4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements that page cache.
14 #include "sqliteInt.h"
17 ** A complete page cache is an instance of this structure. Every
18 ** entry in the cache holds a single page of the database file. The
19 ** btree layer only operates on the cached copy of the database pages.
21 ** A page cache entry is "clean" if it exactly matches what is currently
22 ** on disk. A page is "dirty" if it has been modified and needs to be
25 ** pDirty, pDirtyTail, pSynced:
26 ** All dirty pages are linked into the doubly linked list using
27 ** PgHdr.pDirtyNext and pDirtyPrev. The list is maintained in LRU order
28 ** such that p was added to the list more recently than p->pDirtyNext.
29 ** PCache.pDirty points to the first (newest) element in the list and
30 ** pDirtyTail to the last (oldest).
32 ** The PCache.pSynced variable is used to optimize searching for a dirty
33 ** page to eject from the cache mid-transaction. It is better to eject
34 ** a page that does not require a journal sync than one that does.
35 ** Therefore, pSynced is maintained so that it *almost* always points
36 ** to either the oldest page in the pDirty/pDirtyTail list that has a
37 ** clear PGHDR_NEED_SYNC flag or to a page that is older than this one
38 ** (so that the right page to eject can be found by following pDirtyPrev
42 PgHdr
*pDirty
, *pDirtyTail
; /* List of dirty pages in LRU order */
43 PgHdr
*pSynced
; /* Last synced page in dirty page list */
44 int nRefSum
; /* Sum of ref counts over all pages */
45 int szCache
; /* Configured cache size */
46 int szSpill
; /* Size before spilling occurs */
47 int szPage
; /* Size of every page in this cache */
48 int szExtra
; /* Size of extra space for each page */
49 u8 bPurgeable
; /* True if pages are on backing store */
50 u8 eCreate
; /* eCreate value for for xFetch() */
51 int (*xStress
)(void*,PgHdr
*); /* Call to try make a page clean */
52 void *pStress
; /* Argument to xStress */
53 sqlite3_pcache
*pCache
; /* Pluggable cache module */
56 /********************************** Test and Debug Logic **********************/
58 ** Debug tracing macros. Enable by by changing the "0" to "1" and
61 ** When sqlite3PcacheTrace is 1, single line trace messages are issued.
62 ** When sqlite3PcacheTrace is 2, a dump of the pcache showing all cache entries
63 ** is displayed for many operations, resulting in a lot of output.
65 #if defined(SQLITE_DEBUG) && 0
66 int sqlite3PcacheTrace
= 2; /* 0: off 1: simple 2: cache dumps */
67 int sqlite3PcacheMxDump
= 9999; /* Max cache entries for pcacheDump() */
68 # define pcacheTrace(X) if(sqlite3PcacheTrace){sqlite3DebugPrintf X;}
69 void pcacheDump(PCache
*pCache
){
72 sqlite3_pcache_page
*pLower
;
76 if( sqlite3PcacheTrace
<2 ) return;
77 if( pCache
->pCache
==0 ) return;
78 N
= sqlite3PcachePagecount(pCache
);
79 if( N
>sqlite3PcacheMxDump
) N
= sqlite3PcacheMxDump
;
81 pLower
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, i
, 0);
82 if( pLower
==0 ) continue;
83 pPg
= (PgHdr
*)pLower
->pExtra
;
84 printf("%3d: nRef %2d flgs %02x data ", i
, pPg
->nRef
, pPg
->flags
);
85 a
= (unsigned char *)pLower
->pBuf
;
86 for(j
=0; j
<12; j
++) printf("%02x", a
[j
]);
89 sqlite3GlobalConfig
.pcache2
.xUnpin(pCache
->pCache
, pLower
, 0);
94 # define pcacheTrace(X)
95 # define pcacheDump(X)
99 ** Check invariants on a PgHdr entry. Return true if everything is OK.
100 ** Return false if any invariant is violated.
