restructure to allow non-amalgamated builds again
[sqlcipher.git] / src / analyze.c
blob4dfc331bef6f821e7973a55a03c3a7b1afe7a9e3
1 /*
2 ** 2005 July 8
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices. These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
18 ** The following system tables are or have been supported:
20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
24 ** Additional tables might be added in future releases of SQLite.
25 ** The sqlite_stat2 table is not created or used unless the SQLite version
26 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
27 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
28 ** The sqlite_stat2 table is superceded by sqlite_stat3, which is only
29 ** created and used by SQLite versions 3.7.9 and later and with
30 ** SQLITE_ENABLE_STAT3 defined. The fucntionality of sqlite_stat3
31 ** is a superset of sqlite_stat2.
33 ** Format of sqlite_stat1:
35 ** There is normally one row per index, with the index identified by the
36 ** name in the idx column. The tbl column is the name of the table to
37 ** which the index belongs. In each such row, the stat column will be
38 ** a string consisting of a list of integers. The first integer in this
39 ** list is the number of rows in the index and in the table. The second
40 ** integer is the average number of rows in the index that have the same
41 ** value in the first column of the index. The third integer is the average
42 ** number of rows in the index that have the same value for the first two
43 ** columns. The N-th integer (for N>1) is the average number of rows in
44 ** the index which have the same value for the first N-1 columns. For
45 ** a K-column index, there will be K+1 integers in the stat column. If
46 ** the index is unique, then the last integer will be 1.
48 ** The list of integers in the stat column can optionally be followed
49 ** by the keyword "unordered". The "unordered" keyword, if it is present,
50 ** must be separated from the last integer by a single space. If the
51 ** "unordered" keyword is present, then the query planner assumes that
52 ** the index is unordered and will not use the index for a range query.
53 **
54 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
55 ** column contains a single integer which is the (estimated) number of
56 ** rows in the table identified by sqlite_stat1.tbl.
58 ** Format of sqlite_stat2:
60 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
61 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
62 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information
63 ** about the distribution of keys within an index. The index is identified by
64 ** the "idx" column and the "tbl" column is the name of the table to which
65 ** the index belongs. There are usually 10 rows in the sqlite_stat2
66 ** table for each index.
68 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
69 ** inclusive are samples of the left-most key value in the index taken at
70 ** evenly spaced points along the index. Let the number of samples be S
71 ** (10 in the standard build) and let C be the number of rows in the index.
72 ** Then the sampled rows are given by:
74 ** rownumber = (i*C*2 + C)/(S*2)
76 ** For i between 0 and S-1. Conceptually, the index space is divided into
77 ** S uniform buckets and the samples are the middle row from each bucket.
79 ** The format for sqlite_stat2 is recorded here for legacy reference. This
80 ** version of SQLite does not support sqlite_stat2. It neither reads nor
81 ** writes the sqlite_stat2 table. This version of SQLite only supports
82 ** sqlite_stat3.
84 ** Format for sqlite_stat3:
86 ** The sqlite_stat3 is an enhancement to sqlite_stat2. A new name is
87 ** used to avoid compatibility problems.
89 ** The format of the sqlite_stat3 table is similar to the format of
90 ** the sqlite_stat2 table. There are multiple entries for each index.
91 ** The idx column names the index and the tbl column is the table of the
92 ** index. If the idx and tbl columns are the same, then the sample is
93 ** of the INTEGER PRIMARY KEY. The sample column is a value taken from
94 ** the left-most column of the index. The nEq column is the approximate
95 ** number of entires in the index whose left-most column exactly matches
96 ** the sample. nLt is the approximate number of entires whose left-most
97 ** column is less than the sample. The nDLt column is the approximate
98 ** number of distinct left-most entries in the index that are less than
99 ** the sample.
101 ** Future versions of SQLite might change to store a string containing
102 ** multiple integers values in the nDLt column of sqlite_stat3. The first
103 ** integer will be the number of prior index entires that are distinct in
104 ** the left-most column. The second integer will be the number of prior index
105 ** entries that are distinct in the first two columns. The third integer
106 ** will be the number of prior index entries that are distinct in the first
107 ** three columns. And so forth. With that extension, the nDLt field is
108 ** similar in function to the sqlite_stat1.stat field.
110 ** There can be an arbitrary number of sqlite_stat3 entries per index.
111 ** The ANALYZE command will typically generate sqlite_stat3 tables
112 ** that contain between 10 and 40 samples which are distributed across
113 ** the key space, though not uniformly, and which include samples with
114 ** largest possible nEq values.
116 #ifndef SQLITE_OMIT_ANALYZE
117 #include "sqliteInt.h"
120 ** This routine generates code that opens the sqlite_stat1 table for
121 ** writing with cursor iStatCur. If the library was built with the
122 ** SQLITE_ENABLE_STAT3 macro defined, then the sqlite_stat3 table is
123 ** opened for writing using cursor (iStatCur+1)
125 ** If the sqlite_stat1 tables does not previously exist, it is created.
126 ** Similarly, if the sqlite_stat3 table does not exist and the library
127 ** is compiled with SQLITE_ENABLE_STAT3 defined, it is created.
129 ** Argument zWhere may be a pointer to a buffer containing a table name,
130 ** or it may be a NULL pointer. If it is not NULL, then all entries in
131 ** the sqlite_stat1 and (if applicable) sqlite_stat3 tables associated
132 ** with the named table are deleted. If zWhere==0, then code is generated
133 ** to delete all stat table entries.
