4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
19 ** The header string that appears at the beginning of every
22 static const char zMagicHeader
[] = SQLITE_FILE_HEADER
;
25 ** Set this global variable to 1 to enable tracing using the TRACE
29 int sqlite3BtreeTrace
=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
62 #define IfNotOmitAV(expr) 0
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
75 BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
77 static BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable
){
90 sqlite3GlobalConfig
.sharedCacheEnabled
= enable
;
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
117 ** Return and reset the seek counter for a Btree object.
119 sqlite3_uint64
sqlite3BtreeSeekCount(Btree
*pBt
){
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
136 int corruptPageError(int lineno
, MemPage
*p
){
138 sqlite3BeginBenignMalloc();
139 zMsg
= sqlite3_mprintf("database corruption page %u of %s",
140 p
->pgno
, sqlite3PagerFilename(p
->pBt
->pPager
, 0)
142 sqlite3EndBenignMalloc();
144 sqlite3ReportError(SQLITE_CORRUPT
, lineno
, zMsg
);
147 return SQLITE_CORRUPT_BKPT
;
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
154 #ifndef SQLITE_OMIT_SHARED_CACHE
158 **** This function is only used as part of an assert() statement. ***
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot. Return 1 if it does and 0 if not.
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
179 static int hasSharedCacheTableLock(
180 Btree
*pBtree
, /* Handle that must hold lock */
181 Pgno iRoot
, /* Root page of b-tree */
182 int isIndex
, /* True if iRoot is the root of an index b-tree */
183 int eLockType
/* Required lock type (READ_LOCK or WRITE_LOCK) */
185 Schema
*pSchema
= (Schema
*)pBtree
->pBt
->pSchema
;
189 /* If this database is not shareable, or if the client is reading
190 ** and has the read-uncommitted flag set, then no lock is required.
191 ** Return true immediately.
193 if( (pBtree
->sharable
==0)
194 || (eLockType
==READ_LOCK
&& (pBtree
->db
->flags
& SQLITE_ReadUncommit
))
199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
204 if( isIndex
&& (!pSchema
|| (pSchema
->schemaFlags
&DB_SchemaLoaded
)==0) ){
208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
215 for(p
=sqliteHashFirst(&pSchema
->idxHash
); p
; p
=sqliteHashNext(p
)){
216 Index
*pIdx
= (Index
*)sqliteHashData(p
);
217 if( pIdx
->tnum
==iRoot
){
219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
224 iTab
= pIdx
->pTable
->tnum
;
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock
=pBtree
->pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
236 if( pLock
->pBtree
==pBtree
237 && (pLock
->iTable
==iTab
|| (pLock
->eLock
==WRITE_LOCK
&& pLock
->iTable
==1))
238 && pLock
->eLock
>=eLockType
244 /* Failed to find the required lock. */
247 #endif /* SQLITE_DEBUG */
251 **** This function may be used as part of assert() statements only. ****
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table. Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
266 ** assert( !hasReadConflicts(pBtree, iRoot) );
268 static int hasReadConflicts(Btree
*pBtree
, Pgno iRoot
){
270 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
271 if( p
->pgnoRoot
==iRoot
273 && 0==(p
->pBtree
->db
->flags
& SQLITE_ReadUncommit
)
280 #endif /* #ifdef SQLITE_DEBUG */
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
288 static int querySharedCacheTableLock(Btree
*p
, Pgno iTab
, u8 eLock
){
289 BtShared
*pBt
= p
->pBt
;
292 assert( sqlite3BtreeHoldsMutex(p
) );
293 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
295 assert( !(p
->db
->flags
&SQLITE_ReadUncommit
)||eLock
==WRITE_LOCK
||iTab
==1 );
297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
301 assert( eLock
==READ_LOCK
|| (p
==pBt
->pWriter
&& p
->inTrans
==TRANS_WRITE
) );
302 assert( eLock
==READ_LOCK
|| pBt
->inTransaction
==TRANS_WRITE
);
304 /* This routine is a no-op if the shared-cache is not enabled */
309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
312 if( pBt
->pWriter
!=p
&& (pBt
->btsFlags
& BTS_EXCLUSIVE
)!=0 ){
313 sqlite3ConnectionBlocked(p
->db
, pBt
->pWriter
->db
);
314 return SQLITE_LOCKED_SHAREDCACHE
;
317 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
327 assert( pIter
->eLock
==READ_LOCK
|| pIter
->eLock
==WRITE_LOCK
);
328 assert( eLock
==READ_LOCK
|| pIter
->pBtree
==p
|| pIter
->eLock
==READ_LOCK
);
329 if( pIter
->pBtree
!=p
&& pIter
->iTable
==iTab
&& pIter
->eLock
!=eLock
){
330 sqlite3ConnectionBlocked(p
->db
, pIter
->pBtree
->db
);
331 if( eLock
==WRITE_LOCK
){
332 assert( p
==pBt
->pWriter
);
333 pBt
->btsFlags
|= BTS_PENDING
;
335 return SQLITE_LOCKED_SHAREDCACHE
;
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
342 #ifndef SQLITE_OMIT_SHARED_CACHE
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
348 ** This function assumes the following:
350 ** (a) The specified Btree object p is connected to a sharable
351 ** database (one with the BtShared.sharable flag set), and
353 ** (b) No other Btree objects hold a lock that conflicts
354 ** with the requested lock (i.e. querySharedCacheTableLock() has
355 ** already been called and returned SQLITE_OK).
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
360 static int setSharedCacheTableLock(Btree
*p
, Pgno iTable
, u8 eLock
){
361 BtShared
*pBt
= p
->pBt
;
365 assert( sqlite3BtreeHoldsMutex(p
) );
366 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
371 ** by a connection in read-uncommitted mode is on the sqlite_schema
372 ** table, and that lock is obtained in BtreeBeginTrans(). */
373 assert( 0==(p
->db
->flags
&SQLITE_ReadUncommit
) || eLock
==WRITE_LOCK
);
375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p
->sharable
);
378 assert( SQLITE_OK
==querySharedCacheTableLock(p
, iTable
, eLock
) );
380 /* First search the list for an existing lock on this table. */
381 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
382 if( pIter
->iTable
==iTable
&& pIter
->pBtree
==p
){
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
392 pLock
= (BtLock
*)sqlite3MallocZero(sizeof(BtLock
));
394 return SQLITE_NOMEM_BKPT
;
396 pLock
->iTable
= iTable
;
398 pLock
->pNext
= pBt
->pLock
;
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
406 assert( WRITE_LOCK
>READ_LOCK
);
407 if( eLock
>pLock
->eLock
){
408 pLock
->eLock
= eLock
;
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
415 #ifndef SQLITE_OMIT_SHARED_CACHE
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
424 static void clearAllSharedCacheTableLocks(Btree
*p
){
425 BtShared
*pBt
= p
->pBt
;
426 BtLock
**ppIter
= &pBt
->pLock
;
428 assert( sqlite3BtreeHoldsMutex(p
) );
429 assert( p
->sharable
|| 0==*ppIter
);
430 assert( p
->inTrans
>0 );
433 BtLock
*pLock
= *ppIter
;
434 assert( (pBt
->btsFlags
& BTS_EXCLUSIVE
)==0 || pBt
->pWriter
==pLock
->pBtree
);
435 assert( pLock
->pBtree
->inTrans
>=pLock
->eLock
);
436 if( pLock
->pBtree
==p
){
437 *ppIter
= pLock
->pNext
;
438 assert( pLock
->iTable
!=1 || pLock
==&p
->lock
);
439 if( pLock
->iTable
!=1 ){
443 ppIter
= &pLock
->pNext
;
447 assert( (pBt
->btsFlags
& BTS_PENDING
)==0 || pBt
->pWriter
);
448 if( pBt
->pWriter
==p
){
450 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
451 }else if( pBt
->nTransaction
==2 ){
452 /* This function is called when Btree p is concluding its
453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
456 ** set the BTS_PENDING flag to 0.
458 ** If there is not currently a writer, then BTS_PENDING must
459 ** be zero already. So this next line is harmless in that case.
461 pBt
->btsFlags
&= ~BTS_PENDING
;
466 ** This function changes all write-locks held by Btree p into read-locks.
468 static void downgradeAllSharedCacheTableLocks(Btree
*p
){
469 BtShared
*pBt
= p
->pBt
;
470 if( pBt
->pWriter
==p
){
473 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
474 for(pLock
=pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
475 assert( pLock
->eLock
==READ_LOCK
|| pLock
->pBtree
==p
);
476 pLock
->eLock
= READ_LOCK
;
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
483 static void releasePage(MemPage
*pPage
); /* Forward reference */
484 static void releasePageOne(MemPage
*pPage
); /* Forward reference */
485 static void releasePageNotNull(MemPage
*pPage
); /* Forward reference */
488 ***** This routine is used inside of assert() only ****
490 ** Verify that the cursor holds the mutex on its BtShared
493 static int cursorHoldsMutex(BtCursor
*p
){
494 return sqlite3_mutex_held(p
->pBt
->mutex
);
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed. This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
505 static int cursorOwnsBtShared(BtCursor
*p
){
506 assert( cursorHoldsMutex(p
) );
507 return (p
->pBtree
->db
==p
->pBt
->db
);
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
521 static void invalidateAllOverflowCache(BtShared
*pBt
){
523 assert( sqlite3_mutex_held(pBt
->mutex
) );
524 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
525 invalidateOverflowCache(p
);
529 #ifndef SQLITE_OMIT_INCRBLOB
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
543 static void invalidateIncrblobCursors(
544 Btree
*pBtree
, /* The database file to check */
545 Pgno pgnoRoot
, /* The table that might be changing */
546 i64 iRow
, /* The rowid that might be changing */
547 int isClearTable
/* True if all rows are being deleted */
550 assert( pBtree
->hasIncrblobCur
);
551 assert( sqlite3BtreeHoldsMutex(pBtree
) );
552 pBtree
->hasIncrblobCur
= 0;
553 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
554 if( (p
->curFlags
& BTCF_Incrblob
)!=0 ){
555 pBtree
->hasIncrblobCur
= 1;
556 if( p
->pgnoRoot
==pgnoRoot
&& (isClearTable
|| p
->info
.nKey
==iRow
) ){
557 p
->eState
= CURSOR_INVALID
;
564 /* Stub function when INCRBLOB is omitted */
565 #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
577 ** 1) When all data is deleted from a page and the page becomes
578 ** a free-list leaf page, the page is not written to the database
579 ** (as free-list leaf pages contain no meaningful data). Sometimes
580 ** such a page is not even journalled (as it will not be modified,
581 ** why bother journalling it?).
583 ** 2) When a free-list leaf page is reused, its content is not read
584 ** from the database or written to the journal file (why should it
585 ** be, if it is not at all meaningful?).
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
603 static int btreeSetHasContent(BtShared
*pBt
, Pgno pgno
){
605 if( !pBt
->pHasContent
){
606 assert( pgno
<=pBt
->nPage
);
607 pBt
->pHasContent
= sqlite3BitvecCreate(pBt
->nPage
);
608 if( !pBt
->pHasContent
){
609 rc
= SQLITE_NOMEM_BKPT
;
612 if( rc
==SQLITE_OK
&& pgno
<=sqlite3BitvecSize(pBt
->pHasContent
) ){
613 rc
= sqlite3BitvecSet(pBt
->pHasContent
, pgno
);
619 ** Query the BtShared.pHasContent vector.
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
625 static int btreeGetHasContent(BtShared
*pBt
, Pgno pgno
){
626 Bitvec
*p
= pBt
->pHasContent
;
627 return p
&& (pgno
>sqlite3BitvecSize(p
) || sqlite3BitvecTestNotNull(p
, pgno
));
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
634 static void btreeClearHasContent(BtShared
*pBt
){
635 sqlite3BitvecDestroy(pBt
->pHasContent
);
636 pBt
->pHasContent
= 0;
640 ** Release all of the apPage[] pages for a cursor.
642 static void btreeReleaseAllCursorPages(BtCursor
*pCur
){
644 if( pCur
->iPage
>=0 ){
645 for(i
=0; i
<pCur
->iPage
; i
++){
646 releasePageNotNull(pCur
->apPage
[i
]);
648 releasePageNotNull(pCur
->pPage
);
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
666 static int saveCursorKey(BtCursor
*pCur
){
668 assert( CURSOR_VALID
==pCur
->eState
);
669 assert( 0==pCur
->pKey
);
670 assert( cursorHoldsMutex(pCur
) );
672 if( pCur
->curIntKey
){
673 /* Only the rowid is required for a table btree */
674 pCur
->nKey
= sqlite3BtreeIntegerKey(pCur
);
676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
683 pCur
->nKey
= sqlite3BtreePayloadSize(pCur
);
684 pKey
= sqlite3Malloc( pCur
->nKey
+ 9 + 8 );
686 rc
= sqlite3BtreePayload(pCur
, 0, (int)pCur
->nKey
, pKey
);
688 memset(((u8
*)pKey
)+pCur
->nKey
, 0, 9+8);
694 rc
= SQLITE_NOMEM_BKPT
;
697 assert( !pCur
->curIntKey
|| !pCur
->pKey
);
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
708 static int saveCursorPosition(BtCursor
*pCur
){
711 assert( CURSOR_VALID
==pCur
->eState
|| CURSOR_SKIPNEXT
==pCur
->eState
);
712 assert( 0==pCur
->pKey
);
713 assert( cursorHoldsMutex(pCur
) );
715 if( pCur
->curFlags
& BTCF_Pinned
){
716 return SQLITE_CONSTRAINT_PINNED
;
718 if( pCur
->eState
==CURSOR_SKIPNEXT
){
719 pCur
->eState
= CURSOR_VALID
;
724 rc
= saveCursorKey(pCur
);
726 btreeReleaseAllCursorPages(pCur
);
727 pCur
->eState
= CURSOR_REQUIRESEEK
;
730 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
|BTCF_AtLast
);
734 /* Forward reference */
735 static int SQLITE_NOINLINE
saveCursorsOnList(BtCursor
*,Pgno
,BtCursor
*);
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot. "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified. This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747 ** routine enforces that rule. This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
754 ** Implementation note: This routine merely checks to see if any cursors
755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
758 static int saveAllCursors(BtShared
*pBt
, Pgno iRoot
, BtCursor
*pExcept
){
760 assert( sqlite3_mutex_held(pBt
->mutex
) );
761 assert( pExcept
==0 || pExcept
->pBt
==pBt
);
762 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
763 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ) break;
765 if( p
) return saveCursorsOnList(p
, iRoot
, pExcept
);
766 if( pExcept
) pExcept
->curFlags
&= ~BTCF_Multiple
;
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
775 static int SQLITE_NOINLINE
saveCursorsOnList(
776 BtCursor
*p
, /* The first cursor that needs saving */
777 Pgno iRoot
, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor
*pExcept
/* Do not save this cursor */
781 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ){
782 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
783 int rc
= saveCursorPosition(p
);
788 testcase( p
->iPage
>=0 );
789 btreeReleaseAllCursorPages(p
);
798 ** Clear the current cursor position.
800 void sqlite3BtreeClearCursor(BtCursor
*pCur
){
801 assert( cursorHoldsMutex(pCur
) );
802 sqlite3_free(pCur
->pKey
);
804 pCur
->eState
= CURSOR_INVALID
;
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode. Unpack the
810 ** record and then call sqlite3BtreeIndexMoveto() to do the work.
812 static int btreeMoveto(
813 BtCursor
*pCur
, /* Cursor open on the btree to be searched */
814 const void *pKey
, /* Packed key if the btree is an index */
815 i64 nKey
, /* Integer key for tables. Size of pKey for indices */
816 int bias
, /* Bias search to the high end */
817 int *pRes
/* Write search results here */
819 int rc
; /* Status code */
820 UnpackedRecord
*pIdxKey
; /* Unpacked index key */
823 KeyInfo
*pKeyInfo
= pCur
->pKeyInfo
;
824 assert( nKey
==(i64
)(int)nKey
);
825 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
826 if( pIdxKey
==0 ) return SQLITE_NOMEM_BKPT
;
827 sqlite3VdbeRecordUnpack(pKeyInfo
, (int)nKey
, pKey
, pIdxKey
);
828 if( pIdxKey
->nField
==0 || pIdxKey
->nField
>pKeyInfo
->nAllField
){
829 rc
= SQLITE_CORRUPT_BKPT
;
831 rc
= sqlite3BtreeIndexMoveto(pCur
, pIdxKey
, pRes
);
833 sqlite3DbFree(pCur
->pKeyInfo
->db
, pIdxKey
);
836 rc
= sqlite3BtreeTableMoveto(pCur
, nKey
, bias
, pRes
);
842 ** Restore the cursor to the position it was in (or as close to as possible)
843 ** when saveCursorPosition() was called. Note that this call deletes the
844 ** saved position info stored by saveCursorPosition(), so there can be
845 ** at most one effective restoreCursorPosition() call after each
846 ** saveCursorPosition().
848 static int btreeRestoreCursorPosition(BtCursor
*pCur
){
851 assert( cursorOwnsBtShared(pCur
) );
852 assert( pCur
->eState
>=CURSOR_REQUIRESEEK
);
853 if( pCur
->eState
==CURSOR_FAULT
){
854 return pCur
->skipNext
;
856 pCur
->eState
= CURSOR_INVALID
;
857 if( sqlite3FaultSim(410) ){
860 rc
= btreeMoveto(pCur
, pCur
->pKey
, pCur
->nKey
, 0, &skipNext
);
863 sqlite3_free(pCur
->pKey
);
865 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_INVALID
);
866 if( skipNext
) pCur
->skipNext
= skipNext
;
867 if( pCur
->skipNext
&& pCur
->eState
==CURSOR_VALID
){
868 pCur
->eState
= CURSOR_SKIPNEXT
;
874 #define restoreCursorPosition(p) \
875 (p->eState>=CURSOR_REQUIRESEEK ? \
876 btreeRestoreCursorPosition(p) : \
880 ** Determine whether or not a cursor has moved from the position where
881 ** it was last placed, or has been invalidated for any other reason.
882 ** Cursors can move when the row they are pointing at is deleted out
883 ** from under them, for example. Cursor might also move if a btree
886 ** Calling this routine with a NULL cursor pointer returns false.
888 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
889 ** back to where it ought to be if this routine returns true.
891 int sqlite3BtreeCursorHasMoved(BtCursor
*pCur
){
892 assert( EIGHT_BYTE_ALIGNMENT(pCur
)
893 || pCur
==sqlite3BtreeFakeValidCursor() );
894 assert( offsetof(BtCursor
, eState
)==0 );
895 assert( sizeof(pCur
->eState
)==1 );
896 return CURSOR_VALID
!= *(u8
*)pCur
;
900 ** Return a pointer to a fake BtCursor object that will always answer
901 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
902 ** cursor returned must not be used with any other Btree interface.
904 BtCursor
*sqlite3BtreeFakeValidCursor(void){
905 static u8 fakeCursor
= CURSOR_VALID
;
906 assert( offsetof(BtCursor
, eState
)==0 );
907 return (BtCursor
*)&fakeCursor
;
911 ** This routine restores a cursor back to its original position after it
912 ** has been moved by some outside activity (such as a btree rebalance or
913 ** a row having been deleted out from under the cursor).
915 ** On success, the *pDifferentRow parameter is false if the cursor is left
916 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
917 ** was pointing to has been deleted, forcing the cursor to point to some
920 ** This routine should only be called for a cursor that just returned
921 ** TRUE from sqlite3BtreeCursorHasMoved().
923 int sqlite3BtreeCursorRestore(BtCursor
*pCur
, int *pDifferentRow
){
927 assert( pCur
->eState
!=CURSOR_VALID
);
928 rc
= restoreCursorPosition(pCur
);
933 if( pCur
->eState
!=CURSOR_VALID
){
941 #ifdef SQLITE_ENABLE_CURSOR_HINTS
943 ** Provide hints to the cursor. The particular hint given (and the type
944 ** and number of the varargs parameters) is determined by the eHintType
945 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
947 void sqlite3BtreeCursorHint(BtCursor
*pCur
, int eHintType
, ...){
948 /* Used only by system that substitute their own storage engine */
950 if( ALWAYS(eHintType
==BTREE_HINT_RANGE
) ){
954 memset(&w
, 0, sizeof(w
));
955 w
.xExprCallback
= sqlite3CursorRangeHintExprCheck
;
956 va_start(ap
, eHintType
);
957 pExpr
= va_arg(ap
, Expr
*);
958 w
.u
.aMem
= va_arg(ap
, Mem
*);
961 assert( w
.u
.aMem
!=0 );
962 sqlite3WalkExpr(&w
, pExpr
);
964 #endif /* SQLITE_DEBUG */
966 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
970 ** Provide flag hints to the cursor.
972 void sqlite3BtreeCursorHintFlags(BtCursor
*pCur
, unsigned x
){
973 assert( x
==BTREE_SEEK_EQ
|| x
==BTREE_BULKLOAD
|| x
==0 );
978 #ifndef SQLITE_OMIT_AUTOVACUUM
980 ** Given a page number of a regular database page, return the page
981 ** number for the pointer-map page that contains the entry for the
982 ** input page number.
984 ** Return 0 (not a valid page) for pgno==1 since there is
985 ** no pointer map associated with page 1. The integrity_check logic
986 ** requires that ptrmapPageno(*,1)!=1.
988 static Pgno
ptrmapPageno(BtShared
*pBt
, Pgno pgno
){
989 int nPagesPerMapPage
;
991 assert( sqlite3_mutex_held(pBt
->mutex
) );
992 if( pgno
<2 ) return 0;
993 nPagesPerMapPage
= (pBt
->usableSize
/5)+1;
994 iPtrMap
= (pgno
-2)/nPagesPerMapPage
;
995 ret
= (iPtrMap
*nPagesPerMapPage
) + 2;
996 if( ret
==PENDING_BYTE_PAGE(pBt
) ){
1003 ** Write an entry into the pointer map.
1005 ** This routine updates the pointer map entry for page number 'key'
1006 ** so that it maps to type 'eType' and parent page number 'pgno'.
1008 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
1009 ** a no-op. If an error occurs, the appropriate error code is written
1012 static void ptrmapPut(BtShared
*pBt
, Pgno key
, u8 eType
, Pgno parent
, int *pRC
){
1013 DbPage
*pDbPage
; /* The pointer map page */
1014 u8
*pPtrmap
; /* The pointer map data */
1015 Pgno iPtrmap
; /* The pointer map page number */
1016 int offset
; /* Offset in pointer map page */
1017 int rc
; /* Return code from subfunctions */
1021 assert( sqlite3_mutex_held(pBt
->mutex
) );
1022 /* The super-journal page number must never be used as a pointer map page */
1023 assert( 0==PTRMAP_ISPAGE(pBt
, PENDING_BYTE_PAGE(pBt
)) );
1025 assert( pBt
->autoVacuum
);
1027 *pRC
= SQLITE_CORRUPT_BKPT
;
1030 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1031 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1032 if( rc
!=SQLITE_OK
){
1036 if( ((char*)sqlite3PagerGetExtra(pDbPage
))[0]!=0 ){
1037 /* The first byte of the extra data is the MemPage.isInit byte.
1038 ** If that byte is set, it means this page is also being used
1039 ** as a btree page. */
1040 *pRC
= SQLITE_CORRUPT_BKPT
;
1043 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1045 *pRC
= SQLITE_CORRUPT_BKPT
;
1048 assert( offset
<= (int)pBt
->usableSize
-5 );
1049 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1051 if( eType
!=pPtrmap
[offset
] || get4byte(&pPtrmap
[offset
+1])!=parent
){
1052 TRACE(("PTRMAP_UPDATE: %u->(%u,%u)\n", key
, eType
, parent
));
1053 *pRC
= rc
= sqlite3PagerWrite(pDbPage
);
1054 if( rc
==SQLITE_OK
){
1055 pPtrmap
[offset
] = eType
;
1056 put4byte(&pPtrmap
[offset
+1], parent
);
1061 sqlite3PagerUnref(pDbPage
);
1065 ** Read an entry from the pointer map.
1067 ** This routine retrieves the pointer map entry for page 'key', writing
1068 ** the type and parent page number to *pEType and *pPgno respectively.
1069 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1071 static int ptrmapGet(BtShared
*pBt
, Pgno key
, u8
*pEType
, Pgno
*pPgno
){
1072 DbPage
*pDbPage
; /* The pointer map page */
1073 int iPtrmap
; /* Pointer map page index */
1074 u8
*pPtrmap
; /* Pointer map page data */
1075 int offset
; /* Offset of entry in pointer map */
1078 assert( sqlite3_mutex_held(pBt
->mutex
) );
1080 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1081 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1085 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1087 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1089 sqlite3PagerUnref(pDbPage
);
1090 return SQLITE_CORRUPT_BKPT
;
1092 assert( offset
<= (int)pBt
->usableSize
-5 );
1093 assert( pEType
!=0 );
1094 *pEType
= pPtrmap
[offset
];
1095 if( pPgno
) *pPgno
= get4byte(&pPtrmap
[offset
+1]);
1097 sqlite3PagerUnref(pDbPage
);
1098 if( *pEType
<1 || *pEType
>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap
);
1102 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1103 #define ptrmapPut(w,x,y,z,rc)
1104 #define ptrmapGet(w,x,y,z) SQLITE_OK
1105 #define ptrmapPutOvflPtr(x, y, z, rc)
1109 ** Given a btree page and a cell index (0 means the first cell on
1110 ** the page, 1 means the second cell, and so forth) return a pointer
1111 ** to the cell content.
1113 ** findCellPastPtr() does the same except it skips past the initial
1114 ** 4-byte child pointer found on interior pages, if there is one.
1116 ** This routine works only for pages that do not contain overflow cells.
1118 #define findCell(P,I) \
1119 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1120 #define findCellPastPtr(P,I) \
1121 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1125 ** This is common tail processing for btreeParseCellPtr() and
1126 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1127 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1130 static SQLITE_NOINLINE
void btreeParseCellAdjustSizeForOverflow(
1131 MemPage
*pPage
, /* Page containing the cell */
1132 u8
*pCell
, /* Pointer to the cell text. */
1133 CellInfo
*pInfo
/* Fill in this structure */
1135 /* If the payload will not fit completely on the local page, we have
1136 ** to decide how much to store locally and how much to spill onto
1137 ** overflow pages. The strategy is to minimize the amount of unused
1138 ** space on overflow pages while keeping the amount of local storage
1139 ** in between minLocal and maxLocal.
1141 ** Warning: changing the way overflow payload is distributed in any
1142 ** way will result in an incompatible file format.
1144 int minLocal
; /* Minimum amount of payload held locally */
1145 int maxLocal
; /* Maximum amount of payload held locally */
1146 int surplus
; /* Overflow payload available for local storage */
1148 minLocal
= pPage
->minLocal
;
1149 maxLocal
= pPage
->maxLocal
;
1150 surplus
= minLocal
+ (pInfo
->nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1151 testcase( surplus
==maxLocal
);
1152 testcase( surplus
==maxLocal
+1 );
1153 if( surplus
<= maxLocal
){
1154 pInfo
->nLocal
= (u16
)surplus
;
1156 pInfo
->nLocal
= (u16
)minLocal
;
1158 pInfo
->nSize
= (u16
)(&pInfo
->pPayload
[pInfo
->nLocal
] - pCell
) + 4;
1162 ** Given a record with nPayload bytes of payload stored within btree
1163 ** page pPage, return the number of bytes of payload stored locally.
1165 static int btreePayloadToLocal(MemPage
*pPage
, i64 nPayload
){
1166 int maxLocal
; /* Maximum amount of payload held locally */
1167 maxLocal
= pPage
->maxLocal
;
1168 if( nPayload
<=maxLocal
){
1171 int minLocal
; /* Minimum amount of payload held locally */
1172 int surplus
; /* Overflow payload available for local storage */
1173 minLocal
= pPage
->minLocal
;
1174 surplus
= minLocal
+ (nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1175 return ( surplus
<= maxLocal
) ? surplus
: minLocal
;
1180 ** The following routines are implementations of the MemPage.xParseCell()
1183 ** Parse a cell content block and fill in the CellInfo structure.
1185 ** btreeParseCellPtr() => table btree leaf nodes
1186 ** btreeParseCellNoPayload() => table btree internal nodes
1187 ** btreeParseCellPtrIndex() => index btree nodes
1189 ** There is also a wrapper function btreeParseCell() that works for
1190 ** all MemPage types and that references the cell by index rather than
1193 static void btreeParseCellPtrNoPayload(
1194 MemPage
*pPage
, /* Page containing the cell */
1195 u8
*pCell
, /* Pointer to the cell text. */
1196 CellInfo
*pInfo
/* Fill in this structure */
1198 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1199 assert( pPage
->leaf
==0 );
1200 assert( pPage
->childPtrSize
==4 );
1201 #ifndef SQLITE_DEBUG
1202 UNUSED_PARAMETER(pPage
);
1204 pInfo
->nSize
= 4 + getVarint(&pCell
[4], (u64
*)&pInfo
->nKey
);
1205 pInfo
->nPayload
= 0;
1207 pInfo
->pPayload
= 0;
1210 static void btreeParseCellPtr(
1211 MemPage
*pPage
, /* Page containing the cell */
1212 u8
*pCell
, /* Pointer to the cell text. */
1213 CellInfo
*pInfo
/* Fill in this structure */
1215 u8
*pIter
; /* For scanning through pCell */
1216 u32 nPayload
; /* Number of bytes of cell payload */
1217 u64 iKey
; /* Extracted Key value */
1219 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1220 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1221 assert( pPage
->intKeyLeaf
);
1222 assert( pPage
->childPtrSize
==0 );
1225 /* The next block of code is equivalent to:
1227 ** pIter += getVarint32(pIter, nPayload);
1229 ** The code is inlined to avoid a function call.
1232 if( nPayload
>=0x80 ){
1233 u8
*pEnd
= &pIter
[8];
1236 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1237 }while( (*pIter
)>=0x80 && pIter
<pEnd
);
1241 /* The next block of code is equivalent to:
1243 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1245 ** The code is inlined and the loop is unrolled for performance.
1246 ** This routine is a high-runner.
1251 iKey
= (iKey
<<7) ^ (x
= *++pIter
);
1253 iKey
= (iKey
<<7) ^ (x
= *++pIter
);
1255 iKey
= (iKey
<<7) ^ 0x10204000 ^ (x
= *++pIter
);
1257 iKey
= (iKey
<<7) ^ 0x4000 ^ (x
= *++pIter
);
1259 iKey
= (iKey
<<7) ^ 0x4000 ^ (x
= *++pIter
);
1261 iKey
= (iKey
<<7) ^ 0x4000 ^ (x
= *++pIter
);
1263 iKey
= (iKey
<<7) ^ 0x4000 ^ (x
= *++pIter
);
1265 iKey
= (iKey
<<8) ^ 0x8000 ^ (*++pIter
);
1280 pInfo
->nKey
= *(i64
*)&iKey
;
1281 pInfo
->nPayload
= nPayload
;
1282 pInfo
->pPayload
= pIter
;
1283 testcase( nPayload
==pPage
->maxLocal
);
1284 testcase( nPayload
==(u32
)pPage
->maxLocal
+1 );
1285 if( nPayload
<=pPage
->maxLocal
){
1286 /* This is the (easy) common case where the entire payload fits
1287 ** on the local page. No overflow is required.
1289 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1290 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1291 pInfo
->nLocal
= (u16
)nPayload
;
1293 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1296 static void btreeParseCellPtrIndex(
1297 MemPage
*pPage
, /* Page containing the cell */
1298 u8
*pCell
, /* Pointer to the cell text. */
1299 CellInfo
*pInfo
/* Fill in this structure */
1301 u8
*pIter
; /* For scanning through pCell */
1302 u32 nPayload
; /* Number of bytes of cell payload */
1304 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1305 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1306 assert( pPage
->intKeyLeaf
==0 );
1307 pIter
= pCell
+ pPage
->childPtrSize
;
1309 if( nPayload
>=0x80 ){
1310 u8
*pEnd
= &pIter
[8];
1313 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1314 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1317 pInfo
->nKey
= nPayload
;
1318 pInfo
->nPayload
= nPayload
;
1319 pInfo
->pPayload
= pIter
;
1320 testcase( nPayload
==pPage
->maxLocal
);
1321 testcase( nPayload
==(u32
)pPage
->maxLocal
+1 );
1322 if( nPayload
<=pPage
->maxLocal
){
1323 /* This is the (easy) common case where the entire payload fits
1324 ** on the local page. No overflow is required.
1326 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1327 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1328 pInfo
->nLocal
= (u16
)nPayload
;
1330 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1333 static void btreeParseCell(
1334 MemPage
*pPage
, /* Page containing the cell */
1335 int iCell
, /* The cell index. First cell is 0 */
1336 CellInfo
*pInfo
/* Fill in this structure */
1338 pPage
->xParseCell(pPage
, findCell(pPage
, iCell
), pInfo
);
1342 ** The following routines are implementations of the MemPage.xCellSize
1345 ** Compute the total number of bytes that a Cell needs in the cell
1346 ** data area of the btree-page. The return number includes the cell
1347 ** data header and the local payload, but not any overflow page or
1348 ** the space used by the cell pointer.
1350 ** cellSizePtrNoPayload() => table internal nodes
1351 ** cellSizePtrTableLeaf() => table leaf nodes
1352 ** cellSizePtr() => index internal nodes
1353 ** cellSizeIdxLeaf() => index leaf nodes
1355 static u16
cellSizePtr(MemPage
*pPage
, u8
*pCell
){
1356 u8
*pIter
= pCell
+ 4; /* For looping over bytes of pCell */
1357 u8
*pEnd
; /* End mark for a varint */
1358 u32 nSize
; /* Size value to return */
1361 /* The value returned by this function should always be the same as
1362 ** the (CellInfo.nSize) value found by doing a full parse of the
1363 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1364 ** this function verifies that this invariant is not violated. */
1366 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1369 assert( pPage
->childPtrSize
==4 );
1375 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1376 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1379 testcase( nSize
==pPage
->maxLocal
);
1380 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1381 if( nSize
<=pPage
->maxLocal
){
1382 nSize
+= (u32
)(pIter
- pCell
);
1385 int minLocal
= pPage
->minLocal
;
1386 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1387 testcase( nSize
==pPage
->maxLocal
);
1388 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1389 if( nSize
>pPage
->maxLocal
){
1392 nSize
+= 4 + (u16
)(pIter
- pCell
);
1394 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1397 static u16
cellSizePtrIdxLeaf(MemPage
*pPage
, u8
*pCell
){
1398 u8
*pIter
= pCell
; /* For looping over bytes of pCell */
1399 u8
*pEnd
; /* End mark for a varint */
1400 u32 nSize
; /* Size value to return */
1403 /* The value returned by this function should always be the same as
1404 ** the (CellInfo.nSize) value found by doing a full parse of the
1405 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1406 ** this function verifies that this invariant is not violated. */
1408 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1411 assert( pPage
->childPtrSize
==0 );
1417 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1418 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1421 testcase( nSize
==pPage
->maxLocal
);
1422 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1423 if( nSize
<=pPage
->maxLocal
){
1424 nSize
+= (u32
)(pIter
- pCell
);
1425 if( nSize
<4 ) nSize
= 4;
1427 int minLocal
= pPage
->minLocal
;
1428 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1429 testcase( nSize
==pPage
->maxLocal
);
1430 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1431 if( nSize
>pPage
->maxLocal
){
1434 nSize
+= 4 + (u16
)(pIter
- pCell
);
1436 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1439 static u16
cellSizePtrNoPayload(MemPage
*pPage
, u8
*pCell
){
1440 u8
*pIter
= pCell
+ 4; /* For looping over bytes of pCell */
1441 u8
*pEnd
; /* End mark for a varint */
1444 /* The value returned by this function should always be the same as
1445 ** the (CellInfo.nSize) value found by doing a full parse of the
1446 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1447 ** this function verifies that this invariant is not violated. */
1449 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1451 UNUSED_PARAMETER(pPage
);
1454 assert( pPage
->childPtrSize
==4 );
1456 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1457 assert( debuginfo
.nSize
==(u16
)(pIter
- pCell
) || CORRUPT_DB
);
1458 return (u16
)(pIter
- pCell
);
1460 static u16
cellSizePtrTableLeaf(MemPage
*pPage
, u8
*pCell
){
1461 u8
*pIter
= pCell
; /* For looping over bytes of pCell */
1462 u8
*pEnd
; /* End mark for a varint */
1463 u32 nSize
; /* Size value to return */
1466 /* The value returned by this function should always be the same as
1467 ** the (CellInfo.nSize) value found by doing a full parse of the
1468 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1469 ** this function verifies that this invariant is not violated. */
1471 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1479 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1480 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1483 /* pIter now points at the 64-bit integer key value, a variable length
1484 ** integer. The following block moves pIter to point at the first byte
1485 ** past the end of the key value. */
1493 && (*pIter
++)&0x80 ){ pIter
++; }
1494 testcase( nSize
==pPage
->maxLocal
);
1495 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1496 if( nSize
<=pPage
->maxLocal
){
1497 nSize
+= (u32
)(pIter
- pCell
);
1498 if( nSize
<4 ) nSize
= 4;
1500 int minLocal
= pPage
->minLocal
;
1501 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1502 testcase( nSize
==pPage
->maxLocal
);
1503 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1504 if( nSize
>pPage
->maxLocal
){
1507 nSize
+= 4 + (u16
)(pIter
- pCell
);
1509 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1515 /* This variation on cellSizePtr() is used inside of assert() statements
1517 static u16
cellSize(MemPage
*pPage
, int iCell
){
1518 return pPage
->xCellSize(pPage
, findCell(pPage
, iCell
));
1522 #ifndef SQLITE_OMIT_AUTOVACUUM
1524 ** The cell pCell is currently part of page pSrc but will ultimately be part
1525 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a
1526 ** pointer to an overflow page, insert an entry into the pointer-map for
1527 ** the overflow page that will be valid after pCell has been moved to pPage.
1529 static void ptrmapPutOvflPtr(MemPage
*pPage
, MemPage
*pSrc
, u8
*pCell
,int *pRC
){
1533 pPage
->xParseCell(pPage
, pCell
, &info
);
1534 if( info
.nLocal
<info
.nPayload
){
1536 if( SQLITE_WITHIN(pSrc
->aDataEnd
, pCell
, pCell
+info
.nLocal
) ){
1537 testcase( pSrc
!=pPage
);
1538 *pRC
= SQLITE_CORRUPT_BKPT
;
1541 ovfl
= get4byte(&pCell
[info
.nSize
-4]);
1542 ptrmapPut(pPage
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, pRC
);
1549 ** Defragment the page given. This routine reorganizes cells within the
1550 ** page so that there are no free-blocks on the free-block list.
1552 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1553 ** present in the page after this routine returns.
1555 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1556 ** b-tree page so that there are no freeblocks or fragment bytes, all
1557 ** unused bytes are contained in the unallocated space region, and all
1558 ** cells are packed tightly at the end of the page.
1560 static int defragmentPage(MemPage
*pPage
, int nMaxFrag
){
1561 int i
; /* Loop counter */
1562 int pc
; /* Address of the i-th cell */
1563 int hdr
; /* Offset to the page header */
1564 int size
; /* Size of a cell */
1565 int usableSize
; /* Number of usable bytes on a page */
1566 int cellOffset
; /* Offset to the cell pointer array */
1567 int cbrk
; /* Offset to the cell content area */
1568 int nCell
; /* Number of cells on the page */
1569 unsigned char *data
; /* The page data */
1570 unsigned char *temp
; /* Temp area for cell content */
1571 unsigned char *src
; /* Source of content */
1572 int iCellFirst
; /* First allowable cell index */
1573 int iCellLast
; /* Last possible cell index */
1574 int iCellStart
; /* First cell offset in input */
1576 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1577 assert( pPage
->pBt
!=0 );
1578 assert( pPage
->pBt
->usableSize
<= SQLITE_MAX_PAGE_SIZE
);
1579 assert( pPage
->nOverflow
==0 );
1580 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1581 data
= pPage
->aData
;
1582 hdr
= pPage
->hdrOffset
;
1583 cellOffset
= pPage
->cellOffset
;
1584 nCell
= pPage
->nCell
;
1585 assert( nCell
==get2byte(&data
[hdr
+3]) || CORRUPT_DB
);
1586 iCellFirst
= cellOffset
+ 2*nCell
;
1587 usableSize
= pPage
->pBt
->usableSize
;
1589 /* This block handles pages with two or fewer free blocks and nMaxFrag
1590 ** or fewer fragmented bytes. In this case it is faster to move the
1591 ** two (or one) blocks of cells using memmove() and add the required
1592 ** offsets to each pointer in the cell-pointer array than it is to
1593 ** reconstruct the entire page. */
1594 if( (int)data
[hdr
+7]<=nMaxFrag
){
1595 int iFree
= get2byte(&data
[hdr
+1]);
1596 if( iFree
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1598 int iFree2
= get2byte(&data
[iFree
]);
1599 if( iFree2
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1600 if( 0==iFree2
|| (data
[iFree2
]==0 && data
[iFree2
+1]==0) ){
1601 u8
*pEnd
= &data
[cellOffset
+ nCell
*2];
1604 int sz
= get2byte(&data
[iFree
+2]);
1605 int top
= get2byte(&data
[hdr
+5]);
1607 return SQLITE_CORRUPT_PAGE(pPage
);
1610 if( iFree
+sz
>iFree2
) return SQLITE_CORRUPT_PAGE(pPage
);
1611 sz2
= get2byte(&data
[iFree2
+2]);
1612 if( iFree2
+sz2
> usableSize
) return SQLITE_CORRUPT_PAGE(pPage
);
1613 memmove(&data
[iFree
+sz
+sz2
], &data
[iFree
+sz
], iFree2
-(iFree
+sz
));
1615 }else if( iFree
+sz
>usableSize
){
1616 return SQLITE_CORRUPT_PAGE(pPage
);
1620 assert( cbrk
+(iFree
-top
) <= usableSize
);
1621 memmove(&data
[cbrk
], &data
[top
], iFree
-top
);
1622 for(pAddr
=&data
[cellOffset
]; pAddr
<pEnd
; pAddr
+=2){
1623 pc
= get2byte(pAddr
);
1624 if( pc
<iFree
){ put2byte(pAddr
, pc
+sz
); }
1625 else if( pc
<iFree2
){ put2byte(pAddr
, pc
+sz2
); }
1627 goto defragment_out
;
1633 iCellLast
= usableSize
- 4;
1634 iCellStart
= get2byte(&data
[hdr
+5]);
1636 temp
= sqlite3PagerTempSpace(pPage
->pBt
->pPager
);
1637 memcpy(&temp
[iCellStart
], &data
[iCellStart
], usableSize
- iCellStart
);
1639 for(i
=0; i
<nCell
; i
++){
1640 u8
*pAddr
; /* The i-th cell pointer */
1641 pAddr
= &data
[cellOffset
+ i
*2];
1642 pc
= get2byte(pAddr
);
1643 testcase( pc
==iCellFirst
);
1644 testcase( pc
==iCellLast
);
1645 /* These conditions have already been verified in btreeInitPage()
1646 ** if PRAGMA cell_size_check=ON.
1649 return SQLITE_CORRUPT_PAGE(pPage
);
1651 assert( pc
>=0 && pc
<=iCellLast
);
1652 size
= pPage
->xCellSize(pPage
, &src
[pc
]);
1654 if( cbrk
<iCellStart
|| pc
+size
>usableSize
){
1655 return SQLITE_CORRUPT_PAGE(pPage
);
1657 assert( cbrk
+size
<=usableSize
&& cbrk
>=iCellStart
);
1658 testcase( cbrk
+size
==usableSize
);
1659 testcase( pc
+size
==usableSize
);
1660 put2byte(pAddr
, cbrk
);
1661 memcpy(&data
[cbrk
], &src
[pc
], size
);
1667 assert( pPage
->nFree
>=0 );
1668 if( data
[hdr
+7]+cbrk
-iCellFirst
!=pPage
->nFree
){
1669 return SQLITE_CORRUPT_PAGE(pPage
);
1671 assert( cbrk
>=iCellFirst
);
1672 put2byte(&data
[hdr
+5], cbrk
);
1675 memset(&data
[iCellFirst
], 0, cbrk
-iCellFirst
);
1676 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1681 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1682 ** size. If one can be found, return a pointer to the space and remove it
1683 ** from the free-list.
1685 ** If no suitable space can be found on the free-list, return NULL.
1687 ** This function may detect corruption within pPg. If corruption is
1688 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1690 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1691 ** will be ignored if adding the extra space to the fragmentation count
1692 ** causes the fragmentation count to exceed 60.
1694 static u8
*pageFindSlot(MemPage
*pPg
, int nByte
, int *pRc
){
1695 const int hdr
= pPg
->hdrOffset
; /* Offset to page header */
1696 u8
* const aData
= pPg
->aData
; /* Page data */
1697 int iAddr
= hdr
+ 1; /* Address of ptr to pc */
1698 u8
*pTmp
= &aData
[iAddr
]; /* Temporary ptr into aData[] */
1699 int pc
= get2byte(pTmp
); /* Address of a free slot */
1700 int x
; /* Excess size of the slot */
1701 int maxPC
= pPg
->pBt
->usableSize
- nByte
; /* Max address for a usable slot */
1702 int size
; /* Size of the free slot */
1706 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1707 ** freeblock form a big-endian integer which is the size of the freeblock
1708 ** in bytes, including the 4-byte header. */
1709 pTmp
= &aData
[pc
+2];
1710 size
= get2byte(pTmp
);
1711 if( (x
= size
- nByte
)>=0 ){
1715 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1716 ** number of bytes in fragments may not exceed 60. */
1717 if( aData
[hdr
+7]>57 ) return 0;
1719 /* Remove the slot from the free-list. Update the number of
1720 ** fragmented bytes within the page. */
1721 memcpy(&aData
[iAddr
], &aData
[pc
], 2);
1722 aData
[hdr
+7] += (u8
)x
;
1724 }else if( x
+pc
> maxPC
){
1725 /* This slot extends off the end of the usable part of the page */
1726 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1729 /* The slot remains on the free-list. Reduce its size to account
1730 ** for the portion used by the new allocation. */
1731 put2byte(&aData
[pc
+2], x
);
1733 return &aData
[pc
+ x
];
1737 pc
= get2byte(pTmp
);
1740 /* The next slot in the chain comes before the current slot */
1741 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1746 if( pc
>maxPC
+nByte
-4 ){
1747 /* The free slot chain extends off the end of the page */
1748 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1754 ** Allocate nByte bytes of space from within the B-Tree page passed
1755 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1756 ** of the first byte of allocated space. Return either SQLITE_OK or
1757 ** an error code (usually SQLITE_CORRUPT).
1759 ** The caller guarantees that there is sufficient space to make the
1760 ** allocation. This routine might need to defragment in order to bring
1761 ** all the space together, however. This routine will avoid using
1762 ** the first two bytes past the cell pointer area since presumably this
1763 ** allocation is being made in order to insert a new cell, so we will
1764 ** also end up needing a new cell pointer.
1766 static SQLITE_INLINE
int allocateSpace(MemPage
*pPage
, int nByte
, int *pIdx
){
1767 const int hdr
= pPage
->hdrOffset
; /* Local cache of pPage->hdrOffset */
1768 u8
* const data
= pPage
->aData
; /* Local cache of pPage->aData */
1769 int top
; /* First byte of cell content area */
1770 int rc
= SQLITE_OK
; /* Integer return code */
1771 u8
*pTmp
; /* Temp ptr into data[] */
1772 int gap
; /* First byte of gap between cell pointers and cell content */
1774 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1775 assert( pPage
->pBt
);
1776 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1777 assert( nByte
>=0 ); /* Minimum cell size is 4 */
1778 assert( pPage
->nFree
>=nByte
);
1779 assert( pPage
->nOverflow
==0 );
1780 assert( nByte
< (int)(pPage
->pBt
->usableSize
-8) );
1782 assert( pPage
->cellOffset
== hdr
+ 12 - 4*pPage
->leaf
);
1783 gap
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1784 assert( gap
<=65536 );
1785 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1786 ** and the reserved space is zero (the usual value for reserved space)
1787 ** then the cell content offset of an empty page wants to be 65536.
1788 ** However, that integer is too large to be stored in a 2-byte unsigned
1789 ** integer, so a value of 0 is used in its place. */
1790 pTmp
= &data
[hdr
+5];
1791 top
= get2byte(pTmp
);
1793 if( top
==0 && pPage
->pBt
->usableSize
==65536 ){
1796 return SQLITE_CORRUPT_PAGE(pPage
);
1798 }else if( top
>(int)pPage
->pBt
->usableSize
){
1799 return SQLITE_CORRUPT_PAGE(pPage
);
1802 /* If there is enough space between gap and top for one more cell pointer,
1803 ** and if the freelist is not empty, then search the
1804 ** freelist looking for a slot big enough to satisfy the request.
1806 testcase( gap
+2==top
);
1807 testcase( gap
+1==top
);
1808 testcase( gap
==top
);
1809 if( (data
[hdr
+2] || data
[hdr
+1]) && gap
+2<=top
){
1810 u8
*pSpace
= pageFindSlot(pPage
, nByte
, &rc
);
1813 assert( pSpace
+nByte
<=data
+pPage
->pBt
->usableSize
);
1814 *pIdx
= g2
= (int)(pSpace
-data
);
1816 return SQLITE_CORRUPT_PAGE(pPage
);
1825 /* The request could not be fulfilled using a freelist slot. Check
1826 ** to see if defragmentation is necessary.
