_module *pMod = pVTab->pMod->pModule;
1088 if( pVTab->pVtab && pMod->iVersion>=2 ){
1089 int (*xMethod)(sqlite3_vtab *, int);
1090 sqlite3VtabLock(pVTab);
1091 switch( op ){
1092 case SAVEPOINT_BEGIN:
1093 xMethod = pMod->xSavepoint;
1094 pVTab->iSavepoint = iSavepoint+1;
1095 break;
1096 case SAVEPOINT_ROLLBACK:
1097 xMethod = pMod->xRollbackTo;
1098 break;
1099 default:
1100 xMethod = pMod->xRelease;
1101 break;
1103 if( xMethod && pVTab->iSavepoint>iSavepoint ){
1104 u64 savedFlags = (db->flags & SQLITE_Defensive);
1105 db->flags &= ~(u64)SQLITE_Defensive;
1106 rc = xMethod(pVTab->pVtab, iSavepoint);
1107 db->flags |= savedFlags;
1109 sqlite3VtabUnlock(pVTab);
1113 return rc;
1117 ** The first parameter (pDef) is a function implementation. The
1118 ** second parameter (pExpr) is the first argument to this function.
1119 ** If pExpr is a column in a virtual table, then let the virtual
1120 ** table implementation have an opportunity to overload the function.
1122 ** This routine is used to allow virtual table implementations to
1123 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
1125 ** Return either the pDef argument (indicating no change) or a
1126 ** new FuncDef structure that is marked as ephemeral using the
1127 ** SQLITE_FUNC_EPHEM flag.
1129 FuncDef *sqlite3VtabOverloadFunction(
1130 sqlite3 *db, /* Database connection for reporting malloc problems */
1131 FuncDef *pDef, /* Function to possibly overload */
1132 int nArg, /* Number of arguments to the function */
1133 Expr *pExpr /* First argument to the function */
1135 Table *pTab;
1136 sqlite3_vtab *pVtab;
1137 sqlite3_module *pMod;
1138 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
1139 void *pArg = 0;
1140 FuncDef *pNew;
1141 int rc = 0;
1143 /* Check to see the left operand is a column in a virtual table */
1144 if( NEVER(pExpr==0) ) return pDef;
1145 if( pExpr->op!=TK_COLUMN ) return pDef;
1146 assert( ExprUseYTab(pExpr) );
1147 pTab = pExpr->y.pTab;
1148 if( NEVER(pTab==0) ) return pDef;
1149 if( !IsVirtual(pTab) ) return pDef;
1150 pVtab = sqlite3GetVTable(db, pTab)->pVtab;
1151 assert( pVtab!=0 );
1152 assert( pVtab->pModule!=0 );
1153 pMod = (sqlite3_module *)pVtab->pModule;
1154 if( pMod->xFindFunction==0 ) return pDef;
1156 /* Call the xFindFunction method on the virtual table implementation
1157 ** to see if the implementation wants to overload this function.
1159 ** Though undocumented, we have historically always invoked xFindFunction
1160 ** with an all lower-case function name. Continue in this tradition to
1161 ** avoid any chance of an incompatibility.
1163 #ifdef SQLITE_DEBUG
1165 int i;
1166 for(i=0; pDef->zName[i]; i++){
1167 unsigned char x = (unsigned char)pDef->zName[i];
1168 assert( x==sqlite3UpperToLower[x] );
1171 #endif
1172 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg);
1173 if( rc==0 ){
1174 return pDef;
1177 /* Create a new ephemeral function definition for the overloaded
1178 ** function */
1179 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1180 + sqlite3Strlen30(pDef->zName) + 1);
1181 if( pNew==0 ){
1182 return pDef;
1184 *pNew = *pDef;
1185 pNew->zName = (const char*)&pNew[1];
1186 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1187 pNew->xSFunc = xSFunc;
1188 pNew->pUserData = pArg;
1189 pNew->funcFlags |= SQLITE_FUNC_EPHEM;
1190 return pNew;
1194 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1195 ** array so that an OP_VBegin will get generated for it. Add pTab to the
1196 ** array if it is missing. If pTab is already in the array, this routine
1197 ** is a no-op.
1199 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1200 Parse *pToplevel = sqlite3ParseToplevel(pParse);
1201 int i, n;
1202 Table **apVtabLock;
1204 assert( IsVirtual(pTab) );
1205 for(i=0; i<pToplevel->nVtabLock; i++){
1206 if( pTab==pToplevel->apVtabLock[i] ) return;
1208 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1209 apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n);
1210 if( apVtabLock ){
1211 pToplevel->apVtabLock = apVtabLock;
1212 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1213 }else{
1214 sqlite3OomFault(pToplevel->db);
1219 ** Check to see if virtual table module pMod can be have an eponymous
1220 ** virtual table instance. If it can, create one if one does not already
1221 ** exist. Return non-zero if either the eponymous virtual table instance
1222 ** exists when this routine returns or if an attempt to create it failed
1223 ** and an error message was left in pParse.