135 static void openStatTable(
136 Parse *pParse, /* Parsing context */
137 int iDb, /* The database we are looking in */
138 int iStatCur, /* Open the sqlite_stat1 table on this cursor */
139 const char *zWhere, /* Delete entries for this table or index */
140 const char *zWhereType /* Either "tbl" or "idx" */
142 static const struct {
143 const char *zName;
144 const char *zCols;
145 } aTable[] = {
146 { "sqlite_stat1", "tbl,idx,stat" },
147 #ifdef SQLITE_ENABLE_STAT3
148 { "sqlite_stat3", "tbl,idx,neq,nlt,ndlt,sample" },
149 #endif
152 int aRoot[] = {0, 0};
153 u8 aCreateTbl[] = {0, 0};
155 int i;
156 sqlite3 *db = pParse->db;
157 Db *pDb;
158 Vdbe *v = sqlite3GetVdbe(pParse);
159 if( v==0 ) return;
160 assert( sqlite3BtreeHoldsAllMutexes(db) );
161 assert( sqlite3VdbeDb(v)==db );
162 pDb = &db->aDb[iDb];
164 /* Create new statistic tables if they do not exist, or clear them
165 ** if they do already exist.
167 for(i=0; i<ArraySize(aTable); i++){
168 const char *zTab = aTable[i].zName;
169 Table *pStat;
170 if( (pStat = sqlite3FindTable(db, zTab, pDb->zName))==0 ){
171 /* The sqlite_stat[12] table does not exist. Create it. Note that a
172 ** side-effect of the CREATE TABLE statement is to leave the rootpage
173 ** of the new table in register pParse->regRoot. This is important
174 ** because the OpenWrite opcode below will be needing it. */
175 sqlite3NestedParse(pParse,
176 "CREATE TABLE %Q.%s(%s)", pDb->zName, zTab, aTable[i].zCols
178 aRoot[i] = pParse->regRoot;
179 aCreateTbl[i] = 1;
180 }else{
181 /* The table already exists. If zWhere is not NULL, delete all entries
182 ** associated with the table zWhere. If zWhere is NULL, delete the
183 ** entire contents of the table. */
184 aRoot[i] = pStat->tnum;
185 sqlite3TableLock(pParse, iDb, aRoot[i], 1, zTab);
186 if( zWhere ){
187 sqlite3NestedParse(pParse,
188 "DELETE FROM %Q.%s WHERE %s=%Q", pDb->zName, zTab, zWhereType, zWhere
190 }else{
191 /* The sqlite_stat[12] table already exists. Delete all rows. */
192 sqlite3VdbeAddOp2(v, OP_Clear, aRoot[i], iDb);
197 /* Open the sqlite_stat[13] tables for writing. */
198 for(i=0; i<ArraySize(aTable); i++){
199 sqlite3VdbeAddOp3(v, OP_OpenWrite, iStatCur+i, aRoot[i], iDb);
200 sqlite3VdbeChangeP4(v, -1, (char *)3, P4_INT32);
201 sqlite3VdbeChangeP5(v, aCreateTbl[i]);
206 ** Recommended number of samples for sqlite_stat3
208 #ifndef SQLITE_STAT3_SAMPLES
209 # define SQLITE_STAT3_SAMPLES 24
210 #endif
213 ** Three SQL functions - stat3_init(), stat3_push(), and stat3_pop() -
214 ** share an instance of the following structure to hold their state
215 ** information.
217 typedef struct Stat3Accum Stat3Accum;
218 struct Stat3Accum {
219 tRowcnt nRow; /* Number of rows in the entire table */
220 tRowcnt nPSample; /* How often to do a periodic sample */
221 int iMin; /* Index of entry with minimum nEq and hash */
222 int mxSample; /* Maximum number of samples to accumulate */
223 int nSample; /* Current number of samples */
224 u32 iPrn; /* Pseudo-random number used for sampling */
225 struct Stat3Sample {
226 i64 iRowid; /* Rowid in main table of the key */
227 tRowcnt nEq; /* sqlite_stat3.nEq */
228 tRowcnt nLt; /* sqlite_stat3.nLt */
229 tRowcnt nDLt; /* sqlite_stat3.nDLt */
230 u8 isPSample; /* True if a periodic sample */
231 u32 iHash; /* Tiebreaker hash */
232 } *a; /* An array of samples */
235 #ifdef SQLITE_ENABLE_STAT3
237 ** Implementation of the stat3_init(C,S) SQL function. The two parameters
238 ** are the number of rows in the table or index (C) and the number of samples
239 ** to accumulate (S).
241 ** This routine allocates the Stat3Accum object.
243 ** The return value is the Stat3Accum object (P).
245 static void stat3Init(
246 sqlite3_context *context,
247 int argc,
248 sqlite3_value **argv
250 Stat3Accum *p;
251 tRowcnt nRow;
252 int mxSample;
253 int n;
255 UNUSED_PARAMETER(argc);
256 nRow = (tRowcnt)sqlite3_value_int64(argv[0]);
257 mxSample = sqlite3_value_int(argv[1]);
258 n = sizeof(*p) + sizeof(p->a[0])*mxSample;
259 p = sqlite3_malloc( n );
260 if( p==0 ){
261 sqlite3_result_error_nomem(context);
262 return;
264 memset(p, 0, n);
265 p->a = (struct Stat3Sample*)&p[1];
266 p->nRow = nRow;
267 p->mxSample = mxSample;
268 p->nPSample = p->nRow/(mxSample/3+1) + 1;
269 sqlite3_randomness(sizeof(p->iPrn), &p->iPrn);
270 sqlite3_result_blob(context, p, sizeof(p), sqlite3_free);
272 static const FuncDef stat3InitFuncdef = {
273 2, /* nArg */
274 SQLITE_UTF8, /* iPrefEnc */
275 0, /* flags */
276 0, /* pUserData */
277 0, /* pNext */
278 stat3Init, /* xFunc */
279 0, /* xStep */
280 0, /* xFinalize */
281 "stat3_init", /* zName */
282 0, /* pHash */
283 0 /* pDestructor */
288 ** Implementation of the stat3_push(nEq,nLt,nDLt,rowid,P) SQL function. The
289 ** arguments describe a single key instance. This routine makes the
290 ** decision about whether or not to retain this key for the sqlite_stat3
291 ** table.