102 ** This routine is for use inside of assert() statements only. For
105 ** assert( sqlite3PcachePageSanity(pPg) );
108 int sqlite3PcachePageSanity(PgHdr
*pPg
){
111 assert( pPg
->pgno
>0 || pPg
->pPager
==0 ); /* Page number is 1 or more */
112 pCache
= pPg
->pCache
;
113 assert( pCache
!=0 ); /* Every page has an associated PCache */
114 if( pPg
->flags
& PGHDR_CLEAN
){
115 assert( (pPg
->flags
& PGHDR_DIRTY
)==0 );/* Cannot be both CLEAN and DIRTY */
116 assert( pCache
->pDirty
!=pPg
); /* CLEAN pages not on dirty list */
117 assert( pCache
->pDirtyTail
!=pPg
);
119 /* WRITEABLE pages must also be DIRTY */
120 if( pPg
->flags
& PGHDR_WRITEABLE
){
121 assert( pPg
->flags
& PGHDR_DIRTY
); /* WRITEABLE implies DIRTY */
123 /* NEED_SYNC can be set independently of WRITEABLE. This can happen,
124 ** for example, when using the sqlite3PagerDontWrite() optimization:
125 ** (1) Page X is journalled, and gets WRITEABLE and NEED_SEEK.
126 ** (2) Page X moved to freelist, WRITEABLE is cleared
127 ** (3) Page X reused, WRITEABLE is set again
128 ** If NEED_SYNC had been cleared in step 2, then it would not be reset
129 ** in step 3, and page might be written into the database without first
130 ** syncing the rollback journal, which might cause corruption on a power
133 ** Another example is when the database page size is smaller than the
134 ** disk sector size. When any page of a sector is journalled, all pages
135 ** in that sector are marked NEED_SYNC even if they are still CLEAN, just
136 ** in case they are later modified, since all pages in the same sector
137 ** must be journalled and synced before any of those pages can be safely
142 #endif /* SQLITE_DEBUG */
145 /********************************** Linked List Management ********************/
147 /* Allowed values for second argument to pcacheManageDirtyList() */
148 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */
149 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */
150 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */
153 ** Manage pPage's participation on the dirty list. Bits of the addRemove
154 ** argument determines what operation to do. The 0x01 bit means first
155 ** remove pPage from the dirty list. The 0x02 means add pPage back to
156 ** the dirty list. Doing both moves pPage to the front of the dirty list.
158 static void pcacheManageDirtyList(PgHdr
*pPage
, u8 addRemove
){
159 PCache
*p
= pPage
->pCache
;
161 pcacheTrace(("%p.DIRTYLIST.%s %d\n", p
,
162 addRemove
==1 ? "REMOVE" : addRemove
==2 ? "ADD" : "FRONT",
164 if( addRemove
& PCACHE_DIRTYLIST_REMOVE
){
165 assert( pPage
->pDirtyNext
|| pPage
==p
->pDirtyTail
);
166 assert( pPage
->pDirtyPrev
|| pPage
==p
->pDirty
);
168 /* Update the PCache1.pSynced variable if necessary. */
169 if( p
->pSynced
==pPage
){
170 p
->pSynced
= pPage
->pDirtyPrev
;
173 if( pPage
->pDirtyNext
){
174 pPage
->pDirtyNext
->pDirtyPrev
= pPage
->pDirtyPrev
;
176 assert( pPage
==p
->pDirtyTail
);
177 p
->pDirtyTail
= pPage
->pDirtyPrev
;
179 if( pPage
->pDirtyPrev
){
180 pPage
->pDirtyPrev
->pDirtyNext
= pPage
->pDirtyNext
;
182 /* If there are now no dirty pages in the cache, set eCreate to 2.
