4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** Low level access to the FTS index stored in the database file. The
14 ** routines in this file file implement all read and write access to the
15 ** %_data table. Other parts of the system access this functionality via
16 ** the interface defined in fts5Int.h.
25 ** The %_data table contains all the FTS indexes for an FTS5 virtual table.
26 ** As well as the main term index, there may be up to 31 prefix indexes.
27 ** The format is similar to FTS3/4, except that:
29 ** * all segment b-tree leaf data is stored in fixed size page records
30 ** (e.g. 1000 bytes). A single doclist may span multiple pages. Care is
31 ** taken to ensure it is possible to iterate in either direction through
32 ** the entries in a doclist, or to seek to a specific entry within a
33 ** doclist, without loading it into memory.
35 ** * large doclists that span many pages have associated "doclist index"
36 ** records that contain a copy of the first rowid on each page spanned by
37 ** the doclist. This is used to speed up seek operations, and merges of
38 ** large doclists with very small doclists.
40 ** * extra fields in the "structure record" record the state of ongoing
41 ** incremental merge operations.
46 #define FTS5_OPT_WORK_UNIT 1000 /* Number of leaf pages per optimize step */
47 #define FTS5_WORK_UNIT 64 /* Number of leaf pages in unit of work */
49 #define FTS5_MIN_DLIDX_SIZE 4 /* Add dlidx if this many empty pages */
51 #define FTS5_MAIN_PREFIX '0'
53 #if FTS5_MAX_PREFIX_INDEXES > 31
54 # error "FTS5_MAX_PREFIX_INDEXES is too large"
57 #define FTS5_MAX_LEVEL 64
60 ** There are two versions of the format used for the structure record:
62 ** 1. the legacy format, that may be read by all fts5 versions, and
64 ** 2. the V2 format, which is used by contentless_delete=1 databases.
66 ** Both begin with a 4-byte "configuration cookie" value. Then, a legacy
67 ** format structure record contains a varint - the number of levels in
68 ** the structure. Whereas a V2 structure record contains the constant
69 ** 4 bytes [0xff 0x00 0x00 0x01]. This is unambiguous as the value of a
70 ** varint has to be at least 16256 to begin with "0xFF". And the default
71 ** maximum number of levels is 64.
73 ** See below for more on structure record formats.
75 #define FTS5_STRUCTURE_V2 "\xFF\x00\x00\x01"
80 ** The %_data table managed by this module,
82 ** CREATE TABLE %_data(id INTEGER PRIMARY KEY, block BLOB);
84 ** , contains the following 6 types of records. See the comments surrounding
85 ** the FTS5_*_ROWID macros below for a description of how %_data rowids are
86 ** assigned to each fo them.
88 ** 1. Structure Records:
90 ** The set of segments that make up an index - the index structure - are
91 ** recorded in a single record within the %_data table. The record consists
92 ** of a single 32-bit configuration cookie value followed by a list of
95 ** If the structure record is a V2 record, the configuration cookie is
96 ** followed by the following 4 bytes: [0xFF 0x00 0x00 0x01].
98 ** Next, the record continues with three varints:
100 ** + number of levels,
101 ** + total number of segments on all levels,
102 ** + value of write counter.
104 ** Then, for each level from 0 to nMax:
106 ** + number of input segments in ongoing merge.
107 ** + total number of segments in level.
108 ** + for each segment from oldest to newest:
109 ** + segment id (always > 0)
110 ** + first leaf page number (often 1, always greater than 0)
111 ** + final leaf page number
113 ** Then, for V2 structures only:
115 ** + lower origin counter value,
116 ** + upper origin counter value,
117 ** + the number of tombstone hash pages.
119 ** 2. The Averages Record:
121 ** A single record within the %_data table. The data is a list of varints.
122 ** The first value is the number of rows in the index. Then, for each column
123 ** from left to right, the total number of tokens in the column for all
124 ** rows of the table.
126 ** 3. Segment leaves:
128 ** TERM/DOCLIST FORMAT:
130 ** Most of each segment leaf is taken up by term/doclist data. The
131 ** general format of term/doclist, starting with the first term
132 ** on the leaf page, is:
134 ** varint : size of first term
135 ** blob: first term data
136 ** doclist: first doclist
138 ** varint: number of bytes in common with previous term
139 ** varint: number of bytes of new term data (nNew)
140 ** blob: nNew bytes of new term data
141 ** doclist: next doclist
146 ** varint: first rowid
147 ** poslist: first poslist
149 ** varint: rowid delta (always > 0)
150 ** poslist: next poslist
155 ** varint: size of poslist in bytes multiplied by 2, not including
156 ** this field. Plus 1 if this entry carries the "delete" flag.
157 ** collist: collist for column 0
160 ** varint: column number (I)
161 ** collist: collist for column I
166 ** varint: first offset + 2
168 ** varint: offset delta + 2
173 ** Each leaf page begins with a 4-byte header containing 2 16-bit
174 ** unsigned integer fields in big-endian format. They are:
176 ** * The byte offset of the first rowid on the page, if it exists
177 ** and occurs before the first term (otherwise 0).
179 ** * The byte offset of the start of the page footer. If the page
180 ** footer is 0 bytes in size, then this field is the same as the
181 ** size of the leaf page in bytes.
183 ** The page footer consists of a single varint for each term located
184 ** on the page. Each varint is the byte offset of the current term
185 ** within the page, delta-compressed against the previous value. In
186 ** other words, the first varint in the footer is the byte offset of
187 ** the first term, the second is the byte offset of the second less that
188 ** of the first, and so on.
190 ** The term/doclist format described above is accurate if the entire
191 ** term/doclist data fits on a single leaf page. If this is not the case,
192 ** the format is changed in two ways:
194 ** + if the first rowid on a page occurs before the first term, it
195 ** is stored as a literal value:
197 ** varint: first rowid
199 ** + the first term on each page is stored in the same way as the
200 ** very first term of the segment:
202 ** varint : size of first term
203 ** blob: first term data
205 ** 5. Segment doclist indexes:
207 ** Doclist indexes are themselves b-trees, however they usually consist of
208 ** a single leaf record only. The format of each doclist index leaf page
211 ** * Flags byte. Bits are:
212 ** 0x01: Clear if leaf is also the root page, otherwise set.
214 ** * Page number of fts index leaf page. As a varint.
216 ** * First rowid on page indicated by previous field. As a varint.
218 ** * A list of varints, one for each subsequent termless page. A
219 ** positive delta if the termless page contains at least one rowid,
220 ** or an 0x00 byte otherwise.
222 ** Internal doclist index nodes are:
224 ** * Flags byte. Bits are:
225 ** 0x01: Clear for root page, otherwise set.
227 ** * Page number of first child page. As a varint.
229 ** * Copy of first rowid on page indicated by previous field. As a varint.
231 ** * A list of delta-encoded varints - the first rowid on each subsequent
234 ** 6. Tombstone Hash Page
236 ** These records are only ever present in contentless_delete=1 tables.
237 ** There are zero or more of these associated with each segment. They
238 ** are used to store the tombstone rowids for rows contained in the
239 ** associated segments.
241 ** The set of nHashPg tombstone hash pages associated with a single
242 ** segment together form a single hash table containing tombstone rowids.
243 ** To find the page of the hash on which a key might be stored:
245 ** iPg = (rowid % nHashPg)
247 ** Then, within page iPg, which has nSlot slots:
249 ** iSlot = (rowid / nHashPg) % nSlot
251 ** Each tombstone hash page begins with an 8 byte header:
253 ** 1-byte: Key-size (the size in bytes of each slot). Either 4 or 8.
254 ** 1-byte: rowid-0-tombstone flag. This flag is only valid on the
255 ** first tombstone hash page for each segment (iPg=0). If set,
256 ** the hash table contains rowid 0. If clear, it does not.
257 ** Rowid 0 is handled specially.
259 ** 4-bytes: Big-endian integer containing number of entries on page.
261 ** Following this are nSlot 4 or 8 byte slots (depending on the key-size
262 ** in the first byte of the page header). The number of slots may be
263 ** determined based on the size of the page record and the key-size:
265 ** nSlot = (nByte - 8) / key-size
269 ** Rowids for the averages and structure records in the %_data table.
271 #define FTS5_AVERAGES_ROWID 1 /* Rowid used for the averages record */
272 #define FTS5_STRUCTURE_ROWID 10 /* The structure record */
275 ** Macros determining the rowids used by segment leaves and dlidx leaves
276 ** and nodes. All nodes and leaves are stored in the %_data table with large
279 ** Each segment has a unique non-zero 16-bit id.
281 ** The rowid for each segment leaf is found by passing the segment id and
282 ** the leaf page number to the FTS5_SEGMENT_ROWID macro. Leaves are numbered
283 ** sequentially starting from 1.
285 #define FTS5_DATA_ID_B 16 /* Max seg id number 65535 */
286 #define FTS5_DATA_DLI_B 1 /* Doclist-index flag (1 bit) */
287 #define FTS5_DATA_HEIGHT_B 5 /* Max dlidx tree height of 32 */
288 #define FTS5_DATA_PAGE_B 31 /* Max page number of 2147483648 */
290 #define fts5_dri(segid, dlidx, height, pgno) ( \
291 ((i64)(segid) << (FTS5_DATA_PAGE_B+FTS5_DATA_HEIGHT_B+FTS5_DATA_DLI_B)) + \
292 ((i64)(dlidx) << (FTS5_DATA_PAGE_B + FTS5_DATA_HEIGHT_B)) + \
293 ((i64)(height) << (FTS5_DATA_PAGE_B)) + \
297 #define FTS5_SEGMENT_ROWID(segid, pgno) fts5_dri(segid, 0, 0, pgno)
298 #define FTS5_DLIDX_ROWID(segid, height, pgno) fts5_dri(segid, 1, height, pgno)
299 #define FTS5_TOMBSTONE_ROWID(segid,ipg) fts5_dri(segid+(1<<16), 0, 0, ipg)
302 int sqlite3Fts5Corrupt() { return SQLITE_CORRUPT_VTAB
; }
307 ** Each time a blob is read from the %_data table, it is padded with this
308 ** many zero bytes. This makes it easier to decode the various record formats
309 ** without overreading if the records are corrupt.
311 #define FTS5_DATA_ZERO_PADDING 8
312 #define FTS5_DATA_PADDING 20
314 typedef struct Fts5Data Fts5Data
;
315 typedef struct Fts5DlidxIter Fts5DlidxIter
;
316 typedef struct Fts5DlidxLvl Fts5DlidxLvl
;
317 typedef struct Fts5DlidxWriter Fts5DlidxWriter
;
318 typedef struct Fts5Iter Fts5Iter
;
319 typedef struct Fts5PageWriter Fts5PageWriter
;
320 typedef struct Fts5SegIter Fts5SegIter
;
321 typedef struct Fts5DoclistIter Fts5DoclistIter
;
322 typedef struct Fts5SegWriter Fts5SegWriter
;
323 typedef struct Fts5Structure Fts5Structure
;
324 typedef struct Fts5StructureLevel Fts5StructureLevel
;
325 typedef struct Fts5StructureSegment Fts5StructureSegment
;
328 u8
*p
; /* Pointer to buffer containing record */
329 int nn
; /* Size of record in bytes */
330 int szLeaf
; /* Size of leaf without page-index */
334 ** One object per %_data table.
336 ** nContentlessDelete:
337 ** The number of contentless delete operations since the most recent
338 ** call to fts5IndexFlush() or fts5IndexDiscardData(). This is tracked
339 ** so that extra auto-merge work can be done by fts5IndexFlush() to
340 ** account for the delete operations.
343 Fts5Config
*pConfig
; /* Virtual table configuration */
344 char *zDataTbl
; /* Name of %_data table */
345 int nWorkUnit
; /* Leaf pages in a "unit" of work */
348 ** Variables related to the accumulation of tokens and doclists within the
349 ** in-memory hash tables before they are flushed to disk.
351 Fts5Hash
*pHash
; /* Hash table for in-memory data */
352 int nPendingData
; /* Current bytes of pending data */
353 i64 iWriteRowid
; /* Rowid for current doc being written */
354 int bDelete
; /* Current write is a delete */
355 int nContentlessDelete
; /* Number of contentless delete ops */
356 int nPendingRow
; /* Number of INSERT in hash table */
359 int rc
; /* Current error code */
361 /* State used by the fts5DataXXX() functions. */
362 sqlite3_blob
*pReader
; /* RO incr-blob open on %_data table */
363 sqlite3_stmt
*pWriter
; /* "INSERT ... %_data VALUES(?,?)" */
364 sqlite3_stmt
*pDeleter
; /* "DELETE FROM %_data ... id>=? AND id<=?" */
365 sqlite3_stmt
*pIdxWriter
; /* "INSERT ... %_idx VALUES(?,?,?,?)" */
366 sqlite3_stmt
*pIdxDeleter
; /* "DELETE FROM %_idx WHERE segid=?" */
367 sqlite3_stmt
*pIdxSelect
;
368 int nRead
; /* Total number of blocks read */
370 sqlite3_stmt
*pDeleteFromIdx
;
372 sqlite3_stmt
*pDataVersion
;
373 i64 iStructVersion
; /* data_version when pStruct read */
374 Fts5Structure
*pStruct
; /* Current db structure (or NULL) */
377 struct Fts5DoclistIter
{
378 u8
*aEof
; /* Pointer to 1 byte past end of doclist */
380 /* Output variables. aPoslist==0 at EOF */
388 ** The contents of the "structure" record for each index are represented
389 ** using an Fts5Structure record in memory. Which uses instances of the
390 ** other Fts5StructureXXX types as components.
393 ** This value is set to non-zero for structure records created for
394 ** contentlessdelete=1 tables only. In that case it represents the
395 ** origin value to apply to the next top-level segment created.
397 struct Fts5StructureSegment
{
398 int iSegid
; /* Segment id */
399 int pgnoFirst
; /* First leaf page number in segment */
400 int pgnoLast
; /* Last leaf page number in segment */
402 /* contentlessdelete=1 tables only: */
405 int nPgTombstone
; /* Number of tombstone hash table pages */
406 u64 nEntryTombstone
; /* Number of tombstone entries that "count" */
407 u64 nEntry
; /* Number of rows in this segment */
409 struct Fts5StructureLevel
{
410 int nMerge
; /* Number of segments in incr-merge */
411 int nSeg
; /* Total number of segments on level */
412 Fts5StructureSegment
*aSeg
; /* Array of segments. aSeg[0] is oldest. */
414 struct Fts5Structure
{
415 int nRef
; /* Object reference count */
416 u64 nWriteCounter
; /* Total leaves written to level 0 */
417 u64 nOriginCntr
; /* Origin value for next top-level segment */
418 int nSegment
; /* Total segments in this structure */
419 int nLevel
; /* Number of levels in this index */
420 Fts5StructureLevel aLevel
[1]; /* Array of nLevel level objects */
424 ** An object of type Fts5SegWriter is used to write to segments.
426 struct Fts5PageWriter
{
427 int pgno
; /* Page number for this page */
428 int iPrevPgidx
; /* Previous value written into pgidx */
429 Fts5Buffer buf
; /* Buffer containing leaf data */
430 Fts5Buffer pgidx
; /* Buffer containing page-index */
431 Fts5Buffer term
; /* Buffer containing previous term on page */
433 struct Fts5DlidxWriter
{
434 int pgno
; /* Page number for this page */
435 int bPrevValid
; /* True if iPrev is valid */
436 i64 iPrev
; /* Previous rowid value written to page */
437 Fts5Buffer buf
; /* Buffer containing page data */
439 struct Fts5SegWriter
{
440 int iSegid
; /* Segid to write to */
441 Fts5PageWriter writer
; /* PageWriter object */
442 i64 iPrevRowid
; /* Previous rowid written to current leaf */
443 u8 bFirstRowidInDoclist
; /* True if next rowid is first in doclist */
444 u8 bFirstRowidInPage
; /* True if next rowid is first in page */
445 /* TODO1: Can use (writer.pgidx.n==0) instead of bFirstTermInPage */
446 u8 bFirstTermInPage
; /* True if next term will be first in leaf */
447 int nLeafWritten
; /* Number of leaf pages written */
448 int nEmpty
; /* Number of contiguous term-less nodes */
450 int nDlidx
; /* Allocated size of aDlidx[] array */
451 Fts5DlidxWriter
*aDlidx
; /* Array of Fts5DlidxWriter objects */
453 /* Values to insert into the %_idx table */
454 Fts5Buffer btterm
; /* Next term to insert into %_idx table */
455 int iBtPage
; /* Page number corresponding to btterm */
458 typedef struct Fts5CResult Fts5CResult
;
460 u16 iFirst
; /* aSeg[] index of firstest iterator */
461 u8 bTermEq
; /* True if the terms are equal */
465 ** Object for iterating through a single segment, visiting each term/rowid
466 ** pair in the segment.
469 ** The segment to iterate through.
472 ** Current leaf page number within segment.
475 ** Byte offset within the current leaf that is the first byte of the
476 ** position list data (one byte passed the position-list size field).
479 ** Buffer containing current leaf page data. Set to NULL at EOF.
481 ** iTermLeafPgno, iTermLeafOffset:
482 ** Leaf page number containing the last term read from the segment. And
483 ** the offset immediately following the term data.
486 ** Mask of FTS5_SEGITER_XXX values. Interpreted as follows:
488 ** FTS5_SEGITER_ONETERM:
489 ** If set, set the iterator to point to EOF after the current doclist
490 ** has been exhausted. Do not proceed to the next term in the segment.
492 ** FTS5_SEGITER_REVERSE:
493 ** This flag is only ever set if FTS5_SEGITER_ONETERM is also set. If
494 ** it is set, iterate through rowid in descending order instead of the
495 ** default ascending order.
497 ** iRowidOffset/nRowidOffset/aRowidOffset:
498 ** These are used if the FTS5_SEGITER_REVERSE flag is set.
500 ** For each rowid on the page corresponding to the current term, the
501 ** corresponding aRowidOffset[] entry is set to the byte offset of the
502 ** start of the "position-list-size" field within the page.
505 ** Index of current term on iTermLeafPgno.
507 ** apTombstone/nTombstone:
508 ** These are used for contentless_delete=1 tables only. When the cursor
509 ** is first allocated, the apTombstone[] array is allocated so that it
510 ** is large enough for all tombstones hash pages associated with the
511 ** segment. The pages themselves are loaded lazily from the database as
512 ** they are required.
515 Fts5StructureSegment
*pSeg
; /* Segment to iterate through */
516 int flags
; /* Mask of configuration flags */
517 int iLeafPgno
; /* Current leaf page number */
518 Fts5Data
*pLeaf
; /* Current leaf data */
519 Fts5Data
*pNextLeaf
; /* Leaf page (iLeafPgno+1) */
520 i64 iLeafOffset
; /* Byte offset within current leaf */
521 Fts5Data
**apTombstone
; /* Array of tombstone pages */
525 void (*xNext
)(Fts5Index
*, Fts5SegIter
*, int*);
527 /* The page and offset from which the current term was read. The offset
528 ** is the offset of the first rowid in the current doclist. */
532 int iPgidxOff
; /* Next offset in pgidx */
535 /* The following are only used if the FTS5_SEGITER_REVERSE flag is set. */
536 int iRowidOffset
; /* Current entry in aRowidOffset[] */
537 int nRowidOffset
; /* Allocated size of aRowidOffset[] array */
538 int *aRowidOffset
; /* Array of offset to rowid fields */
540 Fts5DlidxIter
*pDlidx
; /* If there is a doclist-index */
542 /* Variables populated based on current entry. */
543 Fts5Buffer term
; /* Current term */
544 i64 iRowid
; /* Current rowid */
545 int nPos
; /* Number of bytes in current position list */
546 u8 bDel
; /* True if the delete flag is set */
550 ** Argument is a pointer to an Fts5Data structure that contains a
553 #define ASSERT_SZLEAF_OK(x) assert( \
554 (x)->szLeaf==(x)->nn || (x)->szLeaf==fts5GetU16(&(x)->p[2]) \
557 #define FTS5_SEGITER_ONETERM 0x01
558 #define FTS5_SEGITER_REVERSE 0x02
561 ** Argument is a pointer to an Fts5Data structure that contains a leaf
562 ** page. This macro evaluates to true if the leaf contains no terms, or
563 ** false if it contains at least one term.
565 #define fts5LeafIsTermless(x) ((x)->szLeaf >= (x)->nn)
567 #define fts5LeafTermOff(x, i) (fts5GetU16(&(x)->p[(x)->szLeaf + (i)*2]))
569 #define fts5LeafFirstRowidOff(x) (fts5GetU16((x)->p))
572 ** Object for iterating through the merged results of one or more segments,
573 ** visiting each term/rowid pair in the merged data.
575 ** nSeg is always a power of two greater than or equal to the number of
576 ** segments that this object is merging data from. Both the aSeg[] and
577 ** aFirst[] arrays are sized at nSeg entries. The aSeg[] array is padded
578 ** with zeroed objects - these are handled as if they were iterators opened
579 ** on empty segments.
581 ** The results of comparing segments aSeg[N] and aSeg[N+1], where N is an
582 ** even number, is stored in aFirst[(nSeg+N)/2]. The "result" of the
583 ** comparison in this context is the index of the iterator that currently
584 ** points to the smaller term/rowid combination. Iterators at EOF are
585 ** considered to be greater than all other iterators.
587 ** aFirst[1] contains the index in aSeg[] of the iterator that points to
588 ** the smallest key overall. aFirst[0] is unused.
591 ** Used by sqlite3Fts5IterPoslist() when the poslist needs to be buffered.
592 ** There is no way to tell if this is populated or not.
595 Fts5IndexIter base
; /* Base class containing output vars */
597 Fts5Index
*pIndex
; /* Index that owns this iterator */
598 Fts5Buffer poslist
; /* Buffer containing current poslist */
599 Fts5Colset
*pColset
; /* Restrict matches to these columns */
601 /* Invoked to set output variables. */
602 void (*xSetOutputs
)(Fts5Iter
*, Fts5SegIter
*);
604 int nSeg
; /* Size of aSeg[] array */
605 int bRev
; /* True to iterate in reverse order */
606 u8 bSkipEmpty
; /* True to skip deleted entries */
608 i64 iSwitchRowid
; /* Firstest rowid of other than aFirst[1] */
609 Fts5CResult
*aFirst
; /* Current merge state (see above) */
610 Fts5SegIter aSeg
[1]; /* Array of segment iterators */
615 ** An instance of the following type is used to iterate through the contents
616 ** of a doclist-index record.
619 ** Record containing the doclist-index data.
622 ** Set to true once iterator has reached EOF.
625 ** Set to the current offset within record pData.
627 struct Fts5DlidxLvl
{
628 Fts5Data
*pData
; /* Data for current page of this level */
629 int iOff
; /* Current offset into pData */
630 int bEof
; /* At EOF already */
631 int iFirstOff
; /* Used by reverse iterators */
633 /* Output variables */
634 int iLeafPgno
; /* Page number of current leaf page */
635 i64 iRowid
; /* First rowid on leaf iLeafPgno */
637 struct Fts5DlidxIter
{
640 Fts5DlidxLvl aLvl
[1];
643 static void fts5PutU16(u8
*aOut
, u16 iVal
){
645 aOut
[1] = (iVal
&0xFF);
648 static u16
fts5GetU16(const u8
*aIn
){
649 return ((u16
)aIn
[0] << 8) + aIn
[1];
653 ** The only argument points to a buffer at least 8 bytes in size. This
654 ** function interprets the first 8 bytes of the buffer as a 64-bit big-endian
655 ** unsigned integer and returns the result.
657 static u64
fts5GetU64(u8
*a
){
658 return ((u64
)a
[0] << 56)
669 ** The only argument points to a buffer at least 4 bytes in size. This
670 ** function interprets the first 4 bytes of the buffer as a 32-bit big-endian
671 ** unsigned integer and returns the result.
673 static u32
fts5GetU32(const u8
*a
){
674 return ((u32
)a
[0] << 24)
681 ** Write iVal, formated as a 64-bit big-endian unsigned integer, to the
682 ** buffer indicated by the first argument.
684 static void fts5PutU64(u8
*a
, u64 iVal
){
685 a
[0] = ((iVal
>> 56) & 0xFF);
686 a
[1] = ((iVal
>> 48) & 0xFF);
687 a
[2] = ((iVal
>> 40) & 0xFF);
688 a
[3] = ((iVal
>> 32) & 0xFF);
689 a
[4] = ((iVal
>> 24) & 0xFF);
690 a
[5] = ((iVal
>> 16) & 0xFF);
691 a
[6] = ((iVal
>> 8) & 0xFF);
692 a
[7] = ((iVal
>> 0) & 0xFF);
696 ** Write iVal, formated as a 32-bit big-endian unsigned integer, to the
697 ** buffer indicated by the first argument.
699 static void fts5PutU32(u8
*a
, u32 iVal
){
700 a
[0] = ((iVal
>> 24) & 0xFF);
701 a
[1] = ((iVal
>> 16) & 0xFF);
702 a
[2] = ((iVal
>> 8) & 0xFF);
703 a
[3] = ((iVal
>> 0) & 0xFF);
707 ** Allocate and return a buffer at least nByte bytes in size.
709 ** If an OOM error is encountered, return NULL and set the error code in
710 ** the Fts5Index handle passed as the first argument.
712 static void *fts5IdxMalloc(Fts5Index
*p
, sqlite3_int64 nByte
){
713 return sqlite3Fts5MallocZero(&p
->rc
, nByte
);
717 ** Compare the contents of the pLeft buffer with the pRight/nRight blob.
719 ** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
720 ** +ve if pRight is smaller than pLeft. In other words:
722 ** res = *pLeft - *pRight
725 static int fts5BufferCompareBlob(
726 Fts5Buffer
*pLeft
, /* Left hand side of comparison */
727 const u8
*pRight
, int nRight
/* Right hand side of comparison */
729 int nCmp
= MIN(pLeft
->n
, nRight
);
730 int res
= memcmp(pLeft
->p
, pRight
, nCmp
);
731 return (res
==0 ? (pLeft
->n
- nRight
) : res
);
736 ** Compare the contents of the two buffers using memcmp(). If one buffer
737 ** is a prefix of the other, it is considered the lesser.
739 ** Return -ve if pLeft is smaller than pRight, 0 if they are equal or
740 ** +ve if pRight is smaller than pLeft. In other words:
742 ** res = *pLeft - *pRight
744 static int fts5BufferCompare(Fts5Buffer
*pLeft
, Fts5Buffer
*pRight
){
746 nCmp
= MIN(pLeft
->n
, pRight
->n
);
747 assert( nCmp
<=0 || pLeft
->p
!=0 );
748 assert( nCmp
<=0 || pRight
->p
!=0 );
749 res
= fts5Memcmp(pLeft
->p
, pRight
->p
, nCmp
);
750 return (res
==0 ? (pLeft
->n
- pRight
->n
) : res
);
753 static int fts5LeafFirstTermOff(Fts5Data
*pLeaf
){
755 fts5GetVarint32(&pLeaf
->p
[pLeaf
->szLeaf
], ret
);
760 ** Close the read-only blob handle, if it is open.
762 void sqlite3Fts5IndexCloseReader(Fts5Index
*p
){
764 sqlite3_blob
*pReader
= p
->pReader
;
766 sqlite3_blob_close(pReader
);
771 ** Retrieve a record from the %_data table.
773 ** If an error occurs, NULL is returned and an error left in the
776 static Fts5Data
*fts5DataRead(Fts5Index
*p
, i64 iRowid
){
778 if( p
->rc
==SQLITE_OK
){
782 /* This call may return SQLITE_ABORT if there has been a savepoint
783 ** rollback since it was last used. In this case a new blob handle
785 sqlite3_blob
*pBlob
= p
->pReader
;
787 rc
= sqlite3_blob_reopen(pBlob
, iRowid
);
788 assert( p
->pReader
==0 );
791 sqlite3Fts5IndexCloseReader(p
);
793 if( rc
==SQLITE_ABORT
) rc
= SQLITE_OK
;
796 /* If the blob handle is not open at this point, open it and seek
797 ** to the requested entry. */
798 if( p
->pReader
==0 && rc
==SQLITE_OK
){
799 Fts5Config
*pConfig
= p
->pConfig
;
800 rc
= sqlite3_blob_open(pConfig
->db
,
801 pConfig
->zDb
, p
->zDataTbl
, "block", iRowid
, 0, &p
->pReader
805 /* If either of the sqlite3_blob_open() or sqlite3_blob_reopen() calls
806 ** above returned SQLITE_ERROR, return SQLITE_CORRUPT_VTAB instead.
807 ** All the reasons those functions might return SQLITE_ERROR - missing
808 ** table, missing row, non-blob/text in block column - indicate
809 ** backing store corruption. */
810 if( rc
==SQLITE_ERROR
) rc
= FTS5_CORRUPT
;
813 u8
*aOut
= 0; /* Read blob data into this buffer */
814 int nByte
= sqlite3_blob_bytes(p
->pReader
);
815 sqlite3_int64 nAlloc
= sizeof(Fts5Data
) + nByte
+ FTS5_DATA_PADDING
;
816 pRet
= (Fts5Data
*)sqlite3_malloc64(nAlloc
);
819 aOut
= pRet
->p
= (u8
*)&pRet
[1];
825 rc
= sqlite3_blob_read(p
->pReader
, aOut
, nByte
, 0);
831 /* TODO1: Fix this */
832 pRet
->p
[nByte
] = 0x00;
833 pRet
->p
[nByte
+1] = 0x00;
834 pRet
->szLeaf
= fts5GetU16(&pRet
->p
[2]);
841 assert( (pRet
==0)==(p
->rc
!=SQLITE_OK
) );
847 ** Release a reference to data record returned by an earlier call to
850 static void fts5DataRelease(Fts5Data
*pData
){
854 static Fts5Data
*fts5LeafRead(Fts5Index
*p
, i64 iRowid
){
855 Fts5Data
*pRet
= fts5DataRead(p
, iRowid
);
857 if( pRet
->nn
<4 || pRet
->szLeaf
>pRet
->nn
){
858 p
->rc
= FTS5_CORRUPT
;
859 fts5DataRelease(pRet
);
866 static int fts5IndexPrepareStmt(
868 sqlite3_stmt
**ppStmt
,
871 if( p
->rc
==SQLITE_OK
){
873 p
->rc
= sqlite3_prepare_v3(p
->pConfig
->db
, zSql
, -1,
874 SQLITE_PREPARE_PERSISTENT
|SQLITE_PREPARE_NO_VTAB
,
877 p
->rc
= SQLITE_NOMEM
;
886 ** INSERT OR REPLACE a record into the %_data table.
888 static void fts5DataWrite(Fts5Index
*p
, i64 iRowid
, const u8
*pData
, int nData
){
889 if( p
->rc
!=SQLITE_OK
) return;
892 Fts5Config
*pConfig
= p
->pConfig
;
893 fts5IndexPrepareStmt(p
, &p
->pWriter
, sqlite3_mprintf(
894 "REPLACE INTO '%q'.'%q_data'(id, block) VALUES(?,?)",
895 pConfig
->zDb
, pConfig
->zName
900 sqlite3_bind_int64(p
->pWriter
, 1, iRowid
);
901 sqlite3_bind_blob(p
->pWriter
, 2, pData
, nData
, SQLITE_STATIC
);
902 sqlite3_step(p
->pWriter
);
903 p
->rc
= sqlite3_reset(p
->pWriter
);
904 sqlite3_bind_null(p
->pWriter
, 2);
908 ** Execute the following SQL:
910 ** DELETE FROM %_data WHERE id BETWEEN $iFirst AND $iLast
912 static void fts5DataDelete(Fts5Index
*p
, i64 iFirst
, i64 iLast
){
913 if( p
->rc
!=SQLITE_OK
) return;
915 if( p
->pDeleter
==0 ){
916 Fts5Config
*pConfig
= p
->pConfig
;
917 char *zSql
= sqlite3_mprintf(
918 "DELETE FROM '%q'.'%q_data' WHERE id>=? AND id<=?",
919 pConfig
->zDb
, pConfig
->zName
921 if( fts5IndexPrepareStmt(p
, &p
->pDeleter
, zSql
) ) return;
924 sqlite3_bind_int64(p
->pDeleter
, 1, iFirst
);
925 sqlite3_bind_int64(p
->pDeleter
, 2, iLast
);
926 sqlite3_step(p
->pDeleter
);
927 p
->rc
= sqlite3_reset(p
->pDeleter
);
931 ** Remove all records associated with segment iSegid.
933 static void fts5DataRemoveSegment(Fts5Index
*p
, Fts5StructureSegment
*pSeg
){
934 int iSegid
= pSeg
->iSegid
;
935 i64 iFirst
= FTS5_SEGMENT_ROWID(iSegid
, 0);
936 i64 iLast
= FTS5_SEGMENT_ROWID(iSegid
+1, 0)-1;
937 fts5DataDelete(p
, iFirst
, iLast
);
939 if( pSeg
->nPgTombstone
){
940 i64 iTomb1
= FTS5_TOMBSTONE_ROWID(iSegid
, 0);
941 i64 iTomb2
= FTS5_TOMBSTONE_ROWID(iSegid
, pSeg
->nPgTombstone
-1);
942 fts5DataDelete(p
, iTomb1
, iTomb2
);
944 if( p
->pIdxDeleter
==0 ){
945 Fts5Config
*pConfig
= p
->pConfig
;
946 fts5IndexPrepareStmt(p
, &p
->pIdxDeleter
, sqlite3_mprintf(
947 "DELETE FROM '%q'.'%q_idx' WHERE segid=?",
948 pConfig
->zDb
, pConfig
->zName
951 if( p
->rc
==SQLITE_OK
){
952 sqlite3_bind_int(p
->pIdxDeleter
, 1, iSegid
);
953 sqlite3_step(p
->pIdxDeleter
);
954 p
->rc
= sqlite3_reset(p
->pIdxDeleter
);
959 ** Release a reference to an Fts5Structure object returned by an earlier
960 ** call to fts5StructureRead() or fts5StructureDecode().
962 static void fts5StructureRelease(Fts5Structure
*pStruct
){
963 if( pStruct
&& 0>=(--pStruct
->nRef
) ){
965 assert( pStruct
->nRef
==0 );
966 for(i
=0; i
<pStruct
->nLevel
; i
++){
967 sqlite3_free(pStruct
->aLevel
[i
].aSeg
);
969 sqlite3_free(pStruct
);
973 static void fts5StructureRef(Fts5Structure
*pStruct
){
977 void *sqlite3Fts5StructureRef(Fts5Index
*p
){
978 fts5StructureRef(p
->pStruct
);
979 return (void*)p
->pStruct
;
981 void sqlite3Fts5StructureRelease(void *p
){
983 fts5StructureRelease((Fts5Structure
*)p
);
986 int sqlite3Fts5StructureTest(Fts5Index
*p
, void *pStruct
){
987 if( p
->pStruct
!=(Fts5Structure
*)pStruct
){
994 ** Ensure that structure object (*pp) is writable.
996 ** This function is a no-op if (*pRc) is not SQLITE_OK when it is called. If
997 ** an error occurs, (*pRc) is set to an SQLite error code before returning.
999 static void fts5StructureMakeWritable(int *pRc
, Fts5Structure
**pp
){
1000 Fts5Structure
*p
= *pp
;
1001 if( *pRc
==SQLITE_OK
&& p
->nRef
>1 ){
1002 i64 nByte
= sizeof(Fts5Structure
)+(p
->nLevel
-1)*sizeof(Fts5StructureLevel
);
1003 Fts5Structure
*pNew
;
1004 pNew
= (Fts5Structure
*)sqlite3Fts5MallocZero(pRc
, nByte
);
1007 memcpy(pNew
, p
, nByte
);
1008 for(i
=0; i
<p
->nLevel
; i
++) pNew
->aLevel
[i
].aSeg
= 0;
1009 for(i
=0; i
<p
->nLevel
; i
++){
1010 Fts5StructureLevel
*pLvl
= &pNew
->aLevel
[i
];
1011 nByte
= sizeof(Fts5StructureSegment
) * pNew
->aLevel
[i
].nSeg
;
1012 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(pRc
, nByte
);
1013 if( pLvl
->aSeg
==0 ){
1014 for(i
=0; i
<p
->nLevel
; i
++){
1015 sqlite3_free(pNew
->aLevel
[i
].aSeg
);
1020 memcpy(pLvl
->aSeg
, p
->aLevel
[i
].aSeg
, nByte
);
1030 ** Deserialize and return the structure record currently stored in serialized
1031 ** form within buffer pData/nData.
1033 ** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
1034 ** are over-allocated by one slot. This allows the structure contents
1035 ** to be more easily edited.
1037 ** If an error occurs, *ppOut is set to NULL and an SQLite error code
1038 ** returned. Otherwise, *ppOut is set to point to the new object and
1039 ** SQLITE_OK returned.