293 ** The return value is NULL.
295 static void stat3Push(
296 sqlite3_context *context,
297 int argc,
298 sqlite3_value **argv
300 Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[4]);
301 tRowcnt nEq = sqlite3_value_int64(argv[0]);
302 tRowcnt nLt = sqlite3_value_int64(argv[1]);
303 tRowcnt nDLt = sqlite3_value_int64(argv[2]);
304 i64 rowid = sqlite3_value_int64(argv[3]);
305 u8 isPSample = 0;
306 u8 doInsert = 0;
307 int iMin = p->iMin;
308 struct Stat3Sample *pSample;
309 int i;
310 u32 h;
312 UNUSED_PARAMETER(context);
313 UNUSED_PARAMETER(argc);
314 if( nEq==0 ) return;
315 h = p->iPrn = p->iPrn*1103515245 + 12345;
316 if( (nLt/p->nPSample)!=((nEq+nLt)/p->nPSample) ){
317 doInsert = isPSample = 1;
318 }else if( p->nSample<p->mxSample ){
319 doInsert = 1;
320 }else{
321 if( nEq>p->a[iMin].nEq || (nEq==p->a[iMin].nEq && h>p->a[iMin].iHash) ){
322 doInsert = 1;
325 if( !doInsert ) return;
326 if( p->nSample==p->mxSample ){
327 assert( p->nSample - iMin - 1 >= 0 );
328 memmove(&p->a[iMin], &p->a[iMin+1], sizeof(p->a[0])*(p->nSample-iMin-1));
329 pSample = &p->a[p->nSample-1];
330 }else{
331 pSample = &p->a[p->nSample++];
333 pSample->iRowid = rowid;
334 pSample->nEq = nEq;
335 pSample->nLt = nLt;
336 pSample->nDLt = nDLt;
337 pSample->iHash = h;
338 pSample->isPSample = isPSample;
340 /* Find the new minimum */
341 if( p->nSample==p->mxSample ){
342 pSample = p->a;
343 i = 0;
344 while( pSample->isPSample ){
345 i++;
346 pSample++;
347 assert( i<p->nSample );
349 nEq = pSample->nEq;
350 h = pSample->iHash;
351 iMin = i;
352 for(i++, pSample++; i<p->nSample; i++, pSample++){
353 if( pSample->isPSample ) continue;
354 if( pSample->nEq<nEq
355 || (pSample->nEq==nEq && pSample->iHash<h)
357 iMin = i;
358 nEq = pSample->nEq;
359 h = pSample->iHash;
362 p->iMin = iMin;
365 static const FuncDef stat3PushFuncdef = {
366 5, /* nArg */
367 SQLITE_UTF8, /* iPrefEnc */
368 0, /* flags */
369 0, /* pUserData */
370 0, /* pNext */
371 stat3Push, /* xFunc */
372 0, /* xStep */
373 0, /* xFinalize */
374 "stat3_push", /* zName */
375 0, /* pHash */
376 0 /* pDestructor */
380 ** Implementation of the stat3_get(P,N,...) SQL function. This routine is
381 ** used to query the results. Content is returned for the Nth sqlite_stat3
382 ** row where N is between 0 and S-1 and S is the number of samples. The
383 ** value returned depends on the number of arguments.
385 ** argc==2 result: rowid
386 ** argc==3 result: nEq
387 ** argc==4 result: nLt
388 ** argc==5 result: nDLt
390 static void stat3Get(
391 sqlite3_context *context,
392 int argc,
393 sqlite3_value **argv
395 int n = sqlite3_value_int(argv[1]);
396 Stat3Accum *p = (Stat3Accum*)sqlite3_value_blob(argv[0]);
398 assert( p!=0 );
399 if( p->nSample<=n ) return;
400 switch( argc ){
401 case 2: sqlite3_result_int64(context, p->a[n].iRowid); break;
402 case 3: sqlite3_result_int64(context, p->a[n].nEq); break;
403 case 4: sqlite3_result_int64(context, p->a[n].nLt); break;
404 default: sqlite3_result_int64(context, p->a[n].nDLt); break;
407 static const FuncDef stat3GetFuncdef = {
408 -1, /* nArg */
409 SQLITE_UTF8, /* iPrefEnc */
410 0, /* flags */
411 0, /* pUserData */
412 0, /* pNext */
413 stat3Get, /* xFunc */
414 0, /* xStep */
415 0, /* xFinalize */
416 "stat3_get", /* zName */
417 0, /* pHash */
418 0 /* pDestructor */
420 #endif /* SQLITE_ENABLE_STAT3 */
426 ** Generate code to do an analysis of all indices associated with
427 ** a single table.