1828 testcase( gap
+2+nByte
==top
);
1829 if( gap
+2+nByte
>top
){
1830 assert( pPage
->nCell
>0 || CORRUPT_DB
);
1831 assert( pPage
->nFree
>=0 );
1832 rc
= defragmentPage(pPage
, MIN(4, pPage
->nFree
- (2+nByte
)));
1834 top
= get2byteNotZero(&data
[hdr
+5]);
1835 assert( gap
+2+nByte
<=top
);
1839 /* Allocate memory from the gap in between the cell pointer array
1840 ** and the cell content area. The btreeComputeFreeSpace() call has already
1841 ** validated the freelist. Given that the freelist is valid, there
1842 ** is no way that the allocation can extend off the end of the page.
1843 ** The assert() below verifies the previous sentence.
1846 put2byte(&data
[hdr
+5], top
);
1847 assert( top
+nByte
<= (int)pPage
->pBt
->usableSize
);
1853 ** Return a section of the pPage->aData to the freelist.
1854 ** The first byte of the new free block is pPage->aData[iStart]
1855 ** and the size of the block is iSize bytes.
1857 ** Adjacent freeblocks are coalesced.
1859 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1860 ** that routine will not detect overlap between cells or freeblocks. Nor
1861 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1862 ** at the end of the page. So do additional corruption checks inside this
1863 ** routine and return SQLITE_CORRUPT if any problems are found.
1865 static int freeSpace(MemPage
*pPage
, u16 iStart
, u16 iSize
){
1866 u16 iPtr
; /* Address of ptr to next freeblock */
1867 u16 iFreeBlk
; /* Address of the next freeblock */
1868 u8 hdr
; /* Page header size. 0 or 100 */
1869 u8 nFrag
= 0; /* Reduction in fragmentation */
1870 u16 iOrigSize
= iSize
; /* Original value of iSize */
1871 u16 x
; /* Offset to cell content area */
1872 u32 iEnd
= iStart
+ iSize
; /* First byte past the iStart buffer */
1873 unsigned char *data
= pPage
->aData
; /* Page content */
1874 u8
*pTmp
; /* Temporary ptr into data[] */
1876 assert( pPage
->pBt
!=0 );
1877 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1878 assert( CORRUPT_DB
|| iStart
>=pPage
->hdrOffset
+6+pPage
->childPtrSize
);
1879 assert( CORRUPT_DB
|| iEnd
<= pPage
->pBt
->usableSize
);
1880 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1881 assert( iSize
>=4 ); /* Minimum cell size is 4 */
1882 assert( CORRUPT_DB
|| iStart
<=pPage
->pBt
->usableSize
-4 );
1884 /* The list of freeblocks must be in ascending order. Find the
1885 ** spot on the list where iStart should be inserted.
1887 hdr
= pPage
->hdrOffset
;
1889 if( data
[iPtr
+1]==0 && data
[iPtr
]==0 ){
1890 iFreeBlk
= 0; /* Shortcut for the case when the freelist is empty */
1892 while( (iFreeBlk
= get2byte(&data
[iPtr
]))<iStart
){
1893 if( iFreeBlk
<=iPtr
){
1894 if( iFreeBlk
==0 ) break; /* TH3: corrupt082.100 */
1895 return SQLITE_CORRUPT_PAGE(pPage
);
1899 if( iFreeBlk
>pPage
->pBt
->usableSize
-4 ){ /* TH3: corrupt081.100 */
1900 return SQLITE_CORRUPT_PAGE(pPage
);
1902 assert( iFreeBlk
>iPtr
|| iFreeBlk
==0 || CORRUPT_DB
);
1905 ** iFreeBlk: First freeblock after iStart, or zero if none
1906 ** iPtr: The address of a pointer to iFreeBlk
1908 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1910 if( iFreeBlk
&& iEnd
+3>=iFreeBlk
){
1911 nFrag
= iFreeBlk
- iEnd
;
1912 if( iEnd
>iFreeBlk
) return SQLITE_CORRUPT_PAGE(pPage
);
1913 iEnd
= iFreeBlk
+ get2byte(&data
[iFreeBlk
+2]);
1914 if( iEnd
> pPage
->pBt
->usableSize
){
1915 return SQLITE_CORRUPT_PAGE(pPage
);
1917 iSize
= iEnd
- iStart
;
1918 iFreeBlk
= get2byte(&data
[iFreeBlk
]);
1921 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1922 ** pointer in the page header) then check to see if iStart should be
1923 ** coalesced onto the end of iPtr.
1926 int iPtrEnd
= iPtr
+ get2byte(&data
[iPtr
+2]);
1927 if( iPtrEnd
+3>=iStart
){
1928 if( iPtrEnd
>iStart
) return SQLITE_CORRUPT_PAGE(pPage
);
1929 nFrag
+= iStart
- iPtrEnd
;
1930 iSize
= iEnd
- iPtr
;
1934 if( nFrag
>data
[hdr
+7] ) return SQLITE_CORRUPT_PAGE(pPage
);
1935 data
[hdr
+7] -= nFrag
;
1937 pTmp
= &data
[hdr
+5];
1939 if( pPage
->pBt
->btsFlags
& BTS_FAST_SECURE
){
1940 /* Overwrite deleted information with zeros when the secure_delete
1941 ** option is enabled */
1942 memset(&data
[iStart
], 0, iSize
);
1945 /* The new freeblock is at the beginning of the cell content area,
1946 ** so just extend the cell content area rather than create another
1947 ** freelist entry */
1948 if( iStart
<x
) return SQLITE_CORRUPT_PAGE(pPage
);
1949 if( iPtr
!=hdr
+1 ) return SQLITE_CORRUPT_PAGE(pPage
);
1950 put2byte(&data
[hdr
+1], iFreeBlk
);
1951 put2byte(&data
[hdr
+5], iEnd
);
1953 /* Insert the new freeblock into the freelist */
1954 put2byte(&data
[iPtr
], iStart
);
1955 put2byte(&data
[iStart
], iFreeBlk
);
1956 put2byte(&data
[iStart
+2], iSize
);
1958 pPage
->nFree
+= iOrigSize
;
1963 ** Decode the flags byte (the first byte of the header) for a page
1964 ** and initialize fields of the MemPage structure accordingly.
1966 ** Only the following combinations are supported. Anything different
1967 ** indicates a corrupt database files:
1969 ** PTF_ZERODATA (0x02, 2)
1970 ** PTF_LEAFDATA | PTF_INTKEY (0x05, 5)
1971 ** PTF_ZERODATA | PTF_LEAF (0x0a, 10)
1972 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13)
1974 static int decodeFlags(MemPage
*pPage
, int flagByte
){
1975 BtShared
*pBt
; /* A copy of pPage->pBt */
1977 assert( pPage
->hdrOffset
==(pPage
->pgno
==1 ? 100 : 0) );
1978 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1980 pPage
->max1bytePayload
= pBt
->max1bytePayload
;
1981 if( flagByte
>=(PTF_ZERODATA
| PTF_LEAF
) ){
1982 pPage
->childPtrSize
= 0;
1984 if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
| PTF_LEAF
) ){
1985 pPage
->intKeyLeaf
= 1;
1986 pPage
->xCellSize
= cellSizePtrTableLeaf
;
1987 pPage
->xParseCell
= btreeParseCellPtr
;
1989 pPage
->maxLocal
= pBt
->maxLeaf
;
1990 pPage
->minLocal
= pBt
->minLeaf
;
1991 }else if( flagByte
==(PTF_ZERODATA
| PTF_LEAF
) ){
1993 pPage
->intKeyLeaf
= 0;
1994 pPage
->xCellSize
= cellSizePtrIdxLeaf
;
1995 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1996 pPage
->maxLocal
= pBt
->maxLocal
;
1997 pPage
->minLocal
= pBt
->minLocal
;
2000 pPage
->intKeyLeaf
= 0;
2001 pPage
->xCellSize
= cellSizePtrIdxLeaf
;
2002 pPage
->xParseCell
= btreeParseCellPtrIndex
;
2003 return SQLITE_CORRUPT_PAGE(pPage
);
2006 pPage
->childPtrSize
= 4;
2008 if( flagByte
==(PTF_ZERODATA
) ){
2010 pPage
->intKeyLeaf
= 0;
2011 pPage
->xCellSize
= cellSizePtr
;
2012 pPage
->xParseCell
= btreeParseCellPtrIndex
;
2013 pPage
->maxLocal
= pBt
->maxLocal
;
2014 pPage
->minLocal
= pBt
->minLocal
;
2015 }else if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
) ){
2016 pPage
->intKeyLeaf
= 0;
2017 pPage
->xCellSize
= cellSizePtrNoPayload
;
2018 pPage
->xParseCell
= btreeParseCellPtrNoPayload
;
2020 pPage
->maxLocal
= pBt
->maxLeaf
;
2021 pPage
->minLocal
= pBt
->minLeaf
;
2024 pPage
->intKeyLeaf
= 0;
2025 pPage
->xCellSize
= cellSizePtr
;
2026 pPage
->xParseCell
= btreeParseCellPtrIndex
;
2027 return SQLITE_CORRUPT_PAGE(pPage
);
2034 ** Compute the amount of freespace on the page. In other words, fill
2035 ** in the pPage->nFree field.
2037 static int btreeComputeFreeSpace(MemPage
*pPage
){
2038 int pc
; /* Address of a freeblock within pPage->aData[] */
2039 u8 hdr
; /* Offset to beginning of page header */
2040 u8
*data
; /* Equal to pPage->aData */
2041 int usableSize
; /* Amount of usable space on each page */
2042 int nFree
; /* Number of unused bytes on the page */
2043 int top
; /* First byte of the cell content area */
2044 int iCellFirst
; /* First allowable cell or freeblock offset */
2045 int iCellLast
; /* Last possible cell or freeblock offset */
2047 assert( pPage
->pBt
!=0 );
2048 assert( pPage
->pBt
->db
!=0 );
2049 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2050 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
2051 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
2052 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
2053 assert( pPage
->isInit
==1 );
2054 assert( pPage
->nFree
<0 );
2056 usableSize
= pPage
->pBt
->usableSize
;
2057 hdr
= pPage
->hdrOffset
;
2058 data
= pPage
->aData
;
2059 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
2060 ** the start of the cell content area. A zero value for this integer is
2061 ** interpreted as 65536. */
2062 top
= get2byteNotZero(&data
[hdr
+5]);
2063 iCellFirst
= hdr
+ 8 + pPage
->childPtrSize
+ 2*pPage
->nCell
;
2064 iCellLast
= usableSize
- 4;
2066 /* Compute the total free space on the page
2067 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
2068 ** start of the first freeblock on the page, or is zero if there are no
2070 pc
= get2byte(&data
[hdr
+1]);
2071 nFree
= data
[hdr
+7] + top
; /* Init nFree to non-freeblock free space */
2075 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2076 ** always be at least one cell before the first freeblock.
2078 return SQLITE_CORRUPT_PAGE(pPage
);
2082 /* Freeblock off the end of the page */
2083 return SQLITE_CORRUPT_PAGE(pPage
);
2085 next
= get2byte(&data
[pc
]);
2086 size
= get2byte(&data
[pc
+2]);
2087 nFree
= nFree
+ size
;
2088 if( next
<=pc
+size
+3 ) break;
2092 /* Freeblock not in ascending order */
2093 return SQLITE_CORRUPT_PAGE(pPage
);
2095 if( pc
+size
>(unsigned int)usableSize
){
2096 /* Last freeblock extends past page end */
2097 return SQLITE_CORRUPT_PAGE(pPage
);
2101 /* At this point, nFree contains the sum of the offset to the start
2102 ** of the cell-content area plus the number of free bytes within
2103 ** the cell-content area. If this is greater than the usable-size
2104 ** of the page, then the page must be corrupted. This check also
2105 ** serves to verify that the offset to the start of the cell-content
2106 ** area, according to the page header, lies within the page.
2108 if( nFree
>usableSize
|| nFree
<iCellFirst
){
2109 return SQLITE_CORRUPT_PAGE(pPage
);
2111 pPage
->nFree
= (u16
)(nFree
- iCellFirst
);
2116 ** Do additional sanity check after btreeInitPage() if
2117 ** PRAGMA cell_size_check=ON
2119 static SQLITE_NOINLINE
int btreeCellSizeCheck(MemPage
*pPage
){
2120 int iCellFirst
; /* First allowable cell or freeblock offset */
2121 int iCellLast
; /* Last possible cell or freeblock offset */
2122 int i
; /* Index into the cell pointer array */
2123 int sz
; /* Size of a cell */
2124 int pc
; /* Address of a freeblock within pPage->aData[] */
2125 u8
*data
; /* Equal to pPage->aData */
2126 int usableSize
; /* Maximum usable space on the page */
2127 int cellOffset
; /* Start of cell content area */
2129 iCellFirst
= pPage
->cellOffset
+ 2*pPage
->nCell
;
2130 usableSize
= pPage
->pBt
->usableSize
;
2131 iCellLast
= usableSize
- 4;
2132 data
= pPage
->aData
;
2133 cellOffset
= pPage
->cellOffset
;
2134 if( !pPage
->leaf
) iCellLast
--;
2135 for(i
=0; i
<pPage
->nCell
; i
++){
2136 pc
= get2byteAligned(&data
[cellOffset
+i
*2]);
2137 testcase( pc
==iCellFirst
);
2138 testcase( pc
==iCellLast
);
2139 if( pc
<iCellFirst
|| pc
>iCellLast
){
2140 return SQLITE_CORRUPT_PAGE(pPage
);
2142 sz
= pPage
->xCellSize(pPage
, &data
[pc
]);
2143 testcase( pc
+sz
==usableSize
);
2144 if( pc
+sz
>usableSize
){
2145 return SQLITE_CORRUPT_PAGE(pPage
);
2152 ** Initialize the auxiliary information for a disk block.
2154 ** Return SQLITE_OK on success. If we see that the page does
2155 ** not contain a well-formed database page, then return
2156 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2157 ** guarantee that the page is well-formed. It only shows that
2158 ** we failed to detect any corruption.
2160 static int btreeInitPage(MemPage
*pPage
){
2161 u8
*data
; /* Equal to pPage->aData */
2162 BtShared
*pBt
; /* The main btree structure */
2164 assert( pPage
->pBt
!=0 );
2165 assert( pPage
->pBt
->db
!=0 );
2166 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2167 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
2168 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
2169 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
2170 assert( pPage
->isInit
==0 );
2173 data
= pPage
->aData
+ pPage
->hdrOffset
;
2174 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2175 ** the b-tree page type. */
2176 if( decodeFlags(pPage
, data
[0]) ){
2177 return SQLITE_CORRUPT_PAGE(pPage
);
2179 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2180 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2181 pPage
->nOverflow
= 0;
2182 pPage
->cellOffset
= pPage
->hdrOffset
+ 8 + pPage
->childPtrSize
;
2183 pPage
->aCellIdx
= data
+ pPage
->childPtrSize
+ 8;
2184 pPage
->aDataEnd
= pPage
->aData
+ pBt
->pageSize
;
2185 pPage
->aDataOfst
= pPage
->aData
+ pPage
->childPtrSize
;
2186 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2187 ** number of cells on the page. */
2188 pPage
->nCell
= get2byte(&data
[3]);
2189 if( pPage
->nCell
>MX_CELL(pBt
) ){
2190 /* To many cells for a single page. The page must be corrupt */
2191 return SQLITE_CORRUPT_PAGE(pPage
);
2193 testcase( pPage
->nCell
==MX_CELL(pBt
) );
2194 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2195 ** possible for a root page of a table that contains no rows) then the
2196 ** offset to the cell content area will equal the page size minus the
2197 ** bytes of reserved space. */
2198 assert( pPage
->nCell
>0
2199 || get2byteNotZero(&data
[5])==(int)pBt
->usableSize
2201 pPage
->nFree
= -1; /* Indicate that this value is yet uncomputed */
2203 if( pBt
->db
->flags
& SQLITE_CellSizeCk
){
2204 return btreeCellSizeCheck(pPage
);
2210 ** Set up a raw page so that it looks like a database page holding
2213 static void zeroPage(MemPage
*pPage
, int flags
){
2214 unsigned char *data
= pPage
->aData
;
2215 BtShared
*pBt
= pPage
->pBt
;
2216 u8 hdr
= pPage
->hdrOffset
;
2219 assert( sqlite3PagerPagenumber(pPage
->pDbPage
)==pPage
->pgno
|| CORRUPT_DB
);
2220 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2221 assert( sqlite3PagerGetData(pPage
->pDbPage
) == data
);
2222 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
2223 assert( sqlite3_mutex_held(pBt
->mutex
) );
2224 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
2225 memset(&data
[hdr
], 0, pBt
->usableSize
- hdr
);
2227 data
[hdr
] = (char)flags
;
2228 first
= hdr
+ ((flags
&PTF_LEAF
)==0 ? 12 : 8);
2229 memset(&data
[hdr
+1], 0, 4);
2231 put2byte(&data
[hdr
+5], pBt
->usableSize
);
2232 pPage
->nFree
= (u16
)(pBt
->usableSize
- first
);
2233 decodeFlags(pPage
, flags
);
2234 pPage
->cellOffset
= first
;
2235 pPage
->aDataEnd
= &data
[pBt
->pageSize
];
2236 pPage
->aCellIdx
= &data
[first
];
2237 pPage
->aDataOfst
= &data
[pPage
->childPtrSize
];
2238 pPage
->nOverflow
= 0;
2239 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2240 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2247 ** Convert a DbPage obtained from the pager into a MemPage used by
2250 static MemPage
*btreePageFromDbPage(DbPage
*pDbPage
, Pgno pgno
, BtShared
*pBt
){
2251 MemPage
*pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2252 if( pgno
!=pPage
->pgno
){
2253 pPage
->aData
= sqlite3PagerGetData(pDbPage
);
2254 pPage
->pDbPage
= pDbPage
;
2257 pPage
->hdrOffset
= pgno
==1 ? 100 : 0;
2259 assert( pPage
->aData
==sqlite3PagerGetData(pDbPage
) );
2264 ** Get a page from the pager. Initialize the MemPage.pBt and
2265 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2267 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2268 ** about the content of the page at this time. So do not go to the disk
2269 ** to fetch the content. Just fill in the content with zeros for now.
2270 ** If in the future we call sqlite3PagerWrite() on this page, that
2271 ** means we have started to be concerned about content and the disk
2272 ** read should occur at that point.
2274 static int btreeGetPage(
2275 BtShared
*pBt
, /* The btree */
2276 Pgno pgno
, /* Number of the page to fetch */
2277 MemPage
**ppPage
, /* Return the page in this parameter */
2278 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2283 assert( flags
==0 || flags
==PAGER_GET_NOCONTENT
|| flags
==PAGER_GET_READONLY
);
2284 assert( sqlite3_mutex_held(pBt
->mutex
) );
2285 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, flags
);
2287 *ppPage
= btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2292 ** Retrieve a page from the pager cache. If the requested page is not
2293 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2294 ** MemPage.aData elements if needed.
2296 static MemPage
*btreePageLookup(BtShared
*pBt
, Pgno pgno
){
2298 assert( sqlite3_mutex_held(pBt
->mutex
) );
2299 pDbPage
= sqlite3PagerLookup(pBt
->pPager
, pgno
);
2301 return btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2307 ** Return the size of the database file in pages. If there is any kind of
2308 ** error, return ((unsigned int)-1).
2310 static Pgno
btreePagecount(BtShared
*pBt
){
2313 Pgno
sqlite3BtreeLastPage(Btree
*p
){
2314 assert( sqlite3BtreeHoldsMutex(p
) );
2315 return btreePagecount(p
->pBt
);
2319 ** Get a page from the pager and initialize it.
2321 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2322 ** call. Do additional sanity checking on the page in this case.
2323 ** And if the fetch fails, this routine must decrement pCur->iPage.
2325 ** The page is fetched as read-write unless pCur is not NULL and is
2326 ** a read-only cursor.
2328 ** If an error occurs, then *ppPage is undefined. It
2329 ** may remain unchanged, or it may be set to an invalid value.
2331 static int getAndInitPage(
2332 BtShared
*pBt
, /* The database file */
2333 Pgno pgno
, /* Number of the page to get */
2334 MemPage
**ppPage
, /* Write the page pointer here */
2335 BtCursor
*pCur
, /* Cursor to receive the page, or NULL */
2336 int bReadOnly
/* True for a read-only page */
2340 assert( sqlite3_mutex_held(pBt
->mutex
) );
2341 assert( pCur
==0 || ppPage
==&pCur
->pPage
);
2342 assert( pCur
==0 || bReadOnly
==pCur
->curPagerFlags
);
2343 assert( pCur
==0 || pCur
->iPage
>0 );
2345 if( pgno
>btreePagecount(pBt
) ){
2346 rc
= SQLITE_CORRUPT_BKPT
;
2347 goto getAndInitPage_error1
;
2349 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, bReadOnly
);
2351 goto getAndInitPage_error1
;
2353 *ppPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2354 if( (*ppPage
)->isInit
==0 ){
2355 btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2356 rc
= btreeInitPage(*ppPage
);
2357 if( rc
!=SQLITE_OK
){
2358 goto getAndInitPage_error2
;
2361 assert( (*ppPage
)->pgno
==pgno
|| CORRUPT_DB
);
2362 assert( (*ppPage
)->aData
==sqlite3PagerGetData(pDbPage
) );
2364 /* If obtaining a child page for a cursor, we must verify that the page is
2365 ** compatible with the root page. */
2366 if( pCur
&& ((*ppPage
)->nCell
<1 || (*ppPage
)->intKey
!=pCur
->curIntKey
) ){
2367 rc
= SQLITE_CORRUPT_PGNO(pgno
);
2368 goto getAndInitPage_error2
;
2372 getAndInitPage_error2
:
2373 releasePage(*ppPage
);
2374 getAndInitPage_error1
:
2377 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
2379 testcase( pgno
==0 );
2380 assert( pgno
!=0 || rc
!=SQLITE_OK
);
2385 ** Release a MemPage. This should be called once for each prior
2386 ** call to btreeGetPage.
2388 ** Page1 is a special case and must be released using releasePageOne().
2390 static void releasePageNotNull(MemPage
*pPage
){
2391 assert( pPage
->aData
);
2392 assert( pPage
->pBt
);
2393 assert( pPage
->pDbPage
!=0 );
2394 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2395 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2396 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2397 sqlite3PagerUnrefNotNull(pPage
->pDbPage
);
2399 static void releasePage(MemPage
*pPage
){
2400 if( pPage
) releasePageNotNull(pPage
);
2402 static void releasePageOne(MemPage
*pPage
){
2404 assert( pPage
->aData
);
2405 assert( pPage
->pBt
);
2406 assert( pPage
->pDbPage
!=0 );
2407 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2408 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2409 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2410 sqlite3PagerUnrefPageOne(pPage
->pDbPage
);
2414 ** Get an unused page.
2416 ** This works just like btreeGetPage() with the addition:
2418 ** * If the page is already in use for some other purpose, immediately
2419 ** release it and return an SQLITE_CURRUPT error.
2420 ** * Make sure the isInit flag is clear
2422 static int btreeGetUnusedPage(
2423 BtShared
*pBt
, /* The btree */
2424 Pgno pgno
, /* Number of the page to fetch */
2425 MemPage
**ppPage
, /* Return the page in this parameter */
2426 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2428 int rc
= btreeGetPage(pBt
, pgno
, ppPage
, flags
);
2429 if( rc
==SQLITE_OK
){
2430 if( sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)>1 ){
2431 releasePage(*ppPage
);
2433 return SQLITE_CORRUPT_BKPT
;
2435 (*ppPage
)->isInit
= 0;
2444 ** During a rollback, when the pager reloads information into the cache
2445 ** so that the cache is restored to its original state at the start of
2446 ** the transaction, for each page restored this routine is called.
2448 ** This routine needs to reset the extra data section at the end of the
2449 ** page to agree with the restored data.
2451 static void pageReinit(DbPage
*pData
){
2453 pPage
= (MemPage
*)sqlite3PagerGetExtra(pData
);
2454 assert( sqlite3PagerPageRefcount(pData
)>0 );
2455 if( pPage
->isInit
){
2456 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2458 if( sqlite3PagerPageRefcount(pData
)>1 ){
2459 /* pPage might not be a btree page; it might be an overflow page
2460 ** or ptrmap page or a free page. In those cases, the following
2461 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2462 ** But no harm is done by this. And it is very important that
2463 ** btreeInitPage() be called on every btree page so we make
2464 ** the call for every page that comes in for re-initing. */
2465 btreeInitPage(pPage
);
2471 ** Invoke the busy handler for a btree.
2473 static int btreeInvokeBusyHandler(void *pArg
){
2474 BtShared
*pBt
= (BtShared
*)pArg
;
2476 assert( sqlite3_mutex_held(pBt
->db
->mutex
) );
2477 return sqlite3InvokeBusyHandler(&pBt
->db
->busyHandler
);
2481 ** Open a database file.
2483 ** zFilename is the name of the database file. If zFilename is NULL
2484 ** then an ephemeral database is created. The ephemeral database might
2485 ** be exclusively in memory, or it might use a disk-based memory cache.
2486 ** Either way, the ephemeral database will be automatically deleted
2487 ** when sqlite3BtreeClose() is called.
2489 ** If zFilename is ":memory:" then an in-memory database is created
2490 ** that is automatically destroyed when it is closed.
2492 ** The "flags" parameter is a bitmask that might contain bits like
2493 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2495 ** If the database is already opened in the same database connection
2496 ** and we are in shared cache mode, then the open will fail with an
2497 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2498 ** objects in the same database connection since doing so will lead
2499 ** to problems with locking.
2501 int sqlite3BtreeOpen(
2502 sqlite3_vfs
*pVfs
, /* VFS to use for this b-tree */
2503 const char *zFilename
, /* Name of the file containing the BTree database */
2504 sqlite3
*db
, /* Associated database handle */
2505 Btree
**ppBtree
, /* Pointer to new Btree object written here */
2506 int flags
, /* Options */
2507 int vfsFlags
/* Flags passed through to sqlite3_vfs.xOpen() */
2509 BtShared
*pBt
= 0; /* Shared part of btree structure */
2510 Btree
*p
; /* Handle to return */
2511 sqlite3_mutex
*mutexOpen
= 0; /* Prevents a race condition. Ticket #3537 */
2512 int rc
= SQLITE_OK
; /* Result code from this function */
2513 u8 nReserve
; /* Byte of unused space on each page */
2514 unsigned char zDbHeader
[100]; /* Database header content */
2516 /* True if opening an ephemeral, temporary database */
2517 const int isTempDb
= zFilename
==0 || zFilename
[0]==0;
2519 /* Set the variable isMemdb to true for an in-memory database, or
2520 ** false for a file-based database.
2522 #ifdef SQLITE_OMIT_MEMORYDB
2523 const int isMemdb
= 0;
2525 const int isMemdb
= (zFilename
&& strcmp(zFilename
, ":memory:")==0)
2526 || (isTempDb
&& sqlite3TempInMemory(db
))
2527 || (vfsFlags
& SQLITE_OPEN_MEMORY
)!=0;
2532 assert( sqlite3_mutex_held(db
->mutex
) );
2533 assert( (flags
&0xff)==flags
); /* flags fit in 8 bits */
2535 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2536 assert( (flags
& BTREE_UNORDERED
)==0 || (flags
& BTREE_SINGLE
)!=0 );
2538 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2539 assert( (flags
& BTREE_SINGLE
)==0 || isTempDb
);
2542 flags
|= BTREE_MEMORY
;
2544 if( (vfsFlags
& SQLITE_OPEN_MAIN_DB
)!=0 && (isMemdb
|| isTempDb
) ){
2545 vfsFlags
= (vfsFlags
& ~SQLITE_OPEN_MAIN_DB
) | SQLITE_OPEN_TEMP_DB
;
2547 p
= sqlite3MallocZero(sizeof(Btree
));
2549 return SQLITE_NOMEM_BKPT
;
2551 p
->inTrans
= TRANS_NONE
;
2553 #ifndef SQLITE_OMIT_SHARED_CACHE
2558 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2560 ** If this Btree is a candidate for shared cache, try to find an
2561 ** existing BtShared object that we can share with
2563 if( isTempDb
==0 && (isMemdb
==0 || (vfsFlags
&SQLITE_OPEN_URI
)!=0) ){
2564 if( vfsFlags
& SQLITE_OPEN_SHAREDCACHE
){
2565 int nFilename
= sqlite3Strlen30(zFilename
)+1;
2566 int nFullPathname
= pVfs
->mxPathname
+1;
2567 char *zFullPathname
= sqlite3Malloc(MAX(nFullPathname
,nFilename
));
2568 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2571 if( !zFullPathname
){
2573 return SQLITE_NOMEM_BKPT
;
2576 memcpy(zFullPathname
, zFilename
, nFilename
);
2578 rc
= sqlite3OsFullPathname(pVfs
, zFilename
,
2579 nFullPathname
, zFullPathname
);
2581 if( rc
==SQLITE_OK_SYMLINK
){
2584 sqlite3_free(zFullPathname
);
2590 #if SQLITE_THREADSAFE
2591 mutexOpen
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN
);
2592 sqlite3_mutex_enter(mutexOpen
);
2593 mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);
2594 sqlite3_mutex_enter(mutexShared
);
2596 for(pBt
=GLOBAL(BtShared
*,sqlite3SharedCacheList
); pBt
; pBt
=pBt
->pNext
){
2597 assert( pBt
->nRef
>0 );
2598 if( 0==strcmp(zFullPathname
, sqlite3PagerFilename(pBt
->pPager
, 0))
2599 && sqlite3PagerVfs(pBt
->pPager
)==pVfs
){
2601 for(iDb
=db
->nDb
-1; iDb
>=0; iDb
--){
2602 Btree
*pExisting
= db
->aDb
[iDb
].pBt
;
2603 if( pExisting
&& pExisting
->pBt
==pBt
){
2604 sqlite3_mutex_leave(mutexShared
);
2605 sqlite3_mutex_leave(mutexOpen
);
2606 sqlite3_free(zFullPathname
);
2608 return SQLITE_CONSTRAINT
;
2616 sqlite3_mutex_leave(mutexShared
);
2617 sqlite3_free(zFullPathname
);
2621 /* In debug mode, we mark all persistent databases as sharable
2622 ** even when they are not. This exercises the locking code and
2623 ** gives more opportunity for asserts(sqlite3_mutex_held())
2624 ** statements to find locking problems.
2633 ** The following asserts make sure that structures used by the btree are
2634 ** the right size. This is to guard against size changes that result
2635 ** when compiling on a different architecture.
2637 assert( sizeof(i64
)==8 );
2638 assert( sizeof(u64
)==8 );
2639 assert( sizeof(u32
)==4 );
2640 assert( sizeof(u16
)==2 );
2641 assert( sizeof(Pgno
)==4 );
2643 pBt
= sqlite3MallocZero( sizeof(*pBt
) );
2645 rc
= SQLITE_NOMEM_BKPT
;
2646 goto btree_open_out
;
2648 rc
= sqlite3PagerOpen(pVfs
, &pBt
->pPager
, zFilename
,
2649 sizeof(MemPage
), flags
, vfsFlags
, pageReinit
);
2650 if( rc
==SQLITE_OK
){
2651 sqlite3PagerSetMmapLimit(pBt
->pPager
, db
->szMmap
);
2652 rc
= sqlite3PagerReadFileheader(pBt
->pPager
,sizeof(zDbHeader
),zDbHeader
);
2654 if( rc
!=SQLITE_OK
){
2655 goto btree_open_out
;
2657 pBt
->openFlags
= (u8
)flags
;
2659 sqlite3PagerSetBusyHandler(pBt
->pPager
, btreeInvokeBusyHandler
, pBt
);
2664 if( sqlite3PagerIsreadonly(pBt
->pPager
) ) pBt
->btsFlags
|= BTS_READ_ONLY
;
2665 #if defined(SQLITE_SECURE_DELETE)
2666 pBt
->btsFlags
|= BTS_SECURE_DELETE
;
2667 #elif defined(SQLITE_FAST_SECURE_DELETE)
2668 pBt
->btsFlags
|= BTS_OVERWRITE
;
2670 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2671 ** determined by the 2-byte integer located at an offset of 16 bytes from
2672 ** the beginning of the database file. */
2673 pBt
->pageSize
= (zDbHeader
[16]<<8) | (zDbHeader
[17]<<16);
2674 if( pBt
->pageSize
<512 || pBt
->pageSize
>SQLITE_MAX_PAGE_SIZE
2675 || ((pBt
->pageSize
-1)&pBt
->pageSize
)!=0 ){
2677 #ifndef SQLITE_OMIT_AUTOVACUUM
2678 /* If the magic name ":memory:" will create an in-memory database, then
2679 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2680 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2681 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2682 ** regular file-name. In this case the auto-vacuum applies as per normal.
2684 if( zFilename
&& !isMemdb
){
2685 pBt
->autoVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
? 1 : 0);
2686 pBt
->incrVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
==2 ? 1 : 0);
2691 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2692 ** determined by the one-byte unsigned integer found at an offset of 20
2693 ** into the database file header. */
2694 nReserve
= zDbHeader
[20];
2695 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2696 #ifndef SQLITE_OMIT_AUTOVACUUM
2697 pBt
->autoVacuum
= (get4byte(&zDbHeader
[36 + 4*4])?1:0);
2698 pBt
->incrVacuum
= (get4byte(&zDbHeader
[36 + 7*4])?1:0);
2701 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2702 if( rc
) goto btree_open_out
;
2703 pBt
->usableSize
= pBt
->pageSize
- nReserve
;
2704 assert( (pBt
->pageSize
& 7)==0 ); /* 8-byte alignment of pageSize */
2706 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2707 /* Add the new BtShared object to the linked list sharable BtShareds.
2711 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2712 MUTEX_LOGIC( mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);)
2713 if( SQLITE_THREADSAFE
&& sqlite3GlobalConfig
.bCoreMutex
){
2714 pBt
->mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_FAST
);
2715 if( pBt
->mutex
==0 ){
2716 rc
= SQLITE_NOMEM_BKPT
;
2717 goto btree_open_out
;
2720 sqlite3_mutex_enter(mutexShared
);
2721 pBt
->pNext
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2722 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
;
2723 sqlite3_mutex_leave(mutexShared
);
2728 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2729 /* If the new Btree uses a sharable pBtShared, then link the new
2730 ** Btree into the list of all sharable Btrees for the same connection.
2731 ** The list is kept in ascending order by pBt address.
2736 for(i
=0; i
<db
->nDb
; i
++){
2737 if( (pSib
= db
->aDb
[i
].pBt
)!=0 && pSib
->sharable
){
2738 while( pSib
->pPrev
){ pSib
= pSib
->pPrev
; }
2739 if( (uptr
)p
->pBt
<(uptr
)pSib
->pBt
){
2744 while( pSib
->pNext
&& (uptr
)pSib
->pNext
->pBt
<(uptr
)p
->pBt
){
2747 p
->pNext
= pSib
->pNext
;
2750 p
->pNext
->pPrev
= p
;
2762 if( rc
!=SQLITE_OK
){
2763 if( pBt
&& pBt
->pPager
){
2764 sqlite3PagerClose(pBt
->pPager
, 0);
2770 sqlite3_file
*pFile
;
2772 /* If the B-Tree was successfully opened, set the pager-cache size to the
2773 ** default value. Except, when opening on an existing shared pager-cache,
2774 ** do not change the pager-cache size.
2776 if( sqlite3BtreeSchema(p
, 0, 0)==0 ){
2777 sqlite3BtreeSetCacheSize(p
, SQLITE_DEFAULT_CACHE_SIZE
);
2780 pFile
= sqlite3PagerFile(pBt
->pPager
);
2781 if( pFile
->pMethods
){
2782 sqlite3OsFileControlHint(pFile
, SQLITE_FCNTL_PDB
, (void*)&pBt
->db
);
2786 assert( sqlite3_mutex_held(mutexOpen
) );
2787 sqlite3_mutex_leave(mutexOpen
);
2789 assert( rc
!=SQLITE_OK
|| sqlite3BtreeConnectionCount(*ppBtree
)>0 );
2794 ** Decrement the BtShared.nRef counter. When it reaches zero,
2795 ** remove the BtShared structure from the sharing list. Return
2796 ** true if the BtShared.nRef counter reaches zero and return
2797 ** false if it is still positive.
2799 static int removeFromSharingList(BtShared
*pBt
){
2800 #ifndef SQLITE_OMIT_SHARED_CACHE
2801 MUTEX_LOGIC( sqlite3_mutex
*pMainMtx
; )
2805 assert( sqlite3_mutex_notheld(pBt
->mutex
) );
2806 MUTEX_LOGIC( pMainMtx
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
); )
2807 sqlite3_mutex_enter(pMainMtx
);
2810 if( GLOBAL(BtShared
*,sqlite3SharedCacheList
)==pBt
){
2811 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
->pNext
;
2813 pList
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2814 while( ALWAYS(pList
) && pList
->pNext
!=pBt
){
2817 if( ALWAYS(pList
) ){
2818 pList
->pNext
= pBt
->pNext
;
2821 if( SQLITE_THREADSAFE
){
2822 sqlite3_mutex_free(pBt
->mutex
);
2826 sqlite3_mutex_leave(pMainMtx
);
2834 ** Make sure pBt->pTmpSpace points to an allocation of
2835 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2838 static SQLITE_NOINLINE
int allocateTempSpace(BtShared
*pBt
){
2840 assert( pBt
->pTmpSpace
==0 );
2841 /* This routine is called only by btreeCursor() when allocating the
2842 ** first write cursor for the BtShared object */
2843 assert( pBt
->pCursor
!=0 && (pBt
->pCursor
->curFlags
& BTCF_WriteFlag
)!=0 );
2844 pBt
->pTmpSpace
= sqlite3PageMalloc( pBt
->pageSize
);
2845 if( pBt
->pTmpSpace
==0 ){
2846 BtCursor
*pCur
= pBt
->pCursor
;
2847 pBt
->pCursor
= pCur
->pNext
; /* Unlink the cursor */
2848 memset(pCur
, 0, sizeof(*pCur
));
2849 return SQLITE_NOMEM_BKPT
;
2852 /* One of the uses of pBt->pTmpSpace is to format cells before
2853 ** inserting them into a leaf page (function fillInCell()). If
2854 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2855 ** by the various routines that manipulate binary cells. Which
2856 ** can mean that fillInCell() only initializes the first 2 or 3
2857 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2858 ** it into a database page. This is not actually a problem, but it
2859 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2860 ** data is passed to system call write(). So to avoid this error,
2861 ** zero the first 4 bytes of temp space here.
2863 ** Also: Provide four bytes of initialized space before the
2864 ** beginning of pTmpSpace as an area available to prepend the
2865 ** left-child pointer to the beginning of a cell.
2867 memset(pBt
->pTmpSpace
, 0, 8);
2868 pBt
->pTmpSpace
+= 4;
2873 ** Free the pBt->pTmpSpace allocation
2875 static void freeTempSpace(BtShared
*pBt
){
2876 if( pBt
->pTmpSpace
){
2877 pBt
->pTmpSpace
-= 4;
2878 sqlite3PageFree(pBt
->pTmpSpace
);
2884 ** Close an open database and invalidate all cursors.
2886 int sqlite3BtreeClose(Btree
*p
){
2887 BtShared
*pBt
= p
->pBt
;
2889 /* Close all cursors opened via this handle. */
2890 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2891 sqlite3BtreeEnter(p
);
2893 /* Verify that no other cursors have this Btree open */
2896 BtCursor
*pCur
= pBt
->pCursor
;
2898 BtCursor
*pTmp
= pCur
;
2900 assert( pTmp
->pBtree
!=p
);
2906 /* Rollback any active transaction and free the handle structure.
2907 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2910 sqlite3BtreeRollback(p
, SQLITE_OK
, 0);
2911 sqlite3BtreeLeave(p
);
2913 /* If there are still other outstanding references to the shared-btree
2914 ** structure, return now. The remainder of this procedure cleans
2915 ** up the shared-btree.
2917 assert( p
->wantToLock
==0 && p
->locked
==0 );
2918 if( !p
->sharable
|| removeFromSharingList(pBt
) ){
2919 /* The pBt is no longer on the sharing list, so we can access
2920 ** it without having to hold the mutex.
2922 ** Clean out and delete the BtShared object.
2924 assert( !pBt
->pCursor
);
2925 sqlite3PagerClose(pBt
->pPager
, p
->db
);
2926 if( pBt
->xFreeSchema
&& pBt
->pSchema
){
2927 pBt
->xFreeSchema(pBt
->pSchema
);
2929 sqlite3DbFree(0, pBt
->pSchema
);
2934 #ifndef SQLITE_OMIT_SHARED_CACHE
2935 assert( p
->wantToLock
==0 );
2936 assert( p
->locked
==0 );
2937 if( p
->pPrev
) p
->pPrev
->pNext
= p
->pNext
;
2938 if( p
->pNext
) p
->pNext
->pPrev
= p
->pPrev
;
2946 ** Change the "soft" limit on the number of pages in the cache.
2947 ** Unused and unmodified pages will be recycled when the number of
2948 ** pages in the cache exceeds this soft limit. But the size of the
2949 ** cache is allowed to grow larger than this limit if it contains
2950 ** dirty pages or pages still in active use.
2952 int sqlite3BtreeSetCacheSize(Btree
*p
, int mxPage
){
2953 BtShared
*pBt
= p
->pBt
;
2954 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2955 sqlite3BtreeEnter(p
);
2956 sqlite3PagerSetCachesize(pBt
->pPager
, mxPage
);
2957 sqlite3BtreeLeave(p
);
2962 ** Change the "spill" limit on the number of pages in the cache.
2963 ** If the number of pages exceeds this limit during a write transaction,
2964 ** the pager might attempt to "spill" pages to the journal early in
2965 ** order to free up memory.
2967 ** The value returned is the current spill size. If zero is passed
2968 ** as an argument, no changes are made to the spill size setting, so
2969 ** using mxPage of 0 is a way to query the current spill size.
2971 int sqlite3BtreeSetSpillSize(Btree
*p
, int mxPage
){
2972 BtShared
*pBt
= p
->pBt
;
2974 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2975 sqlite3BtreeEnter(p
);
2976 res
= sqlite3PagerSetSpillsize(pBt
->pPager
, mxPage
);
2977 sqlite3BtreeLeave(p
);
2981 #if SQLITE_MAX_MMAP_SIZE>0
2983 ** Change the limit on the amount of the database file that may be
2986 int sqlite3BtreeSetMmapLimit(Btree
*p
, sqlite3_int64 szMmap
){
2987 BtShared
*pBt
= p
->pBt
;
2988 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2989 sqlite3BtreeEnter(p
);
2990 sqlite3PagerSetMmapLimit(pBt
->pPager
, szMmap
);
2991 sqlite3BtreeLeave(p
);
2994 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2997 ** Change the way data is synced to disk in order to increase or decrease
2998 ** how well the database resists damage due to OS crashes and power
2999 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
3000 ** there is a high probability of damage) Level 2 is the default. There
3001 ** is a very low but non-zero probability of damage. Level 3 reduces the
3002 ** probability of damage to near zero but with a write performance reduction.
3004 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
3005 int sqlite3BtreeSetPagerFlags(
3006 Btree
*p
, /* The btree to set the safety level on */
3007 unsigned pgFlags
/* Various PAGER_* flags */
3009 BtShared
*pBt
= p
->pBt
;
3010 assert( sqlite3_mutex_held(p
->db
->mutex
) );
3011 sqlite3BtreeEnter(p
);
3012 sqlite3PagerSetFlags(pBt
->pPager
, pgFlags
);
3013 sqlite3BtreeLeave(p
);
3019 ** Change the default pages size and the number of reserved bytes per page.
3020 ** Or, if the page size has already been fixed, return SQLITE_READONLY
3021 ** without changing anything.
3023 ** The page size must be a power of 2 between 512 and 65536. If the page
3024 ** size supplied does not meet this constraint then the page size is not
3027 ** Page sizes are constrained to be a power of two so that the region
3028 ** of the database file used for locking (beginning at PENDING_BYTE,
3029 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
3030 ** at the beginning of a page.
3032 ** If parameter nReserve is less than zero, then the number of reserved
3033 ** bytes per page is left unchanged.
3035 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
3036 ** and autovacuum mode can no longer be changed.
3038 int sqlite3BtreeSetPageSize(Btree
*p
, int pageSize
, int nReserve
, int iFix
){
3041 BtShared
*pBt
= p
->pBt
;
3042 assert( nReserve
>=0 && nReserve
<=255 );
3043 sqlite3BtreeEnter(p
);
3044 pBt
->nReserveWanted
= nReserve
;
3045 x
= pBt
->pageSize
- pBt
->usableSize
;
3046 if( nReserve
<x
) nReserve
= x
;
3047 if( pBt
->btsFlags
& BTS_PAGESIZE_FIXED
){
3048 sqlite3BtreeLeave(p
);
3049 return SQLITE_READONLY
;
3051 assert( nReserve
>=0 && nReserve
<=255 );
3052 if( pageSize
>=512 && pageSize
<=SQLITE_MAX_PAGE_SIZE
&&
3053 ((pageSize
-1)&pageSize
)==0 ){
3054 assert( (pageSize
& 7)==0 );
3055 assert( !pBt
->pCursor
);
3056 if( nReserve
>32 && pageSize
==512 ) pageSize
= 1024;
3057 pBt
->pageSize
= (u32
)pageSize
;
3060 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
3061 pBt
->usableSize
= pBt
->pageSize
- (u16
)nReserve
;
3062 if( iFix
) pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3063 sqlite3BtreeLeave(p
);
3068 ** Return the currently defined page size
3070 int sqlite3BtreeGetPageSize(Btree
*p
){
3071 return p
->pBt
->pageSize
;
3075 ** This function is similar to sqlite3BtreeGetReserve(), except that it
3076 ** may only be called if it is guaranteed that the b-tree mutex is already
3079 ** This is useful in one special case in the backup API code where it is
3080 ** known that the shared b-tree mutex is held, but the mutex on the
3081 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3082 ** were to be called, it might collide with some other operation on the
3083 ** database handle that owns *p, causing undefined behavior.
3085 int sqlite3BtreeGetReserveNoMutex(Btree
*p
){
3087 assert( sqlite3_mutex_held(p
->pBt
->mutex
) );
3088 n
= p
->pBt
->pageSize
- p
->pBt
->usableSize
;
3093 ** Return the number of bytes of space at the end of every page that
3094 ** are intentually left unused. This is the "reserved" space that is
3095 ** sometimes used by extensions.
3097 ** The value returned is the larger of the current reserve size and
3098 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3099 ** The amount of reserve can only grow - never shrink.
3101 int sqlite3BtreeGetRequestedReserve(Btree
*p
){
3103 sqlite3BtreeEnter(p
);
3104 n1
= (int)p
->pBt
->nReserveWanted
;
3105 n2
= sqlite3BtreeGetReserveNoMutex(p
);
3106 sqlite3BtreeLeave(p
);
3107 return n1
>n2
? n1
: n2
;
3112 ** Set the maximum page count for a database if mxPage is positive.
3113 ** No changes are made if mxPage is 0 or negative.
3114 ** Regardless of the value of mxPage, return the maximum page count.
3116 Pgno
sqlite3BtreeMaxPageCount(Btree
*p
, Pgno mxPage
){
3118 sqlite3BtreeEnter(p
);
3119 n
= sqlite3PagerMaxPageCount(p
->pBt
->pPager
, mxPage
);
3120 sqlite3BtreeLeave(p
);
3125 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3127 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3128 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3129 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3130 ** newFlag==(-1) No changes
3132 ** This routine acts as a query if newFlag is less than zero
3134 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3135 ** freelist leaf pages are not written back to the database. Thus in-page
3136 ** deleted content is cleared, but freelist deleted content is not.
3138 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3139 ** that freelist leaf pages are written back into the database, increasing
3140 ** the amount of disk I/O.
3142 int sqlite3BtreeSecureDelete(Btree
*p
, int newFlag
){
3144 if( p
==0 ) return 0;
3145 sqlite3BtreeEnter(p
);
3146 assert( BTS_OVERWRITE
==BTS_SECURE_DELETE
*2 );
3147 assert( BTS_FAST_SECURE
==(BTS_OVERWRITE
|BTS_SECURE_DELETE
) );
3149 p
->pBt
->btsFlags
&= ~BTS_FAST_SECURE
;
3150 p
->pBt
->btsFlags
|= BTS_SECURE_DELETE
*newFlag
;
3152 b
= (p
->pBt
->btsFlags
& BTS_FAST_SECURE
)/BTS_SECURE_DELETE
;
3153 sqlite3BtreeLeave(p
);
3158 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3159 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3160 ** is disabled. The default value for the auto-vacuum property is
3161 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3163 int sqlite3BtreeSetAutoVacuum(Btree
*p
, int autoVacuum
){
3164 #ifdef SQLITE_OMIT_AUTOVACUUM
3165 return SQLITE_READONLY
;
3167 BtShared
*pBt
= p
->pBt
;
3169 u8 av
= (u8
)autoVacuum
;
3171 sqlite3BtreeEnter(p
);
3172 if( (pBt
->btsFlags
& BTS_PAGESIZE_FIXED
)!=0 && (av
?1:0)!=pBt
->autoVacuum
){
3173 rc
= SQLITE_READONLY
;
3175 pBt
->autoVacuum
= av
?1:0;
3176 pBt
->incrVacuum
= av
==2 ?1:0;
3178 sqlite3BtreeLeave(p
);
3184 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3185 ** enabled 1 is returned. Otherwise 0.
