4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse
*,Expr
*,int,void(*)(Parse
*,Expr
*,int,int),int);
19 static int exprCodeVector(Parse
*pParse
, Expr
*p
, int *piToFree
);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(const Table
*pTab
, int iCol
){
25 if( iCol
<0 || NEVER(iCol
>=pTab
->nCol
) ) return SQLITE_AFF_INTEGER
;
26 return pTab
->aCol
[iCol
].affinity
;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(const Expr
*pExpr
){
48 while( 1 /* exit-by-break */ ){
49 if( op
==TK_COLUMN
|| (op
==TK_AGG_COLUMN
&& pExpr
->y
.pTab
!=0) ){
50 assert( ExprUseYTab(pExpr
) );
51 assert( pExpr
->y
.pTab
!=0 );
52 return sqlite3TableColumnAffinity(pExpr
->y
.pTab
, pExpr
->iColumn
);
55 assert( ExprUseXSelect(pExpr
) );
56 assert( pExpr
->x
.pSelect
!=0 );
57 assert( pExpr
->x
.pSelect
->pEList
!=0 );
58 assert( pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
!=0 );
59 return sqlite3ExprAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
);
61 #ifndef SQLITE_OMIT_CAST
63 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
64 return sqlite3AffinityType(pExpr
->u
.zToken
, 0);
67 if( op
==TK_SELECT_COLUMN
){
68 assert( pExpr
->pLeft
!=0 && ExprUseXSelect(pExpr
->pLeft
) );
69 assert( pExpr
->iColumn
< pExpr
->iTable
);
70 assert( pExpr
->iTable
==pExpr
->pLeft
->x
.pSelect
->pEList
->nExpr
);
71 return sqlite3ExprAffinity(
72 pExpr
->pLeft
->x
.pSelect
->pEList
->a
[pExpr
->iColumn
].pExpr
76 assert( ExprUseXList(pExpr
) );
77 return sqlite3ExprAffinity(pExpr
->x
.pList
->a
[0].pExpr
);
79 if( ExprHasProperty(pExpr
, EP_Skip
|EP_IfNullRow
) ){
80 assert( pExpr
->op
==TK_COLLATE
81 || pExpr
->op
==TK_IF_NULL_ROW
82 || (pExpr
->op
==TK_REGISTER
&& pExpr
->op2
==TK_IF_NULL_ROW
) );
87 if( op
!=TK_REGISTER
|| (op
= pExpr
->op2
)==TK_REGISTER
) break;
89 return pExpr
->affExpr
;
93 ** Make a guess at all the possible datatypes of the result that could
94 ** be returned by an expression. Return a bitmask indicating the answer:
100 ** If the expression must return NULL, then 0x00 is returned.
102 int sqlite3ExprDataType(const Expr
*pExpr
){
108 pExpr
= pExpr
->pLeft
;
125 case TK_AGG_FUNCTION
:
133 case TK_SELECT_COLUMN
:
135 int aff
= sqlite3ExprAffinity(pExpr
);
136 if( aff
>=SQLITE_AFF_NUMERIC
) return 0x05;
137 if( aff
==SQLITE_AFF_TEXT
) return 0x06;
143 ExprList
*pList
= pExpr
->x
.pList
;
144 assert( ExprUseXList(pExpr
) && pList
!=0 );
145 assert( pList
->nExpr
> 0);
146 for(ii
=1; ii
<pList
->nExpr
; ii
+=2){
147 res
|= sqlite3ExprDataType(pList
->a
[ii
].pExpr
);
149 if( pList
->nExpr
% 2 ){
150 res
|= sqlite3ExprDataType(pList
->a
[pList
->nExpr
-1].pExpr
);
157 } /* End of switch(op) */
158 } /* End of while(pExpr) */
163 ** Set the collating sequence for expression pExpr to be the collating
164 ** sequence named by pToken. Return a pointer to a new Expr node that
165 ** implements the COLLATE operator.
167 ** If a memory allocation error occurs, that fact is recorded in pParse->db
168 ** and the pExpr parameter is returned unchanged.
170 Expr
*sqlite3ExprAddCollateToken(
171 const Parse
*pParse
, /* Parsing context */
172 Expr
*pExpr
, /* Add the "COLLATE" clause to this expression */
173 const Token
*pCollName
, /* Name of collating sequence */
174 int dequote
/* True to dequote pCollName */
176 if( pCollName
->n
>0 ){
177 Expr
*pNew
= sqlite3ExprAlloc(pParse
->db
, TK_COLLATE
, pCollName
, dequote
);
180 pNew
->flags
|= EP_Collate
|EP_Skip
;
186 Expr
*sqlite3ExprAddCollateString(
187 const Parse
*pParse
, /* Parsing context */
188 Expr
*pExpr
, /* Add the "COLLATE" clause to this expression */
189 const char *zC
/* The collating sequence name */
193 sqlite3TokenInit(&s
, (char*)zC
);
194 return sqlite3ExprAddCollateToken(pParse
, pExpr
, &s
, 0);
198 ** Skip over any TK_COLLATE operators.
200 Expr
*sqlite3ExprSkipCollate(Expr
*pExpr
){
201 while( pExpr
&& ExprHasProperty(pExpr
, EP_Skip
) ){
202 assert( pExpr
->op
==TK_COLLATE
);
203 pExpr
= pExpr
->pLeft
;
209 ** Skip over any TK_COLLATE operators and/or any unlikely()
210 ** or likelihood() or likely() functions at the root of an
213 Expr
*sqlite3ExprSkipCollateAndLikely(Expr
*pExpr
){
214 while( pExpr
&& ExprHasProperty(pExpr
, EP_Skip
|EP_Unlikely
) ){
215 if( ExprHasProperty(pExpr
, EP_Unlikely
) ){
216 assert( ExprUseXList(pExpr
) );
217 assert( pExpr
->x
.pList
->nExpr
>0 );
218 assert( pExpr
->op
==TK_FUNCTION
);
219 pExpr
= pExpr
->x
.pList
->a
[0].pExpr
;
221 assert( pExpr
->op
==TK_COLLATE
);
222 pExpr
= pExpr
->pLeft
;
229 ** Return the collation sequence for the expression pExpr. If
230 ** there is no defined collating sequence, return NULL.
232 ** See also: sqlite3ExprNNCollSeq()
234 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
235 ** default collation if pExpr has no defined collation.
237 ** The collating sequence might be determined by a COLLATE operator
238 ** or by the presence of a column with a defined collating sequence.
239 ** COLLATE operators take first precedence. Left operands take
240 ** precedence over right operands.
242 CollSeq
*sqlite3ExprCollSeq(Parse
*pParse
, const Expr
*pExpr
){
243 sqlite3
*db
= pParse
->db
;
245 const Expr
*p
= pExpr
;
248 if( op
==TK_REGISTER
) op
= p
->op2
;
249 if( (op
==TK_AGG_COLUMN
&& p
->y
.pTab
!=0)
250 || op
==TK_COLUMN
|| op
==TK_TRIGGER
253 assert( ExprUseYTab(p
) );
254 assert( p
->y
.pTab
!=0 );
255 if( (j
= p
->iColumn
)>=0 ){
256 const char *zColl
= sqlite3ColumnColl(&p
->y
.pTab
->aCol
[j
]);
257 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
261 if( op
==TK_CAST
|| op
==TK_UPLUS
){
266 assert( ExprUseXList(p
) );
267 p
= p
->x
.pList
->a
[0].pExpr
;
270 if( op
==TK_COLLATE
){
271 assert( !ExprHasProperty(p
, EP_IntValue
) );
272 pColl
= sqlite3GetCollSeq(pParse
, ENC(db
), 0, p
->u
.zToken
);
275 if( p
->flags
& EP_Collate
){
276 if( p
->pLeft
&& (p
->pLeft
->flags
& EP_Collate
)!=0 ){
279 Expr
*pNext
= p
->pRight
;
280 /* The Expr.x union is never used at the same time as Expr.pRight */
281 assert( !ExprUseXList(p
) || p
->x
.pList
==0 || p
->pRight
==0 );
282 if( ExprUseXList(p
) && p
->x
.pList
!=0 && !db
->mallocFailed
){
284 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
285 if( ExprHasProperty(p
->x
.pList
->a
[i
].pExpr
, EP_Collate
) ){
286 pNext
= p
->x
.pList
->a
[i
].pExpr
;
297 if( sqlite3CheckCollSeq(pParse
, pColl
) ){
304 ** Return the collation sequence for the expression pExpr. If
305 ** there is no defined collating sequence, return a pointer to the
306 ** defautl collation sequence.
308 ** See also: sqlite3ExprCollSeq()
310 ** The sqlite3ExprCollSeq() routine works the same except that it
311 ** returns NULL if there is no defined collation.
313 CollSeq
*sqlite3ExprNNCollSeq(Parse
*pParse
, const Expr
*pExpr
){
314 CollSeq
*p
= sqlite3ExprCollSeq(pParse
, pExpr
);
315 if( p
==0 ) p
= pParse
->db
->pDfltColl
;
321 ** Return TRUE if the two expressions have equivalent collating sequences.
323 int sqlite3ExprCollSeqMatch(Parse
*pParse
, const Expr
*pE1
, const Expr
*pE2
){
324 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pE1
);
325 CollSeq
*pColl2
= sqlite3ExprNNCollSeq(pParse
, pE2
);
326 return sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
)==0;
330 ** pExpr is an operand of a comparison operator. aff2 is the
331 ** type affinity of the other operand. This routine returns the
332 ** type affinity that should be used for the comparison operator.
334 char sqlite3CompareAffinity(const Expr
*pExpr
, char aff2
){
335 char aff1
= sqlite3ExprAffinity(pExpr
);
336 if( aff1
>SQLITE_AFF_NONE
&& aff2
>SQLITE_AFF_NONE
){
337 /* Both sides of the comparison are columns. If one has numeric
338 ** affinity, use that. Otherwise use no affinity.
340 if( sqlite3IsNumericAffinity(aff1
) || sqlite3IsNumericAffinity(aff2
) ){
341 return SQLITE_AFF_NUMERIC
;
343 return SQLITE_AFF_BLOB
;
346 /* One side is a column, the other is not. Use the columns affinity. */
347 assert( aff1
<=SQLITE_AFF_NONE
|| aff2
<=SQLITE_AFF_NONE
);
348 return (aff1
<=SQLITE_AFF_NONE
? aff2
: aff1
) | SQLITE_AFF_NONE
;
353 ** pExpr is a comparison operator. Return the type affinity that should
354 ** be applied to both operands prior to doing the comparison.
356 static char comparisonAffinity(const Expr
*pExpr
){
358 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_IN
|| pExpr
->op
==TK_LT
||
359 pExpr
->op
==TK_GT
|| pExpr
->op
==TK_GE
|| pExpr
->op
==TK_LE
||
360 pExpr
->op
==TK_NE
|| pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
);
361 assert( pExpr
->pLeft
);
362 aff
= sqlite3ExprAffinity(pExpr
->pLeft
);
364 aff
= sqlite3CompareAffinity(pExpr
->pRight
, aff
);
365 }else if( ExprUseXSelect(pExpr
) ){
366 aff
= sqlite3CompareAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
, aff
);
368 aff
= SQLITE_AFF_BLOB
;
374 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
375 ** idx_affinity is the affinity of an indexed column. Return true
376 ** if the index with affinity idx_affinity may be used to implement
377 ** the comparison in pExpr.
379 int sqlite3IndexAffinityOk(const Expr
*pExpr
, char idx_affinity
){
380 char aff
= comparisonAffinity(pExpr
);
381 if( aff
<SQLITE_AFF_TEXT
){
384 if( aff
==SQLITE_AFF_TEXT
){
385 return idx_affinity
==SQLITE_AFF_TEXT
;
387 return sqlite3IsNumericAffinity(idx_affinity
);
391 ** Return the P5 value that should be used for a binary comparison
392 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
394 static u8
binaryCompareP5(
395 const Expr
*pExpr1
, /* Left operand */
396 const Expr
*pExpr2
, /* Right operand */
397 int jumpIfNull
/* Extra flags added to P5 */
399 u8 aff
= (char)sqlite3ExprAffinity(pExpr2
);
400 aff
= (u8
)sqlite3CompareAffinity(pExpr1
, aff
) | (u8
)jumpIfNull
;
405 ** Return a pointer to the collation sequence that should be used by
406 ** a binary comparison operator comparing pLeft and pRight.
408 ** If the left hand expression has a collating sequence type, then it is
409 ** used. Otherwise the collation sequence for the right hand expression
410 ** is used, or the default (BINARY) if neither expression has a collating
413 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
414 ** it is not considered.
416 CollSeq
*sqlite3BinaryCompareCollSeq(
423 if( pLeft
->flags
& EP_Collate
){
424 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
425 }else if( pRight
&& (pRight
->flags
& EP_Collate
)!=0 ){
426 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
428 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
430 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
436 /* Expresssion p is a comparison operator. Return a collation sequence
437 ** appropriate for the comparison operator.
439 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
440 ** However, if the OP_Commuted flag is set, then the order of the operands
441 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
442 ** correct collating sequence is found.
444 CollSeq
*sqlite3ExprCompareCollSeq(Parse
*pParse
, const Expr
*p
){
445 if( ExprHasProperty(p
, EP_Commuted
) ){
446 return sqlite3BinaryCompareCollSeq(pParse
, p
->pRight
, p
->pLeft
);
448 return sqlite3BinaryCompareCollSeq(pParse
, p
->pLeft
, p
->pRight
);
453 ** Generate code for a comparison operator.
455 static int codeCompare(
456 Parse
*pParse
, /* The parsing (and code generating) context */
457 Expr
*pLeft
, /* The left operand */
458 Expr
*pRight
, /* The right operand */
459 int opcode
, /* The comparison opcode */
460 int in1
, int in2
, /* Register holding operands */
461 int dest
, /* Jump here if true. */
462 int jumpIfNull
, /* If true, jump if either operand is NULL */
463 int isCommuted
/* The comparison has been commuted */
469 if( pParse
->nErr
) return 0;
471 p4
= sqlite3BinaryCompareCollSeq(pParse
, pRight
, pLeft
);
473 p4
= sqlite3BinaryCompareCollSeq(pParse
, pLeft
, pRight
);
475 p5
= binaryCompareP5(pLeft
, pRight
, jumpIfNull
);
476 addr
= sqlite3VdbeAddOp4(pParse
->pVdbe
, opcode
, in2
, dest
, in1
,
477 (void*)p4
, P4_COLLSEQ
);
478 sqlite3VdbeChangeP5(pParse
->pVdbe
, (u8
)p5
);
483 ** Return true if expression pExpr is a vector, or false otherwise.
485 ** A vector is defined as any expression that results in two or more
486 ** columns of result. Every TK_VECTOR node is an vector because the
487 ** parser will not generate a TK_VECTOR with fewer than two entries.
488 ** But a TK_SELECT might be either a vector or a scalar. It is only
489 ** considered a vector if it has two or more result columns.
491 int sqlite3ExprIsVector(const Expr
*pExpr
){
492 return sqlite3ExprVectorSize(pExpr
)>1;
496 ** If the expression passed as the only argument is of type TK_VECTOR
497 ** return the number of expressions in the vector. Or, if the expression
498 ** is a sub-select, return the number of columns in the sub-select. For
499 ** any other type of expression, return 1.
501 int sqlite3ExprVectorSize(const Expr
*pExpr
){
503 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
505 assert( ExprUseXList(pExpr
) );
506 return pExpr
->x
.pList
->nExpr
;
507 }else if( op
==TK_SELECT
){
508 assert( ExprUseXSelect(pExpr
) );
509 return pExpr
->x
.pSelect
->pEList
->nExpr
;
516 ** Return a pointer to a subexpression of pVector that is the i-th
517 ** column of the vector (numbered starting with 0). The caller must
518 ** ensure that i is within range.
520 ** If pVector is really a scalar (and "scalar" here includes subqueries
521 ** that return a single column!) then return pVector unmodified.
523 ** pVector retains ownership of the returned subexpression.
525 ** If the vector is a (SELECT ...) then the expression returned is
526 ** just the expression for the i-th term of the result set, and may
527 ** not be ready for evaluation because the table cursor has not yet
530 Expr
*sqlite3VectorFieldSubexpr(Expr
*pVector
, int i
){
531 assert( i
<sqlite3ExprVectorSize(pVector
) || pVector
->op
==TK_ERROR
);
532 if( sqlite3ExprIsVector(pVector
) ){
533 assert( pVector
->op2
==0 || pVector
->op
==TK_REGISTER
);
534 if( pVector
->op
==TK_SELECT
|| pVector
->op2
==TK_SELECT
){
535 assert( ExprUseXSelect(pVector
) );
536 return pVector
->x
.pSelect
->pEList
->a
[i
].pExpr
;
538 assert( ExprUseXList(pVector
) );
539 return pVector
->x
.pList
->a
[i
].pExpr
;
546 ** Compute and return a new Expr object which when passed to
547 ** sqlite3ExprCode() will generate all necessary code to compute
548 ** the iField-th column of the vector expression pVector.
550 ** It is ok for pVector to be a scalar (as long as iField==0).
551 ** In that case, this routine works like sqlite3ExprDup().
553 ** The caller owns the returned Expr object and is responsible for
554 ** ensuring that the returned value eventually gets freed.
556 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
557 ** then the returned object will reference pVector and so pVector must remain
558 ** valid for the life of the returned object. If pVector is a TK_VECTOR
559 ** or a scalar expression, then it can be deleted as soon as this routine
562 ** A trick to cause a TK_SELECT pVector to be deleted together with
563 ** the returned Expr object is to attach the pVector to the pRight field
564 ** of the returned TK_SELECT_COLUMN Expr object.
566 Expr
*sqlite3ExprForVectorField(
567 Parse
*pParse
, /* Parsing context */
568 Expr
*pVector
, /* The vector. List of expressions or a sub-SELECT */
569 int iField
, /* Which column of the vector to return */
570 int nField
/* Total number of columns in the vector */
573 if( pVector
->op
==TK_SELECT
){
574 assert( ExprUseXSelect(pVector
) );
575 /* The TK_SELECT_COLUMN Expr node:
577 ** pLeft: pVector containing TK_SELECT. Not deleted.
578 ** pRight: not used. But recursively deleted.
579 ** iColumn: Index of a column in pVector
580 ** iTable: 0 or the number of columns on the LHS of an assignment
581 ** pLeft->iTable: First in an array of register holding result, or 0
582 ** if the result is not yet computed.
584 ** sqlite3ExprDelete() specifically skips the recursive delete of
585 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
586 ** can be attached to pRight to cause this node to take ownership of
587 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
588 ** with the same pLeft pointer to the pVector, but only one of them
589 ** will own the pVector.
591 pRet
= sqlite3PExpr(pParse
, TK_SELECT_COLUMN
, 0, 0);
593 pRet
->iTable
= nField
;
594 pRet
->iColumn
= iField
;
595 pRet
->pLeft
= pVector
;
598 if( pVector
->op
==TK_VECTOR
){
600 assert( ExprUseXList(pVector
) );
601 ppVector
= &pVector
->x
.pList
->a
[iField
].pExpr
;
603 if( IN_RENAME_OBJECT
){
604 /* This must be a vector UPDATE inside a trigger */
609 pRet
= sqlite3ExprDup(pParse
->db
, pVector
, 0);
615 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
616 ** it. Return the register in which the result is stored (or, if the
617 ** sub-select returns more than one column, the first in an array
618 ** of registers in which the result is stored).
620 ** If pExpr is not a TK_SELECT expression, return 0.
622 static int exprCodeSubselect(Parse
*pParse
, Expr
*pExpr
){
624 #ifndef SQLITE_OMIT_SUBQUERY
625 if( pExpr
->op
==TK_SELECT
){
626 reg
= sqlite3CodeSubselect(pParse
, pExpr
);
633 ** Argument pVector points to a vector expression - either a TK_VECTOR
634 ** or TK_SELECT that returns more than one column. This function returns
635 ** the register number of a register that contains the value of
636 ** element iField of the vector.
638 ** If pVector is a TK_SELECT expression, then code for it must have
639 ** already been generated using the exprCodeSubselect() routine. In this
640 ** case parameter regSelect should be the first in an array of registers
641 ** containing the results of the sub-select.
643 ** If pVector is of type TK_VECTOR, then code for the requested field
644 ** is generated. In this case (*pRegFree) may be set to the number of
645 ** a temporary register to be freed by the caller before returning.
647 ** Before returning, output parameter (*ppExpr) is set to point to the
648 ** Expr object corresponding to element iElem of the vector.
650 static int exprVectorRegister(
651 Parse
*pParse
, /* Parse context */
652 Expr
*pVector
, /* Vector to extract element from */
653 int iField
, /* Field to extract from pVector */
654 int regSelect
, /* First in array of registers */
655 Expr
**ppExpr
, /* OUT: Expression element */
656 int *pRegFree
/* OUT: Temp register to free */
659 assert( op
==TK_VECTOR
|| op
==TK_REGISTER
|| op
==TK_SELECT
|| op
==TK_ERROR
);
660 if( op
==TK_REGISTER
){
661 *ppExpr
= sqlite3VectorFieldSubexpr(pVector
, iField
);
662 return pVector
->iTable
+iField
;
665 assert( ExprUseXSelect(pVector
) );
666 *ppExpr
= pVector
->x
.pSelect
->pEList
->a
[iField
].pExpr
;
667 return regSelect
+iField
;
670 assert( ExprUseXList(pVector
) );
671 *ppExpr
= pVector
->x
.pList
->a
[iField
].pExpr
;
672 return sqlite3ExprCodeTemp(pParse
, *ppExpr
, pRegFree
);
678 ** Expression pExpr is a comparison between two vector values. Compute
679 ** the result of the comparison (1, 0, or NULL) and write that
680 ** result into register dest.
682 ** The caller must satisfy the following preconditions:
684 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
685 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
686 ** otherwise: op==pExpr->op and p5==0
688 static void codeVectorCompare(
689 Parse
*pParse
, /* Code generator context */
690 Expr
*pExpr
, /* The comparison operation */
691 int dest
, /* Write results into this register */
692 u8 op
, /* Comparison operator */
693 u8 p5
/* SQLITE_NULLEQ or zero */
695 Vdbe
*v
= pParse
->pVdbe
;
696 Expr
*pLeft
= pExpr
->pLeft
;
697 Expr
*pRight
= pExpr
->pRight
;
698 int nLeft
= sqlite3ExprVectorSize(pLeft
);
704 int addrDone
= sqlite3VdbeMakeLabel(pParse
);
705 int isCommuted
= ExprHasProperty(pExpr
,EP_Commuted
);
707 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
708 if( pParse
->nErr
) return;
709 if( nLeft
!=sqlite3ExprVectorSize(pRight
) ){
710 sqlite3ErrorMsg(pParse
, "row value misused");
713 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_NE
714 || pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
715 || pExpr
->op
==TK_LT
|| pExpr
->op
==TK_GT
716 || pExpr
->op
==TK_LE
|| pExpr
->op
==TK_GE
718 assert( pExpr
->op
==op
|| (pExpr
->op
==TK_IS
&& op
==TK_EQ
)
719 || (pExpr
->op
==TK_ISNOT
&& op
==TK_NE
) );
720 assert( p5
==0 || pExpr
->op
!=op
);
721 assert( p5
==SQLITE_NULLEQ
|| pExpr
->op
==op
);
723 if( op
==TK_LE
) opx
= TK_LT
;
724 if( op
==TK_GE
) opx
= TK_GT
;
725 if( op
==TK_NE
) opx
= TK_EQ
;
727 regLeft
= exprCodeSubselect(pParse
, pLeft
);
728 regRight
= exprCodeSubselect(pParse
, pRight
);
730 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, dest
);
731 for(i
=0; 1 /*Loop exits by "break"*/; i
++){
732 int regFree1
= 0, regFree2
= 0;
733 Expr
*pL
= 0, *pR
= 0;
735 assert( i
>=0 && i
<nLeft
);
736 if( addrCmp
) sqlite3VdbeJumpHere(v
, addrCmp
);
737 r1
= exprVectorRegister(pParse
, pLeft
, i
, regLeft
, &pL
, ®Free1
);
738 r2
= exprVectorRegister(pParse
, pRight
, i
, regRight
, &pR
, ®Free2
);
739 addrCmp
= sqlite3VdbeCurrentAddr(v
);
740 codeCompare(pParse
, pL
, pR
, opx
, r1
, r2
, addrDone
, p5
, isCommuted
);
741 testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
742 testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
743 testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
744 testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
745 testcase(op
==OP_Eq
); VdbeCoverageIf(v
,op
==OP_Eq
);
746 testcase(op
==OP_Ne
); VdbeCoverageIf(v
,op
==OP_Ne
);
747 sqlite3ReleaseTempReg(pParse
, regFree1
);
748 sqlite3ReleaseTempReg(pParse
, regFree2
);
749 if( (opx
==TK_LT
|| opx
==TK_GT
) && i
<nLeft
-1 ){
750 addrCmp
= sqlite3VdbeAddOp0(v
, OP_ElseEq
);
751 testcase(opx
==TK_LT
); VdbeCoverageIf(v
,opx
==TK_LT
);
752 testcase(opx
==TK_GT
); VdbeCoverageIf(v
,opx
==TK_GT
);
754 if( p5
==SQLITE_NULLEQ
){
755 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, dest
);
757 sqlite3VdbeAddOp3(v
, OP_ZeroOrNull
, r1
, dest
, r2
);
763 sqlite3VdbeAddOp2(v
, OP_NotNull
, dest
, addrDone
); VdbeCoverage(v
);
765 assert( op
==TK_LT
|| op
==TK_GT
|| op
==TK_LE
|| op
==TK_GE
);
766 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, addrDone
);
767 if( i
==nLeft
-2 ) opx
= op
;
770 sqlite3VdbeJumpHere(v
, addrCmp
);
771 sqlite3VdbeResolveLabel(v
, addrDone
);
773 sqlite3VdbeAddOp2(v
, OP_Not
, dest
, dest
);
777 #if SQLITE_MAX_EXPR_DEPTH>0
779 ** Check that argument nHeight is less than or equal to the maximum
780 ** expression depth allowed. If it is not, leave an error message in
783 int sqlite3ExprCheckHeight(Parse
*pParse
, int nHeight
){
785 int mxHeight
= pParse
->db
->aLimit
[SQLITE_LIMIT_EXPR_DEPTH
];
786 if( nHeight
>mxHeight
){
787 sqlite3ErrorMsg(pParse
,
788 "Expression tree is too large (maximum depth %d)", mxHeight
795 /* The following three functions, heightOfExpr(), heightOfExprList()
796 ** and heightOfSelect(), are used to determine the maximum height
797 ** of any expression tree referenced by the structure passed as the
800 ** If this maximum height is greater than the current value pointed
801 ** to by pnHeight, the second parameter, then set *pnHeight to that
804 static void heightOfExpr(const Expr
*p
, int *pnHeight
){
806 if( p
->nHeight
>*pnHeight
){
807 *pnHeight
= p
->nHeight
;
811 static void heightOfExprList(const ExprList
*p
, int *pnHeight
){
814 for(i
=0; i
<p
->nExpr
; i
++){
815 heightOfExpr(p
->a
[i
].pExpr
, pnHeight
);
819 static void heightOfSelect(const Select
*pSelect
, int *pnHeight
){
821 for(p
=pSelect
; p
; p
=p
->pPrior
){
822 heightOfExpr(p
->pWhere
, pnHeight
);
823 heightOfExpr(p
->pHaving
, pnHeight
);
824 heightOfExpr(p
->pLimit
, pnHeight
);
825 heightOfExprList(p
->pEList
, pnHeight
);
826 heightOfExprList(p
->pGroupBy
, pnHeight
);
827 heightOfExprList(p
->pOrderBy
, pnHeight
);
832 ** Set the Expr.nHeight variable in the structure passed as an
833 ** argument. An expression with no children, Expr.pList or
834 ** Expr.pSelect member has a height of 1. Any other expression
835 ** has a height equal to the maximum height of any other
836 ** referenced Expr plus one.
838 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
841 static void exprSetHeight(Expr
*p
){
842 int nHeight
= p
->pLeft
? p
->pLeft
->nHeight
: 0;
843 if( NEVER(p
->pRight
) && p
->pRight
->nHeight
>nHeight
){
844 nHeight
= p
->pRight
->nHeight
;
846 if( ExprUseXSelect(p
) ){
847 heightOfSelect(p
->x
.pSelect
, &nHeight
);
848 }else if( p
->x
.pList
){
849 heightOfExprList(p
->x
.pList
, &nHeight
);
850 p
->flags
|= EP_Propagate
& sqlite3ExprListFlags(p
->x
.pList
);
852 p
->nHeight
= nHeight
+ 1;
856 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
857 ** the height is greater than the maximum allowed expression depth,
858 ** leave an error in pParse.
860 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
863 void sqlite3ExprSetHeightAndFlags(Parse
*pParse
, Expr
*p
){
864 if( pParse
->nErr
) return;
866 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
870 ** Return the maximum height of any expression tree referenced
871 ** by the select statement passed as an argument.
873 int sqlite3SelectExprHeight(const Select
*p
){
875 heightOfSelect(p
, &nHeight
);
878 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
880 ** Propagate all EP_Propagate flags from the Expr.x.pList into
883 void sqlite3ExprSetHeightAndFlags(Parse
*pParse
, Expr
*p
){
884 if( pParse
->nErr
) return;
885 if( p
&& ExprUseXList(p
) && p
->x
.pList
){
886 p
->flags
|= EP_Propagate
& sqlite3ExprListFlags(p
->x
.pList
);
889 #define exprSetHeight(y)
890 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
893 ** This routine is the core allocator for Expr nodes.
895 ** Construct a new expression node and return a pointer to it. Memory
896 ** for this node and for the pToken argument is a single allocation
897 ** obtained from sqlite3DbMalloc(). The calling function
898 ** is responsible for making sure the node eventually gets freed.
900 ** If dequote is true, then the token (if it exists) is dequoted.
901 ** If dequote is false, no dequoting is performed. The deQuote
902 ** parameter is ignored if pToken is NULL or if the token does not
903 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
904 ** then the EP_DblQuoted flag is set on the expression node.
906 ** Special case: If op==TK_INTEGER and pToken points to a string that
907 ** can be translated into a 32-bit integer, then the token is not
908 ** stored in u.zToken. Instead, the integer values is written
909 ** into u.iValue and the EP_IntValue flag is set. No extra storage
910 ** is allocated to hold the integer text and the dequote flag is ignored.
912 Expr
*sqlite3ExprAlloc(
913 sqlite3
*db
, /* Handle for sqlite3DbMallocRawNN() */
914 int op
, /* Expression opcode */
915 const Token
*pToken
, /* Token argument. Might be NULL */
916 int dequote
/* True to dequote */
924 if( op
!=TK_INTEGER
|| pToken
->z
==0
925 || sqlite3GetInt32(pToken
->z
, &iValue
)==0 ){
926 nExtra
= pToken
->n
+1;
930 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Expr
)+nExtra
);
932 memset(pNew
, 0, sizeof(Expr
));
937 pNew
->flags
|= EP_IntValue
|EP_Leaf
|(iValue
?EP_IsTrue
:EP_IsFalse
);
938 pNew
->u
.iValue
= iValue
;
940 pNew
->u
.zToken
= (char*)&pNew
[1];
941 assert( pToken
->z
!=0 || pToken
->n
==0 );
942 if( pToken
->n
) memcpy(pNew
->u
.zToken
, pToken
->z
, pToken
->n
);
943 pNew
->u
.zToken
[pToken
->n
] = 0;
944 if( dequote
&& sqlite3Isquote(pNew
->u
.zToken
[0]) ){
945 sqlite3DequoteExpr(pNew
);
949 #if SQLITE_MAX_EXPR_DEPTH>0
957 ** Allocate a new expression node from a zero-terminated token that has
958 ** already been dequoted.