429 static void analyzeOneTable(
430 Parse *pParse, /* Parser context */
431 Table *pTab, /* Table whose indices are to be analyzed */
432 Index *pOnlyIdx, /* If not NULL, only analyze this one index */
433 int iStatCur, /* Index of VdbeCursor that writes the sqlite_stat1 table */
434 int iMem /* Available memory locations begin here */
436 sqlite3 *db = pParse->db; /* Database handle */
437 Index *pIdx; /* An index to being analyzed */
438 int iIdxCur; /* Cursor open on index being analyzed */
439 Vdbe *v; /* The virtual machine being built up */
440 int i; /* Loop counter */
441 int topOfLoop; /* The top of the loop */
442 int endOfLoop; /* The end of the loop */
443 int jZeroRows = -1; /* Jump from here if number of rows is zero */
444 int iDb; /* Index of database containing pTab */
445 int regTabname = iMem++; /* Register containing table name */
446 int regIdxname = iMem++; /* Register containing index name */
447 int regStat1 = iMem++; /* The stat column of sqlite_stat1 */
448 #ifdef SQLITE_ENABLE_STAT3
449 int regNumEq = regStat1; /* Number of instances. Same as regStat1 */
450 int regNumLt = iMem++; /* Number of keys less than regSample */
451 int regNumDLt = iMem++; /* Number of distinct keys less than regSample */
452 int regSample = iMem++; /* The next sample value */
453 int regRowid = regSample; /* Rowid of a sample */
454 int regAccum = iMem++; /* Register to hold Stat3Accum object */
455 int regLoop = iMem++; /* Loop counter */
456 int regCount = iMem++; /* Number of rows in the table or index */
457 int regTemp1 = iMem++; /* Intermediate register */
458 int regTemp2 = iMem++; /* Intermediate register */
459 int once = 1; /* One-time initialization */
460 int shortJump = 0; /* Instruction address */
461 int iTabCur = pParse->nTab++; /* Table cursor */
462 #endif
463 int regCol = iMem++; /* Content of a column in analyzed table */
464 int regRec = iMem++; /* Register holding completed record */
465 int regTemp = iMem++; /* Temporary use register */
466 int regNewRowid = iMem++; /* Rowid for the inserted record */
469 v = sqlite3GetVdbe(pParse);
470 if( v==0 || NEVER(pTab==0) ){
471 return;
473 if( pTab->tnum==0 ){
474 /* Do not gather statistics on views or virtual tables */
475 return;
477 if( memcmp(pTab->zName, "sqlite_", 7)==0 ){
478 /* Do not gather statistics on system tables */
479 return;
481 assert( sqlite3BtreeHoldsAllMutexes(db) );
482 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
483 assert( iDb>=0 );
484 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
485 #ifndef SQLITE_OMIT_AUTHORIZATION
486 if( sqlite3AuthCheck(pParse, SQLITE_ANALYZE, pTab->zName, 0,
487 db->aDb[iDb].zName ) ){
488 return;
490 #endif
492 /* Establish a read-lock on the table at the shared-cache level. */
493 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
495 iIdxCur = pParse->nTab++;
496 sqlite3VdbeAddOp4(v, OP_String8, 0, regTabname, 0, pTab->zName, 0);
497 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
498 int nCol;
499 KeyInfo *pKey;
500 int addrIfNot = 0; /* address of OP_IfNot */
501 int *aChngAddr; /* Array of jump instruction addresses */
503 if( pOnlyIdx && pOnlyIdx!=pIdx ) continue;
504 VdbeNoopComment((v, "Begin analysis of %s", pIdx->zName));
505 nCol = pIdx->nColumn;
506 aChngAddr = sqlite3DbMallocRaw(db, sizeof(int)*nCol);
507 if( aChngAddr==0 ) continue;
508 pKey = sqlite3IndexKeyinfo(pParse, pIdx);
509 if( iMem+1+(nCol*2)>pParse->nMem ){
510 pParse->nMem = iMem+1+(nCol*2);
513 /* Open a cursor to the index to be analyzed. */
514 assert( iDb==sqlite3SchemaToIndex(db, pIdx->pSchema) );
515 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIdx->tnum, iDb,
516 (char *)pKey, P4_KEYINFO_HANDOFF);
517 VdbeComment((v, "%s", pIdx->zName));
519 /* Populate the register containing the index name. */
520 sqlite3VdbeAddOp4(v, OP_String8, 0, regIdxname, 0, pIdx->zName, 0);
522 #ifdef SQLITE_ENABLE_STAT3
523 if( once ){
524 once = 0;
525 sqlite3OpenTable(pParse, iTabCur, iDb, pTab, OP_OpenRead);
527 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regCount);
528 sqlite3VdbeAddOp2(v, OP_Integer, SQLITE_STAT3_SAMPLES, regTemp1);
529 sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumEq);
530 sqlite3VdbeAddOp2(v, OP_Integer, 0, regNumLt);
531 sqlite3VdbeAddOp2(v, OP_Integer, -1, regNumDLt);
532 sqlite3VdbeAddOp3(v, OP_Null, 0, regSample, regAccum);
533 sqlite3VdbeAddOp4(v, OP_Function, 1, regCount, regAccum,
534 (char*)&stat3InitFuncdef, P4_FUNCDEF);
535 sqlite3VdbeChangeP5(v, 2);
536 #endif /* SQLITE_ENABLE_STAT3 */
538 /* The block of memory cells initialized here is used as follows.
540 ** iMem:
541 ** The total number of rows in the table.
543 ** iMem+1 .. iMem+nCol:
544 ** Number of distinct entries in index considering the
545 ** left-most N columns only, where N is between 1 and nCol,
546 ** inclusive.
548 ** iMem+nCol+1 .. Mem+2*nCol:
549 ** Previous value of indexed columns, from left to right.
551 ** Cells iMem through iMem+nCol are initialized to 0. The others are
552 ** initialized to contain an SQL NULL.