183 ** This is an optimization that allows sqlite3PcacheFetch() to skip
184 ** searching for a dirty page to eject from the cache when it might
185 ** otherwise have to. */
186 assert( pPage
==p
->pDirty
);
187 p
->pDirty
= pPage
->pDirtyNext
;
188 assert( p
->bPurgeable
|| p
->eCreate
==2 );
189 if( p
->pDirty
==0 ){ /*OPTIMIZATION-IF-TRUE*/
190 assert( p
->bPurgeable
==0 || p
->eCreate
==1 );
195 if( addRemove
& PCACHE_DIRTYLIST_ADD
){
196 pPage
->pDirtyPrev
= 0;
197 pPage
->pDirtyNext
= p
->pDirty
;
198 if( pPage
->pDirtyNext
){
199 assert( pPage
->pDirtyNext
->pDirtyPrev
==0 );
200 pPage
->pDirtyNext
->pDirtyPrev
= pPage
;
202 p
->pDirtyTail
= pPage
;
204 assert( p
->eCreate
==2 );
210 /* If pSynced is NULL and this page has a clear NEED_SYNC flag, set
211 ** pSynced to point to it. Checking the NEED_SYNC flag is an
212 ** optimization, as if pSynced points to a page with the NEED_SYNC
213 ** flag set sqlite3PcacheFetchStress() searches through all newer
214 ** entries of the dirty-list for a page with NEED_SYNC clear anyway. */
216 && 0==(pPage
->flags
&PGHDR_NEED_SYNC
) /*OPTIMIZATION-IF-FALSE*/
225 ** Wrapper around the pluggable caches xUnpin method. If the cache is
226 ** being used for an in-memory database, this function is a no-op.
228 static void pcacheUnpin(PgHdr
*p
){
229 if( p
->pCache
->bPurgeable
){
230 pcacheTrace(("%p.UNPIN %d\n", p
->pCache
, p
->pgno
));
231 sqlite3GlobalConfig
.pcache2
.xUnpin(p
->pCache
->pCache
, p
->pPage
, 0);
232 pcacheDump(p
->pCache
);
237 ** Compute the number of pages of cache requested. p->szCache is the
238 ** cache size requested by the "PRAGMA cache_size" statement.
240 static int numberOfCachePages(PCache
*p
){
242 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the
243 ** suggested cache size is set to N. */
246 /* IMPLEMANTATION-OF: R-59858-46238 If the argument N is negative, then the
247 ** number of cache pages is adjusted to be a number of pages that would
248 ** use approximately abs(N*1024) bytes of memory based on the current
250 return (int)((-1024*(i64
)p
->szCache
)/(p
->szPage
+p
->szExtra
));
254 /*************************************************** General Interfaces ******
256 ** Initialize and shutdown the page cache subsystem. Neither of these
257 ** functions are threadsafe.
259 int sqlite3PcacheInitialize(void){
260 if( sqlite3GlobalConfig
.pcache2
.xInit
==0 ){
261 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the
262 ** built-in default page cache is used instead of the application defined
264 sqlite3PCacheSetDefault();
265 assert( sqlite3GlobalConfig
.pcache2
.xInit
!=0 );
267 return sqlite3GlobalConfig
.pcache2
.xInit(sqlite3GlobalConfig
.pcache2
.pArg
);
269 void sqlite3PcacheShutdown(void){
270 if( sqlite3GlobalConfig
.pcache2
.xShutdown
){
271 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */
272 sqlite3GlobalConfig
.pcache2
.xShutdown(sqlite3GlobalConfig
.pcache2
.pArg
);
277 ** Return the size in bytes of a PCache object.
279 int sqlite3PcacheSize(void){ return sizeof(PCache
); }
282 ** Create a new PCache object. Storage space to hold the object
283 ** has already been allocated and is passed in as the p pointer.
284 ** The caller discovers how much space needs to be allocated by
285 ** calling sqlite3PcacheSize().
287 ** szExtra is some extra space allocated for each page. The first
288 ** 8 bytes of the extra space will be zeroed as the page is allocated,
289 ** but remaining content will be uninitialized. Though it is opaque
290 ** to this module, the extra space really ends up being the MemPage
291 ** structure in the pager.