1041 static int fts5StructureDecode(
1042 const u8
*pData
, /* Buffer containing serialized structure */
1043 int nData
, /* Size of buffer pData in bytes */
1044 int *piCookie
, /* Configuration cookie value */
1045 Fts5Structure
**ppOut
/* OUT: Deserialized object */
1052 sqlite3_int64 nByte
; /* Bytes of space to allocate at pRet */
1053 Fts5Structure
*pRet
= 0; /* Structure object to return */
1054 int bStructureV2
= 0; /* True for FTS5_STRUCTURE_V2 */
1055 u64 nOriginCntr
= 0; /* Largest origin value seen so far */
1057 /* Grab the cookie value */
1058 if( piCookie
) *piCookie
= sqlite3Fts5Get32(pData
);
1061 /* Check if this is a V2 structure record. Set bStructureV2 if it is. */
1062 if( 0==memcmp(&pData
[i
], FTS5_STRUCTURE_V2
, 4) ){
1067 /* Read the total number of levels and segments from the start of the
1068 ** structure record. */
1069 i
+= fts5GetVarint32(&pData
[i
], nLevel
);
1070 i
+= fts5GetVarint32(&pData
[i
], nSegment
);
1071 if( nLevel
>FTS5_MAX_SEGMENT
|| nLevel
<0
1072 || nSegment
>FTS5_MAX_SEGMENT
|| nSegment
<0
1074 return FTS5_CORRUPT
;
1077 sizeof(Fts5Structure
) + /* Main structure */
1078 sizeof(Fts5StructureLevel
) * (nLevel
-1) /* aLevel[] array */
1080 pRet
= (Fts5Structure
*)sqlite3Fts5MallocZero(&rc
, nByte
);
1084 pRet
->nLevel
= nLevel
;
1085 pRet
->nSegment
= nSegment
;
1086 i
+= sqlite3Fts5GetVarint(&pData
[i
], &pRet
->nWriteCounter
);
1088 for(iLvl
=0; rc
==SQLITE_OK
&& iLvl
<nLevel
; iLvl
++){
1089 Fts5StructureLevel
*pLvl
= &pRet
->aLevel
[iLvl
];
1096 i
+= fts5GetVarint32(&pData
[i
], pLvl
->nMerge
);
1097 i
+= fts5GetVarint32(&pData
[i
], nTotal
);
1098 if( nTotal
<pLvl
->nMerge
) rc
= FTS5_CORRUPT
;
1099 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(&rc
,
1100 nTotal
* sizeof(Fts5StructureSegment
)
1105 if( rc
==SQLITE_OK
){
1106 pLvl
->nSeg
= nTotal
;
1107 for(iSeg
=0; iSeg
<nTotal
; iSeg
++){
1108 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
1114 i
+= fts5GetVarint32(&pData
[i
], pSeg
->iSegid
);
1115 i
+= fts5GetVarint32(&pData
[i
], pSeg
->pgnoFirst
);
1116 i
+= fts5GetVarint32(&pData
[i
], pSeg
->pgnoLast
);
1118 i
+= fts5GetVarint(&pData
[i
], &pSeg
->iOrigin1
);
1119 i
+= fts5GetVarint(&pData
[i
], &pSeg
->iOrigin2
);
1120 i
+= fts5GetVarint32(&pData
[i
], pSeg
->nPgTombstone
);
1121 i
+= fts5GetVarint(&pData
[i
], &pSeg
->nEntryTombstone
);
1122 i
+= fts5GetVarint(&pData
[i
], &pSeg
->nEntry
);
1123 nOriginCntr
= MAX(nOriginCntr
, pSeg
->iOrigin2
);
1125 if( pSeg
->pgnoLast
<pSeg
->pgnoFirst
){
1130 if( iLvl
>0 && pLvl
[-1].nMerge
&& nTotal
==0 ) rc
= FTS5_CORRUPT
;
1131 if( iLvl
==nLevel
-1 && pLvl
->nMerge
) rc
= FTS5_CORRUPT
;
1134 if( nSegment
!=0 && rc
==SQLITE_OK
) rc
= FTS5_CORRUPT
;
1136 pRet
->nOriginCntr
= nOriginCntr
+1;
1139 if( rc
!=SQLITE_OK
){
1140 fts5StructureRelease(pRet
);
1150 ** Add a level to the Fts5Structure.aLevel[] array of structure object
1153 static void fts5StructureAddLevel(int *pRc
, Fts5Structure
**ppStruct
){
1154 fts5StructureMakeWritable(pRc
, ppStruct
);
1155 assert( (ppStruct
!=0 && (*ppStruct
)!=0) || (*pRc
)!=SQLITE_OK
);
1156 if( *pRc
==SQLITE_OK
){
1157 Fts5Structure
*pStruct
= *ppStruct
;
1158 int nLevel
= pStruct
->nLevel
;
1159 sqlite3_int64 nByte
= (
1160 sizeof(Fts5Structure
) + /* Main structure */
1161 sizeof(Fts5StructureLevel
) * (nLevel
+1) /* aLevel[] array */
1164 pStruct
= sqlite3_realloc64(pStruct
, nByte
);
1166 memset(&pStruct
->aLevel
[nLevel
], 0, sizeof(Fts5StructureLevel
));
1168 *ppStruct
= pStruct
;
1170 *pRc
= SQLITE_NOMEM
;
1176 ** Extend level iLvl so that there is room for at least nExtra more
1179 static void fts5StructureExtendLevel(
1181 Fts5Structure
*pStruct
,
1186 if( *pRc
==SQLITE_OK
){
1187 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
1188 Fts5StructureSegment
*aNew
;
1189 sqlite3_int64 nByte
;
1191 nByte
= (pLvl
->nSeg
+ nExtra
) * sizeof(Fts5StructureSegment
);
1192 aNew
= sqlite3_realloc64(pLvl
->aSeg
, nByte
);
1195 memset(&aNew
[pLvl
->nSeg
], 0, sizeof(Fts5StructureSegment
) * nExtra
);
1197 int nMove
= pLvl
->nSeg
* sizeof(Fts5StructureSegment
);
1198 memmove(&aNew
[nExtra
], aNew
, nMove
);
1199 memset(aNew
, 0, sizeof(Fts5StructureSegment
) * nExtra
);
1203 *pRc
= SQLITE_NOMEM
;
1208 static Fts5Structure
*fts5StructureReadUncached(Fts5Index
*p
){
1209 Fts5Structure
*pRet
= 0;
1210 Fts5Config
*pConfig
= p
->pConfig
;
1211 int iCookie
; /* Configuration cookie */
1214 pData
= fts5DataRead(p
, FTS5_STRUCTURE_ROWID
);
1215 if( p
->rc
==SQLITE_OK
){
1216 /* TODO: Do we need this if the leaf-index is appended? Probably... */
1217 memset(&pData
->p
[pData
->nn
], 0, FTS5_DATA_PADDING
);
1218 p
->rc
= fts5StructureDecode(pData
->p
, pData
->nn
, &iCookie
, &pRet
);
1219 if( p
->rc
==SQLITE_OK
&& (pConfig
->pgsz
==0 || pConfig
->iCookie
!=iCookie
) ){
1220 p
->rc
= sqlite3Fts5ConfigLoad(pConfig
, iCookie
);
1222 fts5DataRelease(pData
);
1223 if( p
->rc
!=SQLITE_OK
){
1224 fts5StructureRelease(pRet
);
1232 static i64
fts5IndexDataVersion(Fts5Index
*p
){
1235 if( p
->rc
==SQLITE_OK
){
1236 if( p
->pDataVersion
==0 ){
1237 p
->rc
= fts5IndexPrepareStmt(p
, &p
->pDataVersion
,
1238 sqlite3_mprintf("PRAGMA %Q.data_version", p
->pConfig
->zDb
)
1240 if( p
->rc
) return 0;
1243 if( SQLITE_ROW
==sqlite3_step(p
->pDataVersion
) ){
1244 iVersion
= sqlite3_column_int64(p
->pDataVersion
, 0);
1246 p
->rc
= sqlite3_reset(p
->pDataVersion
);
1253 ** Read, deserialize and return the structure record.
1255 ** The Fts5Structure.aLevel[] and each Fts5StructureLevel.aSeg[] array
1256 ** are over-allocated as described for function fts5StructureDecode()
1259 ** If an error occurs, NULL is returned and an error code left in the
1260 ** Fts5Index handle. If an error has already occurred when this function
1261 ** is called, it is a no-op.
1263 static Fts5Structure
*fts5StructureRead(Fts5Index
*p
){
1265 if( p
->pStruct
==0 ){
1266 p
->iStructVersion
= fts5IndexDataVersion(p
);
1267 if( p
->rc
==SQLITE_OK
){
1268 p
->pStruct
= fts5StructureReadUncached(p
);
1274 Fts5Structure
*pTest
= fts5StructureReadUncached(p
);
1277 assert_nc( p
->pStruct
->nSegment
==pTest
->nSegment
);
1278 assert_nc( p
->pStruct
->nLevel
==pTest
->nLevel
);
1279 for(i
=0; i
<pTest
->nLevel
; i
++){
1280 assert_nc( p
->pStruct
->aLevel
[i
].nMerge
==pTest
->aLevel
[i
].nMerge
);
1281 assert_nc( p
->pStruct
->aLevel
[i
].nSeg
==pTest
->aLevel
[i
].nSeg
);
1282 for(j
=0; j
<pTest
->aLevel
[i
].nSeg
; j
++){
1283 Fts5StructureSegment
*p1
= &pTest
->aLevel
[i
].aSeg
[j
];
1284 Fts5StructureSegment
*p2
= &p
->pStruct
->aLevel
[i
].aSeg
[j
];
1285 assert_nc( p1
->iSegid
==p2
->iSegid
);
1286 assert_nc( p1
->pgnoFirst
==p2
->pgnoFirst
);
1287 assert_nc( p1
->pgnoLast
==p2
->pgnoLast
);
1290 fts5StructureRelease(pTest
);
1295 if( p
->rc
!=SQLITE_OK
) return 0;
1296 assert( p
->iStructVersion
!=0 );
1297 assert( p
->pStruct
!=0 );
1298 fts5StructureRef(p
->pStruct
);
1302 static void fts5StructureInvalidate(Fts5Index
*p
){
1304 fts5StructureRelease(p
->pStruct
);
1310 ** Return the total number of segments in index structure pStruct. This
1311 ** function is only ever used as part of assert() conditions.
1314 static int fts5StructureCountSegments(Fts5Structure
*pStruct
){
1315 int nSegment
= 0; /* Total number of segments */
1317 int iLvl
; /* Used to iterate through levels */
1318 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
1319 nSegment
+= pStruct
->aLevel
[iLvl
].nSeg
;
1327 #define fts5BufferSafeAppendBlob(pBuf, pBlob, nBlob) { \
1328 assert( (pBuf)->nSpace>=((pBuf)->n+nBlob) ); \
1329 memcpy(&(pBuf)->p[(pBuf)->n], pBlob, nBlob); \
1330 (pBuf)->n += nBlob; \
1333 #define fts5BufferSafeAppendVarint(pBuf, iVal) { \
1334 (pBuf)->n += sqlite3Fts5PutVarint(&(pBuf)->p[(pBuf)->n], (iVal)); \
1335 assert( (pBuf)->nSpace>=(pBuf)->n ); \
1340 ** Serialize and store the "structure" record.
1342 ** If an error occurs, leave an error code in the Fts5Index object. If an
1343 ** error has already occurred, this function is a no-op.
1345 static void fts5StructureWrite(Fts5Index
*p
, Fts5Structure
*pStruct
){
1346 if( p
->rc
==SQLITE_OK
){
1347 Fts5Buffer buf
; /* Buffer to serialize record into */
1348 int iLvl
; /* Used to iterate through levels */
1349 int iCookie
; /* Cookie value to store */
1350 int nHdr
= (pStruct
->nOriginCntr
>0 ? (4+4+9+9+9) : (4+9+9));
1352 assert( pStruct
->nSegment
==fts5StructureCountSegments(pStruct
) );
1353 memset(&buf
, 0, sizeof(Fts5Buffer
));
1355 /* Append the current configuration cookie */
1356 iCookie
= p
->pConfig
->iCookie
;
1357 if( iCookie
<0 ) iCookie
= 0;
1359 if( 0==sqlite3Fts5BufferSize(&p
->rc
, &buf
, nHdr
) ){
1360 sqlite3Fts5Put32(buf
.p
, iCookie
);
1362 if( pStruct
->nOriginCntr
>0 ){
1363 fts5BufferSafeAppendBlob(&buf
, FTS5_STRUCTURE_V2
, 4);
1365 fts5BufferSafeAppendVarint(&buf
, pStruct
->nLevel
);
1366 fts5BufferSafeAppendVarint(&buf
, pStruct
->nSegment
);
1367 fts5BufferSafeAppendVarint(&buf
, (i64
)pStruct
->nWriteCounter
);
1370 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
1371 int iSeg
; /* Used to iterate through segments */
1372 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
1373 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->nMerge
);
1374 fts5BufferAppendVarint(&p
->rc
, &buf
, pLvl
->nSeg
);
1375 assert( pLvl
->nMerge
<=pLvl
->nSeg
);
1377 for(iSeg
=0; iSeg
<pLvl
->nSeg
; iSeg
++){
1378 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
1379 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->iSegid
);
1380 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->pgnoFirst
);
1381 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->pgnoLast
);
1382 if( pStruct
->nOriginCntr
>0 ){
1383 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->iOrigin1
);
1384 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->iOrigin2
);
1385 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->nPgTombstone
);
1386 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->nEntryTombstone
);
1387 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->nEntry
);
1392 fts5DataWrite(p
, FTS5_STRUCTURE_ROWID
, buf
.p
, buf
.n
);
1393 fts5BufferFree(&buf
);
1398 static void fts5DebugStructure(int*,Fts5Buffer
*,Fts5Structure
*);
1399 static void fts5PrintStructure(const char *zCaption
, Fts5Structure
*pStruct
){
1402 memset(&buf
, 0, sizeof(buf
));
1403 fts5DebugStructure(&rc
, &buf
, pStruct
);
1404 fprintf(stdout
, "%s: %s\n", zCaption
, buf
.p
);
1406 fts5BufferFree(&buf
);
1409 # define fts5PrintStructure(x,y)
1412 static int fts5SegmentSize(Fts5StructureSegment
*pSeg
){
1413 return 1 + pSeg
->pgnoLast
- pSeg
->pgnoFirst
;
1417 ** Return a copy of index structure pStruct. Except, promote as many
1418 ** segments as possible to level iPromote. If an OOM occurs, NULL is
1421 static void fts5StructurePromoteTo(
1425 Fts5Structure
*pStruct
1428 Fts5StructureLevel
*pOut
= &pStruct
->aLevel
[iPromote
];
1430 if( pOut
->nMerge
==0 ){
1431 for(il
=iPromote
+1; il
<pStruct
->nLevel
; il
++){
1432 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[il
];
1433 if( pLvl
->nMerge
) return;
1434 for(is
=pLvl
->nSeg
-1; is
>=0; is
--){
1435 int sz
= fts5SegmentSize(&pLvl
->aSeg
[is
]);
1436 if( sz
>szPromote
) return;
1437 fts5StructureExtendLevel(&p
->rc
, pStruct
, iPromote
, 1, 1);
1439 memcpy(pOut
->aSeg
, &pLvl
->aSeg
[is
], sizeof(Fts5StructureSegment
));
1448 ** A new segment has just been written to level iLvl of index structure
1449 ** pStruct. This function determines if any segments should be promoted
1450 ** as a result. Segments are promoted in two scenarios:
1452 ** a) If the segment just written is smaller than one or more segments
1453 ** within the previous populated level, it is promoted to the previous
1456 ** b) If the segment just written is larger than the newest segment on
1457 ** the next populated level, then that segment, and any other adjacent
1458 ** segments that are also smaller than the one just written, are
1461 ** If one or more segments are promoted, the structure object is updated
1464 static void fts5StructurePromote(
1465 Fts5Index
*p
, /* FTS5 backend object */
1466 int iLvl
, /* Index level just updated */
1467 Fts5Structure
*pStruct
/* Index structure */
1469 if( p
->rc
==SQLITE_OK
){
1472 int szPromote
= 0; /* Promote anything this size or smaller */
1473 Fts5StructureSegment
*pSeg
; /* Segment just written */
1474 int szSeg
; /* Size of segment just written */
1475 int nSeg
= pStruct
->aLevel
[iLvl
].nSeg
;
1477 if( nSeg
==0 ) return;
1478 pSeg
= &pStruct
->aLevel
[iLvl
].aSeg
[pStruct
->aLevel
[iLvl
].nSeg
-1];
1479 szSeg
= (1 + pSeg
->pgnoLast
- pSeg
->pgnoFirst
);
1481 /* Check for condition (a) */
1482 for(iTst
=iLvl
-1; iTst
>=0 && pStruct
->aLevel
[iTst
].nSeg
==0; iTst
--);
1486 Fts5StructureLevel
*pTst
= &pStruct
->aLevel
[iTst
];
1487 assert( pTst
->nMerge
==0 );
1488 for(i
=0; i
<pTst
->nSeg
; i
++){
1489 int sz
= pTst
->aSeg
[i
].pgnoLast
- pTst
->aSeg
[i
].pgnoFirst
+ 1;
1490 if( sz
>szMax
) szMax
= sz
;
1493 /* Condition (a) is true. Promote the newest segment on level
1494 ** iLvl to level iTst. */
1500 /* If condition (a) is not met, assume (b) is true. StructurePromoteTo()
1501 ** is a no-op if it is not. */
1506 fts5StructurePromoteTo(p
, iPromote
, szPromote
, pStruct
);
1512 ** Advance the iterator passed as the only argument. If the end of the
1513 ** doclist-index page is reached, return non-zero.
1515 static int fts5DlidxLvlNext(Fts5DlidxLvl
*pLvl
){
1516 Fts5Data
*pData
= pLvl
->pData
;
1518 if( pLvl
->iOff
==0 ){
1519 assert( pLvl
->bEof
==0 );
1521 pLvl
->iOff
+= fts5GetVarint32(&pData
->p
[1], pLvl
->iLeafPgno
);
1522 pLvl
->iOff
+= fts5GetVarint(&pData
->p
[pLvl
->iOff
], (u64
*)&pLvl
->iRowid
);
1523 pLvl
->iFirstOff
= pLvl
->iOff
;
1526 for(iOff
=pLvl
->iOff
; iOff
<pData
->nn
; iOff
++){
1527 if( pData
->p
[iOff
] ) break;
1530 if( iOff
<pData
->nn
){
1532 pLvl
->iLeafPgno
+= (iOff
- pLvl
->iOff
) + 1;
1533 iOff
+= fts5GetVarint(&pData
->p
[iOff
], (u64
*)&iVal
);
1534 pLvl
->iRowid
+= iVal
;
1545 ** Advance the iterator passed as the only argument.
1547 static int fts5DlidxIterNextR(Fts5Index
*p
, Fts5DlidxIter
*pIter
, int iLvl
){
1548 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[iLvl
];
1550 assert( iLvl
<pIter
->nLvl
);
1551 if( fts5DlidxLvlNext(pLvl
) ){
1552 if( (iLvl
+1) < pIter
->nLvl
){
1553 fts5DlidxIterNextR(p
, pIter
, iLvl
+1);
1554 if( pLvl
[1].bEof
==0 ){
1555 fts5DataRelease(pLvl
->pData
);
1556 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1557 pLvl
->pData
= fts5DataRead(p
,
1558 FTS5_DLIDX_ROWID(pIter
->iSegid
, iLvl
, pLvl
[1].iLeafPgno
)
1560 if( pLvl
->pData
) fts5DlidxLvlNext(pLvl
);
1565 return pIter
->aLvl
[0].bEof
;
1567 static int fts5DlidxIterNext(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1568 return fts5DlidxIterNextR(p
, pIter
, 0);
1572 ** The iterator passed as the first argument has the following fields set
1573 ** as follows. This function sets up the rest of the iterator so that it
1574 ** points to the first rowid in the doclist-index.
1577 ** pointer to doclist-index record,
1579 ** When this function is called pIter->iLeafPgno is the page number the
1580 ** doclist is associated with (the one featuring the term).
1582 static int fts5DlidxIterFirst(Fts5DlidxIter
*pIter
){
1584 for(i
=0; i
<pIter
->nLvl
; i
++){
1585 fts5DlidxLvlNext(&pIter
->aLvl
[i
]);
1587 return pIter
->aLvl
[0].bEof
;
1591 static int fts5DlidxIterEof(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1592 return p
->rc
!=SQLITE_OK
|| pIter
->aLvl
[0].bEof
;
1595 static void fts5DlidxIterLast(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1598 /* Advance each level to the last entry on the last page */
1599 for(i
=pIter
->nLvl
-1; p
->rc
==SQLITE_OK
&& i
>=0; i
--){
1600 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[i
];
1601 while( fts5DlidxLvlNext(pLvl
)==0 );
1605 Fts5DlidxLvl
*pChild
= &pLvl
[-1];
1606 fts5DataRelease(pChild
->pData
);
1607 memset(pChild
, 0, sizeof(Fts5DlidxLvl
));
1608 pChild
->pData
= fts5DataRead(p
,
1609 FTS5_DLIDX_ROWID(pIter
->iSegid
, i
-1, pLvl
->iLeafPgno
)
1616 ** Move the iterator passed as the only argument to the previous entry.
1618 static int fts5DlidxLvlPrev(Fts5DlidxLvl
*pLvl
){
1619 int iOff
= pLvl
->iOff
;
1621 assert( pLvl
->bEof
==0 );
1622 if( iOff
<=pLvl
->iFirstOff
){
1625 u8
*a
= pLvl
->pData
->p
;
1628 fts5DlidxLvlNext(pLvl
);
1631 int ii
= pLvl
->iOff
;
1638 ii
+= sqlite3Fts5GetVarint(&a
[ii
], &delta
);
1640 if( ii
>=iOff
) break;
1641 pLvl
->iLeafPgno
+= nZero
+1;
1642 pLvl
->iRowid
+= delta
;
1650 static int fts5DlidxIterPrevR(Fts5Index
*p
, Fts5DlidxIter
*pIter
, int iLvl
){
1651 Fts5DlidxLvl
*pLvl
= &pIter
->aLvl
[iLvl
];
1653 assert( iLvl
<pIter
->nLvl
);
1654 if( fts5DlidxLvlPrev(pLvl
) ){
1655 if( (iLvl
+1) < pIter
->nLvl
){
1656 fts5DlidxIterPrevR(p
, pIter
, iLvl
+1);
1657 if( pLvl
[1].bEof
==0 ){
1658 fts5DataRelease(pLvl
->pData
);
1659 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1660 pLvl
->pData
= fts5DataRead(p
,
1661 FTS5_DLIDX_ROWID(pIter
->iSegid
, iLvl
, pLvl
[1].iLeafPgno
)
1664 while( fts5DlidxLvlNext(pLvl
)==0 );
1671 return pIter
->aLvl
[0].bEof
;
1673 static int fts5DlidxIterPrev(Fts5Index
*p
, Fts5DlidxIter
*pIter
){
1674 return fts5DlidxIterPrevR(p
, pIter
, 0);
1678 ** Free a doclist-index iterator object allocated by fts5DlidxIterInit().
1680 static void fts5DlidxIterFree(Fts5DlidxIter
*pIter
){
1683 for(i
=0; i
<pIter
->nLvl
; i
++){
1684 fts5DataRelease(pIter
->aLvl
[i
].pData
);
1686 sqlite3_free(pIter
);
1690 static Fts5DlidxIter
*fts5DlidxIterInit(
1691 Fts5Index
*p
, /* Fts5 Backend to iterate within */
1692 int bRev
, /* True for ORDER BY ASC */
1693 int iSegid
, /* Segment id */
1694 int iLeafPg
/* Leaf page number to load dlidx for */
1696 Fts5DlidxIter
*pIter
= 0;
1700 for(i
=0; p
->rc
==SQLITE_OK
&& bDone
==0; i
++){
1701 sqlite3_int64 nByte
= sizeof(Fts5DlidxIter
) + i
* sizeof(Fts5DlidxLvl
);
1702 Fts5DlidxIter
*pNew
;
1704 pNew
= (Fts5DlidxIter
*)sqlite3_realloc64(pIter
, nByte
);
1706 p
->rc
= SQLITE_NOMEM
;
1708 i64 iRowid
= FTS5_DLIDX_ROWID(iSegid
, i
, iLeafPg
);
1709 Fts5DlidxLvl
*pLvl
= &pNew
->aLvl
[i
];
1711 memset(pLvl
, 0, sizeof(Fts5DlidxLvl
));
1712 pLvl
->pData
= fts5DataRead(p
, iRowid
);
1713 if( pLvl
->pData
&& (pLvl
->pData
->p
[0] & 0x0001)==0 ){
1720 if( p
->rc
==SQLITE_OK
){
1721 pIter
->iSegid
= iSegid
;
1723 fts5DlidxIterFirst(pIter
);
1725 fts5DlidxIterLast(p
, pIter
);
1729 if( p
->rc
!=SQLITE_OK
){
1730 fts5DlidxIterFree(pIter
);
1737 static i64
fts5DlidxIterRowid(Fts5DlidxIter
*pIter
){
1738 return pIter
->aLvl
[0].iRowid
;
1740 static int fts5DlidxIterPgno(Fts5DlidxIter
*pIter
){
1741 return pIter
->aLvl
[0].iLeafPgno
;
1745 ** Load the next leaf page into the segment iterator.
1747 static void fts5SegIterNextPage(
1748 Fts5Index
*p
, /* FTS5 backend object */
1749 Fts5SegIter
*pIter
/* Iterator to advance to next page */
1752 Fts5StructureSegment
*pSeg
= pIter
->pSeg
;
1753 fts5DataRelease(pIter
->pLeaf
);
1755 if( pIter
->pNextLeaf
){
1756 pIter
->pLeaf
= pIter
->pNextLeaf
;
1757 pIter
->pNextLeaf
= 0;
1758 }else if( pIter
->iLeafPgno
<=pSeg
->pgnoLast
){
1759 pIter
->pLeaf
= fts5LeafRead(p
,
1760 FTS5_SEGMENT_ROWID(pSeg
->iSegid
, pIter
->iLeafPgno
)
1765 pLeaf
= pIter
->pLeaf
;
1768 pIter
->iPgidxOff
= pLeaf
->szLeaf
;
1769 if( fts5LeafIsTermless(pLeaf
) ){
1770 pIter
->iEndofDoclist
= pLeaf
->nn
+1;
1772 pIter
->iPgidxOff
+= fts5GetVarint32(&pLeaf
->p
[pIter
->iPgidxOff
],
1773 pIter
->iEndofDoclist
1780 ** Argument p points to a buffer containing a varint to be interpreted as a
1781 ** position list size field. Read the varint and return the number of bytes
1782 ** read. Before returning, set *pnSz to the number of bytes in the position
1783 ** list, and *pbDel to true if the delete flag is set, or false otherwise.
1785 static int fts5GetPoslistSize(const u8
*p
, int *pnSz
, int *pbDel
){
1788 fts5FastGetVarint32(p
, n
, nSz
);
1789 assert_nc( nSz
>=0 );
1791 *pbDel
= nSz
& 0x0001;
1796 ** Fts5SegIter.iLeafOffset currently points to the first byte of a
1797 ** position-list size field. Read the value of the field and store it
1798 ** in the following variables:
1803 ** Leave Fts5SegIter.iLeafOffset pointing to the first byte of the
1804 ** position list content (if any).
1806 static void fts5SegIterLoadNPos(Fts5Index
*p
, Fts5SegIter
*pIter
){
1807 if( p
->rc
==SQLITE_OK
){
1808 int iOff
= pIter
->iLeafOffset
; /* Offset to read at */
1809 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1810 if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
1811 int iEod
= MIN(pIter
->iEndofDoclist
, pIter
->pLeaf
->szLeaf
);
1814 if( iOff
<iEod
&& pIter
->pLeaf
->p
[iOff
]==0 ){
1817 if( iOff
<iEod
&& pIter
->pLeaf
->p
[iOff
]==0 ){
1826 fts5FastGetVarint32(pIter
->pLeaf
->p
, iOff
, nSz
);
1827 pIter
->bDel
= (nSz
& 0x0001);
1828 pIter
->nPos
= nSz
>>1;
1829 assert_nc( pIter
->nPos
>=0 );
1831 pIter
->iLeafOffset
= iOff
;
1835 static void fts5SegIterLoadRowid(Fts5Index
*p
, Fts5SegIter
*pIter
){
1836 u8
*a
= pIter
->pLeaf
->p
; /* Buffer to read data from */
1837 i64 iOff
= pIter
->iLeafOffset
;
1839 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
1840 while( iOff
>=pIter
->pLeaf
->szLeaf
){
1841 fts5SegIterNextPage(p
, pIter
);
1842 if( pIter
->pLeaf
==0 ){
1843 if( p
->rc
==SQLITE_OK
) p
->rc
= FTS5_CORRUPT
;
1847 a
= pIter
->pLeaf
->p
;
1849 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], (u64
*)&pIter
->iRowid
);
1850 pIter
->iLeafOffset
= iOff
;
1854 ** Fts5SegIter.iLeafOffset currently points to the first byte of the
1855 ** "nSuffix" field of a term. Function parameter nKeep contains the value
1856 ** of the "nPrefix" field (if there was one - it is passed 0 if this is
1857 ** the first term in the segment).
1859 ** This function populates:
1862 ** Fts5SegIter.rowid
1864 ** accordingly and leaves (Fts5SegIter.iLeafOffset) set to the content of
1865 ** the first position list. The position list belonging to document
1866 ** (Fts5SegIter.iRowid).
1868 static void fts5SegIterLoadTerm(Fts5Index
*p
, Fts5SegIter
*pIter
, int nKeep
){
1869 u8
*a
= pIter
->pLeaf
->p
; /* Buffer to read data from */
1870 i64 iOff
= pIter
->iLeafOffset
; /* Offset to read at */
1871 int nNew
; /* Bytes of new data */
1873 iOff
+= fts5GetVarint32(&a
[iOff
], nNew
);
1874 if( iOff
+nNew
>pIter
->pLeaf
->szLeaf
|| nKeep
>pIter
->term
.n
|| nNew
==0 ){
1875 p
->rc
= FTS5_CORRUPT
;
1878 pIter
->term
.n
= nKeep
;
1879 fts5BufferAppendBlob(&p
->rc
, &pIter
->term
, nNew
, &a
[iOff
]);
1880 assert( pIter
->term
.n
<=pIter
->term
.nSpace
);
1882 pIter
->iTermLeafOffset
= iOff
;
1883 pIter
->iTermLeafPgno
= pIter
->iLeafPgno
;
1884 pIter
->iLeafOffset
= iOff
;
1886 if( pIter
->iPgidxOff
>=pIter
->pLeaf
->nn
){
1887 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
1890 pIter
->iPgidxOff
+= fts5GetVarint32(&a
[pIter
->iPgidxOff
], nExtra
);
1891 pIter
->iEndofDoclist
+= nExtra
;
1894 fts5SegIterLoadRowid(p
, pIter
);
1897 static void fts5SegIterNext(Fts5Index
*, Fts5SegIter
*, int*);
1898 static void fts5SegIterNext_Reverse(Fts5Index
*, Fts5SegIter
*, int*);
1899 static void fts5SegIterNext_None(Fts5Index
*, Fts5SegIter
*, int*);
1901 static void fts5SegIterSetNext(Fts5Index
*p
, Fts5SegIter
*pIter
){
1902 if( pIter
->flags
& FTS5_SEGITER_REVERSE
){
1903 pIter
->xNext
= fts5SegIterNext_Reverse
;
1904 }else if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
1905 pIter
->xNext
= fts5SegIterNext_None
;
1907 pIter
->xNext
= fts5SegIterNext
;
1912 ** Allocate a tombstone hash page array (pIter->apTombstone) for the
1913 ** iterator passed as the second argument. If an OOM error occurs, leave
1914 ** an error in the Fts5Index object.
1916 static void fts5SegIterAllocTombstone(Fts5Index
*p
, Fts5SegIter
*pIter
){
1917 const int nTomb
= pIter
->pSeg
->nPgTombstone
;
1919 Fts5Data
**apTomb
= 0;
1920 apTomb
= (Fts5Data
**)sqlite3Fts5MallocZero(&p
->rc
, sizeof(Fts5Data
)*nTomb
);
1922 pIter
->apTombstone
= apTomb
;
1923 pIter
->nTombstone
= nTomb
;
1929 ** Initialize the iterator object pIter to iterate through the entries in
1930 ** segment pSeg. The iterator is left pointing to the first entry when
1931 ** this function returns.
1933 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
1934 ** an error has already occurred when this function is called, it is a no-op.
1936 static void fts5SegIterInit(
1937 Fts5Index
*p
, /* FTS index object */
1938 Fts5StructureSegment
*pSeg
, /* Description of segment */
1939 Fts5SegIter
*pIter
/* Object to populate */
1941 if( pSeg
->pgnoFirst
==0 ){
1942 /* This happens if the segment is being used as an input to an incremental
1943 ** merge and all data has already been "trimmed". See function
1944 ** fts5TrimSegments() for details. In this case leave the iterator empty.
1945 ** The caller will see the (pIter->pLeaf==0) and assume the iterator is
1946 ** at EOF already. */
1947 assert( pIter
->pLeaf
==0 );
1951 if( p
->rc
==SQLITE_OK
){
1952 memset(pIter
, 0, sizeof(*pIter
));
1953 fts5SegIterSetNext(p
, pIter
);
1955 pIter
->iLeafPgno
= pSeg
->pgnoFirst
-1;
1957 fts5SegIterNextPage(p
, pIter
);
1958 }while( p
->rc
==SQLITE_OK
&& pIter
->pLeaf
&& pIter
->pLeaf
->nn
==4 );
1961 if( p
->rc
==SQLITE_OK
&& pIter
->pLeaf
){
1962 pIter
->iLeafOffset
= 4;
1963 assert( pIter
->pLeaf
!=0 );
1964 assert_nc( pIter
->pLeaf
->nn
>4 );
1965 assert_nc( fts5LeafFirstTermOff(pIter
->pLeaf
)==4 );
1966 pIter
->iPgidxOff
= pIter
->pLeaf
->szLeaf
+1;
1967 fts5SegIterLoadTerm(p
, pIter
, 0);
1968 fts5SegIterLoadNPos(p
, pIter
);
1969 fts5SegIterAllocTombstone(p
, pIter
);
1974 ** This function is only ever called on iterators created by calls to
1975 ** Fts5IndexQuery() with the FTS5INDEX_QUERY_DESC flag set.
1977 ** The iterator is in an unusual state when this function is called: the
1978 ** Fts5SegIter.iLeafOffset variable is set to the offset of the start of
1979 ** the position-list size field for the first relevant rowid on the page.
1980 ** Fts5SegIter.rowid is set, but nPos and bDel are not.
1982 ** This function advances the iterator so that it points to the last
1983 ** relevant rowid on the page and, if necessary, initializes the
1984 ** aRowidOffset[] and iRowidOffset variables. At this point the iterator
1985 ** is in its regular state - Fts5SegIter.iLeafOffset points to the first
1986 ** byte of the position list content associated with said rowid.
1988 static void fts5SegIterReverseInitPage(Fts5Index
*p
, Fts5SegIter
*pIter
){
1989 int eDetail
= p
->pConfig
->eDetail
;
1990 int n
= pIter
->pLeaf
->szLeaf
;
1991 int i
= pIter
->iLeafOffset
;
1992 u8
*a
= pIter
->pLeaf
->p
;
1993 int iRowidOffset
= 0;
1995 if( n
>pIter
->iEndofDoclist
){
1996 n
= pIter
->iEndofDoclist
;
1999 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
2003 if( eDetail
==FTS5_DETAIL_NONE
){
2005 if( i
<n
&& a
[i
]==0 ){
2007 if( i
<n
&& a
[i
]==0 ) i
++;
2012 i
+= fts5GetPoslistSize(&a
[i
], &nPos
, &bDummy
);
2016 i
+= fts5GetVarint(&a
[i
], &iDelta
);
2017 pIter
->iRowid
+= iDelta
;
2019 /* If necessary, grow the pIter->aRowidOffset[] array. */
2020 if( iRowidOffset
>=pIter
->nRowidOffset
){
2021 int nNew
= pIter
->nRowidOffset
+ 8;
2022 int *aNew
= (int*)sqlite3_realloc64(pIter
->aRowidOffset
,nNew
*sizeof(int));
2024 p
->rc
= SQLITE_NOMEM
;
2027 pIter
->aRowidOffset
= aNew
;
2028 pIter
->nRowidOffset
= nNew
;
2031 pIter
->aRowidOffset
[iRowidOffset
++] = pIter
->iLeafOffset
;
2032 pIter
->iLeafOffset
= i
;
2034 pIter
->iRowidOffset
= iRowidOffset
;
2035 fts5SegIterLoadNPos(p
, pIter
);
2041 static void fts5SegIterReverseNewPage(Fts5Index
*p
, Fts5SegIter
*pIter
){
2042 assert( pIter
->flags
& FTS5_SEGITER_REVERSE
);
2043 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
2045 fts5DataRelease(pIter
->pLeaf
);
2047 while( p
->rc
==SQLITE_OK
&& pIter
->iLeafPgno
>pIter
->iTermLeafPgno
){
2050 pNew
= fts5DataRead(p
, FTS5_SEGMENT_ROWID(
2051 pIter
->pSeg
->iSegid
, pIter
->iLeafPgno
2054 /* iTermLeafOffset may be equal to szLeaf if the term is the last
2055 ** thing on the page - i.e. the first rowid is on the following page.
2056 ** In this case leave pIter->pLeaf==0, this iterator is at EOF. */
2057 if( pIter
->iLeafPgno
==pIter
->iTermLeafPgno
){
2058 assert( pIter
->pLeaf
==0 );
2059 if( pIter
->iTermLeafOffset
<pNew
->szLeaf
){
2060 pIter
->pLeaf
= pNew
;
2061 pIter
->iLeafOffset
= pIter
->iTermLeafOffset
;
2065 iRowidOff
= fts5LeafFirstRowidOff(pNew
);
2067 if( iRowidOff
>=pNew
->szLeaf
){
2068 p
->rc
= FTS5_CORRUPT
;
2070 pIter
->pLeaf
= pNew
;
2071 pIter
->iLeafOffset
= iRowidOff
;
2077 u8
*a
= &pIter
->pLeaf
->p
[pIter
->iLeafOffset
];
2078 pIter
->iLeafOffset
+= fts5GetVarint(a
, (u64
*)&pIter
->iRowid
);
2081 fts5DataRelease(pNew
);
2087 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
2088 fts5SegIterReverseInitPage(p
, pIter
);
2093 ** Return true if the iterator passed as the second argument currently
2094 ** points to a delete marker. A delete marker is an entry with a 0 byte
2097 static int fts5MultiIterIsEmpty(Fts5Index
*p
, Fts5Iter
*pIter
){
2098 Fts5SegIter
*pSeg
= &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
];
2099 return (p
->rc
==SQLITE_OK
&& pSeg
->pLeaf
&& pSeg
->nPos
==0);
2103 ** Advance iterator pIter to the next entry.
2105 ** This version of fts5SegIterNext() is only used by reverse iterators.
2107 static void fts5SegIterNext_Reverse(
2108 Fts5Index
*p
, /* FTS5 backend object */
2109 Fts5SegIter
*pIter
, /* Iterator to advance */
2110 int *pbUnused
/* Unused */
2112 assert( pIter
->flags
& FTS5_SEGITER_REVERSE
);
2113 assert( pIter
->pNextLeaf
==0 );
2114 UNUSED_PARAM(pbUnused
);
2116 if( pIter
->iRowidOffset
>0 ){
2117 u8
*a
= pIter
->pLeaf
->p
;
2121 pIter
->iRowidOffset
--;
2122 pIter
->iLeafOffset
= pIter
->aRowidOffset
[pIter
->iRowidOffset
];
2123 fts5SegIterLoadNPos(p
, pIter
);
2124 iOff
= pIter
->iLeafOffset
;
2125 if( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
){
2126 iOff
+= pIter
->nPos
;
2128 fts5GetVarint(&a
[iOff
], &iDelta
);
2129 pIter
->iRowid
-= iDelta
;
2131 fts5SegIterReverseNewPage(p
, pIter
);
2136 ** Advance iterator pIter to the next entry.
2138 ** This version of fts5SegIterNext() is only used if detail=none and the
2139 ** iterator is not a reverse direction iterator.