3187 int sqlite3BtreeGetAutoVacuum(Btree
*p
){
3188 #ifdef SQLITE_OMIT_AUTOVACUUM
3189 return BTREE_AUTOVACUUM_NONE
;
3192 sqlite3BtreeEnter(p
);
3194 (!p
->pBt
->autoVacuum
)?BTREE_AUTOVACUUM_NONE
:
3195 (!p
->pBt
->incrVacuum
)?BTREE_AUTOVACUUM_FULL
:
3196 BTREE_AUTOVACUUM_INCR
3198 sqlite3BtreeLeave(p
);
3204 ** If the user has not set the safety-level for this database connection
3205 ** using "PRAGMA synchronous", and if the safety-level is not already
3206 ** set to the value passed to this function as the second parameter,
3209 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3210 && !defined(SQLITE_OMIT_WAL)
3211 static void setDefaultSyncFlag(BtShared
*pBt
, u8 safety_level
){
3214 if( (db
=pBt
->db
)!=0 && (pDb
=db
->aDb
)!=0 ){
3215 while( pDb
->pBt
==0 || pDb
->pBt
->pBt
!=pBt
){ pDb
++; }
3216 if( pDb
->bSyncSet
==0
3217 && pDb
->safety_level
!=safety_level
3220 pDb
->safety_level
= safety_level
;
3221 sqlite3PagerSetFlags(pBt
->pPager
,
3222 pDb
->safety_level
| (db
->flags
& PAGER_FLAGS_MASK
));
3227 # define setDefaultSyncFlag(pBt,safety_level)
3230 /* Forward declaration */
3231 static int newDatabase(BtShared
*);
3235 ** Get a reference to pPage1 of the database file. This will
3236 ** also acquire a readlock on that file.
3238 ** SQLITE_OK is returned on success. If the file is not a
3239 ** well-formed database file, then SQLITE_CORRUPT is returned.
3240 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
3241 ** is returned if we run out of memory.
3243 static int lockBtree(BtShared
*pBt
){
3244 int rc
; /* Result code from subfunctions */
3245 MemPage
*pPage1
; /* Page 1 of the database file */
3246 u32 nPage
; /* Number of pages in the database */
3247 u32 nPageFile
= 0; /* Number of pages in the database file */
3249 assert( sqlite3_mutex_held(pBt
->mutex
) );
3250 assert( pBt
->pPage1
==0 );
3251 rc
= sqlite3PagerSharedLock(pBt
->pPager
);
3252 if( rc
!=SQLITE_OK
) return rc
;
3253 rc
= btreeGetPage(pBt
, 1, &pPage1
, 0);
3254 if( rc
!=SQLITE_OK
) return rc
;
3256 /* Do some checking to help insure the file we opened really is
3257 ** a valid database file.
3259 nPage
= get4byte(28+(u8
*)pPage1
->aData
);
3260 sqlite3PagerPagecount(pBt
->pPager
, (int*)&nPageFile
);
3261 if( nPage
==0 || memcmp(24+(u8
*)pPage1
->aData
, 92+(u8
*)pPage1
->aData
,4)!=0 ){
3264 if( (pBt
->db
->flags
& SQLITE_ResetDatabase
)!=0 ){
3270 u8
*page1
= pPage1
->aData
;
3272 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3273 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3274 ** 61 74 20 33 00. */
3275 if( memcmp(page1
, zMagicHeader
, 16)!=0 ){
3276 goto page1_init_failed
;
3279 #ifdef SQLITE_OMIT_WAL
3281 pBt
->btsFlags
|= BTS_READ_ONLY
;
3284 goto page1_init_failed
;
3288 pBt
->btsFlags
|= BTS_READ_ONLY
;
3291 goto page1_init_failed
;
3294 /* If the read version is set to 2, this database should be accessed
3295 ** in WAL mode. If the log is not already open, open it now. Then
3296 ** return SQLITE_OK and return without populating BtShared.pPage1.
3297 ** The caller detects this and calls this function again. This is
3298 ** required as the version of page 1 currently in the page1 buffer
3299 ** may not be the latest version - there may be a newer one in the log
3302 if( page1
[19]==2 && (pBt
->btsFlags
& BTS_NO_WAL
)==0 ){
3304 rc
= sqlite3PagerOpenWal(pBt
->pPager
, &isOpen
);
3305 if( rc
!=SQLITE_OK
){
3306 goto page1_init_failed
;
3308 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_WAL_SYNCHRONOUS
+1);
3310 releasePageOne(pPage1
);
3316 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_SYNCHRONOUS
+1);
3320 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3321 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3323 ** The original design allowed these amounts to vary, but as of
3324 ** version 3.6.0, we require them to be fixed.
3326 if( memcmp(&page1
[21], "\100\040\040",3)!=0 ){
3327 goto page1_init_failed
;
3329 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3330 ** determined by the 2-byte integer located at an offset of 16 bytes from
3331 ** the beginning of the database file. */
3332 pageSize
= (page1
[16]<<8) | (page1
[17]<<16);
3333 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3334 ** between 512 and 65536 inclusive. */
3335 if( ((pageSize
-1)&pageSize
)!=0
3336 || pageSize
>SQLITE_MAX_PAGE_SIZE
3339 goto page1_init_failed
;
3341 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3342 assert( (pageSize
& 7)==0 );
3343 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3344 ** integer at offset 20 is the number of bytes of space at the end of
3345 ** each page to reserve for extensions.
3347 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3348 ** determined by the one-byte unsigned integer found at an offset of 20
3349 ** into the database file header. */
3350 usableSize
= pageSize
- page1
[20];
3351 if( (u32
)pageSize
!=pBt
->pageSize
){
3352 /* After reading the first page of the database assuming a page size
3353 ** of BtShared.pageSize, we have discovered that the page-size is
3354 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3355 ** zero and return SQLITE_OK. The caller will call this function
3356 ** again with the correct page-size.
3358 releasePageOne(pPage1
);
3359 pBt
->usableSize
= usableSize
;
3360 pBt
->pageSize
= pageSize
;
3362 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
,
3363 pageSize
-usableSize
);
3366 if( nPage
>nPageFile
){
3367 if( sqlite3WritableSchema(pBt
->db
)==0 ){
3368 rc
= SQLITE_CORRUPT_BKPT
;
3369 goto page1_init_failed
;
3374 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3375 ** be less than 480. In other words, if the page size is 512, then the
3376 ** reserved space size cannot exceed 32. */
3377 if( usableSize
<480 ){
3378 goto page1_init_failed
;
3380 pBt
->pageSize
= pageSize
;
3381 pBt
->usableSize
= usableSize
;
3382 #ifndef SQLITE_OMIT_AUTOVACUUM
3383 pBt
->autoVacuum
= (get4byte(&page1
[36 + 4*4])?1:0);
3384 pBt
->incrVacuum
= (get4byte(&page1
[36 + 7*4])?1:0);
3388 /* maxLocal is the maximum amount of payload to store locally for
3389 ** a cell. Make sure it is small enough so that at least minFanout
3390 ** cells can will fit on one page. We assume a 10-byte page header.
3391 ** Besides the payload, the cell must store:
3392 ** 2-byte pointer to the cell
3393 ** 4-byte child pointer
3394 ** 9-byte nKey value
3395 ** 4-byte nData value
3396 ** 4-byte overflow page pointer
3397 ** So a cell consists of a 2-byte pointer, a header which is as much as
3398 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3401 pBt
->maxLocal
= (u16
)((pBt
->usableSize
-12)*64/255 - 23);
3402 pBt
->minLocal
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3403 pBt
->maxLeaf
= (u16
)(pBt
->usableSize
- 35);
3404 pBt
->minLeaf
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3405 if( pBt
->maxLocal
>127 ){
3406 pBt
->max1bytePayload
= 127;
3408 pBt
->max1bytePayload
= (u8
)pBt
->maxLocal
;
3410 assert( pBt
->maxLeaf
+ 23 <= MX_CELL_SIZE(pBt
) );
3411 pBt
->pPage1
= pPage1
;
3416 releasePageOne(pPage1
);
3423 ** Return the number of cursors open on pBt. This is for use
3424 ** in assert() expressions, so it is only compiled if NDEBUG is not
3427 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3428 ** false then all cursors are counted.
3430 ** For the purposes of this routine, a cursor is any cursor that
3431 ** is capable of reading or writing to the database. Cursors that
3432 ** have been tripped into the CURSOR_FAULT state are not counted.
3434 static int countValidCursors(BtShared
*pBt
, int wrOnly
){
3437 for(pCur
=pBt
->pCursor
; pCur
; pCur
=pCur
->pNext
){
3438 if( (wrOnly
==0 || (pCur
->curFlags
& BTCF_WriteFlag
)!=0)
3439 && pCur
->eState
!=CURSOR_FAULT
) r
++;
3446 ** If there are no outstanding cursors and we are not in the middle
3447 ** of a transaction but there is a read lock on the database, then
3448 ** this routine unrefs the first page of the database file which
3449 ** has the effect of releasing the read lock.
3451 ** If there is a transaction in progress, this routine is a no-op.
3453 static void unlockBtreeIfUnused(BtShared
*pBt
){
3454 assert( sqlite3_mutex_held(pBt
->mutex
) );
3455 assert( countValidCursors(pBt
,0)==0 || pBt
->inTransaction
>TRANS_NONE
);
3456 if( pBt
->inTransaction
==TRANS_NONE
&& pBt
->pPage1
!=0 ){
3457 MemPage
*pPage1
= pBt
->pPage1
;
3458 assert( pPage1
->aData
);
3459 assert( sqlite3PagerRefcount(pBt
->pPager
)==1 );
3461 releasePageOne(pPage1
);
3466 ** If pBt points to an empty file then convert that empty file
3467 ** into a new empty database by initializing the first page of
3470 static int newDatabase(BtShared
*pBt
){
3472 unsigned char *data
;
3475 assert( sqlite3_mutex_held(pBt
->mutex
) );
3482 rc
= sqlite3PagerWrite(pP1
->pDbPage
);
3484 memcpy(data
, zMagicHeader
, sizeof(zMagicHeader
));
3485 assert( sizeof(zMagicHeader
)==16 );
3486 data
[16] = (u8
)((pBt
->pageSize
>>8)&0xff);
3487 data
[17] = (u8
)((pBt
->pageSize
>>16)&0xff);
3490 assert( pBt
->usableSize
<=pBt
->pageSize
&& pBt
->usableSize
+255>=pBt
->pageSize
);
3491 data
[20] = (u8
)(pBt
->pageSize
- pBt
->usableSize
);
3495 memset(&data
[24], 0, 100-24);
3496 zeroPage(pP1
, PTF_INTKEY
|PTF_LEAF
|PTF_LEAFDATA
);
3497 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3498 #ifndef SQLITE_OMIT_AUTOVACUUM
3499 assert( pBt
->autoVacuum
==1 || pBt
->autoVacuum
==0 );
3500 assert( pBt
->incrVacuum
==1 || pBt
->incrVacuum
==0 );
3501 put4byte(&data
[36 + 4*4], pBt
->autoVacuum
);
3502 put4byte(&data
[36 + 7*4], pBt
->incrVacuum
);
3510 ** Initialize the first page of the database file (creating a database
3511 ** consisting of a single page and no schema objects). Return SQLITE_OK
3512 ** if successful, or an SQLite error code otherwise.
3514 int sqlite3BtreeNewDb(Btree
*p
){
3516 sqlite3BtreeEnter(p
);
3518 rc
= newDatabase(p
->pBt
);
3519 sqlite3BtreeLeave(p
);
3524 ** Attempt to start a new transaction. A write-transaction
3525 ** is started if the second argument is nonzero, otherwise a read-
3526 ** transaction. If the second argument is 2 or more and exclusive
3527 ** transaction is started, meaning that no other process is allowed
3528 ** to access the database. A preexisting transaction may not be
3529 ** upgraded to exclusive by calling this routine a second time - the
3530 ** exclusivity flag only works for a new transaction.
3532 ** A write-transaction must be started before attempting any
3533 ** changes to the database. None of the following routines
3534 ** will work unless a transaction is started first:
3536 ** sqlite3BtreeCreateTable()
3537 ** sqlite3BtreeCreateIndex()
3538 ** sqlite3BtreeClearTable()
3539 ** sqlite3BtreeDropTable()
3540 ** sqlite3BtreeInsert()
3541 ** sqlite3BtreeDelete()
3542 ** sqlite3BtreeUpdateMeta()
3544 ** If an initial attempt to acquire the lock fails because of lock contention
3545 ** and the database was previously unlocked, then invoke the busy handler
3546 ** if there is one. But if there was previously a read-lock, do not
3547 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3548 ** returned when there is already a read-lock in order to avoid a deadlock.
3550 ** Suppose there are two processes A and B. A has a read lock and B has
3551 ** a reserved lock. B tries to promote to exclusive but is blocked because
3552 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3553 ** One or the other of the two processes must give way or there can be
3554 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3555 ** when A already has a read lock, we encourage A to give up and let B
3558 int sqlite3BtreeBeginTrans(Btree
*p
, int wrflag
, int *pSchemaVersion
){
3559 BtShared
*pBt
= p
->pBt
;
3560 Pager
*pPager
= pBt
->pPager
;
3563 sqlite3BtreeEnter(p
);
3566 /* If the btree is already in a write-transaction, or it
3567 ** is already in a read-transaction and a read-transaction
3568 ** is requested, this is a no-op.
3570 if( p
->inTrans
==TRANS_WRITE
|| (p
->inTrans
==TRANS_READ
&& !wrflag
) ){
3573 assert( pBt
->inTransaction
==TRANS_WRITE
|| IfNotOmitAV(pBt
->bDoTruncate
)==0 );
3575 if( (p
->db
->flags
& SQLITE_ResetDatabase
)
3576 && sqlite3PagerIsreadonly(pPager
)==0
3578 pBt
->btsFlags
&= ~BTS_READ_ONLY
;
3581 /* Write transactions are not possible on a read-only database */
3582 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 && wrflag
){
3583 rc
= SQLITE_READONLY
;
3587 #ifndef SQLITE_OMIT_SHARED_CACHE
3589 sqlite3
*pBlock
= 0;
3590 /* If another database handle has already opened a write transaction
3591 ** on this shared-btree structure and a second write transaction is
3592 ** requested, return SQLITE_LOCKED.
3594 if( (wrflag
&& pBt
->inTransaction
==TRANS_WRITE
)
3595 || (pBt
->btsFlags
& BTS_PENDING
)!=0
3597 pBlock
= pBt
->pWriter
->db
;
3598 }else if( wrflag
>1 ){
3600 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
3601 if( pIter
->pBtree
!=p
){
3602 pBlock
= pIter
->pBtree
->db
;
3608 sqlite3ConnectionBlocked(p
->db
, pBlock
);
3609 rc
= SQLITE_LOCKED_SHAREDCACHE
;
3615 /* Any read-only or read-write transaction implies a read-lock on
3616 ** page 1. So if some other shared-cache client already has a write-lock
3617 ** on page 1, the transaction cannot be opened. */
3618 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
3619 if( SQLITE_OK
!=rc
) goto trans_begun
;
3621 pBt
->btsFlags
&= ~BTS_INITIALLY_EMPTY
;
3622 if( pBt
->nPage
==0 ) pBt
->btsFlags
|= BTS_INITIALLY_EMPTY
;
3624 sqlite3PagerWalDb(pPager
, p
->db
);
3626 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3627 /* If transitioning from no transaction directly to a write transaction,
3628 ** block for the WRITER lock first if possible. */
3629 if( pBt
->pPage1
==0 && wrflag
){
3630 assert( pBt
->inTransaction
==TRANS_NONE
);
3631 rc
= sqlite3PagerWalWriteLock(pPager
, 1);
3632 if( rc
!=SQLITE_BUSY
&& rc
!=SQLITE_OK
) break;
3636 /* Call lockBtree() until either pBt->pPage1 is populated or
3637 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3638 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3639 ** reading page 1 it discovers that the page-size of the database
3640 ** file is not pBt->pageSize. In this case lockBtree() will update
3641 ** pBt->pageSize to the page-size of the file on disk.
3643 while( pBt
->pPage1
==0 && SQLITE_OK
==(rc
= lockBtree(pBt
)) );
3645 if( rc
==SQLITE_OK
&& wrflag
){
3646 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 ){
3647 rc
= SQLITE_READONLY
;
3649 rc
= sqlite3PagerBegin(pPager
, wrflag
>1, sqlite3TempInMemory(p
->db
));
3650 if( rc
==SQLITE_OK
){
3651 rc
= newDatabase(pBt
);
3652 }else if( rc
==SQLITE_BUSY_SNAPSHOT
&& pBt
->inTransaction
==TRANS_NONE
){
3653 /* if there was no transaction opened when this function was
3654 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3655 ** code to SQLITE_BUSY. */
3661 if( rc
!=SQLITE_OK
){
3662 (void)sqlite3PagerWalWriteLock(pPager
, 0);
3663 unlockBtreeIfUnused(pBt
);
3665 }while( (rc
&0xFF)==SQLITE_BUSY
&& pBt
->inTransaction
==TRANS_NONE
&&
3666 btreeInvokeBusyHandler(pBt
) );
3667 sqlite3PagerWalDb(pPager
, 0);
3668 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3669 if( rc
==SQLITE_BUSY_TIMEOUT
) rc
= SQLITE_BUSY
;
3672 if( rc
==SQLITE_OK
){
3673 if( p
->inTrans
==TRANS_NONE
){
3674 pBt
->nTransaction
++;
3675 #ifndef SQLITE_OMIT_SHARED_CACHE
3677 assert( p
->lock
.pBtree
==p
&& p
->lock
.iTable
==1 );
3678 p
->lock
.eLock
= READ_LOCK
;
3679 p
->lock
.pNext
= pBt
->pLock
;
3680 pBt
->pLock
= &p
->lock
;
3684 p
->inTrans
= (wrflag
?TRANS_WRITE
:TRANS_READ
);
3685 if( p
->inTrans
>pBt
->inTransaction
){
3686 pBt
->inTransaction
= p
->inTrans
;
3689 MemPage
*pPage1
= pBt
->pPage1
;
3690 #ifndef SQLITE_OMIT_SHARED_CACHE
3691 assert( !pBt
->pWriter
);
3693 pBt
->btsFlags
&= ~BTS_EXCLUSIVE
;
3694 if( wrflag
>1 ) pBt
->btsFlags
|= BTS_EXCLUSIVE
;
3697 /* If the db-size header field is incorrect (as it may be if an old
3698 ** client has been writing the database file), update it now. Doing
3699 ** this sooner rather than later means the database size can safely
3700 ** re-read the database size from page 1 if a savepoint or transaction
3701 ** rollback occurs within the transaction.
3703 if( pBt
->nPage
!=get4byte(&pPage1
->aData
[28]) ){
3704 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
3705 if( rc
==SQLITE_OK
){
3706 put4byte(&pPage1
->aData
[28], pBt
->nPage
);
3713 if( rc
==SQLITE_OK
){
3714 if( pSchemaVersion
){
3715 *pSchemaVersion
= get4byte(&pBt
->pPage1
->aData
[40]);
3718 /* This call makes sure that the pager has the correct number of
3719 ** open savepoints. If the second parameter is greater than 0 and
3720 ** the sub-journal is not already open, then it will be opened here.
3722 rc
= sqlite3PagerOpenSavepoint(pPager
, p
->db
->nSavepoint
);
3727 sqlite3BtreeLeave(p
);
3731 #ifndef SQLITE_OMIT_AUTOVACUUM
3734 ** Set the pointer-map entries for all children of page pPage. Also, if
3735 ** pPage contains cells that point to overflow pages, set the pointer
3736 ** map entries for the overflow pages as well.
3738 static int setChildPtrmaps(MemPage
*pPage
){
3739 int i
; /* Counter variable */
3740 int nCell
; /* Number of cells in page pPage */
3741 int rc
; /* Return code */
3742 BtShared
*pBt
= pPage
->pBt
;
3743 Pgno pgno
= pPage
->pgno
;
3745 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3746 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3747 if( rc
!=SQLITE_OK
) return rc
;
3748 nCell
= pPage
->nCell
;
3750 for(i
=0; i
<nCell
; i
++){
3751 u8
*pCell
= findCell(pPage
, i
);
3753 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc
);
3756 Pgno childPgno
= get4byte(pCell
);
3757 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3762 Pgno childPgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
3763 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3770 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3771 ** that it points to iTo. Parameter eType describes the type of pointer to
3772 ** be modified, as follows:
3774 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3777 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3778 ** page pointed to by one of the cells on pPage.
3780 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3781 ** overflow page in the list.
3783 static int modifyPagePointer(MemPage
*pPage
, Pgno iFrom
, Pgno iTo
, u8 eType
){
3784 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3785 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
3786 if( eType
==PTRMAP_OVERFLOW2
){
3787 /* The pointer is always the first 4 bytes of the page in this case. */
3788 if( get4byte(pPage
->aData
)!=iFrom
){
3789 return SQLITE_CORRUPT_PAGE(pPage
);
3791 put4byte(pPage
->aData
, iTo
);
3797 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3799 nCell
= pPage
->nCell
;
3801 for(i
=0; i
<nCell
; i
++){
3802 u8
*pCell
= findCell(pPage
, i
);
3803 if( eType
==PTRMAP_OVERFLOW1
){
3805 pPage
->xParseCell(pPage
, pCell
, &info
);
3806 if( info
.nLocal
<info
.nPayload
){
3807 if( pCell
+info
.nSize
> pPage
->aData
+pPage
->pBt
->usableSize
){
3808 return SQLITE_CORRUPT_PAGE(pPage
);
3810 if( iFrom
==get4byte(pCell
+info
.nSize
-4) ){
3811 put4byte(pCell
+info
.nSize
-4, iTo
);
3816 if( pCell
+4 > pPage
->aData
+pPage
->pBt
->usableSize
){
3817 return SQLITE_CORRUPT_PAGE(pPage
);
3819 if( get4byte(pCell
)==iFrom
){
3820 put4byte(pCell
, iTo
);
3827 if( eType
!=PTRMAP_BTREE
||
3828 get4byte(&pPage
->aData
[pPage
->hdrOffset
+8])!=iFrom
){
3829 return SQLITE_CORRUPT_PAGE(pPage
);
3831 put4byte(&pPage
->aData
[pPage
->hdrOffset
+8], iTo
);
3839 ** Move the open database page pDbPage to location iFreePage in the
3840 ** database. The pDbPage reference remains valid.
3842 ** The isCommit flag indicates that there is no need to remember that
3843 ** the journal needs to be sync()ed before database page pDbPage->pgno
3844 ** can be written to. The caller has already promised not to write to that
3847 static int relocatePage(
3848 BtShared
*pBt
, /* Btree */
3849 MemPage
*pDbPage
, /* Open page to move */
3850 u8 eType
, /* Pointer map 'type' entry for pDbPage */
3851 Pgno iPtrPage
, /* Pointer map 'page-no' entry for pDbPage */
3852 Pgno iFreePage
, /* The location to move pDbPage to */
3853 int isCommit
/* isCommit flag passed to sqlite3PagerMovepage */
3855 MemPage
*pPtrPage
; /* The page that contains a pointer to pDbPage */
3856 Pgno iDbPage
= pDbPage
->pgno
;
3857 Pager
*pPager
= pBt
->pPager
;
3860 assert( eType
==PTRMAP_OVERFLOW2
|| eType
==PTRMAP_OVERFLOW1
||
3861 eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
);
3862 assert( sqlite3_mutex_held(pBt
->mutex
) );
3863 assert( pDbPage
->pBt
==pBt
);
3864 if( iDbPage
<3 ) return SQLITE_CORRUPT_BKPT
;
3866 /* Move page iDbPage from its current location to page number iFreePage */
3867 TRACE(("AUTOVACUUM: Moving %u to free page %u (ptr page %u type %u)\n",
3868 iDbPage
, iFreePage
, iPtrPage
, eType
));
3869 rc
= sqlite3PagerMovepage(pPager
, pDbPage
->pDbPage
, iFreePage
, isCommit
);
3870 if( rc
!=SQLITE_OK
){
3873 pDbPage
->pgno
= iFreePage
;
3875 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3876 ** that point to overflow pages. The pointer map entries for all these
3877 ** pages need to be changed.
3879 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3880 ** pointer to a subsequent overflow page. If this is the case, then
3881 ** the pointer map needs to be updated for the subsequent overflow page.
3883 if( eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
){
3884 rc
= setChildPtrmaps(pDbPage
);
3885 if( rc
!=SQLITE_OK
){
3889 Pgno nextOvfl
= get4byte(pDbPage
->aData
);
3891 ptrmapPut(pBt
, nextOvfl
, PTRMAP_OVERFLOW2
, iFreePage
, &rc
);
3892 if( rc
!=SQLITE_OK
){
3898 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3899 ** that it points at iFreePage. Also fix the pointer map entry for
3902 if( eType
!=PTRMAP_ROOTPAGE
){
3903 rc
= btreeGetPage(pBt
, iPtrPage
, &pPtrPage
, 0);
3904 if( rc
!=SQLITE_OK
){
3907 rc
= sqlite3PagerWrite(pPtrPage
->pDbPage
);
3908 if( rc
!=SQLITE_OK
){
3909 releasePage(pPtrPage
);
3912 rc
= modifyPagePointer(pPtrPage
, iDbPage
, iFreePage
, eType
);
3913 releasePage(pPtrPage
);
3914 if( rc
==SQLITE_OK
){
3915 ptrmapPut(pBt
, iFreePage
, eType
, iPtrPage
, &rc
);
3921 /* Forward declaration required by incrVacuumStep(). */
3922 static int allocateBtreePage(BtShared
*, MemPage
**, Pgno
*, Pgno
, u8
);
3925 ** Perform a single step of an incremental-vacuum. If successful, return
3926 ** SQLITE_OK. If there is no work to do (and therefore no point in
3927 ** calling this function again), return SQLITE_DONE. Or, if an error
3928 ** occurs, return some other error code.
3930 ** More specifically, this function attempts to re-organize the database so
3931 ** that the last page of the file currently in use is no longer in use.
3933 ** Parameter nFin is the number of pages that this database would contain
3934 ** were this function called until it returns SQLITE_DONE.
3936 ** If the bCommit parameter is non-zero, this function assumes that the
3937 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3938 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3939 ** operation, or false for an incremental vacuum.
3941 static int incrVacuumStep(BtShared
*pBt
, Pgno nFin
, Pgno iLastPg
, int bCommit
){
3942 Pgno nFreeList
; /* Number of pages still on the free-list */
3945 assert( sqlite3_mutex_held(pBt
->mutex
) );
3946 assert( iLastPg
>nFin
);
3948 if( !PTRMAP_ISPAGE(pBt
, iLastPg
) && iLastPg
!=PENDING_BYTE_PAGE(pBt
) ){
3952 nFreeList
= get4byte(&pBt
->pPage1
->aData
[36]);
3957 rc
= ptrmapGet(pBt
, iLastPg
, &eType
, &iPtrPage
);
3958 if( rc
!=SQLITE_OK
){
3961 if( eType
==PTRMAP_ROOTPAGE
){
3962 return SQLITE_CORRUPT_BKPT
;
3965 if( eType
==PTRMAP_FREEPAGE
){
3967 /* Remove the page from the files free-list. This is not required
3968 ** if bCommit is non-zero. In that case, the free-list will be
3969 ** truncated to zero after this function returns, so it doesn't
3970 ** matter if it still contains some garbage entries.
3974 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iLastPg
, BTALLOC_EXACT
);
3975 if( rc
!=SQLITE_OK
){
3978 assert( iFreePg
==iLastPg
);
3979 releasePage(pFreePg
);
3982 Pgno iFreePg
; /* Index of free page to move pLastPg to */
3984 u8 eMode
= BTALLOC_ANY
; /* Mode parameter for allocateBtreePage() */
3985 Pgno iNear
= 0; /* nearby parameter for allocateBtreePage() */
3987 rc
= btreeGetPage(pBt
, iLastPg
, &pLastPg
, 0);
3988 if( rc
!=SQLITE_OK
){
3992 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3993 ** is swapped with the first free page pulled off the free list.
3995 ** On the other hand, if bCommit is greater than zero, then keep
3996 ** looping until a free-page located within the first nFin pages
3997 ** of the file is found.
4005 Pgno dbSize
= btreePagecount(pBt
);
4006 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iNear
, eMode
);
4007 if( rc
!=SQLITE_OK
){
4008 releasePage(pLastPg
);
4011 releasePage(pFreePg
);
4012 if( iFreePg
>dbSize
){
4013 releasePage(pLastPg
);
4014 return SQLITE_CORRUPT_BKPT
;
4016 }while( bCommit
&& iFreePg
>nFin
);
4017 assert( iFreePg
<iLastPg
);
4019 rc
= relocatePage(pBt
, pLastPg
, eType
, iPtrPage
, iFreePg
, bCommit
);
4020 releasePage(pLastPg
);
4021 if( rc
!=SQLITE_OK
){
4030 }while( iLastPg
==PENDING_BYTE_PAGE(pBt
) || PTRMAP_ISPAGE(pBt
, iLastPg
) );
4031 pBt
->bDoTruncate
= 1;
4032 pBt
->nPage
= iLastPg
;
4038 ** The database opened by the first argument is an auto-vacuum database
4039 ** nOrig pages in size containing nFree free pages. Return the expected
4040 ** size of the database in pages following an auto-vacuum operation.
4042 static Pgno
finalDbSize(BtShared
*pBt
, Pgno nOrig
, Pgno nFree
){
4043 int nEntry
; /* Number of entries on one ptrmap page */
4044 Pgno nPtrmap
; /* Number of PtrMap pages to be freed */
4045 Pgno nFin
; /* Return value */
4047 nEntry
= pBt
->usableSize
/5;
4048 nPtrmap
= (nFree
-nOrig
+PTRMAP_PAGENO(pBt
, nOrig
)+nEntry
)/nEntry
;
4049 nFin
= nOrig
- nFree
- nPtrmap
;
4050 if( nOrig
>PENDING_BYTE_PAGE(pBt
) && nFin
<PENDING_BYTE_PAGE(pBt
) ){
4053 while( PTRMAP_ISPAGE(pBt
, nFin
) || nFin
==PENDING_BYTE_PAGE(pBt
) ){
4061 ** A write-transaction must be opened before calling this function.
4062 ** It performs a single unit of work towards an incremental vacuum.
4064 ** If the incremental vacuum is finished after this function has run,
4065 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
4066 ** SQLITE_OK is returned. Otherwise an SQLite error code.
4068 int sqlite3BtreeIncrVacuum(Btree
*p
){
4070 BtShared
*pBt
= p
->pBt
;
4072 sqlite3BtreeEnter(p
);
4073 assert( pBt
->inTransaction
==TRANS_WRITE
&& p
->inTrans
==TRANS_WRITE
);
4074 if( !pBt
->autoVacuum
){
4077 Pgno nOrig
= btreePagecount(pBt
);
4078 Pgno nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
4079 Pgno nFin
= finalDbSize(pBt
, nOrig
, nFree
);
4081 if( nOrig
<nFin
|| nFree
>=nOrig
){
4082 rc
= SQLITE_CORRUPT_BKPT
;
4083 }else if( nFree
>0 ){
4084 rc
= saveAllCursors(pBt
, 0, 0);
4085 if( rc
==SQLITE_OK
){
4086 invalidateAllOverflowCache(pBt
);
4087 rc
= incrVacuumStep(pBt
, nFin
, nOrig
, 0);
4089 if( rc
==SQLITE_OK
){
4090 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
4091 put4byte(&pBt
->pPage1
->aData
[28], pBt
->nPage
);
4097 sqlite3BtreeLeave(p
);
4102 ** This routine is called prior to sqlite3PagerCommit when a transaction
4103 ** is committed for an auto-vacuum database.
4105 static int autoVacuumCommit(Btree
*p
){
4110 VVA_ONLY( int nRef
);
4114 pPager
= pBt
->pPager
;
4115 VVA_ONLY( nRef
= sqlite3PagerRefcount(pPager
); )
4117 assert( sqlite3_mutex_held(pBt
->mutex
) );
4118 invalidateAllOverflowCache(pBt
);
4119 assert(pBt
->autoVacuum
);
4120 if( !pBt
->incrVacuum
){
4121 Pgno nFin
; /* Number of pages in database after autovacuuming */
4122 Pgno nFree
; /* Number of pages on the freelist initially */
4123 Pgno nVac
; /* Number of pages to vacuum */
4124 Pgno iFree
; /* The next page to be freed */
4125 Pgno nOrig
; /* Database size before freeing */
4127 nOrig
= btreePagecount(pBt
);
4128 if( PTRMAP_ISPAGE(pBt
, nOrig
) || nOrig
==PENDING_BYTE_PAGE(pBt
) ){
4129 /* It is not possible to create a database for which the final page
4130 ** is either a pointer-map page or the pending-byte page. If one
4131 ** is encountered, this indicates corruption.
4133 return SQLITE_CORRUPT_BKPT
;
4136 nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
4138 if( db
->xAutovacPages
){
4140 for(iDb
=0; ALWAYS(iDb
<db
->nDb
); iDb
++){
4141 if( db
->aDb
[iDb
].pBt
==p
) break;
4143 nVac
= db
->xAutovacPages(
4144 db
->pAutovacPagesArg
,
4145 db
->aDb
[iDb
].zDbSName
,
4159 nFin
= finalDbSize(pBt
, nOrig
, nVac
);
4160 if( nFin
>nOrig
) return SQLITE_CORRUPT_BKPT
;
4162 rc
= saveAllCursors(pBt
, 0, 0);
4164 for(iFree
=nOrig
; iFree
>nFin
&& rc
==SQLITE_OK
; iFree
--){
4165 rc
= incrVacuumStep(pBt
, nFin
, iFree
, nVac
==nFree
);
4167 if( (rc
==SQLITE_DONE
|| rc
==SQLITE_OK
) && nFree
>0 ){
4168 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
4170 put4byte(&pBt
->pPage1
->aData
[32], 0);
4171 put4byte(&pBt
->pPage1
->aData
[36], 0);
4173 put4byte(&pBt
->pPage1
->aData
[28], nFin
);
4174 pBt
->bDoTruncate
= 1;
4177 if( rc
!=SQLITE_OK
){
4178 sqlite3PagerRollback(pPager
);
4182 assert( nRef
>=sqlite3PagerRefcount(pPager
) );
4186 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4187 # define setChildPtrmaps(x) SQLITE_OK
4191 ** This routine does the first phase of a two-phase commit. This routine
4192 ** causes a rollback journal to be created (if it does not already exist)
4193 ** and populated with enough information so that if a power loss occurs
4194 ** the database can be restored to its original state by playing back
4195 ** the journal. Then the contents of the journal are flushed out to
4196 ** the disk. After the journal is safely on oxide, the changes to the
4197 ** database are written into the database file and flushed to oxide.
4198 ** At the end of this call, the rollback journal still exists on the
4199 ** disk and we are still holding all locks, so the transaction has not
4200 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4203 ** This call is a no-op if no write-transaction is currently active on pBt.
4205 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4206 ** the name of a super-journal file that should be written into the
4207 ** individual journal file, or is NULL, indicating no super-journal file
4208 ** (single database transaction).
4210 ** When this is called, the super-journal should already have been
4211 ** created, populated with this journal pointer and synced to disk.
4213 ** Once this is routine has returned, the only thing required to commit
4214 ** the write-transaction for this database file is to delete the journal.
4216 int sqlite3BtreeCommitPhaseOne(Btree
*p
, const char *zSuperJrnl
){
4218 if( p
->inTrans
==TRANS_WRITE
){
4219 BtShared
*pBt
= p
->pBt
;
4220 sqlite3BtreeEnter(p
);
4221 #ifndef SQLITE_OMIT_AUTOVACUUM
4222 if( pBt
->autoVacuum
){
4223 rc
= autoVacuumCommit(p
);
4224 if( rc
!=SQLITE_OK
){
4225 sqlite3BtreeLeave(p
);
4229 if( pBt
->bDoTruncate
){
4230 sqlite3PagerTruncateImage(pBt
->pPager
, pBt
->nPage
);
4233 rc
= sqlite3PagerCommitPhaseOne(pBt
->pPager
, zSuperJrnl
, 0);
4234 sqlite3BtreeLeave(p
);
4240 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4241 ** at the conclusion of a transaction.
4243 static void btreeEndTransaction(Btree
*p
){
4244 BtShared
*pBt
= p
->pBt
;
4245 sqlite3
*db
= p
->db
;
4246 assert( sqlite3BtreeHoldsMutex(p
) );
4248 #ifndef SQLITE_OMIT_AUTOVACUUM
4249 pBt
->bDoTruncate
= 0;
4251 if( p
->inTrans
>TRANS_NONE
&& db
->nVdbeRead
>1 ){
4252 /* If there are other active statements that belong to this database
4253 ** handle, downgrade to a read-only transaction. The other statements
4254 ** may still be reading from the database. */
4255 downgradeAllSharedCacheTableLocks(p
);
4256 p
->inTrans
= TRANS_READ
;
4258 /* If the handle had any kind of transaction open, decrement the
4259 ** transaction count of the shared btree. If the transaction count
4260 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4261 ** call below will unlock the pager. */
4262 if( p
->inTrans
!=TRANS_NONE
){
4263 clearAllSharedCacheTableLocks(p
);
4264 pBt
->nTransaction
--;
4265 if( 0==pBt
->nTransaction
){
4266 pBt
->inTransaction
= TRANS_NONE
;
4270 /* Set the current transaction state to TRANS_NONE and unlock the
4271 ** pager if this call closed the only read or write transaction. */
4272 p
->inTrans
= TRANS_NONE
;
4273 unlockBtreeIfUnused(pBt
);
4280 ** Commit the transaction currently in progress.
4282 ** This routine implements the second phase of a 2-phase commit. The
4283 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4284 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4285 ** routine did all the work of writing information out to disk and flushing the
4286 ** contents so that they are written onto the disk platter. All this
4287 ** routine has to do is delete or truncate or zero the header in the
4288 ** the rollback journal (which causes the transaction to commit) and
4291 ** Normally, if an error occurs while the pager layer is attempting to
4292 ** finalize the underlying journal file, this function returns an error and
4293 ** the upper layer will attempt a rollback. However, if the second argument
4294 ** is non-zero then this b-tree transaction is part of a multi-file
4295 ** transaction. In this case, the transaction has already been committed
4296 ** (by deleting a super-journal file) and the caller will ignore this
4297 ** functions return code. So, even if an error occurs in the pager layer,
4298 ** reset the b-tree objects internal state to indicate that the write
4299 ** transaction has been closed. This is quite safe, as the pager will have
4300 ** transitioned to the error state.
4302 ** This will release the write lock on the database file. If there
4303 ** are no active cursors, it also releases the read lock.
4305 int sqlite3BtreeCommitPhaseTwo(Btree
*p
, int bCleanup
){
4307 if( p
->inTrans
==TRANS_NONE
) return SQLITE_OK
;
4308 sqlite3BtreeEnter(p
);
4311 /* If the handle has a write-transaction open, commit the shared-btrees
4312 ** transaction and set the shared state to TRANS_READ.
4314 if( p
->inTrans
==TRANS_WRITE
){
4316 BtShared
*pBt
= p
->pBt
;
4317 assert( pBt
->inTransaction
==TRANS_WRITE
);
4318 assert( pBt
->nTransaction
>0 );
4319 rc
= sqlite3PagerCommitPhaseTwo(pBt
->pPager
);
4320 if( rc
!=SQLITE_OK
&& bCleanup
==0 ){
4321 sqlite3BtreeLeave(p
);
4324 p
->iBDataVersion
--; /* Compensate for pPager->iDataVersion++; */
4325 pBt
->inTransaction
= TRANS_READ
;
4326 btreeClearHasContent(pBt
);
4329 btreeEndTransaction(p
);
4330 sqlite3BtreeLeave(p
);
4335 ** Do both phases of a commit.
4337 int sqlite3BtreeCommit(Btree
*p
){
4339 sqlite3BtreeEnter(p
);
4340 rc
= sqlite3BtreeCommitPhaseOne(p
, 0);
4341 if( rc
==SQLITE_OK
){
4342 rc
= sqlite3BtreeCommitPhaseTwo(p
, 0);
4344 sqlite3BtreeLeave(p
);
4349 ** This routine sets the state to CURSOR_FAULT and the error
4350 ** code to errCode for every cursor on any BtShared that pBtree
4351 ** references. Or if the writeOnly flag is set to 1, then only
4352 ** trip write cursors and leave read cursors unchanged.
4354 ** Every cursor is a candidate to be tripped, including cursors
4355 ** that belong to other database connections that happen to be
4356 ** sharing the cache with pBtree.
4358 ** This routine gets called when a rollback occurs. If the writeOnly
4359 ** flag is true, then only write-cursors need be tripped - read-only
4360 ** cursors save their current positions so that they may continue
4361 ** following the rollback. Or, if writeOnly is false, all cursors are
4362 ** tripped. In general, writeOnly is false if the transaction being
4363 ** rolled back modified the database schema. In this case b-tree root
4364 ** pages may be moved or deleted from the database altogether, making
4365 ** it unsafe for read cursors to continue.
4367 ** If the writeOnly flag is true and an error is encountered while
4368 ** saving the current position of a read-only cursor, all cursors,
4369 ** including all read-cursors are tripped.
4371 ** SQLITE_OK is returned if successful, or if an error occurs while
4372 ** saving a cursor position, an SQLite error code.
4374 int sqlite3BtreeTripAllCursors(Btree
*pBtree
, int errCode
, int writeOnly
){
4378 assert( (writeOnly
==0 || writeOnly
==1) && BTCF_WriteFlag
==1 );
4380 sqlite3BtreeEnter(pBtree
);
4381 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
4382 if( writeOnly
&& (p
->curFlags
& BTCF_WriteFlag
)==0 ){
4383 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
4384 rc
= saveCursorPosition(p
);
4385 if( rc
!=SQLITE_OK
){
4386 (void)sqlite3BtreeTripAllCursors(pBtree
, rc
, 0);
4391 sqlite3BtreeClearCursor(p
);
4392 p
->eState
= CURSOR_FAULT
;
4393 p
->skipNext
= errCode
;
4395 btreeReleaseAllCursorPages(p
);
4397 sqlite3BtreeLeave(pBtree
);
4403 ** Set the pBt->nPage field correctly, according to the current
4404 ** state of the database. Assume pBt->pPage1 is valid.
4406 static void btreeSetNPage(BtShared
*pBt
, MemPage
*pPage1
){
4407 int nPage
= get4byte(&pPage1
->aData
[28]);
4408 testcase( nPage
==0 );
4409 if( nPage
==0 ) sqlite3PagerPagecount(pBt
->pPager
, &nPage
);
4410 testcase( pBt
->nPage
!=(u32
)nPage
);
4415 ** Rollback the transaction in progress.
4417 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4418 ** Only write cursors are tripped if writeOnly is true but all cursors are
4419 ** tripped if writeOnly is false. Any attempt to use
4420 ** a tripped cursor will result in an error.
4422 ** This will release the write lock on the database file. If there
4423 ** are no active cursors, it also releases the read lock.
4425 int sqlite3BtreeRollback(Btree
*p
, int tripCode
, int writeOnly
){
4427 BtShared
*pBt
= p
->pBt
;
4430 assert( writeOnly
==1 || writeOnly
==0 );
4431 assert( tripCode
==SQLITE_ABORT_ROLLBACK
|| tripCode
==SQLITE_OK
);
4432 sqlite3BtreeEnter(p
);
4433 if( tripCode
==SQLITE_OK
){
4434 rc
= tripCode
= saveAllCursors(pBt
, 0, 0);
4435 if( rc
) writeOnly
= 0;
4440 int rc2
= sqlite3BtreeTripAllCursors(p
, tripCode
, writeOnly
);
4441 assert( rc
==SQLITE_OK
|| (writeOnly
==0 && rc2
==SQLITE_OK
) );
4442 if( rc2
!=SQLITE_OK
) rc
= rc2
;
4446 if( p
->inTrans
==TRANS_WRITE
){
4449 assert( TRANS_WRITE
==pBt
->inTransaction
);
4450 rc2
= sqlite3PagerRollback(pBt
->pPager
);
4451 if( rc2
!=SQLITE_OK
){
4455 /* The rollback may have destroyed the pPage1->aData value. So
4456 ** call btreeGetPage() on page 1 again to make
4457 ** sure pPage1->aData is set correctly. */
4458 if( btreeGetPage(pBt
, 1, &pPage1
, 0)==SQLITE_OK
){
4459 btreeSetNPage(pBt
, pPage1
);
4460 releasePageOne(pPage1
);
4462 assert( countValidCursors(pBt
, 1)==0 );
4463 pBt
->inTransaction
= TRANS_READ
;
4464 btreeClearHasContent(pBt
);
4467 btreeEndTransaction(p
);
4468 sqlite3BtreeLeave(p
);
4473 ** Start a statement subtransaction. The subtransaction can be rolled
4474 ** back independently of the main transaction. You must start a transaction
4475 ** before starting a subtransaction. The subtransaction is ended automatically
4476 ** if the main transaction commits or rolls back.
4478 ** Statement subtransactions are used around individual SQL statements
4479 ** that are contained within a BEGIN...COMMIT block. If a constraint
4480 ** error occurs within the statement, the effect of that one statement
4481 ** can be rolled back without having to rollback the entire transaction.
4483 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4484 ** value passed as the second parameter is the total number of savepoints,
4485 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4486 ** are no active savepoints and no other statement-transactions open,
4487 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4488 ** using the sqlite3BtreeSavepoint() function.
4490 int sqlite3BtreeBeginStmt(Btree
*p
, int iStatement
){
4492 BtShared
*pBt
= p
->pBt
;
4493 sqlite3BtreeEnter(p
);
4494 assert( p
->inTrans
==TRANS_WRITE
);
4495 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4496 assert( iStatement
>0 );
4497 assert( iStatement
>p
->db
->nSavepoint
);
4498 assert( pBt
->inTransaction
==TRANS_WRITE
);
4499 /* At the pager level, a statement transaction is a savepoint with
4500 ** an index greater than all savepoints created explicitly using
4501 ** SQL statements. It is illegal to open, release or rollback any
4502 ** such savepoints while the statement transaction savepoint is active.
4504 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, iStatement
);
4505 sqlite3BtreeLeave(p
);
4510 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4511 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4512 ** savepoint identified by parameter iSavepoint, depending on the value
4515 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4516 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4517 ** contents of the entire transaction are rolled back. This is different
4518 ** from a normal transaction rollback, as no locks are released and the
4519 ** transaction remains open.
4521 int sqlite3BtreeSavepoint(Btree
*p
, int op
, int iSavepoint
){
4523 if( p
&& p
->inTrans
==TRANS_WRITE
){
4524 BtShared
*pBt
= p
->pBt
;
4525 assert( op
==SAVEPOINT_RELEASE
|| op
==SAVEPOINT_ROLLBACK
);
4526 assert( iSavepoint
>=0 || (iSavepoint
==-1 && op
==SAVEPOINT_ROLLBACK
) );
4527 sqlite3BtreeEnter(p
);
4528 if( op
==SAVEPOINT_ROLLBACK
){
4529 rc
= saveAllCursors(pBt
, 0, 0);
4531 if( rc
==SQLITE_OK
){
4532 rc
= sqlite3PagerSavepoint(pBt
->pPager
, op
, iSavepoint
);
4534 if( rc
==SQLITE_OK
){
4535 if( iSavepoint
<0 && (pBt
->btsFlags
& BTS_INITIALLY_EMPTY
)!=0 ){
4538 rc
= newDatabase(pBt
);
4539 btreeSetNPage(pBt
, pBt
->pPage1
);
4541 /* pBt->nPage might be zero if the database was corrupt when
4542 ** the transaction was started. Otherwise, it must be at least 1. */
4543 assert( CORRUPT_DB
|| pBt
->nPage
>0 );
4545 sqlite3BtreeLeave(p
);
4551 ** Create a new cursor for the BTree whose root is on the page
4552 ** iTable. If a read-only cursor is requested, it is assumed that
4553 ** the caller already has at least a read-only transaction open
4554 ** on the database already. If a write-cursor is requested, then
4555 ** the caller is assumed to have an open write transaction.
4557 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4558 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4559 ** can be used for reading or for writing if other conditions for writing
4560 ** are also met. These are the conditions that must be met in order
4561 ** for writing to be allowed:
4563 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4565 ** 2: Other database connections that share the same pager cache
4566 ** but which are not in the READ_UNCOMMITTED state may not have
4567 ** cursors open with wrFlag==0 on the same table. Otherwise
4568 ** the changes made by this write cursor would be visible to
4569 ** the read cursors in the other database connection.
4571 ** 3: The database must be writable (not on read-only media)
4573 ** 4: There must be an active transaction.
4575 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4576 ** is set. If FORDELETE is set, that is a hint to the implementation that
4577 ** this cursor will only be used to seek to and delete entries of an index
4578 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4579 ** this implementation. But in a hypothetical alternative storage engine
4580 ** in which index entries are automatically deleted when corresponding table
4581 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4582 ** operations on this cursor can be no-ops and all READ operations can
4583 ** return a null row (2-bytes: 0x01 0x00).