293 int sqlite3PcacheOpen(
294 int szPage
, /* Size of every page */
295 int szExtra
, /* Extra space associated with each page */
296 int bPurgeable
, /* True if pages are on backing store */
297 int (*xStress
)(void*,PgHdr
*),/* Call to try to make pages clean */
298 void *pStress
, /* Argument to xStress */
299 PCache
*p
/* Preallocated space for the PCache */
301 memset(p
, 0, sizeof(PCache
));
303 p
->szExtra
= szExtra
;
304 assert( szExtra
>=8 ); /* First 8 bytes will be zeroed */
305 p
->bPurgeable
= bPurgeable
;
307 p
->xStress
= xStress
;
308 p
->pStress
= pStress
;
311 pcacheTrace(("%p.OPEN szPage %d bPurgeable %d\n",p
,szPage
,bPurgeable
));
312 return sqlite3PcacheSetPageSize(p
, szPage
);
316 ** Change the page size for PCache object. The caller must ensure that there
317 ** are no outstanding page references when this function is called.
319 int sqlite3PcacheSetPageSize(PCache
*pCache
, int szPage
){
320 assert( pCache
->nRefSum
==0 && pCache
->pDirty
==0 );
321 if( pCache
->szPage
){
322 sqlite3_pcache
*pNew
;
323 pNew
= sqlite3GlobalConfig
.pcache2
.xCreate(
324 szPage
, pCache
->szExtra
+ ROUND8(sizeof(PgHdr
)),
327 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
328 sqlite3GlobalConfig
.pcache2
.xCachesize(pNew
, numberOfCachePages(pCache
));
329 if( pCache
->pCache
){
330 sqlite3GlobalConfig
.pcache2
.xDestroy(pCache
->pCache
);
332 pCache
->pCache
= pNew
;
333 pCache
->szPage
= szPage
;
334 pcacheTrace(("%p.PAGESIZE %d\n",pCache
,szPage
));
340 ** Try to obtain a page from the cache.
342 ** This routine returns a pointer to an sqlite3_pcache_page object if
343 ** such an object is already in cache, or if a new one is created.
344 ** This routine returns a NULL pointer if the object was not in cache
345 ** and could not be created.
347 ** The createFlags should be 0 to check for existing pages and should
348 ** be 3 (not 1, but 3) to try to create a new page.
350 ** If the createFlag is 0, then NULL is always returned if the page
351 ** is not already in the cache. If createFlag is 1, then a new page
352 ** is created only if that can be done without spilling dirty pages
353 ** and without exceeding the cache size limit.
355 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly
356 ** initialize the sqlite3_pcache_page object and convert it into a
357 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish()
358 ** routines are split this way for performance reasons. When separated
359 ** they can both (usually) operate without having to push values to
360 ** the stack on entry and pop them back off on exit, which saves a
361 ** lot of pushing and popping.
363 sqlite3_pcache_page
*sqlite3PcacheFetch(
364 PCache
*pCache
, /* Obtain the page from this cache */
365 Pgno pgno
, /* Page number to obtain */
366 int createFlag
/* If true, create page if it does not exist already */
369 sqlite3_pcache_page
*pRes
;
372 assert( pCache
->pCache
!=0 );
373 assert( createFlag
==3 || createFlag
==0 );
374 assert( pCache
->eCreate
==((pCache
->bPurgeable
&& pCache
->pDirty
) ? 1 : 2) );
376 /* eCreate defines what to do if the page does not exist.
377 ** 0 Do not allocate a new page. (createFlag==0)
378 ** 1 Allocate a new page if doing so is inexpensive.
379 ** (createFlag==1 AND bPurgeable AND pDirty)
380 ** 2 Allocate a new page even it doing so is difficult.
381 ** (createFlag==1 AND !(bPurgeable AND pDirty)
383 eCreate
= createFlag
& pCache
->eCreate
;
384 assert( eCreate
==0 || eCreate
==1 || eCreate
==2 );
385 assert( createFlag
==0 || pCache
->eCreate
==eCreate
);
386 assert( createFlag
==0 || eCreate
==1+(!pCache
->bPurgeable
||!pCache
->pDirty
) );
387 pRes
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, pgno
, eCreate
);
388 pcacheTrace(("%p.FETCH %d%s (result: %p)\n",pCache
,pgno
,
389 createFlag
?" create":"",pRes
));
394 ** If the sqlite3PcacheFetch() routine is unable to allocate a new
395 ** page because no clean pages are available for reuse and the cache
396 ** size limit has been reached, then this routine can be invoked to
397 ** try harder to allocate a page. This routine might invoke the stress
398 ** callback to spill dirty pages to the journal. It will then try to
399 ** allocate the new page and will only fail to allocate a new page on
402 ** This routine should be invoked only after sqlite3PcacheFetch() fails.