961 sqlite3
*db
, /* Handle for sqlite3DbMallocZero() (may be null) */
962 int op
, /* Expression opcode */
963 const char *zToken
/* Token argument. Might be NULL */
967 x
.n
= sqlite3Strlen30(zToken
);
968 return sqlite3ExprAlloc(db
, op
, &x
, 0);
972 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
974 ** If pRoot==NULL that means that a memory allocation error has occurred.
975 ** In that case, delete the subtrees pLeft and pRight.
977 void sqlite3ExprAttachSubtrees(
984 assert( db
->mallocFailed
);
985 sqlite3ExprDelete(db
, pLeft
);
986 sqlite3ExprDelete(db
, pRight
);
988 assert( ExprUseXList(pRoot
) );
989 assert( pRoot
->x
.pSelect
==0 );
991 pRoot
->pRight
= pRight
;
992 pRoot
->flags
|= EP_Propagate
& pRight
->flags
;
993 #if SQLITE_MAX_EXPR_DEPTH>0
994 pRoot
->nHeight
= pRight
->nHeight
+1;
1000 pRoot
->pLeft
= pLeft
;
1001 pRoot
->flags
|= EP_Propagate
& pLeft
->flags
;
1002 #if SQLITE_MAX_EXPR_DEPTH>0
1003 if( pLeft
->nHeight
>=pRoot
->nHeight
){
1004 pRoot
->nHeight
= pLeft
->nHeight
+1;
1012 ** Allocate an Expr node which joins as many as two subtrees.
1014 ** One or both of the subtrees can be NULL. Return a pointer to the new
1015 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
1016 ** free the subtrees and return NULL.
1019 Parse
*pParse
, /* Parsing context */
1020 int op
, /* Expression opcode */
1021 Expr
*pLeft
, /* Left operand */
1022 Expr
*pRight
/* Right operand */
1025 p
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(Expr
));
1027 memset(p
, 0, sizeof(Expr
));
1030 sqlite3ExprAttachSubtrees(pParse
->db
, p
, pLeft
, pRight
);
1031 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
1033 sqlite3ExprDelete(pParse
->db
, pLeft
);
1034 sqlite3ExprDelete(pParse
->db
, pRight
);
1040 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
1041 ** do a memory allocation failure) then delete the pSelect object.
1043 void sqlite3PExprAddSelect(Parse
*pParse
, Expr
*pExpr
, Select
*pSelect
){
1045 pExpr
->x
.pSelect
= pSelect
;
1046 ExprSetProperty(pExpr
, EP_xIsSelect
|EP_Subquery
);
1047 sqlite3ExprSetHeightAndFlags(pParse
, pExpr
);
1049 assert( pParse
->db
->mallocFailed
);
1050 sqlite3SelectDelete(pParse
->db
, pSelect
);
1055 ** Expression list pEList is a list of vector values. This function
1056 ** converts the contents of pEList to a VALUES(...) Select statement
1057 ** returning 1 row for each element of the list. For example, the
1060 ** ( (1,2), (3,4) (5,6) )
1062 ** is translated to the equivalent of:
1064 ** VALUES(1,2), (3,4), (5,6)
1066 ** Each of the vector values in pEList must contain exactly nElem terms.
1067 ** If a list element that is not a vector or does not contain nElem terms,
1068 ** an error message is left in pParse.
1070 ** This is used as part of processing IN(...) expressions with a list
1071 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
1073 Select
*sqlite3ExprListToValues(Parse
*pParse
, int nElem
, ExprList
*pEList
){
1077 for(ii
=0; ii
<pEList
->nExpr
; ii
++){
1079 Expr
*pExpr
= pEList
->a
[ii
].pExpr
;
1081 if( pExpr
->op
==TK_VECTOR
){
1082 assert( ExprUseXList(pExpr
) );
1083 nExprElem
= pExpr
->x
.pList
->nExpr
;
1087 if( nExprElem
!=nElem
){
1088 sqlite3ErrorMsg(pParse
, "IN(...) element has %d term%s - expected %d",
1089 nExprElem
, nExprElem
>1?"s":"", nElem
1093 assert( ExprUseXList(pExpr
) );
1094 pSel
= sqlite3SelectNew(pParse
, pExpr
->x
.pList
, 0, 0, 0, 0, 0, SF_Values
,0);
1099 pSel
->pPrior
= pRet
;
1105 if( pRet
&& pRet
->pPrior
){
1106 pRet
->selFlags
|= SF_MultiValue
;
1108 sqlite3ExprListDelete(pParse
->db
, pEList
);
1113 ** Join two expressions using an AND operator. If either expression is
1114 ** NULL, then just return the other expression.
1116 ** If one side or the other of the AND is known to be false, and neither side
1117 ** is part of an ON clause, then instead of returning an AND expression,
1118 ** just return a constant expression with a value of false.
1120 Expr
*sqlite3ExprAnd(Parse
*pParse
, Expr
*pLeft
, Expr
*pRight
){
1121 sqlite3
*db
= pParse
->db
;
1124 }else if( pRight
==0 ){
1127 u32 f
= pLeft
->flags
| pRight
->flags
;
1128 if( (f
&(EP_OuterON
|EP_InnerON
|EP_IsFalse
))==EP_IsFalse
1129 && !IN_RENAME_OBJECT
1131 sqlite3ExprDeferredDelete(pParse
, pLeft
);
1132 sqlite3ExprDeferredDelete(pParse
, pRight
);
1133 return sqlite3Expr(db
, TK_INTEGER
, "0");
1135 return sqlite3PExpr(pParse
, TK_AND
, pLeft
, pRight
);
1141 ** Construct a new expression node for a function with multiple
1144 Expr
*sqlite3ExprFunction(
1145 Parse
*pParse
, /* Parsing context */
1146 ExprList
*pList
, /* Argument list */
1147 const Token
*pToken
, /* Name of the function */
1148 int eDistinct
/* SF_Distinct or SF_ALL or 0 */
1151 sqlite3
*db
= pParse
->db
;
1153 pNew
= sqlite3ExprAlloc(db
, TK_FUNCTION
, pToken
, 1);
1155 sqlite3ExprListDelete(db
, pList
); /* Avoid memory leak when malloc fails */
1158 assert( !ExprHasProperty(pNew
, EP_InnerON
|EP_OuterON
) );
1159 pNew
->w
.iOfst
= (int)(pToken
->z
- pParse
->zTail
);
1161 && pList
->nExpr
> pParse
->db
->aLimit
[SQLITE_LIMIT_FUNCTION_ARG
]
1164 sqlite3ErrorMsg(pParse
, "too many arguments on function %T", pToken
);
1166 pNew
->x
.pList
= pList
;
1167 ExprSetProperty(pNew
, EP_HasFunc
);
1168 assert( ExprUseXList(pNew
) );
1169 sqlite3ExprSetHeightAndFlags(pParse
, pNew
);
1170 if( eDistinct
==SF_Distinct
) ExprSetProperty(pNew
, EP_Distinct
);
1175 ** Check to see if a function is usable according to current access
1178 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
1180 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
1183 ** If the function is not usable, create an error.
1185 void sqlite3ExprFunctionUsable(
1186 Parse
*pParse
, /* Parsing and code generating context */
1187 const Expr
*pExpr
, /* The function invocation */
1188 const FuncDef
*pDef
/* The function being invoked */
1190 assert( !IN_RENAME_OBJECT
);
1191 assert( (pDef
->funcFlags
& (SQLITE_FUNC_DIRECT
|SQLITE_FUNC_UNSAFE
))!=0 );
1192 if( ExprHasProperty(pExpr
, EP_FromDDL
) ){
1193 if( (pDef
->funcFlags
& SQLITE_FUNC_DIRECT
)!=0
1194 || (pParse
->db
->flags
& SQLITE_TrustedSchema
)==0
1196 /* Functions prohibited in triggers and views if:
1197 ** (1) tagged with SQLITE_DIRECTONLY
1198 ** (2) not tagged with SQLITE_INNOCUOUS (which means it
1199 ** is tagged with SQLITE_FUNC_UNSAFE) and
1200 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1201 ** that the schema is possibly tainted).
1203 sqlite3ErrorMsg(pParse
, "unsafe use of %#T()", pExpr
);
1209 ** Assign a variable number to an expression that encodes a wildcard
1210 ** in the original SQL statement.
1212 ** Wildcards consisting of a single "?" are assigned the next sequential
1215 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
1216 ** sure "nnn" is not too big to avoid a denial of service attack when
1217 ** the SQL statement comes from an external source.
1219 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1220 ** as the previous instance of the same wildcard. Or if this is the first
1221 ** instance of the wildcard, the next sequential variable number is
1224 void sqlite3ExprAssignVarNumber(Parse
*pParse
, Expr
*pExpr
, u32 n
){
1225 sqlite3
*db
= pParse
->db
;
1229 if( pExpr
==0 ) return;
1230 assert( !ExprHasProperty(pExpr
, EP_IntValue
|EP_Reduced
|EP_TokenOnly
) );
1231 z
= pExpr
->u
.zToken
;
1234 assert( n
==(u32
)sqlite3Strlen30(z
) );
1236 /* Wildcard of the form "?". Assign the next variable number */
1237 assert( z
[0]=='?' );
1238 x
= (ynVar
)(++pParse
->nVar
);
1242 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
1243 ** use it as the variable number */
1246 if( n
==2 ){ /*OPTIMIZATION-IF-TRUE*/
1247 i
= z
[1]-'0'; /* The common case of ?N for a single digit N */
1250 bOk
= 0==sqlite3Atoi64(&z
[1], &i
, n
-1, SQLITE_UTF8
);
1254 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]-1 );
1255 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] );
1256 if( bOk
==0 || i
<1 || i
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
1257 sqlite3ErrorMsg(pParse
, "variable number must be between ?1 and ?%d",
1258 db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]);
1259 sqlite3RecordErrorOffsetOfExpr(pParse
->db
, pExpr
);
1263 if( x
>pParse
->nVar
){
1264 pParse
->nVar
= (int)x
;
1266 }else if( sqlite3VListNumToName(pParse
->pVList
, x
)==0 ){
1270 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1271 ** number as the prior appearance of the same name, or if the name
1272 ** has never appeared before, reuse the same variable number
1274 x
= (ynVar
)sqlite3VListNameToNum(pParse
->pVList
, z
, n
);
1276 x
= (ynVar
)(++pParse
->nVar
);
1281 pParse
->pVList
= sqlite3VListAdd(db
, pParse
->pVList
, z
, n
, x
);
1285 if( x
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
1286 sqlite3ErrorMsg(pParse
, "too many SQL variables");
1287 sqlite3RecordErrorOffsetOfExpr(pParse
->db
, pExpr
);
1292 ** Recursively delete an expression tree.
1294 static SQLITE_NOINLINE
void sqlite3ExprDeleteNN(sqlite3
*db
, Expr
*p
){
1297 assert( !ExprUseUValue(p
) || p
->u
.iValue
>=0 );
1298 assert( !ExprUseYWin(p
) || !ExprUseYSub(p
) );
1299 assert( !ExprUseYWin(p
) || p
->y
.pWin
!=0 || db
->mallocFailed
);
1300 assert( p
->op
!=TK_FUNCTION
|| !ExprUseYSub(p
) );
1302 if( ExprHasProperty(p
, EP_Leaf
) && !ExprHasProperty(p
, EP_TokenOnly
) ){
1303 assert( p
->pLeft
==0 );
1304 assert( p
->pRight
==0 );
1305 assert( !ExprUseXSelect(p
) || p
->x
.pSelect
==0 );
1306 assert( !ExprUseXList(p
) || p
->x
.pList
==0 );
1309 if( !ExprHasProperty(p
, (EP_TokenOnly
|EP_Leaf
)) ){
1310 /* The Expr.x union is never used at the same time as Expr.pRight */
1311 assert( (ExprUseXList(p
) && p
->x
.pList
==0) || p
->pRight
==0 );
1312 if( p
->pLeft
&& p
->op
!=TK_SELECT_COLUMN
) sqlite3ExprDeleteNN(db
, p
->pLeft
);
1314 assert( !ExprHasProperty(p
, EP_WinFunc
) );
1315 sqlite3ExprDeleteNN(db
, p
->pRight
);
1316 }else if( ExprUseXSelect(p
) ){
1317 assert( !ExprHasProperty(p
, EP_WinFunc
) );
1318 sqlite3SelectDelete(db
, p
->x
.pSelect
);
1320 sqlite3ExprListDelete(db
, p
->x
.pList
);
1321 #ifndef SQLITE_OMIT_WINDOWFUNC
1322 if( ExprHasProperty(p
, EP_WinFunc
) ){
1323 sqlite3WindowDelete(db
, p
->y
.pWin
);
1328 if( !ExprHasProperty(p
, EP_Static
) ){
1329 sqlite3DbNNFreeNN(db
, p
);
1332 void sqlite3ExprDelete(sqlite3
*db
, Expr
*p
){
1333 if( p
) sqlite3ExprDeleteNN(db
, p
);
1337 ** Clear both elements of an OnOrUsing object
1339 void sqlite3ClearOnOrUsing(sqlite3
*db
, OnOrUsing
*p
){
1341 /* Nothing to clear */
1343 sqlite3ExprDeleteNN(db
, p
->pOn
);
1344 }else if( p
->pUsing
){
1345 sqlite3IdListDelete(db
, p
->pUsing
);
1350 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1351 ** This is similar to sqlite3ExprDelete() except that the delete is
1352 ** deferred untilthe pParse is deleted.
1354 ** The pExpr might be deleted immediately on an OOM error.
1356 ** The deferred delete is (currently) implemented by adding the
1357 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1359 void sqlite3ExprDeferredDelete(Parse
*pParse
, Expr
*pExpr
){
1360 sqlite3ParserAddCleanup(pParse
,
1361 (void(*)(sqlite3
*,void*))sqlite3ExprDelete
,
1365 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1368 void sqlite3ExprUnmapAndDelete(Parse
*pParse
, Expr
*p
){
1370 if( IN_RENAME_OBJECT
){
1371 sqlite3RenameExprUnmap(pParse
, p
);
1373 sqlite3ExprDeleteNN(pParse
->db
, p
);
1378 ** Return the number of bytes allocated for the expression structure
1379 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1380 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1382 static int exprStructSize(const Expr
*p
){
1383 if( ExprHasProperty(p
, EP_TokenOnly
) ) return EXPR_TOKENONLYSIZE
;
1384 if( ExprHasProperty(p
, EP_Reduced
) ) return EXPR_REDUCEDSIZE
;
1385 return EXPR_FULLSIZE
;
1389 ** The dupedExpr*Size() routines each return the number of bytes required
1390 ** to store a copy of an expression or expression tree. They differ in
1391 ** how much of the tree is measured.
1393 ** dupedExprStructSize() Size of only the Expr structure
1394 ** dupedExprNodeSize() Size of Expr + space for token
1395 ** dupedExprSize() Expr + token + subtree components
1397 ***************************************************************************
1399 ** The dupedExprStructSize() function returns two values OR-ed together:
1400 ** (1) the space required for a copy of the Expr structure only and
1401 ** (2) the EP_xxx flags that indicate what the structure size should be.
1402 ** The return values is always one of:
1405 ** EXPR_REDUCEDSIZE | EP_Reduced
1406 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1408 ** The size of the structure can be found by masking the return value
1409 ** of this routine with 0xfff. The flags can be found by masking the
1410 ** return value with EP_Reduced|EP_TokenOnly.
1412 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1413 ** (unreduced) Expr objects as they or originally constructed by the parser.
1414 ** During expression analysis, extra information is computed and moved into
1415 ** later parts of the Expr object and that extra information might get chopped
1416 ** off if the expression is reduced. Note also that it does not work to
1417 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1418 ** to reduce a pristine expression tree from the parser. The implementation
1419 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1420 ** to enforce this constraint.
1422 static int dupedExprStructSize(const Expr
*p
, int flags
){
1424 assert( flags
==EXPRDUP_REDUCE
|| flags
==0 ); /* Only one flag value allowed */
1425 assert( EXPR_FULLSIZE
<=0xfff );
1426 assert( (0xfff & (EP_Reduced
|EP_TokenOnly
))==0 );
1427 if( 0==flags
|| p
->op
==TK_SELECT_COLUMN
1428 #ifndef SQLITE_OMIT_WINDOWFUNC
1429 || ExprHasProperty(p
, EP_WinFunc
)
1432 nSize
= EXPR_FULLSIZE
;
1434 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
1435 assert( !ExprHasProperty(p
, EP_OuterON
) );
1436 assert( !ExprHasVVAProperty(p
, EP_NoReduce
) );
1437 if( p
->pLeft
|| p
->x
.pList
){
1438 nSize
= EXPR_REDUCEDSIZE
| EP_Reduced
;
1440 assert( p
->pRight
==0 );
1441 nSize
= EXPR_TOKENONLYSIZE
| EP_TokenOnly
;
1448 ** This function returns the space in bytes required to store the copy
1449 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1450 ** string is defined.)
1452 static int dupedExprNodeSize(const Expr
*p
, int flags
){
1453 int nByte
= dupedExprStructSize(p
, flags
) & 0xfff;
1454 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1455 nByte
+= sqlite3Strlen30NN(p
->u
.zToken
)+1;
1457 return ROUND8(nByte
);
1461 ** Return the number of bytes required to create a duplicate of the
1462 ** expression passed as the first argument. The second argument is a
1463 ** mask containing EXPRDUP_XXX flags.
1465 ** The value returned includes space to create a copy of the Expr struct
1466 ** itself and the buffer referred to by Expr.u.zToken, if any.
1468 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1469 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1470 ** and Expr.pRight variables (but not for any structures pointed to or
1471 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1473 static int dupedExprSize(const Expr
*p
, int flags
){
1476 nByte
= dupedExprNodeSize(p
, flags
);
1477 if( flags
&EXPRDUP_REDUCE
){
1478 nByte
+= dupedExprSize(p
->pLeft
, flags
) + dupedExprSize(p
->pRight
, flags
);
1485 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1486 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1487 ** to store the copy of expression p, the copies of p->u.zToken
1488 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1489 ** if any. Before returning, *pzBuffer is set to the first byte past the
1490 ** portion of the buffer copied into by this function.
1492 static Expr
*exprDup(sqlite3
*db
, const Expr
*p
, int dupFlags
, u8
**pzBuffer
){
1493 Expr
*pNew
; /* Value to return */
1494 u8
*zAlloc
; /* Memory space from which to build Expr object */
1495 u32 staticFlag
; /* EP_Static if space not obtained from malloc */
1499 assert( dupFlags
==0 || dupFlags
==EXPRDUP_REDUCE
);
1500 assert( pzBuffer
==0 || dupFlags
==EXPRDUP_REDUCE
);
1502 /* Figure out where to write the new Expr structure. */
1505 staticFlag
= EP_Static
;
1506 assert( zAlloc
!=0 );
1508 zAlloc
= sqlite3DbMallocRawNN(db
, dupedExprSize(p
, dupFlags
));
1511 pNew
= (Expr
*)zAlloc
;
1514 /* Set nNewSize to the size allocated for the structure pointed to
1515 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1516 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1517 ** by the copy of the p->u.zToken string (if any).
1519 const unsigned nStructSize
= dupedExprStructSize(p
, dupFlags
);
1520 const int nNewSize
= nStructSize
& 0xfff;
1522 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
1523 nToken
= sqlite3Strlen30(p
->u
.zToken
) + 1;
1528 assert( ExprHasProperty(p
, EP_Reduced
)==0 );
1529 memcpy(zAlloc
, p
, nNewSize
);
1531 u32 nSize
= (u32
)exprStructSize(p
);
1532 memcpy(zAlloc
, p
, nSize
);
1533 if( nSize
<EXPR_FULLSIZE
){
1534 memset(&zAlloc
[nSize
], 0, EXPR_FULLSIZE
-nSize
);
1538 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1539 pNew
->flags
&= ~(EP_Reduced
|EP_TokenOnly
|EP_Static
);
1540 pNew
->flags
|= nStructSize
& (EP_Reduced
|EP_TokenOnly
);
1541 pNew
->flags
|= staticFlag
;
1542 ExprClearVVAProperties(pNew
);
1544 ExprSetVVAProperty(pNew
, EP_Immutable
);
1547 /* Copy the p->u.zToken string, if any. */
1549 char *zToken
= pNew
->u
.zToken
= (char*)&zAlloc
[nNewSize
];
1550 memcpy(zToken
, p
->u
.zToken
, nToken
);
1553 if( 0==((p
->flags
|pNew
->flags
) & (EP_TokenOnly
|EP_Leaf
)) ){
1554 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1555 if( ExprUseXSelect(p
) ){
1556 pNew
->x
.pSelect
= sqlite3SelectDup(db
, p
->x
.pSelect
, dupFlags
);
1558 pNew
->x
.pList
= sqlite3ExprListDup(db
, p
->x
.pList
, dupFlags
);
1562 /* Fill in pNew->pLeft and pNew->pRight. */
1563 if( ExprHasProperty(pNew
, EP_Reduced
|EP_TokenOnly
|EP_WinFunc
) ){
1564 zAlloc
+= dupedExprNodeSize(p
, dupFlags
);
1565 if( !ExprHasProperty(pNew
, EP_TokenOnly
|EP_Leaf
) ){
1566 pNew
->pLeft
= p
->pLeft
?
1567 exprDup(db
, p
->pLeft
, EXPRDUP_REDUCE
, &zAlloc
) : 0;
1568 pNew
->pRight
= p
->pRight
?
1569 exprDup(db
, p
->pRight
, EXPRDUP_REDUCE
, &zAlloc
) : 0;
1571 #ifndef SQLITE_OMIT_WINDOWFUNC
1572 if( ExprHasProperty(p
, EP_WinFunc
) ){
1573 pNew
->y
.pWin
= sqlite3WindowDup(db
, pNew
, p
->y
.pWin
);
1574 assert( ExprHasProperty(pNew
, EP_WinFunc
) );
1576 #endif /* SQLITE_OMIT_WINDOWFUNC */
1581 if( !ExprHasProperty(p
, EP_TokenOnly
|EP_Leaf
) ){
1582 if( pNew
->op
==TK_SELECT_COLUMN
){
1583 pNew
->pLeft
= p
->pLeft
;
1584 assert( p
->pRight
==0 || p
->pRight
==p
->pLeft
1585 || ExprHasProperty(p
->pLeft
, EP_Subquery
) );
1587 pNew
->pLeft
= sqlite3ExprDup(db
, p
->pLeft
, 0);
1589 pNew
->pRight
= sqlite3ExprDup(db
, p
->pRight
, 0);
1597 ** Create and return a deep copy of the object passed as the second
1598 ** argument. If an OOM condition is encountered, NULL is returned
1599 ** and the db->mallocFailed flag set.
1601 #ifndef SQLITE_OMIT_CTE
1602 With
*sqlite3WithDup(sqlite3
*db
, With
*p
){
1605 sqlite3_int64 nByte
= sizeof(*p
) + sizeof(p
->a
[0]) * (p
->nCte
-1);
1606 pRet
= sqlite3DbMallocZero(db
, nByte
);
1609 pRet
->nCte
= p
->nCte
;
1610 for(i
=0; i
<p
->nCte
; i
++){
1611 pRet
->a
[i
].pSelect
= sqlite3SelectDup(db
, p
->a
[i
].pSelect
, 0);
1612 pRet
->a
[i
].pCols
= sqlite3ExprListDup(db
, p
->a
[i
].pCols
, 0);
1613 pRet
->a
[i
].zName
= sqlite3DbStrDup(db
, p
->a
[i
].zName
);
1614 pRet
->a
[i
].eM10d
= p
->a
[i
].eM10d
;
1621 # define sqlite3WithDup(x,y) 0
1624 #ifndef SQLITE_OMIT_WINDOWFUNC
1626 ** The gatherSelectWindows() procedure and its helper routine
1627 ** gatherSelectWindowsCallback() are used to scan all the expressions
1628 ** an a newly duplicated SELECT statement and gather all of the Window
1629 ** objects found there, assembling them onto the linked list at Select->pWin.
1631 static int gatherSelectWindowsCallback(Walker
*pWalker
, Expr
*pExpr
){
1632 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_WinFunc
) ){
1633 Select
*pSelect
= pWalker
->u
.pSelect
;
1634 Window
*pWin
= pExpr
->y
.pWin
;
1636 assert( IsWindowFunc(pExpr
) );
1637 assert( pWin
->ppThis
==0 );
1638 sqlite3WindowLink(pSelect
, pWin
);
1640 return WRC_Continue
;
1642 static int gatherSelectWindowsSelectCallback(Walker
*pWalker
, Select
*p
){
1643 return p
==pWalker
->u
.pSelect
? WRC_Continue
: WRC_Prune
;
1645 static void gatherSelectWindows(Select
*p
){
1647 w
.xExprCallback
= gatherSelectWindowsCallback
;
1648 w
.xSelectCallback
= gatherSelectWindowsSelectCallback
;
1649 w
.xSelectCallback2
= 0;
1652 sqlite3WalkSelect(&w
, p
);
1658 ** The following group of routines make deep copies of expressions,
1659 ** expression lists, ID lists, and select statements. The copies can
1660 ** be deleted (by being passed to their respective ...Delete() routines)
1661 ** without effecting the originals.
1663 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1664 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1665 ** by subsequent calls to sqlite*ListAppend() routines.
1667 ** Any tables that the SrcList might point to are not duplicated.
1669 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1670 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1671 ** truncated version of the usual Expr structure that will be stored as
1672 ** part of the in-memory representation of the database schema.
1674 Expr
*sqlite3ExprDup(sqlite3
*db
, const Expr
*p
, int flags
){
1675 assert( flags
==0 || flags
==EXPRDUP_REDUCE
);
1676 return p
? exprDup(db
, p
, flags
, 0) : 0;
1678 ExprList
*sqlite3ExprListDup(sqlite3
*db
, const ExprList
*p
, int flags
){
1680 struct ExprList_item
*pItem
;
1681 const struct ExprList_item
*pOldItem
;
1683 Expr
*pPriorSelectColOld
= 0;
1684 Expr
*pPriorSelectColNew
= 0;
1686 if( p
==0 ) return 0;
1687 pNew
= sqlite3DbMallocRawNN(db
, sqlite3DbMallocSize(db
, p
));
1688 if( pNew
==0 ) return 0;
1689 pNew
->nExpr
= p
->nExpr
;
1690 pNew
->nAlloc
= p
->nAlloc
;
1693 for(i
=0; i
<p
->nExpr
; i
++, pItem
++, pOldItem
++){
1694 Expr
*pOldExpr
= pOldItem
->pExpr
;
1696 pItem
->pExpr
= sqlite3ExprDup(db
, pOldExpr
, flags
);
1698 && pOldExpr
->op
==TK_SELECT_COLUMN
1699 && (pNewExpr
= pItem
->pExpr
)!=0
1701 if( pNewExpr
->pRight
){
1702 pPriorSelectColOld
= pOldExpr
->pRight
;
1703 pPriorSelectColNew
= pNewExpr
->pRight
;
1704 pNewExpr
->pLeft
= pNewExpr
->pRight
;
1706 if( pOldExpr
->pLeft
!=pPriorSelectColOld
){
1707 pPriorSelectColOld
= pOldExpr
->pLeft
;
1708 pPriorSelectColNew
= sqlite3ExprDup(db
, pPriorSelectColOld
, flags
);
1709 pNewExpr
->pRight
= pPriorSelectColNew
;
1711 pNewExpr
->pLeft
= pPriorSelectColNew
;
1714 pItem
->zEName
= sqlite3DbStrDup(db
, pOldItem
->zEName
);
1715 pItem
->fg
= pOldItem
->fg
;
1717 pItem
->u
= pOldItem
->u
;
1723 ** If cursors, triggers, views and subqueries are all omitted from
1724 ** the build, then none of the following routines, except for
1725 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1726 ** called with a NULL argument.
1728 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1729 || !defined(SQLITE_OMIT_SUBQUERY)
1730 SrcList
*sqlite3SrcListDup(sqlite3
*db
, const SrcList
*p
, int flags
){
1735 if( p
==0 ) return 0;
1736 nByte
= sizeof(*p
) + (p
->nSrc
>0 ? sizeof(p
->a
[0]) * (p
->nSrc
-1) : 0);
1737 pNew
= sqlite3DbMallocRawNN(db
, nByte
);
1738 if( pNew
==0 ) return 0;
1739 pNew
->nSrc
= pNew
->nAlloc
= p
->nSrc
;
1740 for(i
=0; i
<p
->nSrc
; i
++){
1741 SrcItem
*pNewItem
= &pNew
->a
[i
];
1742 const SrcItem
*pOldItem
= &p
->a
[i
];
1744 pNewItem
->pSchema
= pOldItem
->pSchema
;
1745 pNewItem
->zDatabase
= sqlite3DbStrDup(db
, pOldItem
->zDatabase
);
1746 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1747 pNewItem
->zAlias
= sqlite3DbStrDup(db
, pOldItem
->zAlias
);
1748 pNewItem
->fg
= pOldItem
->fg
;
1749 pNewItem
->iCursor
= pOldItem
->iCursor
;
1750 pNewItem
->addrFillSub
= pOldItem
->addrFillSub
;
1751 pNewItem
->regReturn
= pOldItem
->regReturn
;
1752 if( pNewItem
->fg
.isIndexedBy
){
1753 pNewItem
->u1
.zIndexedBy
= sqlite3DbStrDup(db
, pOldItem
->u1
.zIndexedBy
);
1755 pNewItem
->u2
= pOldItem
->u2
;
1756 if( pNewItem
->fg
.isCte
){
1757 pNewItem
->u2
.pCteUse
->nUse
++;
1759 if( pNewItem
->fg
.isTabFunc
){
1760 pNewItem
->u1
.pFuncArg
=
1761 sqlite3ExprListDup(db
, pOldItem
->u1
.pFuncArg
, flags
);
1763 pTab
= pNewItem
->pTab
= pOldItem
->pTab
;
1767 pNewItem
->pSelect
= sqlite3SelectDup(db
, pOldItem
->pSelect
, flags
);
1768 if( pOldItem
->fg
.isUsing
){
1769 assert( pNewItem
->fg
.isUsing
);
1770 pNewItem
->u3
.pUsing
= sqlite3IdListDup(db
, pOldItem
->u3
.pUsing
);
1772 pNewItem
->u3
.pOn
= sqlite3ExprDup(db
, pOldItem
->u3
.pOn
, flags
);
1774 pNewItem
->colUsed
= pOldItem
->colUsed
;
1778 IdList
*sqlite3IdListDup(sqlite3
*db
, const IdList
*p
){
1782 if( p
==0 ) return 0;
1783 assert( p
->eU4
!=EU4_EXPR
);
1784 pNew
= sqlite3DbMallocRawNN(db
, sizeof(*pNew
)+(p
->nId
-1)*sizeof(p
->a
[0]) );
1785 if( pNew
==0 ) return 0;
1788 for(i
=0; i
<p
->nId
; i
++){
1789 struct IdList_item
*pNewItem
= &pNew
->a
[i
];
1790 const struct IdList_item
*pOldItem
= &p
->a
[i
];
1791 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
1792 pNewItem
->u4
= pOldItem
->u4
;
1796 Select
*sqlite3SelectDup(sqlite3
*db
, const Select
*pDup
, int flags
){
1799 Select
**pp
= &pRet
;
1803 for(p
=pDup
; p
; p
=p
->pPrior
){
1804 Select
*pNew
= sqlite3DbMallocRawNN(db
, sizeof(*p
) );
1805 if( pNew
==0 ) break;
1806 pNew
->pEList
= sqlite3ExprListDup(db
, p
->pEList
, flags
);
1807 pNew
->pSrc
= sqlite3SrcListDup(db
, p
->pSrc
, flags
);
1808 pNew
->pWhere
= sqlite3ExprDup(db
, p
->pWhere
, flags
);
1809 pNew
->pGroupBy
= sqlite3ExprListDup(db
, p
->pGroupBy
, flags
);
1810 pNew
->pHaving
= sqlite3ExprDup(db
, p
->pHaving
, flags
);
1811 pNew
->pOrderBy
= sqlite3ExprListDup(db
, p
->pOrderBy
, flags
);
1813 pNew
->pNext
= pNext
;
1815 pNew
->pLimit
= sqlite3ExprDup(db
, p
->pLimit
, flags
);
1818 pNew
->selFlags
= p
->selFlags
& ~SF_UsesEphemeral
;
1819 pNew
->addrOpenEphm
[0] = -1;
1820 pNew
->addrOpenEphm
[1] = -1;
1821 pNew
->nSelectRow
= p
->nSelectRow
;
1822 pNew
->pWith
= sqlite3WithDup(db
, p
->pWith
);
1823 #ifndef SQLITE_OMIT_WINDOWFUNC
1825 pNew
->pWinDefn
= sqlite3WindowListDup(db
, p
->pWinDefn
);
1826 if( p
->pWin
&& db
->mallocFailed
==0 ) gatherSelectWindows(pNew
);
1828 pNew
->selId
= p
->selId
;
1829 if( db
->mallocFailed
){
1830 /* Any prior OOM might have left the Select object incomplete.