4585 ** No checking is done to make sure that page iTable really is the
4586 ** root page of a b-tree. If it is not, then the cursor acquired
4587 ** will not work correctly.
4589 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4590 ** on pCur to initialize the memory space prior to invoking this routine.
4592 static int btreeCursor(
4593 Btree
*p
, /* The btree */
4594 Pgno iTable
, /* Root page of table to open */
4595 int wrFlag
, /* 1 to write. 0 read-only */
4596 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4597 BtCursor
*pCur
/* Space for new cursor */
4599 BtShared
*pBt
= p
->pBt
; /* Shared b-tree handle */
4600 BtCursor
*pX
; /* Looping over other all cursors */
4602 assert( sqlite3BtreeHoldsMutex(p
) );
4604 || wrFlag
==BTREE_WRCSR
4605 || wrFlag
==(BTREE_WRCSR
|BTREE_FORDELETE
)
4608 /* The following assert statements verify that if this is a sharable
4609 ** b-tree database, the connection is holding the required table locks,
4610 ** and that no other connection has any open cursor that conflicts with
4611 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4612 assert( hasSharedCacheTableLock(p
, iTable
, pKeyInfo
!=0, (wrFlag
?2:1))
4614 assert( wrFlag
==0 || !hasReadConflicts(p
, iTable
) );
4616 /* Assert that the caller has opened the required transaction. */
4617 assert( p
->inTrans
>TRANS_NONE
);
4618 assert( wrFlag
==0 || p
->inTrans
==TRANS_WRITE
);
4619 assert( pBt
->pPage1
&& pBt
->pPage1
->aData
);
4620 assert( wrFlag
==0 || (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4624 return SQLITE_CORRUPT_BKPT
;
4625 }else if( btreePagecount(pBt
)==0 ){
4626 assert( wrFlag
==0 );
4631 /* Now that no other errors can occur, finish filling in the BtCursor
4632 ** variables and link the cursor into the BtShared list. */
4633 pCur
->pgnoRoot
= iTable
;
4635 pCur
->pKeyInfo
= pKeyInfo
;
4639 /* If there are two or more cursors on the same btree, then all such
4640 ** cursors *must* have the BTCF_Multiple flag set. */
4641 for(pX
=pBt
->pCursor
; pX
; pX
=pX
->pNext
){
4642 if( pX
->pgnoRoot
==iTable
){
4643 pX
->curFlags
|= BTCF_Multiple
;
4644 pCur
->curFlags
= BTCF_Multiple
;
4647 pCur
->eState
= CURSOR_INVALID
;
4648 pCur
->pNext
= pBt
->pCursor
;
4649 pBt
->pCursor
= pCur
;
4651 pCur
->curFlags
|= BTCF_WriteFlag
;
4652 pCur
->curPagerFlags
= 0;
4653 if( pBt
->pTmpSpace
==0 ) return allocateTempSpace(pBt
);
4655 pCur
->curPagerFlags
= PAGER_GET_READONLY
;
4659 static int btreeCursorWithLock(
4660 Btree
*p
, /* The btree */
4661 Pgno iTable
, /* Root page of table to open */
4662 int wrFlag
, /* 1 to write. 0 read-only */
4663 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4664 BtCursor
*pCur
/* Space for new cursor */
4667 sqlite3BtreeEnter(p
);
4668 rc
= btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4669 sqlite3BtreeLeave(p
);
4672 int sqlite3BtreeCursor(
4673 Btree
*p
, /* The btree */
4674 Pgno iTable
, /* Root page of table to open */
4675 int wrFlag
, /* 1 to write. 0 read-only */
4676 struct KeyInfo
*pKeyInfo
, /* First arg to xCompare() */
4677 BtCursor
*pCur
/* Write new cursor here */
4680 return btreeCursorWithLock(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4682 return btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4687 ** Return the size of a BtCursor object in bytes.
4689 ** This interfaces is needed so that users of cursors can preallocate
4690 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4691 ** to users so they cannot do the sizeof() themselves - they must call
4694 int sqlite3BtreeCursorSize(void){
4695 return ROUND8(sizeof(BtCursor
));
4699 ** Initialize memory that will be converted into a BtCursor object.
4701 ** The simple approach here would be to memset() the entire object
4702 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4703 ** do not need to be zeroed and they are large, so we can save a lot
4704 ** of run-time by skipping the initialization of those elements.
4706 void sqlite3BtreeCursorZero(BtCursor
*p
){
4707 memset(p
, 0, offsetof(BtCursor
, BTCURSOR_FIRST_UNINIT
));
4711 ** Close a cursor. The read lock on the database file is released
4712 ** when the last cursor is closed.
4714 int sqlite3BtreeCloseCursor(BtCursor
*pCur
){
4715 Btree
*pBtree
= pCur
->pBtree
;
4717 BtShared
*pBt
= pCur
->pBt
;
4718 sqlite3BtreeEnter(pBtree
);
4719 assert( pBt
->pCursor
!=0 );
4720 if( pBt
->pCursor
==pCur
){
4721 pBt
->pCursor
= pCur
->pNext
;
4723 BtCursor
*pPrev
= pBt
->pCursor
;
4725 if( pPrev
->pNext
==pCur
){
4726 pPrev
->pNext
= pCur
->pNext
;
4729 pPrev
= pPrev
->pNext
;
4730 }while( ALWAYS(pPrev
) );
4732 btreeReleaseAllCursorPages(pCur
);
4733 unlockBtreeIfUnused(pBt
);
4734 sqlite3_free(pCur
->aOverflow
);
4735 sqlite3_free(pCur
->pKey
);
4736 if( (pBt
->openFlags
& BTREE_SINGLE
) && pBt
->pCursor
==0 ){
4737 /* Since the BtShared is not sharable, there is no need to
4738 ** worry about the missing sqlite3BtreeLeave() call here. */
4739 assert( pBtree
->sharable
==0 );
4740 sqlite3BtreeClose(pBtree
);
4742 sqlite3BtreeLeave(pBtree
);
4750 ** Make sure the BtCursor* given in the argument has a valid
4751 ** BtCursor.info structure. If it is not already valid, call
4752 ** btreeParseCell() to fill it in.
4754 ** BtCursor.info is a cache of the information in the current cell.
4755 ** Using this cache reduces the number of calls to btreeParseCell().
4758 static int cellInfoEqual(CellInfo
*a
, CellInfo
*b
){
4759 if( a
->nKey
!=b
->nKey
) return 0;
4760 if( a
->pPayload
!=b
->pPayload
) return 0;
4761 if( a
->nPayload
!=b
->nPayload
) return 0;
4762 if( a
->nLocal
!=b
->nLocal
) return 0;
4763 if( a
->nSize
!=b
->nSize
) return 0;
4766 static void assertCellInfo(BtCursor
*pCur
){
4768 memset(&info
, 0, sizeof(info
));
4769 btreeParseCell(pCur
->pPage
, pCur
->ix
, &info
);
4770 assert( CORRUPT_DB
|| cellInfoEqual(&info
, &pCur
->info
) );
4773 #define assertCellInfo(x)
4775 static SQLITE_NOINLINE
void getCellInfo(BtCursor
*pCur
){
4776 if( pCur
->info
.nSize
==0 ){
4777 pCur
->curFlags
|= BTCF_ValidNKey
;
4778 btreeParseCell(pCur
->pPage
,pCur
->ix
,&pCur
->info
);
4780 assertCellInfo(pCur
);
4784 #ifndef NDEBUG /* The next routine used only within assert() statements */
4786 ** Return true if the given BtCursor is valid. A valid cursor is one
4787 ** that is currently pointing to a row in a (non-empty) table.
4788 ** This is a verification routine is used only within assert() statements.
4790 int sqlite3BtreeCursorIsValid(BtCursor
*pCur
){
4791 return pCur
&& pCur
->eState
==CURSOR_VALID
;
4794 int sqlite3BtreeCursorIsValidNN(BtCursor
*pCur
){
4796 return pCur
->eState
==CURSOR_VALID
;
4800 ** Return the value of the integer key or "rowid" for a table btree.
4801 ** This routine is only valid for a cursor that is pointing into a
4802 ** ordinary table btree. If the cursor points to an index btree or
4803 ** is invalid, the result of this routine is undefined.
4805 i64
sqlite3BtreeIntegerKey(BtCursor
*pCur
){
4806 assert( cursorHoldsMutex(pCur
) );
4807 assert( pCur
->eState
==CURSOR_VALID
);
4808 assert( pCur
->curIntKey
);
4810 return pCur
->info
.nKey
;
4814 ** Pin or unpin a cursor.
4816 void sqlite3BtreeCursorPin(BtCursor
*pCur
){
4817 assert( (pCur
->curFlags
& BTCF_Pinned
)==0 );
4818 pCur
->curFlags
|= BTCF_Pinned
;
4820 void sqlite3BtreeCursorUnpin(BtCursor
*pCur
){
4821 assert( (pCur
->curFlags
& BTCF_Pinned
)!=0 );
4822 pCur
->curFlags
&= ~BTCF_Pinned
;
4825 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4827 ** Return the offset into the database file for the start of the
4828 ** payload to which the cursor is pointing.
4830 i64
sqlite3BtreeOffset(BtCursor
*pCur
){
4831 assert( cursorHoldsMutex(pCur
) );
4832 assert( pCur
->eState
==CURSOR_VALID
);
4834 return (i64
)pCur
->pBt
->pageSize
*((i64
)pCur
->pPage
->pgno
- 1) +
4835 (i64
)(pCur
->info
.pPayload
- pCur
->pPage
->aData
);
4837 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4840 ** Return the number of bytes of payload for the entry that pCur is
4841 ** currently pointing to. For table btrees, this will be the amount
4842 ** of data. For index btrees, this will be the size of the key.
4844 ** The caller must guarantee that the cursor is pointing to a non-NULL
4845 ** valid entry. In other words, the calling procedure must guarantee
4846 ** that the cursor has Cursor.eState==CURSOR_VALID.
4848 u32
sqlite3BtreePayloadSize(BtCursor
*pCur
){
4849 assert( cursorHoldsMutex(pCur
) );
4850 assert( pCur
->eState
==CURSOR_VALID
);
4852 return pCur
->info
.nPayload
;
4856 ** Return an upper bound on the size of any record for the table
4857 ** that the cursor is pointing into.
4859 ** This is an optimization. Everything will still work if this
4860 ** routine always returns 2147483647 (which is the largest record
4861 ** that SQLite can handle) or more. But returning a smaller value might
4862 ** prevent large memory allocations when trying to interpret a
4863 ** corrupt datrabase.
4865 ** The current implementation merely returns the size of the underlying
4868 sqlite3_int64
sqlite3BtreeMaxRecordSize(BtCursor
*pCur
){
4869 assert( cursorHoldsMutex(pCur
) );
4870 assert( pCur
->eState
==CURSOR_VALID
);
4871 return pCur
->pBt
->pageSize
* (sqlite3_int64
)pCur
->pBt
->nPage
;
4875 ** Given the page number of an overflow page in the database (parameter
4876 ** ovfl), this function finds the page number of the next page in the
4877 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4878 ** pointer-map data instead of reading the content of page ovfl to do so.
4880 ** If an error occurs an SQLite error code is returned. Otherwise:
4882 ** The page number of the next overflow page in the linked list is
4883 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4884 ** list, *pPgnoNext is set to zero.
4886 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4887 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4888 ** reference. It is the responsibility of the caller to call releasePage()
4889 ** on *ppPage to free the reference. In no reference was obtained (because
4890 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4891 ** *ppPage is set to zero.
4893 static int getOverflowPage(
4894 BtShared
*pBt
, /* The database file */
4895 Pgno ovfl
, /* Current overflow page number */
4896 MemPage
**ppPage
, /* OUT: MemPage handle (may be NULL) */
4897 Pgno
*pPgnoNext
/* OUT: Next overflow page number */
4903 assert( sqlite3_mutex_held(pBt
->mutex
) );
4906 #ifndef SQLITE_OMIT_AUTOVACUUM
4907 /* Try to find the next page in the overflow list using the
4908 ** autovacuum pointer-map pages. Guess that the next page in
4909 ** the overflow list is page number (ovfl+1). If that guess turns
4910 ** out to be wrong, fall back to loading the data of page
4911 ** number ovfl to determine the next page number.
4913 if( pBt
->autoVacuum
){
4915 Pgno iGuess
= ovfl
+1;
4918 while( PTRMAP_ISPAGE(pBt
, iGuess
) || iGuess
==PENDING_BYTE_PAGE(pBt
) ){
4922 if( iGuess
<=btreePagecount(pBt
) ){
4923 rc
= ptrmapGet(pBt
, iGuess
, &eType
, &pgno
);
4924 if( rc
==SQLITE_OK
&& eType
==PTRMAP_OVERFLOW2
&& pgno
==ovfl
){
4932 assert( next
==0 || rc
==SQLITE_DONE
);
4933 if( rc
==SQLITE_OK
){
4934 rc
= btreeGetPage(pBt
, ovfl
, &pPage
, (ppPage
==0) ? PAGER_GET_READONLY
: 0);
4935 assert( rc
==SQLITE_OK
|| pPage
==0 );
4936 if( rc
==SQLITE_OK
){
4937 next
= get4byte(pPage
->aData
);
4947 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
4951 ** Copy data from a buffer to a page, or from a page to a buffer.
4953 ** pPayload is a pointer to data stored on database page pDbPage.
4954 ** If argument eOp is false, then nByte bytes of data are copied
4955 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4956 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4957 ** of data are copied from the buffer pBuf to pPayload.
4959 ** SQLITE_OK is returned on success, otherwise an error code.
4961 static int copyPayload(
4962 void *pPayload
, /* Pointer to page data */
4963 void *pBuf
, /* Pointer to buffer */
4964 int nByte
, /* Number of bytes to copy */
4965 int eOp
, /* 0 -> copy from page, 1 -> copy to page */
4966 DbPage
*pDbPage
/* Page containing pPayload */
4969 /* Copy data from buffer to page (a write operation) */
4970 int rc
= sqlite3PagerWrite(pDbPage
);
4971 if( rc
!=SQLITE_OK
){
4974 memcpy(pPayload
, pBuf
, nByte
);
4976 /* Copy data from page to buffer (a read operation) */
4977 memcpy(pBuf
, pPayload
, nByte
);
4983 ** This function is used to read or overwrite payload information
4984 ** for the entry that the pCur cursor is pointing to. The eOp
4985 ** argument is interpreted as follows:
4987 ** 0: The operation is a read. Populate the overflow cache.
4988 ** 1: The operation is a write. Populate the overflow cache.
4990 ** A total of "amt" bytes are read or written beginning at "offset".
4991 ** Data is read to or from the buffer pBuf.
4993 ** The content being read or written might appear on the main page
4994 ** or be scattered out on multiple overflow pages.
4996 ** If the current cursor entry uses one or more overflow pages
4997 ** this function may allocate space for and lazily populate
4998 ** the overflow page-list cache array (BtCursor.aOverflow).
4999 ** Subsequent calls use this cache to make seeking to the supplied offset
5002 ** Once an overflow page-list cache has been allocated, it must be
5003 ** invalidated if some other cursor writes to the same table, or if
5004 ** the cursor is moved to a different row. Additionally, in auto-vacuum
5005 ** mode, the following events may invalidate an overflow page-list cache.
5007 ** * An incremental vacuum,
5008 ** * A commit in auto_vacuum="full" mode,
5009 ** * Creating a table (may require moving an overflow page).
5011 static int accessPayload(
5012 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
5013 u32 offset
, /* Begin reading this far into payload */
5014 u32 amt
, /* Read this many bytes */
5015 unsigned char *pBuf
, /* Write the bytes into this buffer */
5016 int eOp
/* zero to read. non-zero to write. */
5018 unsigned char *aPayload
;
5021 MemPage
*pPage
= pCur
->pPage
; /* Btree page of current entry */
5022 BtShared
*pBt
= pCur
->pBt
; /* Btree this cursor belongs to */
5023 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5024 unsigned char * const pBufStart
= pBuf
; /* Start of original out buffer */
5028 assert( eOp
==0 || eOp
==1 );
5029 assert( pCur
->eState
==CURSOR_VALID
);
5030 if( pCur
->ix
>=pPage
->nCell
){
5031 return SQLITE_CORRUPT_PAGE(pPage
);
5033 assert( cursorHoldsMutex(pCur
) );
5036 aPayload
= pCur
->info
.pPayload
;
5037 assert( offset
+amt
<= pCur
->info
.nPayload
);
5039 assert( aPayload
> pPage
->aData
);
5040 if( (uptr
)(aPayload
- pPage
->aData
) > (pBt
->usableSize
- pCur
->info
.nLocal
) ){
5041 /* Trying to read or write past the end of the data is an error. The
5042 ** conditional above is really:
5043 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
5044 ** but is recast into its current form to avoid integer overflow problems
5046 return SQLITE_CORRUPT_PAGE(pPage
);
5049 /* Check if data must be read/written to/from the btree page itself. */
5050 if( offset
<pCur
->info
.nLocal
){
5052 if( a
+offset
>pCur
->info
.nLocal
){
5053 a
= pCur
->info
.nLocal
- offset
;
5055 rc
= copyPayload(&aPayload
[offset
], pBuf
, a
, eOp
, pPage
->pDbPage
);
5060 offset
-= pCur
->info
.nLocal
;
5064 if( rc
==SQLITE_OK
&& amt
>0 ){
5065 const u32 ovflSize
= pBt
->usableSize
- 4; /* Bytes content per ovfl page */
5068 nextPage
= get4byte(&aPayload
[pCur
->info
.nLocal
]);
5070 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
5072 ** The aOverflow[] array is sized at one entry for each overflow page
5073 ** in the overflow chain. The page number of the first overflow page is
5074 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
5075 ** means "not yet known" (the cache is lazily populated).
5077 if( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 ){
5078 int nOvfl
= (pCur
->info
.nPayload
-pCur
->info
.nLocal
+ovflSize
-1)/ovflSize
;
5079 if( pCur
->aOverflow
==0
5080 || nOvfl
*(int)sizeof(Pgno
) > sqlite3MallocSize(pCur
->aOverflow
)
5082 Pgno
*aNew
= (Pgno
*)sqlite3Realloc(
5083 pCur
->aOverflow
, nOvfl
*2*sizeof(Pgno
)
5086 return SQLITE_NOMEM_BKPT
;
5088 pCur
->aOverflow
= aNew
;
5091 memset(pCur
->aOverflow
, 0, nOvfl
*sizeof(Pgno
));
5092 pCur
->curFlags
|= BTCF_ValidOvfl
;
5094 /* If the overflow page-list cache has been allocated and the
5095 ** entry for the first required overflow page is valid, skip
5098 if( pCur
->aOverflow
[offset
/ovflSize
] ){
5099 iIdx
= (offset
/ovflSize
);
5100 nextPage
= pCur
->aOverflow
[iIdx
];
5101 offset
= (offset
%ovflSize
);
5105 assert( rc
==SQLITE_OK
&& amt
>0 );
5107 /* If required, populate the overflow page-list cache. */
5108 if( nextPage
> pBt
->nPage
) return SQLITE_CORRUPT_BKPT
;
5109 assert( pCur
->aOverflow
[iIdx
]==0
5110 || pCur
->aOverflow
[iIdx
]==nextPage
5112 pCur
->aOverflow
[iIdx
] = nextPage
;
5114 if( offset
>=ovflSize
){
5115 /* The only reason to read this page is to obtain the page
5116 ** number for the next page in the overflow chain. The page
5117 ** data is not required. So first try to lookup the overflow
5118 ** page-list cache, if any, then fall back to the getOverflowPage()
5121 assert( pCur
->curFlags
& BTCF_ValidOvfl
);
5122 assert( pCur
->pBtree
->db
==pBt
->db
);
5123 if( pCur
->aOverflow
[iIdx
+1] ){
5124 nextPage
= pCur
->aOverflow
[iIdx
+1];
5126 rc
= getOverflowPage(pBt
, nextPage
, 0, &nextPage
);
5130 /* Need to read this page properly. It contains some of the
5131 ** range of data that is being read (eOp==0) or written (eOp!=0).
5134 if( a
+ offset
> ovflSize
){
5135 a
= ovflSize
- offset
;
5138 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5139 /* If all the following are true:
5141 ** 1) this is a read operation, and
5142 ** 2) data is required from the start of this overflow page, and
5143 ** 3) there are no dirty pages in the page-cache
5144 ** 4) the database is file-backed, and
5145 ** 5) the page is not in the WAL file
5146 ** 6) at least 4 bytes have already been read into the output buffer
5148 ** then data can be read directly from the database file into the
5149 ** output buffer, bypassing the page-cache altogether. This speeds
5150 ** up loading large records that span many overflow pages.
5152 if( eOp
==0 /* (1) */
5153 && offset
==0 /* (2) */
5154 && sqlite3PagerDirectReadOk(pBt
->pPager
, nextPage
) /* (3,4,5) */
5155 && &pBuf
[-4]>=pBufStart
/* (6) */
5157 sqlite3_file
*fd
= sqlite3PagerFile(pBt
->pPager
);
5159 u8
*aWrite
= &pBuf
[-4];
5160 assert( aWrite
>=pBufStart
); /* due to (6) */
5161 memcpy(aSave
, aWrite
, 4);
5162 rc
= sqlite3OsRead(fd
, aWrite
, a
+4, (i64
)pBt
->pageSize
*(nextPage
-1));
5163 if( rc
&& nextPage
>pBt
->nPage
) rc
= SQLITE_CORRUPT_BKPT
;
5164 nextPage
= get4byte(aWrite
);
5165 memcpy(aWrite
, aSave
, 4);
5171 rc
= sqlite3PagerGet(pBt
->pPager
, nextPage
, &pDbPage
,
5172 (eOp
==0 ? PAGER_GET_READONLY
: 0)
5174 if( rc
==SQLITE_OK
){
5175 aPayload
= sqlite3PagerGetData(pDbPage
);
5176 nextPage
= get4byte(aPayload
);
5177 rc
= copyPayload(&aPayload
[offset
+4], pBuf
, a
, eOp
, pDbPage
);
5178 sqlite3PagerUnref(pDbPage
);
5183 if( amt
==0 ) return rc
;
5191 if( rc
==SQLITE_OK
&& amt
>0 ){
5192 /* Overflow chain ends prematurely */
5193 return SQLITE_CORRUPT_PAGE(pPage
);
5199 ** Read part of the payload for the row at which that cursor pCur is currently
5200 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
5201 ** begins at "offset".
5203 ** pCur can be pointing to either a table or an index b-tree.
5204 ** If pointing to a table btree, then the content section is read. If
5205 ** pCur is pointing to an index b-tree then the key section is read.
5207 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5208 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5209 ** cursor might be invalid or might need to be restored before being read.
5211 ** Return SQLITE_OK on success or an error code if anything goes
5212 ** wrong. An error is returned if "offset+amt" is larger than
5213 ** the available payload.
5215 int sqlite3BtreePayload(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5216 assert( cursorHoldsMutex(pCur
) );
5217 assert( pCur
->eState
==CURSOR_VALID
);
5218 assert( pCur
->iPage
>=0 && pCur
->pPage
);
5219 return accessPayload(pCur
, offset
, amt
, (unsigned char*)pBuf
, 0);
5223 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5224 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5227 #ifndef SQLITE_OMIT_INCRBLOB
5228 static SQLITE_NOINLINE
int accessPayloadChecked(
5235 if ( pCur
->eState
==CURSOR_INVALID
){
5236 return SQLITE_ABORT
;
5238 assert( cursorOwnsBtShared(pCur
) );
5239 rc
= btreeRestoreCursorPosition(pCur
);
5240 return rc
? rc
: accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5242 int sqlite3BtreePayloadChecked(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5243 if( pCur
->eState
==CURSOR_VALID
){
5244 assert( cursorOwnsBtShared(pCur
) );
5245 return accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5247 return accessPayloadChecked(pCur
, offset
, amt
, pBuf
);
5250 #endif /* SQLITE_OMIT_INCRBLOB */
5253 ** Return a pointer to payload information from the entry that the
5254 ** pCur cursor is pointing to. The pointer is to the beginning of
5255 ** the key if index btrees (pPage->intKey==0) and is the data for
5256 ** table btrees (pPage->intKey==1). The number of bytes of available
5257 ** key/data is written into *pAmt. If *pAmt==0, then the value
5258 ** returned will not be a valid pointer.
5260 ** This routine is an optimization. It is common for the entire key
5261 ** and data to fit on the local page and for there to be no overflow
5262 ** pages. When that is so, this routine can be used to access the
5263 ** key and data without making a copy. If the key and/or data spills
5264 ** onto overflow pages, then accessPayload() must be used to reassemble
5265 ** the key/data and copy it into a preallocated buffer.
5267 ** The pointer returned by this routine looks directly into the cached
5268 ** page of the database. The data might change or move the next time
5269 ** any btree routine is called.
5271 static const void *fetchPayload(
5272 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
5273 u32
*pAmt
/* Write the number of available bytes here */
5276 assert( pCur
!=0 && pCur
->iPage
>=0 && pCur
->pPage
);
5277 assert( pCur
->eState
==CURSOR_VALID
);
5278 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5279 assert( cursorOwnsBtShared(pCur
) );
5280 assert( pCur
->ix
<pCur
->pPage
->nCell
|| CORRUPT_DB
);
5281 assert( pCur
->info
.nSize
>0 );
5282 assert( pCur
->info
.pPayload
>pCur
->pPage
->aData
|| CORRUPT_DB
);
5283 assert( pCur
->info
.pPayload
<pCur
->pPage
->aDataEnd
||CORRUPT_DB
);
5284 amt
= pCur
->info
.nLocal
;
5285 if( amt
>(int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
) ){
5286 /* There is too little space on the page for the expected amount
5287 ** of local content. Database must be corrupt. */
5288 assert( CORRUPT_DB
);
5289 amt
= MAX(0, (int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
));
5292 return (void*)pCur
->info
.pPayload
;
5297 ** For the entry that cursor pCur is point to, return as
5298 ** many bytes of the key or data as are available on the local
5299 ** b-tree page. Write the number of available bytes into *pAmt.
5301 ** The pointer returned is ephemeral. The key/data may move
5302 ** or be destroyed on the next call to any Btree routine,
5303 ** including calls from other threads against the same cache.
5304 ** Hence, a mutex on the BtShared should be held prior to calling
5307 ** These routines is used to get quick access to key and data
5308 ** in the common case where no overflow pages are used.
5310 const void *sqlite3BtreePayloadFetch(BtCursor
*pCur
, u32
*pAmt
){
5311 return fetchPayload(pCur
, pAmt
);
5316 ** Move the cursor down to a new child page. The newPgno argument is the
5317 ** page number of the child page to move to.
5319 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5320 ** the new child page does not match the flags field of the parent (i.e.
5321 ** if an intkey page appears to be the parent of a non-intkey page, or
5324 static int moveToChild(BtCursor
*pCur
, u32 newPgno
){
5325 assert( cursorOwnsBtShared(pCur
) );
5326 assert( pCur
->eState
==CURSOR_VALID
);
5327 assert( pCur
->iPage
<BTCURSOR_MAX_DEPTH
);
5328 assert( pCur
->iPage
>=0 );
5329 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
5330 return SQLITE_CORRUPT_BKPT
;
5332 pCur
->info
.nSize
= 0;
5333 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5334 pCur
->aiIdx
[pCur
->iPage
] = pCur
->ix
;
5335 pCur
->apPage
[pCur
->iPage
] = pCur
->pPage
;
5338 return getAndInitPage(pCur
->pBt
, newPgno
, &pCur
->pPage
, pCur
,
5339 pCur
->curPagerFlags
);
5344 ** Page pParent is an internal (non-leaf) tree page. This function
5345 ** asserts that page number iChild is the left-child if the iIdx'th
5346 ** cell in page pParent. Or, if iIdx is equal to the total number of
5347 ** cells in pParent, that page number iChild is the right-child of
5350 static void assertParentIndex(MemPage
*pParent
, int iIdx
, Pgno iChild
){
5351 if( CORRUPT_DB
) return; /* The conditions tested below might not be true
5352 ** in a corrupt database */
5353 assert( iIdx
<=pParent
->nCell
);
5354 if( iIdx
==pParent
->nCell
){
5355 assert( get4byte(&pParent
->aData
[pParent
->hdrOffset
+8])==iChild
);
5357 assert( get4byte(findCell(pParent
, iIdx
))==iChild
);
5361 # define assertParentIndex(x,y,z)
5365 ** Move the cursor up to the parent page.
5367 ** pCur->idx is set to the cell index that contains the pointer
5368 ** to the page we are coming from. If we are coming from the
5369 ** right-most child page then pCur->idx is set to one more than
5370 ** the largest cell index.
5372 static void moveToParent(BtCursor
*pCur
){
5374 assert( cursorOwnsBtShared(pCur
) );
5375 assert( pCur
->eState
==CURSOR_VALID
);
5376 assert( pCur
->iPage
>0 );
5377 assert( pCur
->pPage
);
5379 pCur
->apPage
[pCur
->iPage
-1],
5380 pCur
->aiIdx
[pCur
->iPage
-1],
5383 testcase( pCur
->aiIdx
[pCur
->iPage
-1] > pCur
->apPage
[pCur
->iPage
-1]->nCell
);
5384 pCur
->info
.nSize
= 0;
5385 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5386 pCur
->ix
= pCur
->aiIdx
[pCur
->iPage
-1];
5387 pLeaf
= pCur
->pPage
;
5388 pCur
->pPage
= pCur
->apPage
[--pCur
->iPage
];
5389 releasePageNotNull(pLeaf
);
5393 ** Move the cursor to point to the root page of its b-tree structure.
5395 ** If the table has a virtual root page, then the cursor is moved to point
5396 ** to the virtual root page instead of the actual root page. A table has a
5397 ** virtual root page when the actual root page contains no cells and a
5398 ** single child page. This can only happen with the table rooted at page 1.
5400 ** If the b-tree structure is empty, the cursor state is set to
5401 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5402 ** the cursor is set to point to the first cell located on the root
5403 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5405 ** If this function returns successfully, it may be assumed that the
5406 ** page-header flags indicate that the [virtual] root-page is the expected
5407 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5408 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5409 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5410 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5413 static int moveToRoot(BtCursor
*pCur
){
5417 assert( cursorOwnsBtShared(pCur
) );
5418 assert( CURSOR_INVALID
< CURSOR_REQUIRESEEK
);
5419 assert( CURSOR_VALID
< CURSOR_REQUIRESEEK
);
5420 assert( CURSOR_FAULT
> CURSOR_REQUIRESEEK
);
5421 assert( pCur
->eState
< CURSOR_REQUIRESEEK
|| pCur
->iPage
<0 );
5422 assert( pCur
->pgnoRoot
>0 || pCur
->iPage
<0 );
5424 if( pCur
->iPage
>=0 ){
5426 releasePageNotNull(pCur
->pPage
);
5427 while( --pCur
->iPage
){
5428 releasePageNotNull(pCur
->apPage
[pCur
->iPage
]);
5430 pRoot
= pCur
->pPage
= pCur
->apPage
[0];
5433 }else if( pCur
->pgnoRoot
==0 ){
5434 pCur
->eState
= CURSOR_INVALID
;
5435 return SQLITE_EMPTY
;
5437 assert( pCur
->iPage
==(-1) );
5438 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
5439 if( pCur
->eState
==CURSOR_FAULT
){
5440 assert( pCur
->skipNext
!=SQLITE_OK
);
5441 return pCur
->skipNext
;
5443 sqlite3BtreeClearCursor(pCur
);
5445 rc
= getAndInitPage(pCur
->pBt
, pCur
->pgnoRoot
, &pCur
->pPage
,
5446 0, pCur
->curPagerFlags
);
5447 if( rc
!=SQLITE_OK
){
5448 pCur
->eState
= CURSOR_INVALID
;
5452 pCur
->curIntKey
= pCur
->pPage
->intKey
;
5454 pRoot
= pCur
->pPage
;
5455 assert( pRoot
->pgno
==pCur
->pgnoRoot
|| CORRUPT_DB
);
5457 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5458 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5459 ** NULL, the caller expects a table b-tree. If this is not the case,
5460 ** return an SQLITE_CORRUPT error.
5462 ** Earlier versions of SQLite assumed that this test could not fail
5463 ** if the root page was already loaded when this function was called (i.e.
5464 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5465 ** in such a way that page pRoot is linked into a second b-tree table
5466 ** (or the freelist). */
5467 assert( pRoot
->intKey
==1 || pRoot
->intKey
==0 );
5468 if( pRoot
->isInit
==0 || (pCur
->pKeyInfo
==0)!=pRoot
->intKey
){
5469 return SQLITE_CORRUPT_PAGE(pCur
->pPage
);
5474 pCur
->info
.nSize
= 0;
5475 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidNKey
|BTCF_ValidOvfl
);
5477 if( pRoot
->nCell
>0 ){
5478 pCur
->eState
= CURSOR_VALID
;
5479 }else if( !pRoot
->leaf
){
5481 if( pRoot
->pgno
!=1 ) return SQLITE_CORRUPT_BKPT
;
5482 subpage
= get4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8]);
5483 pCur
->eState
= CURSOR_VALID
;
5484 rc
= moveToChild(pCur
, subpage
);
5486 pCur
->eState
= CURSOR_INVALID
;
5493 ** Move the cursor down to the left-most leaf entry beneath the
5494 ** entry to which it is currently pointing.
5496 ** The left-most leaf is the one with the smallest key - the first
5497 ** in ascending order.
5499 static int moveToLeftmost(BtCursor
*pCur
){
5504 assert( cursorOwnsBtShared(pCur
) );
5505 assert( pCur
->eState
==CURSOR_VALID
);
5506 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->pPage
)->leaf
){
5507 assert( pCur
->ix
<pPage
->nCell
);
5508 pgno
= get4byte(findCell(pPage
, pCur
->ix
));
5509 rc
= moveToChild(pCur
, pgno
);
5515 ** Move the cursor down to the right-most leaf entry beneath the
5516 ** page to which it is currently pointing. Notice the difference
5517 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5518 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5519 ** finds the right-most entry beneath the *page*.
5521 ** The right-most entry is the one with the largest key - the last
5522 ** key in ascending order.
5524 static int moveToRightmost(BtCursor
*pCur
){
5529 assert( cursorOwnsBtShared(pCur
) );
5530 assert( pCur
->eState
==CURSOR_VALID
);
5531 while( !(pPage
= pCur
->pPage
)->leaf
){
5532 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5533 pCur
->ix
= pPage
->nCell
;
5534 rc
= moveToChild(pCur
, pgno
);
5537 pCur
->ix
= pPage
->nCell
-1;
5538 assert( pCur
->info
.nSize
==0 );
5539 assert( (pCur
->curFlags
& BTCF_ValidNKey
)==0 );
5543 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5544 ** on success. Set *pRes to 0 if the cursor actually points to something
5545 ** or set *pRes to 1 if the table is empty.
5547 int sqlite3BtreeFirst(BtCursor
*pCur
, int *pRes
){
5550 assert( cursorOwnsBtShared(pCur
) );
5551 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5552 rc
= moveToRoot(pCur
);
5553 if( rc
==SQLITE_OK
){
5554 assert( pCur
->pPage
->nCell
>0 );
5556 rc
= moveToLeftmost(pCur
);
5557 }else if( rc
==SQLITE_EMPTY
){
5558 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5565 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5566 ** on success. Set *pRes to 0 if the cursor actually points to something
5567 ** or set *pRes to 1 if the table is empty.
5569 static SQLITE_NOINLINE
int btreeLast(BtCursor
*pCur
, int *pRes
){
5570 int rc
= moveToRoot(pCur
);
5571 if( rc
==SQLITE_OK
){
5572 assert( pCur
->eState
==CURSOR_VALID
);
5574 rc
= moveToRightmost(pCur
);
5575 if( rc
==SQLITE_OK
){
5576 pCur
->curFlags
|= BTCF_AtLast
;
5578 pCur
->curFlags
&= ~BTCF_AtLast
;
5580 }else if( rc
==SQLITE_EMPTY
){
5581 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5587 int sqlite3BtreeLast(BtCursor
*pCur
, int *pRes
){
5588 assert( cursorOwnsBtShared(pCur
) );
5589 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5591 /* If the cursor already points to the last entry, this is a no-op. */
5592 if( CURSOR_VALID
==pCur
->eState
&& (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5594 /* This block serves to assert() that the cursor really does point
5595 ** to the last entry in the b-tree. */
5597 for(ii
=0; ii
<pCur
->iPage
; ii
++){
5598 assert( pCur
->aiIdx
[ii
]==pCur
->apPage
[ii
]->nCell
);
5600 assert( pCur
->ix
==pCur
->pPage
->nCell
-1 || CORRUPT_DB
);
5601 testcase( pCur
->ix
!=pCur
->pPage
->nCell
-1 );
5602 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5603 assert( pCur
->pPage
->leaf
);
5608 return btreeLast(pCur
, pRes
);
5611 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5612 ** table near the key intKey. Return a success code.
5614 ** If an exact match is not found, then the cursor is always
5615 ** left pointing at a leaf page which would hold the entry if it
5616 ** were present. The cursor might point to an entry that comes
5617 ** before or after the key.
5619 ** An integer is written into *pRes which is the result of
5620 ** comparing the key with the entry to which the cursor is
5621 ** pointing. The meaning of the integer written into
5622 ** *pRes is as follows:
5624 ** *pRes<0 The cursor is left pointing at an entry that
5625 ** is smaller than intKey or if the table is empty
5626 ** and the cursor is therefore left point to nothing.
5628 ** *pRes==0 The cursor is left pointing at an entry that
5629 ** exactly matches intKey.
5631 ** *pRes>0 The cursor is left pointing at an entry that
5632 ** is larger than intKey.
5634 int sqlite3BtreeTableMoveto(
5635 BtCursor
*pCur
, /* The cursor to be moved */
5636 i64 intKey
, /* The table key */
5637 int biasRight
, /* If true, bias the search to the high end */
5638 int *pRes
/* Write search results here */
5642 assert( cursorOwnsBtShared(pCur
) );
5643 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5645 assert( pCur
->pKeyInfo
==0 );
5646 assert( pCur
->eState
!=CURSOR_VALID
|| pCur
->curIntKey
!=0 );
5648 /* If the cursor is already positioned at the point we are trying
5649 ** to move to, then just return without doing any work */
5650 if( pCur
->eState
==CURSOR_VALID
&& (pCur
->curFlags
& BTCF_ValidNKey
)!=0 ){
5651 if( pCur
->info
.nKey
==intKey
){
5655 if( pCur
->info
.nKey
<intKey
){
5656 if( (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5660 /* If the requested key is one more than the previous key, then
5661 ** try to get there using sqlite3BtreeNext() rather than a full
5662 ** binary search. This is an optimization only. The correct answer
5663 ** is still obtained without this case, only a little more slowely */
5664 if( pCur
->info
.nKey
+1==intKey
){
5666 rc
= sqlite3BtreeNext(pCur
, 0);
5667 if( rc
==SQLITE_OK
){
5669 if( pCur
->info
.nKey
==intKey
){
5672 }else if( rc
!=SQLITE_DONE
){
5680 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5683 rc
= moveToRoot(pCur
);
5685 if( rc
==SQLITE_EMPTY
){
5686 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5692 assert( pCur
->pPage
);
5693 assert( pCur
->pPage
->isInit
);
5694 assert( pCur
->eState
==CURSOR_VALID
);
5695 assert( pCur
->pPage
->nCell
> 0 );
5696 assert( pCur
->iPage
==0 || pCur
->apPage
[0]->intKey
==pCur
->curIntKey
);
5697 assert( pCur
->curIntKey
);
5700 int lwr
, upr
, idx
, c
;
5702 MemPage
*pPage
= pCur
->pPage
;
5703 u8
*pCell
; /* Pointer to current cell in pPage */
5705 /* pPage->nCell must be greater than zero. If this is the root-page
5706 ** the cursor would have been INVALID above and this for(;;) loop
5707 ** not run. If this is not the root-page, then the moveToChild() routine
5708 ** would have already detected db corruption. Similarly, pPage must
5709 ** be the right kind (index or table) of b-tree page. Otherwise
5710 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5711 assert( pPage
->nCell
>0 );
5712 assert( pPage
->intKey
);
5714 upr
= pPage
->nCell
-1;
5715 assert( biasRight
==0 || biasRight
==1 );
5716 idx
= upr
>>(1-biasRight
); /* idx = biasRight ? upr : (lwr+upr)/2; */
5719 pCell
= findCellPastPtr(pPage
, idx
);
5720 if( pPage
->intKeyLeaf
){
5721 while( 0x80 <= *(pCell
++) ){
5722 if( pCell
>=pPage
->aDataEnd
){
5723 return SQLITE_CORRUPT_PAGE(pPage
);
5727 getVarint(pCell
, (u64
*)&nCellKey
);
5728 if( nCellKey
<intKey
){
5730 if( lwr
>upr
){ c
= -1; break; }
5731 }else if( nCellKey
>intKey
){
5733 if( lwr
>upr
){ c
= +1; break; }
5735 assert( nCellKey
==intKey
);
5736 pCur
->ix
= (u16
)idx
;
5739 goto moveto_table_next_layer
;
5741 pCur
->curFlags
|= BTCF_ValidNKey
;
5742 pCur
->info
.nKey
= nCellKey
;
5743 pCur
->info
.nSize
= 0;
5748 assert( lwr
+upr
>=0 );
5749 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2; */
5751 assert( lwr
==upr
+1 || !pPage
->leaf
);
5752 assert( pPage
->isInit
);
5754 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5755 pCur
->ix
= (u16
)idx
;
5758 goto moveto_table_finish
;
5760 moveto_table_next_layer
:
5761 if( lwr
>=pPage
->nCell
){
5762 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5764 chldPg
= get4byte(findCell(pPage
, lwr
));
5766 pCur
->ix
= (u16
)lwr
;
5767 rc
= moveToChild(pCur
, chldPg
);
5770 moveto_table_finish
:
5771 pCur
->info
.nSize
= 0;
5772 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5777 ** Compare the "idx"-th cell on the page the cursor pCur is currently
5778 ** pointing to to pIdxKey using xRecordCompare. Return negative or
5779 ** zero if the cell is less than or equal pIdxKey. Return positive
5782 ** Return value negative: Cell at pCur[idx] less than pIdxKey
5784 ** Return value is zero: Cell at pCur[idx] equals pIdxKey
5786 ** Return value positive: Nothing is known about the relationship
5787 ** of the cell at pCur[idx] and pIdxKey.
5789 ** This routine is part of an optimization. It is always safe to return
5790 ** a positive value as that will cause the optimization to be skipped.
5792 static int indexCellCompare(
5795 UnpackedRecord
*pIdxKey
,
5796 RecordCompare xRecordCompare
5798 MemPage
*pPage
= pCur
->pPage
;
5800 int nCell
; /* Size of the pCell cell in bytes */
5801 u8
*pCell
= findCellPastPtr(pPage
, idx
);
5804 if( nCell
<=pPage
->max1bytePayload
){
5805 /* This branch runs if the record-size field of the cell is a
5806 ** single byte varint and the record fits entirely on the main
5808 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5809 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5810 }else if( !(pCell
[1] & 0x80)
5811 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5813 /* The record-size field is a 2 byte varint and the record
5814 ** fits entirely on the main b-tree page. */
5815 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5816 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
5818 /* If the record extends into overflow pages, do not attempt
5819 ** the optimization. */
5826 ** Return true (non-zero) if pCur is current pointing to the last
5829 static int cursorOnLastPage(BtCursor
*pCur
){
5831 assert( pCur
->eState
==CURSOR_VALID
);
5832 for(i
=0; i
<pCur
->iPage
; i
++){
5833 MemPage
*pPage
= pCur
->apPage
[i
];
5834 if( pCur
->aiIdx
[i
]<pPage
->nCell
) return 0;
5839 /* Move the cursor so that it points to an entry in an index table
5840 ** near the key pIdxKey. Return a success code.
5842 ** If an exact match is not found, then the cursor is always
5843 ** left pointing at a leaf page which would hold the entry if it
5844 ** were present. The cursor might point to an entry that comes
5845 ** before or after the key.
5847 ** An integer is written into *pRes which is the result of
5848 ** comparing the key with the entry to which the cursor is
5849 ** pointing. The meaning of the integer written into
5850 ** *pRes is as follows:
5852 ** *pRes<0 The cursor is left pointing at an entry that
5853 ** is smaller than pIdxKey or if the table is empty
5854 ** and the cursor is therefore left point to nothing.
5856 ** *pRes==0 The cursor is left pointing at an entry that
5857 ** exactly matches pIdxKey.
5859 ** *pRes>0 The cursor is left pointing at an entry that
5860 ** is larger than pIdxKey.
5862 ** The pIdxKey->eqSeen field is set to 1 if there
5863 ** exists an entry in the table that exactly matches pIdxKey.
5865 int sqlite3BtreeIndexMoveto(
5866 BtCursor
*pCur
, /* The cursor to be moved */
5867 UnpackedRecord
*pIdxKey
, /* Unpacked index key */
5868 int *pRes
/* Write search results here */
5871 RecordCompare xRecordCompare
;
5873 assert( cursorOwnsBtShared(pCur
) );
5874 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5876 assert( pCur
->pKeyInfo
!=0 );
5879 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5882 xRecordCompare
= sqlite3VdbeFindCompare(pIdxKey
);
5883 pIdxKey
->errCode
= 0;
5884 assert( pIdxKey
->default_rc
==1
5885 || pIdxKey
->default_rc
==0
5886 || pIdxKey
->default_rc
==-1
5890 /* Check to see if we can skip a lot of work. Two cases:
5892 ** (1) If the cursor is already pointing to the very last cell
5893 ** in the table and the pIdxKey search key is greater than or
5894 ** equal to that last cell, then no movement is required.
5896 ** (2) If the cursor is on the last page of the table and the first
5897 ** cell on that last page is less than or equal to the pIdxKey
5898 ** search key, then we can start the search on the current page
5899 ** without needing to go back to root.
5901 if( pCur
->eState
==CURSOR_VALID
5902 && pCur
->pPage
->leaf
5903 && cursorOnLastPage(pCur
)
5906 if( pCur
->ix
==pCur
->pPage
->nCell
-1
5907 && (c
= indexCellCompare(pCur
, pCur
->ix
, pIdxKey
, xRecordCompare
))<=0
5908 && pIdxKey
->errCode
==SQLITE_OK
5911 return SQLITE_OK
; /* Cursor already pointing at the correct spot */
5914 && indexCellCompare(pCur
, 0, pIdxKey
, xRecordCompare
)<=0
5915 && pIdxKey
->errCode
==SQLITE_OK
5917 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
5918 if( !pCur
->pPage
->isInit
){
5919 return SQLITE_CORRUPT_BKPT
;
5921 goto bypass_moveto_root
; /* Start search on the current page */
5923 pIdxKey
->errCode
= SQLITE_OK
;
5926 rc
= moveToRoot(pCur
);
5928 if( rc
==SQLITE_EMPTY
){
5929 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5937 assert( pCur
->pPage
);
5938 assert( pCur
->pPage
->isInit
);
5939 assert( pCur
->eState
==CURSOR_VALID
);
5940 assert( pCur
->pPage
->nCell
> 0 );
5941 assert( pCur
->curIntKey
==0 );
5942 assert( pIdxKey
!=0 );
5944 int lwr
, upr
, idx
, c
;
5946 MemPage
*pPage
= pCur
->pPage
;
5947 u8
*pCell
; /* Pointer to current cell in pPage */
5949 /* pPage->nCell must be greater than zero. If this is the root-page
5950 ** the cursor would have been INVALID above and this for(;;) loop
5951 ** not run. If this is not the root-page, then the moveToChild() routine
5952 ** would have already detected db corruption. Similarly, pPage must
5953 ** be the right kind (index or table) of b-tree page. Otherwise
5954 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5955 assert( pPage
->nCell
>0 );
5956 assert( pPage
->intKey
==0 );
5958 upr
= pPage
->nCell
-1;
5959 idx
= upr
>>1; /* idx = (lwr+upr)/2; */
5961 int nCell
; /* Size of the pCell cell in bytes */
5962 pCell
= findCellPastPtr(pPage
, idx
);
5964 /* The maximum supported page-size is 65536 bytes. This means that
5965 ** the maximum number of record bytes stored on an index B-Tree
5966 ** page is less than 16384 bytes and may be stored as a 2-byte
5967 ** varint. This information is used to attempt to avoid parsing
5968 ** the entire cell by checking for the cases where the record is
5969 ** stored entirely within the b-tree page by inspecting the first
5970 ** 2 bytes of the cell.
5973 if( nCell
<=pPage
->max1bytePayload
){
5974 /* This branch runs if the record-size field of the cell is a
5975 ** single byte varint and the record fits entirely on the main
5977 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5978 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5979 }else if( !(pCell
[1] & 0x80)
5980 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5982 /* The record-size field is a 2 byte varint and the record
5983 ** fits entirely on the main b-tree page. */
5984 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5985 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
5987 /* The record flows over onto one or more overflow pages. In
5988 ** this case the whole cell needs to be parsed, a buffer allocated
5989 ** and accessPayload() used to retrieve the record into the
5990 ** buffer before VdbeRecordCompare() can be called.