2141 static void fts5SegIterNext_None(
2142 Fts5Index
*p
, /* FTS5 backend object */
2143 Fts5SegIter
*pIter
, /* Iterator to advance */
2144 int *pbNewTerm
/* OUT: Set for new term */
2148 assert( p
->rc
==SQLITE_OK
);
2149 assert( (pIter
->flags
& FTS5_SEGITER_REVERSE
)==0 );
2150 assert( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
);
2152 ASSERT_SZLEAF_OK(pIter
->pLeaf
);
2153 iOff
= pIter
->iLeafOffset
;
2155 /* Next entry is on the next page */
2156 while( pIter
->pSeg
&& iOff
>=pIter
->pLeaf
->szLeaf
){
2157 fts5SegIterNextPage(p
, pIter
);
2158 if( p
->rc
|| pIter
->pLeaf
==0 ) return;
2163 if( iOff
<pIter
->iEndofDoclist
){
2164 /* Next entry is on the current page */
2166 iOff
+= sqlite3Fts5GetVarint(&pIter
->pLeaf
->p
[iOff
], (u64
*)&iDelta
);
2167 pIter
->iLeafOffset
= iOff
;
2168 pIter
->iRowid
+= iDelta
;
2169 }else if( (pIter
->flags
& FTS5_SEGITER_ONETERM
)==0 ){
2172 if( iOff
!=fts5LeafFirstTermOff(pIter
->pLeaf
) ){
2173 iOff
+= fts5GetVarint32(&pIter
->pLeaf
->p
[iOff
], nKeep
);
2175 pIter
->iLeafOffset
= iOff
;
2176 fts5SegIterLoadTerm(p
, pIter
, nKeep
);
2178 const u8
*pList
= 0;
2179 const char *zTerm
= 0;
2181 sqlite3Fts5HashScanNext(p
->pHash
);
2182 sqlite3Fts5HashScanEntry(p
->pHash
, &zTerm
, &pList
, &nList
);
2183 if( pList
==0 ) goto next_none_eof
;
2184 pIter
->pLeaf
->p
= (u8
*)pList
;
2185 pIter
->pLeaf
->nn
= nList
;
2186 pIter
->pLeaf
->szLeaf
= nList
;
2187 pIter
->iEndofDoclist
= nList
;
2188 sqlite3Fts5BufferSet(&p
->rc
,&pIter
->term
, (int)strlen(zTerm
), (u8
*)zTerm
);
2189 pIter
->iLeafOffset
= fts5GetVarint(pList
, (u64
*)&pIter
->iRowid
);
2192 if( pbNewTerm
) *pbNewTerm
= 1;
2197 fts5SegIterLoadNPos(p
, pIter
);
2201 fts5DataRelease(pIter
->pLeaf
);
2207 ** Advance iterator pIter to the next entry.
2209 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. It
2210 ** is not considered an error if the iterator reaches EOF. If an error has
2211 ** already occurred when this function is called, it is a no-op.
2213 static void fts5SegIterNext(
2214 Fts5Index
*p
, /* FTS5 backend object */
2215 Fts5SegIter
*pIter
, /* Iterator to advance */
2216 int *pbNewTerm
/* OUT: Set for new term */
2218 Fts5Data
*pLeaf
= pIter
->pLeaf
;
2225 assert( pbNewTerm
==0 || *pbNewTerm
==0 );
2226 assert( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
2228 /* Search for the end of the position list within the current page. */
2232 ASSERT_SZLEAF_OK(pLeaf
);
2233 iOff
= pIter
->iLeafOffset
+ pIter
->nPos
;
2236 /* The next entry is on the current page. */
2237 assert_nc( iOff
<=pIter
->iEndofDoclist
);
2238 if( iOff
>=pIter
->iEndofDoclist
){
2240 if( iOff
!=fts5LeafFirstTermOff(pLeaf
) ){
2241 iOff
+= fts5GetVarint32(&a
[iOff
], nKeep
);
2245 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], &iDelta
);
2246 pIter
->iRowid
+= iDelta
;
2247 assert_nc( iDelta
>0 );
2249 pIter
->iLeafOffset
= iOff
;
2251 }else if( pIter
->pSeg
==0 ){
2252 const u8
*pList
= 0;
2253 const char *zTerm
= 0;
2255 assert( (pIter
->flags
& FTS5_SEGITER_ONETERM
) || pbNewTerm
);
2256 if( 0==(pIter
->flags
& FTS5_SEGITER_ONETERM
) ){
2257 sqlite3Fts5HashScanNext(p
->pHash
);
2258 sqlite3Fts5HashScanEntry(p
->pHash
, &zTerm
, &pList
, &nList
);
2261 fts5DataRelease(pIter
->pLeaf
);
2264 pIter
->pLeaf
->p
= (u8
*)pList
;
2265 pIter
->pLeaf
->nn
= nList
;
2266 pIter
->pLeaf
->szLeaf
= nList
;
2267 pIter
->iEndofDoclist
= nList
+1;
2268 sqlite3Fts5BufferSet(&p
->rc
, &pIter
->term
, (int)strlen(zTerm
),
2270 pIter
->iLeafOffset
= fts5GetVarint(pList
, (u64
*)&pIter
->iRowid
);
2275 /* Next entry is not on the current page */
2277 fts5SegIterNextPage(p
, pIter
);
2278 pLeaf
= pIter
->pLeaf
;
2279 if( pLeaf
==0 ) break;
2280 ASSERT_SZLEAF_OK(pLeaf
);
2281 if( (iOff
= fts5LeafFirstRowidOff(pLeaf
)) && iOff
<pLeaf
->szLeaf
){
2282 iOff
+= sqlite3Fts5GetVarint(&pLeaf
->p
[iOff
], (u64
*)&pIter
->iRowid
);
2283 pIter
->iLeafOffset
= iOff
;
2285 if( pLeaf
->nn
>pLeaf
->szLeaf
){
2286 pIter
->iPgidxOff
= pLeaf
->szLeaf
+ fts5GetVarint32(
2287 &pLeaf
->p
[pLeaf
->szLeaf
], pIter
->iEndofDoclist
2291 else if( pLeaf
->nn
>pLeaf
->szLeaf
){
2292 pIter
->iPgidxOff
= pLeaf
->szLeaf
+ fts5GetVarint32(
2293 &pLeaf
->p
[pLeaf
->szLeaf
], iOff
2295 pIter
->iLeafOffset
= iOff
;
2296 pIter
->iEndofDoclist
= iOff
;
2299 assert_nc( iOff
<pLeaf
->szLeaf
);
2300 if( iOff
>pLeaf
->szLeaf
){
2301 p
->rc
= FTS5_CORRUPT
;
2307 /* Check if the iterator is now at EOF. If so, return early. */
2310 if( pIter
->flags
& FTS5_SEGITER_ONETERM
){
2311 fts5DataRelease(pIter
->pLeaf
);
2314 fts5SegIterLoadTerm(p
, pIter
, nKeep
);
2315 fts5SegIterLoadNPos(p
, pIter
);
2316 if( pbNewTerm
) *pbNewTerm
= 1;
2319 /* The following could be done by calling fts5SegIterLoadNPos(). But
2320 ** this block is particularly performance critical, so equivalent
2321 ** code is inlined. */
2323 assert_nc( pIter
->iLeafOffset
<=pIter
->pLeaf
->nn
);
2324 fts5FastGetVarint32(pIter
->pLeaf
->p
, pIter
->iLeafOffset
, nSz
);
2325 pIter
->bDel
= (nSz
& 0x0001);
2326 pIter
->nPos
= nSz
>>1;
2327 assert_nc( pIter
->nPos
>=0 );
2332 #define SWAPVAL(T, a, b) { T tmp; tmp=a; a=b; b=tmp; }
2334 #define fts5IndexSkipVarint(a, iOff) { \
2335 int iEnd = iOff+9; \
2336 while( (a[iOff++] & 0x80) && iOff<iEnd ); \
2340 ** Iterator pIter currently points to the first rowid in a doclist. This
2341 ** function sets the iterator up so that iterates in reverse order through
2344 static void fts5SegIterReverse(Fts5Index
*p
, Fts5SegIter
*pIter
){
2345 Fts5DlidxIter
*pDlidx
= pIter
->pDlidx
;
2346 Fts5Data
*pLast
= 0;
2349 if( pDlidx
&& p
->pConfig
->iVersion
==FTS5_CURRENT_VERSION
){
2350 int iSegid
= pIter
->pSeg
->iSegid
;
2351 pgnoLast
= fts5DlidxIterPgno(pDlidx
);
2352 pLast
= fts5LeafRead(p
, FTS5_SEGMENT_ROWID(iSegid
, pgnoLast
));
2354 Fts5Data
*pLeaf
= pIter
->pLeaf
; /* Current leaf data */
2356 /* Currently, Fts5SegIter.iLeafOffset points to the first byte of
2357 ** position-list content for the current rowid. Back it up so that it
2358 ** points to the start of the position-list size field. */
2360 if( pIter
->iTermLeafPgno
==pIter
->iLeafPgno
){
2361 iPoslist
= pIter
->iTermLeafOffset
;
2365 fts5IndexSkipVarint(pLeaf
->p
, iPoslist
);
2366 pIter
->iLeafOffset
= iPoslist
;
2368 /* If this condition is true then the largest rowid for the current
2369 ** term may not be stored on the current page. So search forward to
2370 ** see where said rowid really is. */
2371 if( pIter
->iEndofDoclist
>=pLeaf
->szLeaf
){
2373 Fts5StructureSegment
*pSeg
= pIter
->pSeg
;
2375 /* The last rowid in the doclist may not be on the current page. Search
2376 ** forward to find the page containing the last rowid. */
2377 for(pgno
=pIter
->iLeafPgno
+1; !p
->rc
&& pgno
<=pSeg
->pgnoLast
; pgno
++){
2378 i64 iAbs
= FTS5_SEGMENT_ROWID(pSeg
->iSegid
, pgno
);
2379 Fts5Data
*pNew
= fts5LeafRead(p
, iAbs
);
2381 int iRowid
, bTermless
;
2382 iRowid
= fts5LeafFirstRowidOff(pNew
);
2383 bTermless
= fts5LeafIsTermless(pNew
);
2385 SWAPVAL(Fts5Data
*, pNew
, pLast
);
2388 fts5DataRelease(pNew
);
2389 if( bTermless
==0 ) break;
2395 /* If pLast is NULL at this point, then the last rowid for this doclist
2396 ** lies on the page currently indicated by the iterator. In this case
2397 ** pIter->iLeafOffset is already set to point to the position-list size
2398 ** field associated with the first relevant rowid on the page.
2400 ** Or, if pLast is non-NULL, then it is the page that contains the last
2401 ** rowid. In this case configure the iterator so that it points to the
2402 ** first rowid on this page.
2406 fts5DataRelease(pIter
->pLeaf
);
2407 pIter
->pLeaf
= pLast
;
2408 pIter
->iLeafPgno
= pgnoLast
;
2409 iOff
= fts5LeafFirstRowidOff(pLast
);
2410 if( iOff
>pLast
->szLeaf
){
2411 p
->rc
= FTS5_CORRUPT
;
2414 iOff
+= fts5GetVarint(&pLast
->p
[iOff
], (u64
*)&pIter
->iRowid
);
2415 pIter
->iLeafOffset
= iOff
;
2417 if( fts5LeafIsTermless(pLast
) ){
2418 pIter
->iEndofDoclist
= pLast
->nn
+1;
2420 pIter
->iEndofDoclist
= fts5LeafFirstTermOff(pLast
);
2424 fts5SegIterReverseInitPage(p
, pIter
);
2428 ** Iterator pIter currently points to the first rowid of a doclist.
2429 ** There is a doclist-index associated with the final term on the current
2430 ** page. If the current term is the last term on the page, load the
2431 ** doclist-index from disk and initialize an iterator at (pIter->pDlidx).
2433 static void fts5SegIterLoadDlidx(Fts5Index
*p
, Fts5SegIter
*pIter
){
2434 int iSeg
= pIter
->pSeg
->iSegid
;
2435 int bRev
= (pIter
->flags
& FTS5_SEGITER_REVERSE
);
2436 Fts5Data
*pLeaf
= pIter
->pLeaf
; /* Current leaf data */
2438 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
2439 assert( pIter
->pDlidx
==0 );
2441 /* Check if the current doclist ends on this page. If it does, return
2442 ** early without loading the doclist-index (as it belongs to a different
2444 if( pIter
->iTermLeafPgno
==pIter
->iLeafPgno
2445 && pIter
->iEndofDoclist
<pLeaf
->szLeaf
2450 pIter
->pDlidx
= fts5DlidxIterInit(p
, bRev
, iSeg
, pIter
->iTermLeafPgno
);
2454 ** The iterator object passed as the second argument currently contains
2455 ** no valid values except for the Fts5SegIter.pLeaf member variable. This
2456 ** function searches the leaf page for a term matching (pTerm/nTerm).
2458 ** If the specified term is found on the page, then the iterator is left
2459 ** pointing to it. If argument bGe is zero and the term is not found,
2460 ** the iterator is left pointing at EOF.
2462 ** If bGe is non-zero and the specified term is not found, then the
2463 ** iterator is left pointing to the smallest term in the segment that
2464 ** is larger than the specified term, even if this term is not on the
2467 static void fts5LeafSeek(
2468 Fts5Index
*p
, /* Leave any error code here */
2469 int bGe
, /* True for a >= search */
2470 Fts5SegIter
*pIter
, /* Iterator to seek */
2471 const u8
*pTerm
, int nTerm
/* Term to search for */
2474 const u8
*a
= pIter
->pLeaf
->p
;
2475 u32 n
= (u32
)pIter
->pLeaf
->nn
;
2481 u32 iPgidx
; /* Current offset in pgidx */
2484 assert( p
->rc
==SQLITE_OK
);
2486 iPgidx
= (u32
)pIter
->pLeaf
->szLeaf
;
2487 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], iTermOff
);
2490 p
->rc
= FTS5_CORRUPT
;
2496 /* Figure out how many new bytes are in this term */
2497 fts5FastGetVarint32(a
, iOff
, nNew
);
2502 assert( nKeep
>=nMatch
);
2503 if( nKeep
==nMatch
){
2506 nCmp
= (u32
)MIN(nNew
, nTerm
-nMatch
);
2507 for(i
=0; i
<nCmp
; i
++){
2508 if( a
[iOff
+i
]!=pTerm
[nMatch
+i
] ) break;
2512 if( (u32
)nTerm
==nMatch
){
2514 goto search_success
;
2518 }else if( i
<nNew
&& a
[iOff
+i
]>pTerm
[nMatch
] ){
2528 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], nKeep
);
2533 p
->rc
= FTS5_CORRUPT
;
2537 /* Read the nKeep field of the next term. */
2538 fts5FastGetVarint32(a
, iOff
, nKeep
);
2543 fts5DataRelease(pIter
->pLeaf
);
2546 }else if( bEndOfPage
){
2548 fts5SegIterNextPage(p
, pIter
);
2549 if( pIter
->pLeaf
==0 ) return;
2550 a
= pIter
->pLeaf
->p
;
2551 if( fts5LeafIsTermless(pIter
->pLeaf
)==0 ){
2552 iPgidx
= (u32
)pIter
->pLeaf
->szLeaf
;
2553 iPgidx
+= fts5GetVarint32(&pIter
->pLeaf
->p
[iPgidx
], iOff
);
2554 if( iOff
<4 || (i64
)iOff
>=pIter
->pLeaf
->szLeaf
){
2555 p
->rc
= FTS5_CORRUPT
;
2560 n
= (u32
)pIter
->pLeaf
->nn
;
2561 iOff
+= fts5GetVarint32(&a
[iOff
], nNew
);
2569 if( (i64
)iOff
+nNew
>n
|| nNew
<1 ){
2570 p
->rc
= FTS5_CORRUPT
;
2573 pIter
->iLeafOffset
= iOff
+ nNew
;
2574 pIter
->iTermLeafOffset
= pIter
->iLeafOffset
;
2575 pIter
->iTermLeafPgno
= pIter
->iLeafPgno
;
2577 fts5BufferSet(&p
->rc
, &pIter
->term
, nKeep
, pTerm
);
2578 fts5BufferAppendBlob(&p
->rc
, &pIter
->term
, nNew
, &a
[iOff
]);
2581 pIter
->iEndofDoclist
= pIter
->pLeaf
->nn
+1;
2584 iPgidx
+= fts5GetVarint32(&a
[iPgidx
], nExtra
);
2585 pIter
->iEndofDoclist
= iTermOff
+ nExtra
;
2587 pIter
->iPgidxOff
= iPgidx
;
2589 fts5SegIterLoadRowid(p
, pIter
);
2590 fts5SegIterLoadNPos(p
, pIter
);
2593 static sqlite3_stmt
*fts5IdxSelectStmt(Fts5Index
*p
){
2594 if( p
->pIdxSelect
==0 ){
2595 Fts5Config
*pConfig
= p
->pConfig
;
2596 fts5IndexPrepareStmt(p
, &p
->pIdxSelect
, sqlite3_mprintf(
2597 "SELECT pgno FROM '%q'.'%q_idx' WHERE "
2598 "segid=? AND term<=? ORDER BY term DESC LIMIT 1",
2599 pConfig
->zDb
, pConfig
->zName
2602 return p
->pIdxSelect
;
2606 ** Initialize the object pIter to point to term pTerm/nTerm within segment
2607 ** pSeg. If there is no such term in the index, the iterator is set to EOF.
2609 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
2610 ** an error has already occurred when this function is called, it is a no-op.
2612 static void fts5SegIterSeekInit(
2613 Fts5Index
*p
, /* FTS5 backend */
2614 const u8
*pTerm
, int nTerm
, /* Term to seek to */
2615 int flags
, /* Mask of FTS5INDEX_XXX flags */
2616 Fts5StructureSegment
*pSeg
, /* Description of segment */
2617 Fts5SegIter
*pIter
/* Object to populate */
2620 int bGe
= (flags
& FTS5INDEX_QUERY_SCAN
);
2621 int bDlidx
= 0; /* True if there is a doclist-index */
2622 sqlite3_stmt
*pIdxSelect
= 0;
2624 assert( bGe
==0 || (flags
& FTS5INDEX_QUERY_DESC
)==0 );
2625 assert( pTerm
&& nTerm
);
2626 memset(pIter
, 0, sizeof(*pIter
));
2629 /* This block sets stack variable iPg to the leaf page number that may
2630 ** contain term (pTerm/nTerm), if it is present in the segment. */
2631 pIdxSelect
= fts5IdxSelectStmt(p
);
2633 sqlite3_bind_int(pIdxSelect
, 1, pSeg
->iSegid
);
2634 sqlite3_bind_blob(pIdxSelect
, 2, pTerm
, nTerm
, SQLITE_STATIC
);
2635 if( SQLITE_ROW
==sqlite3_step(pIdxSelect
) ){
2636 i64 val
= sqlite3_column_int(pIdxSelect
, 0);
2637 iPg
= (int)(val
>>1);
2638 bDlidx
= (val
& 0x0001);
2640 p
->rc
= sqlite3_reset(pIdxSelect
);
2641 sqlite3_bind_null(pIdxSelect
, 2);
2643 if( iPg
<pSeg
->pgnoFirst
){
2644 iPg
= pSeg
->pgnoFirst
;
2648 pIter
->iLeafPgno
= iPg
- 1;
2649 fts5SegIterNextPage(p
, pIter
);
2652 fts5LeafSeek(p
, bGe
, pIter
, pTerm
, nTerm
);
2655 if( p
->rc
==SQLITE_OK
&& bGe
==0 ){
2656 pIter
->flags
|= FTS5_SEGITER_ONETERM
;
2658 if( flags
& FTS5INDEX_QUERY_DESC
){
2659 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
2662 fts5SegIterLoadDlidx(p
, pIter
);
2664 if( flags
& FTS5INDEX_QUERY_DESC
){
2665 fts5SegIterReverse(p
, pIter
);
2670 fts5SegIterSetNext(p
, pIter
);
2671 fts5SegIterAllocTombstone(p
, pIter
);
2675 ** 1) an error has occurred, or
2676 ** 2) the iterator points to EOF, or
2677 ** 3) the iterator points to an entry with term (pTerm/nTerm), or
2678 ** 4) the FTS5INDEX_QUERY_SCAN flag was set and the iterator points
2679 ** to an entry with a term greater than or equal to (pTerm/nTerm).
2681 assert_nc( p
->rc
!=SQLITE_OK
/* 1 */
2682 || pIter
->pLeaf
==0 /* 2 */
2683 || fts5BufferCompareBlob(&pIter
->term
, pTerm
, nTerm
)==0 /* 3 */
2684 || (bGe
&& fts5BufferCompareBlob(&pIter
->term
, pTerm
, nTerm
)>0) /* 4 */
2689 ** Initialize the object pIter to point to term pTerm/nTerm within the
2690 ** in-memory hash table. If there is no such term in the hash-table, the
2691 ** iterator is set to EOF.
2693 ** If an error occurs, Fts5Index.rc is set to an appropriate error code. If
2694 ** an error has already occurred when this function is called, it is a no-op.
2696 static void fts5SegIterHashInit(
2697 Fts5Index
*p
, /* FTS5 backend */
2698 const u8
*pTerm
, int nTerm
, /* Term to seek to */
2699 int flags
, /* Mask of FTS5INDEX_XXX flags */
2700 Fts5SegIter
*pIter
/* Object to populate */
2705 Fts5Data
*pLeaf
= 0;
2708 assert( p
->rc
==SQLITE_OK
);
2710 if( pTerm
==0 || (flags
& FTS5INDEX_QUERY_SCAN
) ){
2711 const u8
*pList
= 0;
2713 p
->rc
= sqlite3Fts5HashScanInit(p
->pHash
, (const char*)pTerm
, nTerm
);
2714 sqlite3Fts5HashScanEntry(p
->pHash
, (const char**)&z
, &pList
, &nList
);
2715 n
= (z
? (int)strlen((const char*)z
) : 0);
2717 pLeaf
= fts5IdxMalloc(p
, sizeof(Fts5Data
));
2719 pLeaf
->p
= (u8
*)pList
;
2723 p
->rc
= sqlite3Fts5HashQuery(p
->pHash
, sizeof(Fts5Data
),
2724 (const char*)pTerm
, nTerm
, (void**)&pLeaf
, &nList
2727 pLeaf
->p
= (u8
*)&pLeaf
[1];
2731 pIter
->flags
|= FTS5_SEGITER_ONETERM
;
2735 sqlite3Fts5BufferSet(&p
->rc
, &pIter
->term
, n
, z
);
2736 pLeaf
->nn
= pLeaf
->szLeaf
= nList
;
2737 pIter
->pLeaf
= pLeaf
;
2738 pIter
->iLeafOffset
= fts5GetVarint(pLeaf
->p
, (u64
*)&pIter
->iRowid
);
2739 pIter
->iEndofDoclist
= pLeaf
->nn
;
2741 if( flags
& FTS5INDEX_QUERY_DESC
){
2742 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
2743 fts5SegIterReverseInitPage(p
, pIter
);
2745 fts5SegIterLoadNPos(p
, pIter
);
2749 fts5SegIterSetNext(p
, pIter
);
2753 ** Array ap[] contains n elements. Release each of these elements using
2754 ** fts5DataRelease(). Then free the array itself using sqlite3_free().
2756 static void fts5IndexFreeArray(Fts5Data
**ap
, int n
){
2759 for(ii
=0; ii
<n
; ii
++){
2760 fts5DataRelease(ap
[ii
]);
2767 ** Zero the iterator passed as the only argument.
2769 static void fts5SegIterClear(Fts5SegIter
*pIter
){
2770 fts5BufferFree(&pIter
->term
);
2771 fts5DataRelease(pIter
->pLeaf
);
2772 fts5DataRelease(pIter
->pNextLeaf
);
2773 fts5IndexFreeArray(pIter
->apTombstone
, pIter
->nTombstone
);
2774 fts5DlidxIterFree(pIter
->pDlidx
);
2775 sqlite3_free(pIter
->aRowidOffset
);
2776 memset(pIter
, 0, sizeof(Fts5SegIter
));
2782 ** This function is used as part of the big assert() procedure implemented by
2783 ** fts5AssertMultiIterSetup(). It ensures that the result currently stored
2784 ** in *pRes is the correct result of comparing the current positions of the
2787 static void fts5AssertComparisonResult(
2793 int i1
= p1
- pIter
->aSeg
;
2794 int i2
= p2
- pIter
->aSeg
;
2796 if( p1
->pLeaf
|| p2
->pLeaf
){
2798 assert( pRes
->iFirst
==i2
);
2799 }else if( p2
->pLeaf
==0 ){
2800 assert( pRes
->iFirst
==i1
);
2802 int nMin
= MIN(p1
->term
.n
, p2
->term
.n
);
2803 int res
= fts5Memcmp(p1
->term
.p
, p2
->term
.p
, nMin
);
2804 if( res
==0 ) res
= p1
->term
.n
- p2
->term
.n
;
2807 assert( pRes
->bTermEq
==1 );
2808 assert( p1
->iRowid
!=p2
->iRowid
);
2809 res
= ((p1
->iRowid
> p2
->iRowid
)==pIter
->bRev
) ? -1 : 1;
2811 assert( pRes
->bTermEq
==0 );
2815 assert( pRes
->iFirst
==i1
);
2817 assert( pRes
->iFirst
==i2
);
2824 ** This function is a no-op unless SQLITE_DEBUG is defined when this module
2825 ** is compiled. In that case, this function is essentially an assert()
2826 ** statement used to verify that the contents of the pIter->aFirst[] array
2829 static void fts5AssertMultiIterSetup(Fts5Index
*p
, Fts5Iter
*pIter
){
2830 if( p
->rc
==SQLITE_OK
){
2831 Fts5SegIter
*pFirst
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
2834 assert( (pFirst
->pLeaf
==0)==pIter
->base
.bEof
);
2836 /* Check that pIter->iSwitchRowid is set correctly. */
2837 for(i
=0; i
<pIter
->nSeg
; i
++){
2838 Fts5SegIter
*p1
= &pIter
->aSeg
[i
];
2841 || fts5BufferCompare(&pFirst
->term
, &p1
->term
)
2842 || p1
->iRowid
==pIter
->iSwitchRowid
2843 || (p1
->iRowid
<pIter
->iSwitchRowid
)==pIter
->bRev
2847 for(i
=0; i
<pIter
->nSeg
; i
+=2){
2848 Fts5SegIter
*p1
= &pIter
->aSeg
[i
];
2849 Fts5SegIter
*p2
= &pIter
->aSeg
[i
+1];
2850 Fts5CResult
*pRes
= &pIter
->aFirst
[(pIter
->nSeg
+ i
) / 2];
2851 fts5AssertComparisonResult(pIter
, p1
, p2
, pRes
);
2854 for(i
=1; i
<(pIter
->nSeg
/ 2); i
+=2){
2855 Fts5SegIter
*p1
= &pIter
->aSeg
[ pIter
->aFirst
[i
*2].iFirst
];
2856 Fts5SegIter
*p2
= &pIter
->aSeg
[ pIter
->aFirst
[i
*2+1].iFirst
];
2857 Fts5CResult
*pRes
= &pIter
->aFirst
[i
];
2858 fts5AssertComparisonResult(pIter
, p1
, p2
, pRes
);
2863 # define fts5AssertMultiIterSetup(x,y)
2867 ** Do the comparison necessary to populate pIter->aFirst[iOut].
2869 ** If the returned value is non-zero, then it is the index of an entry
2870 ** in the pIter->aSeg[] array that is (a) not at EOF, and (b) pointing
2871 ** to a key that is a duplicate of another, higher priority,
2872 ** segment-iterator in the pSeg->aSeg[] array.
2874 static int fts5MultiIterDoCompare(Fts5Iter
*pIter
, int iOut
){
2875 int i1
; /* Index of left-hand Fts5SegIter */
2876 int i2
; /* Index of right-hand Fts5SegIter */
2878 Fts5SegIter
*p1
; /* Left-hand Fts5SegIter */
2879 Fts5SegIter
*p2
; /* Right-hand Fts5SegIter */
2880 Fts5CResult
*pRes
= &pIter
->aFirst
[iOut
];
2882 assert( iOut
<pIter
->nSeg
&& iOut
>0 );
2883 assert( pIter
->bRev
==0 || pIter
->bRev
==1 );
2885 if( iOut
>=(pIter
->nSeg
/2) ){
2886 i1
= (iOut
- pIter
->nSeg
/2) * 2;
2889 i1
= pIter
->aFirst
[iOut
*2].iFirst
;
2890 i2
= pIter
->aFirst
[iOut
*2+1].iFirst
;
2892 p1
= &pIter
->aSeg
[i1
];
2893 p2
= &pIter
->aSeg
[i2
];
2896 if( p1
->pLeaf
==0 ){ /* If p1 is at EOF */
2898 }else if( p2
->pLeaf
==0 ){ /* If p2 is at EOF */
2901 int res
= fts5BufferCompare(&p1
->term
, &p2
->term
);
2906 if( p1
->iRowid
==p2
->iRowid
){
2907 p1
->bDel
= p2
->bDel
;
2910 res
= ((p1
->iRowid
> p2
->iRowid
)==pIter
->bRev
) ? -1 : +1;
2920 pRes
->iFirst
= (u16
)iRes
;
2925 ** Move the seg-iter so that it points to the first rowid on page iLeafPgno.
2926 ** It is an error if leaf iLeafPgno does not exist. Unless the db is
2927 ** a 'secure-delete' db, if it contains no rowids then this is also an error.
2929 static void fts5SegIterGotoPage(
2930 Fts5Index
*p
, /* FTS5 backend object */
2931 Fts5SegIter
*pIter
, /* Iterator to advance */
2934 assert( iLeafPgno
>pIter
->iLeafPgno
);
2936 if( iLeafPgno
>pIter
->pSeg
->pgnoLast
){
2937 p
->rc
= FTS5_CORRUPT
;
2939 fts5DataRelease(pIter
->pNextLeaf
);
2940 pIter
->pNextLeaf
= 0;
2941 pIter
->iLeafPgno
= iLeafPgno
-1;
2943 while( p
->rc
==SQLITE_OK
){
2945 fts5SegIterNextPage(p
, pIter
);
2946 if( pIter
->pLeaf
==0 ) break;
2947 iOff
= fts5LeafFirstRowidOff(pIter
->pLeaf
);
2949 u8
*a
= pIter
->pLeaf
->p
;
2950 int n
= pIter
->pLeaf
->szLeaf
;
2951 if( iOff
<4 || iOff
>=n
){
2952 p
->rc
= FTS5_CORRUPT
;
2954 iOff
+= fts5GetVarint(&a
[iOff
], (u64
*)&pIter
->iRowid
);
2955 pIter
->iLeafOffset
= iOff
;
2956 fts5SegIterLoadNPos(p
, pIter
);
2965 ** Advance the iterator passed as the second argument until it is at or
2966 ** past rowid iFrom. Regardless of the value of iFrom, the iterator is
2967 ** always advanced at least once.
2969 static void fts5SegIterNextFrom(
2970 Fts5Index
*p
, /* FTS5 backend object */
2971 Fts5SegIter
*pIter
, /* Iterator to advance */
2972 i64 iMatch
/* Advance iterator at least this far */
2974 int bRev
= (pIter
->flags
& FTS5_SEGITER_REVERSE
);
2975 Fts5DlidxIter
*pDlidx
= pIter
->pDlidx
;
2976 int iLeafPgno
= pIter
->iLeafPgno
;
2979 assert( pIter
->flags
& FTS5_SEGITER_ONETERM
);
2980 assert( pIter
->pDlidx
);
2981 assert( pIter
->pLeaf
);
2984 while( !fts5DlidxIterEof(p
, pDlidx
) && iMatch
>fts5DlidxIterRowid(pDlidx
) ){
2985 iLeafPgno
= fts5DlidxIterPgno(pDlidx
);
2986 fts5DlidxIterNext(p
, pDlidx
);
2988 assert_nc( iLeafPgno
>=pIter
->iLeafPgno
|| p
->rc
);
2989 if( iLeafPgno
>pIter
->iLeafPgno
){
2990 fts5SegIterGotoPage(p
, pIter
, iLeafPgno
);
2994 assert( pIter
->pNextLeaf
==0 );
2995 assert( iMatch
<pIter
->iRowid
);
2996 while( !fts5DlidxIterEof(p
, pDlidx
) && iMatch
<fts5DlidxIterRowid(pDlidx
) ){
2997 fts5DlidxIterPrev(p
, pDlidx
);
2999 iLeafPgno
= fts5DlidxIterPgno(pDlidx
);
3001 assert( fts5DlidxIterEof(p
, pDlidx
) || iLeafPgno
<=pIter
->iLeafPgno
);
3003 if( iLeafPgno
<pIter
->iLeafPgno
){
3004 pIter
->iLeafPgno
= iLeafPgno
+1;
3005 fts5SegIterReverseNewPage(p
, pIter
);
3011 if( bMove
&& p
->rc
==SQLITE_OK
) pIter
->xNext(p
, pIter
, 0);
3012 if( pIter
->pLeaf
==0 ) break;
3013 if( bRev
==0 && pIter
->iRowid
>=iMatch
) break;
3014 if( bRev
!=0 && pIter
->iRowid
<=iMatch
) break;
3016 }while( p
->rc
==SQLITE_OK
);
3021 ** Free the iterator object passed as the second argument.
3023 static void fts5MultiIterFree(Fts5Iter
*pIter
){
3026 for(i
=0; i
<pIter
->nSeg
; i
++){
3027 fts5SegIterClear(&pIter
->aSeg
[i
]);
3029 fts5BufferFree(&pIter
->poslist
);
3030 sqlite3_free(pIter
);
3034 static void fts5MultiIterAdvanced(
3035 Fts5Index
*p
, /* FTS5 backend to iterate within */
3036 Fts5Iter
*pIter
, /* Iterator to update aFirst[] array for */
3037 int iChanged
, /* Index of sub-iterator just advanced */
3038 int iMinset
/* Minimum entry in aFirst[] to set */
3041 for(i
=(pIter
->nSeg
+iChanged
)/2; i
>=iMinset
&& p
->rc
==SQLITE_OK
; i
=i
/2){
3043 if( (iEq
= fts5MultiIterDoCompare(pIter
, i
)) ){
3044 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iEq
];
3045 assert( p
->rc
==SQLITE_OK
);
3046 pSeg
->xNext(p
, pSeg
, 0);
3047 i
= pIter
->nSeg
+ iEq
;
3053 ** Sub-iterator iChanged of iterator pIter has just been advanced. It still
3054 ** points to the same term though - just a different rowid. This function
3055 ** attempts to update the contents of the pIter->aFirst[] accordingly.
3056 ** If it does so successfully, 0 is returned. Otherwise 1.
3058 ** If non-zero is returned, the caller should call fts5MultiIterAdvanced()
3059 ** on the iterator instead. That function does the same as this one, except
3060 ** that it deals with more complicated cases as well.
3062 static int fts5MultiIterAdvanceRowid(
3063 Fts5Iter
*pIter
, /* Iterator to update aFirst[] array for */
3064 int iChanged
, /* Index of sub-iterator just advanced */
3065 Fts5SegIter
**ppFirst
3067 Fts5SegIter
*pNew
= &pIter
->aSeg
[iChanged
];
3069 if( pNew
->iRowid
==pIter
->iSwitchRowid
3070 || (pNew
->iRowid
<pIter
->iSwitchRowid
)==pIter
->bRev
3073 Fts5SegIter
*pOther
= &pIter
->aSeg
[iChanged
^ 0x0001];
3074 pIter
->iSwitchRowid
= pIter
->bRev
? SMALLEST_INT64
: LARGEST_INT64
;
3075 for(i
=(pIter
->nSeg
+iChanged
)/2; 1; i
=i
/2){
3076 Fts5CResult
*pRes
= &pIter
->aFirst
[i
];
3078 assert( pNew
->pLeaf
);
3079 assert( pRes
->bTermEq
==0 || pOther
->pLeaf
);
3081 if( pRes
->bTermEq
){
3082 if( pNew
->iRowid
==pOther
->iRowid
){
3084 }else if( (pOther
->iRowid
>pNew
->iRowid
)==pIter
->bRev
){
3085 pIter
->iSwitchRowid
= pOther
->iRowid
;
3087 }else if( (pOther
->iRowid
>pIter
->iSwitchRowid
)==pIter
->bRev
){
3088 pIter
->iSwitchRowid
= pOther
->iRowid
;
3091 pRes
->iFirst
= (u16
)(pNew
- pIter
->aSeg
);
3094 pOther
= &pIter
->aSeg
[ pIter
->aFirst
[i
^ 0x0001].iFirst
];
3103 ** Set the pIter->bEof variable based on the state of the sub-iterators.
3105 static void fts5MultiIterSetEof(Fts5Iter
*pIter
){
3106 Fts5SegIter
*pSeg
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
3107 pIter
->base
.bEof
= pSeg
->pLeaf
==0;
3108 pIter
->iSwitchRowid
= pSeg
->iRowid
;
3112 ** The argument to this macro must be an Fts5Data structure containing a
3113 ** tombstone hash page. This macro returns the key-size of the hash-page.
3115 #define TOMBSTONE_KEYSIZE(pPg) (pPg->p[0]==4 ? 4 : 8)
3117 #define TOMBSTONE_NSLOT(pPg) \
3118 ((pPg->nn > 16) ? ((pPg->nn-8) / TOMBSTONE_KEYSIZE(pPg)) : 1)
3121 ** Query a single tombstone hash table for rowid iRowid. Return true if
3122 ** it is found or false otherwise. The tombstone hash table is one of
3123 ** nHashTable tables.
3125 static int fts5IndexTombstoneQuery(
3126 Fts5Data
*pHash
, /* Hash table page to query */
3127 int nHashTable
, /* Number of pages attached to segment */
3128 u64 iRowid
/* Rowid to query hash for */
3130 const int szKey
= TOMBSTONE_KEYSIZE(pHash
);
3131 const int nSlot
= TOMBSTONE_NSLOT(pHash
);
3132 int iSlot
= (iRowid
/ nHashTable
) % nSlot
;
3133 int nCollide
= nSlot
;
3137 }else if( szKey
==4 ){
3138 u32
*aSlot
= (u32
*)&pHash
->p
[8];
3139 while( aSlot
[iSlot
] ){
3140 if( fts5GetU32((u8
*)&aSlot
[iSlot
])==iRowid
) return 1;
3141 if( nCollide
--==0 ) break;
3142 iSlot
= (iSlot
+1)%nSlot
;
3145 u64
*aSlot
= (u64
*)&pHash
->p
[8];
3146 while( aSlot
[iSlot
] ){
3147 if( fts5GetU64((u8
*)&aSlot
[iSlot
])==iRowid
) return 1;
3148 if( nCollide
--==0 ) break;
3149 iSlot
= (iSlot
+1)%nSlot
;
3157 ** Return true if the iterator passed as the only argument points
3158 ** to an segment entry for which there is a tombstone. Return false
3159 ** if there is no tombstone or if the iterator is already at EOF.