1831 ** Delete the whole thing rather than allow an incomplete Select
1832 ** to be used by the code generator. */
1834 sqlite3SelectDelete(db
, pNew
);
1845 Select
*sqlite3SelectDup(sqlite3
*db
, const Select
*p
, int flags
){
1853 ** Add a new element to the end of an expression list. If pList is
1854 ** initially NULL, then create a new expression list.
1856 ** The pList argument must be either NULL or a pointer to an ExprList
1857 ** obtained from a prior call to sqlite3ExprListAppend(). This routine
1858 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1859 ** Reason: This routine assumes that the number of slots in pList->a[]
1860 ** is a power of two. That is true for sqlite3ExprListAppend() returns
1861 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1863 ** If a memory allocation error occurs, the entire list is freed and
1864 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1865 ** that the new entry was successfully appended.
1867 static const struct ExprList_item zeroItem
= {0};
1868 SQLITE_NOINLINE ExprList
*sqlite3ExprListAppendNew(
1869 sqlite3
*db
, /* Database handle. Used for memory allocation */
1870 Expr
*pExpr
/* Expression to be appended. Might be NULL */
1872 struct ExprList_item
*pItem
;
1875 pList
= sqlite3DbMallocRawNN(db
, sizeof(ExprList
)+sizeof(pList
->a
[0])*4 );
1877 sqlite3ExprDelete(db
, pExpr
);
1882 pItem
= &pList
->a
[0];
1884 pItem
->pExpr
= pExpr
;
1887 SQLITE_NOINLINE ExprList
*sqlite3ExprListAppendGrow(
1888 sqlite3
*db
, /* Database handle. Used for memory allocation */
1889 ExprList
*pList
, /* List to which to append. Might be NULL */
1890 Expr
*pExpr
/* Expression to be appended. Might be NULL */
1892 struct ExprList_item
*pItem
;
1895 pNew
= sqlite3DbRealloc(db
, pList
,
1896 sizeof(*pList
)+(pList
->nAlloc
-1)*sizeof(pList
->a
[0]));
1898 sqlite3ExprListDelete(db
, pList
);
1899 sqlite3ExprDelete(db
, pExpr
);
1904 pItem
= &pList
->a
[pList
->nExpr
++];
1906 pItem
->pExpr
= pExpr
;
1909 ExprList
*sqlite3ExprListAppend(
1910 Parse
*pParse
, /* Parsing context */
1911 ExprList
*pList
, /* List to which to append. Might be NULL */
1912 Expr
*pExpr
/* Expression to be appended. Might be NULL */
1914 struct ExprList_item
*pItem
;
1916 return sqlite3ExprListAppendNew(pParse
->db
,pExpr
);
1918 if( pList
->nAlloc
<pList
->nExpr
+1 ){
1919 return sqlite3ExprListAppendGrow(pParse
->db
,pList
,pExpr
);
1921 pItem
= &pList
->a
[pList
->nExpr
++];
1923 pItem
->pExpr
= pExpr
;
1928 ** pColumns and pExpr form a vector assignment which is part of the SET
1929 ** clause of an UPDATE statement. Like this:
1931 ** (a,b,c) = (expr1,expr2,expr3)
1932 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
1934 ** For each term of the vector assignment, append new entries to the
1935 ** expression list pList. In the case of a subquery on the RHS, append
1936 ** TK_SELECT_COLUMN expressions.
1938 ExprList
*sqlite3ExprListAppendVector(
1939 Parse
*pParse
, /* Parsing context */
1940 ExprList
*pList
, /* List to which to append. Might be NULL */
1941 IdList
*pColumns
, /* List of names of LHS of the assignment */
1942 Expr
*pExpr
/* Vector expression to be appended. Might be NULL */
1944 sqlite3
*db
= pParse
->db
;
1947 int iFirst
= pList
? pList
->nExpr
: 0;
1948 /* pColumns can only be NULL due to an OOM but an OOM will cause an
1949 ** exit prior to this routine being invoked */
1950 if( NEVER(pColumns
==0) ) goto vector_append_error
;
1951 if( pExpr
==0 ) goto vector_append_error
;
1953 /* If the RHS is a vector, then we can immediately check to see that
1954 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
1955 ** wildcards ("*") in the result set of the SELECT must be expanded before
1956 ** we can do the size check, so defer the size check until code generation.
1958 if( pExpr
->op
!=TK_SELECT
&& pColumns
->nId
!=(n
=sqlite3ExprVectorSize(pExpr
)) ){
1959 sqlite3ErrorMsg(pParse
, "%d columns assigned %d values",
1961 goto vector_append_error
;
1964 for(i
=0; i
<pColumns
->nId
; i
++){
1965 Expr
*pSubExpr
= sqlite3ExprForVectorField(pParse
, pExpr
, i
, pColumns
->nId
);
1966 assert( pSubExpr
!=0 || db
->mallocFailed
);
1967 if( pSubExpr
==0 ) continue;
1968 pList
= sqlite3ExprListAppend(pParse
, pList
, pSubExpr
);
1970 assert( pList
->nExpr
==iFirst
+i
+1 );
1971 pList
->a
[pList
->nExpr
-1].zEName
= pColumns
->a
[i
].zName
;
1972 pColumns
->a
[i
].zName
= 0;
1976 if( !db
->mallocFailed
&& pExpr
->op
==TK_SELECT
&& ALWAYS(pList
!=0) ){
1977 Expr
*pFirst
= pList
->a
[iFirst
].pExpr
;
1978 assert( pFirst
!=0 );
1979 assert( pFirst
->op
==TK_SELECT_COLUMN
);
1981 /* Store the SELECT statement in pRight so it will be deleted when
1982 ** sqlite3ExprListDelete() is called */
1983 pFirst
->pRight
= pExpr
;
1986 /* Remember the size of the LHS in iTable so that we can check that
1987 ** the RHS and LHS sizes match during code generation. */
1988 pFirst
->iTable
= pColumns
->nId
;
1991 vector_append_error
:
1992 sqlite3ExprUnmapAndDelete(pParse
, pExpr
);
1993 sqlite3IdListDelete(db
, pColumns
);
1998 ** Set the sort order for the last element on the given ExprList.
2000 void sqlite3ExprListSetSortOrder(ExprList
*p
, int iSortOrder
, int eNulls
){
2001 struct ExprList_item
*pItem
;
2003 assert( p
->nExpr
>0 );
2005 assert( SQLITE_SO_UNDEFINED
<0 && SQLITE_SO_ASC
==0 && SQLITE_SO_DESC
>0 );
2006 assert( iSortOrder
==SQLITE_SO_UNDEFINED
2007 || iSortOrder
==SQLITE_SO_ASC
2008 || iSortOrder
==SQLITE_SO_DESC
2010 assert( eNulls
==SQLITE_SO_UNDEFINED
2011 || eNulls
==SQLITE_SO_ASC
2012 || eNulls
==SQLITE_SO_DESC
2015 pItem
= &p
->a
[p
->nExpr
-1];
2016 assert( pItem
->fg
.bNulls
==0 );
2017 if( iSortOrder
==SQLITE_SO_UNDEFINED
){
2018 iSortOrder
= SQLITE_SO_ASC
;
2020 pItem
->fg
.sortFlags
= (u8
)iSortOrder
;
2022 if( eNulls
!=SQLITE_SO_UNDEFINED
){
2023 pItem
->fg
.bNulls
= 1;
2024 if( iSortOrder
!=eNulls
){
2025 pItem
->fg
.sortFlags
|= KEYINFO_ORDER_BIGNULL
;
2031 ** Set the ExprList.a[].zEName element of the most recently added item
2032 ** on the expression list.
2034 ** pList might be NULL following an OOM error. But pName should never be
2035 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2038 void sqlite3ExprListSetName(
2039 Parse
*pParse
, /* Parsing context */
2040 ExprList
*pList
, /* List to which to add the span. */
2041 const Token
*pName
, /* Name to be added */
2042 int dequote
/* True to cause the name to be dequoted */
2044 assert( pList
!=0 || pParse
->db
->mallocFailed
!=0 );
2045 assert( pParse
->eParseMode
!=PARSE_MODE_UNMAP
|| dequote
==0 );
2047 struct ExprList_item
*pItem
;
2048 assert( pList
->nExpr
>0 );
2049 pItem
= &pList
->a
[pList
->nExpr
-1];
2050 assert( pItem
->zEName
==0 );
2051 assert( pItem
->fg
.eEName
==ENAME_NAME
);
2052 pItem
->zEName
= sqlite3DbStrNDup(pParse
->db
, pName
->z
, pName
->n
);
2054 /* If dequote==0, then pName->z does not point to part of a DDL
2055 ** statement handled by the parser. And so no token need be added
2056 ** to the token-map. */
2057 sqlite3Dequote(pItem
->zEName
);
2058 if( IN_RENAME_OBJECT
){
2059 sqlite3RenameTokenMap(pParse
, (const void*)pItem
->zEName
, pName
);
2066 ** Set the ExprList.a[].zSpan element of the most recently added item
2067 ** on the expression list.
2069 ** pList might be NULL following an OOM error. But pSpan should never be
2070 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2073 void sqlite3ExprListSetSpan(
2074 Parse
*pParse
, /* Parsing context */
2075 ExprList
*pList
, /* List to which to add the span. */
2076 const char *zStart
, /* Start of the span */
2077 const char *zEnd
/* End of the span */
2079 sqlite3
*db
= pParse
->db
;
2080 assert( pList
!=0 || db
->mallocFailed
!=0 );
2082 struct ExprList_item
*pItem
= &pList
->a
[pList
->nExpr
-1];
2083 assert( pList
->nExpr
>0 );
2084 if( pItem
->zEName
==0 ){
2085 pItem
->zEName
= sqlite3DbSpanDup(db
, zStart
, zEnd
);
2086 pItem
->fg
.eEName
= ENAME_SPAN
;
2092 ** If the expression list pEList contains more than iLimit elements,
2093 ** leave an error message in pParse.
2095 void sqlite3ExprListCheckLength(
2100 int mx
= pParse
->db
->aLimit
[SQLITE_LIMIT_COLUMN
];
2101 testcase( pEList
&& pEList
->nExpr
==mx
);
2102 testcase( pEList
&& pEList
->nExpr
==mx
+1 );
2103 if( pEList
&& pEList
->nExpr
>mx
){
2104 sqlite3ErrorMsg(pParse
, "too many columns in %s", zObject
);
2109 ** Delete an entire expression list.
2111 static SQLITE_NOINLINE
void exprListDeleteNN(sqlite3
*db
, ExprList
*pList
){
2112 int i
= pList
->nExpr
;
2113 struct ExprList_item
*pItem
= pList
->a
;
2114 assert( pList
->nExpr
>0 );
2117 sqlite3ExprDelete(db
, pItem
->pExpr
);
2118 if( pItem
->zEName
) sqlite3DbNNFreeNN(db
, pItem
->zEName
);
2121 sqlite3DbNNFreeNN(db
, pList
);
2123 void sqlite3ExprListDelete(sqlite3
*db
, ExprList
*pList
){
2124 if( pList
) exprListDeleteNN(db
, pList
);
2128 ** Return the bitwise-OR of all Expr.flags fields in the given
2131 u32
sqlite3ExprListFlags(const ExprList
*pList
){
2135 for(i
=0; i
<pList
->nExpr
; i
++){
2136 Expr
*pExpr
= pList
->a
[i
].pExpr
;
2144 ** This is a SELECT-node callback for the expression walker that
2145 ** always "fails". By "fail" in this case, we mean set
2146 ** pWalker->eCode to zero and abort.
2148 ** This callback is used by multiple expression walkers.
2150 int sqlite3SelectWalkFail(Walker
*pWalker
, Select
*NotUsed
){
2151 UNUSED_PARAMETER(NotUsed
);
2157 ** Check the input string to see if it is "true" or "false" (in any case).
2159 ** If the string is.... Return
2161 ** "false" EP_IsFalse
2164 u32
sqlite3IsTrueOrFalse(const char *zIn
){
2165 if( sqlite3StrICmp(zIn
, "true")==0 ) return EP_IsTrue
;
2166 if( sqlite3StrICmp(zIn
, "false")==0 ) return EP_IsFalse
;
2172 ** If the input expression is an ID with the name "true" or "false"
2173 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
2174 ** the conversion happened, and zero if the expression is unaltered.
2176 int sqlite3ExprIdToTrueFalse(Expr
*pExpr
){
2178 assert( pExpr
->op
==TK_ID
|| pExpr
->op
==TK_STRING
);
2179 if( !ExprHasProperty(pExpr
, EP_Quoted
|EP_IntValue
)
2180 && (v
= sqlite3IsTrueOrFalse(pExpr
->u
.zToken
))!=0
2182 pExpr
->op
= TK_TRUEFALSE
;
2183 ExprSetProperty(pExpr
, v
);
2190 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
2191 ** and 0 if it is FALSE.
2193 int sqlite3ExprTruthValue(const Expr
*pExpr
){
2194 pExpr
= sqlite3ExprSkipCollate((Expr
*)pExpr
);
2195 assert( pExpr
->op
==TK_TRUEFALSE
);
2196 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2197 assert( sqlite3StrICmp(pExpr
->u
.zToken
,"true")==0
2198 || sqlite3StrICmp(pExpr
->u
.zToken
,"false")==0 );
2199 return pExpr
->u
.zToken
[4]==0;
2203 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2204 ** terms that are always true or false. Return the simplified expression.
2205 ** Or return the original expression if no simplification is possible.
2209 ** (x<10) AND true => (x<10)
2210 ** (x<10) AND false => false
2211 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
2212 ** (x<10) AND (y=22 OR true) => (x<10)
2213 ** (y=22) OR true => true
2215 Expr
*sqlite3ExprSimplifiedAndOr(Expr
*pExpr
){
2217 if( pExpr
->op
==TK_AND
|| pExpr
->op
==TK_OR
){
2218 Expr
*pRight
= sqlite3ExprSimplifiedAndOr(pExpr
->pRight
);
2219 Expr
*pLeft
= sqlite3ExprSimplifiedAndOr(pExpr
->pLeft
);
2220 if( ExprAlwaysTrue(pLeft
) || ExprAlwaysFalse(pRight
) ){
2221 pExpr
= pExpr
->op
==TK_AND
? pRight
: pLeft
;
2222 }else if( ExprAlwaysTrue(pRight
) || ExprAlwaysFalse(pLeft
) ){
2223 pExpr
= pExpr
->op
==TK_AND
? pLeft
: pRight
;
2231 ** These routines are Walker callbacks used to check expressions to
2232 ** see if they are "constant" for some definition of constant. The
2233 ** Walker.eCode value determines the type of "constant" we are looking
2236 ** These callback routines are used to implement the following:
2238 ** sqlite3ExprIsConstant() pWalker->eCode==1
2239 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
2240 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
2241 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
2243 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2244 ** is found to not be a constant.
2246 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2247 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
2248 ** when parsing an existing schema out of the sqlite_schema table and 4
2249 ** when processing a new CREATE TABLE statement. A bound parameter raises
2250 ** an error for new statements, but is silently converted
2251 ** to NULL for existing schemas. This allows sqlite_schema tables that
2252 ** contain a bound parameter because they were generated by older versions
2253 ** of SQLite to be parsed by newer versions of SQLite without raising a
2254 ** malformed schema error.
2256 static int exprNodeIsConstant(Walker
*pWalker
, Expr
*pExpr
){
2258 /* If pWalker->eCode is 2 then any term of the expression that comes from
2259 ** the ON or USING clauses of an outer join disqualifies the expression
2260 ** from being considered constant. */
2261 if( pWalker
->eCode
==2 && ExprHasProperty(pExpr
, EP_OuterON
) ){
2266 switch( pExpr
->op
){
2267 /* Consider functions to be constant if all their arguments are constant
2268 ** and either pWalker->eCode==4 or 5 or the function has the
2269 ** SQLITE_FUNC_CONST flag. */
2271 if( (pWalker
->eCode
>=4 || ExprHasProperty(pExpr
,EP_ConstFunc
))
2272 && !ExprHasProperty(pExpr
, EP_WinFunc
)
2274 if( pWalker
->eCode
==5 ) ExprSetProperty(pExpr
, EP_FromDDL
);
2275 return WRC_Continue
;
2281 /* Convert "true" or "false" in a DEFAULT clause into the
2282 ** appropriate TK_TRUEFALSE operator */
2283 if( sqlite3ExprIdToTrueFalse(pExpr
) ){
2286 /* no break */ deliberate_fall_through
2288 case TK_AGG_FUNCTION
:
2290 testcase( pExpr
->op
==TK_ID
);
2291 testcase( pExpr
->op
==TK_COLUMN
);
2292 testcase( pExpr
->op
==TK_AGG_FUNCTION
);
2293 testcase( pExpr
->op
==TK_AGG_COLUMN
);
2294 if( ExprHasProperty(pExpr
, EP_FixedCol
) && pWalker
->eCode
!=2 ){
2295 return WRC_Continue
;
2297 if( pWalker
->eCode
==3 && pExpr
->iTable
==pWalker
->u
.iCur
){
2298 return WRC_Continue
;
2300 /* no break */ deliberate_fall_through
2301 case TK_IF_NULL_ROW
:
2304 testcase( pExpr
->op
==TK_REGISTER
);
2305 testcase( pExpr
->op
==TK_IF_NULL_ROW
);
2306 testcase( pExpr
->op
==TK_DOT
);
2310 if( pWalker
->eCode
==5 ){
2311 /* Silently convert bound parameters that appear inside of CREATE
2312 ** statements into a NULL when parsing the CREATE statement text out
2313 ** of the sqlite_schema table */
2314 pExpr
->op
= TK_NULL
;
2315 }else if( pWalker
->eCode
==4 ){
2316 /* A bound parameter in a CREATE statement that originates from
2317 ** sqlite3_prepare() causes an error */
2321 /* no break */ deliberate_fall_through
2323 testcase( pExpr
->op
==TK_SELECT
); /* sqlite3SelectWalkFail() disallows */
2324 testcase( pExpr
->op
==TK_EXISTS
); /* sqlite3SelectWalkFail() disallows */
2325 return WRC_Continue
;
2328 static int exprIsConst(Expr
*p
, int initFlag
, int iCur
){
2331 w
.xExprCallback
= exprNodeIsConstant
;
2332 w
.xSelectCallback
= sqlite3SelectWalkFail
;
2334 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
2337 sqlite3WalkExpr(&w
, p
);
2342 ** Walk an expression tree. Return non-zero if the expression is constant
2343 ** and 0 if it involves variables or function calls.
2345 ** For the purposes of this function, a double-quoted string (ex: "abc")
2346 ** is considered a variable but a single-quoted string (ex: 'abc') is
2349 int sqlite3ExprIsConstant(Expr
*p
){
2350 return exprIsConst(p
, 1, 0);
2354 ** Walk an expression tree. Return non-zero if
2356 ** (1) the expression is constant, and
2357 ** (2) the expression does originate in the ON or USING clause
2358 ** of a LEFT JOIN, and
2359 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN
2360 ** operands created by the constant propagation optimization.
2362 ** When this routine returns true, it indicates that the expression
2363 ** can be added to the pParse->pConstExpr list and evaluated once when
2364 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
2366 int sqlite3ExprIsConstantNotJoin(Expr
*p
){
2367 return exprIsConst(p
, 2, 0);
2371 ** Walk an expression tree. Return non-zero if the expression is constant
2372 ** for any single row of the table with cursor iCur. In other words, the
2373 ** expression must not refer to any non-deterministic function nor any
2374 ** table other than iCur.
2376 int sqlite3ExprIsTableConstant(Expr
*p
, int iCur
){
2377 return exprIsConst(p
, 3, iCur
);
2381 ** Check pExpr to see if it is an constraint on the single data source
2382 ** pSrc = &pSrcList->a[iSrc]. In other words, check to see if pExpr
2383 ** constrains pSrc but does not depend on any other tables or data
2384 ** sources anywhere else in the query. Return true (non-zero) if pExpr
2385 ** is a constraint on pSrc only.
2387 ** This is an optimization. False negatives will perhaps cause slower
2388 ** queries, but false positives will yield incorrect answers. So when in
2391 ** To be an single-source constraint, the following must be true:
2393 ** (1) pExpr cannot refer to any table other than pSrc->iCursor.
2395 ** (2) pExpr cannot use subqueries or non-deterministic functions.
2397 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN.
2398 ** (Is there some way to relax this constraint?)
2400 ** (4) If pSrc is the right operand of a LEFT JOIN, then...
2401 ** (4a) pExpr must come from an ON clause..
2402 ** (4b) and specifically the ON clause associated with the LEFT JOIN.
2404 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left
2405 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE
2406 ** clause, not an ON clause.
2410 ** (6a) pExpr does not originate in an ON or USING clause, or
2412 ** (6b) The ON or USING clause from which pExpr is derived is
2413 ** not to the left of a RIGHT JOIN (or FULL JOIN).
2415 ** Without this restriction, accepting pExpr as a single-table
2416 ** constraint might move the the ON/USING filter expression
2417 ** from the left side of a RIGHT JOIN over to the right side,
2418 ** which leads to incorrect answers. See also restriction (9)
2421 int sqlite3ExprIsSingleTableConstraint(
2422 Expr
*pExpr
, /* The constraint */
2423 const SrcList
*pSrcList
, /* Complete FROM clause */
2424 int iSrc
/* Which element of pSrcList to use */
2426 const SrcItem
*pSrc
= &pSrcList
->a
[iSrc
];
2427 if( pSrc
->fg
.jointype
& JT_LTORJ
){
2428 return 0; /* rule (3) */
2430 if( pSrc
->fg
.jointype
& JT_LEFT
){
2431 if( !ExprHasProperty(pExpr
, EP_OuterON
) ) return 0; /* rule (4a) */
2432 if( pExpr
->w
.iJoin
!=pSrc
->iCursor
) return 0; /* rule (4b) */
2434 if( ExprHasProperty(pExpr
, EP_OuterON
) ) return 0; /* rule (5) */
2436 if( ExprHasProperty(pExpr
, EP_OuterON
|EP_InnerON
) /* (6a) */
2437 && (pSrcList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 /* Fast pre-test of (6b) */
2440 for(jj
=0; jj
<iSrc
; jj
++){
2441 if( pExpr
->w
.iJoin
==pSrcList
->a
[jj
].iCursor
){
2442 if( (pSrcList
->a
[jj
].fg
.jointype
& JT_LTORJ
)!=0 ){
2443 return 0; /* restriction (6) */
2449 return sqlite3ExprIsTableConstant(pExpr
, pSrc
->iCursor
); /* rules (1), (2) */
2454 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2456 static int exprNodeIsConstantOrGroupBy(Walker
*pWalker
, Expr
*pExpr
){
2457 ExprList
*pGroupBy
= pWalker
->u
.pGroupBy
;
2460 /* Check if pExpr is identical to any GROUP BY term. If so, consider
2462 for(i
=0; i
<pGroupBy
->nExpr
; i
++){
2463 Expr
*p
= pGroupBy
->a
[i
].pExpr
;
2464 if( sqlite3ExprCompare(0, pExpr
, p
, -1)<2 ){
2465 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pWalker
->pParse
, p
);
2466 if( sqlite3IsBinary(pColl
) ){
2472 /* Check if pExpr is a sub-select. If so, consider it variable. */
2473 if( ExprUseXSelect(pExpr
) ){
2478 return exprNodeIsConstant(pWalker
, pExpr
);
2482 ** Walk the expression tree passed as the first argument. Return non-zero
2483 ** if the expression consists entirely of constants or copies of terms
2484 ** in pGroupBy that sort with the BINARY collation sequence.
2486 ** This routine is used to determine if a term of the HAVING clause can
2487 ** be promoted into the WHERE clause. In order for such a promotion to work,
2488 ** the value of the HAVING clause term must be the same for all members of
2489 ** a "group". The requirement that the GROUP BY term must be BINARY
2490 ** assumes that no other collating sequence will have a finer-grained
2491 ** grouping than binary. In other words (A=B COLLATE binary) implies
2492 ** A=B in every other collating sequence. The requirement that the
2493 ** GROUP BY be BINARY is stricter than necessary. It would also work
2494 ** to promote HAVING clauses that use the same alternative collating
2495 ** sequence as the GROUP BY term, but that is much harder to check,
2496 ** alternative collating sequences are uncommon, and this is only an
2497 ** optimization, so we take the easy way out and simply require the
2498 ** GROUP BY to use the BINARY collating sequence.
2500 int sqlite3ExprIsConstantOrGroupBy(Parse
*pParse
, Expr
*p
, ExprList
*pGroupBy
){
2503 w
.xExprCallback
= exprNodeIsConstantOrGroupBy
;
2504 w
.xSelectCallback
= 0;
2505 w
.u
.pGroupBy
= pGroupBy
;
2507 sqlite3WalkExpr(&w
, p
);
2512 ** Walk an expression tree for the DEFAULT field of a column definition
2513 ** in a CREATE TABLE statement. Return non-zero if the expression is
2514 ** acceptable for use as a DEFAULT. That is to say, return non-zero if
2515 ** the expression is constant or a function call with constant arguments.
2516 ** Return and 0 if there are any variables.
2518 ** isInit is true when parsing from sqlite_schema. isInit is false when
2519 ** processing a new CREATE TABLE statement. When isInit is true, parameters
2520 ** (such as ? or $abc) in the expression are converted into NULL. When
2521 ** isInit is false, parameters raise an error. Parameters should not be
2522 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2523 ** allowed it, so we need to support it when reading sqlite_schema for
2524 ** backwards compatibility.
2526 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2528 ** For the purposes of this function, a double-quoted string (ex: "abc")
2529 ** is considered a variable but a single-quoted string (ex: 'abc') is
2532 int sqlite3ExprIsConstantOrFunction(Expr
*p
, u8 isInit
){
2533 assert( isInit
==0 || isInit
==1 );
2534 return exprIsConst(p
, 4+isInit
, 0);
2537 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2539 ** Walk an expression tree. Return 1 if the expression contains a
2540 ** subquery of some kind. Return 0 if there are no subqueries.
2542 int sqlite3ExprContainsSubquery(Expr
*p
){
2545 w
.xExprCallback
= sqlite3ExprWalkNoop
;
2546 w
.xSelectCallback
= sqlite3SelectWalkFail
;
2548 w
.xSelectCallback2
= sqlite3SelectWalkAssert2
;
2550 sqlite3WalkExpr(&w
, p
);
2556 ** If the expression p codes a constant integer that is small enough
2557 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2558 ** in *pValue. If the expression is not an integer or if it is too big
2559 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2561 int sqlite3ExprIsInteger(const Expr
*p
, int *pValue
){
2563 if( NEVER(p
==0) ) return 0; /* Used to only happen following on OOM */
2565 /* If an expression is an integer literal that fits in a signed 32-bit
2566 ** integer, then the EP_IntValue flag will have already been set */
2567 assert( p
->op
!=TK_INTEGER
|| (p
->flags
& EP_IntValue
)!=0
2568 || sqlite3GetInt32(p
->u
.zToken
, &rc
)==0 );
2570 if( p
->flags
& EP_IntValue
){
2571 *pValue
= p
->u
.iValue
;
2576 rc
= sqlite3ExprIsInteger(p
->pLeft
, pValue
);
2581 if( sqlite3ExprIsInteger(p
->pLeft
, &v
) ){
2582 assert( ((unsigned int)v
)!=0x80000000 );
2594 ** Return FALSE if there is no chance that the expression can be NULL.
2596 ** If the expression might be NULL or if the expression is too complex
2597 ** to tell return TRUE.
2599 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2600 ** when we know that a value cannot be NULL. Hence, a false positive
2601 ** (returning TRUE when in fact the expression can never be NULL) might
2602 ** be a small performance hit but is otherwise harmless. On the other
2603 ** hand, a false negative (returning FALSE when the result could be NULL)
2604 ** will likely result in an incorrect answer. So when in doubt, return
2607 int sqlite3ExprCanBeNull(const Expr
*p
){
2610 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){
2615 if( op
==TK_REGISTER
) op
= p
->op2
;
2623 assert( ExprUseYTab(p
) );
2624 return ExprHasProperty(p
, EP_CanBeNull
) ||
2625 p
->y
.pTab
==0 || /* Reference to column of index on expression */
2627 && p
->y
.pTab
->aCol
!=0 /* Possible due to prior error */
2628 && p
->y
.pTab
->aCol
[p
->iColumn
].notNull
==0);
2635 ** Return TRUE if the given expression is a constant which would be
2636 ** unchanged by OP_Affinity with the affinity given in the second
2639 ** This routine is used to determine if the OP_Affinity operation
2640 ** can be omitted. When in doubt return FALSE. A false negative
2641 ** is harmless. A false positive, however, can result in the wrong
2644 int sqlite3ExprNeedsNoAffinityChange(const Expr
*p
, char aff
){
2647 if( aff
==SQLITE_AFF_BLOB
) return 1;
2648 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){
2649 if( p
->op
==TK_UMINUS
) unaryMinus
= 1;
2653 if( op
==TK_REGISTER
) op
= p
->op2
;
2656 return aff
>=SQLITE_AFF_NUMERIC
;
2659 return aff
>=SQLITE_AFF_NUMERIC
;
2662 return !unaryMinus
&& aff
==SQLITE_AFF_TEXT
;
2668 assert( p
->iTable
>=0 ); /* p cannot be part of a CHECK constraint */
2669 return aff
>=SQLITE_AFF_NUMERIC
&& p
->iColumn
<0;
2678 ** Return TRUE if the given string is a row-id column name.