404 int sqlite3PcacheFetchStress(
405 PCache
*pCache
, /* Obtain the page from this cache */
406 Pgno pgno
, /* Page number to obtain */
407 sqlite3_pcache_page
**ppPage
/* Write result here */
410 if( pCache
->eCreate
==2 ) return 0;
412 if( sqlite3PcachePagecount(pCache
)>pCache
->szSpill
){
413 /* Find a dirty page to write-out and recycle. First try to find a
414 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC
415 ** cleared), but if that is not possible settle for any other
416 ** unreferenced dirty page.
418 ** If the LRU page in the dirty list that has a clear PGHDR_NEED_SYNC
419 ** flag is currently referenced, then the following may leave pSynced
420 ** set incorrectly (pointing to other than the LRU page with NEED_SYNC
421 ** cleared). This is Ok, as pSynced is just an optimization. */
422 for(pPg
=pCache
->pSynced
;
423 pPg
&& (pPg
->nRef
|| (pPg
->flags
&PGHDR_NEED_SYNC
));
426 pCache
->pSynced
= pPg
;
428 for(pPg
=pCache
->pDirtyTail
; pPg
&& pPg
->nRef
; pPg
=pPg
->pDirtyPrev
);
432 #ifdef SQLITE_LOG_CACHE_SPILL
433 sqlite3_log(SQLITE_FULL
,
434 "spill page %d making room for %d - cache used: %d/%d",
436 sqlite3GlobalConfig
.pcache2
.xPagecount(pCache
->pCache
),
437 numberOfCachePages(pCache
));
439 pcacheTrace(("%p.SPILL %d\n",pCache
,pPg
->pgno
));
440 rc
= pCache
->xStress(pCache
->pStress
, pPg
);
442 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_BUSY
){
447 *ppPage
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
, pgno
, 2);
448 return *ppPage
==0 ? SQLITE_NOMEM_BKPT
: SQLITE_OK
;
452 ** This is a helper routine for sqlite3PcacheFetchFinish()
454 ** In the uncommon case where the page being fetched has not been
455 ** initialized, this routine is invoked to do the initialization.
456 ** This routine is broken out into a separate function since it
457 ** requires extra stack manipulation that can be avoided in the common
460 static SQLITE_NOINLINE PgHdr
*pcacheFetchFinishWithInit(
461 PCache
*pCache
, /* Obtain the page from this cache */
462 Pgno pgno
, /* Page number obtained */
463 sqlite3_pcache_page
*pPage
/* Page obtained by prior PcacheFetch() call */
467 pPgHdr
= (PgHdr
*)pPage
->pExtra
;
468 assert( pPgHdr
->pPage
==0 );
469 memset(&pPgHdr
->pDirty
, 0, sizeof(PgHdr
) - offsetof(PgHdr
,pDirty
));
470 pPgHdr
->pPage
= pPage
;
471 pPgHdr
->pData
= pPage
->pBuf
;
472 pPgHdr
->pExtra
= (void *)&pPgHdr
[1];
473 memset(pPgHdr
->pExtra
, 0, 8);
474 pPgHdr
->pCache
= pCache
;
476 pPgHdr
->flags
= PGHDR_CLEAN
;
477 return sqlite3PcacheFetchFinish(pCache
,pgno
,pPage
);
481 ** This routine converts the sqlite3_pcache_page object returned by
482 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine
483 ** must be called after sqlite3PcacheFetch() in order to get a usable
486 PgHdr
*sqlite3PcacheFetchFinish(
487 PCache
*pCache
, /* Obtain the page from this cache */
488 Pgno pgno
, /* Page number obtained */
489 sqlite3_pcache_page
*pPage
/* Page obtained by prior PcacheFetch() call */
494 pPgHdr
= (PgHdr
*)pPage
->pExtra
;
496 if( !pPgHdr
->pPage
){
497 return pcacheFetchFinishWithInit(pCache
, pgno
, pPage
);
501 assert( sqlite3PcachePageSanity(pPgHdr
) );
506 ** Decrement the reference count on a page. If the page is clean and the
507 ** reference count drops to 0, then it is made eligible for recycling.