3161 static int fts5MultiIterIsDeleted(Fts5Iter
*pIter
){
3162 int iFirst
= pIter
->aFirst
[1].iFirst
;
3163 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iFirst
];
3165 if( pSeg
->pLeaf
&& pSeg
->nTombstone
){
3166 /* Figure out which page the rowid might be present on. */
3167 int iPg
= ((u64
)pSeg
->iRowid
) % pSeg
->nTombstone
;
3170 /* If tombstone hash page iPg has not yet been loaded from the
3171 ** database, load it now. */
3172 if( pSeg
->apTombstone
[iPg
]==0 ){
3173 pSeg
->apTombstone
[iPg
] = fts5DataRead(pIter
->pIndex
,
3174 FTS5_TOMBSTONE_ROWID(pSeg
->pSeg
->iSegid
, iPg
)
3176 if( pSeg
->apTombstone
[iPg
]==0 ) return 0;
3179 return fts5IndexTombstoneQuery(
3180 pSeg
->apTombstone
[iPg
],
3190 ** Move the iterator to the next entry.
3192 ** If an error occurs, an error code is left in Fts5Index.rc. It is not
3193 ** considered an error if the iterator reaches EOF, or if it is already at
3194 ** EOF when this function is called.
3196 static void fts5MultiIterNext(
3199 int bFrom
, /* True if argument iFrom is valid */
3200 i64 iFrom
/* Advance at least as far as this */
3202 int bUseFrom
= bFrom
;
3203 assert( pIter
->base
.bEof
==0 );
3204 while( p
->rc
==SQLITE_OK
){
3205 int iFirst
= pIter
->aFirst
[1].iFirst
;
3207 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iFirst
];
3208 assert( p
->rc
==SQLITE_OK
);
3209 if( bUseFrom
&& pSeg
->pDlidx
){
3210 fts5SegIterNextFrom(p
, pSeg
, iFrom
);
3212 pSeg
->xNext(p
, pSeg
, &bNewTerm
);
3215 if( pSeg
->pLeaf
==0 || bNewTerm
3216 || fts5MultiIterAdvanceRowid(pIter
, iFirst
, &pSeg
)
3218 fts5MultiIterAdvanced(p
, pIter
, iFirst
, 1);
3219 fts5MultiIterSetEof(pIter
);
3220 pSeg
= &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
];
3221 if( pSeg
->pLeaf
==0 ) return;
3224 fts5AssertMultiIterSetup(p
, pIter
);
3225 assert( pSeg
==&pIter
->aSeg
[pIter
->aFirst
[1].iFirst
] && pSeg
->pLeaf
);
3226 if( (pIter
->bSkipEmpty
==0 || pSeg
->nPos
)
3227 && 0==fts5MultiIterIsDeleted(pIter
)
3229 pIter
->xSetOutputs(pIter
, pSeg
);
3236 static void fts5MultiIterNext2(
3239 int *pbNewTerm
/* OUT: True if *might* be new term */
3241 assert( pIter
->bSkipEmpty
);
3242 if( p
->rc
==SQLITE_OK
){
3245 int iFirst
= pIter
->aFirst
[1].iFirst
;
3246 Fts5SegIter
*pSeg
= &pIter
->aSeg
[iFirst
];
3249 assert( p
->rc
==SQLITE_OK
);
3250 pSeg
->xNext(p
, pSeg
, &bNewTerm
);
3251 if( pSeg
->pLeaf
==0 || bNewTerm
3252 || fts5MultiIterAdvanceRowid(pIter
, iFirst
, &pSeg
)
3254 fts5MultiIterAdvanced(p
, pIter
, iFirst
, 1);
3255 fts5MultiIterSetEof(pIter
);
3258 fts5AssertMultiIterSetup(p
, pIter
);
3260 }while( (fts5MultiIterIsEmpty(p
, pIter
) || fts5MultiIterIsDeleted(pIter
))
3261 && (p
->rc
==SQLITE_OK
)
3266 static void fts5IterSetOutputs_Noop(Fts5Iter
*pUnused1
, Fts5SegIter
*pUnused2
){
3267 UNUSED_PARAM2(pUnused1
, pUnused2
);
3270 static Fts5Iter
*fts5MultiIterAlloc(
3271 Fts5Index
*p
, /* FTS5 backend to iterate within */
3275 int nSlot
; /* Power of two >= nSeg */
3277 for(nSlot
=2; nSlot
<nSeg
; nSlot
=nSlot
*2);
3278 pNew
= fts5IdxMalloc(p
,
3279 sizeof(Fts5Iter
) + /* pNew */
3280 sizeof(Fts5SegIter
) * (nSlot
-1) + /* pNew->aSeg[] */
3281 sizeof(Fts5CResult
) * nSlot
/* pNew->aFirst[] */
3285 pNew
->aFirst
= (Fts5CResult
*)&pNew
->aSeg
[nSlot
];
3287 pNew
->xSetOutputs
= fts5IterSetOutputs_Noop
;
3292 static void fts5PoslistCallback(
3295 const u8
*pChunk
, int nChunk
3297 UNUSED_PARAM(pUnused
);
3298 assert_nc( nChunk
>=0 );
3300 fts5BufferSafeAppendBlob((Fts5Buffer
*)pContext
, pChunk
, nChunk
);
3304 typedef struct PoslistCallbackCtx PoslistCallbackCtx
;
3305 struct PoslistCallbackCtx
{
3306 Fts5Buffer
*pBuf
; /* Append to this buffer */
3307 Fts5Colset
*pColset
; /* Restrict matches to this column */
3308 int eState
; /* See above */
3311 typedef struct PoslistOffsetsCtx PoslistOffsetsCtx
;
3312 struct PoslistOffsetsCtx
{
3313 Fts5Buffer
*pBuf
; /* Append to this buffer */
3314 Fts5Colset
*pColset
; /* Restrict matches to this column */
3320 ** TODO: Make this more efficient!
3322 static int fts5IndexColsetTest(Fts5Colset
*pColset
, int iCol
){
3324 for(i
=0; i
<pColset
->nCol
; i
++){
3325 if( pColset
->aiCol
[i
]==iCol
) return 1;
3330 static void fts5PoslistOffsetsCallback(
3333 const u8
*pChunk
, int nChunk
3335 PoslistOffsetsCtx
*pCtx
= (PoslistOffsetsCtx
*)pContext
;
3336 UNUSED_PARAM(pUnused
);
3337 assert_nc( nChunk
>=0 );
3342 i
+= fts5GetVarint32(&pChunk
[i
], iVal
);
3343 iVal
+= pCtx
->iRead
- 2;
3345 if( fts5IndexColsetTest(pCtx
->pColset
, iVal
) ){
3346 fts5BufferSafeAppendVarint(pCtx
->pBuf
, iVal
+ 2 - pCtx
->iWrite
);
3347 pCtx
->iWrite
= iVal
;
3353 static void fts5PoslistFilterCallback(
3356 const u8
*pChunk
, int nChunk
3358 PoslistCallbackCtx
*pCtx
= (PoslistCallbackCtx
*)pContext
;
3359 UNUSED_PARAM(pUnused
);
3360 assert_nc( nChunk
>=0 );
3362 /* Search through to find the first varint with value 1. This is the
3363 ** start of the next columns hits. */
3367 if( pCtx
->eState
==2 ){
3369 fts5FastGetVarint32(pChunk
, i
, iCol
);
3370 if( fts5IndexColsetTest(pCtx
->pColset
, iCol
) ){
3372 fts5BufferSafeAppendVarint(pCtx
->pBuf
, 1);
3379 while( i
<nChunk
&& pChunk
[i
]!=0x01 ){
3380 while( pChunk
[i
] & 0x80 ) i
++;
3384 fts5BufferSafeAppendBlob(pCtx
->pBuf
, &pChunk
[iStart
], i
-iStart
);
3393 fts5FastGetVarint32(pChunk
, i
, iCol
);
3394 pCtx
->eState
= fts5IndexColsetTest(pCtx
->pColset
, iCol
);
3396 fts5BufferSafeAppendBlob(pCtx
->pBuf
, &pChunk
[iStart
], i
-iStart
);
3405 static void fts5ChunkIterate(
3406 Fts5Index
*p
, /* Index object */
3407 Fts5SegIter
*pSeg
, /* Poslist of this iterator */
3408 void *pCtx
, /* Context pointer for xChunk callback */
3409 void (*xChunk
)(Fts5Index
*, void*, const u8
*, int)
3411 int nRem
= pSeg
->nPos
; /* Number of bytes still to come */
3412 Fts5Data
*pData
= 0;
3413 u8
*pChunk
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3414 int nChunk
= MIN(nRem
, pSeg
->pLeaf
->szLeaf
- pSeg
->iLeafOffset
);
3415 int pgno
= pSeg
->iLeafPgno
;
3418 /* This function does not work with detail=none databases. */
3419 assert( p
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
3421 if( (pSeg
->flags
& FTS5_SEGITER_REVERSE
)==0 ){
3426 xChunk(p
, pCtx
, pChunk
, nChunk
);
3428 fts5DataRelease(pData
);
3431 }else if( pSeg
->pSeg
==0 ){
3432 p
->rc
= FTS5_CORRUPT
;
3436 pData
= fts5LeafRead(p
, FTS5_SEGMENT_ROWID(pSeg
->pSeg
->iSegid
, pgno
));
3437 if( pData
==0 ) break;
3438 pChunk
= &pData
->p
[4];
3439 nChunk
= MIN(nRem
, pData
->szLeaf
- 4);
3440 if( pgno
==pgnoSave
){
3441 assert( pSeg
->pNextLeaf
==0 );
3442 pSeg
->pNextLeaf
= pData
;
3450 ** Iterator pIter currently points to a valid entry (not EOF). This
3451 ** function appends the position list data for the current entry to
3452 ** buffer pBuf. It does not make a copy of the position-list size
3455 static void fts5SegiterPoslist(
3458 Fts5Colset
*pColset
,
3463 if( 0==fts5BufferGrow(&p
->rc
, pBuf
, pSeg
->nPos
+FTS5_DATA_ZERO_PADDING
) ){
3464 assert( pBuf
->p
!=0 );
3465 assert( pBuf
->nSpace
>= pBuf
->n
+pSeg
->nPos
+FTS5_DATA_ZERO_PADDING
);
3466 memset(&pBuf
->p
[pBuf
->n
+pSeg
->nPos
], 0, FTS5_DATA_ZERO_PADDING
);
3468 fts5ChunkIterate(p
, pSeg
, (void*)pBuf
, fts5PoslistCallback
);
3470 if( p
->pConfig
->eDetail
==FTS5_DETAIL_FULL
){
3471 PoslistCallbackCtx sCtx
;
3473 sCtx
.pColset
= pColset
;
3474 sCtx
.eState
= fts5IndexColsetTest(pColset
, 0);
3475 assert( sCtx
.eState
==0 || sCtx
.eState
==1 );
3476 fts5ChunkIterate(p
, pSeg
, (void*)&sCtx
, fts5PoslistFilterCallback
);
3478 PoslistOffsetsCtx sCtx
;
3479 memset(&sCtx
, 0, sizeof(sCtx
));
3481 sCtx
.pColset
= pColset
;
3482 fts5ChunkIterate(p
, pSeg
, (void*)&sCtx
, fts5PoslistOffsetsCallback
);
3489 ** Parameter pPos points to a buffer containing a position list, size nPos.
3490 ** This function filters it according to pColset (which must be non-NULL)
3491 ** and sets pIter->base.pData/nData to point to the new position list.
3492 ** If memory is required for the new position list, use buffer pIter->poslist.
3493 ** Or, if the new position list is a contiguous subset of the input, set
3494 ** pIter->base.pData/nData to point directly to it.
3496 ** This function is a no-op if *pRc is other than SQLITE_OK when it is
3497 ** called. If an OOM error is encountered, *pRc is set to SQLITE_NOMEM
3498 ** before returning.
3500 static void fts5IndexExtractColset(
3502 Fts5Colset
*pColset
, /* Colset to filter on */
3503 const u8
*pPos
, int nPos
, /* Position list */
3506 if( *pRc
==SQLITE_OK
){
3508 const u8
*aCopy
= p
;
3509 const u8
*pEnd
= &p
[nPos
]; /* One byte past end of position list */
3513 if( pColset
->nCol
>1 && sqlite3Fts5BufferSize(pRc
, &pIter
->poslist
, nPos
) ){
3518 while( pColset
->aiCol
[i
]<iCurrent
){
3520 if( i
==pColset
->nCol
){
3521 pIter
->base
.pData
= pIter
->poslist
.p
;
3522 pIter
->base
.nData
= pIter
->poslist
.n
;
3527 /* Advance pointer p until it points to pEnd or an 0x01 byte that is
3528 ** not part of a varint */
3529 while( p
<pEnd
&& *p
!=0x01 ){
3530 while( *p
++ & 0x80 );
3533 if( pColset
->aiCol
[i
]==iCurrent
){
3534 if( pColset
->nCol
==1 ){
3535 pIter
->base
.pData
= aCopy
;
3536 pIter
->base
.nData
= p
-aCopy
;
3539 fts5BufferSafeAppendBlob(&pIter
->poslist
, aCopy
, p
-aCopy
);
3542 pIter
->base
.pData
= pIter
->poslist
.p
;
3543 pIter
->base
.nData
= pIter
->poslist
.n
;
3548 if( iCurrent
& 0x80 ){
3550 p
+= fts5GetVarint32(p
, iCurrent
);
3558 ** xSetOutputs callback used by detail=none tables.
3560 static void fts5IterSetOutputs_None(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3561 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_NONE
);
3562 pIter
->base
.iRowid
= pSeg
->iRowid
;
3563 pIter
->base
.nData
= pSeg
->nPos
;
3567 ** xSetOutputs callback used by detail=full and detail=col tables when no
3568 ** column filters are specified.
3570 static void fts5IterSetOutputs_Nocolset(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3571 pIter
->base
.iRowid
= pSeg
->iRowid
;
3572 pIter
->base
.nData
= pSeg
->nPos
;
3574 assert( pIter
->pIndex
->pConfig
->eDetail
!=FTS5_DETAIL_NONE
);
3575 assert( pIter
->pColset
==0 );
3577 if( pSeg
->iLeafOffset
+pSeg
->nPos
<=pSeg
->pLeaf
->szLeaf
){
3578 /* All data is stored on the current page. Populate the output
3579 ** variables to point into the body of the page object. */
3580 pIter
->base
.pData
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3582 /* The data is distributed over two or more pages. Copy it into the
3583 ** Fts5Iter.poslist buffer and then set the output pointer to point
3584 ** to this buffer. */
3585 fts5BufferZero(&pIter
->poslist
);
3586 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, 0, &pIter
->poslist
);
3587 pIter
->base
.pData
= pIter
->poslist
.p
;
3592 ** xSetOutputs callback used when the Fts5Colset object has nCol==0 (match
3593 ** against no columns at all).
3595 static void fts5IterSetOutputs_ZeroColset(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3597 pIter
->base
.nData
= 0;
3601 ** xSetOutputs callback used by detail=col when there is a column filter
3602 ** and there are 100 or more columns. Also called as a fallback from
3603 ** fts5IterSetOutputs_Col100 if the column-list spans more than one page.
3605 static void fts5IterSetOutputs_Col(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3606 fts5BufferZero(&pIter
->poslist
);
3607 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, pIter
->pColset
, &pIter
->poslist
);
3608 pIter
->base
.iRowid
= pSeg
->iRowid
;
3609 pIter
->base
.pData
= pIter
->poslist
.p
;
3610 pIter
->base
.nData
= pIter
->poslist
.n
;
3614 ** xSetOutputs callback used when:
3617 ** * there is a column filter, and
3618 ** * the table contains 100 or fewer columns.
3620 ** The last point is to ensure all column numbers are stored as
3621 ** single-byte varints.
3623 static void fts5IterSetOutputs_Col100(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3625 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_COLUMNS
);
3626 assert( pIter
->pColset
);
3628 if( pSeg
->iLeafOffset
+pSeg
->nPos
>pSeg
->pLeaf
->szLeaf
){
3629 fts5IterSetOutputs_Col(pIter
, pSeg
);
3631 u8
*a
= (u8
*)&pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3632 u8
*pEnd
= (u8
*)&a
[pSeg
->nPos
];
3634 int *aiCol
= pIter
->pColset
->aiCol
;
3635 int *aiColEnd
= &aiCol
[pIter
->pColset
->nCol
];
3637 u8
*aOut
= pIter
->poslist
.p
;
3640 pIter
->base
.iRowid
= pSeg
->iRowid
;
3643 iPrev
+= (int)a
++[0] - 2;
3644 while( *aiCol
<iPrev
){
3646 if( aiCol
==aiColEnd
) goto setoutputs_col_out
;
3648 if( *aiCol
==iPrev
){
3649 *aOut
++ = (u8
)((iPrev
- iPrevOut
) + 2);
3655 pIter
->base
.pData
= pIter
->poslist
.p
;
3656 pIter
->base
.nData
= aOut
- pIter
->poslist
.p
;
3661 ** xSetOutputs callback used by detail=full when there is a column filter.
3663 static void fts5IterSetOutputs_Full(Fts5Iter
*pIter
, Fts5SegIter
*pSeg
){
3664 Fts5Colset
*pColset
= pIter
->pColset
;
3665 pIter
->base
.iRowid
= pSeg
->iRowid
;
3667 assert( pIter
->pIndex
->pConfig
->eDetail
==FTS5_DETAIL_FULL
);
3670 if( pSeg
->iLeafOffset
+pSeg
->nPos
<=pSeg
->pLeaf
->szLeaf
){
3671 /* All data is stored on the current page. Populate the output
3672 ** variables to point into the body of the page object. */
3673 const u8
*a
= &pSeg
->pLeaf
->p
[pSeg
->iLeafOffset
];
3674 int *pRc
= &pIter
->pIndex
->rc
;
3675 fts5BufferZero(&pIter
->poslist
);
3676 fts5IndexExtractColset(pRc
, pColset
, a
, pSeg
->nPos
, pIter
);
3678 /* The data is distributed over two or more pages. Copy it into the
3679 ** Fts5Iter.poslist buffer and then set the output pointer to point
3680 ** to this buffer. */
3681 fts5BufferZero(&pIter
->poslist
);
3682 fts5SegiterPoslist(pIter
->pIndex
, pSeg
, pColset
, &pIter
->poslist
);
3683 pIter
->base
.pData
= pIter
->poslist
.p
;
3684 pIter
->base
.nData
= pIter
->poslist
.n
;
3688 static void fts5IterSetOutputCb(int *pRc
, Fts5Iter
*pIter
){
3689 assert( pIter
!=0 || (*pRc
)!=SQLITE_OK
);
3690 if( *pRc
==SQLITE_OK
){
3691 Fts5Config
*pConfig
= pIter
->pIndex
->pConfig
;
3692 if( pConfig
->eDetail
==FTS5_DETAIL_NONE
){
3693 pIter
->xSetOutputs
= fts5IterSetOutputs_None
;
3696 else if( pIter
->pColset
==0 ){
3697 pIter
->xSetOutputs
= fts5IterSetOutputs_Nocolset
;
3700 else if( pIter
->pColset
->nCol
==0 ){
3701 pIter
->xSetOutputs
= fts5IterSetOutputs_ZeroColset
;
3704 else if( pConfig
->eDetail
==FTS5_DETAIL_FULL
){
3705 pIter
->xSetOutputs
= fts5IterSetOutputs_Full
;
3709 assert( pConfig
->eDetail
==FTS5_DETAIL_COLUMNS
);
3710 if( pConfig
->nCol
<=100 ){
3711 pIter
->xSetOutputs
= fts5IterSetOutputs_Col100
;
3712 sqlite3Fts5BufferSize(pRc
, &pIter
->poslist
, pConfig
->nCol
);
3714 pIter
->xSetOutputs
= fts5IterSetOutputs_Col
;
3722 ** Allocate a new Fts5Iter object.
3724 ** The new object will be used to iterate through data in structure pStruct.
3725 ** If iLevel is -ve, then all data in all segments is merged. Or, if iLevel
3726 ** is zero or greater, data from the first nSegment segments on level iLevel
3729 ** The iterator initially points to the first term/rowid entry in the
3732 static void fts5MultiIterNew(
3733 Fts5Index
*p
, /* FTS5 backend to iterate within */
3734 Fts5Structure
*pStruct
, /* Structure of specific index */
3735 int flags
, /* FTS5INDEX_QUERY_XXX flags */
3736 Fts5Colset
*pColset
, /* Colset to filter on (or NULL) */
3737 const u8
*pTerm
, int nTerm
, /* Term to seek to (or NULL/0) */
3738 int iLevel
, /* Level to iterate (-1 for all) */
3739 int nSegment
, /* Number of segments to merge (iLevel>=0) */
3740 Fts5Iter
**ppOut
/* New object */
3742 int nSeg
= 0; /* Number of segment-iters in use */
3743 int iIter
= 0; /* */
3744 int iSeg
; /* Used to iterate through segments */
3745 Fts5StructureLevel
*pLvl
;
3748 assert( (pTerm
==0 && nTerm
==0) || iLevel
<0 );
3750 /* Allocate space for the new multi-seg-iterator. */
3751 if( p
->rc
==SQLITE_OK
){
3753 assert( pStruct
->nSegment
==fts5StructureCountSegments(pStruct
) );
3754 nSeg
= pStruct
->nSegment
;
3755 nSeg
+= (p
->pHash
&& 0==(flags
& FTS5INDEX_QUERY_SKIPHASH
));
3757 nSeg
= MIN(pStruct
->aLevel
[iLevel
].nSeg
, nSegment
);
3760 *ppOut
= pNew
= fts5MultiIterAlloc(p
, nSeg
);
3762 assert( p
->rc
!=SQLITE_OK
);
3763 goto fts5MultiIterNew_post_check
;
3765 pNew
->bRev
= (0!=(flags
& FTS5INDEX_QUERY_DESC
));
3766 pNew
->bSkipEmpty
= (0!=(flags
& FTS5INDEX_QUERY_SKIPEMPTY
));
3767 pNew
->pColset
= pColset
;
3768 if( (flags
& FTS5INDEX_QUERY_NOOUTPUT
)==0 ){
3769 fts5IterSetOutputCb(&p
->rc
, pNew
);
3772 /* Initialize each of the component segment iterators. */
3773 if( p
->rc
==SQLITE_OK
){
3775 Fts5StructureLevel
*pEnd
= &pStruct
->aLevel
[pStruct
->nLevel
];
3776 if( p
->pHash
&& 0==(flags
& FTS5INDEX_QUERY_SKIPHASH
) ){
3777 /* Add a segment iterator for the current contents of the hash table. */
3778 Fts5SegIter
*pIter
= &pNew
->aSeg
[iIter
++];
3779 fts5SegIterHashInit(p
, pTerm
, nTerm
, flags
, pIter
);
3781 for(pLvl
=&pStruct
->aLevel
[0]; pLvl
<pEnd
; pLvl
++){
3782 for(iSeg
=pLvl
->nSeg
-1; iSeg
>=0; iSeg
--){
3783 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
3784 Fts5SegIter
*pIter
= &pNew
->aSeg
[iIter
++];
3786 fts5SegIterInit(p
, pSeg
, pIter
);
3788 fts5SegIterSeekInit(p
, pTerm
, nTerm
, flags
, pSeg
, pIter
);
3793 pLvl
= &pStruct
->aLevel
[iLevel
];
3794 for(iSeg
=nSeg
-1; iSeg
>=0; iSeg
--){
3795 fts5SegIterInit(p
, &pLvl
->aSeg
[iSeg
], &pNew
->aSeg
[iIter
++]);
3798 assert( iIter
==nSeg
);
3801 /* If the above was successful, each component iterators now points
3802 ** to the first entry in its segment. In this case initialize the
3803 ** aFirst[] array. Or, if an error has occurred, free the iterator
3804 ** object and set the output variable to NULL. */
3805 if( p
->rc
==SQLITE_OK
){
3806 for(iIter
=pNew
->nSeg
-1; iIter
>0; iIter
--){
3808 if( (iEq
= fts5MultiIterDoCompare(pNew
, iIter
)) ){
3809 Fts5SegIter
*pSeg
= &pNew
->aSeg
[iEq
];
3810 if( p
->rc
==SQLITE_OK
) pSeg
->xNext(p
, pSeg
, 0);
3811 fts5MultiIterAdvanced(p
, pNew
, iEq
, iIter
);
3814 fts5MultiIterSetEof(pNew
);
3815 fts5AssertMultiIterSetup(p
, pNew
);
3817 if( (pNew
->bSkipEmpty
&& fts5MultiIterIsEmpty(p
, pNew
))
3818 || fts5MultiIterIsDeleted(pNew
)
3820 fts5MultiIterNext(p
, pNew
, 0, 0);
3821 }else if( pNew
->base
.bEof
==0 ){
3822 Fts5SegIter
*pSeg
= &pNew
->aSeg
[pNew
->aFirst
[1].iFirst
];
3823 pNew
->xSetOutputs(pNew
, pSeg
);
3827 fts5MultiIterFree(pNew
);
3831 fts5MultiIterNew_post_check
:
3832 assert( (*ppOut
)!=0 || p
->rc
!=SQLITE_OK
);
3837 ** Create an Fts5Iter that iterates through the doclist provided
3838 ** as the second argument.
3840 static void fts5MultiIterNew2(
3841 Fts5Index
*p
, /* FTS5 backend to iterate within */
3842 Fts5Data
*pData
, /* Doclist to iterate through */
3843 int bDesc
, /* True for descending rowid order */
3844 Fts5Iter
**ppOut
/* New object */
3847 pNew
= fts5MultiIterAlloc(p
, 2);
3849 Fts5SegIter
*pIter
= &pNew
->aSeg
[1];
3851 pIter
->flags
= FTS5_SEGITER_ONETERM
;
3852 if( pData
->szLeaf
>0 ){
3853 pIter
->pLeaf
= pData
;
3854 pIter
->iLeafOffset
= fts5GetVarint(pData
->p
, (u64
*)&pIter
->iRowid
);
3855 pIter
->iEndofDoclist
= pData
->nn
;
3856 pNew
->aFirst
[1].iFirst
= 1;
3859 pIter
->flags
|= FTS5_SEGITER_REVERSE
;
3860 fts5SegIterReverseInitPage(p
, pIter
);
3862 fts5SegIterLoadNPos(p
, pIter
);
3866 pNew
->base
.bEof
= 1;
3868 fts5SegIterSetNext(p
, pIter
);
3873 fts5DataRelease(pData
);
3877 ** Return true if the iterator is at EOF or if an error has occurred.
3880 static int fts5MultiIterEof(Fts5Index
*p
, Fts5Iter
*pIter
){
3881 assert( pIter
!=0 || p
->rc
!=SQLITE_OK
);
3882 assert( p
->rc
!=SQLITE_OK
3883 || (pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].pLeaf
==0)==pIter
->base
.bEof
3885 return (p
->rc
|| pIter
->base
.bEof
);
3889 ** Return the rowid of the entry that the iterator currently points
3890 ** to. If the iterator points to EOF when this function is called the
3891 ** results are undefined.
3893 static i64
fts5MultiIterRowid(Fts5Iter
*pIter
){
3894 assert( pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].pLeaf
);
3895 return pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
].iRowid
;
3899 ** Move the iterator to the next entry at or following iMatch.
3901 static void fts5MultiIterNextFrom(
3908 fts5MultiIterNext(p
, pIter
, 1, iMatch
);
3909 if( fts5MultiIterEof(p
, pIter
) ) break;
3910 iRowid
= fts5MultiIterRowid(pIter
);
3911 if( pIter
->bRev
==0 && iRowid
>=iMatch
) break;
3912 if( pIter
->bRev
!=0 && iRowid
<=iMatch
) break;
3917 ** Return a pointer to a buffer containing the term associated with the
3918 ** entry that the iterator currently points to.
3920 static const u8
*fts5MultiIterTerm(Fts5Iter
*pIter
, int *pn
){
3921 Fts5SegIter
*p
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
3927 ** Allocate a new segment-id for the structure pStruct. The new segment
3928 ** id must be between 1 and 65335 inclusive, and must not be used by
3929 ** any currently existing segment. If a free segment id cannot be found,
3930 ** SQLITE_FULL is returned.
3932 ** If an error has already occurred, this function is a no-op. 0 is
3933 ** returned in this case.
3935 static int fts5AllocateSegid(Fts5Index
*p
, Fts5Structure
*pStruct
){
3938 if( p
->rc
==SQLITE_OK
){
3939 if( pStruct
->nSegment
>=FTS5_MAX_SEGMENT
){
3940 p
->rc
= SQLITE_FULL
;
3942 /* FTS5_MAX_SEGMENT is currently defined as 2000. So the following
3943 ** array is 63 elements, or 252 bytes, in size. */
3944 u32 aUsed
[(FTS5_MAX_SEGMENT
+31) / 32];
3948 memset(aUsed
, 0, sizeof(aUsed
));
3949 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
3950 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
3951 int iId
= pStruct
->aLevel
[iLvl
].aSeg
[iSeg
].iSegid
;
3952 if( iId
<=FTS5_MAX_SEGMENT
&& iId
>0 ){
3953 aUsed
[(iId
-1) / 32] |= (u32
)1 << ((iId
-1) % 32);
3958 for(i
=0; aUsed
[i
]==0xFFFFFFFF; i
++);
3960 for(iSegid
=0; mask
& ((u32
)1 << iSegid
); iSegid
++);
3964 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
3965 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
3966 assert_nc( iSegid
!=pStruct
->aLevel
[iLvl
].aSeg
[iSeg
].iSegid
);
3969 assert_nc( iSegid
>0 && iSegid
<=FTS5_MAX_SEGMENT
);
3972 sqlite3_stmt
*pIdxSelect
= fts5IdxSelectStmt(p
);
3973 if( p
->rc
==SQLITE_OK
){
3974 u8 aBlob
[2] = {0xff, 0xff};
3975 sqlite3_bind_int(pIdxSelect
, 1, iSegid
);
3976 sqlite3_bind_blob(pIdxSelect
, 2, aBlob
, 2, SQLITE_STATIC
);
3977 assert_nc( sqlite3_step(pIdxSelect
)!=SQLITE_ROW
);
3978 p
->rc
= sqlite3_reset(pIdxSelect
);
3979 sqlite3_bind_null(pIdxSelect
, 2);
3990 ** Discard all data currently cached in the hash-tables.
3992 static void fts5IndexDiscardData(Fts5Index
*p
){
3993 assert( p
->pHash
|| p
->nPendingData
==0 );
3995 sqlite3Fts5HashClear(p
->pHash
);
3996 p
->nPendingData
= 0;
3999 p
->nContentlessDelete
= 0;
4003 ** Return the size of the prefix, in bytes, that buffer
4004 ** (pNew/<length-unknown>) shares with buffer (pOld/nOld).
4006 ** Buffer (pNew/<length-unknown>) is guaranteed to be greater
4007 ** than buffer (pOld/nOld).
4009 static int fts5PrefixCompress(int nOld
, const u8
*pOld
, const u8
*pNew
){
4011 for(i
=0; i
<nOld
; i
++){
4012 if( pOld
[i
]!=pNew
[i
] ) break;
4017 static void fts5WriteDlidxClear(
4019 Fts5SegWriter
*pWriter
,
4020 int bFlush
/* If true, write dlidx to disk */
4023 assert( bFlush
==0 || (pWriter
->nDlidx
>0 && pWriter
->aDlidx
[0].buf
.n
>0) );
4024 for(i
=0; i
<pWriter
->nDlidx
; i
++){
4025 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[i
];
4026 if( pDlidx
->buf
.n
==0 ) break;
4028 assert( pDlidx
->pgno
!=0 );
4030 FTS5_DLIDX_ROWID(pWriter
->iSegid
, i
, pDlidx
->pgno
),
4031 pDlidx
->buf
.p
, pDlidx
->buf
.n
4034 sqlite3Fts5BufferZero(&pDlidx
->buf
);
4035 pDlidx
->bPrevValid
= 0;
4040 ** Grow the pWriter->aDlidx[] array to at least nLvl elements in size.
4041 ** Any new array elements are zeroed before returning.
4043 static int fts5WriteDlidxGrow(
4045 Fts5SegWriter
*pWriter
,
4048 if( p
->rc
==SQLITE_OK
&& nLvl
>=pWriter
->nDlidx
){
4049 Fts5DlidxWriter
*aDlidx
= (Fts5DlidxWriter
*)sqlite3_realloc64(
4050 pWriter
->aDlidx
, sizeof(Fts5DlidxWriter
) * nLvl
4053 p
->rc
= SQLITE_NOMEM
;
4055 size_t nByte
= sizeof(Fts5DlidxWriter
) * (nLvl
- pWriter
->nDlidx
);
4056 memset(&aDlidx
[pWriter
->nDlidx
], 0, nByte
);
4057 pWriter
->aDlidx
= aDlidx
;
4058 pWriter
->nDlidx
= nLvl
;
4065 ** If the current doclist-index accumulating in pWriter->aDlidx[] is large
4066 ** enough, flush it to disk and return 1. Otherwise discard it and return
4069 static int fts5WriteFlushDlidx(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
4072 /* If there were FTS5_MIN_DLIDX_SIZE or more empty leaf pages written
4073 ** to the database, also write the doclist-index to disk. */
4074 if( pWriter
->aDlidx
[0].buf
.n
>0 && pWriter
->nEmpty
>=FTS5_MIN_DLIDX_SIZE
){
4077 fts5WriteDlidxClear(p
, pWriter
, bFlag
);
4078 pWriter
->nEmpty
= 0;
4083 ** This function is called whenever processing of the doclist for the
4084 ** last term on leaf page (pWriter->iBtPage) is completed.
4086 ** The doclist-index for that term is currently stored in-memory within the
4087 ** Fts5SegWriter.aDlidx[] array. If it is large enough, this function
4088 ** writes it out to disk. Or, if it is too small to bother with, discards
4091 ** Fts5SegWriter.btterm currently contains the first term on page iBtPage.
4093 static void fts5WriteFlushBtree(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
4096 assert( pWriter
->iBtPage
|| pWriter
->nEmpty
==0 );
4097 if( pWriter
->iBtPage
==0 ) return;
4098 bFlag
= fts5WriteFlushDlidx(p
, pWriter
);
4100 if( p
->rc
==SQLITE_OK
){
4101 const char *z
= (pWriter
->btterm
.n
>0?(const char*)pWriter
->btterm
.p
:"");
4102 /* The following was already done in fts5WriteInit(): */
4103 /* sqlite3_bind_int(p->pIdxWriter, 1, pWriter->iSegid); */
4104 sqlite3_bind_blob(p
->pIdxWriter
, 2, z
, pWriter
->btterm
.n
, SQLITE_STATIC
);
4105 sqlite3_bind_int64(p
->pIdxWriter
, 3, bFlag
+ ((i64
)pWriter
->iBtPage
<<1));
4106 sqlite3_step(p
->pIdxWriter
);
4107 p
->rc
= sqlite3_reset(p
->pIdxWriter
);
4108 sqlite3_bind_null(p
->pIdxWriter
, 2);
4110 pWriter
->iBtPage
= 0;
4114 ** This is called once for each leaf page except the first that contains
4115 ** at least one term. Argument (nTerm/pTerm) is the split-key - a term that
4116 ** is larger than all terms written to earlier leaves, and equal to or
4117 ** smaller than the first term on the new leaf.
4119 ** If an error occurs, an error code is left in Fts5Index.rc. If an error
4120 ** has already occurred when this function is called, it is a no-op.
4122 static void fts5WriteBtreeTerm(
4123 Fts5Index
*p
, /* FTS5 backend object */
4124 Fts5SegWriter
*pWriter
, /* Writer object */
4125 int nTerm
, const u8
*pTerm
/* First term on new page */
4127 fts5WriteFlushBtree(p
, pWriter
);
4128 if( p
->rc
==SQLITE_OK
){
4129 fts5BufferSet(&p
->rc
, &pWriter
->btterm
, nTerm
, pTerm
);
4130 pWriter
->iBtPage
= pWriter
->writer
.pgno
;
4135 ** This function is called when flushing a leaf page that contains no
4136 ** terms at all to disk.