2680 int sqlite3IsRowid(const char *z
){
2681 if( sqlite3StrICmp(z
, "_ROWID_")==0 ) return 1;
2682 if( sqlite3StrICmp(z
, "ROWID")==0 ) return 1;
2683 if( sqlite3StrICmp(z
, "OID")==0 ) return 1;
2688 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2689 ** that can be simplified to a direct table access, then return
2690 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2691 ** or if the SELECT statement needs to be materialized into a transient
2692 ** table, then return NULL.
2694 #ifndef SQLITE_OMIT_SUBQUERY
2695 static Select
*isCandidateForInOpt(const Expr
*pX
){
2701 if( !ExprUseXSelect(pX
) ) return 0; /* Not a subquery */
2702 if( ExprHasProperty(pX
, EP_VarSelect
) ) return 0; /* Correlated subq */
2704 if( p
->pPrior
) return 0; /* Not a compound SELECT */
2705 if( p
->selFlags
& (SF_Distinct
|SF_Aggregate
) ){
2706 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
2707 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
2708 return 0; /* No DISTINCT keyword and no aggregate functions */
2710 assert( p
->pGroupBy
==0 ); /* Has no GROUP BY clause */
2711 if( p
->pLimit
) return 0; /* Has no LIMIT clause */
2712 if( p
->pWhere
) return 0; /* Has no WHERE clause */
2715 if( pSrc
->nSrc
!=1 ) return 0; /* Single term in FROM clause */
2716 if( pSrc
->a
[0].pSelect
) return 0; /* FROM is not a subquery or view */
2717 pTab
= pSrc
->a
[0].pTab
;
2719 assert( !IsView(pTab
) ); /* FROM clause is not a view */
2720 if( IsVirtual(pTab
) ) return 0; /* FROM clause not a virtual table */
2722 assert( pEList
!=0 );
2723 /* All SELECT results must be columns. */
2724 for(i
=0; i
<pEList
->nExpr
; i
++){
2725 Expr
*pRes
= pEList
->a
[i
].pExpr
;
2726 if( pRes
->op
!=TK_COLUMN
) return 0;
2727 assert( pRes
->iTable
==pSrc
->a
[0].iCursor
); /* Not a correlated subquery */
2731 #endif /* SQLITE_OMIT_SUBQUERY */
2733 #ifndef SQLITE_OMIT_SUBQUERY
2735 ** Generate code that checks the left-most column of index table iCur to see if
2736 ** it contains any NULL entries. Cause the register at regHasNull to be set
2737 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2738 ** to be set to NULL if iCur contains one or more NULL values.
2740 static void sqlite3SetHasNullFlag(Vdbe
*v
, int iCur
, int regHasNull
){
2742 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regHasNull
);
2743 addr1
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iCur
); VdbeCoverage(v
);
2744 sqlite3VdbeAddOp3(v
, OP_Column
, iCur
, 0, regHasNull
);
2745 sqlite3VdbeChangeP5(v
, OPFLAG_TYPEOFARG
);
2746 VdbeComment((v
, "first_entry_in(%d)", iCur
));
2747 sqlite3VdbeJumpHere(v
, addr1
);
2752 #ifndef SQLITE_OMIT_SUBQUERY
2754 ** The argument is an IN operator with a list (not a subquery) on the
2755 ** right-hand side. Return TRUE if that list is constant.
2757 static int sqlite3InRhsIsConstant(Expr
*pIn
){
2760 assert( !ExprHasProperty(pIn
, EP_xIsSelect
) );
2763 res
= sqlite3ExprIsConstant(pIn
);
2770 ** This function is used by the implementation of the IN (...) operator.
2771 ** The pX parameter is the expression on the RHS of the IN operator, which
2772 ** might be either a list of expressions or a subquery.
2774 ** The job of this routine is to find or create a b-tree object that can
2775 ** be used either to test for membership in the RHS set or to iterate through
2776 ** all members of the RHS set, skipping duplicates.
2778 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2779 ** and the *piTab parameter is set to the index of that cursor.
2781 ** The returned value of this function indicates the b-tree type, as follows:
2783 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2784 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2785 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2786 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2787 ** populated epheremal table.
2788 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2789 ** implemented as a sequence of comparisons.
2791 ** An existing b-tree might be used if the RHS expression pX is a simple
2792 ** subquery such as:
2794 ** SELECT <column1>, <column2>... FROM <table>
2796 ** If the RHS of the IN operator is a list or a more complex subquery, then
2797 ** an ephemeral table might need to be generated from the RHS and then
2798 ** pX->iTable made to point to the ephemeral table instead of an
2799 ** existing table. In this case, the creation and initialization of the
2800 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag
2801 ** will be set on pX and the pX->y.sub fields will be set to show where
2802 ** the subroutine is coded.
2804 ** The inFlags parameter must contain, at a minimum, one of the bits
2805 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
2806 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2807 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
2808 ** be used to loop over all values of the RHS of the IN operator.
2810 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2811 ** through the set members) then the b-tree must not contain duplicates.
2812 ** An epheremal table will be created unless the selected columns are guaranteed
2813 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2814 ** a UNIQUE constraint or index.
2816 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2817 ** for fast set membership tests) then an epheremal table must
2818 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2819 ** index can be found with the specified <columns> as its left-most.
2821 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2822 ** if the RHS of the IN operator is a list (not a subquery) then this
2823 ** routine might decide that creating an ephemeral b-tree for membership
2824 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2825 ** calling routine should implement the IN operator using a sequence
2826 ** of Eq or Ne comparison operations.
2828 ** When the b-tree is being used for membership tests, the calling function
2829 ** might need to know whether or not the RHS side of the IN operator
2830 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2831 ** if there is any chance that the (...) might contain a NULL value at
2832 ** runtime, then a register is allocated and the register number written
2833 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2834 ** NULL value, then *prRhsHasNull is left unchanged.
2836 ** If a register is allocated and its location stored in *prRhsHasNull, then
2837 ** the value in that register will be NULL if the b-tree contains one or more
2838 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2841 ** If the aiMap parameter is not NULL, it must point to an array containing
2842 ** one element for each column returned by the SELECT statement on the RHS
2843 ** of the IN(...) operator. The i'th entry of the array is populated with the
2844 ** offset of the index column that matches the i'th column returned by the
2845 ** SELECT. For example, if the expression and selected index are:
2847 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2848 ** CREATE INDEX i1 ON t1(b, c, a);
2850 ** then aiMap[] is populated with {2, 0, 1}.
2852 #ifndef SQLITE_OMIT_SUBQUERY
2853 int sqlite3FindInIndex(
2854 Parse
*pParse
, /* Parsing context */
2855 Expr
*pX
, /* The IN expression */
2856 u32 inFlags
, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2857 int *prRhsHasNull
, /* Register holding NULL status. See notes */
2858 int *aiMap
, /* Mapping from Index fields to RHS fields */
2859 int *piTab
/* OUT: index to use */
2861 Select
*p
; /* SELECT to the right of IN operator */
2862 int eType
= 0; /* Type of RHS table. IN_INDEX_* */
2863 int iTab
; /* Cursor of the RHS table */
2864 int mustBeUnique
; /* True if RHS must be unique */
2865 Vdbe
*v
= sqlite3GetVdbe(pParse
); /* Virtual machine being coded */
2867 assert( pX
->op
==TK_IN
);
2868 mustBeUnique
= (inFlags
& IN_INDEX_LOOP
)!=0;
2869 iTab
= pParse
->nTab
++;
2871 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2872 ** whether or not the SELECT result contains NULL values, check whether
2873 ** or not NULL is actually possible (it may not be, for example, due
2874 ** to NOT NULL constraints in the schema). If no NULL values are possible,
2875 ** set prRhsHasNull to 0 before continuing. */
2876 if( prRhsHasNull
&& ExprUseXSelect(pX
) ){
2878 ExprList
*pEList
= pX
->x
.pSelect
->pEList
;
2879 for(i
=0; i
<pEList
->nExpr
; i
++){
2880 if( sqlite3ExprCanBeNull(pEList
->a
[i
].pExpr
) ) break;
2882 if( i
==pEList
->nExpr
){
2887 /* Check to see if an existing table or index can be used to
2888 ** satisfy the query. This is preferable to generating a new
2889 ** ephemeral table. */
2890 if( pParse
->nErr
==0 && (p
= isCandidateForInOpt(pX
))!=0 ){
2891 sqlite3
*db
= pParse
->db
; /* Database connection */
2892 Table
*pTab
; /* Table <table>. */
2893 int iDb
; /* Database idx for pTab */
2894 ExprList
*pEList
= p
->pEList
;
2895 int nExpr
= pEList
->nExpr
;
2897 assert( p
->pEList
!=0 ); /* Because of isCandidateForInOpt(p) */
2898 assert( p
->pEList
->a
[0].pExpr
!=0 ); /* Because of isCandidateForInOpt(p) */
2899 assert( p
->pSrc
!=0 ); /* Because of isCandidateForInOpt(p) */
2900 pTab
= p
->pSrc
->a
[0].pTab
;
2902 /* Code an OP_Transaction and OP_TableLock for <table>. */
2903 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
2904 assert( iDb
>=0 && iDb
<SQLITE_MAX_DB
);
2905 sqlite3CodeVerifySchema(pParse
, iDb
);
2906 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
2908 assert(v
); /* sqlite3GetVdbe() has always been previously called */
2909 if( nExpr
==1 && pEList
->a
[0].pExpr
->iColumn
<0 ){
2910 /* The "x IN (SELECT rowid FROM table)" case */
2911 int iAddr
= sqlite3VdbeAddOp0(v
, OP_Once
);
2914 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
2915 eType
= IN_INDEX_ROWID
;
2916 ExplainQueryPlan((pParse
, 0,
2917 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab
->zName
));
2918 sqlite3VdbeJumpHere(v
, iAddr
);
2920 Index
*pIdx
; /* Iterator variable */
2921 int affinity_ok
= 1;
2924 /* Check that the affinity that will be used to perform each
2925 ** comparison is the same as the affinity of each column in table
2926 ** on the RHS of the IN operator. If it not, it is not possible to
2927 ** use any index of the RHS table. */
2928 for(i
=0; i
<nExpr
&& affinity_ok
; i
++){
2929 Expr
*pLhs
= sqlite3VectorFieldSubexpr(pX
->pLeft
, i
);
2930 int iCol
= pEList
->a
[i
].pExpr
->iColumn
;
2931 char idxaff
= sqlite3TableColumnAffinity(pTab
,iCol
); /* RHS table */
2932 char cmpaff
= sqlite3CompareAffinity(pLhs
, idxaff
);
2933 testcase( cmpaff
==SQLITE_AFF_BLOB
);
2934 testcase( cmpaff
==SQLITE_AFF_TEXT
);
2936 case SQLITE_AFF_BLOB
:
2938 case SQLITE_AFF_TEXT
:
2939 /* sqlite3CompareAffinity() only returns TEXT if one side or the
2940 ** other has no affinity and the other side is TEXT. Hence,
2941 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2942 ** and for the term on the LHS of the IN to have no affinity. */
2943 assert( idxaff
==SQLITE_AFF_TEXT
);
2946 affinity_ok
= sqlite3IsNumericAffinity(idxaff
);
2951 /* Search for an existing index that will work for this IN operator */
2952 for(pIdx
=pTab
->pIndex
; pIdx
&& eType
==0; pIdx
=pIdx
->pNext
){
2953 Bitmask colUsed
; /* Columns of the index used */
2954 Bitmask mCol
; /* Mask for the current column */
2955 if( pIdx
->nColumn
<nExpr
) continue;
2956 if( pIdx
->pPartIdxWhere
!=0 ) continue;
2957 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2958 ** BITMASK(nExpr) without overflowing */
2959 testcase( pIdx
->nColumn
==BMS
-2 );
2960 testcase( pIdx
->nColumn
==BMS
-1 );
2961 if( pIdx
->nColumn
>=BMS
-1 ) continue;
2963 if( pIdx
->nKeyCol
>nExpr
2964 ||(pIdx
->nColumn
>nExpr
&& !IsUniqueIndex(pIdx
))
2966 continue; /* This index is not unique over the IN RHS columns */
2970 colUsed
= 0; /* Columns of index used so far */
2971 for(i
=0; i
<nExpr
; i
++){
2972 Expr
*pLhs
= sqlite3VectorFieldSubexpr(pX
->pLeft
, i
);
2973 Expr
*pRhs
= pEList
->a
[i
].pExpr
;
2974 CollSeq
*pReq
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2977 for(j
=0; j
<nExpr
; j
++){
2978 if( pIdx
->aiColumn
[j
]!=pRhs
->iColumn
) continue;
2979 assert( pIdx
->azColl
[j
] );
2980 if( pReq
!=0 && sqlite3StrICmp(pReq
->zName
, pIdx
->azColl
[j
])!=0 ){
2985 if( j
==nExpr
) break;
2987 if( mCol
& colUsed
) break; /* Each column used only once */
2989 if( aiMap
) aiMap
[i
] = j
;
2992 assert( i
==nExpr
|| colUsed
!=(MASKBIT(nExpr
)-1) );
2993 if( colUsed
==(MASKBIT(nExpr
)-1) ){
2994 /* If we reach this point, that means the index pIdx is usable */
2995 int iAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
2996 ExplainQueryPlan((pParse
, 0,
2997 "USING INDEX %s FOR IN-OPERATOR",pIdx
->zName
));
2998 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iTab
, pIdx
->tnum
, iDb
);
2999 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
3000 VdbeComment((v
, "%s", pIdx
->zName
));
3001 assert( IN_INDEX_INDEX_DESC
== IN_INDEX_INDEX_ASC
+1 );
3002 eType
= IN_INDEX_INDEX_ASC
+ pIdx
->aSortOrder
[0];
3005 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3006 i64 mask
= (1<<nExpr
)-1;
3007 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
,
3008 iTab
, 0, 0, (u8
*)&mask
, P4_INT64
);
3010 *prRhsHasNull
= ++pParse
->nMem
;
3012 sqlite3SetHasNullFlag(v
, iTab
, *prRhsHasNull
);
3015 sqlite3VdbeJumpHere(v
, iAddr
);
3017 } /* End loop over indexes */
3018 } /* End if( affinity_ok ) */
3019 } /* End if not an rowid index */
3020 } /* End attempt to optimize using an index */
3022 /* If no preexisting index is available for the IN clause
3023 ** and IN_INDEX_NOOP is an allowed reply
3024 ** and the RHS of the IN operator is a list, not a subquery
3025 ** and the RHS is not constant or has two or fewer terms,
3026 ** then it is not worth creating an ephemeral table to evaluate
3027 ** the IN operator so return IN_INDEX_NOOP.
3030 && (inFlags
& IN_INDEX_NOOP_OK
)
3032 && (!sqlite3InRhsIsConstant(pX
) || pX
->x
.pList
->nExpr
<=2)
3034 pParse
->nTab
--; /* Back out the allocation of the unused cursor */
3035 iTab
= -1; /* Cursor is not allocated */
3036 eType
= IN_INDEX_NOOP
;
3040 /* Could not find an existing table or index to use as the RHS b-tree.
3041 ** We will have to generate an ephemeral table to do the job.
3043 u32 savedNQueryLoop
= pParse
->nQueryLoop
;
3044 int rMayHaveNull
= 0;
3045 eType
= IN_INDEX_EPH
;
3046 if( inFlags
& IN_INDEX_LOOP
){
3047 pParse
->nQueryLoop
= 0;
3048 }else if( prRhsHasNull
){
3049 *prRhsHasNull
= rMayHaveNull
= ++pParse
->nMem
;
3051 assert( pX
->op
==TK_IN
);
3052 sqlite3CodeRhsOfIN(pParse
, pX
, iTab
);
3054 sqlite3SetHasNullFlag(v
, iTab
, rMayHaveNull
);
3056 pParse
->nQueryLoop
= savedNQueryLoop
;
3059 if( aiMap
&& eType
!=IN_INDEX_INDEX_ASC
&& eType
!=IN_INDEX_INDEX_DESC
){
3061 n
= sqlite3ExprVectorSize(pX
->pLeft
);
3062 for(i
=0; i
<n
; i
++) aiMap
[i
] = i
;
3069 #ifndef SQLITE_OMIT_SUBQUERY
3071 ** Argument pExpr is an (?, ?...) IN(...) expression. This
3072 ** function allocates and returns a nul-terminated string containing
3073 ** the affinities to be used for each column of the comparison.
3075 ** It is the responsibility of the caller to ensure that the returned
3076 ** string is eventually freed using sqlite3DbFree().
3078 static char *exprINAffinity(Parse
*pParse
, const Expr
*pExpr
){
3079 Expr
*pLeft
= pExpr
->pLeft
;
3080 int nVal
= sqlite3ExprVectorSize(pLeft
);
3081 Select
*pSelect
= ExprUseXSelect(pExpr
) ? pExpr
->x
.pSelect
: 0;
3084 assert( pExpr
->op
==TK_IN
);
3085 zRet
= sqlite3DbMallocRaw(pParse
->db
, nVal
+1);
3088 for(i
=0; i
<nVal
; i
++){
3089 Expr
*pA
= sqlite3VectorFieldSubexpr(pLeft
, i
);
3090 char a
= sqlite3ExprAffinity(pA
);
3092 zRet
[i
] = sqlite3CompareAffinity(pSelect
->pEList
->a
[i
].pExpr
, a
);
3103 #ifndef SQLITE_OMIT_SUBQUERY
3105 ** Load the Parse object passed as the first argument with an error
3106 ** message of the form:
3108 ** "sub-select returns N columns - expected M"
3110 void sqlite3SubselectError(Parse
*pParse
, int nActual
, int nExpect
){
3111 if( pParse
->nErr
==0 ){
3112 const char *zFmt
= "sub-select returns %d columns - expected %d";
3113 sqlite3ErrorMsg(pParse
, zFmt
, nActual
, nExpect
);
3119 ** Expression pExpr is a vector that has been used in a context where
3120 ** it is not permitted. If pExpr is a sub-select vector, this routine
3121 ** loads the Parse object with a message of the form:
3123 ** "sub-select returns N columns - expected 1"
3125 ** Or, if it is a regular scalar vector:
3127 ** "row value misused"
3129 void sqlite3VectorErrorMsg(Parse
*pParse
, Expr
*pExpr
){
3130 #ifndef SQLITE_OMIT_SUBQUERY
3131 if( ExprUseXSelect(pExpr
) ){
3132 sqlite3SubselectError(pParse
, pExpr
->x
.pSelect
->pEList
->nExpr
, 1);
3136 sqlite3ErrorMsg(pParse
, "row value misused");
3140 #ifndef SQLITE_OMIT_SUBQUERY
3142 ** Generate code that will construct an ephemeral table containing all terms
3143 ** in the RHS of an IN operator. The IN operator can be in either of two
3146 ** x IN (4,5,11) -- IN operator with list on right-hand side
3147 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
3149 ** The pExpr parameter is the IN operator. The cursor number for the
3150 ** constructed ephermeral table is returned. The first time the ephemeral
3151 ** table is computed, the cursor number is also stored in pExpr->iTable,
3152 ** however the cursor number returned might not be the same, as it might
3153 ** have been duplicated using OP_OpenDup.
3155 ** If the LHS expression ("x" in the examples) is a column value, or
3156 ** the SELECT statement returns a column value, then the affinity of that
3157 ** column is used to build the index keys. If both 'x' and the
3158 ** SELECT... statement are columns, then numeric affinity is used
3159 ** if either column has NUMERIC or INTEGER affinity. If neither
3160 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3163 void sqlite3CodeRhsOfIN(
3164 Parse
*pParse
, /* Parsing context */
3165 Expr
*pExpr
, /* The IN operator */
3166 int iTab
/* Use this cursor number */
3168 int addrOnce
= 0; /* Address of the OP_Once instruction at top */
3169 int addr
; /* Address of OP_OpenEphemeral instruction */
3170 Expr
*pLeft
; /* the LHS of the IN operator */
3171 KeyInfo
*pKeyInfo
= 0; /* Key information */
3172 int nVal
; /* Size of vector pLeft */
3173 Vdbe
*v
; /* The prepared statement under construction */
3178 /* The evaluation of the IN must be repeated every time it
3179 ** is encountered if any of the following is true:
3181 ** * The right-hand side is a correlated subquery
3182 ** * The right-hand side is an expression list containing variables
3183 ** * We are inside a trigger
3185 ** If all of the above are false, then we can compute the RHS just once
3186 ** and reuse it many names.
3188 if( !ExprHasProperty(pExpr
, EP_VarSelect
) && pParse
->iSelfTab
==0 ){
3189 /* Reuse of the RHS is allowed */
3190 /* If this routine has already been coded, but the previous code
3191 ** might not have been invoked yet, so invoke it now as a subroutine.
3193 if( ExprHasProperty(pExpr
, EP_Subrtn
) ){
3194 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
3195 if( ExprUseXSelect(pExpr
) ){
3196 ExplainQueryPlan((pParse
, 0, "REUSE LIST SUBQUERY %d",
3197 pExpr
->x
.pSelect
->selId
));
3199 assert( ExprUseYSub(pExpr
) );
3200 sqlite3VdbeAddOp2(v
, OP_Gosub
, pExpr
->y
.sub
.regReturn
,
3201 pExpr
->y
.sub
.iAddr
);
3202 assert( iTab
!=pExpr
->iTable
);
3203 sqlite3VdbeAddOp2(v
, OP_OpenDup
, iTab
, pExpr
->iTable
);
3204 sqlite3VdbeJumpHere(v
, addrOnce
);
3208 /* Begin coding the subroutine */
3209 assert( !ExprUseYWin(pExpr
) );
3210 ExprSetProperty(pExpr
, EP_Subrtn
);
3211 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
3212 pExpr
->y
.sub
.regReturn
= ++pParse
->nMem
;
3213 pExpr
->y
.sub
.iAddr
=
3214 sqlite3VdbeAddOp2(v
, OP_BeginSubrtn
, 0, pExpr
->y
.sub
.regReturn
) + 1;
3216 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
3219 /* Check to see if this is a vector IN operator */
3220 pLeft
= pExpr
->pLeft
;
3221 nVal
= sqlite3ExprVectorSize(pLeft
);
3223 /* Construct the ephemeral table that will contain the content of
3224 ** RHS of the IN operator.
3226 pExpr
->iTable
= iTab
;
3227 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pExpr
->iTable
, nVal
);
3228 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3229 if( ExprUseXSelect(pExpr
) ){
3230 VdbeComment((v
, "Result of SELECT %u", pExpr
->x
.pSelect
->selId
));
3232 VdbeComment((v
, "RHS of IN operator"));
3235 pKeyInfo
= sqlite3KeyInfoAlloc(pParse
->db
, nVal
, 1);
3237 if( ExprUseXSelect(pExpr
) ){
3238 /* Case 1: expr IN (SELECT ...)
3240 ** Generate code to write the results of the select into the temporary
3241 ** table allocated and opened above.
3243 Select
*pSelect
= pExpr
->x
.pSelect
;
3244 ExprList
*pEList
= pSelect
->pEList
;
3246 ExplainQueryPlan((pParse
, 1, "%sLIST SUBQUERY %d",
3247 addrOnce
?"":"CORRELATED ", pSelect
->selId
3249 /* If the LHS and RHS of the IN operator do not match, that
3250 ** error will have been caught long before we reach this point. */
3251 if( ALWAYS(pEList
->nExpr
==nVal
) ){
3256 sqlite3SelectDestInit(&dest
, SRT_Set
, iTab
);
3257 dest
.zAffSdst
= exprINAffinity(pParse
, pExpr
);
3258 pSelect
->iLimit
= 0;
3259 testcase( pSelect
->selFlags
& SF_Distinct
);
3260 testcase( pKeyInfo
==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3261 pCopy
= sqlite3SelectDup(pParse
->db
, pSelect
, 0);
3262 rc
= pParse
->db
->mallocFailed
? 1 :sqlite3Select(pParse
, pCopy
, &dest
);
3263 sqlite3SelectDelete(pParse
->db
, pCopy
);
3264 sqlite3DbFree(pParse
->db
, dest
.zAffSdst
);
3266 sqlite3KeyInfoUnref(pKeyInfo
);
3269 assert( pKeyInfo
!=0 ); /* OOM will cause exit after sqlite3Select() */
3270 assert( pEList
!=0 );
3271 assert( pEList
->nExpr
>0 );
3272 assert( sqlite3KeyInfoIsWriteable(pKeyInfo
) );
3273 for(i
=0; i
<nVal
; i
++){
3274 Expr
*p
= sqlite3VectorFieldSubexpr(pLeft
, i
);
3275 pKeyInfo
->aColl
[i
] = sqlite3BinaryCompareCollSeq(
3276 pParse
, p
, pEList
->a
[i
].pExpr
3280 }else if( ALWAYS(pExpr
->x
.pList
!=0) ){
3281 /* Case 2: expr IN (exprlist)
3283 ** For each expression, build an index key from the evaluation and
3284 ** store it in the temporary table. If <expr> is a column, then use
3285 ** that columns affinity when building index keys. If <expr> is not
3286 ** a column, use numeric affinity.
3288 char affinity
; /* Affinity of the LHS of the IN */
3290 ExprList
*pList
= pExpr
->x
.pList
;
3291 struct ExprList_item
*pItem
;
3293 affinity
= sqlite3ExprAffinity(pLeft
);
3294 if( affinity
<=SQLITE_AFF_NONE
){
3295 affinity
= SQLITE_AFF_BLOB
;
3296 }else if( affinity
==SQLITE_AFF_REAL
){
3297 affinity
= SQLITE_AFF_NUMERIC
;
3300 assert( sqlite3KeyInfoIsWriteable(pKeyInfo
) );
3301 pKeyInfo
->aColl
[0] = sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
3304 /* Loop through each expression in <exprlist>. */
3305 r1
= sqlite3GetTempReg(pParse
);
3306 r2
= sqlite3GetTempReg(pParse
);
3307 for(i
=pList
->nExpr
, pItem
=pList
->a
; i
>0; i
--, pItem
++){
3308 Expr
*pE2
= pItem
->pExpr
;
3310 /* If the expression is not constant then we will need to
3311 ** disable the test that was generated above that makes sure
3312 ** this code only executes once. Because for a non-constant
3313 ** expression we need to rerun this code each time.
3315 if( addrOnce
&& !sqlite3ExprIsConstant(pE2
) ){
3316 sqlite3VdbeChangeToNoop(v
, addrOnce
-1);
3317 sqlite3VdbeChangeToNoop(v
, addrOnce
);
3318 ExprClearProperty(pExpr
, EP_Subrtn
);
3322 /* Evaluate the expression and insert it into the temp table */
3323 sqlite3ExprCode(pParse
, pE2
, r1
);
3324 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, r1
, 1, r2
, &affinity
, 1);
3325 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r2
, r1
, 1);
3327 sqlite3ReleaseTempReg(pParse
, r1
);
3328 sqlite3ReleaseTempReg(pParse
, r2
);
3331 sqlite3VdbeChangeP4(v
, addr
, (void *)pKeyInfo
, P4_KEYINFO
);
3334 sqlite3VdbeAddOp1(v
, OP_NullRow
, iTab
);
3335 sqlite3VdbeJumpHere(v
, addrOnce
);
3336 /* Subroutine return */
3337 assert( ExprUseYSub(pExpr
) );
3338 assert( sqlite3VdbeGetOp(v
,pExpr
->y
.sub
.iAddr
-1)->opcode
==OP_BeginSubrtn
3340 sqlite3VdbeAddOp3(v
, OP_Return
, pExpr
->y
.sub
.regReturn
,
3341 pExpr
->y
.sub
.iAddr
, 1);
3343 sqlite3ClearTempRegCache(pParse
);
3346 #endif /* SQLITE_OMIT_SUBQUERY */
3349 ** Generate code for scalar subqueries used as a subquery expression
3350 ** or EXISTS operator:
3352 ** (SELECT a FROM b) -- subquery
3353 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
3355 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3357 ** Return the register that holds the result. For a multi-column SELECT,
3358 ** the result is stored in a contiguous array of registers and the
3359 ** return value is the register of the left-most result column.
3360 ** Return 0 if an error occurs.
3362 #ifndef SQLITE_OMIT_SUBQUERY
3363 int sqlite3CodeSubselect(Parse
*pParse
, Expr
*pExpr
){
3364 int addrOnce
= 0; /* Address of OP_Once at top of subroutine */
3365 int rReg
= 0; /* Register storing resulting */
3366 Select
*pSel
; /* SELECT statement to encode */
3367 SelectDest dest
; /* How to deal with SELECT result */
3368 int nReg
; /* Registers to allocate */
3369 Expr
*pLimit
; /* New limit expression */
3370 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3371 int addrExplain
; /* Address of OP_Explain instruction */
3374 Vdbe
*v
= pParse
->pVdbe
;
3376 if( pParse
->nErr
) return 0;
3377 testcase( pExpr
->op
==TK_EXISTS
);
3378 testcase( pExpr
->op
==TK_SELECT
);
3379 assert( pExpr
->op
==TK_EXISTS
|| pExpr
->op
==TK_SELECT
);
3380 assert( ExprUseXSelect(pExpr
) );
3381 pSel
= pExpr
->x
.pSelect
;
3383 /* If this routine has already been coded, then invoke it as a
3385 if( ExprHasProperty(pExpr
, EP_Subrtn
) ){
3386 ExplainQueryPlan((pParse
, 0, "REUSE SUBQUERY %d", pSel
->selId
));
3387 assert( ExprUseYSub(pExpr
) );
3388 sqlite3VdbeAddOp2(v
, OP_Gosub
, pExpr
->y
.sub
.regReturn
,
3389 pExpr
->y
.sub
.iAddr
);
3390 return pExpr
->iTable
;
3393 /* Begin coding the subroutine */
3394 assert( !ExprUseYWin(pExpr
) );
3395 assert( !ExprHasProperty(pExpr
, EP_Reduced
|EP_TokenOnly
) );
3396 ExprSetProperty(pExpr
, EP_Subrtn
);
3397 pExpr
->y
.sub
.regReturn
= ++pParse
->nMem
;
3398 pExpr
->y
.sub
.iAddr
=
3399 sqlite3VdbeAddOp2(v
, OP_BeginSubrtn
, 0, pExpr
->y
.sub
.regReturn
) + 1;
3401 /* The evaluation of the EXISTS/SELECT must be repeated every time it
3402 ** is encountered if any of the following is true:
3404 ** * The right-hand side is a correlated subquery
3405 ** * The right-hand side is an expression list containing variables
3406 ** * We are inside a trigger
3408 ** If all of the above are false, then we can run this code just once
3409 ** save the results, and reuse the same result on subsequent invocations.
3411 if( !ExprHasProperty(pExpr
, EP_VarSelect
) ){
3412 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
3415 /* For a SELECT, generate code to put the values for all columns of
3416 ** the first row into an array of registers and return the index of
3417 ** the first register.
3419 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3420 ** into a register and return that register number.