554 for(i=0; i<=nCol; i++){
555 sqlite3VdbeAddOp2(v, OP_Integer, 0, iMem+i);
557 for(i=0; i<nCol; i++){
558 sqlite3VdbeAddOp2(v, OP_Null, 0, iMem+nCol+i+1);
561 /* Start the analysis loop. This loop runs through all the entries in
562 ** the index b-tree. */
563 endOfLoop = sqlite3VdbeMakeLabel(v);
564 sqlite3VdbeAddOp2(v, OP_Rewind, iIdxCur, endOfLoop);
565 topOfLoop = sqlite3VdbeCurrentAddr(v);
566 sqlite3VdbeAddOp2(v, OP_AddImm, iMem, 1); /* Increment row counter */
568 for(i=0; i<nCol; i++){
569 CollSeq *pColl;
570 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, regCol);
571 if( i==0 ){
572 /* Always record the very first row */
573 addrIfNot = sqlite3VdbeAddOp1(v, OP_IfNot, iMem+1);
575 assert( pIdx->azColl!=0 );
576 assert( pIdx->azColl[i]!=0 );
577 pColl = sqlite3LocateCollSeq(pParse, pIdx->azColl[i]);
578 aChngAddr[i] = sqlite3VdbeAddOp4(v, OP_Ne, regCol, 0, iMem+nCol+i+1,
579 (char*)pColl, P4_COLLSEQ);
580 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
581 VdbeComment((v, "jump if column %d changed", i));
582 #ifdef SQLITE_ENABLE_STAT3
583 if( i==0 ){
584 sqlite3VdbeAddOp2(v, OP_AddImm, regNumEq, 1);
585 VdbeComment((v, "incr repeat count"));
587 #endif
589 sqlite3VdbeAddOp2(v, OP_Goto, 0, endOfLoop);
590 for(i=0; i<nCol; i++){
591 sqlite3VdbeJumpHere(v, aChngAddr[i]); /* Set jump dest for the OP_Ne */
592 if( i==0 ){
593 sqlite3VdbeJumpHere(v, addrIfNot); /* Jump dest for OP_IfNot */
594 #ifdef SQLITE_ENABLE_STAT3
595 sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
596 (char*)&stat3PushFuncdef, P4_FUNCDEF);
597 sqlite3VdbeChangeP5(v, 5);
598 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, pIdx->nColumn, regRowid);
599 sqlite3VdbeAddOp3(v, OP_Add, regNumEq, regNumLt, regNumLt);
600 sqlite3VdbeAddOp2(v, OP_AddImm, regNumDLt, 1);
601 sqlite3VdbeAddOp2(v, OP_Integer, 1, regNumEq);
602 #endif
604 sqlite3VdbeAddOp2(v, OP_AddImm, iMem+i+1, 1);
605 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, i, iMem+nCol+i+1);
607 sqlite3DbFree(db, aChngAddr);
609 /* Always jump here after updating the iMem+1...iMem+1+nCol counters */
610 sqlite3VdbeResolveLabel(v, endOfLoop);
612 sqlite3VdbeAddOp2(v, OP_Next, iIdxCur, topOfLoop);
613 sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
614 #ifdef SQLITE_ENABLE_STAT3
615 sqlite3VdbeAddOp4(v, OP_Function, 1, regNumEq, regTemp2,
616 (char*)&stat3PushFuncdef, P4_FUNCDEF);
617 sqlite3VdbeChangeP5(v, 5);
618 sqlite3VdbeAddOp2(v, OP_Integer, -1, regLoop);
619 shortJump =
620 sqlite3VdbeAddOp2(v, OP_AddImm, regLoop, 1);
621 sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regTemp1,
622 (char*)&stat3GetFuncdef, P4_FUNCDEF);
623 sqlite3VdbeChangeP5(v, 2);
624 sqlite3VdbeAddOp1(v, OP_IsNull, regTemp1);
625 sqlite3VdbeAddOp3(v, OP_NotExists, iTabCur, shortJump, regTemp1);
626 sqlite3VdbeAddOp3(v, OP_Column, iTabCur, pIdx->aiColumn[0], regSample);
627 sqlite3ColumnDefault(v, pTab, pIdx->aiColumn[0], regSample);
628 sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumEq,
629 (char*)&stat3GetFuncdef, P4_FUNCDEF);
630 sqlite3VdbeChangeP5(v, 3);
631 sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumLt,
632 (char*)&stat3GetFuncdef, P4_FUNCDEF);
633 sqlite3VdbeChangeP5(v, 4);
634 sqlite3VdbeAddOp4(v, OP_Function, 1, regAccum, regNumDLt,
635 (char*)&stat3GetFuncdef, P4_FUNCDEF);
636 sqlite3VdbeChangeP5(v, 5);
637 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 6, regRec, "bbbbbb", 0);
638 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur+1, regNewRowid);
639 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur+1, regRec, regNewRowid);
640 sqlite3VdbeAddOp2(v, OP_Goto, 0, shortJump);
641 sqlite3VdbeJumpHere(v, shortJump+2);
642 #endif
644 /* Store the results in sqlite_stat1.
646 ** The result is a single row of the sqlite_stat1 table. The first
647 ** two columns are the names of the table and index. The third column
648 ** is a string composed of a list of integer statistics about the
649 ** index. The first integer in the list is the total number of entries
650 ** in the index. There is one additional integer in the list for each
651 ** column of the table. This additional integer is a guess of how many
652 ** rows of the table the index will select. If D is the count of distinct
653 ** values and K is the total number of rows, then the integer is computed
654 ** as:
656 ** I = (K+D-1)/D
658 ** If K==0 then no entry is made into the sqlite_stat1 table.
659 ** If K>0 then it is always the case the D>0 so division by zero
660 ** is never possible.
662 sqlite3VdbeAddOp2(v, OP_SCopy, iMem, regStat1);
663 if( jZeroRows<0 ){
664 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, iMem);
666 for(i=0; i<nCol; i++){
667 sqlite3VdbeAddOp4(v, OP_String8, 0, regTemp, 0, " ", 0);
668 sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
669 sqlite3VdbeAddOp3(v, OP_Add, iMem, iMem+i+1, regTemp);
670 sqlite3VdbeAddOp2(v, OP_AddImm, regTemp, -1);
671 sqlite3VdbeAddOp3(v, OP_Divide, iMem+i+1, regTemp, regTemp);
672 sqlite3VdbeAddOp1(v, OP_ToInt, regTemp);
673 sqlite3VdbeAddOp3(v, OP_Concat, regTemp, regStat1, regStat1);
675 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
676 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
677 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
678 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
681 /* If the table has no indices, create a single sqlite_stat1 entry
682 ** containing NULL as the index name and the row count as the content.