4138 static void fts5WriteBtreeNoTerm(
4139 Fts5Index
*p
, /* FTS5 backend object */
4140 Fts5SegWriter
*pWriter
/* Writer object */
4142 /* If there were no rowids on the leaf page either and the doclist-index
4143 ** has already been started, append an 0x00 byte to it. */
4144 if( pWriter
->bFirstRowidInPage
&& pWriter
->aDlidx
[0].buf
.n
>0 ){
4145 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[0];
4146 assert( pDlidx
->bPrevValid
);
4147 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, 0);
4150 /* Increment the "number of sequential leaves without a term" counter. */
4154 static i64
fts5DlidxExtractFirstRowid(Fts5Buffer
*pBuf
){
4158 iOff
= 1 + fts5GetVarint(&pBuf
->p
[1], (u64
*)&iRowid
);
4159 fts5GetVarint(&pBuf
->p
[iOff
], (u64
*)&iRowid
);
4164 ** Rowid iRowid has just been appended to the current leaf page. It is the
4165 ** first on the page. This function appends an appropriate entry to the current
4168 static void fts5WriteDlidxAppend(
4170 Fts5SegWriter
*pWriter
,
4176 for(i
=0; p
->rc
==SQLITE_OK
&& bDone
==0; i
++){
4178 Fts5DlidxWriter
*pDlidx
= &pWriter
->aDlidx
[i
];
4180 if( pDlidx
->buf
.n
>=p
->pConfig
->pgsz
){
4181 /* The current doclist-index page is full. Write it to disk and push
4182 ** a copy of iRowid (which will become the first rowid on the next
4183 ** doclist-index leaf page) up into the next level of the b-tree
4184 ** hierarchy. If the node being flushed is currently the root node,
4185 ** also push its first rowid upwards. */
4186 pDlidx
->buf
.p
[0] = 0x01; /* Not the root node */
4188 FTS5_DLIDX_ROWID(pWriter
->iSegid
, i
, pDlidx
->pgno
),
4189 pDlidx
->buf
.p
, pDlidx
->buf
.n
4191 fts5WriteDlidxGrow(p
, pWriter
, i
+2);
4192 pDlidx
= &pWriter
->aDlidx
[i
];
4193 if( p
->rc
==SQLITE_OK
&& pDlidx
[1].buf
.n
==0 ){
4194 i64 iFirst
= fts5DlidxExtractFirstRowid(&pDlidx
->buf
);
4196 /* This was the root node. Push its first rowid up to the new root. */
4197 pDlidx
[1].pgno
= pDlidx
->pgno
;
4198 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, 0);
4199 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, pDlidx
->pgno
);
4200 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
[1].buf
, iFirst
);
4201 pDlidx
[1].bPrevValid
= 1;
4202 pDlidx
[1].iPrev
= iFirst
;
4205 sqlite3Fts5BufferZero(&pDlidx
->buf
);
4206 pDlidx
->bPrevValid
= 0;
4212 if( pDlidx
->bPrevValid
){
4213 iVal
= iRowid
- pDlidx
->iPrev
;
4215 i64 iPgno
= (i
==0 ? pWriter
->writer
.pgno
: pDlidx
[-1].pgno
);
4216 assert( pDlidx
->buf
.n
==0 );
4217 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, !bDone
);
4218 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, iPgno
);
4222 sqlite3Fts5BufferAppendVarint(&p
->rc
, &pDlidx
->buf
, iVal
);
4223 pDlidx
->bPrevValid
= 1;
4224 pDlidx
->iPrev
= iRowid
;
4228 static void fts5WriteFlushLeaf(Fts5Index
*p
, Fts5SegWriter
*pWriter
){
4229 static const u8 zero
[] = { 0x00, 0x00, 0x00, 0x00 };
4230 Fts5PageWriter
*pPage
= &pWriter
->writer
;
4233 assert( (pPage
->pgidx
.n
==0)==(pWriter
->bFirstTermInPage
) );
4235 /* Set the szLeaf header field. */
4236 assert( 0==fts5GetU16(&pPage
->buf
.p
[2]) );
4237 fts5PutU16(&pPage
->buf
.p
[2], (u16
)pPage
->buf
.n
);
4239 if( pWriter
->bFirstTermInPage
){
4240 /* No term was written to this page. */
4241 assert( pPage
->pgidx
.n
==0 );
4242 fts5WriteBtreeNoTerm(p
, pWriter
);
4244 /* Append the pgidx to the page buffer. Set the szLeaf header field. */
4245 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, pPage
->pgidx
.n
, pPage
->pgidx
.p
);
4248 /* Write the page out to disk */
4249 iRowid
= FTS5_SEGMENT_ROWID(pWriter
->iSegid
, pPage
->pgno
);
4250 fts5DataWrite(p
, iRowid
, pPage
->buf
.p
, pPage
->buf
.n
);
4252 /* Initialize the next page. */
4253 fts5BufferZero(&pPage
->buf
);
4254 fts5BufferZero(&pPage
->pgidx
);
4255 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, 4, zero
);
4256 pPage
->iPrevPgidx
= 0;
4259 /* Increase the leaves written counter */
4260 pWriter
->nLeafWritten
++;
4262 /* The new leaf holds no terms or rowids */
4263 pWriter
->bFirstTermInPage
= 1;
4264 pWriter
->bFirstRowidInPage
= 1;
4268 ** Append term pTerm/nTerm to the segment being written by the writer passed
4269 ** as the second argument.
4271 ** If an error occurs, set the Fts5Index.rc error code. If an error has
4272 ** already occurred, this function is a no-op.
4274 static void fts5WriteAppendTerm(
4276 Fts5SegWriter
*pWriter
,
4277 int nTerm
, const u8
*pTerm
4279 int nPrefix
; /* Bytes of prefix compression for term */
4280 Fts5PageWriter
*pPage
= &pWriter
->writer
;
4281 Fts5Buffer
*pPgidx
= &pWriter
->writer
.pgidx
;
4282 int nMin
= MIN(pPage
->term
.n
, nTerm
);
4284 assert( p
->rc
==SQLITE_OK
);
4285 assert( pPage
->buf
.n
>=4 );
4286 assert( pPage
->buf
.n
>4 || pWriter
->bFirstTermInPage
);
4288 /* If the current leaf page is full, flush it to disk. */
4289 if( (pPage
->buf
.n
+ pPgidx
->n
+ nTerm
+ 2)>=p
->pConfig
->pgsz
){
4290 if( pPage
->buf
.n
>4 ){
4291 fts5WriteFlushLeaf(p
, pWriter
);
4292 if( p
->rc
!=SQLITE_OK
) return;
4294 fts5BufferGrow(&p
->rc
, &pPage
->buf
, nTerm
+FTS5_DATA_PADDING
);
4297 /* TODO1: Updating pgidx here. */
4298 pPgidx
->n
+= sqlite3Fts5PutVarint(
4299 &pPgidx
->p
[pPgidx
->n
], pPage
->buf
.n
- pPage
->iPrevPgidx
4301 pPage
->iPrevPgidx
= pPage
->buf
.n
;
4303 fts5PutU16(&pPgidx
->p
[pPgidx
->n
], pPage
->buf
.n
);
4307 if( pWriter
->bFirstTermInPage
){
4309 if( pPage
->pgno
!=1 ){
4310 /* This is the first term on a leaf that is not the leftmost leaf in
4311 ** the segment b-tree. In this case it is necessary to add a term to
4312 ** the b-tree hierarchy that is (a) larger than the largest term
4313 ** already written to the segment and (b) smaller than or equal to
4314 ** this term. In other words, a prefix of (pTerm/nTerm) that is one
4315 ** byte longer than the longest prefix (pTerm/nTerm) shares with the
4318 ** Usually, the previous term is available in pPage->term. The exception
4319 ** is if this is the first term written in an incremental-merge step.
4320 ** In this case the previous term is not available, so just write a
4321 ** copy of (pTerm/nTerm) into the parent node. This is slightly
4322 ** inefficient, but still correct. */
4324 if( pPage
->term
.n
){
4325 n
= 1 + fts5PrefixCompress(nMin
, pPage
->term
.p
, pTerm
);
4327 fts5WriteBtreeTerm(p
, pWriter
, n
, pTerm
);
4328 if( p
->rc
!=SQLITE_OK
) return;
4329 pPage
= &pWriter
->writer
;
4332 nPrefix
= fts5PrefixCompress(nMin
, pPage
->term
.p
, pTerm
);
4333 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, nPrefix
);
4336 /* Append the number of bytes of new data, then the term data itself
4338 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, nTerm
- nPrefix
);
4339 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, nTerm
- nPrefix
, &pTerm
[nPrefix
]);
4341 /* Update the Fts5PageWriter.term field. */
4342 fts5BufferSet(&p
->rc
, &pPage
->term
, nTerm
, pTerm
);
4343 pWriter
->bFirstTermInPage
= 0;
4345 pWriter
->bFirstRowidInPage
= 0;
4346 pWriter
->bFirstRowidInDoclist
= 1;
4348 assert( p
->rc
|| (pWriter
->nDlidx
>0 && pWriter
->aDlidx
[0].buf
.n
==0) );
4349 pWriter
->aDlidx
[0].pgno
= pPage
->pgno
;
4353 ** Append a rowid and position-list size field to the writers output.
4355 static void fts5WriteAppendRowid(
4357 Fts5SegWriter
*pWriter
,
4360 if( p
->rc
==SQLITE_OK
){
4361 Fts5PageWriter
*pPage
= &pWriter
->writer
;
4363 if( (pPage
->buf
.n
+ pPage
->pgidx
.n
)>=p
->pConfig
->pgsz
){
4364 fts5WriteFlushLeaf(p
, pWriter
);
4367 /* If this is to be the first rowid written to the page, set the
4368 ** rowid-pointer in the page-header. Also append a value to the dlidx
4369 ** buffer, in case a doclist-index is required. */
4370 if( pWriter
->bFirstRowidInPage
){
4371 fts5PutU16(pPage
->buf
.p
, (u16
)pPage
->buf
.n
);
4372 fts5WriteDlidxAppend(p
, pWriter
, iRowid
);
4375 /* Write the rowid. */
4376 if( pWriter
->bFirstRowidInDoclist
|| pWriter
->bFirstRowidInPage
){
4377 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
, iRowid
);
4379 assert_nc( p
->rc
|| iRowid
>pWriter
->iPrevRowid
);
4380 fts5BufferAppendVarint(&p
->rc
, &pPage
->buf
,
4381 (u64
)iRowid
- (u64
)pWriter
->iPrevRowid
4384 pWriter
->iPrevRowid
= iRowid
;
4385 pWriter
->bFirstRowidInDoclist
= 0;
4386 pWriter
->bFirstRowidInPage
= 0;
4390 static void fts5WriteAppendPoslistData(
4392 Fts5SegWriter
*pWriter
,
4396 Fts5PageWriter
*pPage
= &pWriter
->writer
;
4397 const u8
*a
= aData
;
4400 assert( p
->pConfig
->pgsz
>0 );
4401 while( p
->rc
==SQLITE_OK
4402 && (pPage
->buf
.n
+ pPage
->pgidx
.n
+ n
)>=p
->pConfig
->pgsz
4404 int nReq
= p
->pConfig
->pgsz
- pPage
->buf
.n
- pPage
->pgidx
.n
;
4406 while( nCopy
<nReq
){
4408 nCopy
+= fts5GetVarint(&a
[nCopy
], (u64
*)&dummy
);
4410 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, nCopy
, a
);
4413 fts5WriteFlushLeaf(p
, pWriter
);
4416 fts5BufferAppendBlob(&p
->rc
, &pPage
->buf
, n
, a
);
4421 ** Flush any data cached by the writer object to the database. Free any
4422 ** allocations associated with the writer.
4424 static void fts5WriteFinish(
4426 Fts5SegWriter
*pWriter
, /* Writer object */
4427 int *pnLeaf
/* OUT: Number of leaf pages in b-tree */
4430 Fts5PageWriter
*pLeaf
= &pWriter
->writer
;
4431 if( p
->rc
==SQLITE_OK
){
4432 assert( pLeaf
->pgno
>=1 );
4433 if( pLeaf
->buf
.n
>4 ){
4434 fts5WriteFlushLeaf(p
, pWriter
);
4436 *pnLeaf
= pLeaf
->pgno
-1;
4437 if( pLeaf
->pgno
>1 ){
4438 fts5WriteFlushBtree(p
, pWriter
);
4441 fts5BufferFree(&pLeaf
->term
);
4442 fts5BufferFree(&pLeaf
->buf
);
4443 fts5BufferFree(&pLeaf
->pgidx
);
4444 fts5BufferFree(&pWriter
->btterm
);
4446 for(i
=0; i
<pWriter
->nDlidx
; i
++){
4447 sqlite3Fts5BufferFree(&pWriter
->aDlidx
[i
].buf
);
4449 sqlite3_free(pWriter
->aDlidx
);
4452 static void fts5WriteInit(
4454 Fts5SegWriter
*pWriter
,
4457 const int nBuffer
= p
->pConfig
->pgsz
+ FTS5_DATA_PADDING
;
4459 memset(pWriter
, 0, sizeof(Fts5SegWriter
));
4460 pWriter
->iSegid
= iSegid
;
4462 fts5WriteDlidxGrow(p
, pWriter
, 1);
4463 pWriter
->writer
.pgno
= 1;
4464 pWriter
->bFirstTermInPage
= 1;
4465 pWriter
->iBtPage
= 1;
4467 assert( pWriter
->writer
.buf
.n
==0 );
4468 assert( pWriter
->writer
.pgidx
.n
==0 );
4470 /* Grow the two buffers to pgsz + padding bytes in size. */
4471 sqlite3Fts5BufferSize(&p
->rc
, &pWriter
->writer
.pgidx
, nBuffer
);
4472 sqlite3Fts5BufferSize(&p
->rc
, &pWriter
->writer
.buf
, nBuffer
);
4474 if( p
->pIdxWriter
==0 ){
4475 Fts5Config
*pConfig
= p
->pConfig
;
4476 fts5IndexPrepareStmt(p
, &p
->pIdxWriter
, sqlite3_mprintf(
4477 "INSERT INTO '%q'.'%q_idx'(segid,term,pgno) VALUES(?,?,?)",
4478 pConfig
->zDb
, pConfig
->zName
4482 if( p
->rc
==SQLITE_OK
){
4483 /* Initialize the 4-byte leaf-page header to 0x00. */
4484 memset(pWriter
->writer
.buf
.p
, 0, 4);
4485 pWriter
->writer
.buf
.n
= 4;
4487 /* Bind the current output segment id to the index-writer. This is an
4488 ** optimization over binding the same value over and over as rows are
4489 ** inserted into %_idx by the current writer. */
4490 sqlite3_bind_int(p
->pIdxWriter
, 1, pWriter
->iSegid
);
4495 ** Iterator pIter was used to iterate through the input segments of on an
4496 ** incremental merge operation. This function is called if the incremental
4497 ** merge step has finished but the input has not been completely exhausted.
4499 static void fts5TrimSegments(Fts5Index
*p
, Fts5Iter
*pIter
){
4502 memset(&buf
, 0, sizeof(Fts5Buffer
));
4503 for(i
=0; i
<pIter
->nSeg
&& p
->rc
==SQLITE_OK
; i
++){
4504 Fts5SegIter
*pSeg
= &pIter
->aSeg
[i
];
4505 if( pSeg
->pSeg
==0 ){
4507 }else if( pSeg
->pLeaf
==0 ){
4508 /* All keys from this input segment have been transfered to the output.
4509 ** Set both the first and last page-numbers to 0 to indicate that the
4510 ** segment is now empty. */
4511 pSeg
->pSeg
->pgnoLast
= 0;
4512 pSeg
->pSeg
->pgnoFirst
= 0;
4514 int iOff
= pSeg
->iTermLeafOffset
; /* Offset on new first leaf page */
4517 int iId
= pSeg
->pSeg
->iSegid
;
4518 u8 aHdr
[4] = {0x00, 0x00, 0x00, 0x00};
4520 iLeafRowid
= FTS5_SEGMENT_ROWID(iId
, pSeg
->iTermLeafPgno
);
4521 pData
= fts5LeafRead(p
, iLeafRowid
);
4523 if( iOff
>pData
->szLeaf
){
4524 /* This can occur if the pages that the segments occupy overlap - if
4525 ** a single page has been assigned to more than one segment. In
4526 ** this case a prior iteration of this loop may have corrupted the
4527 ** segment currently being trimmed. */
4528 p
->rc
= FTS5_CORRUPT
;
4530 fts5BufferZero(&buf
);
4531 fts5BufferGrow(&p
->rc
, &buf
, pData
->nn
);
4532 fts5BufferAppendBlob(&p
->rc
, &buf
, sizeof(aHdr
), aHdr
);
4533 fts5BufferAppendVarint(&p
->rc
, &buf
, pSeg
->term
.n
);
4534 fts5BufferAppendBlob(&p
->rc
, &buf
, pSeg
->term
.n
, pSeg
->term
.p
);
4535 fts5BufferAppendBlob(&p
->rc
, &buf
,pData
->szLeaf
-iOff
,&pData
->p
[iOff
]);
4536 if( p
->rc
==SQLITE_OK
){
4537 /* Set the szLeaf field */
4538 fts5PutU16(&buf
.p
[2], (u16
)buf
.n
);
4541 /* Set up the new page-index array */
4542 fts5BufferAppendVarint(&p
->rc
, &buf
, 4);
4543 if( pSeg
->iLeafPgno
==pSeg
->iTermLeafPgno
4544 && pSeg
->iEndofDoclist
<pData
->szLeaf
4545 && pSeg
->iPgidxOff
<=pData
->nn
4547 int nDiff
= pData
->szLeaf
- pSeg
->iEndofDoclist
;
4548 fts5BufferAppendVarint(&p
->rc
, &buf
, buf
.n
- 1 - nDiff
- 4);
4549 fts5BufferAppendBlob(&p
->rc
, &buf
,
4550 pData
->nn
- pSeg
->iPgidxOff
, &pData
->p
[pSeg
->iPgidxOff
]
4554 pSeg
->pSeg
->pgnoFirst
= pSeg
->iTermLeafPgno
;
4555 fts5DataDelete(p
, FTS5_SEGMENT_ROWID(iId
, 1), iLeafRowid
);
4556 fts5DataWrite(p
, iLeafRowid
, buf
.p
, buf
.n
);
4558 fts5DataRelease(pData
);
4562 fts5BufferFree(&buf
);
4565 static void fts5MergeChunkCallback(
4568 const u8
*pChunk
, int nChunk
4570 Fts5SegWriter
*pWriter
= (Fts5SegWriter
*)pCtx
;
4571 fts5WriteAppendPoslistData(p
, pWriter
, pChunk
, nChunk
);
4577 static void fts5IndexMergeLevel(
4578 Fts5Index
*p
, /* FTS5 backend object */
4579 Fts5Structure
**ppStruct
, /* IN/OUT: Stucture of index */
4580 int iLvl
, /* Level to read input from */
4581 int *pnRem
/* Write up to this many output leaves */
4583 Fts5Structure
*pStruct
= *ppStruct
;
4584 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
4585 Fts5StructureLevel
*pLvlOut
;
4586 Fts5Iter
*pIter
= 0; /* Iterator to read input data */
4587 int nRem
= pnRem
? *pnRem
: 0; /* Output leaf pages left to write */
4588 int nInput
; /* Number of input segments */
4589 Fts5SegWriter writer
; /* Writer object */
4590 Fts5StructureSegment
*pSeg
; /* Output segment */
4592 int bOldest
; /* True if the output segment is the oldest */
4593 int eDetail
= p
->pConfig
->eDetail
;
4594 const int flags
= FTS5INDEX_QUERY_NOOUTPUT
;
4595 int bTermWritten
= 0; /* True if current term already output */
4597 assert( iLvl
<pStruct
->nLevel
);
4598 assert( pLvl
->nMerge
<=pLvl
->nSeg
);
4600 memset(&writer
, 0, sizeof(Fts5SegWriter
));
4601 memset(&term
, 0, sizeof(Fts5Buffer
));
4603 pLvlOut
= &pStruct
->aLevel
[iLvl
+1];
4604 assert( pLvlOut
->nSeg
>0 );
4605 nInput
= pLvl
->nMerge
;
4606 pSeg
= &pLvlOut
->aSeg
[pLvlOut
->nSeg
-1];
4608 fts5WriteInit(p
, &writer
, pSeg
->iSegid
);
4609 writer
.writer
.pgno
= pSeg
->pgnoLast
+1;
4612 int iSegid
= fts5AllocateSegid(p
, pStruct
);
4614 /* Extend the Fts5Structure object as required to ensure the output
4615 ** segment exists. */
4616 if( iLvl
==pStruct
->nLevel
-1 ){
4617 fts5StructureAddLevel(&p
->rc
, ppStruct
);
4618 pStruct
= *ppStruct
;
4620 fts5StructureExtendLevel(&p
->rc
, pStruct
, iLvl
+1, 1, 0);
4622 pLvl
= &pStruct
->aLevel
[iLvl
];
4623 pLvlOut
= &pStruct
->aLevel
[iLvl
+1];
4625 fts5WriteInit(p
, &writer
, iSegid
);
4627 /* Add the new segment to the output level */
4628 pSeg
= &pLvlOut
->aSeg
[pLvlOut
->nSeg
];
4630 pSeg
->pgnoFirst
= 1;
4631 pSeg
->iSegid
= iSegid
;
4632 pStruct
->nSegment
++;
4634 /* Read input from all segments in the input level */
4635 nInput
= pLvl
->nSeg
;
4637 /* Set the range of origins that will go into the output segment. */
4638 if( pStruct
->nOriginCntr
>0 ){
4639 pSeg
->iOrigin1
= pLvl
->aSeg
[0].iOrigin1
;
4640 pSeg
->iOrigin2
= pLvl
->aSeg
[pLvl
->nSeg
-1].iOrigin2
;
4643 bOldest
= (pLvlOut
->nSeg
==1 && pStruct
->nLevel
==iLvl
+2);
4646 for(fts5MultiIterNew(p
, pStruct
, flags
, 0, 0, 0, iLvl
, nInput
, &pIter
);
4647 fts5MultiIterEof(p
, pIter
)==0;
4648 fts5MultiIterNext(p
, pIter
, 0, 0)
4650 Fts5SegIter
*pSegIter
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
4651 int nPos
; /* position-list size field value */
4655 pTerm
= fts5MultiIterTerm(pIter
, &nTerm
);
4656 if( nTerm
!=term
.n
|| fts5Memcmp(pTerm
, term
.p
, nTerm
) ){
4657 if( pnRem
&& writer
.nLeafWritten
>nRem
){
4660 fts5BufferSet(&p
->rc
, &term
, nTerm
, pTerm
);
4664 /* Check for key annihilation. */
4665 if( pSegIter
->nPos
==0 && (bOldest
|| pSegIter
->bDel
==0) ) continue;
4667 if( p
->rc
==SQLITE_OK
&& bTermWritten
==0 ){
4668 /* This is a new term. Append a term to the output segment. */
4669 fts5WriteAppendTerm(p
, &writer
, nTerm
, pTerm
);
4673 /* Append the rowid to the output */
4674 /* WRITEPOSLISTSIZE */
4675 fts5WriteAppendRowid(p
, &writer
, fts5MultiIterRowid(pIter
));
4677 if( eDetail
==FTS5_DETAIL_NONE
){
4678 if( pSegIter
->bDel
){
4679 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, 0);
4680 if( pSegIter
->nPos
>0 ){
4681 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, 0);
4685 /* Append the position-list data to the output */
4686 nPos
= pSegIter
->nPos
*2 + pSegIter
->bDel
;
4687 fts5BufferAppendVarint(&p
->rc
, &writer
.writer
.buf
, nPos
);
4688 fts5ChunkIterate(p
, pSegIter
, (void*)&writer
, fts5MergeChunkCallback
);
4692 /* Flush the last leaf page to disk. Set the output segment b-tree height
4693 ** and last leaf page number at the same time. */
4694 fts5WriteFinish(p
, &writer
, &pSeg
->pgnoLast
);
4696 assert( pIter
!=0 || p
->rc
!=SQLITE_OK
);
4697 if( fts5MultiIterEof(p
, pIter
) ){
4700 /* Remove the redundant segments from the %_data table */
4701 assert( pSeg
->nEntry
==0 );
4702 for(i
=0; i
<nInput
; i
++){
4703 Fts5StructureSegment
*pOld
= &pLvl
->aSeg
[i
];
4704 pSeg
->nEntry
+= (pOld
->nEntry
- pOld
->nEntryTombstone
);
4705 fts5DataRemoveSegment(p
, pOld
);
4708 /* Remove the redundant segments from the input level */
4709 if( pLvl
->nSeg
!=nInput
){
4710 int nMove
= (pLvl
->nSeg
- nInput
) * sizeof(Fts5StructureSegment
);
4711 memmove(pLvl
->aSeg
, &pLvl
->aSeg
[nInput
], nMove
);
4713 pStruct
->nSegment
-= nInput
;
4714 pLvl
->nSeg
-= nInput
;
4716 if( pSeg
->pgnoLast
==0 ){
4718 pStruct
->nSegment
--;
4721 assert( pSeg
->pgnoLast
>0 );
4722 fts5TrimSegments(p
, pIter
);
4723 pLvl
->nMerge
= nInput
;
4726 fts5MultiIterFree(pIter
);
4727 fts5BufferFree(&term
);
4728 if( pnRem
) *pnRem
-= writer
.nLeafWritten
;
4732 ** If this is not a contentless_delete=1 table, or if the 'deletemerge'
4733 ** configuration option is set to 0, then this function always returns -1.
4734 ** Otherwise, it searches the structure object passed as the second argument
4735 ** for a level suitable for merging due to having a large number of
4736 ** tombstones in the tombstone hash. If one is found, its index is returned.
4737 ** Otherwise, if there is no suitable level, -1.
4739 static int fts5IndexFindDeleteMerge(Fts5Index
*p
, Fts5Structure
*pStruct
){
4740 Fts5Config
*pConfig
= p
->pConfig
;
4742 if( pConfig
->bContentlessDelete
&& pConfig
->nDeleteMerge
>0 ){
4746 for(ii
=0; ii
<pStruct
->nLevel
; ii
++){
4747 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[ii
];
4751 for(iSeg
=0; iSeg
<pLvl
->nSeg
; iSeg
++){
4752 nEntry
+= pLvl
->aSeg
[iSeg
].nEntry
;
4753 nTomb
+= pLvl
->aSeg
[iSeg
].nEntryTombstone
;
4755 assert_nc( nEntry
>0 || pLvl
->nSeg
==0 );
4757 int nPercent
= (nTomb
* 100) / nEntry
;
4758 if( nPercent
>=pConfig
->nDeleteMerge
&& nPercent
>nBest
){
4769 ** Do up to nPg pages of automerge work on the index.
4771 ** Return true if any changes were actually made, or false otherwise.
4773 static int fts5IndexMerge(
4774 Fts5Index
*p
, /* FTS5 backend object */
4775 Fts5Structure
**ppStruct
, /* IN/OUT: Current structure of index */
4776 int nPg
, /* Pages of work to do */
4777 int nMin
/* Minimum number of segments to merge */
4781 Fts5Structure
*pStruct
= *ppStruct
;
4782 while( nRem
>0 && p
->rc
==SQLITE_OK
){
4783 int iLvl
; /* To iterate through levels */
4784 int iBestLvl
= 0; /* Level offering the most input segments */
4785 int nBest
= 0; /* Number of input segments on best level */
4787 /* Set iBestLvl to the level to read input segments from. Or to -1 if
4788 ** there is no level suitable to merge segments from. */
4789 assert( pStruct
->nLevel
>0 );
4790 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
4791 Fts5StructureLevel
*pLvl
= &pStruct
->aLevel
[iLvl
];
4793 if( pLvl
->nMerge
>nBest
){
4799 if( pLvl
->nSeg
>nBest
){
4805 iBestLvl
= fts5IndexFindDeleteMerge(p
, pStruct
);
4808 if( iBestLvl
<0 ) break;
4810 fts5IndexMergeLevel(p
, &pStruct
, iBestLvl
, &nRem
);
4811 if( p
->rc
==SQLITE_OK
&& pStruct
->aLevel
[iBestLvl
].nMerge
==0 ){
4812 fts5StructurePromote(p
, iBestLvl
+1, pStruct
);
4815 if( nMin
==1 ) nMin
= 2;
4817 *ppStruct
= pStruct
;
4822 ** A total of nLeaf leaf pages of data has just been flushed to a level-0
4823 ** segment. This function updates the write-counter accordingly and, if
4824 ** necessary, performs incremental merge work.
4826 ** If an error occurs, set the Fts5Index.rc error code. If an error has
4827 ** already occurred, this function is a no-op.
4829 static void fts5IndexAutomerge(
4830 Fts5Index
*p
, /* FTS5 backend object */
4831 Fts5Structure
**ppStruct
, /* IN/OUT: Current structure of index */
4832 int nLeaf
/* Number of output leaves just written */
4834 if( p
->rc
==SQLITE_OK
&& p
->pConfig
->nAutomerge
>0 && ALWAYS((*ppStruct
)!=0) ){
4835 Fts5Structure
*pStruct
= *ppStruct
;
4836 u64 nWrite
; /* Initial value of write-counter */
4837 int nWork
; /* Number of work-quanta to perform */
4838 int nRem
; /* Number of leaf pages left to write */
4840 /* Update the write-counter. While doing so, set nWork. */
4841 nWrite
= pStruct
->nWriteCounter
;
4842 nWork
= (int)(((nWrite
+ nLeaf
) / p
->nWorkUnit
) - (nWrite
/ p
->nWorkUnit
));
4843 pStruct
->nWriteCounter
+= nLeaf
;
4844 nRem
= (int)(p
->nWorkUnit
* nWork
* pStruct
->nLevel
);
4846 fts5IndexMerge(p
, ppStruct
, nRem
, p
->pConfig
->nAutomerge
);
4850 static void fts5IndexCrisismerge(
4851 Fts5Index
*p
, /* FTS5 backend object */
4852 Fts5Structure
**ppStruct
/* IN/OUT: Current structure of index */
4854 const int nCrisis
= p
->pConfig
->nCrisisMerge
;
4855 Fts5Structure
*pStruct
= *ppStruct
;
4856 if( pStruct
&& pStruct
->nLevel
>0 ){
4858 while( p
->rc
==SQLITE_OK
&& pStruct
->aLevel
[iLvl
].nSeg
>=nCrisis
){
4859 fts5IndexMergeLevel(p
, &pStruct
, iLvl
, 0);
4860 assert( p
->rc
!=SQLITE_OK
|| pStruct
->nLevel
>(iLvl
+1) );
4861 fts5StructurePromote(p
, iLvl
+1, pStruct
);
4864 *ppStruct
= pStruct
;
4868 static int fts5IndexReturn(Fts5Index
*p
){
4874 typedef struct Fts5FlushCtx Fts5FlushCtx
;
4875 struct Fts5FlushCtx
{
4877 Fts5SegWriter writer
;
4881 ** Buffer aBuf[] contains a list of varints, all small enough to fit
4882 ** in a 32-bit integer. Return the size of the largest prefix of this
4883 ** list nMax bytes or less in size.
4885 static int fts5PoslistPrefix(const u8
*aBuf
, int nMax
){
4888 ret
= fts5GetVarint32(aBuf
, dummy
);
4891 int i
= fts5GetVarint32(&aBuf
[ret
], dummy
);
4892 if( (ret
+ i
) > nMax
) break;
4900 ** Execute the SQL statement:
4902 ** DELETE FROM %_idx WHERE (segid, (pgno/2)) = ($iSegid, $iPgno);
4904 ** This is used when a secure-delete operation removes the last term
4905 ** from a segment leaf page. In that case the %_idx entry is removed
4906 ** too. This is done to ensure that if all instances of a token are
4907 ** removed from an fts5 database in secure-delete mode, no trace of
4908 ** the token itself remains in the database.
4910 static void fts5SecureDeleteIdxEntry(
4911 Fts5Index
*p
, /* FTS5 backend object */
4912 int iSegid
, /* Id of segment to delete entry for */
4913 int iPgno
/* Page number within segment */
4916 assert( p
->pConfig
->iVersion
==FTS5_CURRENT_VERSION_SECUREDELETE
);
4917 if( p
->pDeleteFromIdx
==0 ){
4918 fts5IndexPrepareStmt(p
, &p
->pDeleteFromIdx
, sqlite3_mprintf(
4919 "DELETE FROM '%q'.'%q_idx' WHERE (segid, (pgno/2)) = (?1, ?2)",
4920 p
->pConfig
->zDb
, p
->pConfig
->zName
4923 if( p
->rc
==SQLITE_OK
){
4924 sqlite3_bind_int(p
->pDeleteFromIdx
, 1, iSegid
);
4925 sqlite3_bind_int(p
->pDeleteFromIdx
, 2, iPgno
);
4926 sqlite3_step(p
->pDeleteFromIdx
);
4927 p
->rc
= sqlite3_reset(p
->pDeleteFromIdx
);
4933 ** This is called when a secure-delete operation removes a position-list
4934 ** that overflows onto segment page iPgno of segment pSeg. This function
4935 ** rewrites node iPgno, and possibly one or more of its right-hand peers,
4936 ** to remove this portion of the position list.
4938 ** Output variable (*pbLastInDoclist) is set to true if the position-list
4939 ** removed is followed by a new term or the end-of-segment, or false if
4940 ** it is followed by another rowid/position list.
4942 static void fts5SecureDeleteOverflow(
4944 Fts5StructureSegment
*pSeg
,
4946 int *pbLastInDoclist
4948 const int bDetailNone
= (p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
);
4950 Fts5Data
*pLeaf
= 0;
4953 *pbLastInDoclist
= 1;
4954 for(pgno
=iPgno
; p
->rc
==SQLITE_OK
&& pgno
<=pSeg
->pgnoLast
; pgno
++){
4955 i64 iRowid
= FTS5_SEGMENT_ROWID(pSeg
->iSegid
, pgno
);
4959 pLeaf
= fts5DataRead(p
, iRowid
);
4960 if( pLeaf
==0 ) break;
4963 iNext
= fts5GetU16(&aPg
[0]);
4965 *pbLastInDoclist
= 0;
4967 if( iNext
==0 && pLeaf
->szLeaf
!=pLeaf
->nn
){
4968 fts5GetVarint32(&aPg
[pLeaf
->szLeaf
], iNext
);
4972 /* The page contains no terms or rowids. Replace it with an empty
4973 ** page and move on to the right-hand peer. */
4974 const u8 aEmpty
[] = {0x00, 0x00, 0x00, 0x04};
4975 assert_nc( bDetailNone
==0 || pLeaf
->nn
==4 );
4976 if( bDetailNone
==0 ) fts5DataWrite(p
, iRowid
, aEmpty
, sizeof(aEmpty
));
4977 fts5DataRelease(pLeaf
);
4979 }else if( bDetailNone
){
4981 }else if( iNext
>=pLeaf
->szLeaf
|| pLeaf
->nn
<pLeaf
->szLeaf
|| iNext
<4 ){
4982 p
->rc
= FTS5_CORRUPT
;
4985 int nShift
= iNext
- 4;
4991 /* Unless the current page footer is 0 bytes in size (in which case
4992 ** the new page footer will be as well), allocate and populate a
4993 ** buffer containing the new page footer. Set stack variables aIdx
4994 ** and nIdx accordingly. */
4995 if( pLeaf
->nn
>pLeaf
->szLeaf
){
4997 int i1
= pLeaf
->szLeaf
;
5000 i1
+= fts5GetVarint32(&aPg
[i1
], iFirst
);
5002 p
->rc
= FTS5_CORRUPT
;
5005 aIdx
= sqlite3Fts5MallocZero(&p
->rc
, (pLeaf
->nn
-pLeaf
->szLeaf
)+2);
5006 if( aIdx
==0 ) break;
5007 i2
= sqlite3Fts5PutVarint(aIdx
, iFirst
-nShift
);
5009 memcpy(&aIdx
[i2
], &aPg
[i1
], pLeaf
->nn
-i1
);
5010 i2
+= (pLeaf
->nn
-i1
);
5015 /* Modify the contents of buffer aPg[]. Set nPg to the new size
5016 ** in bytes. The new page is always smaller than the old. */
5017 nPg
= pLeaf
->szLeaf
- nShift
;
5018 memmove(&aPg
[4], &aPg
[4+nShift
], nPg
-4);
5019 fts5PutU16(&aPg
[2], nPg
);
5020 if( fts5GetU16(&aPg
[0]) ) fts5PutU16(&aPg
[0], 4);
5022 memcpy(&aPg
[nPg
], aIdx
, nIdx
);
5027 /* Write the new page to disk and exit the loop */
5028 assert( nPg
>4 || fts5GetU16(aPg
)==0 );
5029 fts5DataWrite(p
, iRowid
, aPg
, nPg
);
5033 fts5DataRelease(pLeaf
);
5037 ** Completely remove the entry that pSeg currently points to from
5040 static void fts5DoSecureDelete(
5044 const int bDetailNone
= (p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
);
5045 int iSegid
= pSeg
->pSeg
->iSegid
;
5046 u8
*aPg
= pSeg
->pLeaf
->p
;
5047 int nPg
= pSeg
->pLeaf
->nn
;
5048 int iPgIdx
= pSeg
->pLeaf
->szLeaf
;
5056 int bLastInDoclist
= 0;
5060 int iPrevKeyOff
= 0;
5061 int iDelKeyOff
= 0; /* Offset of deleted key, if any */
5064 aIdx
= sqlite3Fts5MallocZero(&p
->rc
, nIdx
+16);
5066 memcpy(aIdx
, &aPg
[iPgIdx
], nIdx
);
5068 /* At this point segment iterator pSeg points to the entry
5069 ** this function should remove from the b-tree segment.
5071 ** In detail=full or detail=column mode, pSeg->iLeafOffset is the
5072 ** offset of the first byte in the position-list for the entry to
5073 ** remove. Immediately before this comes two varints that will also
5074 ** need to be removed:
5076 ** + the rowid or delta rowid value for the entry, and
5077 ** + the size of the position list in bytes.
5079 ** Or, in detail=none mode, there is a single varint prior to
5080 ** pSeg->iLeafOffset - the rowid or delta rowid value.