3422 ** In both cases, the query is augmented with "LIMIT 1". Any
3423 ** preexisting limit is discarded in place of the new LIMIT 1.
3425 ExplainQueryPlan2(addrExplain
, (pParse
, 1, "%sSCALAR SUBQUERY %d",
3426 addrOnce
?"":"CORRELATED ", pSel
->selId
));
3427 sqlite3VdbeScanStatusCounters(v
, addrExplain
, addrExplain
, -1);
3428 nReg
= pExpr
->op
==TK_SELECT
? pSel
->pEList
->nExpr
: 1;
3429 sqlite3SelectDestInit(&dest
, 0, pParse
->nMem
+1);
3430 pParse
->nMem
+= nReg
;
3431 if( pExpr
->op
==TK_SELECT
){
3432 dest
.eDest
= SRT_Mem
;
3433 dest
.iSdst
= dest
.iSDParm
;
3435 sqlite3VdbeAddOp3(v
, OP_Null
, 0, dest
.iSDParm
, dest
.iSDParm
+nReg
-1);
3436 VdbeComment((v
, "Init subquery result"));
3438 dest
.eDest
= SRT_Exists
;
3439 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, dest
.iSDParm
);
3440 VdbeComment((v
, "Init EXISTS result"));
3443 /* The subquery already has a limit. If the pre-existing limit is X
3444 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3445 sqlite3
*db
= pParse
->db
;
3446 pLimit
= sqlite3Expr(db
, TK_INTEGER
, "0");
3448 pLimit
->affExpr
= SQLITE_AFF_NUMERIC
;
3449 pLimit
= sqlite3PExpr(pParse
, TK_NE
,
3450 sqlite3ExprDup(db
, pSel
->pLimit
->pLeft
, 0), pLimit
);
3452 sqlite3ExprDeferredDelete(pParse
, pSel
->pLimit
->pLeft
);
3453 pSel
->pLimit
->pLeft
= pLimit
;
3455 /* If there is no pre-existing limit add a limit of 1 */
3456 pLimit
= sqlite3Expr(pParse
->db
, TK_INTEGER
, "1");
3457 pSel
->pLimit
= sqlite3PExpr(pParse
, TK_LIMIT
, pLimit
, 0);
3460 if( sqlite3Select(pParse
, pSel
, &dest
) ){
3461 pExpr
->op2
= pExpr
->op
;
3462 pExpr
->op
= TK_ERROR
;
3465 pExpr
->iTable
= rReg
= dest
.iSDParm
;
3466 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
3468 sqlite3VdbeJumpHere(v
, addrOnce
);
3470 sqlite3VdbeScanStatusRange(v
, addrExplain
, addrExplain
, -1);
3472 /* Subroutine return */
3473 assert( ExprUseYSub(pExpr
) );
3474 assert( sqlite3VdbeGetOp(v
,pExpr
->y
.sub
.iAddr
-1)->opcode
==OP_BeginSubrtn
3476 sqlite3VdbeAddOp3(v
, OP_Return
, pExpr
->y
.sub
.regReturn
,
3477 pExpr
->y
.sub
.iAddr
, 1);
3479 sqlite3ClearTempRegCache(pParse
);
3482 #endif /* SQLITE_OMIT_SUBQUERY */
3484 #ifndef SQLITE_OMIT_SUBQUERY
3486 ** Expr pIn is an IN(...) expression. This function checks that the
3487 ** sub-select on the RHS of the IN() operator has the same number of
3488 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3489 ** a sub-query, that the LHS is a vector of size 1.
3491 int sqlite3ExprCheckIN(Parse
*pParse
, Expr
*pIn
){
3492 int nVector
= sqlite3ExprVectorSize(pIn
->pLeft
);
3493 if( ExprUseXSelect(pIn
) && !pParse
->db
->mallocFailed
){
3494 if( nVector
!=pIn
->x
.pSelect
->pEList
->nExpr
){
3495 sqlite3SubselectError(pParse
, pIn
->x
.pSelect
->pEList
->nExpr
, nVector
);
3498 }else if( nVector
!=1 ){
3499 sqlite3VectorErrorMsg(pParse
, pIn
->pLeft
);
3506 #ifndef SQLITE_OMIT_SUBQUERY
3508 ** Generate code for an IN expression.
3510 ** x IN (SELECT ...)
3511 ** x IN (value, value, ...)
3513 ** The left-hand side (LHS) is a scalar or vector expression. The
3514 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3515 ** subquery. If the RHS is a subquery, the number of result columns must
3516 ** match the number of columns in the vector on the LHS. If the RHS is
3517 ** a list of values, the LHS must be a scalar.
3519 ** The IN operator is true if the LHS value is contained within the RHS.
3520 ** The result is false if the LHS is definitely not in the RHS. The
3521 ** result is NULL if the presence of the LHS in the RHS cannot be
3522 ** determined due to NULLs.
3524 ** This routine generates code that jumps to destIfFalse if the LHS is not
3525 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
3526 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
3527 ** within the RHS then fall through.
3529 ** See the separate in-operator.md documentation file in the canonical
3530 ** SQLite source tree for additional information.
3532 static void sqlite3ExprCodeIN(
3533 Parse
*pParse
, /* Parsing and code generating context */
3534 Expr
*pExpr
, /* The IN expression */
3535 int destIfFalse
, /* Jump here if LHS is not contained in the RHS */
3536 int destIfNull
/* Jump here if the results are unknown due to NULLs */
3538 int rRhsHasNull
= 0; /* Register that is true if RHS contains NULL values */
3539 int eType
; /* Type of the RHS */
3540 int rLhs
; /* Register(s) holding the LHS values */
3541 int rLhsOrig
; /* LHS values prior to reordering by aiMap[] */
3542 Vdbe
*v
; /* Statement under construction */
3543 int *aiMap
= 0; /* Map from vector field to index column */
3544 char *zAff
= 0; /* Affinity string for comparisons */
3545 int nVector
; /* Size of vectors for this IN operator */
3546 int iDummy
; /* Dummy parameter to exprCodeVector() */
3547 Expr
*pLeft
; /* The LHS of the IN operator */
3548 int i
; /* loop counter */
3549 int destStep2
; /* Where to jump when NULLs seen in step 2 */
3550 int destStep6
= 0; /* Start of code for Step 6 */
3551 int addrTruthOp
; /* Address of opcode that determines the IN is true */
3552 int destNotNull
; /* Jump here if a comparison is not true in step 6 */
3553 int addrTop
; /* Top of the step-6 loop */
3554 int iTab
= 0; /* Index to use */
3555 u8 okConstFactor
= pParse
->okConstFactor
;
3557 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
3558 pLeft
= pExpr
->pLeft
;
3559 if( sqlite3ExprCheckIN(pParse
, pExpr
) ) return;
3560 zAff
= exprINAffinity(pParse
, pExpr
);
3561 nVector
= sqlite3ExprVectorSize(pExpr
->pLeft
);
3562 aiMap
= (int*)sqlite3DbMallocZero(
3563 pParse
->db
, nVector
*(sizeof(int) + sizeof(char)) + 1
3565 if( pParse
->db
->mallocFailed
) goto sqlite3ExprCodeIN_oom_error
;
3567 /* Attempt to compute the RHS. After this step, if anything other than
3568 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3569 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3570 ** the RHS has not yet been coded. */
3572 assert( v
!=0 ); /* OOM detected prior to this routine */
3573 VdbeNoopComment((v
, "begin IN expr"));
3574 eType
= sqlite3FindInIndex(pParse
, pExpr
,
3575 IN_INDEX_MEMBERSHIP
| IN_INDEX_NOOP_OK
,
3576 destIfFalse
==destIfNull
? 0 : &rRhsHasNull
,
3579 assert( pParse
->nErr
|| nVector
==1 || eType
==IN_INDEX_EPH
3580 || eType
==IN_INDEX_INDEX_ASC
|| eType
==IN_INDEX_INDEX_DESC
3583 /* Confirm that aiMap[] contains nVector integer values between 0 and
3585 for(i
=0; i
<nVector
; i
++){
3587 for(cnt
=j
=0; j
<nVector
; j
++) if( aiMap
[j
]==i
) cnt
++;
3592 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3593 ** vector, then it is stored in an array of nVector registers starting
3596 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3597 ** so that the fields are in the same order as an existing index. The
3598 ** aiMap[] array contains a mapping from the original LHS field order to
3599 ** the field order that matches the RHS index.
3601 ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3602 ** even if it is constant, as OP_Affinity may be used on the register
3603 ** by code generated below. */
3604 assert( pParse
->okConstFactor
==okConstFactor
);
3605 pParse
->okConstFactor
= 0;
3606 rLhsOrig
= exprCodeVector(pParse
, pLeft
, &iDummy
);
3607 pParse
->okConstFactor
= okConstFactor
;
3608 for(i
=0; i
<nVector
&& aiMap
[i
]==i
; i
++){} /* Are LHS fields reordered? */
3610 /* LHS fields are not reordered */
3613 /* Need to reorder the LHS fields according to aiMap */
3614 rLhs
= sqlite3GetTempRange(pParse
, nVector
);
3615 for(i
=0; i
<nVector
; i
++){
3616 sqlite3VdbeAddOp3(v
, OP_Copy
, rLhsOrig
+i
, rLhs
+aiMap
[i
], 0);
3620 /* If sqlite3FindInIndex() did not find or create an index that is
3621 ** suitable for evaluating the IN operator, then evaluate using a
3622 ** sequence of comparisons.
3624 ** This is step (1) in the in-operator.md optimized algorithm.
3626 if( eType
==IN_INDEX_NOOP
){
3629 int labelOk
= sqlite3VdbeMakeLabel(pParse
);
3633 assert( ExprUseXList(pExpr
) );
3634 pList
= pExpr
->x
.pList
;
3635 pColl
= sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
3636 if( destIfNull
!=destIfFalse
){
3637 regCkNull
= sqlite3GetTempReg(pParse
);
3638 sqlite3VdbeAddOp3(v
, OP_BitAnd
, rLhs
, rLhs
, regCkNull
);
3640 for(ii
=0; ii
<pList
->nExpr
; ii
++){
3641 r2
= sqlite3ExprCodeTemp(pParse
, pList
->a
[ii
].pExpr
, ®ToFree
);
3642 if( regCkNull
&& sqlite3ExprCanBeNull(pList
->a
[ii
].pExpr
) ){
3643 sqlite3VdbeAddOp3(v
, OP_BitAnd
, regCkNull
, r2
, regCkNull
);
3645 sqlite3ReleaseTempReg(pParse
, regToFree
);
3646 if( ii
<pList
->nExpr
-1 || destIfNull
!=destIfFalse
){
3647 int op
= rLhs
!=r2
? OP_Eq
: OP_NotNull
;
3648 sqlite3VdbeAddOp4(v
, op
, rLhs
, labelOk
, r2
,
3649 (void*)pColl
, P4_COLLSEQ
);
3650 VdbeCoverageIf(v
, ii
<pList
->nExpr
-1 && op
==OP_Eq
);
3651 VdbeCoverageIf(v
, ii
==pList
->nExpr
-1 && op
==OP_Eq
);
3652 VdbeCoverageIf(v
, ii
<pList
->nExpr
-1 && op
==OP_NotNull
);
3653 VdbeCoverageIf(v
, ii
==pList
->nExpr
-1 && op
==OP_NotNull
);
3654 sqlite3VdbeChangeP5(v
, zAff
[0]);
3656 int op
= rLhs
!=r2
? OP_Ne
: OP_IsNull
;
3657 assert( destIfNull
==destIfFalse
);
3658 sqlite3VdbeAddOp4(v
, op
, rLhs
, destIfFalse
, r2
,
3659 (void*)pColl
, P4_COLLSEQ
);
3660 VdbeCoverageIf(v
, op
==OP_Ne
);
3661 VdbeCoverageIf(v
, op
==OP_IsNull
);
3662 sqlite3VdbeChangeP5(v
, zAff
[0] | SQLITE_JUMPIFNULL
);
3666 sqlite3VdbeAddOp2(v
, OP_IsNull
, regCkNull
, destIfNull
); VdbeCoverage(v
);
3667 sqlite3VdbeGoto(v
, destIfFalse
);
3669 sqlite3VdbeResolveLabel(v
, labelOk
);
3670 sqlite3ReleaseTempReg(pParse
, regCkNull
);
3671 goto sqlite3ExprCodeIN_finished
;
3674 /* Step 2: Check to see if the LHS contains any NULL columns. If the
3675 ** LHS does contain NULLs then the result must be either FALSE or NULL.
3676 ** We will then skip the binary search of the RHS.
3678 if( destIfNull
==destIfFalse
){
3679 destStep2
= destIfFalse
;
3681 destStep2
= destStep6
= sqlite3VdbeMakeLabel(pParse
);
3683 for(i
=0; i
<nVector
; i
++){
3684 Expr
*p
= sqlite3VectorFieldSubexpr(pExpr
->pLeft
, i
);
3685 if( pParse
->nErr
) goto sqlite3ExprCodeIN_oom_error
;
3686 if( sqlite3ExprCanBeNull(p
) ){
3687 sqlite3VdbeAddOp2(v
, OP_IsNull
, rLhs
+i
, destStep2
);
3692 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
3693 ** of the RHS using the LHS as a probe. If found, the result is
3696 if( eType
==IN_INDEX_ROWID
){
3697 /* In this case, the RHS is the ROWID of table b-tree and so we also
3698 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
3699 ** into a single opcode. */
3700 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iTab
, destIfFalse
, rLhs
);
3702 addrTruthOp
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Return True */
3704 sqlite3VdbeAddOp4(v
, OP_Affinity
, rLhs
, nVector
, 0, zAff
, nVector
);
3705 if( destIfFalse
==destIfNull
){
3706 /* Combine Step 3 and Step 5 into a single opcode */
3707 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, iTab
, destIfFalse
,
3708 rLhs
, nVector
); VdbeCoverage(v
);
3709 goto sqlite3ExprCodeIN_finished
;
3711 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3712 addrTruthOp
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, 0,
3713 rLhs
, nVector
); VdbeCoverage(v
);
3716 /* Step 4. If the RHS is known to be non-NULL and we did not find
3717 ** an match on the search above, then the result must be FALSE.
3719 if( rRhsHasNull
&& nVector
==1 ){
3720 sqlite3VdbeAddOp2(v
, OP_NotNull
, rRhsHasNull
, destIfFalse
);
3724 /* Step 5. If we do not care about the difference between NULL and
3725 ** FALSE, then just return false.
3727 if( destIfFalse
==destIfNull
) sqlite3VdbeGoto(v
, destIfFalse
);
3729 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3730 ** If any comparison is NULL, then the result is NULL. If all
3731 ** comparisons are FALSE then the final result is FALSE.
3733 ** For a scalar LHS, it is sufficient to check just the first row
3736 if( destStep6
) sqlite3VdbeResolveLabel(v
, destStep6
);
3737 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, destIfFalse
);
3740 destNotNull
= sqlite3VdbeMakeLabel(pParse
);
3742 /* For nVector==1, combine steps 6 and 7 by immediately returning
3743 ** FALSE if the first comparison is not NULL */
3744 destNotNull
= destIfFalse
;
3746 for(i
=0; i
<nVector
; i
++){
3749 int r3
= sqlite3GetTempReg(pParse
);
3750 p
= sqlite3VectorFieldSubexpr(pLeft
, i
);
3751 pColl
= sqlite3ExprCollSeq(pParse
, p
);
3752 sqlite3VdbeAddOp3(v
, OP_Column
, iTab
, i
, r3
);
3753 sqlite3VdbeAddOp4(v
, OP_Ne
, rLhs
+i
, destNotNull
, r3
,
3754 (void*)pColl
, P4_COLLSEQ
);
3756 sqlite3ReleaseTempReg(pParse
, r3
);
3758 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfNull
);
3760 sqlite3VdbeResolveLabel(v
, destNotNull
);
3761 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addrTop
+1);
3764 /* Step 7: If we reach this point, we know that the result must
3766 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfFalse
);
3769 /* Jumps here in order to return true. */
3770 sqlite3VdbeJumpHere(v
, addrTruthOp
);
3772 sqlite3ExprCodeIN_finished
:
3773 if( rLhs
!=rLhsOrig
) sqlite3ReleaseTempReg(pParse
, rLhs
);
3774 VdbeComment((v
, "end IN expr"));
3775 sqlite3ExprCodeIN_oom_error
:
3776 sqlite3DbFree(pParse
->db
, aiMap
);
3777 sqlite3DbFree(pParse
->db
, zAff
);
3779 #endif /* SQLITE_OMIT_SUBQUERY */
3781 #ifndef SQLITE_OMIT_FLOATING_POINT
3783 ** Generate an instruction that will put the floating point
3784 ** value described by z[0..n-1] into register iMem.
3786 ** The z[] string will probably not be zero-terminated. But the
3787 ** z[n] character is guaranteed to be something that does not look
3788 ** like the continuation of the number.
3790 static void codeReal(Vdbe
*v
, const char *z
, int negateFlag
, int iMem
){
3793 sqlite3AtoF(z
, &value
, sqlite3Strlen30(z
), SQLITE_UTF8
);
3794 assert( !sqlite3IsNaN(value
) ); /* The new AtoF never returns NaN */
3795 if( negateFlag
) value
= -value
;
3796 sqlite3VdbeAddOp4Dup8(v
, OP_Real
, 0, iMem
, 0, (u8
*)&value
, P4_REAL
);
3803 ** Generate an instruction that will put the integer describe by
3804 ** text z[0..n-1] into register iMem.
3806 ** Expr.u.zToken is always UTF8 and zero-terminated.
3808 static void codeInteger(Parse
*pParse
, Expr
*pExpr
, int negFlag
, int iMem
){
3809 Vdbe
*v
= pParse
->pVdbe
;
3810 if( pExpr
->flags
& EP_IntValue
){
3811 int i
= pExpr
->u
.iValue
;
3813 if( negFlag
) i
= -i
;
3814 sqlite3VdbeAddOp2(v
, OP_Integer
, i
, iMem
);
3818 const char *z
= pExpr
->u
.zToken
;
3820 c
= sqlite3DecOrHexToI64(z
, &value
);
3821 if( (c
==3 && !negFlag
) || (c
==2) || (negFlag
&& value
==SMALLEST_INT64
)){
3822 #ifdef SQLITE_OMIT_FLOATING_POINT
3823 sqlite3ErrorMsg(pParse
, "oversized integer: %s%#T", negFlag
?"-":"",pExpr
);
3825 #ifndef SQLITE_OMIT_HEX_INTEGER
3826 if( sqlite3_strnicmp(z
,"0x",2)==0 ){
3827 sqlite3ErrorMsg(pParse
, "hex literal too big: %s%#T",
3828 negFlag
?"-":"",pExpr
);
3832 codeReal(v
, z
, negFlag
, iMem
);
3836 if( negFlag
){ value
= c
==3 ? SMALLEST_INT64
: -value
; }
3837 sqlite3VdbeAddOp4Dup8(v
, OP_Int64
, 0, iMem
, 0, (u8
*)&value
, P4_INT64
);
3843 /* Generate code that will load into register regOut a value that is
3844 ** appropriate for the iIdxCol-th column of index pIdx.
3846 void sqlite3ExprCodeLoadIndexColumn(
3847 Parse
*pParse
, /* The parsing context */
3848 Index
*pIdx
, /* The index whose column is to be loaded */
3849 int iTabCur
, /* Cursor pointing to a table row */
3850 int iIdxCol
, /* The column of the index to be loaded */
3851 int regOut
/* Store the index column value in this register */
3853 i16 iTabCol
= pIdx
->aiColumn
[iIdxCol
];
3854 if( iTabCol
==XN_EXPR
){
3855 assert( pIdx
->aColExpr
);
3856 assert( pIdx
->aColExpr
->nExpr
>iIdxCol
);
3857 pParse
->iSelfTab
= iTabCur
+ 1;
3858 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[iIdxCol
].pExpr
, regOut
);
3859 pParse
->iSelfTab
= 0;
3861 sqlite3ExprCodeGetColumnOfTable(pParse
->pVdbe
, pIdx
->pTable
, iTabCur
,
3866 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3868 ** Generate code that will compute the value of generated column pCol
3869 ** and store the result in register regOut
3871 void sqlite3ExprCodeGeneratedColumn(
3872 Parse
*pParse
, /* Parsing context */
3873 Table
*pTab
, /* Table containing the generated column */
3874 Column
*pCol
, /* The generated column */
3875 int regOut
/* Put the result in this register */
3878 Vdbe
*v
= pParse
->pVdbe
;
3879 int nErr
= pParse
->nErr
;
3881 assert( pParse
->iSelfTab
!=0 );
3882 if( pParse
->iSelfTab
>0 ){
3883 iAddr
= sqlite3VdbeAddOp3(v
, OP_IfNullRow
, pParse
->iSelfTab
-1, 0, regOut
);
3887 sqlite3ExprCodeCopy(pParse
, sqlite3ColumnExpr(pTab
,pCol
), regOut
);
3888 if( pCol
->affinity
>=SQLITE_AFF_TEXT
){
3889 sqlite3VdbeAddOp4(v
, OP_Affinity
, regOut
, 1, 0, &pCol
->affinity
, 1);
3891 if( iAddr
) sqlite3VdbeJumpHere(v
, iAddr
);
3892 if( pParse
->nErr
>nErr
) pParse
->db
->errByteOffset
= -1;
3894 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3897 ** Generate code to extract the value of the iCol-th column of a table.
3899 void sqlite3ExprCodeGetColumnOfTable(
3900 Vdbe
*v
, /* Parsing context */
3901 Table
*pTab
, /* The table containing the value */
3902 int iTabCur
, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
3903 int iCol
, /* Index of the column to extract */
3904 int regOut
/* Extract the value into this register */
3909 assert( iCol
!=XN_EXPR
);
3910 if( iCol
<0 || iCol
==pTab
->iPKey
){
3911 sqlite3VdbeAddOp2(v
, OP_Rowid
, iTabCur
, regOut
);
3912 VdbeComment((v
, "%s.rowid", pTab
->zName
));
3916 if( IsVirtual(pTab
) ){
3919 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3920 }else if( (pCol
= &pTab
->aCol
[iCol
])->colFlags
& COLFLAG_VIRTUAL
){
3921 Parse
*pParse
= sqlite3VdbeParser(v
);
3922 if( pCol
->colFlags
& COLFLAG_BUSY
){
3923 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"",
3926 int savedSelfTab
= pParse
->iSelfTab
;
3927 pCol
->colFlags
|= COLFLAG_BUSY
;
3928 pParse
->iSelfTab
= iTabCur
+1;
3929 sqlite3ExprCodeGeneratedColumn(pParse
, pTab
, pCol
, regOut
);
3930 pParse
->iSelfTab
= savedSelfTab
;
3931 pCol
->colFlags
&= ~COLFLAG_BUSY
;
3935 }else if( !HasRowid(pTab
) ){
3936 testcase( iCol
!=sqlite3TableColumnToStorage(pTab
, iCol
) );
3937 x
= sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab
), iCol
);
3940 x
= sqlite3TableColumnToStorage(pTab
,iCol
);
3941 testcase( x
!=iCol
);
3944 sqlite3VdbeAddOp3(v
, op
, iTabCur
, x
, regOut
);
3945 sqlite3ColumnDefault(v
, pTab
, iCol
, regOut
);
3950 ** Generate code that will extract the iColumn-th column from
3951 ** table pTab and store the column value in register iReg.
3953 ** There must be an open cursor to pTab in iTable when this routine
3954 ** is called. If iColumn<0 then code is generated that extracts the rowid.
3956 int sqlite3ExprCodeGetColumn(
3957 Parse
*pParse
, /* Parsing and code generating context */
3958 Table
*pTab
, /* Description of the table we are reading from */
3959 int iColumn
, /* Index of the table column */
3960 int iTable
, /* The cursor pointing to the table */
3961 int iReg
, /* Store results here */
3962 u8 p5
/* P5 value for OP_Column + FLAGS */
3964 assert( pParse
->pVdbe
!=0 );
3965 sqlite3ExprCodeGetColumnOfTable(pParse
->pVdbe
, pTab
, iTable
, iColumn
, iReg
);
3967 VdbeOp
*pOp
= sqlite3VdbeGetLastOp(pParse
->pVdbe
);
3968 if( pOp
->opcode
==OP_Column
) pOp
->p5
= p5
;
3974 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3975 ** over to iTo..iTo+nReg-1.
3977 void sqlite3ExprCodeMove(Parse
*pParse
, int iFrom
, int iTo
, int nReg
){
3978 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_Move
, iFrom
, iTo
, nReg
);
3982 ** Convert a scalar expression node to a TK_REGISTER referencing
3983 ** register iReg. The caller must ensure that iReg already contains
3984 ** the correct value for the expression.
3986 static void exprToRegister(Expr
*pExpr
, int iReg
){
3987 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pExpr
);
3988 if( NEVER(p
==0) ) return;
3990 p
->op
= TK_REGISTER
;
3992 ExprClearProperty(p
, EP_Skip
);
3996 ** Evaluate an expression (either a vector or a scalar expression) and store
3997 ** the result in continguous temporary registers. Return the index of
3998 ** the first register used to store the result.
4000 ** If the returned result register is a temporary scalar, then also write
4001 ** that register number into *piFreeable. If the returned result register
4002 ** is not a temporary or if the expression is a vector set *piFreeable
4005 static int exprCodeVector(Parse
*pParse
, Expr
*p
, int *piFreeable
){
4007 int nResult
= sqlite3ExprVectorSize(p
);
4009 iResult
= sqlite3ExprCodeTemp(pParse
, p
, piFreeable
);
4012 if( p
->op
==TK_SELECT
){
4013 #if SQLITE_OMIT_SUBQUERY
4016 iResult
= sqlite3CodeSubselect(pParse
, p
);
4020 iResult
= pParse
->nMem
+1;
4021 pParse
->nMem
+= nResult
;
4022 assert( ExprUseXList(p
) );
4023 for(i
=0; i
<nResult
; i
++){
4024 sqlite3ExprCodeFactorable(pParse
, p
->x
.pList
->a
[i
].pExpr
, i
+iResult
);
4032 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
4033 ** so that a subsequent copy will not be merged into this one.
4035 static void setDoNotMergeFlagOnCopy(Vdbe
*v
){
4036 if( sqlite3VdbeGetLastOp(v
)->opcode
==OP_Copy
){
4037 sqlite3VdbeChangeP5(v
, 1); /* Tag trailing OP_Copy as not mergable */
4042 ** Generate code to implement special SQL functions that are implemented
4043 ** in-line rather than by using the usual callbacks.
4045 static int exprCodeInlineFunction(
4046 Parse
*pParse
, /* Parsing context */
4047 ExprList
*pFarg
, /* List of function arguments */
4048 int iFuncId
, /* Function ID. One of the INTFUNC_... values */
4049 int target
/* Store function result in this register */
4052 Vdbe
*v
= pParse
->pVdbe
;
4055 nFarg
= pFarg
->nExpr
;
4056 assert( nFarg
>0 ); /* All in-line functions have at least one argument */
4058 case INLINEFUNC_coalesce
: {
4059 /* Attempt a direct implementation of the built-in COALESCE() and
4060 ** IFNULL() functions. This avoids unnecessary evaluation of
4061 ** arguments past the first non-NULL argument.
4063 int endCoalesce
= sqlite3VdbeMakeLabel(pParse
);
4066 sqlite3ExprCode(pParse
, pFarg
->a
[0].pExpr
, target
);
4067 for(i
=1; i
<nFarg
; i
++){
4068 sqlite3VdbeAddOp2(v
, OP_NotNull
, target
, endCoalesce
);
4070 sqlite3ExprCode(pParse
, pFarg
->a
[i
].pExpr
, target
);
4072 setDoNotMergeFlagOnCopy(v
);
4073 sqlite3VdbeResolveLabel(v
, endCoalesce
);
4076 case INLINEFUNC_iif
: {
4078 memset(&caseExpr
, 0, sizeof(caseExpr
));
4079 caseExpr
.op
= TK_CASE
;
4080 caseExpr
.x
.pList
= pFarg
;
4081 return sqlite3ExprCodeTarget(pParse
, &caseExpr
, target
);
4083 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4084 case INLINEFUNC_sqlite_offset
: {
4085 Expr
*pArg
= pFarg
->a
[0].pExpr
;
4086 if( pArg
->op
==TK_COLUMN
&& pArg
->iTable
>=0 ){
4087 sqlite3VdbeAddOp3(v
, OP_Offset
, pArg
->iTable
, pArg
->iColumn
, target
);
4089 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4095 /* The UNLIKELY() function is a no-op. The result is the value
4096 ** of the first argument.
4098 assert( nFarg
==1 || nFarg
==2 );
4099 target
= sqlite3ExprCodeTarget(pParse
, pFarg
->a
[0].pExpr
, target
);
4103 /***********************************************************************
4104 ** Test-only SQL functions that are only usable if enabled
4105 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
4107 #if !defined(SQLITE_UNTESTABLE)
4108 case INLINEFUNC_expr_compare
: {
4109 /* Compare two expressions using sqlite3ExprCompare() */
4111 sqlite3VdbeAddOp2(v
, OP_Integer
,
4112 sqlite3ExprCompare(0,pFarg
->a
[0].pExpr
, pFarg
->a
[1].pExpr
,-1),
4117 case INLINEFUNC_expr_implies_expr
: {
4118 /* Compare two expressions using sqlite3ExprImpliesExpr() */
4120 sqlite3VdbeAddOp2(v
, OP_Integer
,
4121 sqlite3ExprImpliesExpr(pParse
,pFarg
->a
[0].pExpr
, pFarg
->a
[1].pExpr
,-1),
4126 case INLINEFUNC_implies_nonnull_row
: {
4127 /* REsult of sqlite3ExprImpliesNonNullRow() */
4130 pA1
= pFarg
->a
[1].pExpr
;
4131 if( pA1
->op
==TK_COLUMN
){
4132 sqlite3VdbeAddOp2(v
, OP_Integer
,
4133 sqlite3ExprImpliesNonNullRow(pFarg
->a
[0].pExpr
,pA1
->iTable
),
4136 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4141 case INLINEFUNC_affinity
: {
4142 /* The AFFINITY() function evaluates to a string that describes
4143 ** the type affinity of the argument. This is used for testing of
4144 ** the SQLite type logic.
4146 const char *azAff
[] = { "blob", "text", "numeric", "integer",
4147 "real", "flexnum" };
4150 aff
= sqlite3ExprAffinity(pFarg
->a
[0].pExpr
);
4151 assert( aff
<=SQLITE_AFF_NONE
4152 || (aff
>=SQLITE_AFF_BLOB
&& aff
<=SQLITE_AFF_FLEXNUM
) );
4153 sqlite3VdbeLoadString(v
, target
,
4154 (aff
<=SQLITE_AFF_NONE
) ? "none" : azAff
[aff
-SQLITE_AFF_BLOB
]);
4157 #endif /* !defined(SQLITE_UNTESTABLE) */
4163 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr.
4164 ** If it is, then resolve the expression by reading from the index and
4165 ** return the register into which the value has been read. If pExpr is
4166 ** not an indexed expression, then return negative.