684 if( pTab->pIndex==0 ){
685 sqlite3VdbeAddOp3(v, OP_OpenRead, iIdxCur, pTab->tnum, iDb);
686 VdbeComment((v, "%s", pTab->zName));
687 sqlite3VdbeAddOp2(v, OP_Count, iIdxCur, regStat1);
688 sqlite3VdbeAddOp1(v, OP_Close, iIdxCur);
689 jZeroRows = sqlite3VdbeAddOp1(v, OP_IfNot, regStat1);
690 }else{
691 sqlite3VdbeJumpHere(v, jZeroRows);
692 jZeroRows = sqlite3VdbeAddOp0(v, OP_Goto);
694 sqlite3VdbeAddOp2(v, OP_Null, 0, regIdxname);
695 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTabname, 3, regRec, "aaa", 0);
696 sqlite3VdbeAddOp2(v, OP_NewRowid, iStatCur, regNewRowid);
697 sqlite3VdbeAddOp3(v, OP_Insert, iStatCur, regRec, regNewRowid);
698 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
699 if( pParse->nMem<regRec ) pParse->nMem = regRec;
700 sqlite3VdbeJumpHere(v, jZeroRows);
705 ** Generate code that will cause the most recent index analysis to
706 ** be loaded into internal hash tables where is can be used.
708 static void loadAnalysis(Parse *pParse, int iDb){
709 Vdbe *v = sqlite3GetVdbe(pParse);
710 if( v ){
711 sqlite3VdbeAddOp1(v, OP_LoadAnalysis, iDb);
716 ** Generate code that will do an analysis of an entire database
718 static void analyzeDatabase(Parse *pParse, int iDb){
719 sqlite3 *db = pParse->db;
720 Schema *pSchema = db->aDb[iDb].pSchema; /* Schema of database iDb */
721 HashElem *k;
722 int iStatCur;
723 int iMem;
725 sqlite3BeginWriteOperation(pParse, 0, iDb);
726 iStatCur = pParse->nTab;
727 pParse->nTab += 3;
728 openStatTable(pParse, iDb, iStatCur, 0, 0);
729 iMem = pParse->nMem+1;
730 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
731 for(k=sqliteHashFirst(&pSchema->tblHash); k; k=sqliteHashNext(k)){
732 Table *pTab = (Table*)sqliteHashData(k);
733 analyzeOneTable(pParse, pTab, 0, iStatCur, iMem);
735 loadAnalysis(pParse, iDb);
739 ** Generate code that will do an analysis of a single table in
740 ** a database. If pOnlyIdx is not NULL then it is a single index
741 ** in pTab that should be analyzed.
743 static void analyzeTable(Parse *pParse, Table *pTab, Index *pOnlyIdx){
744 int iDb;
745 int iStatCur;
747 assert( pTab!=0 );
748 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
749 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
750 sqlite3BeginWriteOperation(pParse, 0, iDb);
751 iStatCur = pParse->nTab;
752 pParse->nTab += 3;
753 if( pOnlyIdx ){
754 openStatTable(pParse, iDb, iStatCur, pOnlyIdx->zName, "idx");
755 }else{
756 openStatTable(pParse, iDb, iStatCur, pTab->zName, "tbl");
758 analyzeOneTable(pParse, pTab, pOnlyIdx, iStatCur, pParse->nMem+1);
759 loadAnalysis(pParse, iDb);
763 ** Generate code for the ANALYZE command. The parser calls this routine
764 ** when it recognizes an ANALYZE command.
766 ** ANALYZE -- 1
767 ** ANALYZE <database> -- 2
768 ** ANALYZE ?<database>.?<tablename> -- 3
770 ** Form 1 causes all indices in all attached databases to be analyzed.
771 ** Form 2 analyzes all indices the single database named.
772 ** Form 3 analyzes all indices associated with the named table.
774 void sqlite3Analyze(Parse *pParse, Token *pName1, Token *pName2){
775 sqlite3 *db = pParse->db;
776 int iDb;
777 int i;
778 char *z, *zDb;
779 Table *pTab;
780 Index *pIdx;
781 Token *pTableName;
783 /* Read the database schema. If an error occurs, leave an error message
784 ** and code in pParse and return NULL. */
785 assert( sqlite3BtreeHoldsAllMutexes(pParse->db) );
786 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
787 return;
790 assert( pName2!=0 || pName1==0 );
791 if( pName1==0 ){
792 /* Form 1: Analyze everything */
793 for(i=0; i<db->nDb; i++){
794 if( i==1 ) continue; /* Do not analyze the TEMP database */
795 analyzeDatabase(pParse, i);
797 }else if( pName2->n==0 ){
798 /* Form 2: Analyze the database or table named */
799 iDb = sqlite3FindDb(db, pName1);
800 if( iDb>=0 ){
801 analyzeDatabase(pParse, iDb);
802 }else{
803 z = sqlite3NameFromToken(db, pName1);
804 if( z ){
805 if( (pIdx = sqlite3FindIndex(db, z, 0))!=0 ){
806 analyzeTable(pParse, pIdx->pTable, pIdx);
807 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, 0))!=0 ){
808 analyzeTable(pParse, pTab, 0);
810 sqlite3DbFree(db, z);
813 }else{
814 /* Form 3: Analyze the fully qualified table name */
815 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pTableName);
816 if( iDb>=0 ){
817 zDb = db->aDb[iDb].zName;
818 z = sqlite3NameFromToken(db, pTableName);
819 if( z ){
820 if( (pIdx = sqlite3FindIndex(db, z, zDb))!=0 ){
821 analyzeTable(pParse, pIdx->pTable, pIdx);
822 }else if( (pTab = sqlite3LocateTable(pParse, 0, z, zDb))!=0 ){
823 analyzeTable(pParse, pTab, 0);
825 sqlite3DbFree(db, z);
832 ** Used to pass information from the analyzer reader through to the
833 ** callback routine.