5082 ** This block sets the following variables:
5089 if( pSeg
->iLeafPgno
==pSeg
->iTermLeafPgno
){
5090 iStart
= pSeg
->iTermLeafOffset
;
5092 iStart
= fts5GetU16(&aPg
[0]);
5095 iSOP
= iStart
+ fts5GetVarint(&aPg
[iStart
], &iDelta
);
5096 assert_nc( iSOP
<=pSeg
->iLeafOffset
);
5099 while( iSOP
<pSeg
->iLeafOffset
){
5100 if( aPg
[iSOP
]==0x00 ) iSOP
++;
5101 if( aPg
[iSOP
]==0x00 ) iSOP
++;
5103 iSOP
= iStart
+ fts5GetVarint(&aPg
[iStart
], &iDelta
);
5107 if( iNextOff
<pSeg
->iEndofDoclist
&& aPg
[iNextOff
]==0x00 ) iNextOff
++;
5108 if( iNextOff
<pSeg
->iEndofDoclist
&& aPg
[iNextOff
]==0x00 ) iNextOff
++;
5112 iSOP
+= fts5GetVarint32(&aPg
[iSOP
], nPos
);
5113 while( iSOP
<pSeg
->iLeafOffset
){
5114 iStart
= iSOP
+ (nPos
/2);
5115 iSOP
= iStart
+ fts5GetVarint(&aPg
[iStart
], &iDelta
);
5116 iSOP
+= fts5GetVarint32(&aPg
[iSOP
], nPos
);
5118 assert_nc( iSOP
==pSeg
->iLeafOffset
);
5119 iNextOff
= pSeg
->iLeafOffset
+ pSeg
->nPos
;
5124 if( iNextOff
>=iPgIdx
){
5125 int pgno
= pSeg
->iLeafPgno
+1;
5126 fts5SecureDeleteOverflow(p
, pSeg
->pSeg
, pgno
, &bLastInDoclist
);
5129 /* Set bLastInDoclist to true if the entry being removed is the last
5130 ** in its doclist. */
5131 for(iIdx
=0, iKeyOff
=0; iIdx
<nIdx
; /* no-op */){
5133 iIdx
+= fts5GetVarint32(&aIdx
[iIdx
], iVal
);
5135 if( iKeyOff
==iNextOff
){
5141 if( fts5GetU16(&aPg
[0])==iStart
&& (bLastInDoclist
||iNextOff
==iPgIdx
) ){
5142 fts5PutU16(&aPg
[0], 0);
5145 if( bLastInDoclist
==0 ){
5146 if( iNextOff
!=iPgIdx
){
5147 iNextOff
+= fts5GetVarint(&aPg
[iNextOff
], &iNextDelta
);
5148 iOff
+= sqlite3Fts5PutVarint(&aPg
[iOff
], iDelta
+ iNextDelta
);
5151 iStart
==pSeg
->iTermLeafOffset
&& pSeg
->iLeafPgno
==pSeg
->iTermLeafPgno
5153 /* The entry being removed was the only position list in its
5154 ** doclist. Therefore the term needs to be removed as well. */
5156 for(iIdx
=0, iKeyOff
=0; iIdx
<nIdx
; iKey
++){
5158 iIdx
+= fts5GetVarint32(&aIdx
[iIdx
], iVal
);
5159 if( (iKeyOff
+iVal
)>(u32
)iStart
) break;
5163 iDelKeyOff
= iOff
= iKeyOff
;
5164 if( iNextOff
!=iPgIdx
){
5170 iDelKeyOff
= iNextOff
;
5171 iNextOff
+= fts5GetVarint32(&aPg
[iNextOff
], nPrefix2
);
5172 iNextOff
+= fts5GetVarint32(&aPg
[iNextOff
], nSuffix2
);
5175 iKeyOff
+= fts5GetVarint32(&aPg
[iKeyOff
], nPrefix
);
5177 iKeyOff
+= fts5GetVarint32(&aPg
[iKeyOff
], nSuffix
);
5179 nPrefix
= MIN(nPrefix
, nPrefix2
);
5180 nSuffix
= (nPrefix2
+ nSuffix2
) - nPrefix
;
5182 if( (iKeyOff
+nSuffix
)>iPgIdx
|| (iNextOff
+nSuffix2
)>iPgIdx
){
5183 p
->rc
= FTS5_CORRUPT
;
5186 iOff
+= sqlite3Fts5PutVarint(&aPg
[iOff
], nPrefix
);
5188 iOff
+= sqlite3Fts5PutVarint(&aPg
[iOff
], nSuffix
);
5189 if( nPrefix2
>pSeg
->term
.n
){
5190 p
->rc
= FTS5_CORRUPT
;
5191 }else if( nPrefix2
>nPrefix
){
5192 memcpy(&aPg
[iOff
], &pSeg
->term
.p
[nPrefix
], nPrefix2
-nPrefix
);
5193 iOff
+= (nPrefix2
-nPrefix
);
5195 memmove(&aPg
[iOff
], &aPg
[iNextOff
], nSuffix2
);
5197 iNextOff
+= nSuffix2
;
5200 }else if( iStart
==4 ){
5203 assert_nc( pSeg
->iLeafPgno
>pSeg
->iTermLeafPgno
);
5204 /* The entry being removed may be the only position list in
5206 for(iPgno
=pSeg
->iLeafPgno
-1; iPgno
>pSeg
->iTermLeafPgno
; iPgno
-- ){
5207 Fts5Data
*pPg
= fts5DataRead(p
, FTS5_SEGMENT_ROWID(iSegid
, iPgno
));
5208 int bEmpty
= (pPg
&& pPg
->nn
==4);
5209 fts5DataRelease(pPg
);
5210 if( bEmpty
==0 ) break;
5213 if( iPgno
==pSeg
->iTermLeafPgno
){
5214 i64 iId
= FTS5_SEGMENT_ROWID(iSegid
, pSeg
->iTermLeafPgno
);
5215 Fts5Data
*pTerm
= fts5DataRead(p
, iId
);
5216 if( pTerm
&& pTerm
->szLeaf
==pSeg
->iTermLeafOffset
){
5217 u8
*aTermIdx
= &pTerm
->p
[pTerm
->szLeaf
];
5218 int nTermIdx
= pTerm
->nn
- pTerm
->szLeaf
;
5224 int nByte
= fts5GetVarint32(&aTermIdx
[iTermIdx
], iVal
);
5226 if( (iTermIdx
+nByte
)>=nTermIdx
) break;
5229 nTermIdx
= iTermIdx
;
5231 memmove(&pTerm
->p
[iTermOff
], &pTerm
->p
[pTerm
->szLeaf
], nTermIdx
);
5232 fts5PutU16(&pTerm
->p
[2], iTermOff
);
5234 fts5DataWrite(p
, iId
, pTerm
->p
, iTermOff
+nTermIdx
);
5236 fts5SecureDeleteIdxEntry(p
, iSegid
, pSeg
->iTermLeafPgno
);
5239 fts5DataRelease(pTerm
);
5243 if( p
->rc
==SQLITE_OK
){
5244 const int nMove
= nPg
- iNextOff
; /* Number of bytes to move */
5245 int nShift
= iNextOff
- iOff
; /* Distance to move them */
5247 int iPrevKeyOut
= 0;
5250 memmove(&aPg
[iOff
], &aPg
[iNextOff
], nMove
);
5253 fts5PutU16(&aPg
[2], iPgIdx
);
5255 for(iIdx
=0; iIdx
<nIdx
; /* no-op */){
5257 iIdx
+= fts5GetVarint32(&aIdx
[iIdx
], iVal
);
5259 if( iKeyIn
!=iDelKeyOff
){
5260 int iKeyOut
= (iKeyIn
- (iKeyIn
>iOff
? nShift
: 0));
5261 nPg
+= sqlite3Fts5PutVarint(&aPg
[nPg
], iKeyOut
- iPrevKeyOut
);
5262 iPrevKeyOut
= iKeyOut
;
5266 if( iPgIdx
==nPg
&& nIdx
>0 && pSeg
->iLeafPgno
!=1 ){
5267 fts5SecureDeleteIdxEntry(p
, iSegid
, pSeg
->iLeafPgno
);
5270 assert_nc( nPg
>4 || fts5GetU16(aPg
)==0 );
5271 fts5DataWrite(p
, FTS5_SEGMENT_ROWID(iSegid
,pSeg
->iLeafPgno
), aPg
, nPg
);
5277 ** This is called as part of flushing a delete to disk in 'secure-delete'
5278 ** mode. It edits the segments within the database described by argument
5279 ** pStruct to remove the entries for term zTerm, rowid iRowid.
5281 static void fts5FlushSecureDelete(
5283 Fts5Structure
*pStruct
,
5287 const int f
= FTS5INDEX_QUERY_SKIPHASH
;
5288 int nTerm
= (int)strlen(zTerm
);
5289 Fts5Iter
*pIter
= 0; /* Used to find term instance */
5291 fts5MultiIterNew(p
, pStruct
, f
, 0, (const u8
*)zTerm
, nTerm
, -1, 0, &pIter
);
5292 if( fts5MultiIterEof(p
, pIter
)==0 ){
5293 i64 iThis
= fts5MultiIterRowid(pIter
);
5295 fts5MultiIterNextFrom(p
, pIter
, iRowid
);
5298 if( p
->rc
==SQLITE_OK
5299 && fts5MultiIterEof(p
, pIter
)==0
5300 && iRowid
==fts5MultiIterRowid(pIter
)
5302 Fts5SegIter
*pSeg
= &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
];
5303 fts5DoSecureDelete(p
, pSeg
);
5307 fts5MultiIterFree(pIter
);
5312 ** Flush the contents of in-memory hash table iHash to a new level-0
5313 ** segment on disk. Also update the corresponding structure record.
5315 ** If an error occurs, set the Fts5Index.rc error code. If an error has
5316 ** already occurred, this function is a no-op.
5318 static void fts5FlushOneHash(Fts5Index
*p
){
5319 Fts5Hash
*pHash
= p
->pHash
;
5320 Fts5Structure
*pStruct
;
5322 int pgnoLast
= 0; /* Last leaf page number in segment */
5324 /* Obtain a reference to the index structure and allocate a new segment-id
5325 ** for the new level-0 segment. */
5326 pStruct
= fts5StructureRead(p
);
5327 fts5StructureInvalidate(p
);
5329 if( sqlite3Fts5HashIsEmpty(pHash
)==0 ){
5330 iSegid
= fts5AllocateSegid(p
, pStruct
);
5332 const int pgsz
= p
->pConfig
->pgsz
;
5333 int eDetail
= p
->pConfig
->eDetail
;
5334 int bSecureDelete
= p
->pConfig
->bSecureDelete
;
5335 Fts5StructureSegment
*pSeg
; /* New segment within pStruct */
5336 Fts5Buffer
*pBuf
; /* Buffer in which to assemble leaf page */
5337 Fts5Buffer
*pPgidx
; /* Buffer in which to assemble pgidx */
5339 Fts5SegWriter writer
;
5340 fts5WriteInit(p
, &writer
, iSegid
);
5342 pBuf
= &writer
.writer
.buf
;
5343 pPgidx
= &writer
.writer
.pgidx
;
5345 /* fts5WriteInit() should have initialized the buffers to (most likely)
5346 ** the maximum space required. */
5347 assert( p
->rc
|| pBuf
->nSpace
>=(pgsz
+ FTS5_DATA_PADDING
) );
5348 assert( p
->rc
|| pPgidx
->nSpace
>=(pgsz
+ FTS5_DATA_PADDING
) );
5350 /* Begin scanning through hash table entries. This loop runs once for each
5351 ** term/doclist currently stored within the hash table. */
5352 if( p
->rc
==SQLITE_OK
){
5353 p
->rc
= sqlite3Fts5HashScanInit(pHash
, 0, 0);
5355 while( p
->rc
==SQLITE_OK
&& 0==sqlite3Fts5HashScanEof(pHash
) ){
5356 const char *zTerm
; /* Buffer containing term */
5357 int nTerm
; /* Size of zTerm in bytes */
5358 const u8
*pDoclist
; /* Pointer to doclist for this term */
5359 int nDoclist
; /* Size of doclist in bytes */
5361 /* Get the term and doclist for this entry. */
5362 sqlite3Fts5HashScanEntry(pHash
, &zTerm
, &pDoclist
, &nDoclist
);
5363 nTerm
= (int)strlen(zTerm
);
5364 if( bSecureDelete
==0 ){
5365 fts5WriteAppendTerm(p
, &writer
, nTerm
, (const u8
*)zTerm
);
5366 if( p
->rc
!=SQLITE_OK
) break;
5367 assert( writer
.bFirstRowidInPage
==0 );
5370 if( !bSecureDelete
&& pgsz
>=(pBuf
->n
+ pPgidx
->n
+ nDoclist
+ 1) ){
5371 /* The entire doclist will fit on the current leaf. */
5372 fts5BufferSafeAppendBlob(pBuf
, pDoclist
, nDoclist
);
5374 int bTermWritten
= !bSecureDelete
;
5379 /* The entire doclist will not fit on this leaf. The following
5380 ** loop iterates through the poslists that make up the current
5382 while( p
->rc
==SQLITE_OK
&& iOff
<nDoclist
){
5384 iOff
+= fts5GetVarint(&pDoclist
[iOff
], &iDelta
);
5387 /* If in secure delete mode, and if this entry in the poslist is
5388 ** in fact a delete, then edit the existing segments directly
5389 ** using fts5FlushSecureDelete(). */
5390 if( bSecureDelete
){
5391 if( eDetail
==FTS5_DETAIL_NONE
){
5392 if( iOff
<nDoclist
&& pDoclist
[iOff
]==0x00 ){
5393 fts5FlushSecureDelete(p
, pStruct
, zTerm
, iRowid
);
5395 if( iOff
<nDoclist
&& pDoclist
[iOff
]==0x00 ){
5402 }else if( (pDoclist
[iOff
] & 0x01) ){
5403 fts5FlushSecureDelete(p
, pStruct
, zTerm
, iRowid
);
5404 if( p
->rc
!=SQLITE_OK
|| pDoclist
[iOff
]==0x01 ){
5411 if( p
->rc
==SQLITE_OK
&& bTermWritten
==0 ){
5412 fts5WriteAppendTerm(p
, &writer
, nTerm
, (const u8
*)zTerm
);
5414 assert( p
->rc
!=SQLITE_OK
|| writer
.bFirstRowidInPage
==0 );
5417 if( writer
.bFirstRowidInPage
){
5418 fts5PutU16(&pBuf
->p
[0], (u16
)pBuf
->n
); /* first rowid on page */
5419 pBuf
->n
+= sqlite3Fts5PutVarint(&pBuf
->p
[pBuf
->n
], iRowid
);
5420 writer
.bFirstRowidInPage
= 0;
5421 fts5WriteDlidxAppend(p
, &writer
, iRowid
);
5423 u64 iRowidDelta
= (u64
)iRowid
- (u64
)iPrev
;
5424 pBuf
->n
+= sqlite3Fts5PutVarint(&pBuf
->p
[pBuf
->n
], iRowidDelta
);
5426 if( p
->rc
!=SQLITE_OK
) break;
5427 assert( pBuf
->n
<=pBuf
->nSpace
);
5430 if( eDetail
==FTS5_DETAIL_NONE
){
5431 if( iOff
<nDoclist
&& pDoclist
[iOff
]==0 ){
5432 pBuf
->p
[pBuf
->n
++] = 0;
5434 if( iOff
<nDoclist
&& pDoclist
[iOff
]==0 ){
5435 pBuf
->p
[pBuf
->n
++] = 0;
5439 if( (pBuf
->n
+ pPgidx
->n
)>=pgsz
){
5440 fts5WriteFlushLeaf(p
, &writer
);
5445 int nCopy
= fts5GetPoslistSize(&pDoclist
[iOff
], &nPos
, &bDummy
);
5447 if( (pBuf
->n
+ pPgidx
->n
+ nCopy
) <= pgsz
){
5448 /* The entire poslist will fit on the current leaf. So copy
5450 fts5BufferSafeAppendBlob(pBuf
, &pDoclist
[iOff
], nCopy
);
5452 /* The entire poslist will not fit on this leaf. So it needs
5453 ** to be broken into sections. The only qualification being
5454 ** that each varint must be stored contiguously. */
5455 const u8
*pPoslist
= &pDoclist
[iOff
];
5457 while( p
->rc
==SQLITE_OK
){
5458 int nSpace
= pgsz
- pBuf
->n
- pPgidx
->n
;
5460 if( (nCopy
- iPos
)<=nSpace
){
5463 n
= fts5PoslistPrefix(&pPoslist
[iPos
], nSpace
);
5466 fts5BufferSafeAppendBlob(pBuf
, &pPoslist
[iPos
], n
);
5468 if( (pBuf
->n
+ pPgidx
->n
)>=pgsz
){
5469 fts5WriteFlushLeaf(p
, &writer
);
5471 if( iPos
>=nCopy
) break;
5479 /* TODO2: Doclist terminator written here. */
5480 /* pBuf->p[pBuf->n++] = '\0'; */
5481 assert( pBuf
->n
<=pBuf
->nSpace
);
5482 if( p
->rc
==SQLITE_OK
) sqlite3Fts5HashScanNext(pHash
);
5484 sqlite3Fts5HashClear(pHash
);
5485 fts5WriteFinish(p
, &writer
, &pgnoLast
);
5487 assert( p
->rc
!=SQLITE_OK
|| bSecureDelete
|| pgnoLast
>0 );
5489 /* Update the Fts5Structure. It is written back to the database by the
5490 ** fts5StructureRelease() call below. */
5491 if( pStruct
->nLevel
==0 ){
5492 fts5StructureAddLevel(&p
->rc
, &pStruct
);
5494 fts5StructureExtendLevel(&p
->rc
, pStruct
, 0, 1, 0);
5495 if( p
->rc
==SQLITE_OK
){
5496 pSeg
= &pStruct
->aLevel
[0].aSeg
[ pStruct
->aLevel
[0].nSeg
++ ];
5497 pSeg
->iSegid
= iSegid
;
5498 pSeg
->pgnoFirst
= 1;
5499 pSeg
->pgnoLast
= pgnoLast
;
5500 if( pStruct
->nOriginCntr
>0 ){
5501 pSeg
->iOrigin1
= pStruct
->nOriginCntr
;
5502 pSeg
->iOrigin2
= pStruct
->nOriginCntr
;
5503 pSeg
->nEntry
= p
->nPendingRow
;
5504 pStruct
->nOriginCntr
++;
5506 pStruct
->nSegment
++;
5508 fts5StructurePromote(p
, 0, pStruct
);
5513 fts5IndexAutomerge(p
, &pStruct
, pgnoLast
+ p
->nContentlessDelete
);
5514 fts5IndexCrisismerge(p
, &pStruct
);
5515 fts5StructureWrite(p
, pStruct
);
5516 fts5StructureRelease(pStruct
);
5517 p
->nContentlessDelete
= 0;
5521 ** Flush any data stored in the in-memory hash tables to the database.
5523 static void fts5IndexFlush(Fts5Index
*p
){
5524 /* Unless it is empty, flush the hash table to disk */
5525 if( p
->nPendingData
|| p
->nContentlessDelete
){
5527 fts5FlushOneHash(p
);
5528 p
->nPendingData
= 0;
5533 static Fts5Structure
*fts5IndexOptimizeStruct(
5535 Fts5Structure
*pStruct
5537 Fts5Structure
*pNew
= 0;
5538 sqlite3_int64 nByte
= sizeof(Fts5Structure
);
5539 int nSeg
= pStruct
->nSegment
;
5542 /* Figure out if this structure requires optimization. A structure does
5543 ** not require optimization if either:
5545 ** 1. it consists of fewer than two segments, or
5546 ** 2. all segments are on the same level, or
5547 ** 3. all segments except one are currently inputs to a merge operation.
5549 ** In the first case, if there are no tombstone hash pages, return NULL. In
5550 ** the second, increment the ref-count on *pStruct and return a copy of the
5553 if( nSeg
==0 ) return 0;
5554 for(i
=0; i
<pStruct
->nLevel
; i
++){
5555 int nThis
= pStruct
->aLevel
[i
].nSeg
;
5556 int nMerge
= pStruct
->aLevel
[i
].nMerge
;
5557 if( nThis
>0 && (nThis
==nSeg
|| (nThis
==nSeg
-1 && nMerge
==nThis
)) ){
5558 if( nSeg
==1 && nThis
==1 && pStruct
->aLevel
[i
].aSeg
[0].nPgTombstone
==0 ){
5561 fts5StructureRef(pStruct
);
5564 assert( pStruct
->aLevel
[i
].nMerge
<=nThis
);
5567 nByte
+= (pStruct
->nLevel
+1) * sizeof(Fts5StructureLevel
);
5568 pNew
= (Fts5Structure
*)sqlite3Fts5MallocZero(&p
->rc
, nByte
);
5571 Fts5StructureLevel
*pLvl
;
5572 nByte
= nSeg
* sizeof(Fts5StructureSegment
);
5573 pNew
->nLevel
= MIN(pStruct
->nLevel
+1, FTS5_MAX_LEVEL
);
5575 pNew
->nWriteCounter
= pStruct
->nWriteCounter
;
5576 pNew
->nOriginCntr
= pStruct
->nOriginCntr
;
5577 pLvl
= &pNew
->aLevel
[pNew
->nLevel
-1];
5578 pLvl
->aSeg
= (Fts5StructureSegment
*)sqlite3Fts5MallocZero(&p
->rc
, nByte
);
5582 /* Iterate through all segments, from oldest to newest. Add them to
5583 ** the new Fts5Level object so that pLvl->aSeg[0] is the oldest
5584 ** segment in the data structure. */
5585 for(iLvl
=pStruct
->nLevel
-1; iLvl
>=0; iLvl
--){
5586 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
5587 pLvl
->aSeg
[iSegOut
] = pStruct
->aLevel
[iLvl
].aSeg
[iSeg
];
5591 pNew
->nSegment
= pLvl
->nSeg
= nSeg
;
5601 int sqlite3Fts5IndexOptimize(Fts5Index
*p
){
5602 Fts5Structure
*pStruct
;
5603 Fts5Structure
*pNew
= 0;
5605 assert( p
->rc
==SQLITE_OK
);
5607 assert( p
->nContentlessDelete
==0 );
5608 pStruct
= fts5StructureRead(p
);
5609 fts5StructureInvalidate(p
);
5612 pNew
= fts5IndexOptimizeStruct(p
, pStruct
);
5614 fts5StructureRelease(pStruct
);
5616 assert( pNew
==0 || pNew
->nSegment
>0 );
5619 for(iLvl
=0; pNew
->aLevel
[iLvl
].nSeg
==0; iLvl
++){}
5620 while( p
->rc
==SQLITE_OK
&& pNew
->aLevel
[iLvl
].nSeg
>0 ){
5621 int nRem
= FTS5_OPT_WORK_UNIT
;
5622 fts5IndexMergeLevel(p
, &pNew
, iLvl
, &nRem
);
5625 fts5StructureWrite(p
, pNew
);
5626 fts5StructureRelease(pNew
);
5629 return fts5IndexReturn(p
);
5633 ** This is called to implement the special "VALUES('merge', $nMerge)"
5636 int sqlite3Fts5IndexMerge(Fts5Index
*p
, int nMerge
){
5637 Fts5Structure
*pStruct
= 0;
5640 pStruct
= fts5StructureRead(p
);
5642 int nMin
= p
->pConfig
->nUsermerge
;
5643 fts5StructureInvalidate(p
);
5645 Fts5Structure
*pNew
= fts5IndexOptimizeStruct(p
, pStruct
);
5646 fts5StructureRelease(pStruct
);
5651 if( pStruct
&& pStruct
->nLevel
){
5652 if( fts5IndexMerge(p
, &pStruct
, nMerge
, nMin
) ){
5653 fts5StructureWrite(p
, pStruct
);
5656 fts5StructureRelease(pStruct
);
5658 return fts5IndexReturn(p
);
5661 static void fts5AppendRowid(
5667 UNUSED_PARAM(pUnused
);
5668 fts5BufferAppendVarint(&p
->rc
, pBuf
, iDelta
);
5671 static void fts5AppendPoslist(
5677 int nData
= pMulti
->base
.nData
;
5678 int nByte
= nData
+ 9 + 9 + FTS5_DATA_ZERO_PADDING
;
5680 if( p
->rc
==SQLITE_OK
&& 0==fts5BufferGrow(&p
->rc
, pBuf
, nByte
) ){
5681 fts5BufferSafeAppendVarint(pBuf
, iDelta
);
5682 fts5BufferSafeAppendVarint(pBuf
, nData
*2);
5683 fts5BufferSafeAppendBlob(pBuf
, pMulti
->base
.pData
, nData
);
5684 memset(&pBuf
->p
[pBuf
->n
], 0, FTS5_DATA_ZERO_PADDING
);
5689 static void fts5DoclistIterNext(Fts5DoclistIter
*pIter
){
5690 u8
*p
= pIter
->aPoslist
+ pIter
->nSize
+ pIter
->nPoslist
;
5692 assert( pIter
->aPoslist
|| (p
==0 && pIter
->aPoslist
==0) );
5693 if( p
>=pIter
->aEof
){
5694 pIter
->aPoslist
= 0;
5698 p
+= fts5GetVarint(p
, (u64
*)&iDelta
);
5699 pIter
->iRowid
+= iDelta
;
5701 /* Read position list size */
5704 pIter
->nSize
= fts5GetVarint32(p
, nPos
);
5705 pIter
->nPoslist
= (nPos
>>1);
5707 pIter
->nPoslist
= ((int)(p
[0])) >> 1;
5711 pIter
->aPoslist
= p
;
5712 if( &pIter
->aPoslist
[pIter
->nPoslist
]>pIter
->aEof
){
5713 pIter
->aPoslist
= 0;
5718 static void fts5DoclistIterInit(
5720 Fts5DoclistIter
*pIter
5722 memset(pIter
, 0, sizeof(*pIter
));
5724 pIter
->aPoslist
= pBuf
->p
;
5725 pIter
->aEof
= &pBuf
->p
[pBuf
->n
];
5726 fts5DoclistIterNext(pIter
);
5732 ** Append a doclist to buffer pBuf.
5734 ** This function assumes that space within the buffer has already been
5737 static void fts5MergeAppendDocid(
5738 Fts5Buffer
*pBuf
, /* Buffer to write to */
5739 i64
*piLastRowid
, /* IN/OUT: Previous rowid written (if any) */
5740 i64 iRowid
/* Rowid to append */
5742 assert( pBuf
->n
!=0 || (*piLastRowid
)==0 );
5743 fts5BufferSafeAppendVarint(pBuf
, iRowid
- *piLastRowid
);
5744 *piLastRowid
= iRowid
;
5748 #define fts5MergeAppendDocid(pBuf, iLastRowid, iRowid) { \
5749 assert( (pBuf)->n!=0 || (iLastRowid)==0 ); \
5750 fts5BufferSafeAppendVarint((pBuf), (u64)(iRowid) - (u64)(iLastRowid)); \
5751 (iLastRowid) = (iRowid); \
5755 ** Swap the contents of buffer *p1 with that of *p2.
5757 static void fts5BufferSwap(Fts5Buffer
*p1
, Fts5Buffer
*p2
){
5758 Fts5Buffer tmp
= *p1
;
5763 static void fts5NextRowid(Fts5Buffer
*pBuf
, int *piOff
, i64
*piRowid
){
5769 *piOff
= i
+ sqlite3Fts5GetVarint(&pBuf
->p
[i
], &iVal
);
5775 ** This is the equivalent of fts5MergePrefixLists() for detail=none mode.
5776 ** In this case the buffers consist of a delta-encoded list of rowids only.
5778 static void fts5MergeRowidLists(
5779 Fts5Index
*p
, /* FTS5 backend object */
5780 Fts5Buffer
*p1
, /* First list to merge */
5781 int nBuf
, /* Number of entries in apBuf[] */
5782 Fts5Buffer
*aBuf
/* Array of other lists to merge into p1 */
5789 Fts5Buffer
*p2
= &aBuf
[0];
5793 memset(&out
, 0, sizeof(out
));
5795 sqlite3Fts5BufferSize(&p
->rc
, &out
, p1
->n
+ p2
->n
);
5798 fts5NextRowid(p1
, &i1
, &iRowid1
);
5799 fts5NextRowid(p2
, &i2
, &iRowid2
);
5800 while( i1
>=0 || i2
>=0 ){
5801 if( i1
>=0 && (i2
<0 || iRowid1
<iRowid2
) ){
5802 assert( iOut
==0 || iRowid1
>iOut
);
5803 fts5BufferSafeAppendVarint(&out
, iRowid1
- iOut
);
5805 fts5NextRowid(p1
, &i1
, &iRowid1
);
5807 assert( iOut
==0 || iRowid2
>iOut
);
5808 fts5BufferSafeAppendVarint(&out
, iRowid2
- iOut
);
5810 if( i1
>=0 && iRowid1
==iRowid2
){
5811 fts5NextRowid(p1
, &i1
, &iRowid1
);
5813 fts5NextRowid(p2
, &i2
, &iRowid2
);
5817 fts5BufferSwap(&out
, p1
);
5818 fts5BufferFree(&out
);
5821 typedef struct PrefixMerger PrefixMerger
;
5822 struct PrefixMerger
{
5823 Fts5DoclistIter iter
; /* Doclist iterator */
5824 i64 iPos
; /* For iterating through a position list */
5827 PrefixMerger
*pNext
; /* Next in docid/poslist order */
5830 static void fts5PrefixMergerInsertByRowid(
5831 PrefixMerger
**ppHead
,
5834 if( p
->iter
.aPoslist
){
5835 PrefixMerger
**pp
= ppHead
;
5836 while( *pp
&& p
->iter
.iRowid
>(*pp
)->iter
.iRowid
){
5844 static void fts5PrefixMergerInsertByPosition(
5845 PrefixMerger
**ppHead
,
5849 PrefixMerger
**pp
= ppHead
;
5850 while( *pp
&& p
->iPos
>(*pp
)->iPos
){
5860 ** Array aBuf[] contains nBuf doclists. These are all merged in with the
5861 ** doclist in buffer p1.
5863 static void fts5MergePrefixLists(
5864 Fts5Index
*p
, /* FTS5 backend object */
5865 Fts5Buffer
*p1
, /* First list to merge */
5866 int nBuf
, /* Number of buffers in array aBuf[] */
5867 Fts5Buffer
*aBuf
/* Other lists to merge in */
5869 #define fts5PrefixMergerNextPosition(p) \
5870 sqlite3Fts5PoslistNext64((p)->aPos,(p)->iter.nPoslist,&(p)->iOff,&(p)->iPos)
5871 #define FTS5_MERGE_NLIST 16
5872 PrefixMerger aMerger
[FTS5_MERGE_NLIST
];
5873 PrefixMerger
*pHead
= 0;
5876 Fts5Buffer out
= {0, 0, 0};
5877 Fts5Buffer tmp
= {0, 0, 0};
5880 /* Initialize a doclist-iterator for each input buffer. Arrange them in
5881 ** a linked-list starting at pHead in ascending order of rowid. Avoid
5882 ** linking any iterators already at EOF into the linked list at all. */
5883 assert( nBuf
+1<=(int)(sizeof(aMerger
)/sizeof(aMerger
[0])) );
5884 memset(aMerger
, 0, sizeof(PrefixMerger
)*(nBuf
+1));
5885 pHead
= &aMerger
[nBuf
];
5886 fts5DoclistIterInit(p1
, &pHead
->iter
);
5887 for(i
=0; i
<nBuf
; i
++){
5888 fts5DoclistIterInit(&aBuf
[i
], &aMerger
[i
].iter
);
5889 fts5PrefixMergerInsertByRowid(&pHead
, &aMerger
[i
]);
5892 if( nOut
==0 ) return;
5893 nOut
+= p1
->n
+ 9 + 10*nBuf
;
5895 /* The maximum size of the output is equal to the sum of the
5896 ** input sizes + 1 varint (9 bytes). The extra varint is because if the
5897 ** first rowid in one input is a large negative number, and the first in
5898 ** the other a non-negative number, the delta for the non-negative
5899 ** number will be larger on disk than the literal integer value
5902 ** Or, if the input position-lists are corrupt, then the output might
5903 ** include up to (nBuf+1) extra 10-byte positions created by interpreting -1
5904 ** (the value PoslistNext64() uses for EOF) as a position and appending
5905 ** it to the output. This can happen at most once for each input
5906 ** position-list, hence (nBuf+1) 10 byte paddings. */
5907 if( sqlite3Fts5BufferSize(&p
->rc
, &out
, nOut
) ) return;
5910 fts5MergeAppendDocid(&out
, iLastRowid
, pHead
->iter
.iRowid
);
5912 if( pHead
->pNext
&& iLastRowid
==pHead
->pNext
->iter
.iRowid
){
5913 /* Merge data from two or more poslists */
5915 int nTmp
= FTS5_DATA_ZERO_PADDING
;
5917 PrefixMerger
*pSave
= pHead
;
5918 PrefixMerger
*pThis
= 0;
5922 while( pSave
&& pSave
->iter
.iRowid
==iLastRowid
){
5923 PrefixMerger
*pNext
= pSave
->pNext
;
5926 pSave
->aPos
= &pSave
->iter
.aPoslist
[pSave
->iter
.nSize
];
5927 fts5PrefixMergerNextPosition(pSave
);
5928 nTmp
+= pSave
->iter
.nPoslist
+ 10;
5930 fts5PrefixMergerInsertByPosition(&pHead
, pSave
);
5934 if( pHead
==0 || pHead
->pNext
==0 ){
5935 p
->rc
= FTS5_CORRUPT
;
5939 /* See the earlier comment in this function for an explanation of why
5940 ** corrupt input position lists might cause the output to consume
5941 ** at most nMerge*10 bytes of unexpected space. */
5942 if( sqlite3Fts5BufferSize(&p
->rc
, &tmp
, nTmp
+nMerge
*10) ){
5945 fts5BufferZero(&tmp
);
5948 pHead
= pThis
->pNext
;
5949 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pThis
->iPos
);
5950 fts5PrefixMergerNextPosition(pThis
);
5951 fts5PrefixMergerInsertByPosition(&pHead
, pThis
);
5953 while( pHead
->pNext
){
5955 if( pThis
->iPos
!=iPrev
){
5956 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pThis
->iPos
);
5958 fts5PrefixMergerNextPosition(pThis
);
5959 pHead
= pThis
->pNext
;
5960 fts5PrefixMergerInsertByPosition(&pHead
, pThis
);
5963 if( pHead
->iPos
!=iPrev
){
5964 sqlite3Fts5PoslistSafeAppend(&tmp
, &iPrev
, pHead
->iPos
);
5966 nTail
= pHead
->iter
.nPoslist
- pHead
->iOff
;
5968 /* WRITEPOSLISTSIZE */
5969 assert_nc( tmp
.n
+nTail
<=nTmp
);
5970 assert( tmp
.n
+nTail
<=nTmp
+nMerge
*10 );
5971 if( tmp
.n
+nTail
>nTmp
-FTS5_DATA_ZERO_PADDING
){
5972 if( p
->rc
==SQLITE_OK
) p
->rc
= FTS5_CORRUPT
;
5975 fts5BufferSafeAppendVarint(&out
, (tmp
.n
+nTail
) * 2);
5976 fts5BufferSafeAppendBlob(&out
, tmp
.p
, tmp
.n
);
5978 fts5BufferSafeAppendBlob(&out
, &pHead
->aPos
[pHead
->iOff
], nTail
);
5982 for(i
=0; i
<nBuf
+1; i
++){
5983 PrefixMerger
*pX
= &aMerger
[i
];
5984 if( pX
->iter
.aPoslist
&& pX
->iter
.iRowid
==iLastRowid
){
5985 fts5DoclistIterNext(&pX
->iter
);
5986 fts5PrefixMergerInsertByRowid(&pHead
, pX
);
5991 /* Copy poslist from pHead to output */
5992 PrefixMerger
*pThis
= pHead
;
5993 Fts5DoclistIter
*pI
= &pThis
->iter
;
5994 fts5BufferSafeAppendBlob(&out
, pI
->aPoslist
, pI
->nPoslist
+pI
->nSize
);
5995 fts5DoclistIterNext(pI
);
5996 pHead
= pThis
->pNext
;
5997 fts5PrefixMergerInsertByRowid(&pHead
, pThis
);
6002 fts5BufferFree(&tmp
);
6003 memset(&out
.p
[out
.n
], 0, FTS5_DATA_ZERO_PADDING
);
6007 static void fts5SetupPrefixIter(
6008 Fts5Index
*p
, /* Index to read from */
6009 int bDesc
, /* True for "ORDER BY rowid DESC" */
6010 int iIdx
, /* Index to scan for data */
6011 u8
*pToken
, /* Buffer containing prefix to match */
6012 int nToken
, /* Size of buffer pToken in bytes */
6013 Fts5Colset
*pColset
, /* Restrict matches to these columns */
6014 Fts5Iter
**ppIter
/* OUT: New iterator */
6016 Fts5Structure
*pStruct
;
6021 void (*xMerge
)(Fts5Index
*, Fts5Buffer
*, int, Fts5Buffer
*);
6022 void (*xAppend
)(Fts5Index
*, u64
, Fts5Iter
*, Fts5Buffer
*);
6023 if( p
->pConfig
->eDetail
==FTS5_DETAIL_NONE
){
6024 xMerge
= fts5MergeRowidLists
;
6025 xAppend
= fts5AppendRowid
;
6027 nMerge
= FTS5_MERGE_NLIST
-1;
6028 nBuf
= nMerge
*8; /* Sufficient to merge (16^8)==(2^32) lists */
6029 xMerge
= fts5MergePrefixLists
;
6030 xAppend
= fts5AppendPoslist
;
6033 aBuf
= (Fts5Buffer
*)fts5IdxMalloc(p
, sizeof(Fts5Buffer
)*nBuf
);
6034 pStruct
= fts5StructureRead(p
);
6036 if( aBuf
&& pStruct
){
6037 const int flags
= FTS5INDEX_QUERY_SCAN
6038 | FTS5INDEX_QUERY_SKIPEMPTY
6039 | FTS5INDEX_QUERY_NOOUTPUT
;
6042 Fts5Iter
*p1
= 0; /* Iterator used to gather data from index */
6047 memset(&doclist
, 0, sizeof(doclist
));
6050 const int f2
= FTS5INDEX_QUERY_SKIPEMPTY
|FTS5INDEX_QUERY_NOOUTPUT
;
6051 pToken
[0] = FTS5_MAIN_PREFIX
;
6052 fts5MultiIterNew(p
, pStruct
, f2
, pColset
, pToken
, nToken
, -1, 0, &p1
);
6053 fts5IterSetOutputCb(&p
->rc
, p1
);
6055 fts5MultiIterEof(p
, p1
)==0;
6056 fts5MultiIterNext2(p
, p1
, &dummy
)
6058 Fts5SegIter
*pSeg
= &p1
->aSeg
[ p1
->aFirst
[1].iFirst
];
6059 p1
->xSetOutputs(p1
, pSeg
);
6060 if( p1
->base
.nData
){
6061 xAppend(p
, (u64
)p1
->base
.iRowid
-(u64
)iLastRowid
, p1
, &doclist
);
6062 iLastRowid
= p1
->base
.iRowid
;
6065 fts5MultiIterFree(p1
);
6068 pToken
[0] = FTS5_MAIN_PREFIX
+ iIdx
;
6069 fts5MultiIterNew(p
, pStruct
, flags
, pColset
, pToken
, nToken
, -1, 0, &p1
);
6070 fts5IterSetOutputCb(&p
->rc
, p1
);
6072 fts5MultiIterEof(p
, p1
)==0;
6073 fts5MultiIterNext2(p
, p1
, &bNewTerm
)
6075 Fts5SegIter
*pSeg
= &p1
->aSeg
[ p1
->aFirst
[1].iFirst
];
6076 int nTerm
= pSeg
->term
.n
;
6077 const u8
*pTerm
= pSeg
->term
.p
;
6078 p1
->xSetOutputs(p1
, pSeg
);
6080 assert_nc( memcmp(pToken
, pTerm
, MIN(nToken
, nTerm
))<=0 );
6082 if( nTerm
<nToken
|| memcmp(pToken
, pTerm
, nToken
) ) break;
6085 if( p1
->base
.nData
==0 ) continue;
6087 if( p1
->base
.iRowid
<=iLastRowid
&& doclist
.n
>0 ){
6088 for(i
=0; p
->rc
==SQLITE_OK
&& doclist
.n
; i
++){
6091 assert( i1
+nMerge
<=nBuf
);
6092 for(iStore
=i1
; iStore
<i1
+nMerge
; iStore
++){
6093 if( aBuf
[iStore
].n
==0 ){
6094 fts5BufferSwap(&doclist
, &aBuf
[iStore
]);
6095 fts5BufferZero(&doclist
);
6099 if( iStore
==i1
+nMerge
){
6100 xMerge(p
, &doclist
, nMerge
, &aBuf
[i1
]);
6101 for(iStore
=i1
; iStore
<i1
+nMerge
; iStore
++){
6102 fts5BufferZero(&aBuf
[iStore
]);
6109 xAppend(p
, (u64
)p1
->base
.iRowid
-(u64
)iLastRowid
, p1
, &doclist
);
6110 iLastRowid
= p1
->base
.iRowid
;
6113 assert( (nBuf
%nMerge
)==0 );
6114 for(i
=0; i
<nBuf
; i
+=nMerge
){
6116 if( p
->rc
==SQLITE_OK
){
6117 xMerge(p
, &doclist
, nMerge
, &aBuf
[i
]);
6119 for(iFree
=i
; iFree
<i
+nMerge
; iFree
++){
6120 fts5BufferFree(&aBuf
[iFree
]);
6123 fts5MultiIterFree(p1
);
6125 pData
= fts5IdxMalloc(p
, sizeof(Fts5Data
)+doclist
.n
+FTS5_DATA_ZERO_PADDING
);
6127 pData
->p
= (u8
*)&pData
[1];
6128 pData
->nn
= pData
->szLeaf
= doclist
.n
;
6129 if( doclist
.n
) memcpy(pData
->p
, doclist
.p
, doclist
.n
);
6130 fts5MultiIterNew2(p
, pData
, bDesc
, ppIter
);
6132 fts5BufferFree(&doclist
);
6135 fts5StructureRelease(pStruct
);
6141 ** Indicate that all subsequent calls to sqlite3Fts5IndexWrite() pertain
6142 ** to the document with rowid iRowid.