4168 static SQLITE_NOINLINE
int sqlite3IndexedExprLookup(
4169 Parse
*pParse
, /* The parsing context */
4170 Expr
*pExpr
, /* The expression to potentially bypass */
4171 int target
/* Where to store the result of the expression */
4175 for(p
=pParse
->pIdxEpr
; p
; p
=p
->pIENext
){
4177 int iDataCur
= p
->iDataCur
;
4178 if( iDataCur
<0 ) continue;
4179 if( pParse
->iSelfTab
){
4180 if( p
->iDataCur
!=pParse
->iSelfTab
-1 ) continue;
4183 if( sqlite3ExprCompare(0, pExpr
, p
->pExpr
, iDataCur
)!=0 ) continue;
4184 assert( p
->aff
>=SQLITE_AFF_BLOB
&& p
->aff
<=SQLITE_AFF_NUMERIC
);
4185 exprAff
= sqlite3ExprAffinity(pExpr
);
4186 if( (exprAff
<=SQLITE_AFF_BLOB
&& p
->aff
!=SQLITE_AFF_BLOB
)
4187 || (exprAff
==SQLITE_AFF_TEXT
&& p
->aff
!=SQLITE_AFF_TEXT
)
4188 || (exprAff
>=SQLITE_AFF_NUMERIC
&& p
->aff
!=SQLITE_AFF_NUMERIC
)
4190 /* Affinity mismatch on a generated column */
4196 if( p
->bMaybeNullRow
){
4197 /* If the index is on a NULL row due to an outer join, then we
4198 ** cannot extract the value from the index. The value must be
4199 ** computed using the original expression. */
4200 int addr
= sqlite3VdbeCurrentAddr(v
);
4201 sqlite3VdbeAddOp3(v
, OP_IfNullRow
, p
->iIdxCur
, addr
+3, target
);
4203 sqlite3VdbeAddOp3(v
, OP_Column
, p
->iIdxCur
, p
->iIdxCol
, target
);
4204 VdbeComment((v
, "%s expr-column %d", p
->zIdxName
, p
->iIdxCol
));
4205 sqlite3VdbeGoto(v
, 0);
4206 p
= pParse
->pIdxEpr
;
4207 pParse
->pIdxEpr
= 0;
4208 sqlite3ExprCode(pParse
, pExpr
, target
);
4209 pParse
->pIdxEpr
= p
;
4210 sqlite3VdbeJumpHere(v
, addr
+2);
4212 sqlite3VdbeAddOp3(v
, OP_Column
, p
->iIdxCur
, p
->iIdxCol
, target
);
4213 VdbeComment((v
, "%s expr-column %d", p
->zIdxName
, p
->iIdxCol
));
4217 return -1; /* Not found */
4222 ** Generate code into the current Vdbe to evaluate the given
4223 ** expression. Attempt to store the results in register "target".
4224 ** Return the register where results are stored.
4226 ** With this routine, there is no guarantee that results will
4227 ** be stored in target. The result might be stored in some other
4228 ** register if it is convenient to do so. The calling function
4229 ** must check the return code and move the results to the desired
4232 int sqlite3ExprCodeTarget(Parse
*pParse
, Expr
*pExpr
, int target
){
4233 Vdbe
*v
= pParse
->pVdbe
; /* The VM under construction */
4234 int op
; /* The opcode being coded */
4235 int inReg
= target
; /* Results stored in register inReg */
4236 int regFree1
= 0; /* If non-zero free this temporary register */
4237 int regFree2
= 0; /* If non-zero free this temporary register */
4238 int r1
, r2
; /* Various register numbers */
4239 Expr tempX
; /* Temporary expression node */
4242 assert( target
>0 && target
<=pParse
->nMem
);
4248 }else if( pParse
->pIdxEpr
!=0
4249 && !ExprHasProperty(pExpr
, EP_Leaf
)
4250 && (r1
= sqlite3IndexedExprLookup(pParse
, pExpr
, target
))>=0
4254 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
4258 case TK_AGG_COLUMN
: {
4259 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
4260 struct AggInfo_col
*pCol
;
4261 assert( pAggInfo
!=0 );
4262 assert( pExpr
->iAgg
>=0 );
4263 if( pExpr
->iAgg
>=pAggInfo
->nColumn
){
4264 /* Happens when the left table of a RIGHT JOIN is null and
4265 ** is using an expression index */
4266 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4267 #ifdef SQLITE_VDBE_COVERAGE
4268 /* Verify that the OP_Null above is exercised by tests
4269 ** tag-20230325-2 */
4270 sqlite3VdbeAddOp2(v
, OP_NotNull
, target
, 1);
4271 VdbeCoverageNeverTaken(v
);
4275 pCol
= &pAggInfo
->aCol
[pExpr
->iAgg
];
4276 if( !pAggInfo
->directMode
){
4277 return AggInfoColumnReg(pAggInfo
, pExpr
->iAgg
);
4278 }else if( pAggInfo
->useSortingIdx
){
4279 Table
*pTab
= pCol
->pTab
;
4280 sqlite3VdbeAddOp3(v
, OP_Column
, pAggInfo
->sortingIdxPTab
,
4281 pCol
->iSorterColumn
, target
);
4283 /* No comment added */
4284 }else if( pCol
->iColumn
<0 ){
4285 VdbeComment((v
,"%s.rowid",pTab
->zName
));
4287 VdbeComment((v
,"%s.%s",
4288 pTab
->zName
, pTab
->aCol
[pCol
->iColumn
].zCnName
));
4289 if( pTab
->aCol
[pCol
->iColumn
].affinity
==SQLITE_AFF_REAL
){
4290 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
4294 }else if( pExpr
->y
.pTab
==0 ){
4295 /* This case happens when the argument to an aggregate function
4296 ** is rewritten by aggregateConvertIndexedExprRefToColumn() */
4297 sqlite3VdbeAddOp3(v
, OP_Column
, pExpr
->iTable
, pExpr
->iColumn
, target
);
4300 /* Otherwise, fall thru into the TK_COLUMN case */
4301 /* no break */ deliberate_fall_through
4304 int iTab
= pExpr
->iTable
;
4306 if( ExprHasProperty(pExpr
, EP_FixedCol
) ){
4307 /* This COLUMN expression is really a constant due to WHERE clause
4308 ** constraints, and that constant is coded by the pExpr->pLeft
4309 ** expresssion. However, make sure the constant has the correct
4310 ** datatype by applying the Affinity of the table column to the
4314 iReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
,target
);
4315 assert( ExprUseYTab(pExpr
) );
4316 assert( pExpr
->y
.pTab
!=0 );
4317 aff
= sqlite3TableColumnAffinity(pExpr
->y
.pTab
, pExpr
->iColumn
);
4318 if( aff
>SQLITE_AFF_BLOB
){
4319 static const char zAff
[] = "B\000C\000D\000E\000F";
4320 assert( SQLITE_AFF_BLOB
=='A' );
4321 assert( SQLITE_AFF_TEXT
=='B' );
4322 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, 1, 0,
4323 &zAff
[(aff
-'B')*2], P4_STATIC
);
4328 if( pParse
->iSelfTab
<0 ){
4329 /* Other columns in the same row for CHECK constraints or
4330 ** generated columns or for inserting into partial index.
4331 ** The row is unpacked into registers beginning at
4332 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
4333 ** immediately prior to the first column.
4338 int iCol
= pExpr
->iColumn
;
4339 assert( ExprUseYTab(pExpr
) );
4340 pTab
= pExpr
->y
.pTab
;
4342 assert( iCol
>=XN_ROWID
);
4343 assert( iCol
<pTab
->nCol
);
4345 return -1-pParse
->iSelfTab
;
4347 pCol
= pTab
->aCol
+ iCol
;
4348 testcase( iCol
!=sqlite3TableColumnToStorage(pTab
,iCol
) );
4349 iSrc
= sqlite3TableColumnToStorage(pTab
, iCol
) - pParse
->iSelfTab
;
4350 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4351 if( pCol
->colFlags
& COLFLAG_GENERATED
){
4352 if( pCol
->colFlags
& COLFLAG_BUSY
){
4353 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"",
4357 pCol
->colFlags
|= COLFLAG_BUSY
;
4358 if( pCol
->colFlags
& COLFLAG_NOTAVAIL
){
4359 sqlite3ExprCodeGeneratedColumn(pParse
, pTab
, pCol
, iSrc
);
4361 pCol
->colFlags
&= ~(COLFLAG_BUSY
|COLFLAG_NOTAVAIL
);
4364 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4365 if( pCol
->affinity
==SQLITE_AFF_REAL
){
4366 sqlite3VdbeAddOp2(v
, OP_SCopy
, iSrc
, target
);
4367 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
4373 /* Coding an expression that is part of an index where column names
4374 ** in the index refer to the table to which the index belongs */
4375 iTab
= pParse
->iSelfTab
- 1;
4378 assert( ExprUseYTab(pExpr
) );
4379 assert( pExpr
->y
.pTab
!=0 );
4380 iReg
= sqlite3ExprCodeGetColumn(pParse
, pExpr
->y
.pTab
,
4381 pExpr
->iColumn
, iTab
, target
,
4386 codeInteger(pParse
, pExpr
, 0, target
);
4389 case TK_TRUEFALSE
: {
4390 sqlite3VdbeAddOp2(v
, OP_Integer
, sqlite3ExprTruthValue(pExpr
), target
);
4393 #ifndef SQLITE_OMIT_FLOATING_POINT
4395 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4396 codeReal(v
, pExpr
->u
.zToken
, 0, target
);
4401 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4402 sqlite3VdbeLoadString(v
, target
, pExpr
->u
.zToken
);
4406 /* Make NULL the default case so that if a bug causes an illegal
4407 ** Expr node to be passed into this function, it will be handled
4408 ** sanely and not crash. But keep the assert() to bring the problem
4409 ** to the attention of the developers. */
4410 assert( op
==TK_NULL
|| op
==TK_ERROR
|| pParse
->db
->mallocFailed
);
4411 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4414 #ifndef SQLITE_OMIT_BLOB_LITERAL
4419 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4420 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
4421 assert( pExpr
->u
.zToken
[1]=='\'' );
4422 z
= &pExpr
->u
.zToken
[2];
4423 n
= sqlite3Strlen30(z
) - 1;
4424 assert( z
[n
]=='\'' );
4425 zBlob
= sqlite3HexToBlob(sqlite3VdbeDb(v
), z
, n
);
4426 sqlite3VdbeAddOp4(v
, OP_Blob
, n
/2, target
, 0, zBlob
, P4_DYNAMIC
);
4431 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4432 assert( pExpr
->u
.zToken
!=0 );
4433 assert( pExpr
->u
.zToken
[0]!=0 );
4434 sqlite3VdbeAddOp2(v
, OP_Variable
, pExpr
->iColumn
, target
);
4435 if( pExpr
->u
.zToken
[1]!=0 ){
4436 const char *z
= sqlite3VListNumToName(pParse
->pVList
, pExpr
->iColumn
);
4437 assert( pExpr
->u
.zToken
[0]=='?' || (z
&& !strcmp(pExpr
->u
.zToken
, z
)) );
4438 pParse
->pVList
[0] = 0; /* Indicate VList may no longer be enlarged */
4439 sqlite3VdbeAppendP4(v
, (char*)z
, P4_STATIC
);
4444 return pExpr
->iTable
;
4446 #ifndef SQLITE_OMIT_CAST
4448 /* Expressions of the form: CAST(pLeft AS token) */
4449 sqlite3ExprCode(pParse
, pExpr
->pLeft
, target
);
4450 assert( inReg
==target
);
4451 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4452 sqlite3VdbeAddOp2(v
, OP_Cast
, target
,
4453 sqlite3AffinityType(pExpr
->u
.zToken
, 0));
4456 #endif /* SQLITE_OMIT_CAST */
4459 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
4468 Expr
*pLeft
= pExpr
->pLeft
;
4469 if( sqlite3ExprIsVector(pLeft
) ){
4470 codeVectorCompare(pParse
, pExpr
, target
, op
, p5
);
4472 r1
= sqlite3ExprCodeTemp(pParse
, pLeft
, ®Free1
);
4473 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
4474 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, inReg
);
4475 codeCompare(pParse
, pLeft
, pExpr
->pRight
, op
, r1
, r2
,
4476 sqlite3VdbeCurrentAddr(v
)+2, p5
,
4477 ExprHasProperty(pExpr
,EP_Commuted
));
4478 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
4479 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
4480 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
4481 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
4482 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
); VdbeCoverageIf(v
,op
==OP_Eq
);
4483 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
); VdbeCoverageIf(v
,op
==OP_Ne
);
4484 if( p5
==SQLITE_NULLEQ
){
4485 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, inReg
);
4487 sqlite3VdbeAddOp3(v
, OP_ZeroOrNull
, r1
, inReg
, r2
);
4489 testcase( regFree1
==0 );
4490 testcase( regFree2
==0 );
4506 assert( TK_AND
==OP_And
); testcase( op
==TK_AND
);
4507 assert( TK_OR
==OP_Or
); testcase( op
==TK_OR
);
4508 assert( TK_PLUS
==OP_Add
); testcase( op
==TK_PLUS
);
4509 assert( TK_MINUS
==OP_Subtract
); testcase( op
==TK_MINUS
);
4510 assert( TK_REM
==OP_Remainder
); testcase( op
==TK_REM
);
4511 assert( TK_BITAND
==OP_BitAnd
); testcase( op
==TK_BITAND
);
4512 assert( TK_BITOR
==OP_BitOr
); testcase( op
==TK_BITOR
);
4513 assert( TK_SLASH
==OP_Divide
); testcase( op
==TK_SLASH
);
4514 assert( TK_LSHIFT
==OP_ShiftLeft
); testcase( op
==TK_LSHIFT
);
4515 assert( TK_RSHIFT
==OP_ShiftRight
); testcase( op
==TK_RSHIFT
);
4516 assert( TK_CONCAT
==OP_Concat
); testcase( op
==TK_CONCAT
);
4517 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4518 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
4519 sqlite3VdbeAddOp3(v
, op
, r2
, r1
, target
);
4520 testcase( regFree1
==0 );
4521 testcase( regFree2
==0 );
4525 Expr
*pLeft
= pExpr
->pLeft
;
4527 if( pLeft
->op
==TK_INTEGER
){
4528 codeInteger(pParse
, pLeft
, 1, target
);
4530 #ifndef SQLITE_OMIT_FLOATING_POINT
4531 }else if( pLeft
->op
==TK_FLOAT
){
4532 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4533 codeReal(v
, pLeft
->u
.zToken
, 1, target
);
4537 tempX
.op
= TK_INTEGER
;
4538 tempX
.flags
= EP_IntValue
|EP_TokenOnly
;
4540 ExprClearVVAProperties(&tempX
);
4541 r1
= sqlite3ExprCodeTemp(pParse
, &tempX
, ®Free1
);
4542 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free2
);
4543 sqlite3VdbeAddOp3(v
, OP_Subtract
, r2
, r1
, target
);
4544 testcase( regFree2
==0 );
4550 assert( TK_BITNOT
==OP_BitNot
); testcase( op
==TK_BITNOT
);
4551 assert( TK_NOT
==OP_Not
); testcase( op
==TK_NOT
);
4552 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4553 testcase( regFree1
==0 );
4554 sqlite3VdbeAddOp2(v
, op
, r1
, inReg
);
4558 int isTrue
; /* IS TRUE or IS NOT TRUE */
4559 int bNormal
; /* IS TRUE or IS FALSE */
4560 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4561 testcase( regFree1
==0 );
4562 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
4563 bNormal
= pExpr
->op2
==TK_IS
;
4564 testcase( isTrue
&& bNormal
);
4565 testcase( !isTrue
&& bNormal
);
4566 sqlite3VdbeAddOp4Int(v
, OP_IsTrue
, r1
, inReg
, !isTrue
, isTrue
^ bNormal
);
4572 assert( TK_ISNULL
==OP_IsNull
); testcase( op
==TK_ISNULL
);
4573 assert( TK_NOTNULL
==OP_NotNull
); testcase( op
==TK_NOTNULL
);
4574 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
4575 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
4576 testcase( regFree1
==0 );
4577 addr
= sqlite3VdbeAddOp1(v
, op
, r1
);
4578 VdbeCoverageIf(v
, op
==TK_ISNULL
);
4579 VdbeCoverageIf(v
, op
==TK_NOTNULL
);
4580 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, target
);
4581 sqlite3VdbeJumpHere(v
, addr
);
4584 case TK_AGG_FUNCTION
: {
4585 AggInfo
*pInfo
= pExpr
->pAggInfo
;
4587 || NEVER(pExpr
->iAgg
<0)
4588 || NEVER(pExpr
->iAgg
>=pInfo
->nFunc
)
4590 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4591 sqlite3ErrorMsg(pParse
, "misuse of aggregate: %#T()", pExpr
);
4593 return AggInfoFuncReg(pInfo
, pExpr
->iAgg
);
4598 ExprList
*pFarg
; /* List of function arguments */
4599 int nFarg
; /* Number of function arguments */
4600 FuncDef
*pDef
; /* The function definition object */
4601 const char *zId
; /* The function name */
4602 u32 constMask
= 0; /* Mask of function arguments that are constant */
4603 int i
; /* Loop counter */
4604 sqlite3
*db
= pParse
->db
; /* The database connection */
4605 u8 enc
= ENC(db
); /* The text encoding used by this database */
4606 CollSeq
*pColl
= 0; /* A collating sequence */
4608 #ifndef SQLITE_OMIT_WINDOWFUNC
4609 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
4610 return pExpr
->y
.pWin
->regResult
;
4614 if( ConstFactorOk(pParse
) && sqlite3ExprIsConstantNotJoin(pExpr
) ){
4615 /* SQL functions can be expensive. So try to avoid running them
4616 ** multiple times if we know they always give the same result */
4617 return sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, -1);
4619 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
) );
4620 assert( ExprUseXList(pExpr
) );
4621 pFarg
= pExpr
->x
.pList
;
4622 nFarg
= pFarg
? pFarg
->nExpr
: 0;
4623 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4624 zId
= pExpr
->u
.zToken
;
4625 pDef
= sqlite3FindFunction(db
, zId
, nFarg
, enc
, 0);
4626 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4627 if( pDef
==0 && pParse
->explain
){
4628 pDef
= sqlite3FindFunction(db
, "unknown", nFarg
, enc
, 0);
4631 if( pDef
==0 || pDef
->xFinalize
!=0 ){
4632 sqlite3ErrorMsg(pParse
, "unknown function: %#T()", pExpr
);
4635 if( pDef
->funcFlags
& SQLITE_FUNC_INLINE
){
4636 assert( (pDef
->funcFlags
& SQLITE_FUNC_UNSAFE
)==0 );
4637 assert( (pDef
->funcFlags
& SQLITE_FUNC_DIRECT
)==0 );
4638 return exprCodeInlineFunction(pParse
, pFarg
,
4639 SQLITE_PTR_TO_INT(pDef
->pUserData
), target
);
4640 }else if( pDef
->funcFlags
& (SQLITE_FUNC_DIRECT
|SQLITE_FUNC_UNSAFE
) ){
4641 sqlite3ExprFunctionUsable(pParse
, pExpr
, pDef
);
4644 for(i
=0; i
<nFarg
; i
++){
4645 if( i
<32 && sqlite3ExprIsConstant(pFarg
->a
[i
].pExpr
) ){
4647 constMask
|= MASKBIT32(i
);
4649 if( (pDef
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)!=0 && !pColl
){
4650 pColl
= sqlite3ExprCollSeq(pParse
, pFarg
->a
[i
].pExpr
);
4655 r1
= pParse
->nMem
+1;
4656 pParse
->nMem
+= nFarg
;
4658 r1
= sqlite3GetTempRange(pParse
, nFarg
);
4661 /* For length() and typeof() functions with a column argument,
4662 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4663 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4666 if( (pDef
->funcFlags
& (SQLITE_FUNC_LENGTH
|SQLITE_FUNC_TYPEOF
))!=0 ){
4669 assert( pFarg
->a
[0].pExpr
!=0 );
4670 exprOp
= pFarg
->a
[0].pExpr
->op
;
4671 if( exprOp
==TK_COLUMN
|| exprOp
==TK_AGG_COLUMN
){
4672 assert( SQLITE_FUNC_LENGTH
==OPFLAG_LENGTHARG
);
4673 assert( SQLITE_FUNC_TYPEOF
==OPFLAG_TYPEOFARG
);
4674 testcase( pDef
->funcFlags
& OPFLAG_LENGTHARG
);
4675 pFarg
->a
[0].pExpr
->op2
=
4676 pDef
->funcFlags
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
);
4680 sqlite3ExprCodeExprList(pParse
, pFarg
, r1
, 0,
4681 SQLITE_ECEL_DUP
|SQLITE_ECEL_FACTOR
);
4685 #ifndef SQLITE_OMIT_VIRTUALTABLE
4686 /* Possibly overload the function if the first argument is
4687 ** a virtual table column.
4689 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4690 ** second argument, not the first, as the argument to test to
4691 ** see if it is a column in a virtual table. This is done because
4692 ** the left operand of infix functions (the operand we want to
4693 ** control overloading) ends up as the second argument to the
4694 ** function. The expression "A glob B" is equivalent to
4695 ** "glob(B,A). We want to use the A in "A glob B" to test
4696 ** for function overloading. But we use the B term in "glob(B,A)".
4698 if( nFarg
>=2 && ExprHasProperty(pExpr
, EP_InfixFunc
) ){
4699 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[1].pExpr
);
4700 }else if( nFarg
>0 ){
4701 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[0].pExpr
);
4704 if( pDef
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
4705 if( !pColl
) pColl
= db
->pDfltColl
;
4706 sqlite3VdbeAddOp4(v
, OP_CollSeq
, 0, 0, 0, (char *)pColl
, P4_COLLSEQ
);
4708 sqlite3VdbeAddFunctionCall(pParse
, constMask
, r1
, target
, nFarg
,
4712 sqlite3ReleaseTempRange(pParse
, r1
, nFarg
);
4714 sqlite3VdbeReleaseRegisters(pParse
, r1
, nFarg
, constMask
, 1);
4719 #ifndef SQLITE_OMIT_SUBQUERY
4723 testcase( op
==TK_EXISTS
);
4724 testcase( op
==TK_SELECT
);
4725 if( pParse
->db
->mallocFailed
){
4727 }else if( op
==TK_SELECT
4728 && ALWAYS( ExprUseXSelect(pExpr
) )
4729 && (nCol
= pExpr
->x
.pSelect
->pEList
->nExpr
)!=1
4731 sqlite3SubselectError(pParse
, nCol
, 1);
4733 return sqlite3CodeSubselect(pParse
, pExpr
);
4737 case TK_SELECT_COLUMN
: {
4739 Expr
*pLeft
= pExpr
->pLeft
;
4740 if( pLeft
->iTable
==0 || pParse
->withinRJSubrtn
> pLeft
->op2
){
4741 pLeft
->iTable
= sqlite3CodeSubselect(pParse
, pLeft
);
4742 pLeft
->op2
= pParse
->withinRJSubrtn
;
4744 assert( pLeft
->op
==TK_SELECT
|| pLeft
->op
==TK_ERROR
);
4745 n
= sqlite3ExprVectorSize(pLeft
);
4746 if( pExpr
->iTable
!=n
){
4747 sqlite3ErrorMsg(pParse
, "%d columns assigned %d values",
4750 return pLeft
->iTable
+ pExpr
->iColumn
;
4753 int destIfFalse
= sqlite3VdbeMakeLabel(pParse
);
4754 int destIfNull
= sqlite3VdbeMakeLabel(pParse
);
4755 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4756 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
4757 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
4758 sqlite3VdbeResolveLabel(v
, destIfFalse
);
4759 sqlite3VdbeAddOp2(v
, OP_AddImm
, target
, 0);
4760 sqlite3VdbeResolveLabel(v
, destIfNull
);
4763 #endif /* SQLITE_OMIT_SUBQUERY */
4767 ** x BETWEEN y AND z
4769 ** This is equivalent to
4773 ** X is stored in pExpr->pLeft.
4774 ** Y is stored in pExpr->pList->a[0].pExpr.
4775 ** Z is stored in pExpr->pList->a[1].pExpr.
4778 exprCodeBetween(pParse
, pExpr
, target
, 0, 0);
4782 if( !ExprHasProperty(pExpr
, EP_Collate
) ){
4783 /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called
4784 ** "SOFT-COLLATE" that is added to constraints that are pushed down
4785 ** from outer queries into sub-queries by the push-down optimization.
4786 ** Clear subtypes as subtypes may not cross a subquery boundary.
4788 assert( pExpr
->pLeft
);
4789 sqlite3ExprCode(pParse
, pExpr
->pLeft
, target
);
4790 sqlite3VdbeAddOp1(v
, OP_ClrSubtype
, target
);
4793 pExpr
= pExpr
->pLeft
;
4794 goto expr_code_doover
; /* 2018-04-28: Prevent deep recursion. */
4799 pExpr
= pExpr
->pLeft
;
4800 goto expr_code_doover
; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4804 /* If the opcode is TK_TRIGGER, then the expression is a reference
4805 ** to a column in the new.* or old.* pseudo-tables available to
4806 ** trigger programs. In this case Expr.iTable is set to 1 for the
4807 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4808 ** is set to the column of the pseudo-table to read, or to -1 to
4809 ** read the rowid field.
4811 ** The expression is implemented using an OP_Param opcode. The p1
4812 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4813 ** to reference another column of the old.* pseudo-table, where
4814 ** i is the index of the column. For a new.rowid reference, p1 is
4815 ** set to (n+1), where n is the number of columns in each pseudo-table.
4816 ** For a reference to any other column in the new.* pseudo-table, p1
4817 ** is set to (n+2+i), where n and i are as defined previously. For
4818 ** example, if the table on which triggers are being fired is
4821 ** CREATE TABLE t1(a, b);
4823 ** Then p1 is interpreted as follows:
4825 ** p1==0 -> old.rowid p1==3 -> new.rowid
4826 ** p1==1 -> old.a p1==4 -> new.a
4827 ** p1==2 -> old.b p1==5 -> new.b
4833 assert( ExprUseYTab(pExpr
) );
4834 pTab
= pExpr
->y
.pTab
;
4835 iCol
= pExpr
->iColumn
;
4836 p1
= pExpr
->iTable
* (pTab
->nCol
+1) + 1
4837 + sqlite3TableColumnToStorage(pTab
, iCol
);
4839 assert( pExpr
->iTable
==0 || pExpr
->iTable
==1 );
4840 assert( iCol
>=-1 && iCol
<pTab
->nCol
);
4841 assert( pTab
->iPKey
<0 || iCol
!=pTab
->iPKey
);
4842 assert( p1
>=0 && p1
<(pTab
->nCol
*2+2) );
4844 sqlite3VdbeAddOp2(v
, OP_Param
, p1
, target
);
4845 VdbeComment((v
, "r[%d]=%s.%s", target
,
4846 (pExpr
->iTable
? "new" : "old"),
4847 (pExpr
->iColumn
<0 ? "rowid" : pExpr
->y
.pTab
->aCol
[iCol
].zCnName
)
4850 #ifndef SQLITE_OMIT_FLOATING_POINT
4851 /* If the column has REAL affinity, it may currently be stored as an
4852 ** integer. Use OP_RealAffinity to make sure it is really real.
4854 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4855 ** floating point when extracting it from the record. */
4856 if( iCol
>=0 && pTab
->aCol
[iCol
].affinity
==SQLITE_AFF_REAL
){
4857 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
4864 sqlite3ErrorMsg(pParse
, "row value misused");
4868 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4869 ** that derive from the right-hand table of a LEFT JOIN. The
4870 ** Expr.iTable value is the table number for the right-hand table.
4871 ** The expression is only evaluated if that table is not currently
4872 ** on a LEFT JOIN NULL row.
4874 case TK_IF_NULL_ROW
: {
4876 u8 okConstFactor
= pParse
->okConstFactor
;
4877 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
4879 assert( pExpr
->iAgg
>=0 && pExpr
->iAgg
<pAggInfo
->nColumn
);
4880 if( !pAggInfo
->directMode
){
4881 inReg
= AggInfoColumnReg(pAggInfo
, pExpr
->iAgg
);
4884 if( pExpr
->pAggInfo
->useSortingIdx
){
4885 sqlite3VdbeAddOp3(v
, OP_Column
, pAggInfo
->sortingIdxPTab
,
4886 pAggInfo
->aCol
[pExpr
->iAgg
].iSorterColumn
,
4892 addrINR
= sqlite3VdbeAddOp3(v
, OP_IfNullRow
, pExpr
->iTable
, 0, target
);
4893 /* The OP_IfNullRow opcode above can overwrite the result register with
4894 ** NULL. So we have to ensure that the result register is not a value
4895 ** that is suppose to be a constant. Two defenses are needed:
4896 ** (1) Temporarily disable factoring of constant expressions
4897 ** (2) Make sure the computed value really is stored in register
4898 ** "target" and not someplace else.
4900 pParse
->okConstFactor
= 0; /* note (1) above */
4901 sqlite3ExprCode(pParse
, pExpr
->pLeft
, target
);
4902 assert( target
==inReg
);
4903 pParse
->okConstFactor
= okConstFactor
;
4904 sqlite3VdbeJumpHere(v
, addrINR
);
4910 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4913 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4915 ** Form A is can be transformed into the equivalent form B as follows:
4916 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4917 ** WHEN x=eN THEN rN ELSE y END
4919 ** X (if it exists) is in pExpr->pLeft.
4920 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4921 ** odd. The Y is also optional. If the number of elements in x.pList
4922 ** is even, then Y is omitted and the "otherwise" result is NULL.
4923 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4925 ** The result of the expression is the Ri for the first matching Ei,
4926 ** or if there is no matching Ei, the ELSE term Y, or if there is
4927 ** no ELSE term, NULL.
4930 int endLabel
; /* GOTO label for end of CASE stmt */
4931 int nextCase
; /* GOTO label for next WHEN clause */
4932 int nExpr
; /* 2x number of WHEN terms */
4933 int i
; /* Loop counter */
4934 ExprList
*pEList
; /* List of WHEN terms */
4935 struct ExprList_item
*aListelem
; /* Array of WHEN terms */
4936 Expr opCompare
; /* The X==Ei expression */
4937 Expr
*pX
; /* The X expression */
4938 Expr
*pTest
= 0; /* X==Ei (form A) or just Ei (form B) */
4940 sqlite3
*db
= pParse
->db
;
4942 assert( ExprUseXList(pExpr
) && pExpr
->x
.pList
!=0 );
4943 assert(pExpr
->x
.pList
->nExpr
> 0);
4944 pEList
= pExpr
->x
.pList
;
4945 aListelem
= pEList
->a
;
4946 nExpr
= pEList
->nExpr
;
4947 endLabel
= sqlite3VdbeMakeLabel(pParse
);
4948 if( (pX
= pExpr
->pLeft
)!=0 ){
4949 pDel
= sqlite3ExprDup(db
, pX
, 0);
4950 if( db
->mallocFailed
){
4951 sqlite3ExprDelete(db
, pDel
);
4954 testcase( pX
->op
==TK_COLUMN
);
4955 exprToRegister(pDel
, exprCodeVector(pParse
, pDel
, ®Free1
));
4956 testcase( regFree1
==0 );
4957 memset(&opCompare
, 0, sizeof(opCompare
));
4958 opCompare
.op
= TK_EQ
;
4959 opCompare
.pLeft
= pDel
;
4961 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4962 ** The value in regFree1 might get SCopy-ed into the file result.