509 void SQLITE_NOINLINE
sqlite3PcacheRelease(PgHdr
*p
){
511 p
->pCache
->nRefSum
--;
512 if( (--p
->nRef
)==0 ){
513 if( p
->flags
&PGHDR_CLEAN
){
516 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_FRONT
);
522 ** Increase the reference count of a supplied page by 1.
524 void sqlite3PcacheRef(PgHdr
*p
){
526 assert( sqlite3PcachePageSanity(p
) );
528 p
->pCache
->nRefSum
++;
532 ** Drop a page from the cache. There must be exactly one reference to the
533 ** page. This function deletes that reference, so after it returns the
534 ** page pointed to by p is invalid.
536 void sqlite3PcacheDrop(PgHdr
*p
){
537 assert( p
->nRef
==1 );
538 assert( sqlite3PcachePageSanity(p
) );
539 if( p
->flags
&PGHDR_DIRTY
){
540 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_REMOVE
);
542 p
->pCache
->nRefSum
--;
543 sqlite3GlobalConfig
.pcache2
.xUnpin(p
->pCache
->pCache
, p
->pPage
, 1);
547 ** Make sure the page is marked as dirty. If it isn't dirty already,
550 void sqlite3PcacheMakeDirty(PgHdr
*p
){
552 assert( sqlite3PcachePageSanity(p
) );
553 if( p
->flags
& (PGHDR_CLEAN
|PGHDR_DONT_WRITE
) ){ /*OPTIMIZATION-IF-FALSE*/
554 p
->flags
&= ~PGHDR_DONT_WRITE
;
555 if( p
->flags
& PGHDR_CLEAN
){
556 p
->flags
^= (PGHDR_DIRTY
|PGHDR_CLEAN
);
557 pcacheTrace(("%p.DIRTY %d\n",p
->pCache
,p
->pgno
));
558 assert( (p
->flags
& (PGHDR_DIRTY
|PGHDR_CLEAN
))==PGHDR_DIRTY
);
559 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_ADD
);
561 assert( sqlite3PcachePageSanity(p
) );
566 ** Make sure the page is marked as clean. If it isn't clean already,
569 void sqlite3PcacheMakeClean(PgHdr
*p
){
570 assert( sqlite3PcachePageSanity(p
) );
571 assert( (p
->flags
& PGHDR_DIRTY
)!=0 );
572 assert( (p
->flags
& PGHDR_CLEAN
)==0 );
573 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_REMOVE
);
574 p
->flags
&= ~(PGHDR_DIRTY
|PGHDR_NEED_SYNC
|PGHDR_WRITEABLE
);
575 p
->flags
|= PGHDR_CLEAN
;
576 pcacheTrace(("%p.CLEAN %d\n",p
->pCache
,p
->pgno
));
577 assert( sqlite3PcachePageSanity(p
) );
584 ** Make every page in the cache clean.
586 void sqlite3PcacheCleanAll(PCache
*pCache
){
588 pcacheTrace(("%p.CLEAN-ALL\n",pCache
));
589 while( (p
= pCache
->pDirty
)!=0 ){
590 sqlite3PcacheMakeClean(p
);
595 ** Clear the PGHDR_NEED_SYNC and PGHDR_WRITEABLE flag from all dirty pages.
597 void sqlite3PcacheClearWritable(PCache
*pCache
){
599 pcacheTrace(("%p.CLEAR-WRITEABLE\n",pCache
));
600 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
601 p
->flags
&= ~(PGHDR_NEED_SYNC
|PGHDR_WRITEABLE
);
603 pCache
->pSynced
= pCache
->pDirtyTail
;
607 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages.