6144 int sqlite3Fts5IndexBeginWrite(Fts5Index
*p
, int bDelete
, i64 iRowid
){
6145 assert( p
->rc
==SQLITE_OK
);
6147 /* Allocate the hash table if it has not already been allocated */
6149 p
->rc
= sqlite3Fts5HashNew(p
->pConfig
, &p
->pHash
, &p
->nPendingData
);
6152 /* Flush the hash table to disk if required */
6153 if( iRowid
<p
->iWriteRowid
6154 || (iRowid
==p
->iWriteRowid
&& p
->bDelete
==0)
6155 || (p
->nPendingData
> p
->pConfig
->nHashSize
)
6160 p
->iWriteRowid
= iRowid
;
6161 p
->bDelete
= bDelete
;
6165 return fts5IndexReturn(p
);
6169 ** Commit data to disk.
6171 int sqlite3Fts5IndexSync(Fts5Index
*p
){
6172 assert( p
->rc
==SQLITE_OK
);
6174 sqlite3Fts5IndexCloseReader(p
);
6175 return fts5IndexReturn(p
);
6179 ** Discard any data stored in the in-memory hash tables. Do not write it
6180 ** to the database. Additionally, assume that the contents of the %_data
6181 ** table may have changed on disk. So any in-memory caches of %_data
6182 ** records must be invalidated.
6184 int sqlite3Fts5IndexRollback(Fts5Index
*p
){
6185 sqlite3Fts5IndexCloseReader(p
);
6186 fts5IndexDiscardData(p
);
6187 fts5StructureInvalidate(p
);
6188 /* assert( p->rc==SQLITE_OK ); */
6193 ** The %_data table is completely empty when this function is called. This
6194 ** function populates it with the initial structure objects for each index,
6195 ** and the initial version of the "averages" record (a zero-byte blob).
6197 int sqlite3Fts5IndexReinit(Fts5Index
*p
){
6199 fts5StructureInvalidate(p
);
6200 fts5IndexDiscardData(p
);
6201 memset(&s
, 0, sizeof(Fts5Structure
));
6202 if( p
->pConfig
->bContentlessDelete
){
6205 fts5DataWrite(p
, FTS5_AVERAGES_ROWID
, (const u8
*)"", 0);
6206 fts5StructureWrite(p
, &s
);
6207 return fts5IndexReturn(p
);
6211 ** Open a new Fts5Index handle. If the bCreate argument is true, create
6212 ** and initialize the underlying %_data table.
6214 ** If successful, set *pp to point to the new object and return SQLITE_OK.
6215 ** Otherwise, set *pp to NULL and return an SQLite error code.
6217 int sqlite3Fts5IndexOpen(
6218 Fts5Config
*pConfig
,
6224 Fts5Index
*p
; /* New object */
6226 *pp
= p
= (Fts5Index
*)sqlite3Fts5MallocZero(&rc
, sizeof(Fts5Index
));
6227 if( rc
==SQLITE_OK
){
6228 p
->pConfig
= pConfig
;
6229 p
->nWorkUnit
= FTS5_WORK_UNIT
;
6230 p
->zDataTbl
= sqlite3Fts5Mprintf(&rc
, "%s_data", pConfig
->zName
);
6231 if( p
->zDataTbl
&& bCreate
){
6232 rc
= sqlite3Fts5CreateTable(
6233 pConfig
, "data", "id INTEGER PRIMARY KEY, block BLOB", 0, pzErr
6235 if( rc
==SQLITE_OK
){
6236 rc
= sqlite3Fts5CreateTable(pConfig
, "idx",
6237 "segid, term, pgno, PRIMARY KEY(segid, term)",
6241 if( rc
==SQLITE_OK
){
6242 rc
= sqlite3Fts5IndexReinit(p
);
6247 assert( rc
!=SQLITE_OK
|| p
->rc
==SQLITE_OK
);
6249 sqlite3Fts5IndexClose(p
);
6256 ** Close a handle opened by an earlier call to sqlite3Fts5IndexOpen().
6258 int sqlite3Fts5IndexClose(Fts5Index
*p
){
6261 assert( p
->pReader
==0 );
6262 fts5StructureInvalidate(p
);
6263 sqlite3_finalize(p
->pWriter
);
6264 sqlite3_finalize(p
->pDeleter
);
6265 sqlite3_finalize(p
->pIdxWriter
);
6266 sqlite3_finalize(p
->pIdxDeleter
);
6267 sqlite3_finalize(p
->pIdxSelect
);
6268 sqlite3_finalize(p
->pDataVersion
);
6269 sqlite3_finalize(p
->pDeleteFromIdx
);
6270 sqlite3Fts5HashFree(p
->pHash
);
6271 sqlite3_free(p
->zDataTbl
);
6278 ** Argument p points to a buffer containing utf-8 text that is n bytes in
6279 ** size. Return the number of bytes in the nChar character prefix of the
6280 ** buffer, or 0 if there are less than nChar characters in total.
6282 int sqlite3Fts5IndexCharlenToBytelen(
6289 for(i
=0; i
<nChar
; i
++){
6290 if( n
>=nByte
) return 0; /* Input contains fewer than nChar chars */
6291 if( (unsigned char)p
[n
++]>=0xc0 ){
6292 if( n
>=nByte
) return 0;
6293 while( (p
[n
] & 0xc0)==0x80 ){
6296 if( i
+1==nChar
) break;
6306 ** pIn is a UTF-8 encoded string, nIn bytes in size. Return the number of
6307 ** unicode characters in the string.
6309 static int fts5IndexCharlen(const char *pIn
, int nIn
){
6313 if( (unsigned char)pIn
[i
++]>=0xc0 ){
6314 while( i
<nIn
&& (pIn
[i
] & 0xc0)==0x80 ) i
++;
6322 ** Insert or remove data to or from the index. Each time a document is
6323 ** added to or removed from the index, this function is called one or more
6326 ** For an insert, it must be called once for each token in the new document.
6327 ** If the operation is a delete, it must be called (at least) once for each
6328 ** unique token in the document with an iCol value less than zero. The iPos
6329 ** argument is ignored for a delete.
6331 int sqlite3Fts5IndexWrite(
6332 Fts5Index
*p
, /* Index to write to */
6333 int iCol
, /* Column token appears in (-ve -> delete) */
6334 int iPos
, /* Position of token within column */
6335 const char *pToken
, int nToken
/* Token to add or remove to or from index */
6337 int i
; /* Used to iterate through indexes */
6338 int rc
= SQLITE_OK
; /* Return code */
6339 Fts5Config
*pConfig
= p
->pConfig
;
6341 assert( p
->rc
==SQLITE_OK
);
6342 assert( (iCol
<0)==p
->bDelete
);
6344 /* Add the entry to the main terms index. */
6345 rc
= sqlite3Fts5HashWrite(
6346 p
->pHash
, p
->iWriteRowid
, iCol
, iPos
, FTS5_MAIN_PREFIX
, pToken
, nToken
6349 for(i
=0; i
<pConfig
->nPrefix
&& rc
==SQLITE_OK
; i
++){
6350 const int nChar
= pConfig
->aPrefix
[i
];
6351 int nByte
= sqlite3Fts5IndexCharlenToBytelen(pToken
, nToken
, nChar
);
6353 rc
= sqlite3Fts5HashWrite(p
->pHash
,
6354 p
->iWriteRowid
, iCol
, iPos
, (char)(FTS5_MAIN_PREFIX
+i
+1), pToken
,
6364 ** Open a new iterator to iterate though all rowid that match the
6365 ** specified token or token prefix.
6367 int sqlite3Fts5IndexQuery(
6368 Fts5Index
*p
, /* FTS index to query */
6369 const char *pToken
, int nToken
, /* Token (or prefix) to query for */
6370 int flags
, /* Mask of FTS5INDEX_QUERY_X flags */
6371 Fts5Colset
*pColset
, /* Match these columns only */
6372 Fts5IndexIter
**ppIter
/* OUT: New iterator object */
6374 Fts5Config
*pConfig
= p
->pConfig
;
6376 Fts5Buffer buf
= {0, 0, 0};
6378 /* If the QUERY_SCAN flag is set, all other flags must be clear. */
6379 assert( (flags
& FTS5INDEX_QUERY_SCAN
)==0 || flags
==FTS5INDEX_QUERY_SCAN
);
6381 if( sqlite3Fts5BufferSize(&p
->rc
, &buf
, nToken
+1)==0 ){
6382 int iIdx
= 0; /* Index to search */
6383 int iPrefixIdx
= 0; /* +1 prefix index */
6384 if( nToken
>0 ) memcpy(&buf
.p
[1], pToken
, nToken
);
6386 /* Figure out which index to search and set iIdx accordingly. If this
6387 ** is a prefix query for which there is no prefix index, set iIdx to
6388 ** greater than pConfig->nPrefix to indicate that the query will be
6389 ** satisfied by scanning multiple terms in the main index.
6391 ** If the QUERY_TEST_NOIDX flag was specified, then this must be a
6392 ** prefix-query. Instead of using a prefix-index (if one exists),
6393 ** evaluate the prefix query using the main FTS index. This is used
6394 ** for internal sanity checking by the integrity-check in debug
6397 if( pConfig
->bPrefixIndex
==0 || (flags
& FTS5INDEX_QUERY_TEST_NOIDX
) ){
6398 assert( flags
& FTS5INDEX_QUERY_PREFIX
);
6399 iIdx
= 1+pConfig
->nPrefix
;
6402 if( flags
& FTS5INDEX_QUERY_PREFIX
){
6403 int nChar
= fts5IndexCharlen(pToken
, nToken
);
6404 for(iIdx
=1; iIdx
<=pConfig
->nPrefix
; iIdx
++){
6405 int nIdxChar
= pConfig
->aPrefix
[iIdx
-1];
6406 if( nIdxChar
==nChar
) break;
6407 if( nIdxChar
==nChar
+1 ) iPrefixIdx
= iIdx
;
6411 if( iIdx
<=pConfig
->nPrefix
){
6412 /* Straight index lookup */
6413 Fts5Structure
*pStruct
= fts5StructureRead(p
);
6414 buf
.p
[0] = (u8
)(FTS5_MAIN_PREFIX
+ iIdx
);
6416 fts5MultiIterNew(p
, pStruct
, flags
| FTS5INDEX_QUERY_SKIPEMPTY
,
6417 pColset
, buf
.p
, nToken
+1, -1, 0, &pRet
6419 fts5StructureRelease(pStruct
);
6422 /* Scan multiple terms in the main index */
6423 int bDesc
= (flags
& FTS5INDEX_QUERY_DESC
)!=0;
6424 fts5SetupPrefixIter(p
, bDesc
, iPrefixIdx
, buf
.p
, nToken
+1, pColset
,&pRet
);
6426 assert( p
->rc
!=SQLITE_OK
);
6428 assert( pRet
->pColset
==0 );
6429 fts5IterSetOutputCb(&p
->rc
, pRet
);
6430 if( p
->rc
==SQLITE_OK
){
6431 Fts5SegIter
*pSeg
= &pRet
->aSeg
[pRet
->aFirst
[1].iFirst
];
6432 if( pSeg
->pLeaf
) pRet
->xSetOutputs(pRet
, pSeg
);
6438 sqlite3Fts5IterClose((Fts5IndexIter
*)pRet
);
6440 sqlite3Fts5IndexCloseReader(p
);
6443 *ppIter
= (Fts5IndexIter
*)pRet
;
6444 sqlite3Fts5BufferFree(&buf
);
6446 return fts5IndexReturn(p
);
6450 ** Return true if the iterator passed as the only argument is at EOF.
6453 ** Move to the next matching rowid.
6455 int sqlite3Fts5IterNext(Fts5IndexIter
*pIndexIter
){
6456 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
6457 assert( pIter
->pIndex
->rc
==SQLITE_OK
);
6458 fts5MultiIterNext(pIter
->pIndex
, pIter
, 0, 0);
6459 return fts5IndexReturn(pIter
->pIndex
);
6463 ** Move to the next matching term/rowid. Used by the fts5vocab module.
6465 int sqlite3Fts5IterNextScan(Fts5IndexIter
*pIndexIter
){
6466 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
6467 Fts5Index
*p
= pIter
->pIndex
;
6469 assert( pIter
->pIndex
->rc
==SQLITE_OK
);
6471 fts5MultiIterNext(p
, pIter
, 0, 0);
6472 if( p
->rc
==SQLITE_OK
){
6473 Fts5SegIter
*pSeg
= &pIter
->aSeg
[ pIter
->aFirst
[1].iFirst
];
6474 if( pSeg
->pLeaf
&& pSeg
->term
.p
[0]!=FTS5_MAIN_PREFIX
){
6475 fts5DataRelease(pSeg
->pLeaf
);
6477 pIter
->base
.bEof
= 1;
6481 return fts5IndexReturn(pIter
->pIndex
);
6485 ** Move to the next matching rowid that occurs at or after iMatch. The
6486 ** definition of "at or after" depends on whether this iterator iterates
6487 ** in ascending or descending rowid order.
6489 int sqlite3Fts5IterNextFrom(Fts5IndexIter
*pIndexIter
, i64 iMatch
){
6490 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
6491 fts5MultiIterNextFrom(pIter
->pIndex
, pIter
, iMatch
);
6492 return fts5IndexReturn(pIter
->pIndex
);
6496 ** Return the current term.
6498 const char *sqlite3Fts5IterTerm(Fts5IndexIter
*pIndexIter
, int *pn
){
6500 const char *z
= (const char*)fts5MultiIterTerm((Fts5Iter
*)pIndexIter
, &n
);
6501 assert_nc( z
|| n
<=1 );
6503 return (z
? &z
[1] : 0);
6507 ** Close an iterator opened by an earlier call to sqlite3Fts5IndexQuery().
6509 void sqlite3Fts5IterClose(Fts5IndexIter
*pIndexIter
){
6511 Fts5Iter
*pIter
= (Fts5Iter
*)pIndexIter
;
6512 Fts5Index
*pIndex
= pIter
->pIndex
;
6513 fts5MultiIterFree(pIter
);
6514 sqlite3Fts5IndexCloseReader(pIndex
);
6519 ** Read and decode the "averages" record from the database.
6521 ** Parameter anSize must point to an array of size nCol, where nCol is
6522 ** the number of user defined columns in the FTS table.
6524 int sqlite3Fts5IndexGetAverages(Fts5Index
*p
, i64
*pnRow
, i64
*anSize
){
6525 int nCol
= p
->pConfig
->nCol
;
6529 memset(anSize
, 0, sizeof(i64
) * nCol
);
6530 pData
= fts5DataRead(p
, FTS5_AVERAGES_ROWID
);
6531 if( p
->rc
==SQLITE_OK
&& pData
->nn
){
6534 i
+= fts5GetVarint(&pData
->p
[i
], (u64
*)pnRow
);
6535 for(iCol
=0; i
<pData
->nn
&& iCol
<nCol
; iCol
++){
6536 i
+= fts5GetVarint(&pData
->p
[i
], (u64
*)&anSize
[iCol
]);
6540 fts5DataRelease(pData
);
6541 return fts5IndexReturn(p
);
6545 ** Replace the current "averages" record with the contents of the buffer
6546 ** supplied as the second argument.
6548 int sqlite3Fts5IndexSetAverages(Fts5Index
*p
, const u8
*pData
, int nData
){
6549 assert( p
->rc
==SQLITE_OK
);
6550 fts5DataWrite(p
, FTS5_AVERAGES_ROWID
, pData
, nData
);
6551 return fts5IndexReturn(p
);
6555 ** Return the total number of blocks this module has read from the %_data
6556 ** table since it was created.
6558 int sqlite3Fts5IndexReads(Fts5Index
*p
){
6563 ** Set the 32-bit cookie value stored at the start of all structure
6564 ** records to the value passed as the second argument.
6566 ** Return SQLITE_OK if successful, or an SQLite error code if an error
6569 int sqlite3Fts5IndexSetCookie(Fts5Index
*p
, int iNew
){
6570 int rc
; /* Return code */
6571 Fts5Config
*pConfig
= p
->pConfig
; /* Configuration object */
6572 u8 aCookie
[4]; /* Binary representation of iNew */
6573 sqlite3_blob
*pBlob
= 0;
6575 assert( p
->rc
==SQLITE_OK
);
6576 sqlite3Fts5Put32(aCookie
, iNew
);
6578 rc
= sqlite3_blob_open(pConfig
->db
, pConfig
->zDb
, p
->zDataTbl
,
6579 "block", FTS5_STRUCTURE_ROWID
, 1, &pBlob
6581 if( rc
==SQLITE_OK
){
6582 sqlite3_blob_write(pBlob
, aCookie
, 4, 0);
6583 rc
= sqlite3_blob_close(pBlob
);
6589 int sqlite3Fts5IndexLoadConfig(Fts5Index
*p
){
6590 Fts5Structure
*pStruct
;
6591 pStruct
= fts5StructureRead(p
);
6592 fts5StructureRelease(pStruct
);
6593 return fts5IndexReturn(p
);
6597 ** Retrieve the origin value that will be used for the segment currently
6598 ** being accumulated in the in-memory hash table when it is flushed to
6599 ** disk. If successful, SQLITE_OK is returned and (*piOrigin) set to
6600 ** the queried value. Or, if an error occurs, an error code is returned
6601 ** and the final value of (*piOrigin) is undefined.
6603 int sqlite3Fts5IndexGetOrigin(Fts5Index
*p
, i64
*piOrigin
){
6604 Fts5Structure
*pStruct
;
6605 pStruct
= fts5StructureRead(p
);
6607 *piOrigin
= pStruct
->nOriginCntr
;
6608 fts5StructureRelease(pStruct
);
6610 return fts5IndexReturn(p
);
6614 ** Buffer pPg contains a page of a tombstone hash table - one of nPg pages
6615 ** associated with the same segment. This function adds rowid iRowid to
6616 ** the hash table. The caller is required to guarantee that there is at
6617 ** least one free slot on the page.
6619 ** If parameter bForce is false and the hash table is deemed to be full
6620 ** (more than half of the slots are occupied), then non-zero is returned
6621 ** and iRowid not inserted. Or, if bForce is true or if the hash table page
6622 ** is not full, iRowid is inserted and zero returned.
6624 static int fts5IndexTombstoneAddToPage(
6630 const int szKey
= TOMBSTONE_KEYSIZE(pPg
);
6631 const int nSlot
= TOMBSTONE_NSLOT(pPg
);
6632 const int nElem
= fts5GetU32(&pPg
->p
[4]);
6633 int iSlot
= (iRowid
/ nPg
) % nSlot
;
6634 int nCollide
= nSlot
;
6636 if( szKey
==4 && iRowid
>0xFFFFFFFF ) return 2;
6642 if( bForce
==0 && nElem
>=(nSlot
/2) ){
6646 fts5PutU32(&pPg
->p
[4], nElem
+1);
6648 u32
*aSlot
= (u32
*)&pPg
->p
[8];
6649 while( aSlot
[iSlot
] ){
6650 iSlot
= (iSlot
+ 1) % nSlot
;
6651 if( nCollide
--==0 ) return 0;
6653 fts5PutU32((u8
*)&aSlot
[iSlot
], (u32
)iRowid
);
6655 u64
*aSlot
= (u64
*)&pPg
->p
[8];
6656 while( aSlot
[iSlot
] ){
6657 iSlot
= (iSlot
+ 1) % nSlot
;
6658 if( nCollide
--==0 ) return 0;
6660 fts5PutU64((u8
*)&aSlot
[iSlot
], iRowid
);
6667 ** This function attempts to build a new hash containing all the keys
6668 ** currently in the tombstone hash table for segment pSeg. The new
6669 ** hash will be stored in the nOut buffers passed in array apOut[].
6670 ** All pages of the new hash use key-size szKey (4 or 8).
6672 ** Return 0 if the hash is successfully rebuilt into the nOut pages.
6673 ** Or non-zero if it is not (because one page became overfull). In this
6674 ** case the caller should retry with a larger nOut parameter.
6676 ** Parameter pData1 is page iPg1 of the hash table being rebuilt.
6678 static int fts5IndexTombstoneRehash(
6680 Fts5StructureSegment
*pSeg
, /* Segment to rebuild hash of */
6681 Fts5Data
*pData1
, /* One page of current hash - or NULL */
6682 int iPg1
, /* Which page of the current hash is pData1 */
6683 int szKey
, /* 4 or 8, the keysize */
6684 int nOut
, /* Number of output pages */
6685 Fts5Data
**apOut
/* Array of output hash pages */
6690 /* Initialize the headers of all the output pages */
6691 for(ii
=0; ii
<nOut
; ii
++){
6692 apOut
[ii
]->p
[0] = szKey
;
6693 fts5PutU32(&apOut
[ii
]->p
[4], 0);
6696 /* Loop through the current pages of the hash table. */
6697 for(ii
=0; res
==0 && ii
<pSeg
->nPgTombstone
; ii
++){
6698 Fts5Data
*pData
= 0; /* Page ii of the current hash table */
6699 Fts5Data
*pFree
= 0; /* Free this at the end of the loop */
6704 pFree
= pData
= fts5DataRead(p
, FTS5_TOMBSTONE_ROWID(pSeg
->iSegid
, ii
));
6708 int szKeyIn
= TOMBSTONE_KEYSIZE(pData
);
6709 int nSlotIn
= (pData
->nn
- 8) / szKeyIn
;
6711 for(iIn
=0; iIn
<nSlotIn
; iIn
++){
6714 /* Read the value from slot iIn of the input page into iVal. */
6716 u32
*aSlot
= (u32
*)&pData
->p
[8];
6717 if( aSlot
[iIn
] ) iVal
= fts5GetU32((u8
*)&aSlot
[iIn
]);
6719 u64
*aSlot
= (u64
*)&pData
->p
[8];
6720 if( aSlot
[iIn
] ) iVal
= fts5GetU64((u8
*)&aSlot
[iIn
]);
6723 /* If iVal is not 0 at this point, insert it into the new hash table */
6725 Fts5Data
*pPg
= apOut
[(iVal
% nOut
)];
6726 res
= fts5IndexTombstoneAddToPage(pPg
, 0, nOut
, iVal
);
6731 /* If this is page 0 of the old hash, copy the rowid-0-flag from the
6732 ** old hash to the new. */
6734 apOut
[0]->p
[1] = pData
->p
[1];
6737 fts5DataRelease(pFree
);
6744 ** This is called to rebuild the hash table belonging to segment pSeg.
6745 ** If parameter pData1 is not NULL, then one page of the existing hash table
6746 ** has already been loaded - pData1, which is page iPg1. The key-size for
6747 ** the new hash table is szKey (4 or 8).
6749 ** If successful, the new hash table is not written to disk. Instead,
6750 ** output parameter (*pnOut) is set to the number of pages in the new
6751 ** hash table, and (*papOut) to point to an array of buffers containing
6752 ** the new page data.
6754 ** If an error occurs, an error code is left in the Fts5Index object and
6755 ** both output parameters set to 0 before returning.
6757 static void fts5IndexTombstoneRebuild(
6759 Fts5StructureSegment
*pSeg
, /* Segment to rebuild hash of */
6760 Fts5Data
*pData1
, /* One page of current hash - or NULL */
6761 int iPg1
, /* Which page of the current hash is pData1 */
6762 int szKey
, /* 4 or 8, the keysize */
6763 int *pnOut
, /* OUT: Number of output pages */
6764 Fts5Data
***papOut
/* OUT: Output hash pages */
6766 const int MINSLOT
= 32;
6767 int nSlotPerPage
= MAX(MINSLOT
, (p
->pConfig
->pgsz
- 8) / szKey
);
6768 int nSlot
= 0; /* Number of slots in each output page */
6771 /* Figure out how many output pages (nOut) and how many slots per
6772 ** page (nSlot). There are three possibilities:
6774 ** 1. The hash table does not yet exist. In this case the new hash
6775 ** table will consist of a single page with MINSLOT slots.
6777 ** 2. The hash table exists but is currently a single page. In this
6778 ** case an attempt is made to grow the page to accommodate the new
6779 ** entry. The page is allowed to grow up to nSlotPerPage (see above)
6782 ** 3. The hash table already consists of more than one page, or of
6783 ** a single page already so large that it cannot be grown. In this
6784 ** case the new hash consists of (nPg*2+1) pages of nSlotPerPage
6785 ** slots each, where nPg is the current number of pages in the
6788 if( pSeg
->nPgTombstone
==0 ){
6792 }else if( pSeg
->nPgTombstone
==1 ){
6794 int nElem
= (int)fts5GetU32(&pData1
->p
[4]);
6795 assert( pData1
&& iPg1
==0 );
6797 nSlot
= MAX(nElem
*4, MINSLOT
);
6798 if( nSlot
>nSlotPerPage
) nOut
= 0;
6802 nOut
= (pSeg
->nPgTombstone
* 2 + 1);
6803 nSlot
= nSlotPerPage
;
6806 /* Allocate the required array and output pages */
6811 Fts5Data
**apOut
= 0;
6813 /* Allocate space for the new hash table */
6814 assert( nSlot
>=MINSLOT
);
6815 apOut
= (Fts5Data
**)sqlite3Fts5MallocZero(&p
->rc
, sizeof(Fts5Data
*) * nOut
);
6816 szPage
= 8 + nSlot
*szKey
;
6817 for(ii
=0; ii
<nOut
; ii
++){
6818 Fts5Data
*pNew
= (Fts5Data
*)sqlite3Fts5MallocZero(&p
->rc
,
6819 sizeof(Fts5Data
)+szPage
6823 pNew
->p
= (u8
*)&pNew
[1];
6828 /* Rebuild the hash table. */
6829 if( p
->rc
==SQLITE_OK
){
6830 res
= fts5IndexTombstoneRehash(p
, pSeg
, pData1
, iPg1
, szKey
, nOut
, apOut
);
6834 fts5IndexFreeArray(apOut
, nOut
);
6843 /* If control flows to here, it was not possible to rebuild the hash
6844 ** table. Free all buffers and then try again with more pages. */
6845 assert( p
->rc
==SQLITE_OK
);
6846 fts5IndexFreeArray(apOut
, nOut
);
6847 nSlot
= nSlotPerPage
;
6854 ** Add a tombstone for rowid iRowid to segment pSeg.
6856 static void fts5IndexTombstoneAdd(
6858 Fts5StructureSegment
*pSeg
,
6865 Fts5Data
**apHash
= 0;
6867 p
->nContentlessDelete
++;
6869 if( pSeg
->nPgTombstone
>0 ){
6870 iPg
= iRowid
% pSeg
->nPgTombstone
;
6871 pPg
= fts5DataRead(p
, FTS5_TOMBSTONE_ROWID(pSeg
->iSegid
,iPg
));
6873 assert( p
->rc
!=SQLITE_OK
);
6877 if( 0==fts5IndexTombstoneAddToPage(pPg
, 0, pSeg
->nPgTombstone
, iRowid
) ){
6878 fts5DataWrite(p
, FTS5_TOMBSTONE_ROWID(pSeg
->iSegid
,iPg
), pPg
->p
, pPg
->nn
);
6879 fts5DataRelease(pPg
);
6884 /* Have to rebuild the hash table. First figure out the key-size (4 or 8). */
6885 szKey
= pPg
? TOMBSTONE_KEYSIZE(pPg
) : 4;
6886 if( iRowid
>0xFFFFFFFF ) szKey
= 8;
6888 /* Rebuild the hash table */
6889 fts5IndexTombstoneRebuild(p
, pSeg
, pPg
, iPg
, szKey
, &nHash
, &apHash
);
6890 assert( p
->rc
==SQLITE_OK
|| (nHash
==0 && apHash
==0) );
6892 /* If all has succeeded, write the new rowid into one of the new hash
6893 ** table pages, then write them all out to disk. */
6896 fts5IndexTombstoneAddToPage(apHash
[iRowid
% nHash
], 1, nHash
, iRowid
);
6897 for(ii
=0; ii
<nHash
; ii
++){
6898 i64 iTombstoneRowid
= FTS5_TOMBSTONE_ROWID(pSeg
->iSegid
, ii
);
6899 fts5DataWrite(p
, iTombstoneRowid
, apHash
[ii
]->p
, apHash
[ii
]->nn
);
6901 pSeg
->nPgTombstone
= nHash
;
6902 fts5StructureWrite(p
, p
->pStruct
);
6905 fts5DataRelease(pPg
);
6906 fts5IndexFreeArray(apHash
, nHash
);
6910 ** Add iRowid to the tombstone list of the segment or segments that contain
6911 ** rows from origin iOrigin. Return SQLITE_OK if successful, or an SQLite
6912 ** error code otherwise.
6914 int sqlite3Fts5IndexContentlessDelete(Fts5Index
*p
, i64 iOrigin
, i64 iRowid
){
6915 Fts5Structure
*pStruct
;
6916 pStruct
= fts5StructureRead(p
);
6918 int bFound
= 0; /* True after pSeg->nEntryTombstone incr. */
6920 for(iLvl
=pStruct
->nLevel
-1; iLvl
>=0; iLvl
--){
6922 for(iSeg
=pStruct
->aLevel
[iLvl
].nSeg
-1; iSeg
>=0; iSeg
--){
6923 Fts5StructureSegment
*pSeg
= &pStruct
->aLevel
[iLvl
].aSeg
[iSeg
];
6924 if( pSeg
->iOrigin1
<=(u64
)iOrigin
&& pSeg
->iOrigin2
>=(u64
)iOrigin
){
6926 pSeg
->nEntryTombstone
++;
6929 fts5IndexTombstoneAdd(p
, pSeg
, iRowid
);
6933 fts5StructureRelease(pStruct
);
6935 return fts5IndexReturn(p
);
6938 /*************************************************************************
6939 **************************************************************************
6940 ** Below this point is the implementation of the integrity-check
6945 ** Return a simple checksum value based on the arguments.
6947 u64
sqlite3Fts5IndexEntryCksum(
6957 ret
+= (ret
<<3) + iCol
;
6958 ret
+= (ret
<<3) + iPos
;
6959 if( iIdx
>=0 ) ret
+= (ret
<<3) + (FTS5_MAIN_PREFIX
+ iIdx
);
6960 for(i
=0; i
<nTerm
; i
++) ret
+= (ret
<<3) + pTerm
[i
];
6966 ** This function is purely an internal test. It does not contribute to
6967 ** FTS functionality, or even the integrity-check, in any way.
6969 ** Instead, it tests that the same set of pgno/rowid combinations are
6970 ** visited regardless of whether the doclist-index identified by parameters
6971 ** iSegid/iLeaf is iterated in forwards or reverse order.
6973 static void fts5TestDlidxReverse(
6975 int iSegid
, /* Segment id to load from */
6976 int iLeaf
/* Load doclist-index for this leaf */
6978 Fts5DlidxIter
*pDlidx
= 0;
6982 for(pDlidx
=fts5DlidxIterInit(p
, 0, iSegid
, iLeaf
);
6983 fts5DlidxIterEof(p
, pDlidx
)==0;
6984 fts5DlidxIterNext(p
, pDlidx
)
6986 i64 iRowid
= fts5DlidxIterRowid(pDlidx
);
6987 int pgno
= fts5DlidxIterPgno(pDlidx
);
6988 assert( pgno
>iLeaf
);
6989 cksum1
+= iRowid
+ ((i64
)pgno
<<32);
6991 fts5DlidxIterFree(pDlidx
);
6994 for(pDlidx
=fts5DlidxIterInit(p
, 1, iSegid
, iLeaf
);
6995 fts5DlidxIterEof(p
, pDlidx
)==0;
6996 fts5DlidxIterPrev(p
, pDlidx
)
6998 i64 iRowid
= fts5DlidxIterRowid(pDlidx
);
6999 int pgno
= fts5DlidxIterPgno(pDlidx
);
7000 assert( fts5DlidxIterPgno(pDlidx
)>iLeaf
);
7001 cksum2
+= iRowid
+ ((i64
)pgno
<<32);
7003 fts5DlidxIterFree(pDlidx
);
7006 if( p
->rc
==SQLITE_OK
&& cksum1
!=cksum2
) p
->rc
= FTS5_CORRUPT
;
7009 static int fts5QueryCksum(
7010 Fts5Index
*p
, /* Fts5 index object */
7012 const char *z
, /* Index key to query for */
7013 int n
, /* Size of index key in bytes */
7014 int flags
, /* Flags for Fts5IndexQuery */
7015 u64
*pCksum
/* IN/OUT: Checksum value */
7017 int eDetail
= p
->pConfig
->eDetail
;
7018 u64 cksum
= *pCksum
;
7019 Fts5IndexIter
*pIter
= 0;
7020 int rc
= sqlite3Fts5IndexQuery(p
, z
, n
, flags
, 0, &pIter
);
7022 while( rc
==SQLITE_OK
&& ALWAYS(pIter
!=0) && 0==sqlite3Fts5IterEof(pIter
) ){
7023 i64 rowid
= pIter
->iRowid
;
7025 if( eDetail
==FTS5_DETAIL_NONE
){
7026 cksum
^= sqlite3Fts5IndexEntryCksum(rowid
, 0, 0, iIdx
, z
, n
);
7028 Fts5PoslistReader sReader
;
7029 for(sqlite3Fts5PoslistReaderInit(pIter
->pData
, pIter
->nData
, &sReader
);
7031 sqlite3Fts5PoslistReaderNext(&sReader
)
7033 int iCol
= FTS5_POS2COLUMN(sReader
.iPos
);
7034 int iOff
= FTS5_POS2OFFSET(sReader
.iPos
);
7035 cksum
^= sqlite3Fts5IndexEntryCksum(rowid
, iCol
, iOff
, iIdx
, z
, n
);
7038 if( rc
==SQLITE_OK
){
7039 rc
= sqlite3Fts5IterNext(pIter
);
7042 sqlite3Fts5IterClose(pIter
);
7049 ** Check if buffer z[], size n bytes, contains as series of valid utf-8
7050 ** encoded codepoints. If so, return 0. Otherwise, if the buffer does not
7051 ** contain valid utf-8, return non-zero.
7053 static int fts5TestUtf8(const char *z
, int n
){
7057 if( (z
[i
] & 0x80)==0x00 ){
7060 if( (z
[i
] & 0xE0)==0xC0 ){
7061 if( i
+1>=n
|| (z
[i
+1] & 0xC0)!=0x80 ) return 1;
7064 if( (z
[i
] & 0xF0)==0xE0 ){
7065 if( i
+2>=n
|| (z
[i
+1] & 0xC0)!=0x80 || (z
[i
+2] & 0xC0)!=0x80 ) return 1;
7068 if( (z
[i
] & 0xF8)==0xF0 ){
7069 if( i
+3>=n
|| (z
[i
+1] & 0xC0)!=0x80 || (z
[i
+2] & 0xC0)!=0x80 ) return 1;
7070 if( (z
[i
+2] & 0xC0)!=0x80 ) return 1;
7081 ** This function is also purely an internal test. It does not contribute to
7082 ** FTS functionality, or even the integrity-check, in any way.
7084 static void fts5TestTerm(
7086 Fts5Buffer
*pPrev
, /* Previous term */
7087 const char *z
, int n
, /* Possibly new term to test */
7093 fts5BufferSet(&rc
, pPrev
, n
, (const u8
*)z
);
7095 if( rc
==SQLITE_OK
&& (pPrev
->n
!=n
|| memcmp(pPrev
->p
, z
, n
)) ){
7096 u64 cksum3
= *pCksum
;
7097 const char *zTerm
= (const char*)&pPrev
->p
[1]; /* term sans prefix-byte */
7098 int nTerm
= pPrev
->n
-1; /* Size of zTerm in bytes */
7099 int iIdx
= (pPrev
->p
[0] - FTS5_MAIN_PREFIX
);
7100 int flags
= (iIdx
==0 ? 0 : FTS5INDEX_QUERY_PREFIX
);
7104 /* Check that the results returned for ASC and DESC queries are
7105 ** the same. If not, call this corruption. */
7106 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, flags
, &ck1
);
7107 if( rc
==SQLITE_OK
){
7108 int f
= flags
|FTS5INDEX_QUERY_DESC
;
7109 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
7111 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
7113 /* If this is a prefix query, check that the results returned if the
7114 ** the index is disabled are the same. In both ASC and DESC order.
7116 ** This check may only be performed if the hash table is empty. This
7117 ** is because the hash table only supports a single scan query at
7118 ** a time, and the multi-iter loop from which this function is called
7119 ** is already performing such a scan.
7121 ** Also only do this if buffer zTerm contains nTerm bytes of valid
7122 ** utf-8. Otherwise, the last part of the buffer contents might contain
7123 ** a non-utf-8 sequence that happens to be a prefix of a valid utf-8
7124 ** character stored in the main fts index, which will cause the
7126 if( p
->nPendingData
==0 && 0==fts5TestUtf8(zTerm
, nTerm
) ){
7127 if( iIdx
>0 && rc
==SQLITE_OK
){
7128 int f
= flags
|FTS5INDEX_QUERY_TEST_NOIDX
;
7130 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
7131 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
7133 if( iIdx
>0 && rc
==SQLITE_OK
){
7134 int f
= flags
|FTS5INDEX_QUERY_TEST_NOIDX
|FTS5INDEX_QUERY_DESC
;
7136 rc
= fts5QueryCksum(p
, iIdx
, zTerm
, nTerm
, f
, &ck2
);
7137 if( rc
==SQLITE_OK
&& ck1
!=ck2
) rc
= FTS5_CORRUPT
;
7142 fts5BufferSet(&rc
, pPrev
, n
, (const u8
*)z
);
7144 if( rc
==SQLITE_OK
&& cksum3
!=expected
){
7153 # define fts5TestDlidxReverse(x,y,z)
7154 # define fts5TestTerm(u,v,w,x,y,z)
7160 ** 1) All leaves of pSeg between iFirst and iLast (inclusive) exist and
7161 ** contain zero terms.
7162 ** 2) All leaves of pSeg between iNoRowid and iLast (inclusive) exist and
7163 ** contain zero rowids.