4963 ** So make sure that the regFree1 register is not reused for other
4964 ** purposes and possibly overwritten. */
4967 for(i
=0; i
<nExpr
-1; i
=i
+2){
4970 opCompare
.pRight
= aListelem
[i
].pExpr
;
4972 pTest
= aListelem
[i
].pExpr
;
4974 nextCase
= sqlite3VdbeMakeLabel(pParse
);
4975 testcase( pTest
->op
==TK_COLUMN
);
4976 sqlite3ExprIfFalse(pParse
, pTest
, nextCase
, SQLITE_JUMPIFNULL
);
4977 testcase( aListelem
[i
+1].pExpr
->op
==TK_COLUMN
);
4978 sqlite3ExprCode(pParse
, aListelem
[i
+1].pExpr
, target
);
4979 sqlite3VdbeGoto(v
, endLabel
);
4980 sqlite3VdbeResolveLabel(v
, nextCase
);
4983 sqlite3ExprCode(pParse
, pEList
->a
[nExpr
-1].pExpr
, target
);
4985 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
4987 sqlite3ExprDelete(db
, pDel
);
4988 setDoNotMergeFlagOnCopy(v
);
4989 sqlite3VdbeResolveLabel(v
, endLabel
);
4992 #ifndef SQLITE_OMIT_TRIGGER
4994 assert( pExpr
->affExpr
==OE_Rollback
4995 || pExpr
->affExpr
==OE_Abort
4996 || pExpr
->affExpr
==OE_Fail
4997 || pExpr
->affExpr
==OE_Ignore
4999 if( !pParse
->pTriggerTab
&& !pParse
->nested
){
5000 sqlite3ErrorMsg(pParse
,
5001 "RAISE() may only be used within a trigger-program");
5004 if( pExpr
->affExpr
==OE_Abort
){
5005 sqlite3MayAbort(pParse
);
5007 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
5008 if( pExpr
->affExpr
==OE_Ignore
){
5010 v
, OP_Halt
, SQLITE_OK
, OE_Ignore
, 0, pExpr
->u
.zToken
,0);
5013 sqlite3HaltConstraint(pParse
,
5014 pParse
->pTriggerTab
? SQLITE_CONSTRAINT_TRIGGER
: SQLITE_ERROR
,
5015 pExpr
->affExpr
, pExpr
->u
.zToken
, 0, 0);
5022 sqlite3ReleaseTempReg(pParse
, regFree1
);
5023 sqlite3ReleaseTempReg(pParse
, regFree2
);
5028 ** Generate code that will evaluate expression pExpr just one time
5029 ** per prepared statement execution.
5031 ** If the expression uses functions (that might throw an exception) then
5032 ** guard them with an OP_Once opcode to ensure that the code is only executed
5033 ** once. If no functions are involved, then factor the code out and put it at
5034 ** the end of the prepared statement in the initialization section.
5036 ** If regDest>=0 then the result is always stored in that register and the
5037 ** result is not reusable. If regDest<0 then this routine is free to
5038 ** store the value whereever it wants. The register where the expression
5039 ** is stored is returned. When regDest<0, two identical expressions might
5040 ** code to the same register, if they do not contain function calls and hence
5041 ** are factored out into the initialization section at the end of the
5042 ** prepared statement.
5044 int sqlite3ExprCodeRunJustOnce(
5045 Parse
*pParse
, /* Parsing context */
5046 Expr
*pExpr
, /* The expression to code when the VDBE initializes */
5047 int regDest
/* Store the value in this register */
5050 assert( ConstFactorOk(pParse
) );
5051 p
= pParse
->pConstExpr
;
5052 if( regDest
<0 && p
){
5053 struct ExprList_item
*pItem
;
5055 for(pItem
=p
->a
, i
=p
->nExpr
; i
>0; pItem
++, i
--){
5056 if( pItem
->fg
.reusable
5057 && sqlite3ExprCompare(0,pItem
->pExpr
,pExpr
,-1)==0
5059 return pItem
->u
.iConstExprReg
;
5063 pExpr
= sqlite3ExprDup(pParse
->db
, pExpr
, 0);
5064 if( pExpr
!=0 && ExprHasProperty(pExpr
, EP_HasFunc
) ){
5065 Vdbe
*v
= pParse
->pVdbe
;
5068 addr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
5069 pParse
->okConstFactor
= 0;
5070 if( !pParse
->db
->mallocFailed
){
5071 if( regDest
<0 ) regDest
= ++pParse
->nMem
;
5072 sqlite3ExprCode(pParse
, pExpr
, regDest
);
5074 pParse
->okConstFactor
= 1;
5075 sqlite3ExprDelete(pParse
->db
, pExpr
);
5076 sqlite3VdbeJumpHere(v
, addr
);
5078 p
= sqlite3ExprListAppend(pParse
, p
, pExpr
);
5080 struct ExprList_item
*pItem
= &p
->a
[p
->nExpr
-1];
5081 pItem
->fg
.reusable
= regDest
<0;
5082 if( regDest
<0 ) regDest
= ++pParse
->nMem
;
5083 pItem
->u
.iConstExprReg
= regDest
;
5085 pParse
->pConstExpr
= p
;
5091 ** Generate code to evaluate an expression and store the results
5092 ** into a register. Return the register number where the results
5095 ** If the register is a temporary register that can be deallocated,
5096 ** then write its number into *pReg. If the result register is not
5097 ** a temporary, then set *pReg to zero.
5099 ** If pExpr is a constant, then this routine might generate this
5100 ** code to fill the register in the initialization section of the
5101 ** VDBE program, in order to factor it out of the evaluation loop.
5103 int sqlite3ExprCodeTemp(Parse
*pParse
, Expr
*pExpr
, int *pReg
){
5105 pExpr
= sqlite3ExprSkipCollateAndLikely(pExpr
);
5106 if( ConstFactorOk(pParse
)
5108 && pExpr
->op
!=TK_REGISTER
5109 && sqlite3ExprIsConstantNotJoin(pExpr
)
5112 r2
= sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, -1);
5114 int r1
= sqlite3GetTempReg(pParse
);
5115 r2
= sqlite3ExprCodeTarget(pParse
, pExpr
, r1
);
5119 sqlite3ReleaseTempReg(pParse
, r1
);
5127 ** Generate code that will evaluate expression pExpr and store the
5128 ** results in register target. The results are guaranteed to appear
5129 ** in register target.
5131 void sqlite3ExprCode(Parse
*pParse
, Expr
*pExpr
, int target
){
5134 assert( pExpr
==0 || !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
5135 assert( target
>0 && target
<=pParse
->nMem
);
5136 assert( pParse
->pVdbe
!=0 || pParse
->db
->mallocFailed
);
5137 if( pParse
->pVdbe
==0 ) return;
5138 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
);
5139 if( inReg
!=target
){
5142 && (ExprHasProperty(pExpr
,EP_Subquery
) || pExpr
->op
==TK_REGISTER
)
5148 sqlite3VdbeAddOp2(pParse
->pVdbe
, op
, inReg
, target
);
5153 ** Make a transient copy of expression pExpr and then code it using
5154 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
5155 ** except that the input expression is guaranteed to be unchanged.
5157 void sqlite3ExprCodeCopy(Parse
*pParse
, Expr
*pExpr
, int target
){
5158 sqlite3
*db
= pParse
->db
;
5159 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
5160 if( !db
->mallocFailed
) sqlite3ExprCode(pParse
, pExpr
, target
);
5161 sqlite3ExprDelete(db
, pExpr
);
5165 ** Generate code that will evaluate expression pExpr and store the
5166 ** results in register target. The results are guaranteed to appear
5167 ** in register target. If the expression is constant, then this routine
5168 ** might choose to code the expression at initialization time.
5170 void sqlite3ExprCodeFactorable(Parse
*pParse
, Expr
*pExpr
, int target
){
5171 if( pParse
->okConstFactor
&& sqlite3ExprIsConstantNotJoin(pExpr
) ){
5172 sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, target
);
5174 sqlite3ExprCodeCopy(pParse
, pExpr
, target
);
5179 ** Generate code that pushes the value of every element of the given
5180 ** expression list into a sequence of registers beginning at target.
5182 ** Return the number of elements evaluated. The number returned will
5183 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
5186 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
5187 ** filled using OP_SCopy. OP_Copy must be used instead.
5189 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
5190 ** factored out into initialization code.
5192 ** The SQLITE_ECEL_REF flag means that expressions in the list with
5193 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
5194 ** in registers at srcReg, and so the value can be copied from there.
5195 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
5196 ** are simply omitted rather than being copied from srcReg.
5198 int sqlite3ExprCodeExprList(
5199 Parse
*pParse
, /* Parsing context */
5200 ExprList
*pList
, /* The expression list to be coded */
5201 int target
, /* Where to write results */
5202 int srcReg
, /* Source registers if SQLITE_ECEL_REF */
5203 u8 flags
/* SQLITE_ECEL_* flags */
5205 struct ExprList_item
*pItem
;
5207 u8 copyOp
= (flags
& SQLITE_ECEL_DUP
) ? OP_Copy
: OP_SCopy
;
5208 Vdbe
*v
= pParse
->pVdbe
;
5211 assert( pParse
->pVdbe
!=0 ); /* Never gets this far otherwise */
5213 if( !ConstFactorOk(pParse
) ) flags
&= ~SQLITE_ECEL_FACTOR
;
5214 for(pItem
=pList
->a
, i
=0; i
<n
; i
++, pItem
++){
5215 Expr
*pExpr
= pItem
->pExpr
;
5216 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
5217 if( pItem
->fg
.bSorterRef
){
5222 if( (flags
& SQLITE_ECEL_REF
)!=0 && (j
= pItem
->u
.x
.iOrderByCol
)>0 ){
5223 if( flags
& SQLITE_ECEL_OMITREF
){
5227 sqlite3VdbeAddOp2(v
, copyOp
, j
+srcReg
-1, target
+i
);
5229 }else if( (flags
& SQLITE_ECEL_FACTOR
)!=0
5230 && sqlite3ExprIsConstantNotJoin(pExpr
)
5232 sqlite3ExprCodeRunJustOnce(pParse
, pExpr
, target
+i
);
5234 int inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
+i
);
5235 if( inReg
!=target
+i
){
5238 && (pOp
=sqlite3VdbeGetLastOp(v
))->opcode
==OP_Copy
5239 && pOp
->p1
+pOp
->p3
+1==inReg
5240 && pOp
->p2
+pOp
->p3
+1==target
+i
5241 && pOp
->p5
==0 /* The do-not-merge flag must be clear */
5245 sqlite3VdbeAddOp2(v
, copyOp
, inReg
, target
+i
);
5254 ** Generate code for a BETWEEN operator.
5256 ** x BETWEEN y AND z
5258 ** The above is equivalent to
5262 ** Code it as such, taking care to do the common subexpression
5263 ** elimination of x.
5265 ** The xJumpIf parameter determines details:
5267 ** NULL: Store the boolean result in reg[dest]
5268 ** sqlite3ExprIfTrue: Jump to dest if true
5269 ** sqlite3ExprIfFalse: Jump to dest if false
5271 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5273 static void exprCodeBetween(
5274 Parse
*pParse
, /* Parsing and code generating context */
5275 Expr
*pExpr
, /* The BETWEEN expression */
5276 int dest
, /* Jump destination or storage location */
5277 void (*xJump
)(Parse
*,Expr
*,int,int), /* Action to take */
5278 int jumpIfNull
/* Take the jump if the BETWEEN is NULL */
5280 Expr exprAnd
; /* The AND operator in x>=y AND x<=z */
5281 Expr compLeft
; /* The x>=y term */
5282 Expr compRight
; /* The x<=z term */
5283 int regFree1
= 0; /* Temporary use register */
5285 sqlite3
*db
= pParse
->db
;
5287 memset(&compLeft
, 0, sizeof(Expr
));
5288 memset(&compRight
, 0, sizeof(Expr
));
5289 memset(&exprAnd
, 0, sizeof(Expr
));
5291 assert( ExprUseXList(pExpr
) );
5292 pDel
= sqlite3ExprDup(db
, pExpr
->pLeft
, 0);
5293 if( db
->mallocFailed
==0 ){
5294 exprAnd
.op
= TK_AND
;
5295 exprAnd
.pLeft
= &compLeft
;
5296 exprAnd
.pRight
= &compRight
;
5297 compLeft
.op
= TK_GE
;
5298 compLeft
.pLeft
= pDel
;
5299 compLeft
.pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
5300 compRight
.op
= TK_LE
;
5301 compRight
.pLeft
= pDel
;
5302 compRight
.pRight
= pExpr
->x
.pList
->a
[1].pExpr
;
5303 exprToRegister(pDel
, exprCodeVector(pParse
, pDel
, ®Free1
));
5305 xJump(pParse
, &exprAnd
, dest
, jumpIfNull
);
5307 /* Mark the expression is being from the ON or USING clause of a join
5308 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5309 ** it into the Parse.pConstExpr list. We should use a new bit for this,
5310 ** for clarity, but we are out of bits in the Expr.flags field so we
5311 ** have to reuse the EP_OuterON bit. Bummer. */
5312 pDel
->flags
|= EP_OuterON
;
5313 sqlite3ExprCodeTarget(pParse
, &exprAnd
, dest
);
5315 sqlite3ReleaseTempReg(pParse
, regFree1
);
5317 sqlite3ExprDelete(db
, pDel
);
5319 /* Ensure adequate test coverage */
5320 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
==0 && regFree1
==0 );
5321 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
==0 && regFree1
!=0 );
5322 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
!=0 && regFree1
==0 );
5323 testcase( xJump
==sqlite3ExprIfTrue
&& jumpIfNull
!=0 && regFree1
!=0 );
5324 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
==0 && regFree1
==0 );
5325 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
==0 && regFree1
!=0 );
5326 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
!=0 && regFree1
==0 );
5327 testcase( xJump
==sqlite3ExprIfFalse
&& jumpIfNull
!=0 && regFree1
!=0 );
5328 testcase( xJump
==0 );
5332 ** Generate code for a boolean expression such that a jump is made
5333 ** to the label "dest" if the expression is true but execution
5334 ** continues straight thru if the expression is false.
5336 ** If the expression evaluates to NULL (neither true nor false), then
5337 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5339 ** This code depends on the fact that certain token values (ex: TK_EQ)
5340 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5341 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
5342 ** the make process cause these values to align. Assert()s in the code
5343 ** below verify that the numbers are aligned correctly.
5345 void sqlite3ExprIfTrue(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
5346 Vdbe
*v
= pParse
->pVdbe
;
5352 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
5353 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
5354 if( NEVER(pExpr
==0) ) return; /* No way this can happen */
5355 assert( !ExprHasVVAProperty(pExpr
, EP_Immutable
) );
5360 Expr
*pAlt
= sqlite3ExprSimplifiedAndOr(pExpr
);
5362 sqlite3ExprIfTrue(pParse
, pAlt
, dest
, jumpIfNull
);
5363 }else if( op
==TK_AND
){
5364 int d2
= sqlite3VdbeMakeLabel(pParse
);
5365 testcase( jumpIfNull
==0 );
5366 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, d2
,
5367 jumpIfNull
^SQLITE_JUMPIFNULL
);
5368 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
5369 sqlite3VdbeResolveLabel(v
, d2
);
5371 testcase( jumpIfNull
==0 );
5372 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
5373 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
5378 testcase( jumpIfNull
==0 );
5379 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
5383 int isNot
; /* IS NOT TRUE or IS NOT FALSE */
5384 int isTrue
; /* IS TRUE or IS NOT TRUE */
5385 testcase( jumpIfNull
==0 );
5386 isNot
= pExpr
->op2
==TK_ISNOT
;
5387 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
5388 testcase( isTrue
&& isNot
);
5389 testcase( !isTrue
&& isNot
);
5390 if( isTrue
^ isNot
){
5391 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
,
5392 isNot
? SQLITE_JUMPIFNULL
: 0);
5394 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
,
5395 isNot
? SQLITE_JUMPIFNULL
: 0);
5401 testcase( op
==TK_IS
);
5402 testcase( op
==TK_ISNOT
);
5403 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
5404 jumpIfNull
= SQLITE_NULLEQ
;
5405 /* no break */ deliberate_fall_through
5412 if( sqlite3ExprIsVector(pExpr
->pLeft
) ) goto default_expr
;
5413 testcase( jumpIfNull
==0 );
5414 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5415 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
5416 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
5417 r1
, r2
, dest
, jumpIfNull
, ExprHasProperty(pExpr
,EP_Commuted
));
5418 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
5419 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
5420 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
5421 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
5422 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
);
5423 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
==SQLITE_NULLEQ
);
5424 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
!=SQLITE_NULLEQ
);
5425 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
);
5426 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
==SQLITE_NULLEQ
);
5427 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
!=SQLITE_NULLEQ
);
5428 testcase( regFree1
==0 );
5429 testcase( regFree2
==0 );
5434 assert( TK_ISNULL
==OP_IsNull
); testcase( op
==TK_ISNULL
);
5435 assert( TK_NOTNULL
==OP_NotNull
); testcase( op
==TK_NOTNULL
);
5436 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5437 sqlite3VdbeTypeofColumn(v
, r1
);
5438 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
5439 VdbeCoverageIf(v
, op
==TK_ISNULL
);
5440 VdbeCoverageIf(v
, op
==TK_NOTNULL
);
5441 testcase( regFree1
==0 );
5445 testcase( jumpIfNull
==0 );
5446 exprCodeBetween(pParse
, pExpr
, dest
, sqlite3ExprIfTrue
, jumpIfNull
);
5449 #ifndef SQLITE_OMIT_SUBQUERY
5451 int destIfFalse
= sqlite3VdbeMakeLabel(pParse
);
5452 int destIfNull
= jumpIfNull
? dest
: destIfFalse
;
5453 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
5454 sqlite3VdbeGoto(v
, dest
);
5455 sqlite3VdbeResolveLabel(v
, destIfFalse
);
5461 if( ExprAlwaysTrue(pExpr
) ){
5462 sqlite3VdbeGoto(v
, dest
);
5463 }else if( ExprAlwaysFalse(pExpr
) ){
5466 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
5467 sqlite3VdbeAddOp3(v
, OP_If
, r1
, dest
, jumpIfNull
!=0);
5469 testcase( regFree1
==0 );
5470 testcase( jumpIfNull
==0 );
5475 sqlite3ReleaseTempReg(pParse
, regFree1
);
5476 sqlite3ReleaseTempReg(pParse
, regFree2
);
5480 ** Generate code for a boolean expression such that a jump is made
5481 ** to the label "dest" if the expression is false but execution
5482 ** continues straight thru if the expression is true.
5484 ** If the expression evaluates to NULL (neither true nor false) then
5485 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5488 void sqlite3ExprIfFalse(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
5489 Vdbe
*v
= pParse
->pVdbe
;
5495 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
5496 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
5497 if( pExpr
==0 ) return;
5498 assert( !ExprHasVVAProperty(pExpr
,EP_Immutable
) );
5500 /* The value of pExpr->op and op are related as follows:
5503 ** --------- ----------
5504 ** TK_ISNULL OP_NotNull
5505 ** TK_NOTNULL OP_IsNull
5513 ** For other values of pExpr->op, op is undefined and unused.
5514 ** The value of TK_ and OP_ constants are arranged such that we
5515 ** can compute the mapping above using the following expression.
5516 ** Assert()s verify that the computation is correct.
5518 op
= ((pExpr
->op
+(TK_ISNULL
&1))^1)-(TK_ISNULL
&1);
5520 /* Verify correct alignment of TK_ and OP_ constants
5522 assert( pExpr
->op
!=TK_ISNULL
|| op
==OP_NotNull
);
5523 assert( pExpr
->op
!=TK_NOTNULL
|| op
==OP_IsNull
);
5524 assert( pExpr
->op
!=TK_NE
|| op
==OP_Eq
);
5525 assert( pExpr
->op
!=TK_EQ
|| op
==OP_Ne
);
5526 assert( pExpr
->op
!=TK_LT
|| op
==OP_Ge
);
5527 assert( pExpr
->op
!=TK_LE
|| op
==OP_Gt
);
5528 assert( pExpr
->op
!=TK_GT
|| op
==OP_Le
);
5529 assert( pExpr
->op
!=TK_GE
|| op
==OP_Lt
);
5531 switch( pExpr
->op
){
5534 Expr
*pAlt
= sqlite3ExprSimplifiedAndOr(pExpr
);
5536 sqlite3ExprIfFalse(pParse
, pAlt
, dest
, jumpIfNull
);
5537 }else if( pExpr
->op
==TK_AND
){
5538 testcase( jumpIfNull
==0 );
5539 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
5540 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
5542 int d2
= sqlite3VdbeMakeLabel(pParse
);
5543 testcase( jumpIfNull
==0 );
5544 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, d2
,
5545 jumpIfNull
^SQLITE_JUMPIFNULL
);
5546 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
5547 sqlite3VdbeResolveLabel(v
, d2
);
5552 testcase( jumpIfNull
==0 );
5553 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
5557 int isNot
; /* IS NOT TRUE or IS NOT FALSE */
5558 int isTrue
; /* IS TRUE or IS NOT TRUE */
5559 testcase( jumpIfNull
==0 );
5560 isNot
= pExpr
->op2
==TK_ISNOT
;
5561 isTrue
= sqlite3ExprTruthValue(pExpr
->pRight
);
5562 testcase( isTrue
&& isNot
);
5563 testcase( !isTrue
&& isNot
);
5564 if( isTrue
^ isNot
){
5565 /* IS TRUE and IS NOT FALSE */
5566 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
,
5567 isNot
? 0 : SQLITE_JUMPIFNULL
);
5570 /* IS FALSE and IS NOT TRUE */
5571 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
,
5572 isNot
? 0 : SQLITE_JUMPIFNULL
);
5578 testcase( pExpr
->op
==TK_IS
);
5579 testcase( pExpr
->op
==TK_ISNOT
);
5580 op
= (pExpr
->op
==TK_IS
) ? TK_NE
: TK_EQ
;
5581 jumpIfNull
= SQLITE_NULLEQ
;
5582 /* no break */ deliberate_fall_through
5589 if( sqlite3ExprIsVector(pExpr
->pLeft
) ) goto default_expr
;
5590 testcase( jumpIfNull
==0 );
5591 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5592 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
5593 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
5594 r1
, r2
, dest
, jumpIfNull
,ExprHasProperty(pExpr
,EP_Commuted
));
5595 assert(TK_LT
==OP_Lt
); testcase(op
==OP_Lt
); VdbeCoverageIf(v
,op
==OP_Lt
);
5596 assert(TK_LE
==OP_Le
); testcase(op
==OP_Le
); VdbeCoverageIf(v
,op
==OP_Le
);
5597 assert(TK_GT
==OP_Gt
); testcase(op
==OP_Gt
); VdbeCoverageIf(v
,op
==OP_Gt
);
5598 assert(TK_GE
==OP_Ge
); testcase(op
==OP_Ge
); VdbeCoverageIf(v
,op
==OP_Ge
);
5599 assert(TK_EQ
==OP_Eq
); testcase(op
==OP_Eq
);
5600 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
!=SQLITE_NULLEQ
);
5601 VdbeCoverageIf(v
, op
==OP_Eq
&& jumpIfNull
==SQLITE_NULLEQ
);
5602 assert(TK_NE
==OP_Ne
); testcase(op
==OP_Ne
);
5603 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
!=SQLITE_NULLEQ
);
5604 VdbeCoverageIf(v
, op
==OP_Ne
&& jumpIfNull
==SQLITE_NULLEQ
);
5605 testcase( regFree1
==0 );
5606 testcase( regFree2
==0 );
5611 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
5612 sqlite3VdbeTypeofColumn(v
, r1
);
5613 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
5614 testcase( op
==TK_ISNULL
); VdbeCoverageIf(v
, op
==TK_ISNULL
);
5615 testcase( op
==TK_NOTNULL
); VdbeCoverageIf(v
, op
==TK_NOTNULL
);
5616 testcase( regFree1
==0 );
5620 testcase( jumpIfNull
==0 );
5621 exprCodeBetween(pParse
, pExpr
, dest
, sqlite3ExprIfFalse
, jumpIfNull
);
5624 #ifndef SQLITE_OMIT_SUBQUERY
5627 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, dest
);
5629 int destIfNull
= sqlite3VdbeMakeLabel(pParse
);
5630 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, destIfNull
);
5631 sqlite3VdbeResolveLabel(v
, destIfNull
);
5638 if( ExprAlwaysFalse(pExpr
) ){
5639 sqlite3VdbeGoto(v
, dest
);
5640 }else if( ExprAlwaysTrue(pExpr
) ){
5643 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
5644 sqlite3VdbeAddOp3(v
, OP_IfNot
, r1
, dest
, jumpIfNull
!=0);
5646 testcase( regFree1
==0 );
5647 testcase( jumpIfNull
==0 );
5652 sqlite3ReleaseTempReg(pParse
, regFree1
);
5653 sqlite3ReleaseTempReg(pParse
, regFree2
);
5657 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5658 ** code generation, and that copy is deleted after code generation. This
5659 ** ensures that the original pExpr is unchanged.
5661 void sqlite3ExprIfFalseDup(Parse
*pParse
, Expr
*pExpr
, int dest
,int jumpIfNull
){
5662 sqlite3
*db
= pParse
->db
;
5663 Expr
*pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
5664 if( db
->mallocFailed
==0 ){
5665 sqlite3ExprIfFalse(pParse
, pCopy
, dest
, jumpIfNull
);
5667 sqlite3ExprDelete(db
, pCopy
);
5671 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5672 ** type of expression.
5674 ** If pExpr is a simple SQL value - an integer, real, string, blob
5675 ** or NULL value - then the VDBE currently being prepared is configured
5676 ** to re-prepare each time a new value is bound to variable pVar.
5678 ** Additionally, if pExpr is a simple SQL value and the value is the
5679 ** same as that currently bound to variable pVar, non-zero is returned.
5680 ** Otherwise, if the values are not the same or if pExpr is not a simple
5681 ** SQL value, zero is returned.
5683 static int exprCompareVariable(
5684 const Parse
*pParse
,
5690 sqlite3_value
*pL
, *pR
= 0;
5692 sqlite3ValueFromExpr(pParse
->db
, pExpr
, SQLITE_UTF8
, SQLITE_AFF_BLOB
, &pR
);
5694 iVar
= pVar
->iColumn
;
5695 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iVar
);
5696 pL
= sqlite3VdbeGetBoundValue(pParse
->pReprepare
, iVar
, SQLITE_AFF_BLOB
);
5698 if( sqlite3_value_type(pL
)==SQLITE_TEXT
){
5699 sqlite3_value_text(pL
); /* Make sure the encoding is UTF-8 */
5701 res
= 0==sqlite3MemCompare(pL
, pR
, 0);
5703 sqlite3ValueFree(pR
);
5704 sqlite3ValueFree(pL
);
5711 ** Do a deep comparison of two expression trees. Return 0 if the two
5712 ** expressions are completely identical. Return 1 if they differ only
5713 ** by a COLLATE operator at the top level. Return 2 if there are differences
5714 ** other than the top-level COLLATE operator.
5716 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5717 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5719 ** The pA side might be using TK_REGISTER. If that is the case and pB is
5720 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5722 ** Sometimes this routine will return 2 even if the two expressions
5723 ** really are equivalent. If we cannot prove that the expressions are
5724 ** identical, we return 2 just to be safe. So if this routine
5725 ** returns 2, then you do not really know for certain if the two
5726 ** expressions are the same. But if you get a 0 or 1 return, then you
5727 ** can be sure the expressions are the same. In the places where
5728 ** this routine is used, it does not hurt to get an extra 2 - that
5729 ** just might result in some slightly slower code. But returning
5730 ** an incorrect 0 or 1 could lead to a malfunction.
5732 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5733 ** pParse->pReprepare can be matched against literals in pB. The
5734 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5735 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5736 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5737 ** pB causes a return value of 2.
5739 int sqlite3ExprCompare(
5740 const Parse
*pParse
,
5746 if( pA
==0 || pB
==0 ){
5747 return pB
==pA
? 0 : 2;
5749 if( pParse
&& pA
->op
==TK_VARIABLE
&& exprCompareVariable(pParse
, pA
, pB
) ){
5752 combinedFlags
= pA
->flags
| pB
->flags
;
5753 if( combinedFlags
& EP_IntValue
){
5754 if( (pA
->flags
&pB
->flags
&EP_IntValue
)!=0 && pA
->u
.iValue
==pB
->u
.iValue
){
5759 if( pA
->op
!=pB
->op
|| pA
->op
==TK_RAISE
){
5760 if( pA
->op
==TK_COLLATE
&& sqlite3ExprCompare(pParse
, pA
->pLeft
,pB
,iTab
)<2 ){
5763 if( pB
->op
==TK_COLLATE
&& sqlite3ExprCompare(pParse
, pA
,pB
->pLeft
,iTab
)<2 ){
5766 if( pA
->op
==TK_AGG_COLUMN
&& pB
->op
==TK_COLUMN
5767 && pB
->iTable
<0 && pA
->iTable
==iTab
5774 assert( !ExprHasProperty(pA
, EP_IntValue
) );
5775 assert( !ExprHasProperty(pB
, EP_IntValue
) );
5777 if( pA
->op
==TK_FUNCTION
|| pA
->op
==TK_AGG_FUNCTION
){
5778 if( sqlite3StrICmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ) return 2;
5779 #ifndef SQLITE_OMIT_WINDOWFUNC
5780 assert( pA
->op
==pB
->op
);
5781 if( ExprHasProperty(pA
,EP_WinFunc
)!=ExprHasProperty(pB
,EP_WinFunc
) ){
5784 if( ExprHasProperty(pA
,EP_WinFunc
) ){
5785 if( sqlite3WindowCompare(pParse
, pA
->y
.pWin
, pB
->y
.pWin
, 1)!=0 ){
5790 }else if( pA
->op
==TK_NULL
){
5792 }else if( pA
->op
==TK_COLLATE
){
5793 if( sqlite3_stricmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ) return 2;
5796 && pA
->op
!=TK_COLUMN
5797 && pA
->op
!=TK_AGG_COLUMN
5798 && strcmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0
5803 if( (pA
->flags
& (EP_Distinct
|EP_Commuted
))
5804 != (pB
->flags
& (EP_Distinct
|EP_Commuted
)) ) return 2;
5805 if( ALWAYS((combinedFlags
& EP_TokenOnly
)==0) ){
5806 if( combinedFlags
& EP_xIsSelect
) return 2;
5807 if( (combinedFlags
& EP_FixedCol
)==0
5808 && sqlite3ExprCompare(pParse
, pA
->pLeft
, pB
->pLeft
, iTab
) ) return 2;
5809 if( sqlite3ExprCompare(pParse
, pA
->pRight
, pB
->pRight
, iTab
) ) return 2;
5810 if( sqlite3ExprListCompare(pA
->x
.pList
, pB
->x
.pList
, iTab
) ) return 2;
5811 if( pA
->op
!=TK_STRING
5812 && pA
->op
!=TK_TRUEFALSE
5813 && ALWAYS((combinedFlags
& EP_Reduced
)==0)
5815 if( pA
->iColumn
!=pB
->iColumn
) return 2;
5816 if( pA
->op2
!=pB
->op2
&& pA
->op
==TK_TRUTH
) return 2;
5817 if( pA
->op
!=TK_IN
&& pA
->iTable
!=pB
->iTable
&& pA
->iTable
!=iTab
){
5826 ** Compare two ExprList objects. Return 0 if they are identical, 1
5827 ** if they are certainly different, or 2 if it is not possible to
5828 ** determine if they are identical or not.