5992 ** If the record is corrupt, the xRecordCompare routine may read
5993 ** up to two varints past the end of the buffer. An extra 18
5994 ** bytes of padding is allocated at the end of the buffer in
5995 ** case this happens. */
5997 u8
* const pCellBody
= pCell
- pPage
->childPtrSize
;
5998 const int nOverrun
= 18; /* Size of the overrun padding */
5999 pPage
->xParseCell(pPage
, pCellBody
, &pCur
->info
);
6000 nCell
= (int)pCur
->info
.nKey
;
6001 testcase( nCell
<0 ); /* True if key size is 2^32 or more */
6002 testcase( nCell
==0 ); /* Invalid key size: 0x80 0x80 0x00 */
6003 testcase( nCell
==1 ); /* Invalid key size: 0x80 0x80 0x01 */
6004 testcase( nCell
==2 ); /* Minimum legal index key size */
6005 if( nCell
<2 || nCell
/pCur
->pBt
->usableSize
>pCur
->pBt
->nPage
){
6006 rc
= SQLITE_CORRUPT_PAGE(pPage
);
6007 goto moveto_index_finish
;
6009 pCellKey
= sqlite3Malloc( nCell
+nOverrun
);
6011 rc
= SQLITE_NOMEM_BKPT
;
6012 goto moveto_index_finish
;
6014 pCur
->ix
= (u16
)idx
;
6015 rc
= accessPayload(pCur
, 0, nCell
, (unsigned char*)pCellKey
, 0);
6016 memset(((u8
*)pCellKey
)+nCell
,0,nOverrun
); /* Fix uninit warnings */
6017 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
6019 sqlite3_free(pCellKey
);
6020 goto moveto_index_finish
;
6022 c
= sqlite3VdbeRecordCompare(nCell
, pCellKey
, pIdxKey
);
6023 sqlite3_free(pCellKey
);
6026 (pIdxKey
->errCode
!=SQLITE_CORRUPT
|| c
==0)
6027 && (pIdxKey
->errCode
!=SQLITE_NOMEM
|| pCur
->pBtree
->db
->mallocFailed
)
6037 pCur
->ix
= (u16
)idx
;
6038 if( pIdxKey
->errCode
) rc
= SQLITE_CORRUPT_BKPT
;
6039 goto moveto_index_finish
;
6041 if( lwr
>upr
) break;
6042 assert( lwr
+upr
>=0 );
6043 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2 */
6045 assert( lwr
==upr
+1 || (pPage
->intKey
&& !pPage
->leaf
) );
6046 assert( pPage
->isInit
);
6048 assert( pCur
->ix
<pCur
->pPage
->nCell
|| CORRUPT_DB
);
6049 pCur
->ix
= (u16
)idx
;
6052 goto moveto_index_finish
;
6054 if( lwr
>=pPage
->nCell
){
6055 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
6057 chldPg
= get4byte(findCell(pPage
, lwr
));
6059 pCur
->ix
= (u16
)lwr
;
6060 rc
= moveToChild(pCur
, chldPg
);
6063 moveto_index_finish
:
6064 pCur
->info
.nSize
= 0;
6065 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
6071 ** Return TRUE if the cursor is not pointing at an entry of the table.
6073 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
6074 ** past the last entry in the table or sqlite3BtreePrev() moves past
6075 ** the first entry. TRUE is also returned if the table is empty.
6077 int sqlite3BtreeEof(BtCursor
*pCur
){
6078 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6079 ** have been deleted? This API will need to change to return an error code
6080 ** as well as the boolean result value.
6082 return (CURSOR_VALID
!=pCur
->eState
);
6086 ** Return an estimate for the number of rows in the table that pCur is
6087 ** pointing to. Return a negative number if no estimate is currently
6090 i64
sqlite3BtreeRowCountEst(BtCursor
*pCur
){
6094 assert( cursorOwnsBtShared(pCur
) );
6095 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
6097 /* Currently this interface is only called by the OP_IfSmaller
6098 ** opcode, and it that case the cursor will always be valid and
6099 ** will always point to a leaf node. */
6100 if( NEVER(pCur
->eState
!=CURSOR_VALID
) ) return -1;
6101 if( NEVER(pCur
->pPage
->leaf
==0) ) return -1;
6103 n
= pCur
->pPage
->nCell
;
6104 for(i
=0; i
<pCur
->iPage
; i
++){
6105 n
*= pCur
->apPage
[i
]->nCell
;
6111 ** Advance the cursor to the next entry in the database.
6114 ** SQLITE_OK success
6115 ** SQLITE_DONE cursor is already pointing at the last element
6116 ** otherwise some kind of error occurred
6118 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
6119 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6120 ** to the next cell on the current page. The (slower) btreeNext() helper
6121 ** routine is called when it is necessary to move to a different page or
6122 ** to restore the cursor.
6124 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6125 ** cursor corresponds to an SQL index and this routine could have been
6126 ** skipped if the SQL index had been a unique index. The F argument
6127 ** is a hint to the implement. SQLite btree implementation does not use
6128 ** this hint, but COMDB2 does.
6130 static SQLITE_NOINLINE
int btreeNext(BtCursor
*pCur
){
6135 assert( cursorOwnsBtShared(pCur
) );
6136 if( pCur
->eState
!=CURSOR_VALID
){
6137 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
6138 rc
= restoreCursorPosition(pCur
);
6139 if( rc
!=SQLITE_OK
){
6142 if( CURSOR_INVALID
==pCur
->eState
){
6145 if( pCur
->eState
==CURSOR_SKIPNEXT
){
6146 pCur
->eState
= CURSOR_VALID
;
6147 if( pCur
->skipNext
>0 ) return SQLITE_OK
;
6151 pPage
= pCur
->pPage
;
6153 if( sqlite3FaultSim(412) ) pPage
->isInit
= 0;
6154 if( !pPage
->isInit
){
6155 return SQLITE_CORRUPT_BKPT
;
6158 if( idx
>=pPage
->nCell
){
6160 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
6162 return moveToLeftmost(pCur
);
6165 if( pCur
->iPage
==0 ){
6166 pCur
->eState
= CURSOR_INVALID
;
6170 pPage
= pCur
->pPage
;
6171 }while( pCur
->ix
>=pPage
->nCell
);
6172 if( pPage
->intKey
){
6173 return sqlite3BtreeNext(pCur
, 0);
6181 return moveToLeftmost(pCur
);
6184 int sqlite3BtreeNext(BtCursor
*pCur
, int flags
){
6186 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
6187 assert( cursorOwnsBtShared(pCur
) );
6188 assert( flags
==0 || flags
==1 );
6189 pCur
->info
.nSize
= 0;
6190 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
6191 if( pCur
->eState
!=CURSOR_VALID
) return btreeNext(pCur
);
6192 pPage
= pCur
->pPage
;
6193 if( (++pCur
->ix
)>=pPage
->nCell
){
6195 return btreeNext(pCur
);
6200 return moveToLeftmost(pCur
);
6205 ** Step the cursor to the back to the previous entry in the database.
6208 ** SQLITE_OK success
6209 ** SQLITE_DONE the cursor is already on the first element of the table
6210 ** otherwise some kind of error occurred
6212 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
6213 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
6214 ** to the previous cell on the current page. The (slower) btreePrevious()
6215 ** helper routine is called when it is necessary to move to a different page
6216 ** or to restore the cursor.
6218 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6219 ** the cursor corresponds to an SQL index and this routine could have been
6220 ** skipped if the SQL index had been a unique index. The F argument is a
6221 ** hint to the implement. The native SQLite btree implementation does not
6222 ** use this hint, but COMDB2 does.
6224 static SQLITE_NOINLINE
int btreePrevious(BtCursor
*pCur
){
6228 assert( cursorOwnsBtShared(pCur
) );
6229 assert( (pCur
->curFlags
& (BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
))==0 );
6230 assert( pCur
->info
.nSize
==0 );
6231 if( pCur
->eState
!=CURSOR_VALID
){
6232 rc
= restoreCursorPosition(pCur
);
6233 if( rc
!=SQLITE_OK
){
6236 if( CURSOR_INVALID
==pCur
->eState
){
6239 if( CURSOR_SKIPNEXT
==pCur
->eState
){
6240 pCur
->eState
= CURSOR_VALID
;
6241 if( pCur
->skipNext
<0 ) return SQLITE_OK
;
6245 pPage
= pCur
->pPage
;
6246 assert( pPage
->isInit
);
6249 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, idx
)));
6251 rc
= moveToRightmost(pCur
);
6253 while( pCur
->ix
==0 ){
6254 if( pCur
->iPage
==0 ){
6255 pCur
->eState
= CURSOR_INVALID
;
6260 assert( pCur
->info
.nSize
==0 );
6261 assert( (pCur
->curFlags
& (BTCF_ValidOvfl
))==0 );
6264 pPage
= pCur
->pPage
;
6265 if( pPage
->intKey
&& !pPage
->leaf
){
6266 rc
= sqlite3BtreePrevious(pCur
, 0);
6273 int sqlite3BtreePrevious(BtCursor
*pCur
, int flags
){
6274 assert( cursorOwnsBtShared(pCur
) );
6275 assert( flags
==0 || flags
==1 );
6276 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
6277 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
);
6278 pCur
->info
.nSize
= 0;
6279 if( pCur
->eState
!=CURSOR_VALID
6281 || pCur
->pPage
->leaf
==0
6283 return btreePrevious(pCur
);
6290 ** Allocate a new page from the database file.
6292 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
6293 ** has already been called on the new page.) The new page has also
6294 ** been referenced and the calling routine is responsible for calling
6295 ** sqlite3PagerUnref() on the new page when it is done.
6297 ** SQLITE_OK is returned on success. Any other return value indicates
6298 ** an error. *ppPage is set to NULL in the event of an error.
6300 ** If the "nearby" parameter is not 0, then an effort is made to
6301 ** locate a page close to the page number "nearby". This can be used in an
6302 ** attempt to keep related pages close to each other in the database file,
6303 ** which in turn can make database access faster.
6305 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6306 ** anywhere on the free-list, then it is guaranteed to be returned. If
6307 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6308 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6309 ** are no restrictions on which page is returned.
6311 static int allocateBtreePage(
6312 BtShared
*pBt
, /* The btree */
6313 MemPage
**ppPage
, /* Store pointer to the allocated page here */
6314 Pgno
*pPgno
, /* Store the page number here */
6315 Pgno nearby
, /* Search for a page near this one */
6316 u8 eMode
/* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6320 u32 n
; /* Number of pages on the freelist */
6321 u32 k
; /* Number of leaves on the trunk of the freelist */
6322 MemPage
*pTrunk
= 0;
6323 MemPage
*pPrevTrunk
= 0;
6324 Pgno mxPage
; /* Total size of the database file */
6326 assert( sqlite3_mutex_held(pBt
->mutex
) );
6327 assert( eMode
==BTALLOC_ANY
|| (nearby
>0 && IfNotOmitAV(pBt
->autoVacuum
)) );
6328 pPage1
= pBt
->pPage1
;
6329 mxPage
= btreePagecount(pBt
);
6330 /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36
6331 ** stores the total number of pages on the freelist. */
6332 n
= get4byte(&pPage1
->aData
[36]);
6333 testcase( n
==mxPage
-1 );
6335 return SQLITE_CORRUPT_BKPT
;
6338 /* There are pages on the freelist. Reuse one of those pages. */
6340 u8 searchList
= 0; /* If the free-list must be searched for 'nearby' */
6341 u32 nSearch
= 0; /* Count of the number of search attempts */
6343 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6344 ** shows that the page 'nearby' is somewhere on the free-list, then
6345 ** the entire-list will be searched for that page.
6347 #ifndef SQLITE_OMIT_AUTOVACUUM
6348 if( eMode
==BTALLOC_EXACT
){
6349 if( nearby
<=mxPage
){
6352 assert( pBt
->autoVacuum
);
6353 rc
= ptrmapGet(pBt
, nearby
, &eType
, 0);
6355 if( eType
==PTRMAP_FREEPAGE
){
6359 }else if( eMode
==BTALLOC_LE
){
6364 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6365 ** first free-list trunk page. iPrevTrunk is initially 1.
6367 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6369 put4byte(&pPage1
->aData
[36], n
-1);
6371 /* The code within this loop is run only once if the 'searchList' variable
6372 ** is not true. Otherwise, it runs once for each trunk-page on the
6373 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6374 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6377 pPrevTrunk
= pTrunk
;
6379 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6380 ** is the page number of the next freelist trunk page in the list or
6381 ** zero if this is the last freelist trunk page. */
6382 iTrunk
= get4byte(&pPrevTrunk
->aData
[0]);
6384 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6385 ** stores the page number of the first page of the freelist, or zero if
6386 ** the freelist is empty. */
6387 iTrunk
= get4byte(&pPage1
->aData
[32]);
6389 testcase( iTrunk
==mxPage
);
6390 if( iTrunk
>mxPage
|| nSearch
++ > n
){
6391 rc
= SQLITE_CORRUPT_PGNO(pPrevTrunk
? pPrevTrunk
->pgno
: 1);
6393 rc
= btreeGetUnusedPage(pBt
, iTrunk
, &pTrunk
, 0);
6397 goto end_allocate_page
;
6399 assert( pTrunk
!=0 );
6400 assert( pTrunk
->aData
!=0 );
6401 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6402 ** is the number of leaf page pointers to follow. */
6403 k
= get4byte(&pTrunk
->aData
[4]);
6404 if( k
==0 && !searchList
){
6405 /* The trunk has no leaves and the list is not being searched.
6406 ** So extract the trunk page itself and use it as the newly
6407 ** allocated page */
6408 assert( pPrevTrunk
==0 );
6409 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6411 goto end_allocate_page
;
6414 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6417 TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno
, n
-1));
6418 }else if( k
>(u32
)(pBt
->usableSize
/4 - 2) ){
6419 /* Value of k is out of range. Database corruption */
6420 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6421 goto end_allocate_page
;
6422 #ifndef SQLITE_OMIT_AUTOVACUUM
6423 }else if( searchList
6424 && (nearby
==iTrunk
|| (iTrunk
<nearby
&& eMode
==BTALLOC_LE
))
6426 /* The list is being searched and this trunk page is the page
6427 ** to allocate, regardless of whether it has leaves.
6432 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6434 goto end_allocate_page
;
6438 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6440 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6441 if( rc
!=SQLITE_OK
){
6442 goto end_allocate_page
;
6444 memcpy(&pPrevTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6447 /* The trunk page is required by the caller but it contains
6448 ** pointers to free-list leaves. The first leaf becomes a trunk
6449 ** page in this case.
6452 Pgno iNewTrunk
= get4byte(&pTrunk
->aData
[8]);
6453 if( iNewTrunk
>mxPage
){
6454 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6455 goto end_allocate_page
;
6457 testcase( iNewTrunk
==mxPage
);
6458 rc
= btreeGetUnusedPage(pBt
, iNewTrunk
, &pNewTrunk
, 0);
6459 if( rc
!=SQLITE_OK
){
6460 goto end_allocate_page
;
6462 rc
= sqlite3PagerWrite(pNewTrunk
->pDbPage
);
6463 if( rc
!=SQLITE_OK
){
6464 releasePage(pNewTrunk
);
6465 goto end_allocate_page
;
6467 memcpy(&pNewTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6468 put4byte(&pNewTrunk
->aData
[4], k
-1);
6469 memcpy(&pNewTrunk
->aData
[8], &pTrunk
->aData
[12], (k
-1)*4);
6470 releasePage(pNewTrunk
);
6472 assert( sqlite3PagerIswriteable(pPage1
->pDbPage
) );
6473 put4byte(&pPage1
->aData
[32], iNewTrunk
);
6475 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6477 goto end_allocate_page
;
6479 put4byte(&pPrevTrunk
->aData
[0], iNewTrunk
);
6483 TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno
, n
-1));
6486 /* Extract a leaf from the trunk */
6489 unsigned char *aData
= pTrunk
->aData
;
6493 if( eMode
==BTALLOC_LE
){
6495 iPage
= get4byte(&aData
[8+i
*4]);
6496 if( iPage
<=nearby
){
6503 dist
= sqlite3AbsInt32(get4byte(&aData
[8]) - nearby
);
6505 int d2
= sqlite3AbsInt32(get4byte(&aData
[8+i
*4]) - nearby
);
6516 iPage
= get4byte(&aData
[8+closest
*4]);
6517 testcase( iPage
==mxPage
);
6518 if( iPage
>mxPage
|| iPage
<2 ){
6519 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6520 goto end_allocate_page
;
6522 testcase( iPage
==mxPage
);
6524 || (iPage
==nearby
|| (iPage
<nearby
&& eMode
==BTALLOC_LE
))
6528 TRACE(("ALLOCATE: %u was leaf %u of %u on trunk %u"
6529 ": %u more free pages\n",
6530 *pPgno
, closest
+1, k
, pTrunk
->pgno
, n
-1));
6531 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6532 if( rc
) goto end_allocate_page
;
6534 memcpy(&aData
[8+closest
*4], &aData
[4+k
*4], 4);
6536 put4byte(&aData
[4], k
-1);
6537 noContent
= !btreeGetHasContent(pBt
, *pPgno
)? PAGER_GET_NOCONTENT
: 0;
6538 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, noContent
);
6539 if( rc
==SQLITE_OK
){
6540 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6541 if( rc
!=SQLITE_OK
){
6542 releasePage(*ppPage
);
6549 releasePage(pPrevTrunk
);
6551 }while( searchList
);
6553 /* There are no pages on the freelist, so append a new page to the
6556 ** Normally, new pages allocated by this block can be requested from the
6557 ** pager layer with the 'no-content' flag set. This prevents the pager
6558 ** from trying to read the pages content from disk. However, if the
6559 ** current transaction has already run one or more incremental-vacuum
6560 ** steps, then the page we are about to allocate may contain content
6561 ** that is required in the event of a rollback. In this case, do
6562 ** not set the no-content flag. This causes the pager to load and journal
6563 ** the current page content before overwriting it.
6565 ** Note that the pager will not actually attempt to load or journal
6566 ** content for any page that really does lie past the end of the database
6567 ** file on disk. So the effects of disabling the no-content optimization
6568 ** here are confined to those pages that lie between the end of the
6569 ** database image and the end of the database file.
6571 int bNoContent
= (0==IfNotOmitAV(pBt
->bDoTruncate
))? PAGER_GET_NOCONTENT
:0;
6573 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
6576 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ) pBt
->nPage
++;
6578 #ifndef SQLITE_OMIT_AUTOVACUUM
6579 if( pBt
->autoVacuum
&& PTRMAP_ISPAGE(pBt
, pBt
->nPage
) ){
6580 /* If *pPgno refers to a pointer-map page, allocate two new pages
6581 ** at the end of the file instead of one. The first allocated page
6582 ** becomes a new pointer-map page, the second is used by the caller.
6585 TRACE(("ALLOCATE: %u from end of file (pointer-map page)\n", pBt
->nPage
));
6586 assert( pBt
->nPage
!=PENDING_BYTE_PAGE(pBt
) );
6587 rc
= btreeGetUnusedPage(pBt
, pBt
->nPage
, &pPg
, bNoContent
);
6588 if( rc
==SQLITE_OK
){
6589 rc
= sqlite3PagerWrite(pPg
->pDbPage
);
6594 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ){ pBt
->nPage
++; }
6597 put4byte(28 + (u8
*)pBt
->pPage1
->aData
, pBt
->nPage
);
6598 *pPgno
= pBt
->nPage
;
6600 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6601 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, bNoContent
);
6603 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6604 if( rc
!=SQLITE_OK
){
6605 releasePage(*ppPage
);
6608 TRACE(("ALLOCATE: %u from end of file\n", *pPgno
));
6611 assert( CORRUPT_DB
|| *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6614 releasePage(pTrunk
);
6615 releasePage(pPrevTrunk
);
6616 assert( rc
!=SQLITE_OK
|| sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)<=1 );
6617 assert( rc
!=SQLITE_OK
|| (*ppPage
)->isInit
==0 );
6622 ** This function is used to add page iPage to the database file free-list.
6623 ** It is assumed that the page is not already a part of the free-list.
6625 ** The value passed as the second argument to this function is optional.
6626 ** If the caller happens to have a pointer to the MemPage object
6627 ** corresponding to page iPage handy, it may pass it as the second value.
6628 ** Otherwise, it may pass NULL.
6630 ** If a pointer to a MemPage object is passed as the second argument,
6631 ** its reference count is not altered by this function.
6633 static int freePage2(BtShared
*pBt
, MemPage
*pMemPage
, Pgno iPage
){
6634 MemPage
*pTrunk
= 0; /* Free-list trunk page */
6635 Pgno iTrunk
= 0; /* Page number of free-list trunk page */
6636 MemPage
*pPage1
= pBt
->pPage1
; /* Local reference to page 1 */
6637 MemPage
*pPage
; /* Page being freed. May be NULL. */
6638 int rc
; /* Return Code */
6639 u32 nFree
; /* Initial number of pages on free-list */
6641 assert( sqlite3_mutex_held(pBt
->mutex
) );
6642 assert( CORRUPT_DB
|| iPage
>1 );
6643 assert( !pMemPage
|| pMemPage
->pgno
==iPage
);
6645 if( iPage
<2 || iPage
>pBt
->nPage
){
6646 return SQLITE_CORRUPT_BKPT
;
6650 sqlite3PagerRef(pPage
->pDbPage
);
6652 pPage
= btreePageLookup(pBt
, iPage
);
6655 /* Increment the free page count on pPage1 */
6656 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6657 if( rc
) goto freepage_out
;
6658 nFree
= get4byte(&pPage1
->aData
[36]);
6659 put4byte(&pPage1
->aData
[36], nFree
+1);
6661 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
6662 /* If the secure_delete option is enabled, then
6663 ** always fully overwrite deleted information with zeros.
6665 if( (!pPage
&& ((rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0) )
6666 || ((rc
= sqlite3PagerWrite(pPage
->pDbPage
))!=0)
6670 memset(pPage
->aData
, 0, pPage
->pBt
->pageSize
);
6673 /* If the database supports auto-vacuum, write an entry in the pointer-map
6674 ** to indicate that the page is free.
6676 if( ISAUTOVACUUM(pBt
) ){
6677 ptrmapPut(pBt
, iPage
, PTRMAP_FREEPAGE
, 0, &rc
);
6678 if( rc
) goto freepage_out
;
6681 /* Now manipulate the actual database free-list structure. There are two
6682 ** possibilities. If the free-list is currently empty, or if the first
6683 ** trunk page in the free-list is full, then this page will become a
6684 ** new free-list trunk page. Otherwise, it will become a leaf of the
6685 ** first trunk page in the current free-list. This block tests if it
6686 ** is possible to add the page as a new free-list leaf.
6689 u32 nLeaf
; /* Initial number of leaf cells on trunk page */
6691 iTrunk
= get4byte(&pPage1
->aData
[32]);
6692 if( iTrunk
>btreePagecount(pBt
) ){
6693 rc
= SQLITE_CORRUPT_BKPT
;
6696 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0);
6697 if( rc
!=SQLITE_OK
){
6701 nLeaf
= get4byte(&pTrunk
->aData
[4]);
6702 assert( pBt
->usableSize
>32 );
6703 if( nLeaf
> (u32
)pBt
->usableSize
/4 - 2 ){
6704 rc
= SQLITE_CORRUPT_BKPT
;
6707 if( nLeaf
< (u32
)pBt
->usableSize
/4 - 8 ){
6708 /* In this case there is room on the trunk page to insert the page
6709 ** being freed as a new leaf.
6711 ** Note that the trunk page is not really full until it contains
6712 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6713 ** coded. But due to a coding error in versions of SQLite prior to
6714 ** 3.6.0, databases with freelist trunk pages holding more than
6715 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6716 ** to maintain backwards compatibility with older versions of SQLite,
6717 ** we will continue to restrict the number of entries to usableSize/4 - 8
6718 ** for now. At some point in the future (once everyone has upgraded
6719 ** to 3.6.0 or later) we should consider fixing the conditional above
6720 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6722 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6723 ** avoid using the last six entries in the freelist trunk page array in
6724 ** order that database files created by newer versions of SQLite can be
6725 ** read by older versions of SQLite.
6727 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6728 if( rc
==SQLITE_OK
){
6729 put4byte(&pTrunk
->aData
[4], nLeaf
+1);
6730 put4byte(&pTrunk
->aData
[8+nLeaf
*4], iPage
);
6731 if( pPage
&& (pBt
->btsFlags
& BTS_SECURE_DELETE
)==0 ){
6732 sqlite3PagerDontWrite(pPage
->pDbPage
);
6734 rc
= btreeSetHasContent(pBt
, iPage
);
6736 TRACE(("FREE-PAGE: %u leaf on trunk page %u\n",pPage
->pgno
,pTrunk
->pgno
));
6741 /* If control flows to this point, then it was not possible to add the
6742 ** the page being freed as a leaf page of the first trunk in the free-list.
6743 ** Possibly because the free-list is empty, or possibly because the
6744 ** first trunk in the free-list is full. Either way, the page being freed
6745 ** will become the new first trunk page in the free-list.
6747 if( pPage
==0 && SQLITE_OK
!=(rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0)) ){
6750 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6751 if( rc
!=SQLITE_OK
){
6754 put4byte(pPage
->aData
, iTrunk
);
6755 put4byte(&pPage
->aData
[4], 0);
6756 put4byte(&pPage1
->aData
[32], iPage
);
6757 TRACE(("FREE-PAGE: %u new trunk page replacing %u\n", pPage
->pgno
, iTrunk
));
6764 releasePage(pTrunk
);
6767 static void freePage(MemPage
*pPage
, int *pRC
){
6768 if( (*pRC
)==SQLITE_OK
){
6769 *pRC
= freePage2(pPage
->pBt
, pPage
, pPage
->pgno
);
6774 ** Free the overflow pages associated with the given Cell.
6776 static SQLITE_NOINLINE
int clearCellOverflow(
6777 MemPage
*pPage
, /* The page that contains the Cell */
6778 unsigned char *pCell
, /* First byte of the Cell */
6779 CellInfo
*pInfo
/* Size information about the cell */
6787 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6788 assert( pInfo
->nLocal
!=pInfo
->nPayload
);
6789 testcase( pCell
+ pInfo
->nSize
== pPage
->aDataEnd
);
6790 testcase( pCell
+ (pInfo
->nSize
-1) == pPage
->aDataEnd
);
6791 if( pCell
+ pInfo
->nSize
> pPage
->aDataEnd
){
6792 /* Cell extends past end of page */
6793 return SQLITE_CORRUPT_PAGE(pPage
);
6795 ovflPgno
= get4byte(pCell
+ pInfo
->nSize
- 4);
6797 assert( pBt
->usableSize
> 4 );
6798 ovflPageSize
= pBt
->usableSize
- 4;
6799 nOvfl
= (pInfo
->nPayload
- pInfo
->nLocal
+ ovflPageSize
- 1)/ovflPageSize
;
6801 (CORRUPT_DB
&& (pInfo
->nPayload
+ ovflPageSize
)<ovflPageSize
)
6806 if( ovflPgno
<2 || ovflPgno
>btreePagecount(pBt
) ){
6807 /* 0 is not a legal page number and page 1 cannot be an
6808 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6809 ** file the database must be corrupt. */
6810 return SQLITE_CORRUPT_BKPT
;
6813 rc
= getOverflowPage(pBt
, ovflPgno
, &pOvfl
, &iNext
);
6817 if( ( pOvfl
|| ((pOvfl
= btreePageLookup(pBt
, ovflPgno
))!=0) )
6818 && sqlite3PagerPageRefcount(pOvfl
->pDbPage
)!=1
6820 /* There is no reason any cursor should have an outstanding reference
6821 ** to an overflow page belonging to a cell that is being deleted/updated.
6822 ** So if there exists more than one reference to this page, then it
6823 ** must not really be an overflow page and the database must be corrupt.
6824 ** It is helpful to detect this before calling freePage2(), as
6825 ** freePage2() may zero the page contents if secure-delete mode is
6826 ** enabled. If this 'overflow' page happens to be a page that the
6827 ** caller is iterating through or using in some other way, this
6828 ** can be problematic.
6830 rc
= SQLITE_CORRUPT_BKPT
;
6832 rc
= freePage2(pBt
, pOvfl
, ovflPgno
);
6836 sqlite3PagerUnref(pOvfl
->pDbPage
);
6844 /* Call xParseCell to compute the size of a cell. If the cell contains
6845 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6846 ** STore the result code (SQLITE_OK or some error code) in rc.
6848 ** Implemented as macro to force inlining for performance.
6850 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6851 pPage->xParseCell(pPage, pCell, &sInfo); \
6852 if( sInfo.nLocal!=sInfo.nPayload ){ \
6853 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6860 ** Create the byte sequence used to represent a cell on page pPage
6861 ** and write that byte sequence into pCell[]. Overflow pages are
6862 ** allocated and filled in as necessary. The calling procedure
6863 ** is responsible for making sure sufficient space has been allocated
6866 ** Note that pCell does not necessary need to point to the pPage->aData
6867 ** area. pCell might point to some temporary storage. The cell will
6868 ** be constructed in this temporary area then copied into pPage->aData
6871 static int fillInCell(
6872 MemPage
*pPage
, /* The page that contains the cell */
6873 unsigned char *pCell
, /* Complete text of the cell */
6874 const BtreePayload
*pX
, /* Payload with which to construct the cell */
6875 int *pnSize
/* Write cell size here */
6879 int nSrc
, n
, rc
, mn
;
6881 MemPage
*pToRelease
;
6882 unsigned char *pPrior
;
6883 unsigned char *pPayload
;
6888 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6890 /* pPage is not necessarily writeable since pCell might be auxiliary
6891 ** buffer space that is separate from the pPage buffer area */
6892 assert( pCell
<pPage
->aData
|| pCell
>=&pPage
->aData
[pPage
->pBt
->pageSize
]
6893 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6895 /* Fill in the header. */
6896 nHeader
= pPage
->childPtrSize
;
6897 if( pPage
->intKey
){
6898 nPayload
= pX
->nData
+ pX
->nZero
;
6901 assert( pPage
->intKeyLeaf
); /* fillInCell() only called for leaves */
6902 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6903 nHeader
+= putVarint(&pCell
[nHeader
], *(u64
*)&pX
->nKey
);
6905 assert( pX
->nKey
<=0x7fffffff && pX
->pKey
!=0 );
6906 nSrc
= nPayload
= (int)pX
->nKey
;
6908 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6911 /* Fill in the payload */
6912 pPayload
= &pCell
[nHeader
];
6913 if( nPayload
<=pPage
->maxLocal
){
6914 /* This is the common case where everything fits on the btree page
6915 ** and no overflow pages are required. */
6916 n
= nHeader
+ nPayload
;
6921 assert( nSrc
<=nPayload
);
6922 testcase( nSrc
<nPayload
);
6923 memcpy(pPayload
, pSrc
, nSrc
);
6924 memset(pPayload
+nSrc
, 0, nPayload
-nSrc
);
6928 /* If we reach this point, it means that some of the content will need
6929 ** to spill onto overflow pages.
6931 mn
= pPage
->minLocal
;
6932 n
= mn
+ (nPayload
- mn
) % (pPage
->pBt
->usableSize
- 4);
6933 testcase( n
==pPage
->maxLocal
);
6934 testcase( n
==pPage
->maxLocal
+1 );
6935 if( n
> pPage
->maxLocal
) n
= mn
;
6937 *pnSize
= n
+ nHeader
+ 4;
6938 pPrior
= &pCell
[nHeader
+n
];
6943 /* At this point variables should be set as follows:
6945 ** nPayload Total payload size in bytes
6946 ** pPayload Begin writing payload here
6947 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6948 ** that means content must spill into overflow pages.
6949 ** *pnSize Size of the local cell (not counting overflow pages)
6950 ** pPrior Where to write the pgno of the first overflow page
6952 ** Use a call to btreeParseCellPtr() to verify that the values above
6953 ** were computed correctly.
6958 pPage
->xParseCell(pPage
, pCell
, &info
);
6959 assert( nHeader
==(int)(info
.pPayload
- pCell
) );
6960 assert( info
.nKey
==pX
->nKey
);
6961 assert( *pnSize
== info
.nSize
);
6962 assert( spaceLeft
== info
.nLocal
);
6966 /* Write the payload into the local Cell and any extra into overflow pages */
6969 if( n
>spaceLeft
) n
= spaceLeft
;
6971 /* If pToRelease is not zero than pPayload points into the data area
6972 ** of pToRelease. Make sure pToRelease is still writeable. */
6973 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6975 /* If pPayload is part of the data area of pPage, then make sure pPage
6976 ** is still writeable */
6977 assert( pPayload
<pPage
->aData
|| pPayload
>=&pPage
->aData
[pBt
->pageSize
]
6978 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6981 memcpy(pPayload
, pSrc
, n
);
6984 memcpy(pPayload
, pSrc
, n
);
6986 memset(pPayload
, 0, n
);
6989 if( nPayload
<=0 ) break;
6996 #ifndef SQLITE_OMIT_AUTOVACUUM
6997 Pgno pgnoPtrmap
= pgnoOvfl
; /* Overflow page pointer-map entry page */
6998 if( pBt
->autoVacuum
){
7002 PTRMAP_ISPAGE(pBt
, pgnoOvfl
) || pgnoOvfl
==PENDING_BYTE_PAGE(pBt
)
7006 rc
= allocateBtreePage(pBt
, &pOvfl
, &pgnoOvfl
, pgnoOvfl
, 0);
7007 #ifndef SQLITE_OMIT_AUTOVACUUM
7008 /* If the database supports auto-vacuum, and the second or subsequent
7009 ** overflow page is being allocated, add an entry to the pointer-map
7010 ** for that page now.
7012 ** If this is the first overflow page, then write a partial entry
7013 ** to the pointer-map. If we write nothing to this pointer-map slot,
7014 ** then the optimistic overflow chain processing in clearCell()
7015 ** may misinterpret the uninitialized values and delete the
7016 ** wrong pages from the database.
7018 if( pBt
->autoVacuum
&& rc
==SQLITE_OK
){
7019 u8 eType
= (pgnoPtrmap
?PTRMAP_OVERFLOW2
:PTRMAP_OVERFLOW1
);
7020 ptrmapPut(pBt
, pgnoOvfl
, eType
, pgnoPtrmap
, &rc
);
7027 releasePage(pToRelease
);
7031 /* If pToRelease is not zero than pPrior points into the data area
7032 ** of pToRelease. Make sure pToRelease is still writeable. */
7033 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
7035 /* If pPrior is part of the data area of pPage, then make sure pPage
7036 ** is still writeable */
7037 assert( pPrior
<pPage
->aData
|| pPrior
>=&pPage
->aData
[pBt
->pageSize
]
7038 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
7040 put4byte(pPrior
, pgnoOvfl
);
7041 releasePage(pToRelease
);
7043 pPrior
= pOvfl
->aData
;
7044 put4byte(pPrior
, 0);
7045 pPayload
= &pOvfl
->aData
[4];
7046 spaceLeft
= pBt
->usableSize
- 4;
7049 releasePage(pToRelease
);
7054 ** Remove the i-th cell from pPage. This routine effects pPage only.
7055 ** The cell content is not freed or deallocated. It is assumed that
7056 ** the cell content has been copied someplace else. This routine just
7057 ** removes the reference to the cell from pPage.
7059 ** "sz" must be the number of bytes in the cell.
7061 static void dropCell(MemPage
*pPage
, int idx
, int sz
, int *pRC
){
7062 u32 pc
; /* Offset to cell content of cell being deleted */
7063 u8
*data
; /* pPage->aData */
7064 u8
*ptr
; /* Used to move bytes around within data[] */
7065 int rc
; /* The return code */
7066 int hdr
; /* Beginning of the header. 0 most pages. 100 page 1 */
7070 assert( idx
<pPage
->nCell
);
7071 assert( CORRUPT_DB
|| sz
==cellSize(pPage
, idx
) );
7072 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
7073 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7074 assert( pPage
->nFree
>=0 );
7075 data
= pPage
->aData
;
7076 ptr
= &pPage
->aCellIdx
[2*idx
];
7077 assert( pPage
->pBt
->usableSize
> (u32
)(ptr
-data
) );
7079 hdr
= pPage
->hdrOffset
;
7080 testcase( pc
==(u32
)get2byte(&data
[hdr
+5]) );
7081 testcase( pc
+sz
==pPage
->pBt
->usableSize
);
7082 if( pc
+sz
> pPage
->pBt
->usableSize
){
7083 *pRC
= SQLITE_CORRUPT_BKPT
;
7086 rc
= freeSpace(pPage
, pc
, sz
);
7092 if( pPage
->nCell
==0 ){
7093 memset(&data
[hdr
+1], 0, 4);
7095 put2byte(&data
[hdr
+5], pPage
->pBt
->usableSize
);
7096 pPage
->nFree
= pPage
->pBt
->usableSize
- pPage
->hdrOffset
7097 - pPage
->childPtrSize
- 8;
7099 memmove(ptr
, ptr
+2, 2*(pPage
->nCell
- idx
));
7100 put2byte(&data
[hdr
+3], pPage
->nCell
);
7106 ** Insert a new cell on pPage at cell index "i". pCell points to the
7107 ** content of the cell.
7109 ** If the cell content will fit on the page, then put it there. If it
7110 ** will not fit, then make a copy of the cell content into pTemp if
7111 ** pTemp is not null. Regardless of pTemp, allocate a new entry
7112 ** in pPage->apOvfl[] and make it point to the cell content (either
7113 ** in pTemp or the original pCell) and also record its index.
7114 ** Allocating a new entry in pPage->aCell[] implies that
7115 ** pPage->nOverflow is incremented.
7117 ** The insertCellFast() routine below works exactly the same as
7118 ** insertCell() except that it lacks the pTemp and iChild parameters
7119 ** which are assumed zero. Other than that, the two routines are the
7122 ** Fixes or enhancements to this routine should be reflected in
7123 ** insertCellFast()!
7125 static int insertCell(
7126 MemPage
*pPage
, /* Page into which we are copying */
7127 int i
, /* New cell becomes the i-th cell of the page */
7128 u8
*pCell
, /* Content of the new cell */
7129 int sz
, /* Bytes of content in pCell */
7130 u8
*pTemp
, /* Temp storage space for pCell, if needed */
7131 Pgno iChild
/* If non-zero, replace first 4 bytes with this value */
7133 int idx
= 0; /* Where to write new cell content in data[] */
7134 int j
; /* Loop counter */
7135 u8
*data
; /* The content of the whole page */
7136 u8
*pIns
; /* The point in pPage->aCellIdx[] where no cell inserted */
7138 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
7139 assert( MX_CELL(pPage
->pBt
)<=10921 );
7140 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
7141 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
7142 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
7143 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7144 assert( sz
==pPage
->xCellSize(pPage
, pCell
) || CORRUPT_DB
);
7145 assert( pPage
->nFree
>=0 );
7147 if( pPage
->nOverflow
|| sz
+2>pPage
->nFree
){
7149 memcpy(pTemp
, pCell
, sz
);
7152 put4byte(pCell
, iChild
);
7153 j
= pPage
->nOverflow
++;
7154 /* Comparison against ArraySize-1 since we hold back one extra slot
7155 ** as a contingency. In other words, never need more than 3 overflow
7156 ** slots but 4 are allocated, just to be safe. */
7157 assert( j
< ArraySize(pPage
->apOvfl
)-1 );
7158 pPage
->apOvfl
[j
] = pCell
;
7159 pPage
->aiOvfl
[j
] = (u16
)i
;
7161 /* When multiple overflows occur, they are always sequential and in
7162 ** sorted order. This invariants arise because multiple overflows can
7163 ** only occur when inserting divider cells into the parent page during
7164 ** balancing, and the dividers are adjacent and sorted.
7166 assert( j
==0 || pPage
->aiOvfl
[j
-1]<(u16
)i
); /* Overflows in sorted order */
7167 assert( j
==0 || i
==pPage
->aiOvfl
[j
-1]+1 ); /* Overflows are sequential */
7169 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7170 if( NEVER(rc
!=SQLITE_OK
) ){
7173 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
7174 data
= pPage
->aData
;
7175 assert( &data
[pPage
->cellOffset
]==pPage
->aCellIdx
);
7176 rc
= allocateSpace(pPage
, sz
, &idx
);
7177 if( rc
){ return rc
; }
7178 /* The allocateSpace() routine guarantees the following properties
7179 ** if it returns successfully */
7181 assert( idx
>= pPage
->cellOffset
+2*pPage
->nCell
+2 || CORRUPT_DB
);
7182 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
7183 pPage
->nFree
-= (u16
)(2 + sz
);
7184 /* In a corrupt database where an entry in the cell index section of
7185 ** a btree page has a value of 3 or less, the pCell value might point
7186 ** as many as 4 bytes in front of the start of the aData buffer for
7187 ** the source page. Make sure this does not cause problems by not
7188 ** reading the first 4 bytes */
7189 memcpy(&data
[idx
+4], pCell
+4, sz
-4);
7190 put4byte(&data
[idx
], iChild
);
7191 pIns
= pPage
->aCellIdx
+ i
*2;
7192 memmove(pIns
+2, pIns
, 2*(pPage
->nCell
- i
));
7193 put2byte(pIns
, idx
);
7195 /* increment the cell count */
7196 if( (++data
[pPage
->hdrOffset
+4])==0 ) data
[pPage
->hdrOffset
+3]++;
7197 assert( get2byte(&data
[pPage
->hdrOffset
+3])==pPage
->nCell
|| CORRUPT_DB
);
7198 #ifndef SQLITE_OMIT_AUTOVACUUM
7199 if( pPage
->pBt
->autoVacuum
){
7200 int rc2
= SQLITE_OK
;
7201 /* The cell may contain a pointer to an overflow page. If so, write
7202 ** the entry for the overflow page into the pointer map.
7204 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc2
);
7205 if( rc2
) return rc2
;
7213 ** This variant of insertCell() assumes that the pTemp and iChild
7214 ** parameters are both zero. Use this variant in sqlite3BtreeInsert()
7215 ** for performance improvement, and also so that this variant is only
7216 ** called from that one place, and is thus inlined, and thus runs must
7219 ** Fixes or enhancements to this routine should be reflected into
7220 ** the insertCell() routine.
7222 static int insertCellFast(
7223 MemPage
*pPage
, /* Page into which we are copying */
7224 int i
, /* New cell becomes the i-th cell of the page */
7225 u8
*pCell
, /* Content of the new cell */
7226 int sz
/* Bytes of content in pCell */
7228 int idx
= 0; /* Where to write new cell content in data[] */
7229 int j
; /* Loop counter */
7230 u8
*data
; /* The content of the whole page */
7231 u8
*pIns
; /* The point in pPage->aCellIdx[] where no cell inserted */
7233 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
7234 assert( MX_CELL(pPage
->pBt
)<=10921 );
7235 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
7236 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
7237 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
7238 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7239 assert( sz
==pPage
->xCellSize(pPage
, pCell
) || CORRUPT_DB
);
7240 assert( pPage
->nFree
>=0 );
7241 assert( pPage
->nOverflow
==0 );
7242 if( sz
+2>pPage
->nFree
){
7243 j
= pPage
->nOverflow
++;
7244 /* Comparison against ArraySize-1 since we hold back one extra slot
7245 ** as a contingency. In other words, never need more than 3 overflow
7246 ** slots but 4 are allocated, just to be safe. */
7247 assert( j
< ArraySize(pPage
->apOvfl
)-1 );
7248 pPage
->apOvfl
[j
] = pCell
;
7249 pPage
->aiOvfl
[j
] = (u16
)i
;
7251 /* When multiple overflows occur, they are always sequential and in
7252 ** sorted order. This invariants arise because multiple overflows can
7253 ** only occur when inserting divider cells into the parent page during
7254 ** balancing, and the dividers are adjacent and sorted.
7256 assert( j
==0 || pPage
->aiOvfl
[j
-1]<(u16
)i
); /* Overflows in sorted order */
7257 assert( j
==0 || i
==pPage
->aiOvfl
[j
-1]+1 ); /* Overflows are sequential */
7259 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7260 if( rc
!=SQLITE_OK
){
7263 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
7264 data
= pPage
->aData
;
7265 assert( &data
[pPage
->cellOffset
]==pPage
->aCellIdx
);
7266 rc
= allocateSpace(pPage
, sz
, &idx
);
7267 if( rc
){ return rc
; }
7268 /* The allocateSpace() routine guarantees the following properties
7269 ** if it returns successfully */
7271 assert( idx
>= pPage
->cellOffset
+2*pPage
->nCell
+2 || CORRUPT_DB
);
7272 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
7273 pPage
->nFree
-= (u16
)(2 + sz
);
7274 memcpy(&data
[idx
], pCell
, sz
);
7275 pIns
= pPage
->aCellIdx
+ i
*2;
7276 memmove(pIns
+2, pIns
, 2*(pPage
->nCell
- i
));
7277 put2byte(pIns
, idx
);
7279 /* increment the cell count */
7280 if( (++data
[pPage
->hdrOffset
+4])==0 ) data
[pPage
->hdrOffset
+3]++;
7281 assert( get2byte(&data
[pPage
->hdrOffset
+3])==pPage
->nCell
|| CORRUPT_DB
);
7282 #ifndef SQLITE_OMIT_AUTOVACUUM
7283 if( pPage
->pBt
->autoVacuum
){
7284 int rc2
= SQLITE_OK
;
7285 /* The cell may contain a pointer to an overflow page. If so, write
7286 ** the entry for the overflow page into the pointer map.
7288 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc2
);
7289 if( rc2
) return rc2
;
7297 ** The following parameters determine how many adjacent pages get involved
7298 ** in a balancing operation. NN is the number of neighbors on either side
7299 ** of the page that participate in the balancing operation. NB is the
7300 ** total number of pages that participate, including the target page and
7301 ** NN neighbors on either side.
7303 ** The minimum value of NN is 1 (of course). Increasing NN above 1
7304 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7305 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7306 ** The value of NN appears to give the best results overall.
7308 ** (Later:) The description above makes it seem as if these values are
7309 ** tunable - as if you could change them and recompile and it would all work.
7310 ** But that is unlikely. NB has been 3 since the inception of SQLite and
7311 ** we have never tested any other value.
7313 #define NN 1 /* Number of neighbors on either side of pPage */
7314 #define NB 3 /* (NN*2+1): Total pages involved in the balance */
7317 ** A CellArray object contains a cache of pointers and sizes for a
7318 ** consecutive sequence of cells that might be held on multiple pages.
7320 ** The cells in this array are the divider cell or cells from the pParent
7321 ** page plus up to three child pages. There are a total of nCell cells.
7323 ** pRef is a pointer to one of the pages that contributes cells. This is
7324 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7325 ** which should be common to all pages that contribute cells to this array.
7327 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7328 ** cell and the size of each cell. Some of the apCell[] pointers might refer
7329 ** to overflow cells. In other words, some apCel[] pointers might not point
7330 ** to content area of the pages.
7332 ** A szCell[] of zero means the size of that cell has not yet been computed.
7334 ** The cells come from as many as four different pages:
7341 ** --------- --------- ---------
7342 ** |Child-1| |Child-2| |Child-3|
7343 ** --------- --------- ---------
7345 ** The order of cells is in the array is for an index btree is:
7347 ** 1. All cells from Child-1 in order
7348 ** 2. The first divider cell from Parent
7349 ** 3. All cells from Child-2 in order
7350 ** 4. The second divider cell from Parent
7351 ** 5. All cells from Child-3 in order
7353 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7354 ** content exists only in leaves and there are no divider cells.
7356 ** For an index btree, the apEnd[] array holds pointer to the end of page
7357 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7358 ** respectively. The ixNx[] array holds the number of cells contained in
7359 ** each of these 5 stages, and all stages to the left. Hence:
7361 ** ixNx[0] = Number of cells in Child-1.
7362 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7363 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7364 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7365 ** ixNx[4] = Total number of cells.
7367 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7368 ** are used and they point to the leaf pages only, and the ixNx value are:
7370 ** ixNx[0] = Number of cells in Child-1.
7371 ** ixNx[1] = Number of cells in Child-1 and Child-2.
7372 ** ixNx[2] = Total number of cells.
7374 ** Sometimes when deleting, a child page can have zero cells. In those
7375 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7376 ** entries, shift down. The end result is that each ixNx[] entry should
7377 ** be larger than the previous
7379 typedef struct CellArray CellArray
;
7381 int nCell
; /* Number of cells in apCell[] */
7382 MemPage
*pRef
; /* Reference page */
7383 u8
**apCell
; /* All cells begin balanced */
7384 u16
*szCell
; /* Local size of all cells in apCell[] */
7385 u8
*apEnd
[NB
*2]; /* MemPage.aDataEnd values */
7386 int ixNx
[NB
*2]; /* Index of at which we move to the next apEnd[] */
7390 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7393 static void populateCellCache(CellArray
*p
, int idx
, int N
){
7394 MemPage
*pRef
= p
->pRef
;
7395 u16
*szCell
= p
->szCell
;
7396 assert( idx
>=0 && idx
+N
<=p
->nCell
);
7398 assert( p
->apCell
[idx
]!=0 );
7399 if( szCell
[idx
]==0 ){
7400 szCell
[idx
] = pRef
->xCellSize(pRef
, p
->apCell
[idx
]);
7402 assert( CORRUPT_DB
||
7403 szCell
[idx
]==pRef
->xCellSize(pRef
, p
->apCell
[idx
]) );
7411 ** Return the size of the Nth element of the cell array
7413 static SQLITE_NOINLINE u16
computeCellSize(CellArray
*p
, int N
){
7414 assert( N
>=0 && N
<p
->nCell
);
7415 assert( p
->szCell
[N
]==0 );
7416 p
->szCell
[N
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[N
]);
7417 return p
->szCell
[N
];
7419 static u16
cachedCellSize(CellArray
*p
, int N
){
7420 assert( N
>=0 && N
<p
->nCell
);
7421 if( p
->szCell
[N
] ) return p
->szCell
[N
];
7422 return computeCellSize(p
, N
);
7426 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7427 ** szCell[] array contains the size in bytes of each cell. This function
7428 ** replaces the current contents of page pPg with the contents of the cell
7431 ** Some of the cells in apCell[] may currently be stored in pPg. This
7432 ** function works around problems caused by this by making a copy of any
7433 ** such cells before overwriting the page data.