1225 ** An eponymous virtual table instance is one that is named after its
1226 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE
1227 ** statement in order to come into existence. Eponymous virtual table
1228 ** instances always exist. They cannot be DROP-ed.
1230 ** Any virtual table module for which xConnect and xCreate are the same
1231 ** method can have an eponymous virtual table instance.
1233 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
1234 const sqlite3_module *pModule = pMod->pModule;
1235 Table *pTab;
1236 char *zErr = 0;
1237 int rc;
1238 sqlite3 *db = pParse->db;
1239 if( pMod->pEpoTab ) return 1;
1240 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
1241 pTab = sqlite3DbMallocZero(db, sizeof(Table));
1242 if( pTab==0 ) return 0;
1243 pTab->zName = sqlite3DbStrDup(db, pMod->zName);
1244 if( pTab->zName==0 ){
1245 sqlite3DbFree(db, pTab);
1246 return 0;
1248 pMod->pEpoTab = pTab;
1249 pTab->nTabRef = 1;
1250 pTab->eTabType = TABTYP_VTAB;
1251 pTab->pSchema = db->aDb[0].pSchema;
1252 assert( pTab->u.vtab.nArg==0 );
1253 pTab->iPKey = -1;
1254 pTab->tabFlags |= TF_Eponymous;
1255 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
1256 addModuleArgument(pParse, pTab, 0);
1257 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
1258 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
1259 if( rc ){
1260 sqlite3ErrorMsg(pParse, "%s", zErr);
1261 sqlite3DbFree(db, zErr);
1262 sqlite3VtabEponymousTableClear(db, pMod);
1264 return 1;
1268 ** Erase the eponymous virtual table instance associated with
1269 ** virtual table module pMod, if it exists.
1271 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
1272 Table *pTab = pMod->pEpoTab;
1273 if( pTab!=0 ){
1274 /* Mark the table as Ephemeral prior to deleting it, so that the
1275 ** sqlite3DeleteTable() routine will know that it is not stored in
1276 ** the schema. */
1277 pTab->tabFlags |= TF_Ephemeral;
1278 sqlite3DeleteTable(db, pTab);
1279 pMod->pEpoTab = 0;
1284 ** Return the ON CONFLICT resolution mode in effect for the virtual
1285 ** table update operation currently in progress.
1287 ** The results of this routine are undefined unless it is called from
1288 ** within an xUpdate method.
1290 int sqlite3_vtab_on_conflict(sqlite3 *db){
1291 static const unsigned char aMap[] = {
1292 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1294 #ifdef SQLITE_ENABLE_API_ARMOR
1295 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1296 #endif
1297 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1298 assert( OE_Ignore==4 && OE_Replace==5 );
1299 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1300 return (int)aMap[db->vtabOnConflict-1];
1304 ** Call from within the xCreate() or xConnect() methods to provide
1305 ** the SQLite core with additional information about the behavior
1306 ** of the virtual table being implemented.
1308 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1309 va_list ap;
1310 int rc = SQLITE_OK;
1311 VtabCtx *p;
1313 #ifdef SQLITE_ENABLE_API_ARMOR
1314 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1315 #endif
1316 sqlite3_mutex_enter(db->mutex);
1317 p = db->pVtabCtx;
1318 if( !p ){
1319 rc = SQLITE_MISUSE_BKPT;
1320 }else{
1321 assert( p->pTab==0 || IsVirtual(p->pTab) );
1322 va_start(ap, op);
1323 switch( op ){
1324 case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1325 p->pVTable->bConstraint = (u8)va_arg(ap, int);
1326 break;
1328 case SQLITE_VTAB_INNOCUOUS: {
1329 p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low;
1330 break;
1332 case SQLITE_VTAB_DIRECTONLY: {
1333 p->pVTable->eVtabRisk = SQLITE_VTABRISK_High;
1334 break;
1336 case SQLITE_VTAB_USES_ALL_SCHEMAS: {
1337 p->pVTable->bAllSchemas = 1;
1338 break;
1340 default: {
1341 rc = SQLITE_MISUSE_BKPT;
1342 break;
1345 va_end(ap);
1348 if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
1349 sqlite3_mutex_leave(db->mutex);
1350 return rc;
1353 #endif /* SQLITE_OMIT_VIRTUALTABLE */