835 typedef struct analysisInfo analysisInfo;
836 struct analysisInfo {
837 sqlite3 *db;
838 const char *zDatabase;
842 ** This callback is invoked once for each index when reading the
843 ** sqlite_stat1 table.
845 ** argv[0] = name of the table
846 ** argv[1] = name of the index (might be NULL)
847 ** argv[2] = results of analysis - on integer for each column
849 ** Entries for which argv[1]==NULL simply record the number of rows in
850 ** the table.
852 static int analysisLoader(void *pData, int argc, char **argv, char **NotUsed){
853 analysisInfo *pInfo = (analysisInfo*)pData;
854 Index *pIndex;
855 Table *pTable;
856 int i, c, n;
857 tRowcnt v;
858 const char *z;
860 assert( argc==3 );
861 UNUSED_PARAMETER2(NotUsed, argc);
863 if( argv==0 || argv[0]==0 || argv[2]==0 ){
864 return 0;
866 pTable = sqlite3FindTable(pInfo->db, argv[0], pInfo->zDatabase);
867 if( pTable==0 ){
868 return 0;
870 if( argv[1] ){
871 pIndex = sqlite3FindIndex(pInfo->db, argv[1], pInfo->zDatabase);
872 }else{
873 pIndex = 0;
875 n = pIndex ? pIndex->nColumn : 0;
876 z = argv[2];
877 for(i=0; *z && i<=n; i++){
878 v = 0;
879 while( (c=z[0])>='0' && c<='9' ){
880 v = v*10 + c - '0';
881 z++;
883 if( i==0 ) pTable->nRowEst = v;
884 if( pIndex==0 ) break;
885 pIndex->aiRowEst[i] = v;
886 if( *z==' ' ) z++;
887 if( memcmp(z, "unordered", 10)==0 ){
888 pIndex->bUnordered = 1;
889 break;
892 return 0;
896 ** If the Index.aSample variable is not NULL, delete the aSample[] array
897 ** and its contents.
899 void sqlite3DeleteIndexSamples(sqlite3 *db, Index *pIdx){
900 #ifdef SQLITE_ENABLE_STAT3
901 if( pIdx->aSample ){
902 int j;
903 for(j=0; j<pIdx->nSample; j++){
904 IndexSample *p = &pIdx->aSample[j];
905 if( p->eType==SQLITE_TEXT || p->eType==SQLITE_BLOB ){
906 sqlite3DbFree(db, p->u.z);
909 sqlite3DbFree(db, pIdx->aSample);
911 if( db && db->pnBytesFreed==0 ){
912 pIdx->nSample = 0;
913 pIdx->aSample = 0;
915 #else
916 UNUSED_PARAMETER(db);
917 UNUSED_PARAMETER(pIdx);
918 #endif
921 #ifdef SQLITE_ENABLE_STAT3
923 ** Load content from the sqlite_stat3 table into the Index.aSample[]
924 ** arrays of all indices.
926 static int loadStat3(sqlite3 *db, const char *zDb){
927 int rc; /* Result codes from subroutines */
928 sqlite3_stmt *pStmt = 0; /* An SQL statement being run */
929 char *zSql; /* Text of the SQL statement */
930 Index *pPrevIdx = 0; /* Previous index in the loop */
931 int idx = 0; /* slot in pIdx->aSample[] for next sample */
932 int eType; /* Datatype of a sample */
933 IndexSample *pSample; /* A slot in pIdx->aSample[] */
935 assert( db->lookaside.bEnabled==0 );
936 if( !sqlite3FindTable(db, "sqlite_stat3", zDb) ){
937 return SQLITE_OK;
940 zSql = sqlite3MPrintf(db,
941 "SELECT idx,count(*) FROM %Q.sqlite_stat3"
942 " GROUP BY idx", zDb);
943 if( !zSql ){
944 return SQLITE_NOMEM;
946 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
947 sqlite3DbFree(db, zSql);
948 if( rc ) return rc;
950 while( sqlite3_step(pStmt)==SQLITE_ROW ){
951 char *zIndex; /* Index name */
952 Index *pIdx; /* Pointer to the index object */
953 int nSample; /* Number of samples */
955 zIndex = (char *)sqlite3_column_text(pStmt, 0);
956 if( zIndex==0 ) continue;
957 nSample = sqlite3_column_int(pStmt, 1);
958 pIdx = sqlite3FindIndex(db, zIndex, zDb);
959 if( pIdx==0 ) continue;
960 assert( pIdx->nSample==0 );
961 pIdx->nSample = nSample;
962 pIdx->aSample = sqlite3DbMallocZero(db, nSample*sizeof(IndexSample));
963 pIdx->avgEq = pIdx->aiRowEst[1];
964 if( pIdx->aSample==0 ){
965 db->mallocFailed = 1;
966 sqlite3_finalize(pStmt);
967 return SQLITE_NOMEM;
970 rc = sqlite3_finalize(pStmt);
971 if( rc ) return rc;
973 zSql = sqlite3MPrintf(db,
974 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat3", zDb);
975 if( !zSql ){
976 return SQLITE_NOMEM;
978 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0);
979 sqlite3DbFree(db, zSql);
980 if( rc ) return rc;
982 while( sqlite3_step(pStmt)==SQLITE_ROW ){
983 char *zIndex; /* Index name */
984 Index *pIdx; /* Pointer to the index object */
985 int i; /* Loop counter */
986 tRowcnt sumEq; /* Sum of the nEq values */