7435 ** The MemPage.nFree field is invalidated by this function. It is the
7436 ** responsibility of the caller to set it correctly.
7438 static int rebuildPage(
7439 CellArray
*pCArray
, /* Content to be added to page pPg */
7440 int iFirst
, /* First cell in pCArray to use */
7441 int nCell
, /* Final number of cells on page */
7442 MemPage
*pPg
/* The page to be reconstructed */
7444 const int hdr
= pPg
->hdrOffset
; /* Offset of header on pPg */
7445 u8
* const aData
= pPg
->aData
; /* Pointer to data for pPg */
7446 const int usableSize
= pPg
->pBt
->usableSize
;
7447 u8
* const pEnd
= &aData
[usableSize
];
7448 int i
= iFirst
; /* Which cell to copy from pCArray*/
7449 u32 j
; /* Start of cell content area */
7450 int iEnd
= i
+nCell
; /* Loop terminator */
7451 u8
*pCellptr
= pPg
->aCellIdx
;
7452 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7454 int k
; /* Current slot in pCArray->apEnd[] */
7455 u8
*pSrcEnd
; /* Current pCArray->apEnd[k] value */
7458 j
= get2byte(&aData
[hdr
+5]);
7459 if( NEVER(j
>(u32
)usableSize
) ){ j
= 0; }
7460 memcpy(&pTmp
[j
], &aData
[j
], usableSize
- j
);
7462 for(k
=0; pCArray
->ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
7463 pSrcEnd
= pCArray
->apEnd
[k
];
7466 while( 1/*exit by break*/ ){
7467 u8
*pCell
= pCArray
->apCell
[i
];
7468 u16 sz
= pCArray
->szCell
[i
];
7470 if( SQLITE_WITHIN(pCell
,aData
+j
,pEnd
) ){
7471 if( ((uptr
)(pCell
+sz
))>(uptr
)pEnd
) return SQLITE_CORRUPT_BKPT
;
7472 pCell
= &pTmp
[pCell
- aData
];
7473 }else if( (uptr
)(pCell
+sz
)>(uptr
)pSrcEnd
7474 && (uptr
)(pCell
)<(uptr
)pSrcEnd
7476 return SQLITE_CORRUPT_BKPT
;
7480 put2byte(pCellptr
, (pData
- aData
));
7482 if( pData
< pCellptr
) return SQLITE_CORRUPT_BKPT
;
7483 memmove(pData
, pCell
, sz
);
7484 assert( sz
==pPg
->xCellSize(pPg
, pCell
) || CORRUPT_DB
);
7486 if( i
>=iEnd
) break;
7487 if( pCArray
->ixNx
[k
]<=i
){
7489 pSrcEnd
= pCArray
->apEnd
[k
];
7493 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7497 put2byte(&aData
[hdr
+1], 0);
7498 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7499 put2byte(&aData
[hdr
+5], pData
- aData
);
7500 aData
[hdr
+7] = 0x00;
7505 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7506 ** This function attempts to add the cells stored in the array to page pPg.
7507 ** If it cannot (because the page needs to be defragmented before the cells
7508 ** will fit), non-zero is returned. Otherwise, if the cells are added
7509 ** successfully, zero is returned.
7511 ** Argument pCellptr points to the first entry in the cell-pointer array
7512 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7513 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7514 ** cell in the array. It is the responsibility of the caller to ensure
7515 ** that it is safe to overwrite this part of the cell-pointer array.
7517 ** When this function is called, *ppData points to the start of the
7518 ** content area on page pPg. If the size of the content area is extended,
7519 ** *ppData is updated to point to the new start of the content area
7520 ** before returning.
7522 ** Finally, argument pBegin points to the byte immediately following the
7523 ** end of the space required by this page for the cell-pointer area (for
7524 ** all cells - not just those inserted by the current call). If the content
7525 ** area must be extended to before this point in order to accomodate all
7526 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7528 static int pageInsertArray(
7529 MemPage
*pPg
, /* Page to add cells to */
7530 u8
*pBegin
, /* End of cell-pointer array */
7531 u8
**ppData
, /* IN/OUT: Page content-area pointer */
7532 u8
*pCellptr
, /* Pointer to cell-pointer area */
7533 int iFirst
, /* Index of first cell to add */
7534 int nCell
, /* Number of cells to add to pPg */
7535 CellArray
*pCArray
/* Array of cells */
7537 int i
= iFirst
; /* Loop counter - cell index to insert */
7538 u8
*aData
= pPg
->aData
; /* Complete page */
7539 u8
*pData
= *ppData
; /* Content area. A subset of aData[] */
7540 int iEnd
= iFirst
+ nCell
; /* End of loop. One past last cell to ins */
7541 int k
; /* Current slot in pCArray->apEnd[] */
7542 u8
*pEnd
; /* Maximum extent of cell data */
7543 assert( CORRUPT_DB
|| pPg
->hdrOffset
==0 ); /* Never called on page 1 */
7544 if( iEnd
<=iFirst
) return 0;
7545 for(k
=0; pCArray
->ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
7546 pEnd
= pCArray
->apEnd
[k
];
7547 while( 1 /*Exit by break*/ ){
7550 assert( pCArray
->szCell
[i
]!=0 );
7551 sz
= pCArray
->szCell
[i
];
7552 if( (aData
[1]==0 && aData
[2]==0) || (pSlot
= pageFindSlot(pPg
,sz
,&rc
))==0 ){
7553 if( (pData
- pBegin
)<sz
) return 1;
7557 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7558 ** database. But they might for a corrupt database. Hence use memmove()
7559 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7560 assert( (pSlot
+sz
)<=pCArray
->apCell
[i
]
7561 || pSlot
>=(pCArray
->apCell
[i
]+sz
)
7563 if( (uptr
)(pCArray
->apCell
[i
]+sz
)>(uptr
)pEnd
7564 && (uptr
)(pCArray
->apCell
[i
])<(uptr
)pEnd
7566 assert( CORRUPT_DB
);
7567 (void)SQLITE_CORRUPT_BKPT
;
7570 memmove(pSlot
, pCArray
->apCell
[i
], sz
);
7571 put2byte(pCellptr
, (pSlot
- aData
));
7574 if( i
>=iEnd
) break;
7575 if( pCArray
->ixNx
[k
]<=i
){
7577 pEnd
= pCArray
->apEnd
[k
];
7585 ** The pCArray object contains pointers to b-tree cells and their sizes.
7587 ** This function adds the space associated with each cell in the array
7588 ** that is currently stored within the body of pPg to the pPg free-list.
7589 ** The cell-pointers and other fields of the page are not updated.
7591 ** This function returns the total number of cells added to the free-list.
7593 static int pageFreeArray(
7594 MemPage
*pPg
, /* Page to edit */
7595 int iFirst
, /* First cell to delete */
7596 int nCell
, /* Cells to delete */
7597 CellArray
*pCArray
/* Array of cells */
7599 u8
* const aData
= pPg
->aData
;
7600 u8
* const pEnd
= &aData
[pPg
->pBt
->usableSize
];
7601 u8
* const pStart
= &aData
[pPg
->hdrOffset
+ 8 + pPg
->childPtrSize
];
7604 int iEnd
= iFirst
+ nCell
;
7609 for(i
=iFirst
; i
<iEnd
; i
++){
7610 u8
*pCell
= pCArray
->apCell
[i
];
7611 if( SQLITE_WITHIN(pCell
, pStart
, pEnd
) ){
7615 /* No need to use cachedCellSize() here. The sizes of all cells that
7616 ** are to be freed have already been computing while deciding which
7617 ** cells need freeing */
7618 sz
= pCArray
->szCell
[i
]; assert( sz
>0 );
7619 iOfst
= (u16
)(pCell
- aData
);
7621 for(j
=0; j
<nFree
; j
++){
7622 if( aOfst
[j
]==iAfter
){
7625 }else if( aAfter
[j
]==iOfst
){
7631 if( nFree
>=(int)(sizeof(aOfst
)/sizeof(aOfst
[0])) ){
7632 for(j
=0; j
<nFree
; j
++){
7633 freeSpace(pPg
, aOfst
[j
], aAfter
[j
]-aOfst
[j
]);
7637 aOfst
[nFree
] = iOfst
;
7638 aAfter
[nFree
] = iAfter
;
7639 if( &aData
[iAfter
]>pEnd
) return 0;
7645 for(j
=0; j
<nFree
; j
++){
7646 freeSpace(pPg
, aOfst
[j
], aAfter
[j
]-aOfst
[j
]);
7652 ** pCArray contains pointers to and sizes of all cells in the page being
7653 ** balanced. The current page, pPg, has pPg->nCell cells starting with
7654 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
7655 ** starting at apCell[iNew].
7657 ** This routine makes the necessary adjustments to pPg so that it contains
7658 ** the correct cells after being balanced.
7660 ** The pPg->nFree field is invalid when this function returns. It is the
7661 ** responsibility of the caller to set it correctly.
7663 static int editPage(
7664 MemPage
*pPg
, /* Edit this page */
7665 int iOld
, /* Index of first cell currently on page */
7666 int iNew
, /* Index of new first cell on page */
7667 int nNew
, /* Final number of cells on page */
7668 CellArray
*pCArray
/* Array of cells and sizes */
7670 u8
* const aData
= pPg
->aData
;
7671 const int hdr
= pPg
->hdrOffset
;
7672 u8
*pBegin
= &pPg
->aCellIdx
[nNew
* 2];
7673 int nCell
= pPg
->nCell
; /* Cells stored on pPg */
7677 int iOldEnd
= iOld
+ pPg
->nCell
+ pPg
->nOverflow
;
7678 int iNewEnd
= iNew
+ nNew
;
7681 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7682 memcpy(pTmp
, aData
, pPg
->pBt
->usableSize
);
7685 /* Remove cells from the start and end of the page */
7688 int nShift
= pageFreeArray(pPg
, iOld
, iNew
-iOld
, pCArray
);
7689 if( NEVER(nShift
>nCell
) ) return SQLITE_CORRUPT_BKPT
;
7690 memmove(pPg
->aCellIdx
, &pPg
->aCellIdx
[nShift
*2], nCell
*2);
7693 if( iNewEnd
< iOldEnd
){
7694 int nTail
= pageFreeArray(pPg
, iNewEnd
, iOldEnd
- iNewEnd
, pCArray
);
7695 assert( nCell
>=nTail
);
7699 pData
= &aData
[get2byte(&aData
[hdr
+5])];
7700 if( pData
<pBegin
) goto editpage_fail
;
7701 if( NEVER(pData
>pPg
->aDataEnd
) ) goto editpage_fail
;
7703 /* Add cells to the start of the page */
7705 int nAdd
= MIN(nNew
,iOld
-iNew
);
7706 assert( (iOld
-iNew
)<nNew
|| nCell
==0 || CORRUPT_DB
);
7708 pCellptr
= pPg
->aCellIdx
;
7709 memmove(&pCellptr
[nAdd
*2], pCellptr
, nCell
*2);
7710 if( pageInsertArray(
7711 pPg
, pBegin
, &pData
, pCellptr
,
7713 ) ) goto editpage_fail
;
7717 /* Add any overflow cells */
7718 for(i
=0; i
<pPg
->nOverflow
; i
++){
7719 int iCell
= (iOld
+ pPg
->aiOvfl
[i
]) - iNew
;
7720 if( iCell
>=0 && iCell
<nNew
){
7721 pCellptr
= &pPg
->aCellIdx
[iCell
* 2];
7723 memmove(&pCellptr
[2], pCellptr
, (nCell
- iCell
) * 2);
7726 cachedCellSize(pCArray
, iCell
+iNew
);
7727 if( pageInsertArray(
7728 pPg
, pBegin
, &pData
, pCellptr
,
7729 iCell
+iNew
, 1, pCArray
7730 ) ) goto editpage_fail
;
7734 /* Append cells to the end of the page */
7736 pCellptr
= &pPg
->aCellIdx
[nCell
*2];
7737 if( pageInsertArray(
7738 pPg
, pBegin
, &pData
, pCellptr
,
7739 iNew
+nCell
, nNew
-nCell
, pCArray
7740 ) ) goto editpage_fail
;
7745 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7746 put2byte(&aData
[hdr
+5], pData
- aData
);
7749 for(i
=0; i
<nNew
&& !CORRUPT_DB
; i
++){
7750 u8
*pCell
= pCArray
->apCell
[i
+iNew
];
7751 int iOff
= get2byteAligned(&pPg
->aCellIdx
[i
*2]);
7752 if( SQLITE_WITHIN(pCell
, aData
, &aData
[pPg
->pBt
->usableSize
]) ){
7753 pCell
= &pTmp
[pCell
- aData
];
7755 assert( 0==memcmp(pCell
, &aData
[iOff
],
7756 pCArray
->pRef
->xCellSize(pCArray
->pRef
, pCArray
->apCell
[i
+iNew
])) );
7762 /* Unable to edit this page. Rebuild it from scratch instead. */
7763 populateCellCache(pCArray
, iNew
, nNew
);
7764 return rebuildPage(pCArray
, iNew
, nNew
, pPg
);
7768 #ifndef SQLITE_OMIT_QUICKBALANCE
7770 ** This version of balance() handles the common special case where
7771 ** a new entry is being inserted on the extreme right-end of the
7772 ** tree, in other words, when the new entry will become the largest
7773 ** entry in the tree.
7775 ** Instead of trying to balance the 3 right-most leaf pages, just add
7776 ** a new page to the right-hand side and put the one new entry in
7777 ** that page. This leaves the right side of the tree somewhat
7778 ** unbalanced. But odds are that we will be inserting new entries
7779 ** at the end soon afterwards so the nearly empty page will quickly
7780 ** fill up. On average.
7782 ** pPage is the leaf page which is the right-most page in the tree.
7783 ** pParent is its parent. pPage must have a single overflow entry
7784 ** which is also the right-most entry on the page.
7786 ** The pSpace buffer is used to store a temporary copy of the divider
7787 ** cell that will be inserted into pParent. Such a cell consists of a 4
7788 ** byte page number followed by a variable length integer. In other
7789 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7790 ** least 13 bytes in size.
7792 static int balance_quick(MemPage
*pParent
, MemPage
*pPage
, u8
*pSpace
){
7793 BtShared
*const pBt
= pPage
->pBt
; /* B-Tree Database */
7794 MemPage
*pNew
; /* Newly allocated page */
7795 int rc
; /* Return Code */
7796 Pgno pgnoNew
; /* Page number of pNew */
7798 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7799 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7800 assert( pPage
->nOverflow
==1 );
7802 if( pPage
->nCell
==0 ) return SQLITE_CORRUPT_BKPT
; /* dbfuzz001.test */
7803 assert( pPage
->nFree
>=0 );
7804 assert( pParent
->nFree
>=0 );
7806 /* Allocate a new page. This page will become the right-sibling of
7807 ** pPage. Make the parent page writable, so that the new divider cell
7808 ** may be inserted. If both these operations are successful, proceed.
7810 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
7812 if( rc
==SQLITE_OK
){
7814 u8
*pOut
= &pSpace
[4];
7815 u8
*pCell
= pPage
->apOvfl
[0];
7816 u16 szCell
= pPage
->xCellSize(pPage
, pCell
);
7820 assert( sqlite3PagerIswriteable(pNew
->pDbPage
) );
7821 assert( CORRUPT_DB
|| pPage
->aData
[0]==(PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
) );
7822 zeroPage(pNew
, PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
);
7827 b
.apEnd
[0] = pPage
->aDataEnd
;
7829 rc
= rebuildPage(&b
, 0, 1, pNew
);
7834 pNew
->nFree
= pBt
->usableSize
- pNew
->cellOffset
- 2 - szCell
;
7836 /* If this is an auto-vacuum database, update the pointer map
7837 ** with entries for the new page, and any pointer from the
7838 ** cell on the page to an overflow page. If either of these
7839 ** operations fails, the return code is set, but the contents
7840 ** of the parent page are still manipulated by thh code below.
7841 ** That is Ok, at this point the parent page is guaranteed to
7842 ** be marked as dirty. Returning an error code will cause a
7843 ** rollback, undoing any changes made to the parent page.
7845 if( ISAUTOVACUUM(pBt
) ){
7846 ptrmapPut(pBt
, pgnoNew
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
7847 if( szCell
>pNew
->minLocal
){
7848 ptrmapPutOvflPtr(pNew
, pNew
, pCell
, &rc
);
7852 /* Create a divider cell to insert into pParent. The divider cell
7853 ** consists of a 4-byte page number (the page number of pPage) and
7854 ** a variable length key value (which must be the same value as the
7855 ** largest key on pPage).
7857 ** To find the largest key value on pPage, first find the right-most
7858 ** cell on pPage. The first two fields of this cell are the
7859 ** record-length (a variable length integer at most 32-bits in size)
7860 ** and the key value (a variable length integer, may have any value).
7861 ** The first of the while(...) loops below skips over the record-length
7862 ** field. The second while(...) loop copies the key value from the
7863 ** cell on pPage into the pSpace buffer.
7865 pCell
= findCell(pPage
, pPage
->nCell
-1);
7867 while( (*(pCell
++)&0x80) && pCell
<pStop
);
7869 while( ((*(pOut
++) = *(pCell
++))&0x80) && pCell
<pStop
);
7871 /* Insert the new divider cell into pParent. */
7872 if( rc
==SQLITE_OK
){
7873 rc
= insertCell(pParent
, pParent
->nCell
, pSpace
, (int)(pOut
-pSpace
),
7877 /* Set the right-child pointer of pParent to point to the new page. */
7878 put4byte(&pParent
->aData
[pParent
->hdrOffset
+8], pgnoNew
);
7880 /* Release the reference to the new page. */
7886 #endif /* SQLITE_OMIT_QUICKBALANCE */
7890 ** This function does not contribute anything to the operation of SQLite.
7891 ** it is sometimes activated temporarily while debugging code responsible
7892 ** for setting pointer-map entries.
7894 static int ptrmapCheckPages(MemPage
**apPage
, int nPage
){
7896 for(i
=0; i
<nPage
; i
++){
7899 MemPage
*pPage
= apPage
[i
];
7900 BtShared
*pBt
= pPage
->pBt
;
7901 assert( pPage
->isInit
);
7903 for(j
=0; j
<pPage
->nCell
; j
++){
7907 z
= findCell(pPage
, j
);
7908 pPage
->xParseCell(pPage
, z
, &info
);
7909 if( info
.nLocal
<info
.nPayload
){
7910 Pgno ovfl
= get4byte(&z
[info
.nSize
-4]);
7911 ptrmapGet(pBt
, ovfl
, &e
, &n
);
7912 assert( n
==pPage
->pgno
&& e
==PTRMAP_OVERFLOW1
);
7915 Pgno child
= get4byte(z
);
7916 ptrmapGet(pBt
, child
, &e
, &n
);
7917 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7921 Pgno child
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
7922 ptrmapGet(pBt
, child
, &e
, &n
);
7923 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7931 ** This function is used to copy the contents of the b-tree node stored
7932 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7933 ** the pointer-map entries for each child page are updated so that the
7934 ** parent page stored in the pointer map is page pTo. If pFrom contained
7935 ** any cells with overflow page pointers, then the corresponding pointer
7936 ** map entries are also updated so that the parent page is page pTo.
7938 ** If pFrom is currently carrying any overflow cells (entries in the
7939 ** MemPage.apOvfl[] array), they are not copied to pTo.
7941 ** Before returning, page pTo is reinitialized using btreeInitPage().
7943 ** The performance of this function is not critical. It is only used by
7944 ** the balance_shallower() and balance_deeper() procedures, neither of
7945 ** which are called often under normal circumstances.
7947 static void copyNodeContent(MemPage
*pFrom
, MemPage
*pTo
, int *pRC
){
7948 if( (*pRC
)==SQLITE_OK
){
7949 BtShared
* const pBt
= pFrom
->pBt
;
7950 u8
* const aFrom
= pFrom
->aData
;
7951 u8
* const aTo
= pTo
->aData
;
7952 int const iFromHdr
= pFrom
->hdrOffset
;
7953 int const iToHdr
= ((pTo
->pgno
==1) ? 100 : 0);
7958 assert( pFrom
->isInit
);
7959 assert( pFrom
->nFree
>=iToHdr
);
7960 assert( get2byte(&aFrom
[iFromHdr
+5]) <= (int)pBt
->usableSize
);
7962 /* Copy the b-tree node content from page pFrom to page pTo. */
7963 iData
= get2byte(&aFrom
[iFromHdr
+5]);
7964 memcpy(&aTo
[iData
], &aFrom
[iData
], pBt
->usableSize
-iData
);
7965 memcpy(&aTo
[iToHdr
], &aFrom
[iFromHdr
], pFrom
->cellOffset
+ 2*pFrom
->nCell
);
7967 /* Reinitialize page pTo so that the contents of the MemPage structure
7968 ** match the new data. The initialization of pTo can actually fail under
7969 ** fairly obscure circumstances, even though it is a copy of initialized
7973 rc
= btreeInitPage(pTo
);
7974 if( rc
==SQLITE_OK
) rc
= btreeComputeFreeSpace(pTo
);
7975 if( rc
!=SQLITE_OK
){
7980 /* If this is an auto-vacuum database, update the pointer-map entries
7981 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7983 if( ISAUTOVACUUM(pBt
) ){
7984 *pRC
= setChildPtrmaps(pTo
);
7990 ** This routine redistributes cells on the iParentIdx'th child of pParent
7991 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7992 ** same amount of free space. Usually a single sibling on either side of the
7993 ** page are used in the balancing, though both siblings might come from one
7994 ** side if the page is the first or last child of its parent. If the page
7995 ** has fewer than 2 siblings (something which can only happen if the page
7996 ** is a root page or a child of a root page) then all available siblings
7997 ** participate in the balancing.
7999 ** The number of siblings of the page might be increased or decreased by
8000 ** one or two in an effort to keep pages nearly full but not over full.
8002 ** Note that when this routine is called, some of the cells on the page
8003 ** might not actually be stored in MemPage.aData[]. This can happen
8004 ** if the page is overfull. This routine ensures that all cells allocated
8005 ** to the page and its siblings fit into MemPage.aData[] before returning.
8007 ** In the course of balancing the page and its siblings, cells may be
8008 ** inserted into or removed from the parent page (pParent). Doing so
8009 ** may cause the parent page to become overfull or underfull. If this
8010 ** happens, it is the responsibility of the caller to invoke the correct
8011 ** balancing routine to fix this problem (see the balance() routine).
8013 ** If this routine fails for any reason, it might leave the database
8014 ** in a corrupted state. So if this routine fails, the database should
8017 ** The third argument to this function, aOvflSpace, is a pointer to a
8018 ** buffer big enough to hold one page. If while inserting cells into the parent
8019 ** page (pParent) the parent page becomes overfull, this buffer is
8020 ** used to store the parent's overflow cells. Because this function inserts
8021 ** a maximum of four divider cells into the parent page, and the maximum
8022 ** size of a cell stored within an internal node is always less than 1/4
8023 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
8024 ** enough for all overflow cells.
8026 ** If aOvflSpace is set to a null pointer, this function returns
8029 static int balance_nonroot(
8030 MemPage
*pParent
, /* Parent page of siblings being balanced */
8031 int iParentIdx
, /* Index of "the page" in pParent */
8032 u8
*aOvflSpace
, /* page-size bytes of space for parent ovfl */
8033 int isRoot
, /* True if pParent is a root-page */
8034 int bBulk
/* True if this call is part of a bulk load */
8036 BtShared
*pBt
; /* The whole database */
8037 int nMaxCells
= 0; /* Allocated size of apCell, szCell, aFrom. */
8038 int nNew
= 0; /* Number of pages in apNew[] */
8039 int nOld
; /* Number of pages in apOld[] */
8040 int i
, j
, k
; /* Loop counters */
8041 int nxDiv
; /* Next divider slot in pParent->aCell[] */
8042 int rc
= SQLITE_OK
; /* The return code */
8043 u16 leafCorrection
; /* 4 if pPage is a leaf. 0 if not */
8044 int leafData
; /* True if pPage is a leaf of a LEAFDATA tree */
8045 int usableSpace
; /* Bytes in pPage beyond the header */
8046 int pageFlags
; /* Value of pPage->aData[0] */
8047 int iSpace1
= 0; /* First unused byte of aSpace1[] */
8048 int iOvflSpace
= 0; /* First unused byte of aOvflSpace[] */
8049 int szScratch
; /* Size of scratch memory requested */
8050 MemPage
*apOld
[NB
]; /* pPage and up to two siblings */
8051 MemPage
*apNew
[NB
+2]; /* pPage and up to NB siblings after balancing */
8052 u8
*pRight
; /* Location in parent of right-sibling pointer */
8053 u8
*apDiv
[NB
-1]; /* Divider cells in pParent */
8054 int cntNew
[NB
+2]; /* Index in b.paCell[] of cell after i-th page */
8055 int cntOld
[NB
+2]; /* Old index in b.apCell[] */
8056 int szNew
[NB
+2]; /* Combined size of cells placed on i-th page */
8057 u8
*aSpace1
; /* Space for copies of dividers cells */
8058 Pgno pgno
; /* Temp var to store a page number in */
8059 u8 abDone
[NB
+2]; /* True after i'th new page is populated */
8060 Pgno aPgno
[NB
+2]; /* Page numbers of new pages before shuffling */
8061 CellArray b
; /* Parsed information on cells being balanced */
8063 memset(abDone
, 0, sizeof(abDone
));
8064 memset(&b
, 0, sizeof(b
));
8066 assert( sqlite3_mutex_held(pBt
->mutex
) );
8067 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8069 /* At this point pParent may have at most one overflow cell. And if
8070 ** this overflow cell is present, it must be the cell with
8071 ** index iParentIdx. This scenario comes about when this function
8072 ** is called (indirectly) from sqlite3BtreeDelete().
8074 assert( pParent
->nOverflow
==0 || pParent
->nOverflow
==1 );
8075 assert( pParent
->nOverflow
==0 || pParent
->aiOvfl
[0]==iParentIdx
);
8078 return SQLITE_NOMEM_BKPT
;
8080 assert( pParent
->nFree
>=0 );
8082 /* Find the sibling pages to balance. Also locate the cells in pParent
8083 ** that divide the siblings. An attempt is made to find NN siblings on
8084 ** either side of pPage. More siblings are taken from one side, however,
8085 ** if there are fewer than NN siblings on the other side. If pParent
8086 ** has NB or fewer children then all children of pParent are taken.
8088 ** This loop also drops the divider cells from the parent page. This
8089 ** way, the remainder of the function does not have to deal with any
8090 ** overflow cells in the parent page, since if any existed they will
8091 ** have already been removed.
8093 i
= pParent
->nOverflow
+ pParent
->nCell
;
8097 assert( bBulk
==0 || bBulk
==1 );
8098 if( iParentIdx
==0 ){
8100 }else if( iParentIdx
==i
){
8103 nxDiv
= iParentIdx
-1;
8108 if( (i
+nxDiv
-pParent
->nOverflow
)==pParent
->nCell
){
8109 pRight
= &pParent
->aData
[pParent
->hdrOffset
+8];
8111 pRight
= findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
8113 pgno
= get4byte(pRight
);
8115 if( rc
==SQLITE_OK
){
8116 rc
= getAndInitPage(pBt
, pgno
, &apOld
[i
], 0, 0);
8119 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
8120 goto balance_cleanup
;
8122 if( apOld
[i
]->nFree
<0 ){
8123 rc
= btreeComputeFreeSpace(apOld
[i
]);
8125 memset(apOld
, 0, (i
)*sizeof(MemPage
*));
8126 goto balance_cleanup
;
8129 nMaxCells
+= apOld
[i
]->nCell
+ ArraySize(pParent
->apOvfl
);
8130 if( (i
--)==0 ) break;
8132 if( pParent
->nOverflow
&& i
+nxDiv
==pParent
->aiOvfl
[0] ){
8133 apDiv
[i
] = pParent
->apOvfl
[0];
8134 pgno
= get4byte(apDiv
[i
]);
8135 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
8136 pParent
->nOverflow
= 0;
8138 apDiv
[i
] = findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
8139 pgno
= get4byte(apDiv
[i
]);
8140 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
8142 /* Drop the cell from the parent page. apDiv[i] still points to
8143 ** the cell within the parent, even though it has been dropped.
8144 ** This is safe because dropping a cell only overwrites the first
8145 ** four bytes of it, and this function does not need the first
8146 ** four bytes of the divider cell. So the pointer is safe to use
8149 ** But not if we are in secure-delete mode. In secure-delete mode,
8150 ** the dropCell() routine will overwrite the entire cell with zeroes.
8151 ** In this case, temporarily copy the cell into the aOvflSpace[]
8152 ** buffer. It will be copied out again as soon as the aSpace[] buffer
8154 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
8157 /* If the following if() condition is not true, the db is corrupted.
8158 ** The call to dropCell() below will detect this. */
8159 iOff
= SQLITE_PTR_TO_INT(apDiv
[i
]) - SQLITE_PTR_TO_INT(pParent
->aData
);
8160 if( (iOff
+szNew
[i
])<=(int)pBt
->usableSize
){
8161 memcpy(&aOvflSpace
[iOff
], apDiv
[i
], szNew
[i
]);
8162 apDiv
[i
] = &aOvflSpace
[apDiv
[i
]-pParent
->aData
];
8165 dropCell(pParent
, i
+nxDiv
-pParent
->nOverflow
, szNew
[i
], &rc
);
8169 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
8171 nMaxCells
= (nMaxCells
+ 3)&~3;
8174 ** Allocate space for memory structures
8177 nMaxCells
*sizeof(u8
*) /* b.apCell */
8178 + nMaxCells
*sizeof(u16
) /* b.szCell */
8179 + pBt
->pageSize
; /* aSpace1 */
8181 assert( szScratch
<=7*(int)pBt
->pageSize
);
8182 b
.apCell
= sqlite3StackAllocRaw(0, szScratch
);
8184 rc
= SQLITE_NOMEM_BKPT
;
8185 goto balance_cleanup
;
8187 b
.szCell
= (u16
*)&b
.apCell
[nMaxCells
];
8188 aSpace1
= (u8
*)&b
.szCell
[nMaxCells
];
8189 assert( EIGHT_BYTE_ALIGNMENT(aSpace1
) );
8192 ** Load pointers to all cells on sibling pages and the divider cells
8193 ** into the local b.apCell[] array. Make copies of the divider cells
8194 ** into space obtained from aSpace1[]. The divider cells have already
8195 ** been removed from pParent.
8197 ** If the siblings are on leaf pages, then the child pointers of the
8198 ** divider cells are stripped from the cells before they are copied
8199 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
8200 ** child pointers. If siblings are not leaves, then all cell in
8201 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
8204 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
8205 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
8208 leafCorrection
= b
.pRef
->leaf
*4;
8209 leafData
= b
.pRef
->intKeyLeaf
;
8210 for(i
=0; i
<nOld
; i
++){
8211 MemPage
*pOld
= apOld
[i
];
8212 int limit
= pOld
->nCell
;
8213 u8
*aData
= pOld
->aData
;
8214 u16 maskPage
= pOld
->maskPage
;
8215 u8
*piCell
= aData
+ pOld
->cellOffset
;
8217 VVA_ONLY( int nCellAtStart
= b
.nCell
; )
8219 /* Verify that all sibling pages are of the same "type" (table-leaf,
8220 ** table-interior, index-leaf, or index-interior).
8222 if( pOld
->aData
[0]!=apOld
[0]->aData
[0] ){
8223 rc
= SQLITE_CORRUPT_BKPT
;
8224 goto balance_cleanup
;
8227 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
8228 ** contains overflow cells, include them in the b.apCell[] array
8229 ** in the correct spot.
8231 ** Note that when there are multiple overflow cells, it is always the
8232 ** case that they are sequential and adjacent. This invariant arises
8233 ** because multiple overflows can only occurs when inserting divider
8234 ** cells into a parent on a prior balance, and divider cells are always
8235 ** adjacent and are inserted in order. There is an assert() tagged
8236 ** with "NOTE 1" in the overflow cell insertion loop to prove this
8239 ** This must be done in advance. Once the balance starts, the cell
8240 ** offset section of the btree page will be overwritten and we will no
8241 ** long be able to find the cells if a pointer to each cell is not saved
8244 memset(&b
.szCell
[b
.nCell
], 0, sizeof(b
.szCell
[0])*(limit
+pOld
->nOverflow
));
8245 if( pOld
->nOverflow
>0 ){
8246 if( NEVER(limit
<pOld
->aiOvfl
[0]) ){
8247 rc
= SQLITE_CORRUPT_BKPT
;
8248 goto balance_cleanup
;
8250 limit
= pOld
->aiOvfl
[0];
8251 for(j
=0; j
<limit
; j
++){
8252 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
8256 for(k
=0; k
<pOld
->nOverflow
; k
++){
8257 assert( k
==0 || pOld
->aiOvfl
[k
-1]+1==pOld
->aiOvfl
[k
] );/* NOTE 1 */
8258 b
.apCell
[b
.nCell
] = pOld
->apOvfl
[k
];
8262 piEnd
= aData
+ pOld
->cellOffset
+ 2*pOld
->nCell
;
8263 while( piCell
<piEnd
){
8264 assert( b
.nCell
<nMaxCells
);
8265 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
8269 assert( (b
.nCell
-nCellAtStart
)==(pOld
->nCell
+pOld
->nOverflow
) );
8271 cntOld
[i
] = b
.nCell
;
8272 if( i
<nOld
-1 && !leafData
){
8273 u16 sz
= (u16
)szNew
[i
];
8275 assert( b
.nCell
<nMaxCells
);
8276 b
.szCell
[b
.nCell
] = sz
;
8277 pTemp
= &aSpace1
[iSpace1
];
8279 assert( sz
<=pBt
->maxLocal
+23 );
8280 assert( iSpace1
<= (int)pBt
->pageSize
);
8281 memcpy(pTemp
, apDiv
[i
], sz
);
8282 b
.apCell
[b
.nCell
] = pTemp
+leafCorrection
;
8283 assert( leafCorrection
==0 || leafCorrection
==4 );
8284 b
.szCell
[b
.nCell
] = b
.szCell
[b
.nCell
] - leafCorrection
;
8286 assert( leafCorrection
==0 );
8287 assert( pOld
->hdrOffset
==0 || CORRUPT_DB
);
8288 /* The right pointer of the child page pOld becomes the left
8289 ** pointer of the divider cell */
8290 memcpy(b
.apCell
[b
.nCell
], &pOld
->aData
[8], 4);
8292 assert( leafCorrection
==4 );
8293 while( b
.szCell
[b
.nCell
]<4 ){
8294 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8295 ** does exist, pad it with 0x00 bytes. */
8296 assert( b
.szCell
[b
.nCell
]==3 || CORRUPT_DB
);
8297 assert( b
.apCell
[b
.nCell
]==&aSpace1
[iSpace1
-3] || CORRUPT_DB
);
8298 aSpace1
[iSpace1
++] = 0x00;
8299 b
.szCell
[b
.nCell
]++;
8307 ** Figure out the number of pages needed to hold all b.nCell cells.
8308 ** Store this number in "k". Also compute szNew[] which is the total
8309 ** size of all cells on the i-th page and cntNew[] which is the index
8310 ** in b.apCell[] of the cell that divides page i from page i+1.
8311 ** cntNew[k] should equal b.nCell.
8313 ** Values computed by this block:
8315 ** k: The total number of sibling pages
8316 ** szNew[i]: Spaced used on the i-th sibling page.
8317 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
8318 ** the right of the i-th sibling page.
8319 ** usableSpace: Number of bytes of space available on each sibling.
8322 usableSpace
= pBt
->usableSize
- 12 + leafCorrection
;
8323 for(i
=k
=0; i
<nOld
; i
++, k
++){
8324 MemPage
*p
= apOld
[i
];
8325 b
.apEnd
[k
] = p
->aDataEnd
;
8326 b
.ixNx
[k
] = cntOld
[i
];
8327 if( k
&& b
.ixNx
[k
]==b
.ixNx
[k
-1] ){
8328 k
--; /* Omit b.ixNx[] entry for child pages with no cells */
8332 b
.apEnd
[k
] = pParent
->aDataEnd
;
8333 b
.ixNx
[k
] = cntOld
[i
]+1;
8335 assert( p
->nFree
>=0 );
8336 szNew
[i
] = usableSpace
- p
->nFree
;
8337 for(j
=0; j
<p
->nOverflow
; j
++){
8338 szNew
[i
] += 2 + p
->xCellSize(p
, p
->apOvfl
[j
]);
8340 cntNew
[i
] = cntOld
[i
];
8345 while( szNew
[i
]>usableSpace
){
8348 if( k
>NB
+2 ){ rc
= SQLITE_CORRUPT_BKPT
; goto balance_cleanup
; }
8350 cntNew
[k
-1] = b
.nCell
;
8352 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]-1);
8355 if( cntNew
[i
]<b
.nCell
){
8356 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8364 while( cntNew
[i
]<b
.nCell
){
8365 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8366 if( szNew
[i
]+sz
>usableSpace
) break;
8370 if( cntNew
[i
]<b
.nCell
){
8371 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8378 if( cntNew
[i
]>=b
.nCell
){
8380 }else if( cntNew
[i
] <= (i
>0 ? cntNew
[i
-1] : 0) ){
8381 rc
= SQLITE_CORRUPT_BKPT
;
8382 goto balance_cleanup
;
8387 ** The packing computed by the previous block is biased toward the siblings
8388 ** on the left side (siblings with smaller keys). The left siblings are
8389 ** always nearly full, while the right-most sibling might be nearly empty.
8390 ** The next block of code attempts to adjust the packing of siblings to
8391 ** get a better balance.
8393 ** This adjustment is more than an optimization. The packing above might
8394 ** be so out of balance as to be illegal. For example, the right-most
8395 ** sibling might be completely empty. This adjustment is not optional.
8397 for(i
=k
-1; i
>0; i
--){
8398 int szRight
= szNew
[i
]; /* Size of sibling on the right */
8399 int szLeft
= szNew
[i
-1]; /* Size of sibling on the left */
8400 int r
; /* Index of right-most cell in left sibling */
8401 int d
; /* Index of first cell to the left of right sibling */
8403 r
= cntNew
[i
-1] - 1;
8404 d
= r
+ 1 - leafData
;
8405 (void)cachedCellSize(&b
, d
);
8408 assert( d
<nMaxCells
);
8409 assert( r
<nMaxCells
);
8410 szR
= cachedCellSize(&b
, r
);
8413 && (bBulk
|| szRight
+szD
+2 > szLeft
-(szR
+(i
==k
-1?0:2)))){
8423 szNew
[i
-1] = szLeft
;
8424 if( cntNew
[i
-1] <= (i
>1 ? cntNew
[i
-2] : 0) ){
8425 rc
= SQLITE_CORRUPT_BKPT
;
8426 goto balance_cleanup
;
8430 /* Sanity check: For a non-corrupt database file one of the follwing
8432 ** (1) We found one or more cells (cntNew[0])>0), or
8433 ** (2) pPage is a virtual root page. A virtual root page is when
8434 ** the real root page is page 1 and we are the only child of
8437 assert( cntNew
[0]>0 || (pParent
->pgno
==1 && pParent
->nCell
==0) || CORRUPT_DB
);
8438 TRACE(("BALANCE: old: %u(nc=%u) %u(nc=%u) %u(nc=%u)\n",
8439 apOld
[0]->pgno
, apOld
[0]->nCell
,
8440 nOld
>=2 ? apOld
[1]->pgno
: 0, nOld
>=2 ? apOld
[1]->nCell
: 0,
8441 nOld
>=3 ? apOld
[2]->pgno
: 0, nOld
>=3 ? apOld
[2]->nCell
: 0
8445 ** Allocate k new pages. Reuse old pages where possible.
8447 pageFlags
= apOld
[0]->aData
[0];
8451 pNew
= apNew
[i
] = apOld
[i
];
8453 rc
= sqlite3PagerWrite(pNew
->pDbPage
);
8455 if( sqlite3PagerPageRefcount(pNew
->pDbPage
)!=1+(i
==(iParentIdx
-nxDiv
))
8458 rc
= SQLITE_CORRUPT_BKPT
;
8460 if( rc
) goto balance_cleanup
;
8463 rc
= allocateBtreePage(pBt
, &pNew
, &pgno
, (bBulk
? 1 : pgno
), 0);
8464 if( rc
) goto balance_cleanup
;
8465 zeroPage(pNew
, pageFlags
);
8468 cntOld
[i
] = b
.nCell
;
8470 /* Set the pointer-map entry for the new sibling page. */
8471 if( ISAUTOVACUUM(pBt
) ){
8472 ptrmapPut(pBt
, pNew
->pgno
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
8473 if( rc
!=SQLITE_OK
){
8474 goto balance_cleanup
;
8481 ** Reassign page numbers so that the new pages are in ascending order.
8482 ** This helps to keep entries in the disk file in order so that a scan
8483 ** of the table is closer to a linear scan through the file. That in turn
8484 ** helps the operating system to deliver pages from the disk more rapidly.
8486 ** An O(N*N) sort algorithm is used, but since N is never more than NB+2
8487 ** (5), that is not a performance concern.
8489 ** When NB==3, this one optimization makes the database about 25% faster
8490 ** for large insertions and deletions.
8492 for(i
=0; i
<nNew
; i
++){
8493 aPgno
[i
] = apNew
[i
]->pgno
;
8494 assert( apNew
[i
]->pDbPage
->flags
& PGHDR_WRITEABLE
);
8495 assert( apNew
[i
]->pDbPage
->flags
& PGHDR_DIRTY
);
8497 for(i
=0; i
<nNew
-1; i
++){
8499 for(j
=i
+1; j
<nNew
; j
++){
8500 if( apNew
[j
]->pgno
< apNew
[iB
]->pgno
) iB
= j
;
8503 /* If apNew[i] has a page number that is bigger than any of the
8504 ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
8505 ** entry that has the smallest page number (which we know to be
8506 ** entry apNew[iB]).
8509 Pgno pgnoA
= apNew
[i
]->pgno
;
8510 Pgno pgnoB
= apNew
[iB
]->pgno
;
8511 Pgno pgnoTemp
= (PENDING_BYTE
/pBt
->pageSize
)+1;
8512 u16 fgA
= apNew
[i
]->pDbPage
->flags
;
8513 u16 fgB
= apNew
[iB
]->pDbPage
->flags
;
8514 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgnoTemp
, fgB
);
8515 sqlite3PagerRekey(apNew
[iB
]->pDbPage
, pgnoA
, fgA
);
8516 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgnoB
, fgB
);
8517 apNew
[i
]->pgno
= pgnoB
;
8518 apNew
[iB
]->pgno
= pgnoA
;
8522 TRACE(("BALANCE: new: %u(%u nc=%u) %u(%u nc=%u) %u(%u nc=%u) "
8523 "%u(%u nc=%u) %u(%u nc=%u)\n",
8524 apNew
[0]->pgno
, szNew
[0], cntNew
[0],
8525 nNew
>=2 ? apNew
[1]->pgno
: 0, nNew
>=2 ? szNew
[1] : 0,
8526 nNew
>=2 ? cntNew
[1] - cntNew
[0] - !leafData
: 0,
8527 nNew
>=3 ? apNew
[2]->pgno
: 0, nNew
>=3 ? szNew
[2] : 0,
8528 nNew
>=3 ? cntNew
[2] - cntNew
[1] - !leafData
: 0,
8529 nNew
>=4 ? apNew
[3]->pgno
: 0, nNew
>=4 ? szNew
[3] : 0,
8530 nNew
>=4 ? cntNew
[3] - cntNew
[2] - !leafData
: 0,
8531 nNew
>=5 ? apNew
[4]->pgno
: 0, nNew
>=5 ? szNew
[4] : 0,
8532 nNew
>=5 ? cntNew
[4] - cntNew
[3] - !leafData
: 0
8535 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8536 assert( nNew
>=1 && nNew
<=ArraySize(apNew
) );
8537 assert( apNew
[nNew
-1]!=0 );
8538 put4byte(pRight
, apNew
[nNew
-1]->pgno
);
8540 /* If the sibling pages are not leaves, ensure that the right-child pointer
8541 ** of the right-most new sibling page is set to the value that was
8542 ** originally in the same field of the right-most old sibling page. */
8543 if( (pageFlags
& PTF_LEAF
)==0 && nOld
!=nNew
){
8544 MemPage
*pOld
= (nNew
>nOld
? apNew
: apOld
)[nOld
-1];
8545 memcpy(&apNew
[nNew
-1]->aData
[8], &pOld
->aData
[8], 4);
8548 /* Make any required updates to pointer map entries associated with
8549 ** cells stored on sibling pages following the balance operation. Pointer
8550 ** map entries associated with divider cells are set by the insertCell()
8551 ** routine. The associated pointer map entries are:
8553 ** a) if the cell contains a reference to an overflow chain, the
8554 ** entry associated with the first page in the overflow chain, and
8556 ** b) if the sibling pages are not leaves, the child page associated
8559 ** If the sibling pages are not leaves, then the pointer map entry
8560 ** associated with the right-child of each sibling may also need to be
8561 ** updated. This happens below, after the sibling pages have been
8562 ** populated, not here.
8564 if( ISAUTOVACUUM(pBt
) ){
8566 MemPage
*pNew
= pOld
= apNew
[0];
8567 int cntOldNext
= pNew
->nCell
+ pNew
->nOverflow
;
8571 for(i
=0; i
<b
.nCell
; i
++){
8572 u8
*pCell
= b
.apCell
[i
];
8573 while( i
==cntOldNext
){
8575 assert( iOld
<nNew
|| iOld
<nOld
);
8576 assert( iOld
>=0 && iOld
<NB
);
8577 pOld
= iOld
<nNew
? apNew
[iOld
] : apOld
[iOld
];
8578 cntOldNext
+= pOld
->nCell
+ pOld
->nOverflow
+ !leafData
;
8580 if( i
==cntNew
[iNew
] ){
8581 pNew
= apNew
[++iNew
];
8582 if( !leafData
) continue;
8585 /* Cell pCell is destined for new sibling page pNew. Originally, it
8586 ** was either part of sibling page iOld (possibly an overflow cell),
8587 ** or else the divider cell to the left of sibling page iOld. So,
8588 ** if sibling page iOld had the same page number as pNew, and if
8589 ** pCell really was a part of sibling page iOld (not a divider or
8590 ** overflow cell), we can skip updating the pointer map entries. */
8592 || pNew
->pgno
!=aPgno
[iOld
]
8593 || !SQLITE_WITHIN(pCell
,pOld
->aData
,pOld
->aDataEnd
)
8595 if( !leafCorrection
){
8596 ptrmapPut(pBt
, get4byte(pCell
), PTRMAP_BTREE
, pNew
->pgno
, &rc
);
8598 if( cachedCellSize(&b
,i
)>pNew
->minLocal
){
8599 ptrmapPutOvflPtr(pNew
, pOld
, pCell
, &rc
);
8601 if( rc
) goto balance_cleanup
;
8606 /* Insert new divider cells into pParent. */
8607 for(i
=0; i
<nNew
-1; i
++){
8612 MemPage
*pNew
= apNew
[i
];
8615 assert( j
<nMaxCells
);
8616 assert( b
.apCell
[j
]!=0 );
8617 pCell
= b
.apCell
[j
];
8618 sz
= b
.szCell
[j
] + leafCorrection
;
8619 pTemp
= &aOvflSpace
[iOvflSpace
];
8621 memcpy(&pNew
->aData
[8], pCell
, 4);
8622 }else if( leafData
){
8623 /* If the tree is a leaf-data tree, and the siblings are leaves,
8624 ** then there is no divider cell in b.apCell[]. Instead, the divider
8625 ** cell consists of the integer key for the right-most cell of
8626 ** the sibling-page assembled above only.
8630 pNew
->xParseCell(pNew
, b
.apCell
[j
], &info
);
8632 sz
= 4 + putVarint(&pCell
[4], info
.nKey
);
8636 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8637 ** previously stored on a leaf node, and its reported size was 4
8638 ** bytes, then it may actually be smaller than this
8639 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8640 ** any cell). But it is important to pass the correct size to
8641 ** insertCell(), so reparse the cell now.