609 void sqlite3PcacheClearSyncFlags(PCache
*pCache
){
611 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
612 p
->flags
&= ~PGHDR_NEED_SYNC
;
614 pCache
->pSynced
= pCache
->pDirtyTail
;
618 ** Change the page number of page p to newPgno.
620 void sqlite3PcacheMove(PgHdr
*p
, Pgno newPgno
){
621 PCache
*pCache
= p
->pCache
;
624 assert( sqlite3PcachePageSanity(p
) );
625 pcacheTrace(("%p.MOVE %d -> %d\n",pCache
,p
->pgno
,newPgno
));
626 sqlite3GlobalConfig
.pcache2
.xRekey(pCache
->pCache
, p
->pPage
, p
->pgno
,newPgno
);
628 if( (p
->flags
&PGHDR_DIRTY
) && (p
->flags
&PGHDR_NEED_SYNC
) ){
629 pcacheManageDirtyList(p
, PCACHE_DIRTYLIST_FRONT
);
634 ** Drop every cache entry whose page number is greater than "pgno". The
635 ** caller must ensure that there are no outstanding references to any pages
636 ** other than page 1 with a page number greater than pgno.
638 ** If there is a reference to page 1 and the pgno parameter passed to this
639 ** function is 0, then the data area associated with page 1 is zeroed, but
640 ** the page object is not dropped.
642 void sqlite3PcacheTruncate(PCache
*pCache
, Pgno pgno
){
643 if( pCache
->pCache
){
646 pcacheTrace(("%p.TRUNCATE %d\n",pCache
,pgno
));
647 for(p
=pCache
->pDirty
; p
; p
=pNext
){
648 pNext
= p
->pDirtyNext
;
649 /* This routine never gets call with a positive pgno except right
650 ** after sqlite3PcacheCleanAll(). So if there are dirty pages,
651 ** it must be that pgno==0.
655 assert( p
->flags
&PGHDR_DIRTY
);
656 sqlite3PcacheMakeClean(p
);
659 if( pgno
==0 && pCache
->nRefSum
){
660 sqlite3_pcache_page
*pPage1
;
661 pPage1
= sqlite3GlobalConfig
.pcache2
.xFetch(pCache
->pCache
,1,0);
662 if( ALWAYS(pPage1
) ){ /* Page 1 is always available in cache, because
663 ** pCache->nRefSum>0 */
664 memset(pPage1
->pBuf
, 0, pCache
->szPage
);
668 sqlite3GlobalConfig
.pcache2
.xTruncate(pCache
->pCache
, pgno
+1);
675 void sqlite3PcacheClose(PCache
*pCache
){
676 assert( pCache
->pCache
!=0 );
677 pcacheTrace(("%p.CLOSE\n",pCache
));
678 sqlite3GlobalConfig
.pcache2
.xDestroy(pCache
->pCache
);
682 ** Discard the contents of the cache.
684 void sqlite3PcacheClear(PCache
*pCache
){
685 sqlite3PcacheTruncate(pCache
, 0);
689 ** Merge two lists of pages connected by pDirty and in pgno order.
690 ** Do not bother fixing the pDirtyPrev pointers.
692 static PgHdr
*pcacheMergeDirtyList(PgHdr
*pA
, PgHdr
*pB
){
693 PgHdr result
, *pTail
;
695 assert( pA
!=0 && pB
!=0 );
697 if( pA
->pgno
<pB
->pgno
){
715 return result
.pDirty
;
719 ** Sort the list of pages in accending order by pgno. Pages are
720 ** connected by pDirty pointers. The pDirtyPrev pointers are
721 ** corrupted by this sort.
723 ** Since there cannot be more than 2^31 distinct pages in a database,
724 ** there cannot be more than 31 buckets required by the merge sorter.
725 ** One extra bucket is added to catch overflow in case something
726 ** ever changes to make the previous sentence incorrect.
728 #define N_SORT_BUCKET 32
729 static PgHdr
*pcacheSortDirtyList(PgHdr
*pIn
){
730 PgHdr
*a
[N_SORT_BUCKET
], *p
;
732 memset(a
, 0, sizeof(a
));
737 for(i
=0; ALWAYS(i
<N_SORT_BUCKET
-1); i
++){
742 p
= pcacheMergeDirtyList(a
[i
], p
);
746 if( NEVER(i
==N_SORT_BUCKET
-1) ){
747 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in
748 ** the input list. But that is impossible.