5830 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5831 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5833 ** This routine might return non-zero for equivalent ExprLists. The
5834 ** only consequence will be disabled optimizations. But this routine
5835 ** must never return 0 if the two ExprList objects are different, or
5836 ** a malfunction will result.
5838 ** Two NULL pointers are considered to be the same. But a NULL pointer
5839 ** always differs from a non-NULL pointer.
5841 int sqlite3ExprListCompare(const ExprList
*pA
, const ExprList
*pB
, int iTab
){
5843 if( pA
==0 && pB
==0 ) return 0;
5844 if( pA
==0 || pB
==0 ) return 1;
5845 if( pA
->nExpr
!=pB
->nExpr
) return 1;
5846 for(i
=0; i
<pA
->nExpr
; i
++){
5848 Expr
*pExprA
= pA
->a
[i
].pExpr
;
5849 Expr
*pExprB
= pB
->a
[i
].pExpr
;
5850 if( pA
->a
[i
].fg
.sortFlags
!=pB
->a
[i
].fg
.sortFlags
) return 1;
5851 if( (res
= sqlite3ExprCompare(0, pExprA
, pExprB
, iTab
)) ) return res
;
5857 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5860 int sqlite3ExprCompareSkip(Expr
*pA
,Expr
*pB
, int iTab
){
5861 return sqlite3ExprCompare(0,
5862 sqlite3ExprSkipCollateAndLikely(pA
),
5863 sqlite3ExprSkipCollateAndLikely(pB
),
5868 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5870 ** Or if seenNot is true, return non-zero if Expr p can only be
5871 ** non-NULL if pNN is not NULL
5873 static int exprImpliesNotNull(
5874 const Parse
*pParse
,/* Parsing context */
5875 const Expr
*p
, /* The expression to be checked */
5876 const Expr
*pNN
, /* The expression that is NOT NULL */
5877 int iTab
, /* Table being evaluated */
5878 int seenNot
/* Return true only if p can be any non-NULL value */
5882 if( sqlite3ExprCompare(pParse
, p
, pNN
, iTab
)==0 ){
5883 return pNN
->op
!=TK_NULL
;
5887 if( seenNot
&& ExprHasProperty(p
, EP_xIsSelect
) ) return 0;
5888 assert( ExprUseXSelect(p
) || (p
->x
.pList
!=0 && p
->x
.pList
->nExpr
>0) );
5889 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
5893 assert( ExprUseXList(p
) );
5896 assert( pList
->nExpr
==2 );
5897 if( seenNot
) return 0;
5898 if( exprImpliesNotNull(pParse
, pList
->a
[0].pExpr
, pNN
, iTab
, 1)
5899 || exprImpliesNotNull(pParse
, pList
->a
[1].pExpr
, pNN
, iTab
, 1)
5903 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
5918 /* no break */ deliberate_fall_through
5923 if( exprImpliesNotNull(pParse
, p
->pRight
, pNN
, iTab
, seenNot
) ) return 1;
5924 /* no break */ deliberate_fall_through
5930 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, seenNot
);
5933 if( seenNot
) return 0;
5934 if( p
->op2
!=TK_IS
) return 0;
5935 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
5939 return exprImpliesNotNull(pParse
, p
->pLeft
, pNN
, iTab
, 1);
5946 ** Return true if we can prove the pE2 will always be true if pE1 is
5947 ** true. Return false if we cannot complete the proof or if pE2 might
5948 ** be false. Examples:
5950 ** pE1: x==5 pE2: x==5 Result: true
5951 ** pE1: x>0 pE2: x==5 Result: false
5952 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
5953 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
5954 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
5955 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
5956 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
5958 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5959 ** Expr.iTable<0 then assume a table number given by iTab.
5961 ** If pParse is not NULL, then the values of bound variables in pE1 are
5962 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5963 ** modified to record which bound variables are referenced. If pParse
5964 ** is NULL, then false will be returned if pE1 contains any bound variables.
5966 ** When in doubt, return false. Returning true might give a performance
5967 ** improvement. Returning false might cause a performance reduction, but
5968 ** it will always give the correct answer and is hence always safe.
5970 int sqlite3ExprImpliesExpr(
5971 const Parse
*pParse
,
5976 if( sqlite3ExprCompare(pParse
, pE1
, pE2
, iTab
)==0 ){
5980 && (sqlite3ExprImpliesExpr(pParse
, pE1
, pE2
->pLeft
, iTab
)
5981 || sqlite3ExprImpliesExpr(pParse
, pE1
, pE2
->pRight
, iTab
) )
5985 if( pE2
->op
==TK_NOTNULL
5986 && exprImpliesNotNull(pParse
, pE1
, pE2
->pLeft
, iTab
, 0)
5994 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5995 ** If the expression node requires that the table at pWalker->iCur
5996 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5998 ** This routine controls an optimization. False positives (setting
5999 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
6000 ** (never setting pWalker->eCode) is a harmless missed optimization.
6002 static int impliesNotNullRow(Walker
*pWalker
, Expr
*pExpr
){
6003 testcase( pExpr
->op
==TK_AGG_COLUMN
);
6004 testcase( pExpr
->op
==TK_AGG_FUNCTION
);
6005 if( ExprHasProperty(pExpr
, EP_OuterON
) ) return WRC_Prune
;
6006 switch( pExpr
->op
){
6017 testcase( pExpr
->op
==TK_ISNOT
);
6018 testcase( pExpr
->op
==TK_ISNULL
);
6019 testcase( pExpr
->op
==TK_NOTNULL
);
6020 testcase( pExpr
->op
==TK_IS
);
6021 testcase( pExpr
->op
==TK_OR
);
6022 testcase( pExpr
->op
==TK_VECTOR
);
6023 testcase( pExpr
->op
==TK_CASE
);
6024 testcase( pExpr
->op
==TK_IN
);
6025 testcase( pExpr
->op
==TK_FUNCTION
);
6026 testcase( pExpr
->op
==TK_TRUTH
);
6029 if( pWalker
->u
.iCur
==pExpr
->iTable
){
6036 if( pWalker
->eCode
==0 ){
6037 sqlite3WalkExpr(pWalker
, pExpr
->pLeft
);
6038 if( pWalker
->eCode
){
6040 sqlite3WalkExpr(pWalker
, pExpr
->pRight
);
6046 if( sqlite3WalkExpr(pWalker
, pExpr
->pLeft
)==WRC_Abort
){
6047 assert( pWalker
->eCode
);
6052 /* Virtual tables are allowed to use constraints like x=NULL. So
6053 ** a term of the form x=y does not prove that y is not null if x
6054 ** is the column of a virtual table */
6061 Expr
*pLeft
= pExpr
->pLeft
;
6062 Expr
*pRight
= pExpr
->pRight
;
6063 testcase( pExpr
->op
==TK_EQ
);
6064 testcase( pExpr
->op
==TK_NE
);
6065 testcase( pExpr
->op
==TK_LT
);
6066 testcase( pExpr
->op
==TK_LE
);
6067 testcase( pExpr
->op
==TK_GT
);
6068 testcase( pExpr
->op
==TK_GE
);
6069 /* The y.pTab=0 assignment in wherecode.c always happens after the
6070 ** impliesNotNullRow() test */
6071 assert( pLeft
->op
!=TK_COLUMN
|| ExprUseYTab(pLeft
) );
6072 assert( pRight
->op
!=TK_COLUMN
|| ExprUseYTab(pRight
) );
6073 if( (pLeft
->op
==TK_COLUMN
6074 && ALWAYS(pLeft
->y
.pTab
!=0)
6075 && IsVirtual(pLeft
->y
.pTab
))
6076 || (pRight
->op
==TK_COLUMN
6077 && ALWAYS(pRight
->y
.pTab
!=0)
6078 && IsVirtual(pRight
->y
.pTab
))
6082 /* no break */ deliberate_fall_through
6085 return WRC_Continue
;
6090 ** Return true (non-zero) if expression p can only be true if at least
6091 ** one column of table iTab is non-null. In other words, return true
6092 ** if expression p will always be NULL or false if every column of iTab
6095 ** False negatives are acceptable. In other words, it is ok to return
6096 ** zero even if expression p will never be true of every column of iTab
6097 ** is NULL. A false negative is merely a missed optimization opportunity.
6099 ** False positives are not allowed, however. A false positive may result
6100 ** in an incorrect answer.
6102 ** Terms of p that are marked with EP_OuterON (and hence that come from
6103 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
6105 ** This routine is used to check if a LEFT JOIN can be converted into
6106 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
6107 ** clause requires that some column of the right table of the LEFT JOIN
6108 ** be non-NULL, then the LEFT JOIN can be safely converted into an
6111 int sqlite3ExprImpliesNonNullRow(Expr
*p
, int iTab
){
6113 p
= sqlite3ExprSkipCollateAndLikely(p
);
6114 if( p
==0 ) return 0;
6115 if( p
->op
==TK_NOTNULL
){
6118 while( p
->op
==TK_AND
){
6119 if( sqlite3ExprImpliesNonNullRow(p
->pLeft
, iTab
) ) return 1;
6123 w
.xExprCallback
= impliesNotNullRow
;
6124 w
.xSelectCallback
= 0;
6125 w
.xSelectCallback2
= 0;
6128 sqlite3WalkExpr(&w
, p
);
6133 ** An instance of the following structure is used by the tree walker
6134 ** to determine if an expression can be evaluated by reference to the
6135 ** index only, without having to do a search for the corresponding
6136 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
6137 ** is the cursor for the table.
6140 Index
*pIdx
; /* The index to be tested for coverage */
6141 int iCur
; /* Cursor number for the table corresponding to the index */
6145 ** Check to see if there are references to columns in table
6146 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
6147 ** pWalker->u.pIdxCover->pIdx.
6149 static int exprIdxCover(Walker
*pWalker
, Expr
*pExpr
){
6150 if( pExpr
->op
==TK_COLUMN
6151 && pExpr
->iTable
==pWalker
->u
.pIdxCover
->iCur
6152 && sqlite3TableColumnToIndex(pWalker
->u
.pIdxCover
->pIdx
, pExpr
->iColumn
)<0
6157 return WRC_Continue
;
6161 ** Determine if an index pIdx on table with cursor iCur contains will
6162 ** the expression pExpr. Return true if the index does cover the
6163 ** expression and false if the pExpr expression references table columns
6164 ** that are not found in the index pIdx.
6166 ** An index covering an expression means that the expression can be
6167 ** evaluated using only the index and without having to lookup the
6168 ** corresponding table entry.
6170 int sqlite3ExprCoveredByIndex(
6171 Expr
*pExpr
, /* The index to be tested */
6172 int iCur
, /* The cursor number for the corresponding table */
6173 Index
*pIdx
/* The index that might be used for coverage */
6176 struct IdxCover xcov
;
6177 memset(&w
, 0, sizeof(w
));
6180 w
.xExprCallback
= exprIdxCover
;
6181 w
.u
.pIdxCover
= &xcov
;
6182 sqlite3WalkExpr(&w
, pExpr
);
6187 /* Structure used to pass information throught the Walker in order to
6188 ** implement sqlite3ReferencesSrcList().
6191 sqlite3
*db
; /* Database connection used for sqlite3DbRealloc() */
6192 SrcList
*pRef
; /* Looking for references to these tables */
6193 i64 nExclude
; /* Number of tables to exclude from the search */
6194 int *aiExclude
; /* Cursor IDs for tables to exclude from the search */
6198 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
6200 ** When entering a new subquery on the pExpr argument, add all FROM clause
6201 ** entries for that subquery to the exclude list.
6203 ** When leaving the subquery, remove those entries from the exclude list.
6205 static int selectRefEnter(Walker
*pWalker
, Select
*pSelect
){
6206 struct RefSrcList
*p
= pWalker
->u
.pRefSrcList
;
6207 SrcList
*pSrc
= pSelect
->pSrc
;
6210 if( pSrc
->nSrc
==0 ) return WRC_Continue
;
6212 p
->nExclude
+= pSrc
->nSrc
;
6213 piNew
= sqlite3DbRealloc(p
->db
, p
->aiExclude
, p
->nExclude
*sizeof(int));
6218 p
->aiExclude
= piNew
;
6220 for(i
=0; i
<pSrc
->nSrc
; i
++, j
++){
6221 p
->aiExclude
[j
] = pSrc
->a
[i
].iCursor
;
6223 return WRC_Continue
;
6225 static void selectRefLeave(Walker
*pWalker
, Select
*pSelect
){
6226 struct RefSrcList
*p
= pWalker
->u
.pRefSrcList
;
6227 SrcList
*pSrc
= pSelect
->pSrc
;
6229 assert( p
->nExclude
>=pSrc
->nSrc
);
6230 p
->nExclude
-= pSrc
->nSrc
;
6234 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6236 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6237 ** of the tables shown in RefSrcList.pRef.
6239 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6240 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6242 static int exprRefToSrcList(Walker
*pWalker
, Expr
*pExpr
){
6243 if( pExpr
->op
==TK_COLUMN
6244 || pExpr
->op
==TK_AGG_COLUMN
6247 struct RefSrcList
*p
= pWalker
->u
.pRefSrcList
;
6248 SrcList
*pSrc
= p
->pRef
;
6249 int nSrc
= pSrc
? pSrc
->nSrc
: 0;
6250 for(i
=0; i
<nSrc
; i
++){
6251 if( pExpr
->iTable
==pSrc
->a
[i
].iCursor
){
6252 pWalker
->eCode
|= 1;
6253 return WRC_Continue
;
6256 for(i
=0; i
<p
->nExclude
&& p
->aiExclude
[i
]!=pExpr
->iTable
; i
++){}
6257 if( i
>=p
->nExclude
){
6258 pWalker
->eCode
|= 2;
6261 return WRC_Continue
;
6265 ** Check to see if pExpr references any tables in pSrcList.
6266 ** Possible return values:
6268 ** 1 pExpr does references a table in pSrcList.
6270 ** 0 pExpr references some table that is not defined in either
6271 ** pSrcList or in subqueries of pExpr itself.
6273 ** -1 pExpr only references no tables at all, or it only
6274 ** references tables defined in subqueries of pExpr itself.
6276 ** As currently used, pExpr is always an aggregate function call. That
6277 ** fact is exploited for efficiency.
6279 int sqlite3ReferencesSrcList(Parse
*pParse
, Expr
*pExpr
, SrcList
*pSrcList
){
6281 struct RefSrcList x
;
6282 assert( pParse
->db
!=0 );
6283 memset(&w
, 0, sizeof(w
));
6284 memset(&x
, 0, sizeof(x
));
6285 w
.xExprCallback
= exprRefToSrcList
;
6286 w
.xSelectCallback
= selectRefEnter
;
6287 w
.xSelectCallback2
= selectRefLeave
;
6288 w
.u
.pRefSrcList
= &x
;
6291 assert( pExpr
->op
==TK_AGG_FUNCTION
);
6292 assert( ExprUseXList(pExpr
) );
6293 sqlite3WalkExprList(&w
, pExpr
->x
.pList
);
6294 #ifndef SQLITE_OMIT_WINDOWFUNC
6295 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
6296 sqlite3WalkExpr(&w
, pExpr
->y
.pWin
->pFilter
);
6299 if( x
.aiExclude
) sqlite3DbNNFreeNN(pParse
->db
, x
.aiExclude
);
6300 if( w
.eCode
& 0x01 ){
6302 }else if( w
.eCode
){
6310 ** This is a Walker expression node callback.
6312 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6313 ** object that is referenced does not refer directly to the Expr. If
6314 ** it does, make a copy. This is done because the pExpr argument is
6315 ** subject to change.
6317 ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete()
6318 ** which builds on the sqlite3ParserAddCleanup() mechanism.
6320 static int agginfoPersistExprCb(Walker
*pWalker
, Expr
*pExpr
){
6321 if( ALWAYS(!ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
))
6322 && pExpr
->pAggInfo
!=0
6324 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
6325 int iAgg
= pExpr
->iAgg
;
6326 Parse
*pParse
= pWalker
->pParse
;
6327 sqlite3
*db
= pParse
->db
;
6329 if( pExpr
->op
!=TK_AGG_FUNCTION
){
6330 if( iAgg
<pAggInfo
->nColumn
6331 && pAggInfo
->aCol
[iAgg
].pCExpr
==pExpr
6333 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
6335 pAggInfo
->aCol
[iAgg
].pCExpr
= pExpr
;
6336 sqlite3ExprDeferredDelete(pParse
, pExpr
);
6340 assert( pExpr
->op
==TK_AGG_FUNCTION
);
6341 if( ALWAYS(iAgg
<pAggInfo
->nFunc
)
6342 && pAggInfo
->aFunc
[iAgg
].pFExpr
==pExpr
6344 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
6346 pAggInfo
->aFunc
[iAgg
].pFExpr
= pExpr
;
6347 sqlite3ExprDeferredDelete(pParse
, pExpr
);
6352 return WRC_Continue
;
6356 ** Initialize a Walker object so that will persist AggInfo entries referenced
6357 ** by the tree that is walked.
6359 void sqlite3AggInfoPersistWalkerInit(Walker
*pWalker
, Parse
*pParse
){
6360 memset(pWalker
, 0, sizeof(*pWalker
));
6361 pWalker
->pParse
= pParse
;
6362 pWalker
->xExprCallback
= agginfoPersistExprCb
;
6363 pWalker
->xSelectCallback
= sqlite3SelectWalkNoop
;
6367 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
6368 ** the new element. Return a negative number if malloc fails.
6370 static int addAggInfoColumn(sqlite3
*db
, AggInfo
*pInfo
){
6372 pInfo
->aCol
= sqlite3ArrayAllocate(
6375 sizeof(pInfo
->aCol
[0]),
6383 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
6384 ** the new element. Return a negative number if malloc fails.
6386 static int addAggInfoFunc(sqlite3
*db
, AggInfo
*pInfo
){
6388 pInfo
->aFunc
= sqlite3ArrayAllocate(
6391 sizeof(pInfo
->aFunc
[0]),
6399 ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn.
6400 ** Return the index in aCol[] of the entry that describes that column.
6402 ** If no prior entry is found, create a new one and return -1. The
6403 ** new column will have an idex of pAggInfo->nColumn-1.
6405 static void findOrCreateAggInfoColumn(
6406 Parse
*pParse
, /* Parsing context */
6407 AggInfo
*pAggInfo
, /* The AggInfo object to search and/or modify */
6408 Expr
*pExpr
/* Expr describing the column to find or insert */
6410 struct AggInfo_col
*pCol
;
6413 assert( pAggInfo
->iFirstReg
==0 );
6414 pCol
= pAggInfo
->aCol
;
6415 for(k
=0; k
<pAggInfo
->nColumn
; k
++, pCol
++){
6416 if( pCol
->iTable
==pExpr
->iTable
6417 && pCol
->iColumn
==pExpr
->iColumn
6418 && pExpr
->op
!=TK_IF_NULL_ROW
6423 k
= addAggInfoColumn(pParse
->db
, pAggInfo
);
6426 assert( pParse
->db
->mallocFailed
);
6429 pCol
= &pAggInfo
->aCol
[k
];
6430 assert( ExprUseYTab(pExpr
) );
6431 pCol
->pTab
= pExpr
->y
.pTab
;
6432 pCol
->iTable
= pExpr
->iTable
;
6433 pCol
->iColumn
= pExpr
->iColumn
;
6434 pCol
->iSorterColumn
= -1;
6435 pCol
->pCExpr
= pExpr
;
6436 if( pAggInfo
->pGroupBy
&& pExpr
->op
!=TK_IF_NULL_ROW
){
6438 ExprList
*pGB
= pAggInfo
->pGroupBy
;
6439 struct ExprList_item
*pTerm
= pGB
->a
;
6441 for(j
=0; j
<n
; j
++, pTerm
++){
6442 Expr
*pE
= pTerm
->pExpr
;
6443 if( pE
->op
==TK_COLUMN
6444 && pE
->iTable
==pExpr
->iTable
6445 && pE
->iColumn
==pExpr
->iColumn
6447 pCol
->iSorterColumn
= j
;
6452 if( pCol
->iSorterColumn
<0 ){
6453 pCol
->iSorterColumn
= pAggInfo
->nSortingColumn
++;
6456 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
6457 assert( pExpr
->pAggInfo
==0 || pExpr
->pAggInfo
==pAggInfo
);
6458 pExpr
->pAggInfo
= pAggInfo
;
6459 if( pExpr
->op
==TK_COLUMN
){
6460 pExpr
->op
= TK_AGG_COLUMN
;
6462 pExpr
->iAgg
= (i16
)k
;
6466 ** This is the xExprCallback for a tree walker. It is used to
6467 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
6468 ** for additional information.
6470 static int analyzeAggregate(Walker
*pWalker
, Expr
*pExpr
){
6472 NameContext
*pNC
= pWalker
->u
.pNC
;
6473 Parse
*pParse
= pNC
->pParse
;
6474 SrcList
*pSrcList
= pNC
->pSrcList
;
6475 AggInfo
*pAggInfo
= pNC
->uNC
.pAggInfo
;
6477 assert( pNC
->ncFlags
& NC_UAggInfo
);
6478 assert( pAggInfo
->iFirstReg
==0 );
6479 switch( pExpr
->op
){
6483 assert( pParse
->iSelfTab
==0 );
6484 if( (pNC
->ncFlags
& NC_InAggFunc
)==0 ) break;
6485 if( pParse
->pIdxEpr
==0 ) break;
6486 for(pIEpr
=pParse
->pIdxEpr
; pIEpr
; pIEpr
=pIEpr
->pIENext
){
6487 int iDataCur
= pIEpr
->iDataCur
;
6488 if( iDataCur
<0 ) continue;
6489 if( sqlite3ExprCompare(0, pExpr
, pIEpr
->pExpr
, iDataCur
)==0 ) break;
6491 if( pIEpr
==0 ) break;
6492 if( NEVER(!ExprUseYTab(pExpr
)) ) break;
6493 for(i
=0; i
<pSrcList
->nSrc
; i
++){
6494 if( pSrcList
->a
[0].iCursor
==pIEpr
->iDataCur
) break;
6496 if( i
>=pSrcList
->nSrc
) break;
6497 if( NEVER(pExpr
->pAggInfo
!=0) ) break; /* Resolved by outer context */
6498 if( pParse
->nErr
){ return WRC_Abort
; }
6500 /* If we reach this point, it means that expression pExpr can be
6501 ** translated into a reference to an index column as described by
6504 memset(&tmp
, 0, sizeof(tmp
));
6505 tmp
.op
= TK_AGG_COLUMN
;
6506 tmp
.iTable
= pIEpr
->iIdxCur
;
6507 tmp
.iColumn
= pIEpr
->iIdxCol
;
6508 findOrCreateAggInfoColumn(pParse
, pAggInfo
, &tmp
);
6509 if( pParse
->nErr
){ return WRC_Abort
; }
6510 assert( pAggInfo
->aCol
!=0 );
6511 assert( tmp
.iAgg
<pAggInfo
->nColumn
);
6512 pAggInfo
->aCol
[tmp
.iAgg
].pCExpr
= pExpr
;
6513 pExpr
->pAggInfo
= pAggInfo
;
6514 pExpr
->iAgg
= tmp
.iAgg
;
6517 case TK_IF_NULL_ROW
:
6520 testcase( pExpr
->op
==TK_AGG_COLUMN
);
6521 testcase( pExpr
->op
==TK_COLUMN
);
6522 testcase( pExpr
->op
==TK_IF_NULL_ROW
);
6523 /* Check to see if the column is in one of the tables in the FROM
6524 ** clause of the aggregate query */
6525 if( ALWAYS(pSrcList
!=0) ){
6526 SrcItem
*pItem
= pSrcList
->a
;
6527 for(i
=0; i
<pSrcList
->nSrc
; i
++, pItem
++){
6528 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
6529 if( pExpr
->iTable
==pItem
->iCursor
){
6530 findOrCreateAggInfoColumn(pParse
, pAggInfo
, pExpr
);
6532 } /* endif pExpr->iTable==pItem->iCursor */
6533 } /* end loop over pSrcList */
6535 return WRC_Continue
;
6537 case TK_AGG_FUNCTION
: {
6538 if( (pNC
->ncFlags
& NC_InAggFunc
)==0
6539 && pWalker
->walkerDepth
==pExpr
->op2
6541 /* Check to see if pExpr is a duplicate of another aggregate
6542 ** function that is already in the pAggInfo structure
6544 struct AggInfo_func
*pItem
= pAggInfo
->aFunc
;
6545 for(i
=0; i
<pAggInfo
->nFunc
; i
++, pItem
++){
6546 if( pItem
->pFExpr
==pExpr
) break;
6547 if( sqlite3ExprCompare(0, pItem
->pFExpr
, pExpr
, -1)==0 ){
6551 if( i
>=pAggInfo
->nFunc
){
6552 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
6554 u8 enc
= ENC(pParse
->db
);
6555 i
= addAggInfoFunc(pParse
->db
, pAggInfo
);
6557 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
6558 pItem
= &pAggInfo
->aFunc
[i
];
6559 pItem
->pFExpr
= pExpr
;
6560 assert( ExprUseUToken(pExpr
) );
6561 pItem
->pFunc
= sqlite3FindFunction(pParse
->db
,
6563 pExpr
->x
.pList
? pExpr
->x
.pList
->nExpr
: 0, enc
, 0);
6564 if( pExpr
->flags
& EP_Distinct
){
6565 pItem
->iDistinct
= pParse
->nTab
++;
6567 pItem
->iDistinct
= -1;
6571 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6573 assert( !ExprHasProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
6574 ExprSetVVAProperty(pExpr
, EP_NoReduce
);
6575 pExpr
->iAgg
= (i16
)i
;
6576 pExpr
->pAggInfo
= pAggInfo
;
6579 return WRC_Continue
;
6583 return WRC_Continue
;
6587 ** Analyze the pExpr expression looking for aggregate functions and
6588 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6589 ** points to. Additional entries are made on the AggInfo object as
6592 ** This routine should only be called after the expression has been
6593 ** analyzed by sqlite3ResolveExprNames().
6595 void sqlite3ExprAnalyzeAggregates(NameContext
*pNC
, Expr
*pExpr
){
6597 w
.xExprCallback
= analyzeAggregate
;
6598 w
.xSelectCallback
= sqlite3WalkerDepthIncrease
;
6599 w
.xSelectCallback2
= sqlite3WalkerDepthDecrease
;
6603 assert( pNC
->pSrcList
!=0 );
6604 sqlite3WalkExpr(&w
, pExpr
);
6608 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6609 ** expression list. Return the number of errors.
6611 ** If an error is found, the analysis is cut short.
6613 void sqlite3ExprAnalyzeAggList(NameContext
*pNC
, ExprList
*pList
){
6614 struct ExprList_item
*pItem
;
6617 for(pItem
=pList
->a
, i
=0; i
<pList
->nExpr
; i
++, pItem
++){
6618 sqlite3ExprAnalyzeAggregates(pNC
, pItem
->pExpr
);
6624 ** Allocate a single new register for use to hold some intermediate result.
6626 int sqlite3GetTempReg(Parse
*pParse
){
6627 if( pParse
->nTempReg
==0 ){
6628 return ++pParse
->nMem
;
6630 return pParse
->aTempReg
[--pParse
->nTempReg
];
6634 ** Deallocate a register, making available for reuse for some other
6637 void sqlite3ReleaseTempReg(Parse
*pParse
, int iReg
){
6639 sqlite3VdbeReleaseRegisters(pParse
, iReg
, 1, 0, 0);
6640 if( pParse
->nTempReg
<ArraySize(pParse
->aTempReg
) ){
6641 pParse
->aTempReg
[pParse
->nTempReg
++] = iReg
;
6647 ** Allocate or deallocate a block of nReg consecutive registers.
6649 int sqlite3GetTempRange(Parse
*pParse
, int nReg
){
6651 if( nReg
==1 ) return sqlite3GetTempReg(pParse
);
6652 i
= pParse
->iRangeReg
;
6653 n
= pParse
->nRangeReg
;
6655 pParse
->iRangeReg
+= nReg
;
6656 pParse
->nRangeReg
-= nReg
;
6659 pParse
->nMem
+= nReg
;
6663 void sqlite3ReleaseTempRange(Parse
*pParse
, int iReg
, int nReg
){
6665 sqlite3ReleaseTempReg(pParse
, iReg
);
6668 sqlite3VdbeReleaseRegisters(pParse
, iReg
, nReg
, 0, 0);
6669 if( nReg
>pParse
->nRangeReg
){
6670 pParse
->nRangeReg
= nReg
;
6671 pParse
->iRangeReg
= iReg
;
6676 ** Mark all temporary registers as being unavailable for reuse.
6678 ** Always invoke this procedure after coding a subroutine or co-routine
6679 ** that might be invoked from other parts of the code, to ensure that
6680 ** the sub/co-routine does not use registers in common with the code that
6681 ** invokes the sub/co-routine.
6683 void sqlite3ClearTempRegCache(Parse
*pParse
){
6684 pParse
->nTempReg
= 0;
6685 pParse
->nRangeReg
= 0;
6689 ** Make sure sufficient registers have been allocated so that
6690 ** iReg is a valid register number.
6692 void sqlite3TouchRegister(Parse
*pParse
, int iReg
){
6693 if( pParse
->nMem
<iReg
) pParse
->nMem
= iReg
;
6696 #if defined(SQLITE_ENABLE_STAT4) || defined(SQLITE_DEBUG)
6698 ** Return the latest reusable register in the set of all registers.
6699 ** The value returned is no less than iMin. If any register iMin or
6700 ** greater is in permanent use, then return one more than that last
6701 ** permanent register.
6703 int sqlite3FirstAvailableRegister(Parse
*pParse
, int iMin
){
6704 const ExprList
*pList
= pParse
->pConstExpr
;
6707 for(i
=0; i
<pList
->nExpr
; i
++){
6708 if( pList
->a
[i
].u
.iConstExprReg
>=iMin
){
6709 iMin
= pList
->a
[i
].u
.iConstExprReg
+ 1;
6713 pParse
->nTempReg
= 0;
6714 pParse
->nRangeReg
= 0;
6717 #endif /* SQLITE_ENABLE_STAT4 || SQLITE_DEBUG */
6720 ** Validate that no temporary register falls within the range of
6721 ** iFirst..iLast, inclusive. This routine is only call from within assert()
6725 int sqlite3NoTempsInRange(Parse
*pParse
, int iFirst
, int iLast
){
6727 if( pParse
->nRangeReg
>0
6728 && pParse
->iRangeReg
+pParse
->nRangeReg
> iFirst
6729 && pParse
->iRangeReg
<= iLast
6733 for(i
=0; i
<pParse
->nTempReg
; i
++){
6734 if( pParse
->aTempReg
[i
]>=iFirst
&& pParse
->aTempReg
[i
]<=iLast
){
6738 if( pParse
->pConstExpr
){
6739 ExprList
*pList
= pParse
->pConstExpr
;
6740 for(i
=0; i
<pList
->nExpr
; i
++){
6741 int iReg
= pList
->a
[i
].u
.iConstExprReg
;
6742 if( iReg
==0 ) continue;
6743 if( iReg
>=iFirst
&& iReg
<=iLast
) return 0;
6748 #endif /* SQLITE_DEBUG */