8643 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8644 ** and WITHOUT ROWID tables with exactly one column which is the
8647 if( b
.szCell
[j
]==4 ){
8648 assert(leafCorrection
==4);
8649 sz
= pParent
->xCellSize(pParent
, pCell
);
8653 assert( sz
<=pBt
->maxLocal
+23 );
8654 assert( iOvflSpace
<= (int)pBt
->pageSize
);
8655 for(k
=0; b
.ixNx
[k
]<=j
&& ALWAYS(k
<NB
*2); k
++){}
8656 pSrcEnd
= b
.apEnd
[k
];
8657 if( SQLITE_WITHIN(pSrcEnd
, pCell
, pCell
+sz
) ){
8658 rc
= SQLITE_CORRUPT_BKPT
;
8659 goto balance_cleanup
;
8661 rc
= insertCell(pParent
, nxDiv
+i
, pCell
, sz
, pTemp
, pNew
->pgno
);
8662 if( rc
!=SQLITE_OK
) goto balance_cleanup
;
8663 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8666 /* Now update the actual sibling pages. The order in which they are updated
8667 ** is important, as this code needs to avoid disrupting any page from which
8668 ** cells may still to be read. In practice, this means:
8670 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8671 ** then it is not safe to update page apNew[iPg] until after
8672 ** the left-hand sibling apNew[iPg-1] has been updated.
8674 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8675 ** then it is not safe to update page apNew[iPg] until after
8676 ** the right-hand sibling apNew[iPg+1] has been updated.
8678 ** If neither of the above apply, the page is safe to update.
8680 ** The iPg value in the following loop starts at nNew-1 goes down
8681 ** to 0, then back up to nNew-1 again, thus making two passes over
8682 ** the pages. On the initial downward pass, only condition (1) above
8683 ** needs to be tested because (2) will always be true from the previous
8684 ** step. On the upward pass, both conditions are always true, so the
8685 ** upwards pass simply processes pages that were missed on the downward
8688 for(i
=1-nNew
; i
<nNew
; i
++){
8689 int iPg
= i
<0 ? -i
: i
;
8690 assert( iPg
>=0 && iPg
<nNew
);
8691 if( abDone
[iPg
] ) continue; /* Skip pages already processed */
8692 if( i
>=0 /* On the upwards pass, or... */
8693 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] /* Condition (1) is true */
8699 /* Verify condition (1): If cells are moving left, update iPg
8700 ** only after iPg-1 has already been updated. */
8701 assert( iPg
==0 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] || abDone
[iPg
-1] );
8703 /* Verify condition (2): If cells are moving right, update iPg
8704 ** only after iPg+1 has already been updated. */
8705 assert( cntNew
[iPg
]>=cntOld
[iPg
] || abDone
[iPg
+1] );
8709 nNewCell
= cntNew
[0];
8711 iOld
= iPg
<nOld
? (cntOld
[iPg
-1] + !leafData
) : b
.nCell
;
8712 iNew
= cntNew
[iPg
-1] + !leafData
;
8713 nNewCell
= cntNew
[iPg
] - iNew
;
8716 rc
= editPage(apNew
[iPg
], iOld
, iNew
, nNewCell
, &b
);
8717 if( rc
) goto balance_cleanup
;
8719 apNew
[iPg
]->nFree
= usableSpace
-szNew
[iPg
];
8720 assert( apNew
[iPg
]->nOverflow
==0 );
8721 assert( apNew
[iPg
]->nCell
==nNewCell
);
8725 /* All pages have been processed exactly once */
8726 assert( memcmp(abDone
, "\01\01\01\01\01", nNew
)==0 );
8731 if( isRoot
&& pParent
->nCell
==0 && pParent
->hdrOffset
<=apNew
[0]->nFree
){
8732 /* The root page of the b-tree now contains no cells. The only sibling
8733 ** page is the right-child of the parent. Copy the contents of the
8734 ** child page into the parent, decreasing the overall height of the
8735 ** b-tree structure by one. This is described as the "balance-shallower"
8736 ** sub-algorithm in some documentation.
8738 ** If this is an auto-vacuum database, the call to copyNodeContent()
8739 ** sets all pointer-map entries corresponding to database image pages
8740 ** for which the pointer is stored within the content being copied.
8742 ** It is critical that the child page be defragmented before being
8743 ** copied into the parent, because if the parent is page 1 then it will
8744 ** by smaller than the child due to the database header, and so all the
8745 ** free space needs to be up front.
8747 assert( nNew
==1 || CORRUPT_DB
);
8748 rc
= defragmentPage(apNew
[0], -1);
8749 testcase( rc
!=SQLITE_OK
);
8750 assert( apNew
[0]->nFree
==
8751 (get2byteNotZero(&apNew
[0]->aData
[5]) - apNew
[0]->cellOffset
8752 - apNew
[0]->nCell
*2)
8755 copyNodeContent(apNew
[0], pParent
, &rc
);
8756 freePage(apNew
[0], &rc
);
8757 }else if( ISAUTOVACUUM(pBt
) && !leafCorrection
){
8758 /* Fix the pointer map entries associated with the right-child of each
8759 ** sibling page. All other pointer map entries have already been taken
8761 for(i
=0; i
<nNew
; i
++){
8762 u32 key
= get4byte(&apNew
[i
]->aData
[8]);
8763 ptrmapPut(pBt
, key
, PTRMAP_BTREE
, apNew
[i
]->pgno
, &rc
);
8767 assert( pParent
->isInit
);
8768 TRACE(("BALANCE: finished: old=%u new=%u cells=%u\n",
8769 nOld
, nNew
, b
.nCell
));
8771 /* Free any old pages that were not reused as new pages.
8773 for(i
=nNew
; i
<nOld
; i
++){
8774 freePage(apOld
[i
], &rc
);
8778 if( ISAUTOVACUUM(pBt
) && rc
==SQLITE_OK
&& apNew
[0]->isInit
){
8779 /* The ptrmapCheckPages() contains assert() statements that verify that
8780 ** all pointer map pages are set correctly. This is helpful while
8781 ** debugging. This is usually disabled because a corrupt database may
8782 ** cause an assert() statement to fail. */
8783 ptrmapCheckPages(apNew
, nNew
);
8784 ptrmapCheckPages(&pParent
, 1);
8789 ** Cleanup before returning.
8792 sqlite3StackFree(0, b
.apCell
);
8793 for(i
=0; i
<nOld
; i
++){
8794 releasePage(apOld
[i
]);
8796 for(i
=0; i
<nNew
; i
++){
8797 releasePage(apNew
[i
]);
8805 ** This function is called when the root page of a b-tree structure is
8806 ** overfull (has one or more overflow pages).
8808 ** A new child page is allocated and the contents of the current root
8809 ** page, including overflow cells, are copied into the child. The root
8810 ** page is then overwritten to make it an empty page with the right-child
8811 ** pointer pointing to the new page.
8813 ** Before returning, all pointer-map entries corresponding to pages
8814 ** that the new child-page now contains pointers to are updated. The
8815 ** entry corresponding to the new right-child pointer of the root
8816 ** page is also updated.
8818 ** If successful, *ppChild is set to contain a reference to the child
8819 ** page and SQLITE_OK is returned. In this case the caller is required
8820 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8821 ** an error code is returned and *ppChild is set to 0.
8823 static int balance_deeper(MemPage
*pRoot
, MemPage
**ppChild
){
8824 int rc
; /* Return value from subprocedures */
8825 MemPage
*pChild
= 0; /* Pointer to a new child page */
8826 Pgno pgnoChild
= 0; /* Page number of the new child page */
8827 BtShared
*pBt
= pRoot
->pBt
; /* The BTree */
8829 assert( pRoot
->nOverflow
>0 );
8830 assert( sqlite3_mutex_held(pBt
->mutex
) );
8832 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8833 ** page that will become the new right-child of pPage. Copy the contents
8834 ** of the node stored on pRoot into the new child page.
8836 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
8837 if( rc
==SQLITE_OK
){
8838 rc
= allocateBtreePage(pBt
,&pChild
,&pgnoChild
,pRoot
->pgno
,0);
8839 copyNodeContent(pRoot
, pChild
, &rc
);
8840 if( ISAUTOVACUUM(pBt
) ){
8841 ptrmapPut(pBt
, pgnoChild
, PTRMAP_BTREE
, pRoot
->pgno
, &rc
);
8846 releasePage(pChild
);
8849 assert( sqlite3PagerIswriteable(pChild
->pDbPage
) );
8850 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
8851 assert( pChild
->nCell
==pRoot
->nCell
|| CORRUPT_DB
);
8853 TRACE(("BALANCE: copy root %u into %u\n", pRoot
->pgno
, pChild
->pgno
));
8855 /* Copy the overflow cells from pRoot to pChild */
8856 memcpy(pChild
->aiOvfl
, pRoot
->aiOvfl
,
8857 pRoot
->nOverflow
*sizeof(pRoot
->aiOvfl
[0]));
8858 memcpy(pChild
->apOvfl
, pRoot
->apOvfl
,
8859 pRoot
->nOverflow
*sizeof(pRoot
->apOvfl
[0]));
8860 pChild
->nOverflow
= pRoot
->nOverflow
;
8862 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8863 zeroPage(pRoot
, pChild
->aData
[0] & ~PTF_LEAF
);
8864 put4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8], pgnoChild
);
8871 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8872 ** on the same B-tree as pCur.
8874 ** This can occur if a database is corrupt with two or more SQL tables
8875 ** pointing to the same b-tree. If an insert occurs on one SQL table
8876 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8877 ** table linked to the same b-tree. If the secondary insert causes a
8878 ** rebalance, that can change content out from under the cursor on the
8879 ** first SQL table, violating invariants on the first insert.
8881 static int anotherValidCursor(BtCursor
*pCur
){
8883 for(pOther
=pCur
->pBt
->pCursor
; pOther
; pOther
=pOther
->pNext
){
8885 && pOther
->eState
==CURSOR_VALID
8886 && pOther
->pPage
==pCur
->pPage
8888 return SQLITE_CORRUPT_BKPT
;
8895 ** The page that pCur currently points to has just been modified in
8896 ** some way. This function figures out if this modification means the
8897 ** tree needs to be balanced, and if so calls the appropriate balancing
8898 ** routine. Balancing routines are:
8902 ** balance_nonroot()
8904 static int balance(BtCursor
*pCur
){
8906 u8 aBalanceQuickSpace
[13];
8909 VVA_ONLY( int balance_quick_called
= 0 );
8910 VVA_ONLY( int balance_deeper_called
= 0 );
8914 MemPage
*pPage
= pCur
->pPage
;
8916 if( NEVER(pPage
->nFree
<0) && btreeComputeFreeSpace(pPage
) ) break;
8917 if( pPage
->nOverflow
==0 && pPage
->nFree
*3<=(int)pCur
->pBt
->usableSize
*2 ){
8918 /* No rebalance required as long as:
8919 ** (1) There are no overflow cells
8920 ** (2) The amount of free space on the page is less than 2/3rds of
8921 ** the total usable space on the page. */
8923 }else if( (iPage
= pCur
->iPage
)==0 ){
8924 if( pPage
->nOverflow
&& (rc
= anotherValidCursor(pCur
))==SQLITE_OK
){
8925 /* The root page of the b-tree is overfull. In this case call the
8926 ** balance_deeper() function to create a new child for the root-page
8927 ** and copy the current contents of the root-page to it. The
8928 ** next iteration of the do-loop will balance the child page.
8930 assert( balance_deeper_called
==0 );
8931 VVA_ONLY( balance_deeper_called
++ );
8932 rc
= balance_deeper(pPage
, &pCur
->apPage
[1]);
8933 if( rc
==SQLITE_OK
){
8937 pCur
->apPage
[0] = pPage
;
8938 pCur
->pPage
= pCur
->apPage
[1];
8939 assert( pCur
->pPage
->nOverflow
);
8944 }else if( sqlite3PagerPageRefcount(pPage
->pDbPage
)>1 ){
8945 /* The page being written is not a root page, and there is currently
8946 ** more than one reference to it. This only happens if the page is one
8947 ** of its own ancestor pages. Corruption. */
8948 rc
= SQLITE_CORRUPT_BKPT
;
8950 MemPage
* const pParent
= pCur
->apPage
[iPage
-1];
8951 int const iIdx
= pCur
->aiIdx
[iPage
-1];
8953 rc
= sqlite3PagerWrite(pParent
->pDbPage
);
8954 if( rc
==SQLITE_OK
&& pParent
->nFree
<0 ){
8955 rc
= btreeComputeFreeSpace(pParent
);
8957 if( rc
==SQLITE_OK
){
8958 #ifndef SQLITE_OMIT_QUICKBALANCE
8959 if( pPage
->intKeyLeaf
8960 && pPage
->nOverflow
==1
8961 && pPage
->aiOvfl
[0]==pPage
->nCell
8963 && pParent
->nCell
==iIdx
8965 /* Call balance_quick() to create a new sibling of pPage on which
8966 ** to store the overflow cell. balance_quick() inserts a new cell
8967 ** into pParent, which may cause pParent overflow. If this
8968 ** happens, the next iteration of the do-loop will balance pParent
8969 ** use either balance_nonroot() or balance_deeper(). Until this
8970 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8973 ** The purpose of the following assert() is to check that only a
8974 ** single call to balance_quick() is made for each call to this
8975 ** function. If this were not verified, a subtle bug involving reuse
8976 ** of the aBalanceQuickSpace[] might sneak in.
8978 assert( balance_quick_called
==0 );
8979 VVA_ONLY( balance_quick_called
++ );
8980 rc
= balance_quick(pParent
, pPage
, aBalanceQuickSpace
);
8984 /* In this case, call balance_nonroot() to redistribute cells
8985 ** between pPage and up to 2 of its sibling pages. This involves
8986 ** modifying the contents of pParent, which may cause pParent to
8987 ** become overfull or underfull. The next iteration of the do-loop
8988 ** will balance the parent page to correct this.
8990 ** If the parent page becomes overfull, the overflow cell or cells
8991 ** are stored in the pSpace buffer allocated immediately below.
8992 ** A subsequent iteration of the do-loop will deal with this by
8993 ** calling balance_nonroot() (balance_deeper() may be called first,
8994 ** but it doesn't deal with overflow cells - just moves them to a
8995 ** different page). Once this subsequent call to balance_nonroot()
8996 ** has completed, it is safe to release the pSpace buffer used by
8997 ** the previous call, as the overflow cell data will have been
8998 ** copied either into the body of a database page or into the new
8999 ** pSpace buffer passed to the latter call to balance_nonroot().
9001 u8
*pSpace
= sqlite3PageMalloc(pCur
->pBt
->pageSize
);
9002 rc
= balance_nonroot(pParent
, iIdx
, pSpace
, iPage
==1,
9003 pCur
->hints
&BTREE_BULKLOAD
);
9005 /* If pFree is not NULL, it points to the pSpace buffer used
9006 ** by a previous call to balance_nonroot(). Its contents are
9007 ** now stored either on real database pages or within the
9008 ** new pSpace buffer, so it may be safely freed here. */
9009 sqlite3PageFree(pFree
);
9012 /* The pSpace buffer will be freed after the next call to
9013 ** balance_nonroot(), or just before this function returns, whichever
9019 pPage
->nOverflow
= 0;
9021 /* The next iteration of the do-loop balances the parent page. */
9024 assert( pCur
->iPage
>=0 );
9025 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
9027 }while( rc
==SQLITE_OK
);
9030 sqlite3PageFree(pFree
);
9035 /* Overwrite content from pX into pDest. Only do the write if the
9036 ** content is different from what is already there.
9038 static int btreeOverwriteContent(
9039 MemPage
*pPage
, /* MemPage on which writing will occur */
9040 u8
*pDest
, /* Pointer to the place to start writing */
9041 const BtreePayload
*pX
, /* Source of data to write */
9042 int iOffset
, /* Offset of first byte to write */
9043 int iAmt
/* Number of bytes to be written */
9045 int nData
= pX
->nData
- iOffset
;
9047 /* Overwritting with zeros */
9049 for(i
=0; i
<iAmt
&& pDest
[i
]==0; i
++){}
9051 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9053 memset(pDest
+ i
, 0, iAmt
- i
);
9057 /* Mixed read data and zeros at the end. Make a recursive call
9058 ** to write the zeros then fall through to write the real data */
9059 int rc
= btreeOverwriteContent(pPage
, pDest
+nData
, pX
, iOffset
+nData
,
9064 if( memcmp(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
)!=0 ){
9065 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9067 /* In a corrupt database, it is possible for the source and destination
9068 ** buffers to overlap. This is harmless since the database is already
9069 ** corrupt but it does cause valgrind and ASAN warnings. So use
9071 memmove(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
);
9078 ** Overwrite the cell that cursor pCur is pointing to with fresh content
9079 ** contained in pX. In this variant, pCur is pointing to an overflow
9082 static SQLITE_NOINLINE
int btreeOverwriteOverflowCell(
9083 BtCursor
*pCur
, /* Cursor pointing to cell to ovewrite */
9084 const BtreePayload
*pX
/* Content to write into the cell */
9086 int iOffset
; /* Next byte of pX->pData to write */
9087 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
9088 int rc
; /* Return code */
9089 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
9090 BtShared
*pBt
; /* Btree */
9091 Pgno ovflPgno
; /* Next overflow page to write */
9092 u32 ovflPageSize
; /* Size to write on overflow page */
9094 assert( pCur
->info
.nLocal
<nTotal
); /* pCur is an overflow cell */
9096 /* Overwrite the local portion first */
9097 rc
= btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
9098 0, pCur
->info
.nLocal
);
9101 /* Now overwrite the overflow pages */
9102 iOffset
= pCur
->info
.nLocal
;
9103 assert( nTotal
>=0 );
9104 assert( iOffset
>=0 );
9105 ovflPgno
= get4byte(pCur
->info
.pPayload
+ iOffset
);
9107 ovflPageSize
= pBt
->usableSize
- 4;
9109 rc
= btreeGetPage(pBt
, ovflPgno
, &pPage
, 0);
9111 if( sqlite3PagerPageRefcount(pPage
->pDbPage
)!=1 || pPage
->isInit
){
9112 rc
= SQLITE_CORRUPT_BKPT
;
9114 if( iOffset
+ovflPageSize
<(u32
)nTotal
){
9115 ovflPgno
= get4byte(pPage
->aData
);
9117 ovflPageSize
= nTotal
- iOffset
;
9119 rc
= btreeOverwriteContent(pPage
, pPage
->aData
+4, pX
,
9120 iOffset
, ovflPageSize
);
9122 sqlite3PagerUnref(pPage
->pDbPage
);
9124 iOffset
+= ovflPageSize
;
9125 }while( iOffset
<nTotal
);
9130 ** Overwrite the cell that cursor pCur is pointing to with fresh content
9133 static int btreeOverwriteCell(BtCursor
*pCur
, const BtreePayload
*pX
){
9134 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
9135 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
9137 if( pCur
->info
.pPayload
+ pCur
->info
.nLocal
> pPage
->aDataEnd
9138 || pCur
->info
.pPayload
< pPage
->aData
+ pPage
->cellOffset
9140 return SQLITE_CORRUPT_BKPT
;
9142 if( pCur
->info
.nLocal
==nTotal
){
9143 /* The entire cell is local */
9144 return btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
9145 0, pCur
->info
.nLocal
);
9147 /* The cell contains overflow content */
9148 return btreeOverwriteOverflowCell(pCur
, pX
);
9154 ** Insert a new record into the BTree. The content of the new record
9155 ** is described by the pX object. The pCur cursor is used only to
9156 ** define what table the record should be inserted into, and is left
9157 ** pointing at a random location.
9159 ** For a table btree (used for rowid tables), only the pX.nKey value of
9160 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
9161 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
9162 ** hold the content of the row.
9164 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
9165 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
9166 ** pX.pData,nData,nZero fields must be zero.
9168 ** If the seekResult parameter is non-zero, then a successful call to
9169 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
9170 ** been performed. In other words, if seekResult!=0 then the cursor
9171 ** is currently pointing to a cell that will be adjacent to the cell
9172 ** to be inserted. If seekResult<0 then pCur points to a cell that is
9173 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
9174 ** that is larger than (pKey,nKey).
9176 ** If seekResult==0, that means pCur is pointing at some unknown location.
9177 ** In that case, this routine must seek the cursor to the correct insertion
9178 ** point for (pKey,nKey) before doing the insertion. For index btrees,
9179 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
9180 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
9181 ** to decode the key.
9183 int sqlite3BtreeInsert(
9184 BtCursor
*pCur
, /* Insert data into the table of this cursor */
9185 const BtreePayload
*pX
, /* Content of the row to be inserted */
9186 int flags
, /* True if this is likely an append */
9187 int seekResult
/* Result of prior IndexMoveto() call */
9190 int loc
= seekResult
; /* -1: before desired location +1: after */
9194 Btree
*p
= pCur
->pBtree
;
9195 unsigned char *oldCell
;
9196 unsigned char *newCell
= 0;
9198 assert( (flags
& (BTREE_SAVEPOSITION
|BTREE_APPEND
|BTREE_PREFORMAT
))==flags
);
9199 assert( (flags
& BTREE_PREFORMAT
)==0 || seekResult
|| pCur
->pKeyInfo
==0 );
9201 /* Save the positions of any other cursors open on this table.
9203 ** In some cases, the call to btreeMoveto() below is a no-op. For
9204 ** example, when inserting data into a table with auto-generated integer
9205 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9206 ** integer key to use. It then calls this function to actually insert the
9207 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
9208 ** that the cursor is already where it needs to be and returns without
9209 ** doing any work. To avoid thwarting these optimizations, it is important
9210 ** not to clear the cursor here.
9212 if( pCur
->curFlags
& BTCF_Multiple
){
9213 rc
= saveAllCursors(p
->pBt
, pCur
->pgnoRoot
, pCur
);
9215 if( loc
&& pCur
->iPage
<0 ){
9216 /* This can only happen if the schema is corrupt such that there is more
9217 ** than one table or index with the same root page as used by the cursor.
9218 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9219 ** the schema was loaded. This cannot be asserted though, as a user might
9220 ** set the flag, load the schema, and then unset the flag. */
9221 return SQLITE_CORRUPT_BKPT
;
9225 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
9226 ** points to a valid cell.
9228 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
9229 testcase( pCur
->eState
==CURSOR_REQUIRESEEK
);
9230 testcase( pCur
->eState
==CURSOR_FAULT
);
9231 rc
= moveToRoot(pCur
);
9232 if( rc
&& rc
!=SQLITE_EMPTY
) return rc
;
9235 assert( cursorOwnsBtShared(pCur
) );
9236 assert( (pCur
->curFlags
& BTCF_WriteFlag
)!=0
9237 && p
->pBt
->inTransaction
==TRANS_WRITE
9238 && (p
->pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9239 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
9241 /* Assert that the caller has been consistent. If this cursor was opened
9242 ** expecting an index b-tree, then the caller should be inserting blob
9243 ** keys with no associated data. If the cursor was opened expecting an
9244 ** intkey table, the caller should be inserting integer keys with a
9245 ** blob of associated data. */
9246 assert( (flags
& BTREE_PREFORMAT
) || (pX
->pKey
==0)==(pCur
->pKeyInfo
==0) );
9248 if( pCur
->pKeyInfo
==0 ){
9249 assert( pX
->pKey
==0 );
9250 /* If this is an insert into a table b-tree, invalidate any incrblob
9251 ** cursors open on the row being replaced */
9252 if( p
->hasIncrblobCur
){
9253 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pX
->nKey
, 0);
9256 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9257 ** to a row with the same key as the new entry being inserted.
9260 if( flags
& BTREE_SAVEPOSITION
){
9261 assert( pCur
->curFlags
& BTCF_ValidNKey
);
9262 assert( pX
->nKey
==pCur
->info
.nKey
);
9267 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9268 ** that the cursor is not pointing to a row to be overwritten.
9269 ** So do a complete check.
9271 if( (pCur
->curFlags
&BTCF_ValidNKey
)!=0 && pX
->nKey
==pCur
->info
.nKey
){
9272 /* The cursor is pointing to the entry that is to be
9274 assert( pX
->nData
>=0 && pX
->nZero
>=0 );
9275 if( pCur
->info
.nSize
!=0
9276 && pCur
->info
.nPayload
==(u32
)pX
->nData
+pX
->nZero
9278 /* New entry is the same size as the old. Do an overwrite */
9279 return btreeOverwriteCell(pCur
, pX
);
9283 /* The cursor is *not* pointing to the cell to be overwritten, nor
9284 ** to an adjacent cell. Move the cursor so that it is pointing either
9285 ** to the cell to be overwritten or an adjacent cell.
9287 rc
= sqlite3BtreeTableMoveto(pCur
, pX
->nKey
,
9288 (flags
& BTREE_APPEND
)!=0, &loc
);
9292 /* This is an index or a WITHOUT ROWID table */
9294 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9295 ** to a row with the same key as the new entry being inserted.
9297 assert( (flags
& BTREE_SAVEPOSITION
)==0 || loc
==0 );
9299 /* If the cursor is not already pointing either to the cell to be
9300 ** overwritten, or if a new cell is being inserted, if the cursor is
9301 ** not pointing to an immediately adjacent cell, then move the cursor
9304 if( loc
==0 && (flags
& BTREE_SAVEPOSITION
)==0 ){
9307 r
.pKeyInfo
= pCur
->pKeyInfo
;
9309 r
.nField
= pX
->nMem
;
9312 rc
= sqlite3BtreeIndexMoveto(pCur
, &r
, &loc
);
9314 rc
= btreeMoveto(pCur
, pX
->pKey
, pX
->nKey
,
9315 (flags
& BTREE_APPEND
)!=0, &loc
);
9320 /* If the cursor is currently pointing to an entry to be overwritten
9321 ** and the new content is the same as as the old, then use the
9322 ** overwrite optimization.
9326 if( pCur
->info
.nKey
==pX
->nKey
){
9328 x2
.pData
= pX
->pKey
;
9329 x2
.nData
= pX
->nKey
;
9331 return btreeOverwriteCell(pCur
, &x2
);
9335 assert( pCur
->eState
==CURSOR_VALID
9336 || (pCur
->eState
==CURSOR_INVALID
&& loc
) || CORRUPT_DB
);
9338 pPage
= pCur
->pPage
;
9339 assert( pPage
->intKey
|| pX
->nKey
>=0 || (flags
& BTREE_PREFORMAT
) );
9340 assert( pPage
->leaf
|| !pPage
->intKey
);
9341 if( pPage
->nFree
<0 ){
9342 if( NEVER(pCur
->eState
>CURSOR_INVALID
) ){
9343 /* ^^^^^--- due to the moveToRoot() call above */
9344 rc
= SQLITE_CORRUPT_BKPT
;
9346 rc
= btreeComputeFreeSpace(pPage
);
9351 TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n",
9352 pCur
->pgnoRoot
, pX
->nKey
, pX
->nData
, pPage
->pgno
,
9353 loc
==0 ? "overwrite" : "new entry"));
9354 assert( pPage
->isInit
|| CORRUPT_DB
);
9355 newCell
= p
->pBt
->pTmpSpace
;
9356 assert( newCell
!=0 );
9357 assert( BTREE_PREFORMAT
==OPFLAG_PREFORMAT
);
9358 if( flags
& BTREE_PREFORMAT
){
9360 szNew
= p
->pBt
->nPreformatSize
;
9361 if( szNew
<4 ) szNew
= 4;
9362 if( ISAUTOVACUUM(p
->pBt
) && szNew
>pPage
->maxLocal
){
9364 pPage
->xParseCell(pPage
, newCell
, &info
);
9365 if( info
.nPayload
!=info
.nLocal
){
9366 Pgno ovfl
= get4byte(&newCell
[szNew
-4]);
9367 ptrmapPut(p
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, &rc
);
9368 if( NEVER(rc
) ) goto end_insert
;
9372 rc
= fillInCell(pPage
, newCell
, pX
, &szNew
);
9373 if( rc
) goto end_insert
;
9375 assert( szNew
==pPage
->xCellSize(pPage
, newCell
) );
9376 assert( szNew
<= MX_CELL_SIZE(p
->pBt
) );
9378 pCur
->info
.nSize
= 0;
9382 if( idx
>=pPage
->nCell
){
9383 return SQLITE_CORRUPT_BKPT
;
9385 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9389 oldCell
= findCell(pPage
, idx
);
9391 memcpy(newCell
, oldCell
, 4);
9393 BTREE_CLEAR_CELL(rc
, pPage
, oldCell
, info
);
9394 testcase( pCur
->curFlags
& BTCF_ValidOvfl
);
9395 invalidateOverflowCache(pCur
);
9396 if( info
.nSize
==szNew
&& info
.nLocal
==info
.nPayload
9397 && (!ISAUTOVACUUM(p
->pBt
) || szNew
<pPage
->minLocal
)
9399 /* Overwrite the old cell with the new if they are the same size.
9400 ** We could also try to do this if the old cell is smaller, then add
9401 ** the leftover space to the free list. But experiments show that
9402 ** doing that is no faster then skipping this optimization and just
9403 ** calling dropCell() and insertCell().
9405 ** This optimization cannot be used on an autovacuum database if the
9406 ** new entry uses overflow pages, as the insertCell() call below is
9407 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
9408 assert( rc
==SQLITE_OK
); /* clearCell never fails when nLocal==nPayload */
9409 if( oldCell
< pPage
->aData
+pPage
->hdrOffset
+10 ){
9410 return SQLITE_CORRUPT_BKPT
;
9412 if( oldCell
+szNew
> pPage
->aDataEnd
){
9413 return SQLITE_CORRUPT_BKPT
;
9415 memcpy(oldCell
, newCell
, szNew
);
9418 dropCell(pPage
, idx
, info
.nSize
, &rc
);
9419 if( rc
) goto end_insert
;
9420 }else if( loc
<0 && pPage
->nCell
>0 ){
9421 assert( pPage
->leaf
);
9423 pCur
->curFlags
&= ~BTCF_ValidNKey
;
9425 assert( pPage
->leaf
);
9427 rc
= insertCellFast(pPage
, idx
, newCell
, szNew
);
9428 assert( pPage
->nOverflow
==0 || rc
==SQLITE_OK
);
9429 assert( rc
!=SQLITE_OK
|| pPage
->nCell
>0 || pPage
->nOverflow
>0 );
9431 /* If no error has occurred and pPage has an overflow cell, call balance()
9432 ** to redistribute the cells within the tree. Since balance() may move
9433 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9436 ** Previous versions of SQLite called moveToRoot() to move the cursor
9437 ** back to the root page as balance() used to invalidate the contents
9438 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9439 ** set the cursor state to "invalid". This makes common insert operations
9442 ** There is a subtle but important optimization here too. When inserting
9443 ** multiple records into an intkey b-tree using a single cursor (as can
9444 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9445 ** is advantageous to leave the cursor pointing to the last entry in
9446 ** the b-tree if possible. If the cursor is left pointing to the last
9447 ** entry in the table, and the next row inserted has an integer key
9448 ** larger than the largest existing key, it is possible to insert the
9449 ** row without seeking the cursor. This can be a big performance boost.
9451 if( pPage
->nOverflow
){
9452 assert( rc
==SQLITE_OK
);
9453 pCur
->curFlags
&= ~(BTCF_ValidNKey
);
9456 /* Must make sure nOverflow is reset to zero even if the balance()
9457 ** fails. Internal data structure corruption will result otherwise.
9458 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9459 ** from trying to save the current position of the cursor. */
9460 pCur
->pPage
->nOverflow
= 0;
9461 pCur
->eState
= CURSOR_INVALID
;
9462 if( (flags
& BTREE_SAVEPOSITION
) && rc
==SQLITE_OK
){
9463 btreeReleaseAllCursorPages(pCur
);
9464 if( pCur
->pKeyInfo
){
9465 assert( pCur
->pKey
==0 );
9466 pCur
->pKey
= sqlite3Malloc( pX
->nKey
);
9467 if( pCur
->pKey
==0 ){
9470 memcpy(pCur
->pKey
, pX
->pKey
, pX
->nKey
);
9473 pCur
->eState
= CURSOR_REQUIRESEEK
;
9474 pCur
->nKey
= pX
->nKey
;
9477 assert( pCur
->iPage
<0 || pCur
->pPage
->nOverflow
==0 );
9484 ** This function is used as part of copying the current row from cursor
9485 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9486 ** parameter iKey is used as the rowid value when the record is copied
9487 ** into pDest. Otherwise, the record is copied verbatim.
9489 ** This function does not actually write the new value to cursor pDest.
9490 ** Instead, it creates and populates any required overflow pages and
9491 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9492 ** for the destination database. The size of the cell, in bytes, is left
9493 ** in BtShared.nPreformatSize. The caller completes the insertion by
9494 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9496 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9498 int sqlite3BtreeTransferRow(BtCursor
*pDest
, BtCursor
*pSrc
, i64 iKey
){
9499 BtShared
*pBt
= pDest
->pBt
;
9500 u8
*aOut
= pBt
->pTmpSpace
; /* Pointer to next output buffer */
9501 const u8
*aIn
; /* Pointer to next input buffer */
9502 u32 nIn
; /* Size of input buffer aIn[] */
9503 u32 nRem
; /* Bytes of data still to copy */
9506 if( pSrc
->info
.nPayload
<0x80 ){
9507 *(aOut
++) = pSrc
->info
.nPayload
;
9509 aOut
+= sqlite3PutVarint(aOut
, pSrc
->info
.nPayload
);
9511 if( pDest
->pKeyInfo
==0 ) aOut
+= putVarint(aOut
, iKey
);
9512 nIn
= pSrc
->info
.nLocal
;
9513 aIn
= pSrc
->info
.pPayload
;
9514 if( aIn
+nIn
>pSrc
->pPage
->aDataEnd
){
9515 return SQLITE_CORRUPT_BKPT
;
9517 nRem
= pSrc
->info
.nPayload
;
9518 if( nIn
==nRem
&& nIn
<pDest
->pPage
->maxLocal
){
9519 memcpy(aOut
, aIn
, nIn
);
9520 pBt
->nPreformatSize
= nIn
+ (aOut
- pBt
->pTmpSpace
);
9524 Pager
*pSrcPager
= pSrc
->pBt
->pPager
;
9527 DbPage
*pPageIn
= 0;
9528 MemPage
*pPageOut
= 0;
9529 u32 nOut
; /* Size of output buffer aOut[] */
9531 nOut
= btreePayloadToLocal(pDest
->pPage
, pSrc
->info
.nPayload
);
9532 pBt
->nPreformatSize
= nOut
+ (aOut
- pBt
->pTmpSpace
);
9533 if( nOut
<pSrc
->info
.nPayload
){
9534 pPgnoOut
= &aOut
[nOut
];
9535 pBt
->nPreformatSize
+= 4;
9539 if( aIn
+nIn
+4>pSrc
->pPage
->aDataEnd
){
9540 return SQLITE_CORRUPT_BKPT
;
9542 ovflIn
= get4byte(&pSrc
->info
.pPayload
[nIn
]);
9550 int nCopy
= MIN(nOut
, nIn
);
9551 memcpy(aOut
, aIn
, nCopy
);
9558 sqlite3PagerUnref(pPageIn
);
9560 rc
= sqlite3PagerGet(pSrcPager
, ovflIn
, &pPageIn
, PAGER_GET_READONLY
);
9561 if( rc
==SQLITE_OK
){
9562 aIn
= (const u8
*)sqlite3PagerGetData(pPageIn
);
9563 ovflIn
= get4byte(aIn
);
9565 nIn
= pSrc
->pBt
->usableSize
- 4;
9568 }while( rc
==SQLITE_OK
&& nOut
>0 );
9570 if( rc
==SQLITE_OK
&& nRem
>0 && ALWAYS(pPgnoOut
) ){
9573 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
9574 put4byte(pPgnoOut
, pgnoNew
);
9575 if( ISAUTOVACUUM(pBt
) && pPageOut
){
9576 ptrmapPut(pBt
, pgnoNew
, PTRMAP_OVERFLOW2
, pPageOut
->pgno
, &rc
);
9578 releasePage(pPageOut
);
9581 pPgnoOut
= pPageOut
->aData
;
9582 put4byte(pPgnoOut
, 0);
9583 aOut
= &pPgnoOut
[4];
9584 nOut
= MIN(pBt
->usableSize
- 4, nRem
);
9587 }while( nRem
>0 && rc
==SQLITE_OK
);
9589 releasePage(pPageOut
);
9590 sqlite3PagerUnref(pPageIn
);
9596 ** Delete the entry that the cursor is pointing to.
9598 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9599 ** the cursor is left pointing at an arbitrary location after the delete.
9600 ** But if that bit is set, then the cursor is left in a state such that
9601 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9602 ** as it would have been on if the call to BtreeDelete() had been omitted.
9604 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9605 ** associated with a single table entry and its indexes. Only one of those
9606 ** deletes is considered the "primary" delete. The primary delete occurs
9607 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9608 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9609 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9610 ** but which might be used by alternative storage engines.
9612 int sqlite3BtreeDelete(BtCursor
*pCur
, u8 flags
){
9613 Btree
*p
= pCur
->pBtree
;
9614 BtShared
*pBt
= p
->pBt
;
9615 int rc
; /* Return code */
9616 MemPage
*pPage
; /* Page to delete cell from */
9617 unsigned char *pCell
; /* Pointer to cell to delete */
9618 int iCellIdx
; /* Index of cell to delete */
9619 int iCellDepth
; /* Depth of node containing pCell */
9620 CellInfo info
; /* Size of the cell being deleted */
9621 u8 bPreserve
; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
9623 assert( cursorOwnsBtShared(pCur
) );
9624 assert( pBt
->inTransaction
==TRANS_WRITE
);
9625 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9626 assert( pCur
->curFlags
& BTCF_WriteFlag
);
9627 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
9628 assert( !hasReadConflicts(p
, pCur
->pgnoRoot
) );
9629 assert( (flags
& ~(BTREE_SAVEPOSITION
| BTREE_AUXDELETE
))==0 );
9630 if( pCur
->eState
!=CURSOR_VALID
){
9631 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
9632 rc
= btreeRestoreCursorPosition(pCur
);
9633 assert( rc
!=SQLITE_OK
|| CORRUPT_DB
|| pCur
->eState
==CURSOR_VALID
);
9634 if( rc
|| pCur
->eState
!=CURSOR_VALID
) return rc
;
9636 return SQLITE_CORRUPT_BKPT
;
9639 assert( pCur
->eState
==CURSOR_VALID
);
9641 iCellDepth
= pCur
->iPage
;
9642 iCellIdx
= pCur
->ix
;
9643 pPage
= pCur
->pPage
;
9644 if( pPage
->nCell
<=iCellIdx
){
9645 return SQLITE_CORRUPT_BKPT
;
9647 pCell
= findCell(pPage
, iCellIdx
);
9648 if( pPage
->nFree
<0 && btreeComputeFreeSpace(pPage
) ){
9649 return SQLITE_CORRUPT_BKPT
;
9651 if( pCell
<&pPage
->aCellIdx
[pPage
->nCell
] ){
9652 return SQLITE_CORRUPT_BKPT
;
9655 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9656 ** be preserved following this delete operation. If the current delete
9657 ** will cause a b-tree rebalance, then this is done by saving the cursor
9658 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9661 ** If the current delete will not cause a rebalance, then the cursor
9662 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9663 ** before or after the deleted entry.
9665 ** The bPreserve value records which path is required:
9667 ** bPreserve==0 Not necessary to save the cursor position
9668 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9669 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9671 bPreserve
= (flags
& BTREE_SAVEPOSITION
)!=0;
9674 || (pPage
->nFree
+pPage
->xCellSize(pPage
,pCell
)+2) >
9675 (int)(pBt
->usableSize
*2/3)
9676 || pPage
->nCell
==1 /* See dbfuzz001.test for a test case */
9678 /* A b-tree rebalance will be required after deleting this entry.
9679 ** Save the cursor key. */
9680 rc
= saveCursorKey(pCur
);
9687 /* If the page containing the entry to delete is not a leaf page, move
9688 ** the cursor to the largest entry in the tree that is smaller than
9689 ** the entry being deleted. This cell will replace the cell being deleted
9690 ** from the internal node. The 'previous' entry is used for this instead
9691 ** of the 'next' entry, as the previous entry is always a part of the
9692 ** sub-tree headed by the child page of the cell being deleted. This makes
9693 ** balancing the tree following the delete operation easier. */
9695 rc
= sqlite3BtreePrevious(pCur
, 0);
9696 assert( rc
!=SQLITE_DONE
);
9700 /* Save the positions of any other cursors open on this table before
9701 ** making any modifications. */
9702 if( pCur
->curFlags
& BTCF_Multiple
){
9703 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
9707 /* If this is a delete operation to remove a row from a table b-tree,
9708 ** invalidate any incrblob cursors open on the row being deleted. */
9709 if( pCur
->pKeyInfo
==0 && p
->hasIncrblobCur
){
9710 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pCur
->info
.nKey
, 0);
9713 /* Make the page containing the entry to be deleted writable. Then free any
9714 ** overflow pages associated with the entry and finally remove the cell
9715 ** itself from within the page. */
9716 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9718 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
9719 dropCell(pPage
, iCellIdx
, info
.nSize
, &rc
);
9722 /* If the cell deleted was not located on a leaf page, then the cursor
9723 ** is currently pointing to the largest entry in the sub-tree headed
9724 ** by the child-page of the cell that was just deleted from an internal
9725 ** node. The cell from the leaf node needs to be moved to the internal
9726 ** node to replace the deleted cell. */
9728 MemPage
*pLeaf
= pCur
->pPage
;
9731 unsigned char *pTmp
;
9733 if( pLeaf
->nFree
<0 ){
9734 rc
= btreeComputeFreeSpace(pLeaf
);
9737 if( iCellDepth
<pCur
->iPage
-1 ){
9738 n
= pCur
->apPage
[iCellDepth
+1]->pgno
;
9740 n
= pCur
->pPage
->pgno
;
9742 pCell
= findCell(pLeaf
, pLeaf
->nCell
-1);
9743 if( pCell
<&pLeaf
->aData
[4] ) return SQLITE_CORRUPT_BKPT
;
9744 nCell
= pLeaf
->xCellSize(pLeaf
, pCell
);
9745 assert( MX_CELL_SIZE(pBt
) >= nCell
);
9746 pTmp
= pBt
->pTmpSpace
;
9748 rc
= sqlite3PagerWrite(pLeaf
->pDbPage
);
9749 if( rc
==SQLITE_OK
){
9750 rc
= insertCell(pPage
, iCellIdx
, pCell
-4, nCell
+4, pTmp
, n
);
9752 dropCell(pLeaf
, pLeaf
->nCell
-1, nCell
, &rc
);
9756 /* Balance the tree. If the entry deleted was located on a leaf page,
9757 ** then the cursor still points to that page. In this case the first
9758 ** call to balance() repairs the tree, and the if(...) condition is
9761 ** Otherwise, if the entry deleted was on an internal node page, then
9762 ** pCur is pointing to the leaf page from which a cell was removed to
9763 ** replace the cell deleted from the internal node. This is slightly
9764 ** tricky as the leaf node may be underfull, and the internal node may
9765 ** be either under or overfull. In this case run the balancing algorithm
9766 ** on the leaf node first. If the balance proceeds far enough up the
9767 ** tree that we can be sure that any problem in the internal node has
9768 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9769 ** walk the cursor up the tree to the internal node and balance it as
9771 assert( pCur
->pPage
->nOverflow
==0 );
9772 assert( pCur
->pPage
->nFree
>=0 );
9773 if( pCur
->pPage
->nFree
*3<=(int)pCur
->pBt
->usableSize
*2 ){
9774 /* Optimization: If the free space is less than 2/3rds of the page,
9775 ** then balance() will always be a no-op. No need to invoke it. */
9780 if( rc
==SQLITE_OK
&& pCur
->iPage
>iCellDepth
){
9781 releasePageNotNull(pCur
->pPage
);
9783 while( pCur
->iPage
>iCellDepth
){
9784 releasePage(pCur
->apPage
[pCur
->iPage
--]);
9786 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
9790 if( rc
==SQLITE_OK
){
9792 assert( (pCur
->iPage
==iCellDepth
|| CORRUPT_DB
) );
9793 assert( pPage
==pCur
->pPage
|| CORRUPT_DB
);
9794 assert( (pPage
->nCell
>0 || CORRUPT_DB
) && iCellIdx
<=pPage
->nCell
);
9795 pCur
->eState
= CURSOR_SKIPNEXT
;
9796 if( iCellIdx
>=pPage
->nCell
){
9797 pCur
->skipNext
= -1;
9798 pCur
->ix
= pPage
->nCell
-1;
9803 rc
= moveToRoot(pCur
);
9805 btreeReleaseAllCursorPages(pCur
);
9806 pCur
->eState
= CURSOR_REQUIRESEEK
;
9808 if( rc
==SQLITE_EMPTY
) rc
= SQLITE_OK
;
9815 ** Create a new BTree table. Write into *piTable the page
9816 ** number for the root page of the new table.
9818 ** The type of type is determined by the flags parameter. Only the
9819 ** following values of flags are currently in use. Other values for
9820 ** flags might not work:
9822 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9823 ** BTREE_ZERODATA Used for SQL indices
9825 static int btreeCreateTable(Btree
*p
, Pgno
*piTable
, int createTabFlags
){
9826 BtShared
*pBt
= p
->pBt
;
9830 int ptfFlags
; /* Page-type flage for the root page of new table */
9832 assert( sqlite3BtreeHoldsMutex(p
) );
9833 assert( pBt
->inTransaction
==TRANS_WRITE
);
9834 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9836 #ifdef SQLITE_OMIT_AUTOVACUUM
9837 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9842 if( pBt
->autoVacuum
){
9843 Pgno pgnoMove
; /* Move a page here to make room for the root-page */
9844 MemPage
*pPageMove
; /* The page to move to. */
9846 /* Creating a new table may probably require moving an existing database
9847 ** to make room for the new tables root page. In case this page turns
9848 ** out to be an overflow page, delete all overflow page-map caches
9849 ** held by open cursors.
9851 invalidateAllOverflowCache(pBt
);
9853 /* Read the value of meta[3] from the database to determine where the
9854 ** root page of the new table should go. meta[3] is the largest root-page
9855 ** created so far, so the new root-page is (meta[3]+1).
9857 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &pgnoRoot
);
9858 if( pgnoRoot
>btreePagecount(pBt
) ){
9859 return SQLITE_CORRUPT_BKPT
;
9863 /* The new root-page may not be allocated on a pointer-map page, or the
9864 ** PENDING_BYTE page.
9866 while( pgnoRoot
==PTRMAP_PAGENO(pBt
, pgnoRoot
) ||
9867 pgnoRoot
==PENDING_BYTE_PAGE(pBt
) ){
9870 assert( pgnoRoot
>=3 );
9872 /* Allocate a page. The page that currently resides at pgnoRoot will
9873 ** be moved to the allocated page (unless the allocated page happens
9874 ** to reside at pgnoRoot).
9876 rc
= allocateBtreePage(pBt
, &pPageMove
, &pgnoMove
, pgnoRoot
, BTALLOC_EXACT
);
9877 if( rc
!=SQLITE_OK
){
9881 if( pgnoMove
!=pgnoRoot
){
9882 /* pgnoRoot is the page that will be used for the root-page of
9883 ** the new table (assuming an error did not occur). But we were
9884 ** allocated pgnoMove. If required (i.e. if it was not allocated
9885 ** by extending the file), the current page at position pgnoMove
9886 ** is already journaled.
9891 /* Save the positions of any open cursors. This is required in
9892 ** case they are holding a reference to an xFetch reference
9893 ** corresponding to page pgnoRoot. */
9894 rc
= saveAllCursors(pBt
, 0, 0);
9895 releasePage(pPageMove
);
9896 if( rc
!=SQLITE_OK
){
9900 /* Move the page currently at pgnoRoot to pgnoMove. */
9901 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9902 if( rc
!=SQLITE_OK
){
9905 rc
= ptrmapGet(pBt
, pgnoRoot
, &eType
, &iPtrPage
);
9906 if( eType
==PTRMAP_ROOTPAGE
|| eType
==PTRMAP_FREEPAGE
){
9907 rc
= SQLITE_CORRUPT_BKPT
;
9909 if( rc
!=SQLITE_OK
){
9913 assert( eType
!=PTRMAP_ROOTPAGE
);
9914 assert( eType
!=PTRMAP_FREEPAGE
);
9915 rc
= relocatePage(pBt
, pRoot
, eType
, iPtrPage
, pgnoMove
, 0);
9918 /* Obtain the page at pgnoRoot */
9919 if( rc
!=SQLITE_OK
){
9922 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9923 if( rc
!=SQLITE_OK
){
9926 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
9927 if( rc
!=SQLITE_OK
){
9935 /* Update the pointer-map and meta-data with the new root-page number. */
9936 ptrmapPut(pBt
, pgnoRoot
, PTRMAP_ROOTPAGE
, 0, &rc
);
9942 /* When the new root page was allocated, page 1 was made writable in
9943 ** order either to increase the database filesize, or to decrement the
9944 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9946 assert( sqlite3PagerIswriteable(pBt
->pPage1
->pDbPage
) );
9947 rc
= sqlite3BtreeUpdateMeta(p
, 4, pgnoRoot
);
9954 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9958 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
9959 if( createTabFlags
& BTREE_INTKEY
){
9960 ptfFlags
= PTF_INTKEY
| PTF_LEAFDATA
| PTF_LEAF
;
9962 ptfFlags
= PTF_ZERODATA
| PTF_LEAF
;
9964 zeroPage(pRoot
, ptfFlags
);
9965 sqlite3PagerUnref(pRoot
->pDbPage
);
9966 assert( (pBt
->openFlags
& BTREE_SINGLE
)==0 || pgnoRoot
==2 );
9967 *piTable
= pgnoRoot
;
9970 int sqlite3BtreeCreateTable(Btree
*p
, Pgno
*piTable
, int flags
){
9972 sqlite3BtreeEnter(p
);
9973 rc
= btreeCreateTable(p
, piTable
, flags
);
9974 sqlite3BtreeLeave(p
);
9979 ** Erase the given database page and all its children. Return
9980 ** the page to the freelist.