988 zIndex = (char *)sqlite3_column_text(pStmt, 0);
989 if( zIndex==0 ) continue;
990 pIdx = sqlite3FindIndex(db, zIndex, zDb);
991 if( pIdx==0 ) continue;
992 if( pIdx==pPrevIdx ){
993 idx++;
994 }else{
995 pPrevIdx = pIdx;
996 idx = 0;
998 assert( idx<pIdx->nSample );
999 pSample = &pIdx->aSample[idx];
1000 pSample->nEq = (tRowcnt)sqlite3_column_int64(pStmt, 1);
1001 pSample->nLt = (tRowcnt)sqlite3_column_int64(pStmt, 2);
1002 pSample->nDLt = (tRowcnt)sqlite3_column_int64(pStmt, 3);
1003 if( idx==pIdx->nSample-1 ){
1004 if( pSample->nDLt>0 ){
1005 for(i=0, sumEq=0; i<=idx-1; i++) sumEq += pIdx->aSample[i].nEq;
1006 pIdx->avgEq = (pSample->nLt - sumEq)/pSample->nDLt;
1008 if( pIdx->avgEq<=0 ) pIdx->avgEq = 1;
1010 eType = sqlite3_column_type(pStmt, 4);
1011 pSample->eType = (u8)eType;
1012 switch( eType ){
1013 case SQLITE_INTEGER: {
1014 pSample->u.i = sqlite3_column_int64(pStmt, 4);
1015 break;
1017 case SQLITE_FLOAT: {
1018 pSample->u.r = sqlite3_column_double(pStmt, 4);
1019 break;
1021 case SQLITE_NULL: {
1022 break;
1024 default: assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); {
1025 const char *z = (const char *)(
1026 (eType==SQLITE_BLOB) ?
1027 sqlite3_column_blob(pStmt, 4):
1028 sqlite3_column_text(pStmt, 4)
1030 int n = z ? sqlite3_column_bytes(pStmt, 4) : 0;
1031 pSample->nByte = n;
1032 if( n < 1){
1033 pSample->u.z = 0;
1034 }else{
1035 pSample->u.z = sqlite3DbMallocRaw(db, n);
1036 if( pSample->u.z==0 ){
1037 db->mallocFailed = 1;
1038 sqlite3_finalize(pStmt);
1039 return SQLITE_NOMEM;
1041 memcpy(pSample->u.z, z, n);
1046 return sqlite3_finalize(pStmt);
1048 #endif /* SQLITE_ENABLE_STAT3 */
1051 ** Load the content of the sqlite_stat1 and sqlite_stat3 tables. The
1052 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1053 ** arrays. The contents of sqlite_stat3 are used to populate the
1054 ** Index.aSample[] arrays.
1056 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1057 ** is returned. In this case, even if SQLITE_ENABLE_STAT3 was defined
1058 ** during compilation and the sqlite_stat3 table is present, no data is
1059 ** read from it.
1061 ** If SQLITE_ENABLE_STAT3 was defined during compilation and the
1062 ** sqlite_stat3 table is not present in the database, SQLITE_ERROR is
1063 ** returned. However, in this case, data is read from the sqlite_stat1
1064 ** table (if it is present) before returning.
1066 ** If an OOM error occurs, this function always sets db->mallocFailed.
1067 ** This means if the caller does not care about other errors, the return
1068 ** code may be ignored.
1070 int sqlite3AnalysisLoad(sqlite3 *db, int iDb){
1071 analysisInfo sInfo;
1072 HashElem *i;
1073 char *zSql;
1074 int rc;
1076 assert( iDb>=0 && iDb<db->nDb );
1077 assert( db->aDb[iDb].pBt!=0 );
1079 /* Clear any prior statistics */
1080 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1081 for(i=sqliteHashFirst(&db->aDb[iDb].pSchema->idxHash);i;i=sqliteHashNext(i)){
1082 Index *pIdx = sqliteHashData(i);
1083 sqlite3DefaultRowEst(pIdx);
1084 #ifdef SQLITE_ENABLE_STAT3
1085 sqlite3DeleteIndexSamples(db, pIdx);
1086 pIdx->aSample = 0;
1087 #endif
1090 /* Check to make sure the sqlite_stat1 table exists */
1091 sInfo.db = db;
1092 sInfo.zDatabase = db->aDb[iDb].zName;
1093 if( sqlite3FindTable(db, "sqlite_stat1", sInfo.zDatabase)==0 ){
1094 return SQLITE_ERROR;
1097 /* Load new statistics out of the sqlite_stat1 table */
1098 zSql = sqlite3MPrintf(db,
1099 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo.zDatabase);
1100 if( zSql==0 ){
1101 rc = SQLITE_NOMEM;
1102 }else{
1103 rc = sqlite3_exec(db, zSql, analysisLoader, &sInfo, 0);
1104 sqlite3DbFree(db, zSql);
1108 /* Load the statistics from the sqlite_stat3 table. */
1109 #ifdef SQLITE_ENABLE_STAT3
1110 if( rc==SQLITE_OK ){
1111 int lookasideEnabled = db->lookaside.bEnabled;
1112 db->lookaside.bEnabled = 0;
1113 rc = loadStat3(db, sInfo.zDatabase);
1114 db->lookaside.bEnabled = lookasideEnabled;
1116 #endif
1118 if( rc==SQLITE_NOMEM ){
1119 db->mallocFailed = 1;
1121 return rc;
1125 #endif /* SQLITE_OMIT_ANALYZE */