7165 static void fts5IndexIntegrityCheckEmpty(
7167 Fts5StructureSegment
*pSeg
, /* Segment to check internal consistency */
7174 /* Now check that the iter.nEmpty leaves following the current leaf
7175 ** (a) exist and (b) contain no terms. */
7176 for(i
=iFirst
; p
->rc
==SQLITE_OK
&& i
<=iLast
; i
++){
7177 Fts5Data
*pLeaf
= fts5DataRead(p
, FTS5_SEGMENT_ROWID(pSeg
->iSegid
, i
));
7179 if( !fts5LeafIsTermless(pLeaf
) ) p
->rc
= FTS5_CORRUPT
;
7180 if( i
>=iNoRowid
&& 0!=fts5LeafFirstRowidOff(pLeaf
) ) p
->rc
= FTS5_CORRUPT
;
7182 fts5DataRelease(pLeaf
);
7186 static void fts5IntegrityCheckPgidx(Fts5Index
*p
, Fts5Data
*pLeaf
){
7190 Fts5Buffer buf1
= {0,0,0};
7191 Fts5Buffer buf2
= {0,0,0};
7194 while( ii
<pLeaf
->nn
&& p
->rc
==SQLITE_OK
){
7199 ii
+= fts5GetVarint32(&pLeaf
->p
[ii
], nIncr
);
7203 if( iOff
>=pLeaf
->szLeaf
){
7204 p
->rc
= FTS5_CORRUPT
;
7205 }else if( iTermOff
==nIncr
){
7207 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nByte
);
7208 if( (iOff
+nByte
)>pLeaf
->szLeaf
){
7209 p
->rc
= FTS5_CORRUPT
;
7211 fts5BufferSet(&p
->rc
, &buf1
, nByte
, &pLeaf
->p
[iOff
]);
7215 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nKeep
);
7216 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nByte
);
7217 if( nKeep
>buf1
.n
|| (iOff
+nByte
)>pLeaf
->szLeaf
){
7218 p
->rc
= FTS5_CORRUPT
;
7221 fts5BufferAppendBlob(&p
->rc
, &buf1
, nByte
, &pLeaf
->p
[iOff
]);
7224 if( p
->rc
==SQLITE_OK
){
7225 res
= fts5BufferCompare(&buf1
, &buf2
);
7226 if( res
<=0 ) p
->rc
= FTS5_CORRUPT
;
7229 fts5BufferSet(&p
->rc
, &buf2
, buf1
.n
, buf1
.p
);
7232 fts5BufferFree(&buf1
);
7233 fts5BufferFree(&buf2
);
7236 static void fts5IndexIntegrityCheckSegment(
7237 Fts5Index
*p
, /* FTS5 backend object */
7238 Fts5StructureSegment
*pSeg
/* Segment to check internal consistency */
7240 Fts5Config
*pConfig
= p
->pConfig
;
7241 int bSecureDelete
= (pConfig
->iVersion
==FTS5_CURRENT_VERSION_SECUREDELETE
);
7242 sqlite3_stmt
*pStmt
= 0;
7244 int iIdxPrevLeaf
= pSeg
->pgnoFirst
-1;
7245 int iDlidxPrevLeaf
= pSeg
->pgnoLast
;
7247 if( pSeg
->pgnoFirst
==0 ) return;
7249 fts5IndexPrepareStmt(p
, &pStmt
, sqlite3_mprintf(
7250 "SELECT segid, term, (pgno>>1), (pgno&1) FROM %Q.'%q_idx' WHERE segid=%d "
7252 pConfig
->zDb
, pConfig
->zName
, pSeg
->iSegid
7255 /* Iterate through the b-tree hierarchy. */
7256 while( p
->rc
==SQLITE_OK
&& SQLITE_ROW
==sqlite3_step(pStmt
) ){
7257 i64 iRow
; /* Rowid for this leaf */
7258 Fts5Data
*pLeaf
; /* Data for this leaf */
7260 const char *zIdxTerm
= (const char*)sqlite3_column_blob(pStmt
, 1);
7261 int nIdxTerm
= sqlite3_column_bytes(pStmt
, 1);
7262 int iIdxLeaf
= sqlite3_column_int(pStmt
, 2);
7263 int bIdxDlidx
= sqlite3_column_int(pStmt
, 3);
7265 /* If the leaf in question has already been trimmed from the segment,
7266 ** ignore this b-tree entry. Otherwise, load it into memory. */
7267 if( iIdxLeaf
<pSeg
->pgnoFirst
) continue;
7268 iRow
= FTS5_SEGMENT_ROWID(pSeg
->iSegid
, iIdxLeaf
);
7269 pLeaf
= fts5LeafRead(p
, iRow
);
7270 if( pLeaf
==0 ) break;
7272 /* Check that the leaf contains at least one term, and that it is equal
7273 ** to or larger than the split-key in zIdxTerm. Also check that if there
7274 ** is also a rowid pointer within the leaf page header, it points to a
7275 ** location before the term. */
7276 if( pLeaf
->nn
<=pLeaf
->szLeaf
){
7279 && pConfig
->iVersion
==FTS5_CURRENT_VERSION_SECUREDELETE
7280 && pLeaf
->nn
==pLeaf
->szLeaf
7283 /* special case - the very first page in a segment keeps its %_idx
7284 ** entry even if all the terms are removed from it by secure-delete
7287 p
->rc
= FTS5_CORRUPT
;
7291 int iOff
; /* Offset of first term on leaf */
7292 int iRowidOff
; /* Offset of first rowid on leaf */
7293 int nTerm
; /* Size of term on leaf in bytes */
7294 int res
; /* Comparison of term and split-key */
7296 iOff
= fts5LeafFirstTermOff(pLeaf
);
7297 iRowidOff
= fts5LeafFirstRowidOff(pLeaf
);
7298 if( iRowidOff
>=iOff
|| iOff
>=pLeaf
->szLeaf
){
7299 p
->rc
= FTS5_CORRUPT
;
7301 iOff
+= fts5GetVarint32(&pLeaf
->p
[iOff
], nTerm
);
7302 res
= fts5Memcmp(&pLeaf
->p
[iOff
], zIdxTerm
, MIN(nTerm
, nIdxTerm
));
7303 if( res
==0 ) res
= nTerm
- nIdxTerm
;
7304 if( res
<0 ) p
->rc
= FTS5_CORRUPT
;
7307 fts5IntegrityCheckPgidx(p
, pLeaf
);
7309 fts5DataRelease(pLeaf
);
7312 /* Now check that the iter.nEmpty leaves following the current leaf
7313 ** (a) exist and (b) contain no terms. */
7314 fts5IndexIntegrityCheckEmpty(
7315 p
, pSeg
, iIdxPrevLeaf
+1, iDlidxPrevLeaf
+1, iIdxLeaf
-1
7319 /* If there is a doclist-index, check that it looks right. */
7321 Fts5DlidxIter
*pDlidx
= 0; /* For iterating through doclist index */
7322 int iPrevLeaf
= iIdxLeaf
;
7323 int iSegid
= pSeg
->iSegid
;
7327 for(pDlidx
=fts5DlidxIterInit(p
, 0, iSegid
, iIdxLeaf
);
7328 fts5DlidxIterEof(p
, pDlidx
)==0;
7329 fts5DlidxIterNext(p
, pDlidx
)
7332 /* Check any rowid-less pages that occur before the current leaf. */
7333 for(iPg
=iPrevLeaf
+1; iPg
<fts5DlidxIterPgno(pDlidx
); iPg
++){
7334 iKey
= FTS5_SEGMENT_ROWID(iSegid
, iPg
);
7335 pLeaf
= fts5DataRead(p
, iKey
);
7337 if( fts5LeafFirstRowidOff(pLeaf
)!=0 ) p
->rc
= FTS5_CORRUPT
;
7338 fts5DataRelease(pLeaf
);
7341 iPrevLeaf
= fts5DlidxIterPgno(pDlidx
);
7343 /* Check that the leaf page indicated by the iterator really does
7344 ** contain the rowid suggested by the same. */
7345 iKey
= FTS5_SEGMENT_ROWID(iSegid
, iPrevLeaf
);
7346 pLeaf
= fts5DataRead(p
, iKey
);
7349 int iRowidOff
= fts5LeafFirstRowidOff(pLeaf
);
7350 ASSERT_SZLEAF_OK(pLeaf
);
7351 if( iRowidOff
>=pLeaf
->szLeaf
){
7352 p
->rc
= FTS5_CORRUPT
;
7353 }else if( bSecureDelete
==0 || iRowidOff
>0 ){
7354 i64 iDlRowid
= fts5DlidxIterRowid(pDlidx
);
7355 fts5GetVarint(&pLeaf
->p
[iRowidOff
], (u64
*)&iRowid
);
7356 if( iRowid
<iDlRowid
|| (bSecureDelete
==0 && iRowid
!=iDlRowid
) ){
7357 p
->rc
= FTS5_CORRUPT
;
7360 fts5DataRelease(pLeaf
);
7364 iDlidxPrevLeaf
= iPg
;
7365 fts5DlidxIterFree(pDlidx
);
7366 fts5TestDlidxReverse(p
, iSegid
, iIdxLeaf
);
7368 iDlidxPrevLeaf
= pSeg
->pgnoLast
;
7369 /* TODO: Check there is no doclist index */
7372 iIdxPrevLeaf
= iIdxLeaf
;
7375 rc2
= sqlite3_finalize(pStmt
);
7376 if( p
->rc
==SQLITE_OK
) p
->rc
= rc2
;
7378 /* Page iter.iLeaf must now be the rightmost leaf-page in the segment */
7380 if( p
->rc
==SQLITE_OK
&& iter
.iLeaf
!=pSeg
->pgnoLast
){
7381 p
->rc
= FTS5_CORRUPT
;
7388 ** Run internal checks to ensure that the FTS index (a) is internally
7389 ** consistent and (b) contains entries for which the XOR of the checksums
7390 ** as calculated by sqlite3Fts5IndexEntryCksum() is cksum.
7392 ** Return SQLITE_CORRUPT if any of the internal checks fail, or if the
7393 ** checksum does not match. Return SQLITE_OK if all checks pass without
7394 ** error, or some other SQLite error code if another error (e.g. OOM)
7397 int sqlite3Fts5IndexIntegrityCheck(Fts5Index
*p
, u64 cksum
, int bUseCksum
){
7398 int eDetail
= p
->pConfig
->eDetail
;
7399 u64 cksum2
= 0; /* Checksum based on contents of indexes */
7400 Fts5Buffer poslist
= {0,0,0}; /* Buffer used to hold a poslist */
7401 Fts5Iter
*pIter
; /* Used to iterate through entire index */
7402 Fts5Structure
*pStruct
; /* Index structure */
7406 /* Used by extra internal tests only run if NDEBUG is not defined */
7407 u64 cksum3
= 0; /* Checksum based on contents of indexes */
7408 Fts5Buffer term
= {0,0,0}; /* Buffer used to hold most recent term */
7410 const int flags
= FTS5INDEX_QUERY_NOOUTPUT
;
7412 /* Load the FTS index structure */
7413 pStruct
= fts5StructureRead(p
);
7415 assert( p
->rc
!=SQLITE_OK
);
7416 return fts5IndexReturn(p
);
7419 /* Check that the internal nodes of each segment match the leaves */
7420 for(iLvl
=0; iLvl
<pStruct
->nLevel
; iLvl
++){
7421 for(iSeg
=0; iSeg
<pStruct
->aLevel
[iLvl
].nSeg
; iSeg
++){
7422 Fts5StructureSegment
*pSeg
= &pStruct
->aLevel
[iLvl
].aSeg
[iSeg
];
7423 fts5IndexIntegrityCheckSegment(p
, pSeg
);
7427 /* The cksum argument passed to this function is a checksum calculated
7428 ** based on all expected entries in the FTS index (including prefix index
7429 ** entries). This block checks that a checksum calculated based on the
7430 ** actual contents of FTS index is identical.
7432 ** Two versions of the same checksum are calculated. The first (stack
7433 ** variable cksum2) based on entries extracted from the full-text index
7434 ** while doing a linear scan of each individual index in turn.
7436 ** As each term visited by the linear scans, a separate query for the
7437 ** same term is performed. cksum3 is calculated based on the entries
7438 ** extracted by these queries.
7440 for(fts5MultiIterNew(p
, pStruct
, flags
, 0, 0, 0, -1, 0, &pIter
);
7441 fts5MultiIterEof(p
, pIter
)==0;
7442 fts5MultiIterNext(p
, pIter
, 0, 0)
7444 int n
; /* Size of term in bytes */
7445 i64 iPos
= 0; /* Position read from poslist */
7446 int iOff
= 0; /* Offset within poslist */
7447 i64 iRowid
= fts5MultiIterRowid(pIter
);
7448 char *z
= (char*)fts5MultiIterTerm(pIter
, &n
);
7450 /* If this is a new term, query for it. Update cksum3 with the results. */
7451 fts5TestTerm(p
, &term
, z
, n
, cksum2
, &cksum3
);
7454 if( eDetail
==FTS5_DETAIL_NONE
){
7455 if( 0==fts5MultiIterIsEmpty(p
, pIter
) ){
7456 cksum2
^= sqlite3Fts5IndexEntryCksum(iRowid
, 0, 0, -1, z
, n
);
7460 fts5SegiterPoslist(p
, &pIter
->aSeg
[pIter
->aFirst
[1].iFirst
], 0, &poslist
);
7461 fts5BufferAppendBlob(&p
->rc
, &poslist
, 4, (const u8
*)"\0\0\0\0");
7462 while( 0==sqlite3Fts5PoslistNext64(poslist
.p
, poslist
.n
, &iOff
, &iPos
) ){
7463 int iCol
= FTS5_POS2COLUMN(iPos
);
7464 int iTokOff
= FTS5_POS2OFFSET(iPos
);
7465 cksum2
^= sqlite3Fts5IndexEntryCksum(iRowid
, iCol
, iTokOff
, -1, z
, n
);
7469 fts5TestTerm(p
, &term
, 0, 0, cksum2
, &cksum3
);
7471 fts5MultiIterFree(pIter
);
7472 if( p
->rc
==SQLITE_OK
&& bUseCksum
&& cksum
!=cksum2
) p
->rc
= FTS5_CORRUPT
;
7474 fts5StructureRelease(pStruct
);
7476 fts5BufferFree(&term
);
7478 fts5BufferFree(&poslist
);
7479 return fts5IndexReturn(p
);
7482 /*************************************************************************
7483 **************************************************************************
7484 ** Below this point is the implementation of the fts5_decode() scalar
7488 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7490 ** Decode a segment-data rowid from the %_data table. This function is
7491 ** the opposite of macro FTS5_SEGMENT_ROWID().
7493 static void fts5DecodeRowid(
7494 i64 iRowid
, /* Rowid from %_data table */
7495 int *pbTombstone
, /* OUT: Tombstone hash flag */
7496 int *piSegid
, /* OUT: Segment id */
7497 int *pbDlidx
, /* OUT: Dlidx flag */
7498 int *piHeight
, /* OUT: Height */
7499 int *piPgno
/* OUT: Page number */
7501 *piPgno
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_PAGE_B
) - 1));
7502 iRowid
>>= FTS5_DATA_PAGE_B
;
7504 *piHeight
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_HEIGHT_B
) - 1));
7505 iRowid
>>= FTS5_DATA_HEIGHT_B
;
7507 *pbDlidx
= (int)(iRowid
& 0x0001);
7508 iRowid
>>= FTS5_DATA_DLI_B
;
7510 *piSegid
= (int)(iRowid
& (((i64
)1 << FTS5_DATA_ID_B
) - 1));
7511 iRowid
>>= FTS5_DATA_ID_B
;
7513 *pbTombstone
= (int)(iRowid
& 0x0001);
7515 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7517 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7518 static void fts5DebugRowid(int *pRc
, Fts5Buffer
*pBuf
, i64 iKey
){
7519 int iSegid
, iHeight
, iPgno
, bDlidx
, bTomb
; /* Rowid compenents */
7520 fts5DecodeRowid(iKey
, &bTomb
, &iSegid
, &bDlidx
, &iHeight
, &iPgno
);
7523 if( iKey
==FTS5_AVERAGES_ROWID
){
7524 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{averages} ");
7526 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{structure}");
7530 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "{%s%ssegid=%d h=%d pgno=%d}",
7531 bDlidx
? "dlidx " : "",
7532 bTomb
? "tombstone " : "",
7533 iSegid
, iHeight
, iPgno
7537 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7539 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7540 static void fts5DebugStructure(
7541 int *pRc
, /* IN/OUT: error code */
7545 int iLvl
, iSeg
; /* Iterate through levels, segments */
7547 for(iLvl
=0; iLvl
<p
->nLevel
; iLvl
++){
7548 Fts5StructureLevel
*pLvl
= &p
->aLevel
[iLvl
];
7549 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
,
7550 " {lvl=%d nMerge=%d nSeg=%d", iLvl
, pLvl
->nMerge
, pLvl
->nSeg
7552 for(iSeg
=0; iSeg
<pLvl
->nSeg
; iSeg
++){
7553 Fts5StructureSegment
*pSeg
= &pLvl
->aSeg
[iSeg
];
7554 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " {id=%d leaves=%d..%d",
7555 pSeg
->iSegid
, pSeg
->pgnoFirst
, pSeg
->pgnoLast
7557 if( pSeg
->iOrigin1
>0 ){
7558 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " origin=%lld..%lld",
7559 pSeg
->iOrigin1
, pSeg
->iOrigin2
7562 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "}");
7564 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "}");
7567 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7569 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7571 ** This is part of the fts5_decode() debugging aid.
7573 ** Arguments pBlob/nBlob contain a serialized Fts5Structure object. This
7574 ** function appends a human-readable representation of the same object
7575 ** to the buffer passed as the second argument.
7577 static void fts5DecodeStructure(
7578 int *pRc
, /* IN/OUT: error code */
7580 const u8
*pBlob
, int nBlob
7582 int rc
; /* Return code */
7583 Fts5Structure
*p
= 0; /* Decoded structure object */
7585 rc
= fts5StructureDecode(pBlob
, nBlob
, 0, &p
);
7586 if( rc
!=SQLITE_OK
){
7591 fts5DebugStructure(pRc
, pBuf
, p
);
7592 fts5StructureRelease(p
);
7594 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7596 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7598 ** This is part of the fts5_decode() debugging aid.
7600 ** Arguments pBlob/nBlob contain an "averages" record. This function
7601 ** appends a human-readable representation of record to the buffer passed
7602 ** as the second argument.
7604 static void fts5DecodeAverages(
7605 int *pRc
, /* IN/OUT: error code */
7607 const u8
*pBlob
, int nBlob
7610 const char *zSpace
= "";
7614 i
+= sqlite3Fts5GetVarint(&pBlob
[i
], &iVal
);
7615 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, "%s%d", zSpace
, (int)iVal
);
7619 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7621 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7623 ** Buffer (a/n) is assumed to contain a list of serialized varints. Read
7624 ** each varint and append its string representation to buffer pBuf. Return
7625 ** after either the input buffer is exhausted or a 0 value is read.
7627 ** The return value is the number of bytes read from the input buffer.
7629 static int fts5DecodePoslist(int *pRc
, Fts5Buffer
*pBuf
, const u8
*a
, int n
){
7633 iOff
+= fts5GetVarint32(&a
[iOff
], iVal
);
7634 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " %d", iVal
);
7638 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7640 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7642 ** The start of buffer (a/n) contains the start of a doclist. The doclist
7643 ** may or may not finish within the buffer. This function appends a text
7644 ** representation of the part of the doclist that is present to buffer
7647 ** The return value is the number of bytes read from the input buffer.
7649 static int fts5DecodeDoclist(int *pRc
, Fts5Buffer
*pBuf
, const u8
*a
, int n
){
7654 iOff
= sqlite3Fts5GetVarint(a
, (u64
*)&iDocid
);
7655 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " id=%lld", iDocid
);
7660 iOff
+= fts5GetPoslistSize(&a
[iOff
], &nPos
, &bDel
);
7661 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " nPos=%d%s", nPos
, bDel
?"*":"");
7662 iOff
+= fts5DecodePoslist(pRc
, pBuf
, &a
[iOff
], MIN(n
-iOff
, nPos
));
7665 iOff
+= sqlite3Fts5GetVarint(&a
[iOff
], (u64
*)&iDelta
);
7667 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " id=%lld", iDocid
);
7673 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7675 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7677 ** This function is part of the fts5_decode() debugging function. It is
7678 ** only ever used with detail=none tables.
7680 ** Buffer (pData/nData) contains a doclist in the format used by detail=none
7681 ** tables. This function appends a human-readable version of that list to
7684 ** If *pRc is other than SQLITE_OK when this function is called, it is a
7685 ** no-op. If an OOM or other error occurs within this function, *pRc is
7686 ** set to an SQLite error code before returning. The final state of buffer
7687 ** pBuf is undefined in this case.
7689 static void fts5DecodeRowidList(
7690 int *pRc
, /* IN/OUT: Error code */
7691 Fts5Buffer
*pBuf
, /* Buffer to append text to */
7692 const u8
*pData
, int nData
/* Data to decode list-of-rowids from */
7698 const char *zApp
= "";
7700 i
+= sqlite3Fts5GetVarint(&pData
[i
], &iVal
);
7703 if( i
<nData
&& pData
[i
]==0x00 ){
7705 if( i
<nData
&& pData
[i
]==0x00 ){
7713 sqlite3Fts5BufferAppendPrintf(pRc
, pBuf
, " %lld%s", iRowid
, zApp
);
7716 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7718 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7720 ** The implementation of user-defined scalar function fts5_decode().
7722 static void fts5DecodeFunction(
7723 sqlite3_context
*pCtx
, /* Function call context */
7724 int nArg
, /* Number of args (always 2) */
7725 sqlite3_value
**apVal
/* Function arguments */
7727 i64 iRowid
; /* Rowid for record being decoded */
7728 int iSegid
,iHeight
,iPgno
,bDlidx
;/* Rowid components */
7730 const u8
*aBlob
; int n
; /* Record to decode */
7732 Fts5Buffer s
; /* Build up text to return here */
7733 int rc
= SQLITE_OK
; /* Return code */
7734 sqlite3_int64 nSpace
= 0;
7735 int eDetailNone
= (sqlite3_user_data(pCtx
)!=0);
7739 memset(&s
, 0, sizeof(Fts5Buffer
));
7740 iRowid
= sqlite3_value_int64(apVal
[0]);
7742 /* Make a copy of the second argument (a blob) in aBlob[]. The aBlob[]
7743 ** copy is followed by FTS5_DATA_ZERO_PADDING 0x00 bytes, which prevents
7744 ** buffer overreads even if the record is corrupt. */
7745 n
= sqlite3_value_bytes(apVal
[1]);
7746 aBlob
= sqlite3_value_blob(apVal
[1]);
7747 nSpace
= n
+ FTS5_DATA_ZERO_PADDING
;
7748 a
= (u8
*)sqlite3Fts5MallocZero(&rc
, nSpace
);
7749 if( a
==0 ) goto decode_out
;
7750 if( n
>0 ) memcpy(a
, aBlob
, n
);
7752 fts5DecodeRowid(iRowid
, &bTomb
, &iSegid
, &bDlidx
, &iHeight
, &iPgno
);
7754 fts5DebugRowid(&rc
, &s
, iRowid
);
7762 memset(&lvl
, 0, sizeof(Fts5DlidxLvl
));
7764 lvl
.iLeafPgno
= iPgno
;
7766 for(fts5DlidxLvlNext(&lvl
); lvl
.bEof
==0; fts5DlidxLvlNext(&lvl
)){
7767 sqlite3Fts5BufferAppendPrintf(&rc
, &s
,
7768 " %d(%lld)", lvl
.iLeafPgno
, lvl
.iRowid
7772 u32 nElem
= fts5GetU32(&a
[4]);
7773 int szKey
= (aBlob
[0]==4 || aBlob
[0]==8) ? aBlob
[0] : 8;
7774 int nSlot
= (n
- 8) / szKey
;
7776 sqlite3Fts5BufferAppendPrintf(&rc
, &s
, " nElem=%d", (int)nElem
);
7778 sqlite3Fts5BufferAppendPrintf(&rc
, &s
, " 0");
7780 for(ii
=0; ii
<nSlot
; ii
++){
7783 u32
*aSlot
= (u32
*)&aBlob
[8];
7784 if( aSlot
[ii
] ) iVal
= fts5GetU32((u8
*)&aSlot
[ii
]);
7786 u64
*aSlot
= (u64
*)&aBlob
[8];
7787 if( aSlot
[ii
] ) iVal
= fts5GetU64((u8
*)&aSlot
[ii
]);
7790 sqlite3Fts5BufferAppendPrintf(&rc
, &s
, " %lld", (i64
)iVal
);
7793 }else if( iSegid
==0 ){
7794 if( iRowid
==FTS5_AVERAGES_ROWID
){
7795 fts5DecodeAverages(&rc
, &s
, a
, n
);
7797 fts5DecodeStructure(&rc
, &s
, a
, n
);
7799 }else if( eDetailNone
){
7800 Fts5Buffer term
; /* Current term read from page */
7802 int iPgidxOff
= szLeaf
= fts5GetU16(&a
[2]);
7807 memset(&term
, 0, sizeof(Fts5Buffer
));
7809 /* Decode any entries that occur before the first term. */
7811 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], iTermOff
);
7815 fts5DecodeRowidList(&rc
, &s
, &a
[4], iTermOff
-4);
7818 while( iOff
<szLeaf
&& rc
==SQLITE_OK
){
7821 /* Read the term data for the next term*/
7822 iOff
+= fts5GetVarint32(&a
[iOff
], nAppend
);
7824 fts5BufferAppendBlob(&rc
, &term
, nAppend
, &a
[iOff
]);
7825 sqlite3Fts5BufferAppendPrintf(
7826 &rc
, &s
, " term=%.*s", term
.n
, (const char*)term
.p
7830 /* Figure out where the doclist for this term ends */
7833 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], nIncr
);
7838 if( iTermOff
>szLeaf
){
7841 fts5DecodeRowidList(&rc
, &s
, &a
[iOff
], iTermOff
-iOff
);
7845 iOff
+= fts5GetVarint32(&a
[iOff
], nKeep
);
7849 fts5BufferFree(&term
);
7851 Fts5Buffer term
; /* Current term read from page */
7852 int szLeaf
; /* Offset of pgidx in a[] */
7854 int iPgidxPrev
= 0; /* Previous value read from pgidx */
7860 memset(&term
, 0, sizeof(Fts5Buffer
));
7863 sqlite3Fts5BufferSet(&rc
, &s
, 7, (const u8
*)"corrupt");
7866 iRowidOff
= fts5GetU16(&a
[0]);
7867 iPgidxOff
= szLeaf
= fts5GetU16(&a
[2]);
7869 fts5GetVarint32(&a
[iPgidxOff
], iTermOff
);
7870 }else if( iPgidxOff
>n
){
7876 /* Decode the position list tail at the start of the page */
7879 }else if( iTermOff
!=0 ){
7888 fts5DecodePoslist(&rc
, &s
, &a
[4], iOff
-4);
7890 /* Decode any more doclist data that appears on the page before the
7892 nDoclist
= (iTermOff
? iTermOff
: szLeaf
) - iOff
;
7893 if( nDoclist
+iOff
>n
){
7897 fts5DecodeDoclist(&rc
, &s
, &a
[iOff
], nDoclist
);
7899 while( iPgidxOff
<n
&& rc
==SQLITE_OK
){
7900 int bFirst
= (iPgidxOff
==szLeaf
); /* True for first term on page */
7901 int nByte
; /* Bytes of data */
7904 iPgidxOff
+= fts5GetVarint32(&a
[iPgidxOff
], nByte
);
7905 iPgidxPrev
+= nByte
;
7909 fts5GetVarint32(&a
[iPgidxOff
], nByte
);
7910 iEnd
= iPgidxPrev
+ nByte
;
7920 iOff
+= fts5GetVarint32(&a
[iOff
], nByte
);
7927 iOff
+= fts5GetVarint32(&a
[iOff
], nByte
);
7932 fts5BufferAppendBlob(&rc
, &term
, nByte
, &a
[iOff
]);
7935 sqlite3Fts5BufferAppendPrintf(
7936 &rc
, &s
, " term=%.*s", term
.n
, (const char*)term
.p
7938 iOff
+= fts5DecodeDoclist(&rc
, &s
, &a
[iOff
], iEnd
-iOff
);
7941 fts5BufferFree(&term
);
7946 if( rc
==SQLITE_OK
){
7947 sqlite3_result_text(pCtx
, (const char*)s
.p
, s
.n
, SQLITE_TRANSIENT
);
7949 sqlite3_result_error_code(pCtx
, rc
);
7953 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7955 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7957 ** The implementation of user-defined scalar function fts5_rowid().
7959 static void fts5RowidFunction(
7960 sqlite3_context
*pCtx
, /* Function call context */
7961 int nArg
, /* Number of args (always 2) */
7962 sqlite3_value
**apVal
/* Function arguments */
7966 sqlite3_result_error(pCtx
, "should be: fts5_rowid(subject, ....)", -1);
7968 zArg
= (const char*)sqlite3_value_text(apVal
[0]);
7969 if( 0==sqlite3_stricmp(zArg
, "segment") ){
7973 sqlite3_result_error(pCtx
,
7974 "should be: fts5_rowid('segment', segid, pgno))", -1
7977 segid
= sqlite3_value_int(apVal
[1]);
7978 pgno
= sqlite3_value_int(apVal
[2]);
7979 iRowid
= FTS5_SEGMENT_ROWID(segid
, pgno
);
7980 sqlite3_result_int64(pCtx
, iRowid
);
7983 sqlite3_result_error(pCtx
,
7984 "first arg to fts5_rowid() must be 'segment'" , -1
7989 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
7991 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
7993 typedef struct Fts5StructVtab Fts5StructVtab
;
7994 struct Fts5StructVtab
{
7998 typedef struct Fts5StructVcsr Fts5StructVcsr
;
7999 struct Fts5StructVcsr
{
8000 sqlite3_vtab_cursor base
;
8001 Fts5Structure
*pStruct
;
8008 ** Create a new fts5_structure() table-valued function.
8010 static int fts5structConnectMethod(
8013 int argc
, const char *const*argv
,
8014 sqlite3_vtab
**ppVtab
,
8017 Fts5StructVtab
*pNew
= 0;
8020 rc
= sqlite3_declare_vtab(db
,
8022 "level, segment, merge, segid, leaf1, leaf2, loc1, loc2, "
8023 "npgtombstone, nentrytombstone, nentry, struct HIDDEN);"
8025 if( rc
==SQLITE_OK
){
8026 pNew
= sqlite3Fts5MallocZero(&rc
, sizeof(*pNew
));
8029 *ppVtab
= (sqlite3_vtab
*)pNew
;
8034 ** We must have a single struct=? constraint that will be passed through
8035 ** into the xFilter method. If there is no valid stmt=? constraint,
8036 ** then return an SQLITE_CONSTRAINT error.
8038 static int fts5structBestIndexMethod(
8040 sqlite3_index_info
*pIdxInfo
8043 int rc
= SQLITE_CONSTRAINT
;
8044 struct sqlite3_index_constraint
*p
;
8045 pIdxInfo
->estimatedCost
= (double)100;
8046 pIdxInfo
->estimatedRows
= 100;
8047 pIdxInfo
->idxNum
= 0;
8048 for(i
=0, p
=pIdxInfo
->aConstraint
; i
<pIdxInfo
->nConstraint
; i
++, p
++){
8049 if( p
->usable
==0 ) continue;
8050 if( p
->op
==SQLITE_INDEX_CONSTRAINT_EQ
&& p
->iColumn
==11 ){
8052 pIdxInfo
->aConstraintUsage
[i
].omit
= 1;
8053 pIdxInfo
->aConstraintUsage
[i
].argvIndex
= 1;
8061 ** This method is the destructor for bytecodevtab objects.
8063 static int fts5structDisconnectMethod(sqlite3_vtab
*pVtab
){
8064 Fts5StructVtab
*p
= (Fts5StructVtab
*)pVtab
;
8070 ** Constructor for a new bytecodevtab_cursor object.
8072 static int fts5structOpenMethod(sqlite3_vtab
*p
, sqlite3_vtab_cursor
**ppCsr
){
8074 Fts5StructVcsr
*pNew
= 0;
8076 pNew
= sqlite3Fts5MallocZero(&rc
, sizeof(*pNew
));
8077 *ppCsr
= (sqlite3_vtab_cursor
*)pNew
;
8083 ** Destructor for a bytecodevtab_cursor.
8085 static int fts5structCloseMethod(sqlite3_vtab_cursor
*cur
){
8086 Fts5StructVcsr
*pCsr
= (Fts5StructVcsr
*)cur
;
8087 fts5StructureRelease(pCsr
->pStruct
);
8094 ** Advance a bytecodevtab_cursor to its next row of output.
8096 static int fts5structNextMethod(sqlite3_vtab_cursor
*cur
){
8097 Fts5StructVcsr
*pCsr
= (Fts5StructVcsr
*)cur
;
8098 Fts5Structure
*p
= pCsr
->pStruct
;
8100 assert( pCsr
->pStruct
);
8103 while( pCsr
->iLevel
<p
->nLevel
&& pCsr
->iSeg
>=p
->aLevel
[pCsr
->iLevel
].nSeg
){
8107 if( pCsr
->iLevel
>=p
->nLevel
){
8108 fts5StructureRelease(pCsr
->pStruct
);
8115 ** Return TRUE if the cursor has been moved off of the last
8118 static int fts5structEofMethod(sqlite3_vtab_cursor
*cur
){
8119 Fts5StructVcsr
*pCsr
= (Fts5StructVcsr
*)cur
;
8120 return pCsr
->pStruct
==0;
8123 static int fts5structRowidMethod(
8124 sqlite3_vtab_cursor
*cur
,
8125 sqlite_int64
*piRowid
8127 Fts5StructVcsr
*pCsr
= (Fts5StructVcsr
*)cur
;
8128 *piRowid
= pCsr
->iRowid
;
8133 ** Return values of columns for the row at which the bytecodevtab_cursor
8134 ** is currently pointing.
8136 static int fts5structColumnMethod(
8137 sqlite3_vtab_cursor
*cur
, /* The cursor */
8138 sqlite3_context
*ctx
, /* First argument to sqlite3_result_...() */
8139 int i
/* Which column to return */
8141 Fts5StructVcsr
*pCsr
= (Fts5StructVcsr
*)cur
;
8142 Fts5Structure
*p
= pCsr
->pStruct
;
8143 Fts5StructureSegment
*pSeg
= &p
->aLevel
[pCsr
->iLevel
].aSeg
[pCsr
->iSeg
];
8147 sqlite3_result_int(ctx
, pCsr
->iLevel
);
8149 case 1: /* segment */
8150 sqlite3_result_int(ctx
, pCsr
->iSeg
);
8153 sqlite3_result_int(ctx
, pCsr
->iSeg
< p
->aLevel
[pCsr
->iLevel
].nMerge
);
8156 sqlite3_result_int(ctx
, pSeg
->iSegid
);
8159 sqlite3_result_int(ctx
, pSeg
->pgnoFirst
);
8162 sqlite3_result_int(ctx
, pSeg
->pgnoLast
);
8164 case 6: /* origin1 */
8165 sqlite3_result_int64(ctx
, pSeg
->iOrigin1
);
8167 case 7: /* origin2 */
8168 sqlite3_result_int64(ctx
, pSeg
->iOrigin2
);
8170 case 8: /* npgtombstone */
8171 sqlite3_result_int(ctx
, pSeg
->nPgTombstone
);
8173 case 9: /* nentrytombstone */
8174 sqlite3_result_int64(ctx
, pSeg
->nEntryTombstone
);
8176 case 10: /* nentry */
8177 sqlite3_result_int64(ctx
, pSeg
->nEntry
);
8184 ** Initialize a cursor.
8186 ** idxNum==0 means show all subprograms
8187 ** idxNum==1 means show only the main bytecode and omit subprograms.
8189 static int fts5structFilterMethod(
8190 sqlite3_vtab_cursor
*pVtabCursor
,
8191 int idxNum
, const char *idxStr
,
8192 int argc
, sqlite3_value
**argv
8194 Fts5StructVcsr
*pCsr
= (Fts5StructVcsr
*)pVtabCursor
;
8197 const u8
*aBlob
= 0;
8201 fts5StructureRelease(pCsr
->pStruct
);
8204 nBlob
= sqlite3_value_bytes(argv
[0]);
8205 aBlob
= (const u8
*)sqlite3_value_blob(argv
[0]);
8206 rc
= fts5StructureDecode(aBlob
, nBlob
, 0, &pCsr
->pStruct
);
8207 if( rc
==SQLITE_OK
){
8211 rc
= fts5structNextMethod(pVtabCursor
);
8217 #endif /* SQLITE_TEST || SQLITE_FTS5_DEBUG */
8220 ** This is called as part of registering the FTS5 module with database
8221 ** connection db. It registers several user-defined scalar functions useful
8224 ** If successful, SQLITE_OK is returned. If an error occurs, some other
8225 ** SQLite error code is returned instead.
8227 int sqlite3Fts5IndexInit(sqlite3
*db
){
8228 #if defined(SQLITE_TEST) || defined(SQLITE_FTS5_DEBUG)
8229 int rc
= sqlite3_create_function(
8230 db
, "fts5_decode", 2, SQLITE_UTF8
, 0, fts5DecodeFunction
, 0, 0
8233 if( rc
==SQLITE_OK
){
8234 rc
= sqlite3_create_function(
8235 db
, "fts5_decode_none", 2,
8236 SQLITE_UTF8
, (void*)db
, fts5DecodeFunction
, 0, 0
8240 if( rc
==SQLITE_OK
){
8241 rc
= sqlite3_create_function(
8242 db
, "fts5_rowid", -1, SQLITE_UTF8
, 0, fts5RowidFunction
, 0, 0
8246 if( rc
==SQLITE_OK
){
8247 static const sqlite3_module fts5structure_module
= {
8250 fts5structConnectMethod
, /* xConnect */
8251 fts5structBestIndexMethod
, /* xBestIndex */
8252 fts5structDisconnectMethod
, /* xDisconnect */
8254 fts5structOpenMethod
, /* xOpen */
8255 fts5structCloseMethod
, /* xClose */
8256 fts5structFilterMethod
, /* xFilter */
8257 fts5structNextMethod
, /* xNext */
8258 fts5structEofMethod
, /* xEof */
8259 fts5structColumnMethod
, /* xColumn */
8260 fts5structRowidMethod
, /* xRowid */
8266 0, /* xFindFunction */
8270 0, /* xRollbackTo */
8273 rc
= sqlite3_create_module(db
, "fts5_structure", &fts5structure_module
, 0);
8283 int sqlite3Fts5IndexReset(Fts5Index
*p
){
8284 assert( p
->pStruct
==0 || p
->iStructVersion
!=0 );
8285 if( fts5IndexDataVersion(p
)!=p
->iStructVersion
){
8286 fts5StructureInvalidate(p
);
8288 return fts5IndexReturn(p
);