750 a
[i
] = pcacheMergeDirtyList(a
[i
], p
);
754 for(i
=1; i
<N_SORT_BUCKET
; i
++){
755 if( a
[i
]==0 ) continue;
756 p
= p
? pcacheMergeDirtyList(p
, a
[i
]) : a
[i
];
762 ** Return a list of all dirty pages in the cache, sorted by page number.
764 PgHdr
*sqlite3PcacheDirtyList(PCache
*pCache
){
766 for(p
=pCache
->pDirty
; p
; p
=p
->pDirtyNext
){
767 p
->pDirty
= p
->pDirtyNext
;
769 return pcacheSortDirtyList(pCache
->pDirty
);
773 ** Return the total number of references to all pages held by the cache.
775 ** This is not the total number of pages referenced, but the sum of the
776 ** reference count for all pages.
778 int sqlite3PcacheRefCount(PCache
*pCache
){
779 return pCache
->nRefSum
;
783 ** Return the number of references to the page supplied as an argument.
785 int sqlite3PcachePageRefcount(PgHdr
*p
){
790 ** Return the total number of pages in the cache.
792 int sqlite3PcachePagecount(PCache
*pCache
){
793 assert( pCache
->pCache
!=0 );
794 return sqlite3GlobalConfig
.pcache2
.xPagecount(pCache
->pCache
);
799 ** Get the suggested cache-size value.
801 int sqlite3PcacheGetCachesize(PCache
*pCache
){
802 return numberOfCachePages(pCache
);
807 ** Set the suggested cache-size value.
809 void sqlite3PcacheSetCachesize(PCache
*pCache
, int mxPage
){
810 assert( pCache
->pCache
!=0 );
811 pCache
->szCache
= mxPage
;
812 sqlite3GlobalConfig
.pcache2
.xCachesize(pCache
->pCache
,
813 numberOfCachePages(pCache
));
817 ** Set the suggested cache-spill value. Make no changes if if the
818 ** argument is zero. Return the effective cache-spill size, which will
819 ** be the larger of the szSpill and szCache.
821 int sqlite3PcacheSetSpillsize(PCache
*p
, int mxPage
){
823 assert( p
->pCache
!=0 );
826 mxPage
= (int)((-1024*(i64
)mxPage
)/(p
->szPage
+p
->szExtra
));
830 res
= numberOfCachePages(p
);
831 if( res
<p
->szSpill
) res
= p
->szSpill
;
836 ** Free up as much memory as possible from the page cache.
838 void sqlite3PcacheShrink(PCache
*pCache
){
839 assert( pCache
->pCache
!=0 );
840 sqlite3GlobalConfig
.pcache2
.xShrink(pCache
->pCache
);
844 ** Return the size of the header added by this middleware layer
845 ** in the page-cache hierarchy.
847 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr
)); }
850 ** Return the number of dirty pages currently in the cache, as a percentage
851 ** of the configured cache size.
853 int sqlite3PCachePercentDirty(PCache
*pCache
){
856 int nCache
= numberOfCachePages(pCache
);
857 for(pDirty
=pCache
->pDirty
; pDirty
; pDirty
=pDirty
->pDirtyNext
) nDirty
++;
858 return nCache
? (int)(((i64
)nDirty
* 100) / nCache
) : 0;
861 #ifdef SQLITE_DIRECT_OVERFLOW_READ
863 ** Return true if there are one or more dirty pages in the cache. Else false.
865 int sqlite3PCacheIsDirty(PCache
*pCache
){
866 return (pCache
->pDirty
!=0);
870 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG)
872 ** For all dirty pages currently in the cache, invoke the specified
873 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is
876 void sqlite3PcacheIterateDirty(PCache
*pCache
, void (*xIter
)(PgHdr
*)){
878 for(pDirty
=pCache
->pDirty
; pDirty
; pDirty
=pDirty
->pDirtyNext
){