9982 static int clearDatabasePage(
9983 BtShared
*pBt
, /* The BTree that contains the table */
9984 Pgno pgno
, /* Page number to clear */
9985 int freePageFlag
, /* Deallocate page if true */
9986 i64
*pnChange
/* Add number of Cells freed to this counter */
9990 unsigned char *pCell
;
9995 assert( sqlite3_mutex_held(pBt
->mutex
) );
9996 if( pgno
>btreePagecount(pBt
) ){
9997 return SQLITE_CORRUPT_BKPT
;
9999 rc
= getAndInitPage(pBt
, pgno
, &pPage
, 0, 0);
10000 if( rc
) return rc
;
10001 if( (pBt
->openFlags
& BTREE_SINGLE
)==0
10002 && sqlite3PagerPageRefcount(pPage
->pDbPage
) != (1 + (pgno
==1))
10004 rc
= SQLITE_CORRUPT_BKPT
;
10005 goto cleardatabasepage_out
;
10007 hdr
= pPage
->hdrOffset
;
10008 for(i
=0; i
<pPage
->nCell
; i
++){
10009 pCell
= findCell(pPage
, i
);
10010 if( !pPage
->leaf
){
10011 rc
= clearDatabasePage(pBt
, get4byte(pCell
), 1, pnChange
);
10012 if( rc
) goto cleardatabasepage_out
;
10014 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
10015 if( rc
) goto cleardatabasepage_out
;
10017 if( !pPage
->leaf
){
10018 rc
= clearDatabasePage(pBt
, get4byte(&pPage
->aData
[hdr
+8]), 1, pnChange
);
10019 if( rc
) goto cleardatabasepage_out
;
10020 if( pPage
->intKey
) pnChange
= 0;
10023 testcase( !pPage
->intKey
);
10024 *pnChange
+= pPage
->nCell
;
10026 if( freePageFlag
){
10027 freePage(pPage
, &rc
);
10028 }else if( (rc
= sqlite3PagerWrite(pPage
->pDbPage
))==0 ){
10029 zeroPage(pPage
, pPage
->aData
[hdr
] | PTF_LEAF
);
10032 cleardatabasepage_out
:
10033 releasePage(pPage
);
10038 ** Delete all information from a single table in the database. iTable is
10039 ** the page number of the root of the table. After this routine returns,
10040 ** the root page is empty, but still exists.
10042 ** This routine will fail with SQLITE_LOCKED if there are any open
10043 ** read cursors on the table. Open write cursors are moved to the
10044 ** root of the table.
10046 ** If pnChange is not NULL, then the integer value pointed to by pnChange
10047 ** is incremented by the number of entries in the table.
10049 int sqlite3BtreeClearTable(Btree
*p
, int iTable
, i64
*pnChange
){
10051 BtShared
*pBt
= p
->pBt
;
10052 sqlite3BtreeEnter(p
);
10053 assert( p
->inTrans
==TRANS_WRITE
);
10055 rc
= saveAllCursors(pBt
, (Pgno
)iTable
, 0);
10057 if( SQLITE_OK
==rc
){
10058 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
10059 ** is the root of a table b-tree - if it is not, the following call is
10061 if( p
->hasIncrblobCur
){
10062 invalidateIncrblobCursors(p
, (Pgno
)iTable
, 0, 1);
10064 rc
= clearDatabasePage(pBt
, (Pgno
)iTable
, 0, pnChange
);
10066 sqlite3BtreeLeave(p
);
10071 ** Delete all information from the single table that pCur is open on.
10073 ** This routine only work for pCur on an ephemeral table.
10075 int sqlite3BtreeClearTableOfCursor(BtCursor
*pCur
){
10076 return sqlite3BtreeClearTable(pCur
->pBtree
, pCur
->pgnoRoot
, 0);
10080 ** Erase all information in a table and add the root of the table to
10081 ** the freelist. Except, the root of the principle table (the one on
10082 ** page 1) is never added to the freelist.
10084 ** This routine will fail with SQLITE_LOCKED if there are any open
10085 ** cursors on the table.
10087 ** If AUTOVACUUM is enabled and the page at iTable is not the last
10088 ** root page in the database file, then the last root page
10089 ** in the database file is moved into the slot formerly occupied by
10090 ** iTable and that last slot formerly occupied by the last root page
10091 ** is added to the freelist instead of iTable. In this say, all
10092 ** root pages are kept at the beginning of the database file, which
10093 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
10094 ** page number that used to be the last root page in the file before
10095 ** the move. If no page gets moved, *piMoved is set to 0.
10096 ** The last root page is recorded in meta[3] and the value of
10097 ** meta[3] is updated by this procedure.
10099 static int btreeDropTable(Btree
*p
, Pgno iTable
, int *piMoved
){
10101 MemPage
*pPage
= 0;
10102 BtShared
*pBt
= p
->pBt
;
10104 assert( sqlite3BtreeHoldsMutex(p
) );
10105 assert( p
->inTrans
==TRANS_WRITE
);
10106 assert( iTable
>=2 );
10107 if( iTable
>btreePagecount(pBt
) ){
10108 return SQLITE_CORRUPT_BKPT
;
10111 rc
= sqlite3BtreeClearTable(p
, iTable
, 0);
10112 if( rc
) return rc
;
10113 rc
= btreeGetPage(pBt
, (Pgno
)iTable
, &pPage
, 0);
10115 releasePage(pPage
);
10121 #ifdef SQLITE_OMIT_AUTOVACUUM
10122 freePage(pPage
, &rc
);
10123 releasePage(pPage
);
10125 if( pBt
->autoVacuum
){
10127 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &maxRootPgno
);
10129 if( iTable
==maxRootPgno
){
10130 /* If the table being dropped is the table with the largest root-page
10131 ** number in the database, put the root page on the free list.
10133 freePage(pPage
, &rc
);
10134 releasePage(pPage
);
10135 if( rc
!=SQLITE_OK
){
10139 /* The table being dropped does not have the largest root-page
10140 ** number in the database. So move the page that does into the
10141 ** gap left by the deleted root-page.
10144 releasePage(pPage
);
10145 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
10146 if( rc
!=SQLITE_OK
){
10149 rc
= relocatePage(pBt
, pMove
, PTRMAP_ROOTPAGE
, 0, iTable
, 0);
10150 releasePage(pMove
);
10151 if( rc
!=SQLITE_OK
){
10155 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
10156 freePage(pMove
, &rc
);
10157 releasePage(pMove
);
10158 if( rc
!=SQLITE_OK
){
10161 *piMoved
= maxRootPgno
;
10164 /* Set the new 'max-root-page' value in the database header. This
10165 ** is the old value less one, less one more if that happens to
10166 ** be a root-page number, less one again if that is the
10167 ** PENDING_BYTE_PAGE.
10170 while( maxRootPgno
==PENDING_BYTE_PAGE(pBt
)
10171 || PTRMAP_ISPAGE(pBt
, maxRootPgno
) ){
10174 assert( maxRootPgno
!=PENDING_BYTE_PAGE(pBt
) );
10176 rc
= sqlite3BtreeUpdateMeta(p
, 4, maxRootPgno
);
10178 freePage(pPage
, &rc
);
10179 releasePage(pPage
);
10184 int sqlite3BtreeDropTable(Btree
*p
, int iTable
, int *piMoved
){
10186 sqlite3BtreeEnter(p
);
10187 rc
= btreeDropTable(p
, iTable
, piMoved
);
10188 sqlite3BtreeLeave(p
);
10194 ** This function may only be called if the b-tree connection already
10195 ** has a read or write transaction open on the database.
10197 ** Read the meta-information out of a database file. Meta[0]
10198 ** is the number of free pages currently in the database. Meta[1]
10199 ** through meta[15] are available for use by higher layers. Meta[0]
10200 ** is read-only, the others are read/write.
10202 ** The schema layer numbers meta values differently. At the schema
10203 ** layer (and the SetCookie and ReadCookie opcodes) the number of
10204 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
10206 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
10207 ** of reading the value out of the header, it instead loads the "DataVersion"
10208 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
10209 ** database file. It is a number computed by the pager. But its access
10210 ** pattern is the same as header meta values, and so it is convenient to
10211 ** read it from this routine.
10213 void sqlite3BtreeGetMeta(Btree
*p
, int idx
, u32
*pMeta
){
10214 BtShared
*pBt
= p
->pBt
;
10216 sqlite3BtreeEnter(p
);
10217 assert( p
->inTrans
>TRANS_NONE
);
10218 assert( SQLITE_OK
==querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
) );
10219 assert( pBt
->pPage1
);
10220 assert( idx
>=0 && idx
<=15 );
10222 if( idx
==BTREE_DATA_VERSION
){
10223 *pMeta
= sqlite3PagerDataVersion(pBt
->pPager
) + p
->iBDataVersion
;
10225 *pMeta
= get4byte(&pBt
->pPage1
->aData
[36 + idx
*4]);
10228 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10229 ** database, mark the database as read-only. */
10230 #ifdef SQLITE_OMIT_AUTOVACUUM
10231 if( idx
==BTREE_LARGEST_ROOT_PAGE
&& *pMeta
>0 ){
10232 pBt
->btsFlags
|= BTS_READ_ONLY
;
10236 sqlite3BtreeLeave(p
);
10240 ** Write meta-information back into the database. Meta[0] is
10241 ** read-only and may not be written.
10243 int sqlite3BtreeUpdateMeta(Btree
*p
, int idx
, u32 iMeta
){
10244 BtShared
*pBt
= p
->pBt
;
10245 unsigned char *pP1
;
10247 assert( idx
>=1 && idx
<=15 );
10248 sqlite3BtreeEnter(p
);
10249 assert( p
->inTrans
==TRANS_WRITE
);
10250 assert( pBt
->pPage1
!=0 );
10251 pP1
= pBt
->pPage1
->aData
;
10252 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
10253 if( rc
==SQLITE_OK
){
10254 put4byte(&pP1
[36 + idx
*4], iMeta
);
10255 #ifndef SQLITE_OMIT_AUTOVACUUM
10256 if( idx
==BTREE_INCR_VACUUM
){
10257 assert( pBt
->autoVacuum
|| iMeta
==0 );
10258 assert( iMeta
==0 || iMeta
==1 );
10259 pBt
->incrVacuum
= (u8
)iMeta
;
10263 sqlite3BtreeLeave(p
);
10268 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
10269 ** number of entries in the b-tree and write the result to *pnEntry.
10271 ** SQLITE_OK is returned if the operation is successfully executed.
10272 ** Otherwise, if an error is encountered (i.e. an IO error or database
10273 ** corruption) an SQLite error code is returned.
10275 int sqlite3BtreeCount(sqlite3
*db
, BtCursor
*pCur
, i64
*pnEntry
){
10276 i64 nEntry
= 0; /* Value to return in *pnEntry */
10277 int rc
; /* Return code */
10279 rc
= moveToRoot(pCur
);
10280 if( rc
==SQLITE_EMPTY
){
10285 /* Unless an error occurs, the following loop runs one iteration for each
10286 ** page in the B-Tree structure (not including overflow pages).
10288 while( rc
==SQLITE_OK
&& !AtomicLoad(&db
->u1
.isInterrupted
) ){
10289 int iIdx
; /* Index of child node in parent */
10290 MemPage
*pPage
; /* Current page of the b-tree */
10292 /* If this is a leaf page or the tree is not an int-key tree, then
10293 ** this page contains countable entries. Increment the entry counter
10296 pPage
= pCur
->pPage
;
10297 if( pPage
->leaf
|| !pPage
->intKey
){
10298 nEntry
+= pPage
->nCell
;
10301 /* pPage is a leaf node. This loop navigates the cursor so that it
10302 ** points to the first interior cell that it points to the parent of
10303 ** the next page in the tree that has not yet been visited. The
10304 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10305 ** of the page, or to the number of cells in the page if the next page
10306 ** to visit is the right-child of its parent.
10308 ** If all pages in the tree have been visited, return SQLITE_OK to the
10313 if( pCur
->iPage
==0 ){
10314 /* All pages of the b-tree have been visited. Return successfully. */
10316 return moveToRoot(pCur
);
10318 moveToParent(pCur
);
10319 }while ( pCur
->ix
>=pCur
->pPage
->nCell
);
10322 pPage
= pCur
->pPage
;
10325 /* Descend to the child node of the cell that the cursor currently
10326 ** points at. This is the right-child if (iIdx==pPage->nCell).
10329 if( iIdx
==pPage
->nCell
){
10330 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
10332 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, iIdx
)));
10336 /* An error has occurred. Return an error code. */
10341 ** Return the pager associated with a BTree. This routine is used for
10342 ** testing and debugging only.
10344 Pager
*sqlite3BtreePager(Btree
*p
){
10345 return p
->pBt
->pPager
;
10348 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10350 ** Record an OOM error during integrity_check
10352 static void checkOom(IntegrityCk
*pCheck
){
10353 pCheck
->rc
= SQLITE_NOMEM
;
10354 pCheck
->mxErr
= 0; /* Causes integrity_check processing to stop */
10355 if( pCheck
->nErr
==0 ) pCheck
->nErr
++;
10359 ** Invoke the progress handler, if appropriate. Also check for an
10362 static void checkProgress(IntegrityCk
*pCheck
){
10363 sqlite3
*db
= pCheck
->db
;
10364 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
10365 pCheck
->rc
= SQLITE_INTERRUPT
;
10369 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
10370 if( db
->xProgress
){
10371 assert( db
->nProgressOps
>0 );
10373 if( (pCheck
->nStep
% db
->nProgressOps
)==0
10374 && db
->xProgress(db
->pProgressArg
)
10376 pCheck
->rc
= SQLITE_INTERRUPT
;
10385 ** Append a message to the error message string.
10387 static void checkAppendMsg(
10388 IntegrityCk
*pCheck
,
10389 const char *zFormat
,
10393 checkProgress(pCheck
);
10394 if( !pCheck
->mxErr
) return;
10397 va_start(ap
, zFormat
);
10398 if( pCheck
->errMsg
.nChar
){
10399 sqlite3_str_append(&pCheck
->errMsg
, "\n", 1);
10401 if( pCheck
->zPfx
){
10402 sqlite3_str_appendf(&pCheck
->errMsg
, pCheck
->zPfx
,
10403 pCheck
->v0
, pCheck
->v1
, pCheck
->v2
);
10405 sqlite3_str_vappendf(&pCheck
->errMsg
, zFormat
, ap
);
10407 if( pCheck
->errMsg
.accError
==SQLITE_NOMEM
){
10411 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10413 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10416 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10417 ** corresponds to page iPg is already set.
10419 static int getPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
10420 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
10421 return (pCheck
->aPgRef
[iPg
/8] & (1 << (iPg
& 0x07)));
10425 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10427 static void setPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
10428 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
10429 pCheck
->aPgRef
[iPg
/8] |= (1 << (iPg
& 0x07));
10434 ** Add 1 to the reference count for page iPage. If this is the second
10435 ** reference to the page, add an error message to pCheck->zErrMsg.
10436 ** Return 1 if there are 2 or more references to the page and 0 if
10437 ** if this is the first reference to the page.
10439 ** Also check that the page number is in bounds.
10441 static int checkRef(IntegrityCk
*pCheck
, Pgno iPage
){
10442 if( iPage
>pCheck
->nPage
|| iPage
==0 ){
10443 checkAppendMsg(pCheck
, "invalid page number %u", iPage
);
10446 if( getPageReferenced(pCheck
, iPage
) ){
10447 checkAppendMsg(pCheck
, "2nd reference to page %u", iPage
);
10450 setPageReferenced(pCheck
, iPage
);
10454 #ifndef SQLITE_OMIT_AUTOVACUUM
10456 ** Check that the entry in the pointer-map for page iChild maps to
10457 ** page iParent, pointer type ptrType. If not, append an error message
10460 static void checkPtrmap(
10461 IntegrityCk
*pCheck
, /* Integrity check context */
10462 Pgno iChild
, /* Child page number */
10463 u8 eType
, /* Expected pointer map type */
10464 Pgno iParent
/* Expected pointer map parent page number */
10468 Pgno iPtrmapParent
;
10470 rc
= ptrmapGet(pCheck
->pBt
, iChild
, &ePtrmapType
, &iPtrmapParent
);
10471 if( rc
!=SQLITE_OK
){
10472 if( rc
==SQLITE_NOMEM
|| rc
==SQLITE_IOERR_NOMEM
) checkOom(pCheck
);
10473 checkAppendMsg(pCheck
, "Failed to read ptrmap key=%u", iChild
);
10477 if( ePtrmapType
!=eType
|| iPtrmapParent
!=iParent
){
10478 checkAppendMsg(pCheck
,
10479 "Bad ptr map entry key=%u expected=(%u,%u) got=(%u,%u)",
10480 iChild
, eType
, iParent
, ePtrmapType
, iPtrmapParent
);
10486 ** Check the integrity of the freelist or of an overflow page list.
10487 ** Verify that the number of pages on the list is N.
10489 static void checkList(
10490 IntegrityCk
*pCheck
, /* Integrity checking context */
10491 int isFreeList
, /* True for a freelist. False for overflow page list */
10492 Pgno iPage
, /* Page number for first page in the list */
10493 u32 N
/* Expected number of pages in the list */
10497 int nErrAtStart
= pCheck
->nErr
;
10498 while( iPage
!=0 && pCheck
->mxErr
){
10500 unsigned char *pOvflData
;
10501 if( checkRef(pCheck
, iPage
) ) break;
10503 if( sqlite3PagerGet(pCheck
->pPager
, (Pgno
)iPage
, &pOvflPage
, 0) ){
10504 checkAppendMsg(pCheck
, "failed to get page %u", iPage
);
10507 pOvflData
= (unsigned char *)sqlite3PagerGetData(pOvflPage
);
10509 u32 n
= (u32
)get4byte(&pOvflData
[4]);
10510 #ifndef SQLITE_OMIT_AUTOVACUUM
10511 if( pCheck
->pBt
->autoVacuum
){
10512 checkPtrmap(pCheck
, iPage
, PTRMAP_FREEPAGE
, 0);
10515 if( n
>pCheck
->pBt
->usableSize
/4-2 ){
10516 checkAppendMsg(pCheck
,
10517 "freelist leaf count too big on page %u", iPage
);
10520 for(i
=0; i
<(int)n
; i
++){
10521 Pgno iFreePage
= get4byte(&pOvflData
[8+i
*4]);
10522 #ifndef SQLITE_OMIT_AUTOVACUUM
10523 if( pCheck
->pBt
->autoVacuum
){
10524 checkPtrmap(pCheck
, iFreePage
, PTRMAP_FREEPAGE
, 0);
10527 checkRef(pCheck
, iFreePage
);
10532 #ifndef SQLITE_OMIT_AUTOVACUUM
10534 /* If this database supports auto-vacuum and iPage is not the last
10535 ** page in this overflow list, check that the pointer-map entry for
10536 ** the following page matches iPage.
10538 if( pCheck
->pBt
->autoVacuum
&& N
>0 ){
10539 i
= get4byte(pOvflData
);
10540 checkPtrmap(pCheck
, i
, PTRMAP_OVERFLOW2
, iPage
);
10544 iPage
= get4byte(pOvflData
);
10545 sqlite3PagerUnref(pOvflPage
);
10547 if( N
&& nErrAtStart
==pCheck
->nErr
){
10548 checkAppendMsg(pCheck
,
10549 "%s is %u but should be %u",
10550 isFreeList
? "size" : "overflow list length",
10551 expected
-N
, expected
);
10554 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10557 ** An implementation of a min-heap.
10559 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
10560 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
10561 ** and aHeap[N*2+1].
10563 ** The heap property is this: Every node is less than or equal to both
10564 ** of its daughter nodes. A consequence of the heap property is that the
10565 ** root node aHeap[1] is always the minimum value currently in the heap.
10567 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10568 ** the heap, preserving the heap property. The btreeHeapPull() routine
10569 ** removes the root element from the heap (the minimum value in the heap)
10570 ** and then moves other nodes around as necessary to preserve the heap
10573 ** This heap is used for cell overlap and coverage testing. Each u32
10574 ** entry represents the span of a cell or freeblock on a btree page.
10575 ** The upper 16 bits are the index of the first byte of a range and the
10576 ** lower 16 bits are the index of the last byte of that range.
10578 static void btreeHeapInsert(u32
*aHeap
, u32 x
){
10580 assert( aHeap
!=0 );
10583 while( (j
= i
/2)>0 && aHeap
[j
]>aHeap
[i
] ){
10585 aHeap
[j
] = aHeap
[i
];
10590 static int btreeHeapPull(u32
*aHeap
, u32
*pOut
){
10592 if( (x
= aHeap
[0])==0 ) return 0;
10594 aHeap
[1] = aHeap
[x
];
10595 aHeap
[x
] = 0xffffffff;
10598 while( (j
= i
*2)<=aHeap
[0] ){
10599 if( aHeap
[j
]>aHeap
[j
+1] ) j
++;
10600 if( aHeap
[i
]<aHeap
[j
] ) break;
10602 aHeap
[i
] = aHeap
[j
];
10609 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10611 ** Do various sanity checks on a single page of a tree. Return
10612 ** the tree depth. Root pages return 0. Parents of root pages
10613 ** return 1, and so forth.
10615 ** These checks are done:
10617 ** 1. Make sure that cells and freeblocks do not overlap
10618 ** but combine to completely cover the page.
10619 ** 2. Make sure integer cell keys are in order.
10620 ** 3. Check the integrity of overflow pages.
10621 ** 4. Recursively call checkTreePage on all children.
10622 ** 5. Verify that the depth of all children is the same.
10624 static int checkTreePage(
10625 IntegrityCk
*pCheck
, /* Context for the sanity check */
10626 Pgno iPage
, /* Page number of the page to check */
10627 i64
*piMinKey
, /* Write minimum integer primary key here */
10628 i64 maxKey
/* Error if integer primary key greater than this */
10630 MemPage
*pPage
= 0; /* The page being analyzed */
10631 int i
; /* Loop counter */
10632 int rc
; /* Result code from subroutine call */
10633 int depth
= -1, d2
; /* Depth of a subtree */
10634 int pgno
; /* Page number */
10635 int nFrag
; /* Number of fragmented bytes on the page */
10636 int hdr
; /* Offset to the page header */
10637 int cellStart
; /* Offset to the start of the cell pointer array */
10638 int nCell
; /* Number of cells */
10639 int doCoverageCheck
= 1; /* True if cell coverage checking should be done */
10640 int keyCanBeEqual
= 1; /* True if IPK can be equal to maxKey
10641 ** False if IPK must be strictly less than maxKey */
10642 u8
*data
; /* Page content */
10643 u8
*pCell
; /* Cell content */
10644 u8
*pCellIdx
; /* Next element of the cell pointer array */
10645 BtShared
*pBt
; /* The BtShared object that owns pPage */
10646 u32 pc
; /* Address of a cell */
10647 u32 usableSize
; /* Usable size of the page */
10648 u32 contentOffset
; /* Offset to the start of the cell content area */
10649 u32
*heap
= 0; /* Min-heap used for checking cell coverage */
10650 u32 x
, prev
= 0; /* Next and previous entry on the min-heap */
10651 const char *saved_zPfx
= pCheck
->zPfx
;
10652 int saved_v1
= pCheck
->v1
;
10653 int saved_v2
= pCheck
->v2
;
10654 u8 savedIsInit
= 0;
10656 /* Check that the page exists
10658 checkProgress(pCheck
);
10659 if( pCheck
->mxErr
==0 ) goto end_of_check
;
10661 usableSize
= pBt
->usableSize
;
10662 if( iPage
==0 ) return 0;
10663 if( checkRef(pCheck
, iPage
) ) return 0;
10664 pCheck
->zPfx
= "Tree %u page %u: ";
10665 pCheck
->v0
= pCheck
->v1
= iPage
;
10666 if( (rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0 ){
10667 checkAppendMsg(pCheck
,
10668 "unable to get the page. error code=%d", rc
);
10672 /* Clear MemPage.isInit to make sure the corruption detection code in
10673 ** btreeInitPage() is executed. */
10674 savedIsInit
= pPage
->isInit
;
10676 if( (rc
= btreeInitPage(pPage
))!=0 ){
10677 assert( rc
==SQLITE_CORRUPT
); /* The only possible error from InitPage */
10678 checkAppendMsg(pCheck
,
10679 "btreeInitPage() returns error code %d", rc
);
10682 if( (rc
= btreeComputeFreeSpace(pPage
))!=0 ){
10683 assert( rc
==SQLITE_CORRUPT
);
10684 checkAppendMsg(pCheck
, "free space corruption", rc
);
10687 data
= pPage
->aData
;
10688 hdr
= pPage
->hdrOffset
;
10690 /* Set up for cell analysis */
10691 pCheck
->zPfx
= "Tree %u page %u cell %u: ";
10692 contentOffset
= get2byteNotZero(&data
[hdr
+5]);
10693 assert( contentOffset
<=usableSize
); /* Enforced by btreeInitPage() */
10695 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10696 ** number of cells on the page. */
10697 nCell
= get2byte(&data
[hdr
+3]);
10698 assert( pPage
->nCell
==nCell
);
10700 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10701 ** immediately follows the b-tree page header. */
10702 cellStart
= hdr
+ 12 - 4*pPage
->leaf
;
10703 assert( pPage
->aCellIdx
==&data
[cellStart
] );
10704 pCellIdx
= &data
[cellStart
+ 2*(nCell
-1)];
10706 if( !pPage
->leaf
){
10707 /* Analyze the right-child page of internal pages */
10708 pgno
= get4byte(&data
[hdr
+8]);
10709 #ifndef SQLITE_OMIT_AUTOVACUUM
10710 if( pBt
->autoVacuum
){
10711 pCheck
->zPfx
= "Tree %u page %u right child: ";
10712 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10715 depth
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10718 /* For leaf pages, the coverage check will occur in the same loop
10719 ** as the other cell checks, so initialize the heap. */
10720 heap
= pCheck
->heap
;
10724 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10725 ** integer offsets to the cell contents. */
10726 for(i
=nCell
-1; i
>=0 && pCheck
->mxErr
; i
--){
10729 /* Check cell size */
10731 assert( pCellIdx
==&data
[cellStart
+ i
*2] );
10732 pc
= get2byteAligned(pCellIdx
);
10734 if( pc
<contentOffset
|| pc
>usableSize
-4 ){
10735 checkAppendMsg(pCheck
, "Offset %u out of range %u..%u",
10736 pc
, contentOffset
, usableSize
-4);
10737 doCoverageCheck
= 0;
10741 pPage
->xParseCell(pPage
, pCell
, &info
);
10742 if( pc
+info
.nSize
>usableSize
){
10743 checkAppendMsg(pCheck
, "Extends off end of page");
10744 doCoverageCheck
= 0;
10748 /* Check for integer primary key out of range */
10749 if( pPage
->intKey
){
10750 if( keyCanBeEqual
? (info
.nKey
> maxKey
) : (info
.nKey
>= maxKey
) ){
10751 checkAppendMsg(pCheck
, "Rowid %lld out of order", info
.nKey
);
10753 maxKey
= info
.nKey
;
10754 keyCanBeEqual
= 0; /* Only the first key on the page may ==maxKey */
10757 /* Check the content overflow list */
10758 if( info
.nPayload
>info
.nLocal
){
10759 u32 nPage
; /* Number of pages on the overflow chain */
10760 Pgno pgnoOvfl
; /* First page of the overflow chain */
10761 assert( pc
+ info
.nSize
- 4 <= usableSize
);
10762 nPage
= (info
.nPayload
- info
.nLocal
+ usableSize
- 5)/(usableSize
- 4);
10763 pgnoOvfl
= get4byte(&pCell
[info
.nSize
- 4]);
10764 #ifndef SQLITE_OMIT_AUTOVACUUM
10765 if( pBt
->autoVacuum
){
10766 checkPtrmap(pCheck
, pgnoOvfl
, PTRMAP_OVERFLOW1
, iPage
);
10769 checkList(pCheck
, 0, pgnoOvfl
, nPage
);
10772 if( !pPage
->leaf
){
10773 /* Check sanity of left child page for internal pages */
10774 pgno
= get4byte(pCell
);
10775 #ifndef SQLITE_OMIT_AUTOVACUUM
10776 if( pBt
->autoVacuum
){
10777 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10780 d2
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10783 checkAppendMsg(pCheck
, "Child page depth differs");
10787 /* Populate the coverage-checking heap for leaf pages */
10788 btreeHeapInsert(heap
, (pc
<<16)|(pc
+info
.nSize
-1));
10791 *piMinKey
= maxKey
;
10793 /* Check for complete coverage of the page
10796 if( doCoverageCheck
&& pCheck
->mxErr
>0 ){
10797 /* For leaf pages, the min-heap has already been initialized and the
10798 ** cells have already been inserted. But for internal pages, that has
10799 ** not yet been done, so do it now */
10800 if( !pPage
->leaf
){
10801 heap
= pCheck
->heap
;
10803 for(i
=nCell
-1; i
>=0; i
--){
10805 pc
= get2byteAligned(&data
[cellStart
+i
*2]);
10806 size
= pPage
->xCellSize(pPage
, &data
[pc
]);
10807 btreeHeapInsert(heap
, (pc
<<16)|(pc
+size
-1));
10810 /* Add the freeblocks to the min-heap
10812 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10813 ** is the offset of the first freeblock, or zero if there are no
10814 ** freeblocks on the page.
10816 i
= get2byte(&data
[hdr
+1]);
10819 assert( (u32
)i
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10820 size
= get2byte(&data
[i
+2]);
10821 assert( (u32
)(i
+size
)<=usableSize
); /* due to btreeComputeFreeSpace() */
10822 btreeHeapInsert(heap
, (((u32
)i
)<<16)|(i
+size
-1));
10823 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10824 ** big-endian integer which is the offset in the b-tree page of the next
10825 ** freeblock in the chain, or zero if the freeblock is the last on the
10827 j
= get2byte(&data
[i
]);
10828 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10829 ** increasing offset. */
10830 assert( j
==0 || j
>i
+size
); /* Enforced by btreeComputeFreeSpace() */
10831 assert( (u32
)j
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10834 /* Analyze the min-heap looking for overlap between cells and/or
10835 ** freeblocks, and counting the number of untracked bytes in nFrag.
10837 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10838 ** There is an implied first entry the covers the page header, the cell
10839 ** pointer index, and the gap between the cell pointer index and the start
10840 ** of cell content.
10842 ** The loop below pulls entries from the min-heap in order and compares
10843 ** the start_address against the previous end_address. If there is an
10844 ** overlap, that means bytes are used multiple times. If there is a gap,
10845 ** that gap is added to the fragmentation count.
10848 prev
= contentOffset
- 1; /* Implied first min-heap entry */
10849 while( btreeHeapPull(heap
,&x
) ){
10850 if( (prev
&0xffff)>=(x
>>16) ){
10851 checkAppendMsg(pCheck
,
10852 "Multiple uses for byte %u of page %u", x
>>16, iPage
);
10855 nFrag
+= (x
>>16) - (prev
&0xffff) - 1;
10859 nFrag
+= usableSize
- (prev
&0xffff) - 1;
10860 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10861 ** is stored in the fifth field of the b-tree page header.
10862 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10863 ** number of fragmented free bytes within the cell content area.
10865 if( heap
[0]==0 && nFrag
!=data
[hdr
+7] ){
10866 checkAppendMsg(pCheck
,
10867 "Fragmentation of %u bytes reported as %u on page %u",
10868 nFrag
, data
[hdr
+7], iPage
);
10873 if( !doCoverageCheck
) pPage
->isInit
= savedIsInit
;
10874 releasePage(pPage
);
10875 pCheck
->zPfx
= saved_zPfx
;
10876 pCheck
->v1
= saved_v1
;
10877 pCheck
->v2
= saved_v2
;
10880 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10882 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10884 ** This routine does a complete check of the given BTree file. aRoot[] is
10885 ** an array of pages numbers were each page number is the root page of
10886 ** a table. nRoot is the number of entries in aRoot.
10888 ** A read-only or read-write transaction must be opened before calling
10891 ** Write the number of error seen in *pnErr. Except for some memory
10892 ** allocation errors, an error message held in memory obtained from
10893 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
10894 ** returned. If a memory allocation error occurs, NULL is returned.
10896 ** If the first entry in aRoot[] is 0, that indicates that the list of
10897 ** root pages is incomplete. This is a "partial integrity-check". This
10898 ** happens when performing an integrity check on a single table. The
10899 ** zero is skipped, of course. But in addition, the freelist checks
10900 ** and the checks to make sure every page is referenced are also skipped,
10901 ** since obviously it is not possible to know which pages are covered by
10902 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10903 ** checks are still performed.
10905 int sqlite3BtreeIntegrityCheck(
10906 sqlite3
*db
, /* Database connection that is running the check */
10907 Btree
*p
, /* The btree to be checked */
10908 Pgno
*aRoot
, /* An array of root pages numbers for individual trees */
10909 int nRoot
, /* Number of entries in aRoot[] */
10910 int mxErr
, /* Stop reporting errors after this many */
10911 int *pnErr
, /* OUT: Write number of errors seen to this variable */
10912 char **pzOut
/* OUT: Write the error message string here */
10915 IntegrityCk sCheck
;
10916 BtShared
*pBt
= p
->pBt
;
10917 u64 savedDbFlags
= pBt
->db
->flags
;
10919 int bPartial
= 0; /* True if not checking all btrees */
10920 int bCkFreelist
= 1; /* True to scan the freelist */
10921 VVA_ONLY( int nRef
);
10924 /* aRoot[0]==0 means this is a partial check */
10928 if( aRoot
[1]!=1 ) bCkFreelist
= 0;
10931 sqlite3BtreeEnter(p
);
10932 assert( p
->inTrans
>TRANS_NONE
&& pBt
->inTransaction
>TRANS_NONE
);
10933 VVA_ONLY( nRef
= sqlite3PagerRefcount(pBt
->pPager
) );
10935 memset(&sCheck
, 0, sizeof(sCheck
));
10938 sCheck
.pPager
= pBt
->pPager
;
10939 sCheck
.nPage
= btreePagecount(sCheck
.pBt
);
10940 sCheck
.mxErr
= mxErr
;
10941 sqlite3StrAccumInit(&sCheck
.errMsg
, 0, zErr
, sizeof(zErr
), SQLITE_MAX_LENGTH
);
10942 sCheck
.errMsg
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
10943 if( sCheck
.nPage
==0 ){
10944 goto integrity_ck_cleanup
;
10947 sCheck
.aPgRef
= sqlite3MallocZero((sCheck
.nPage
/ 8)+ 1);
10948 if( !sCheck
.aPgRef
){
10950 goto integrity_ck_cleanup
;
10952 sCheck
.heap
= (u32
*)sqlite3PageMalloc( pBt
->pageSize
);
10953 if( sCheck
.heap
==0 ){
10955 goto integrity_ck_cleanup
;
10958 i
= PENDING_BYTE_PAGE(pBt
);
10959 if( i
<=sCheck
.nPage
) setPageReferenced(&sCheck
, i
);
10961 /* Check the integrity of the freelist
10964 sCheck
.zPfx
= "Freelist: ";
10965 checkList(&sCheck
, 1, get4byte(&pBt
->pPage1
->aData
[32]),
10966 get4byte(&pBt
->pPage1
->aData
[36]));
10970 /* Check all the tables.
10972 #ifndef SQLITE_OMIT_AUTOVACUUM
10974 if( pBt
->autoVacuum
){
10977 for(i
=0; (int)i
<nRoot
; i
++) if( mx
<aRoot
[i
] ) mx
= aRoot
[i
];
10978 mxInHdr
= get4byte(&pBt
->pPage1
->aData
[52]);
10980 checkAppendMsg(&sCheck
,
10981 "max rootpage (%u) disagrees with header (%u)",
10985 }else if( get4byte(&pBt
->pPage1
->aData
[64])!=0 ){
10986 checkAppendMsg(&sCheck
,
10987 "incremental_vacuum enabled with a max rootpage of zero"
10992 testcase( pBt
->db
->flags
& SQLITE_CellSizeCk
);
10993 pBt
->db
->flags
&= ~(u64
)SQLITE_CellSizeCk
;
10994 for(i
=0; (int)i
<nRoot
&& sCheck
.mxErr
; i
++){
10996 if( aRoot
[i
]==0 ) continue;
10997 #ifndef SQLITE_OMIT_AUTOVACUUM
10998 if( pBt
->autoVacuum
&& aRoot
[i
]>1 && !bPartial
){
10999 checkPtrmap(&sCheck
, aRoot
[i
], PTRMAP_ROOTPAGE
, 0);
11002 checkTreePage(&sCheck
, aRoot
[i
], ¬Used
, LARGEST_INT64
);
11004 pBt
->db
->flags
= savedDbFlags
;
11006 /* Make sure every page in the file is referenced
11009 for(i
=1; i
<=sCheck
.nPage
&& sCheck
.mxErr
; i
++){
11010 #ifdef SQLITE_OMIT_AUTOVACUUM
11011 if( getPageReferenced(&sCheck
, i
)==0 ){
11012 checkAppendMsg(&sCheck
, "Page %u: never used", i
);
11015 /* If the database supports auto-vacuum, make sure no tables contain
11016 ** references to pointer-map pages.
11018 if( getPageReferenced(&sCheck
, i
)==0 &&
11019 (PTRMAP_PAGENO(pBt
, i
)!=i
|| !pBt
->autoVacuum
) ){
11020 checkAppendMsg(&sCheck
, "Page %u: never used", i
);
11022 if( getPageReferenced(&sCheck
, i
)!=0 &&
11023 (PTRMAP_PAGENO(pBt
, i
)==i
&& pBt
->autoVacuum
) ){
11024 checkAppendMsg(&sCheck
, "Page %u: pointer map referenced", i
);
11030 /* Clean up and report errors.
11032 integrity_ck_cleanup
:
11033 sqlite3PageFree(sCheck
.heap
);
11034 sqlite3_free(sCheck
.aPgRef
);
11035 *pnErr
= sCheck
.nErr
;
11036 if( sCheck
.nErr
==0 ){
11037 sqlite3_str_reset(&sCheck
.errMsg
);
11040 *pzOut
= sqlite3StrAccumFinish(&sCheck
.errMsg
);
11042 /* Make sure this analysis did not leave any unref() pages. */
11043 assert( nRef
==sqlite3PagerRefcount(pBt
->pPager
) );
11044 sqlite3BtreeLeave(p
);
11047 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
11050 ** Return the full pathname of the underlying database file. Return
11051 ** an empty string if the database is in-memory or a TEMP database.
11053 ** The pager filename is invariant as long as the pager is
11054 ** open so it is safe to access without the BtShared mutex.
11056 const char *sqlite3BtreeGetFilename(Btree
*p
){
11057 assert( p
->pBt
->pPager
!=0 );
11058 return sqlite3PagerFilename(p
->pBt
->pPager
, 1);
11062 ** Return the pathname of the journal file for this database. The return
11063 ** value of this routine is the same regardless of whether the journal file
11064 ** has been created or not.
11066 ** The pager journal filename is invariant as long as the pager is
11067 ** open so it is safe to access without the BtShared mutex.
11069 const char *sqlite3BtreeGetJournalname(Btree
*p
){
11070 assert( p
->pBt
->pPager
!=0 );
11071 return sqlite3PagerJournalname(p
->pBt
->pPager
);
11075 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
11076 ** to describe the current transaction state of Btree p.
11078 int sqlite3BtreeTxnState(Btree
*p
){
11079 assert( p
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
11080 return p
? p
->inTrans
: 0;
11083 #ifndef SQLITE_OMIT_WAL
11085 ** Run a checkpoint on the Btree passed as the first argument.
11087 ** Return SQLITE_LOCKED if this or any other connection has an open
11088 ** transaction on the shared-cache the argument Btree is connected to.
11090 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
11092 int sqlite3BtreeCheckpoint(Btree
*p
, int eMode
, int *pnLog
, int *pnCkpt
){
11093 int rc
= SQLITE_OK
;
11095 BtShared
*pBt
= p
->pBt
;
11096 sqlite3BtreeEnter(p
);
11097 if( pBt
->inTransaction
!=TRANS_NONE
){
11098 rc
= SQLITE_LOCKED
;
11100 rc
= sqlite3PagerCheckpoint(pBt
->pPager
, p
->db
, eMode
, pnLog
, pnCkpt
);
11102 sqlite3BtreeLeave(p
);
11109 ** Return true if there is currently a backup running on Btree p.
11111 int sqlite3BtreeIsInBackup(Btree
*p
){
11113 assert( sqlite3_mutex_held(p
->db
->mutex
) );
11114 return p
->nBackup
!=0;
11118 ** This function returns a pointer to a blob of memory associated with
11119 ** a single shared-btree. The memory is used by client code for its own
11120 ** purposes (for example, to store a high-level schema associated with
11121 ** the shared-btree). The btree layer manages reference counting issues.
11123 ** The first time this is called on a shared-btree, nBytes bytes of memory
11124 ** are allocated, zeroed, and returned to the caller. For each subsequent
11125 ** call the nBytes parameter is ignored and a pointer to the same blob
11126 ** of memory returned.
11128 ** If the nBytes parameter is 0 and the blob of memory has not yet been
11129 ** allocated, a null pointer is returned. If the blob has already been
11130 ** allocated, it is returned as normal.
11132 ** Just before the shared-btree is closed, the function passed as the
11133 ** xFree argument when the memory allocation was made is invoked on the
11134 ** blob of allocated memory. The xFree function should not call sqlite3_free()
11135 ** on the memory, the btree layer does that.
11137 void *sqlite3BtreeSchema(Btree
*p
, int nBytes
, void(*xFree
)(void *)){
11138 BtShared
*pBt
= p
->pBt
;
11139 sqlite3BtreeEnter(p
);
11140 if( !pBt
->pSchema
&& nBytes
){
11141 pBt
->pSchema
= sqlite3DbMallocZero(0, nBytes
);
11142 pBt
->xFreeSchema
= xFree
;
11144 sqlite3BtreeLeave(p
);
11145 return pBt
->pSchema
;
11149 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
11150 ** btree as the argument handle holds an exclusive lock on the
11151 ** sqlite_schema table. Otherwise SQLITE_OK.
11153 int sqlite3BtreeSchemaLocked(Btree
*p
){
11155 assert( sqlite3_mutex_held(p
->db
->mutex
) );
11156 sqlite3BtreeEnter(p
);
11157 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
11158 assert( rc
==SQLITE_OK
|| rc
==SQLITE_LOCKED_SHAREDCACHE
);
11159 sqlite3BtreeLeave(p
);
11164 #ifndef SQLITE_OMIT_SHARED_CACHE
11166 ** Obtain a lock on the table whose root page is iTab. The
11167 ** lock is a write lock if isWritelock is true or a read lock
11170 int sqlite3BtreeLockTable(Btree
*p
, int iTab
, u8 isWriteLock
){
11171 int rc
= SQLITE_OK
;
11172 assert( p
->inTrans
!=TRANS_NONE
);
11174 u8 lockType
= READ_LOCK
+ isWriteLock
;
11175 assert( READ_LOCK
+1==WRITE_LOCK
);
11176 assert( isWriteLock
==0 || isWriteLock
==1 );
11178 sqlite3BtreeEnter(p
);
11179 rc
= querySharedCacheTableLock(p
, iTab
, lockType
);
11180 if( rc
==SQLITE_OK
){
11181 rc
= setSharedCacheTableLock(p
, iTab
, lockType
);
11183 sqlite3BtreeLeave(p
);
11189 #ifndef SQLITE_OMIT_INCRBLOB
11191 ** Argument pCsr must be a cursor opened for writing on an
11192 ** INTKEY table currently pointing at a valid table entry.
11193 ** This function modifies the data stored as part of that entry.
11195 ** Only the data content may only be modified, it is not possible to
11196 ** change the length of the data stored. If this function is called with
11197 ** parameters that attempt to write past the end of the existing data,
11198 ** no modifications are made and SQLITE_CORRUPT is returned.
11200 int sqlite3BtreePutData(BtCursor
*pCsr
, u32 offset
, u32 amt
, void *z
){
11202 assert( cursorOwnsBtShared(pCsr
) );
11203 assert( sqlite3_mutex_held(pCsr
->pBtree
->db
->mutex
) );
11204 assert( pCsr
->curFlags
& BTCF_Incrblob
);
11206 rc
= restoreCursorPosition(pCsr
);
11207 if( rc
!=SQLITE_OK
){
11210 assert( pCsr
->eState
!=CURSOR_REQUIRESEEK
);
11211 if( pCsr
->eState
!=CURSOR_VALID
){
11212 return SQLITE_ABORT
;
11215 /* Save the positions of all other cursors open on this table. This is
11216 ** required in case any of them are holding references to an xFetch
11217 ** version of the b-tree page modified by the accessPayload call below.
11219 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
11220 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
11221 ** saveAllCursors can only return SQLITE_OK.
11223 VVA_ONLY(rc
=) saveAllCursors(pCsr
->pBt
, pCsr
->pgnoRoot
, pCsr
);
11224 assert( rc
==SQLITE_OK
);
11226 /* Check some assumptions:
11227 ** (a) the cursor is open for writing,
11228 ** (b) there is a read/write transaction open,
11229 ** (c) the connection holds a write-lock on the table (if required),
11230 ** (d) there are no conflicting read-locks, and
11231 ** (e) the cursor points at a valid row of an intKey table.
11233 if( (pCsr
->curFlags
& BTCF_WriteFlag
)==0 ){
11234 return SQLITE_READONLY
;
11236 assert( (pCsr
->pBt
->btsFlags
& BTS_READ_ONLY
)==0
11237 && pCsr
->pBt
->inTransaction
==TRANS_WRITE
);
11238 assert( hasSharedCacheTableLock(pCsr
->pBtree
, pCsr
->pgnoRoot
, 0, 2) );
11239 assert( !hasReadConflicts(pCsr
->pBtree
, pCsr
->pgnoRoot
) );
11240 assert( pCsr
->pPage
->intKey
);
11242 return accessPayload(pCsr
, offset
, amt
, (unsigned char *)z
, 1);
11246 ** Mark this cursor as an incremental blob cursor.
11248 void sqlite3BtreeIncrblobCursor(BtCursor
*pCur
){
11249 pCur
->curFlags
|= BTCF_Incrblob
;
11250 pCur
->pBtree
->hasIncrblobCur
= 1;
11255 ** Set both the "read version" (single byte at byte offset 18) and
11256 ** "write version" (single byte at byte offset 19) fields in the database
11257 ** header to iVersion.
11259 int sqlite3BtreeSetVersion(Btree
*pBtree
, int iVersion
){
11260 BtShared
*pBt
= pBtree
->pBt
;
11261 int rc
; /* Return code */
11263 assert( iVersion
==1 || iVersion
==2 );
11265 /* If setting the version fields to 1, do not automatically open the
11266 ** WAL connection, even if the version fields are currently set to 2.
11268 pBt
->btsFlags
&= ~BTS_NO_WAL
;
11269 if( iVersion
==1 ) pBt
->btsFlags
|= BTS_NO_WAL
;
11271 rc
= sqlite3BtreeBeginTrans(pBtree
, 0, 0);
11272 if( rc
==SQLITE_OK
){
11273 u8
*aData
= pBt
->pPage1
->aData
;
11274 if( aData
[18]!=(u8
)iVersion
|| aData
[19]!=(u8
)iVersion
){
11275 rc
= sqlite3BtreeBeginTrans(pBtree
, 2, 0);
11276 if( rc
==SQLITE_OK
){
11277 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
11278 if( rc
==SQLITE_OK
){
11279 aData
[18] = (u8
)iVersion
;
11280 aData
[19] = (u8
)iVersion
;
11286 pBt
->btsFlags
&= ~BTS_NO_WAL
;
11291 ** Return true if the cursor has a hint specified. This routine is
11292 ** only used from within assert() statements
11294 int sqlite3BtreeCursorHasHint(BtCursor
*pCsr
, unsigned int mask
){
11295 return (pCsr
->hints
& mask
)!=0;
11299 ** Return true if the given Btree is read-only.
11301 int sqlite3BtreeIsReadonly(Btree
*p
){
11302 return (p
->pBt
->btsFlags
& BTS_READ_ONLY
)!=0;
11306 ** Return the size of the header added to each page by this module.
11308 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage
)); }
11311 ** If no transaction is active and the database is not a temp-db, clear
11312 ** the in-memory pager cache.
11314 void sqlite3BtreeClearCache(Btree
*p
){
11315 BtShared
*pBt
= p
->pBt
;
11316 if( pBt
->inTransaction
==TRANS_NONE
){
11317 sqlite3PagerClearCache(pBt
->pPager
);
11321 #if !defined(SQLITE_OMIT_SHARED_CACHE)
11323 ** Return true if the Btree passed as the only argument is sharable.
11325 int sqlite3BtreeSharable(Btree
*p
){
11326 return p
->sharable
;
11330 ** Return the number of connections to the BtShared object accessed by
11331 ** the Btree handle passed as the only argument. For private caches
11332 ** this is always 1. For shared caches it may be 1 or greater.
11334 int sqlite3BtreeConnectionCount(Btree
*p
){
11335 testcase( p
->sharable
);
11336 return p
->pBt
->nRef
;