restructure to allow non-amalgamated builds again
[sqlcipher.git] / src / vdbe.c
blobfa5180c9a42c801442e612b9aface1c0ffedb98c
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances. This file is solely interested in executing
16 ** the VDBE program.
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
19 ** to a VDBE.
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement. VDBE programs are
23 ** similar in form to assembly language. The program consists of
24 ** a linear sequence of operations. Each operation has an opcode
25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26 ** is a null-terminated string. Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem. Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value. An implicit conversion from one
33 ** type to the other occurs as necessary.
34 **
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files. The formatting
42 ** of the code in this file is, therefore, important. See other comments
43 ** in this file for details. If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
46 #include "sqliteInt.h"
47 #include "vdbeInt.h"
50 ** Invoke this macro on memory cells just prior to changing the
51 ** value of the cell. This macro verifies that shallow copies are
52 ** not misused.
54 #ifdef SQLITE_DEBUG
55 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
56 #else
57 # define memAboutToChange(P,M)
58 #endif
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly. This variable has no function other than to
65 ** help verify the correct operation of the library.
67 #ifdef SQLITE_TEST
68 int sqlite3_search_count = 0;
69 #endif
72 ** When this global variable is positive, it gets decremented once before
73 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74 ** field of the sqlite3 structure is set in order to simulate an interrupt.
76 ** This facility is used for testing purposes only. It does not function
77 ** in an ordinary build.
79 #ifdef SQLITE_TEST
80 int sqlite3_interrupt_count = 0;
81 #endif
84 ** The next global variable is incremented each type the OP_Sort opcode
85 ** is executed. The test procedures use this information to make sure that
86 ** sorting is occurring or not occurring at appropriate times. This variable
87 ** has no function other than to help verify the correct operation of the
88 ** library.
90 #ifdef SQLITE_TEST
91 int sqlite3_sort_count = 0;
92 #endif
95 ** The next global variable records the size of the largest MEM_Blob
96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
97 ** use this information to make sure that the zero-blob functionality
98 ** is working correctly. This variable has no function other than to
99 ** help verify the correct operation of the library.
101 #ifdef SQLITE_TEST
102 int sqlite3_max_blobsize = 0;
103 static void updateMaxBlobsize(Mem *p){
104 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
105 sqlite3_max_blobsize = p->n;
108 #endif
111 ** The next global variable is incremented each type the OP_Found opcode
112 ** is executed. This is used to test whether or not the foreign key
113 ** operation implemented using OP_FkIsZero is working. This variable
114 ** has no function other than to help verify the correct operation of the
115 ** library.
117 #ifdef SQLITE_TEST
118 int sqlite3_found_count = 0;
119 #endif
122 ** Test a register to see if it exceeds the current maximum blob size.
123 ** If it does, record the new maximum blob size.
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
127 #else
128 # define UPDATE_MAX_BLOBSIZE(P)
129 #endif
132 ** Convert the given register into a string if it isn't one
133 ** already. Return non-zero if a malloc() fails.
135 #define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
137 { goto no_mem; }
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
141 ** a pointer to a dynamically allocated string where some other entity
142 ** is responsible for deallocating that string. Because the register
143 ** does not control the string, it might be deleted without the register
144 ** knowing it.
146 ** This routine converts an ephemeral string into a dynamically allocated
147 ** string that the register itself controls. In other words, it
148 ** converts an MEM_Ephem string into an MEM_Dyn string.
150 #define Deephemeralize(P) \
151 if( ((P)->flags&MEM_Ephem)!=0 \
152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
154 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155 #ifdef SQLITE_OMIT_MERGE_SORT
156 # define isSorter(x) 0
157 #else
158 # define isSorter(x) ((x)->pSorter!=0)
159 #endif
162 ** Argument pMem points at a register that will be passed to a
163 ** user-defined function or returned to the user as the result of a query.
164 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
165 ** routines.
167 void sqlite3VdbeMemStoreType(Mem *pMem){
168 int flags = pMem->flags;
169 if( flags & MEM_Null ){
170 pMem->type = SQLITE_NULL;
172 else if( flags & MEM_Int ){
173 pMem->type = SQLITE_INTEGER;
175 else if( flags & MEM_Real ){
176 pMem->type = SQLITE_FLOAT;
178 else if( flags & MEM_Str ){
179 pMem->type = SQLITE_TEXT;
180 }else{
181 pMem->type = SQLITE_BLOB;
186 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
187 ** if we run out of memory.
189 static VdbeCursor *allocateCursor(
190 Vdbe *p, /* The virtual machine */
191 int iCur, /* Index of the new VdbeCursor */
192 int nField, /* Number of fields in the table or index */
193 int iDb, /* Database the cursor belongs to, or -1 */
194 int isBtreeCursor /* True for B-Tree. False for pseudo-table or vtab */
196 /* Find the memory cell that will be used to store the blob of memory
197 ** required for this VdbeCursor structure. It is convenient to use a
198 ** vdbe memory cell to manage the memory allocation required for a
199 ** VdbeCursor structure for the following reasons:
201 ** * Sometimes cursor numbers are used for a couple of different
202 ** purposes in a vdbe program. The different uses might require
203 ** different sized allocations. Memory cells provide growable
204 ** allocations.
206 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
207 ** be freed lazily via the sqlite3_release_memory() API. This
208 ** minimizes the number of malloc calls made by the system.
210 ** Memory cells for cursors are allocated at the top of the address
211 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
212 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
214 Mem *pMem = &p->aMem[p->nMem-iCur];
216 int nByte;
217 VdbeCursor *pCx = 0;
218 nByte =
219 ROUND8(sizeof(VdbeCursor)) +
220 (isBtreeCursor?sqlite3BtreeCursorSize():0) +
221 2*nField*sizeof(u32);
223 assert( iCur<p->nCursor );
224 if( p->apCsr[iCur] ){
225 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
226 p->apCsr[iCur] = 0;
228 if( SQLITE_OK==sqlite3VdbeMemGrow(pMem, nByte, 0) ){
229 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
230 memset(pCx, 0, sizeof(VdbeCursor));
231 pCx->iDb = iDb;
232 pCx->nField = nField;
233 if( nField ){
234 pCx->aType = (u32 *)&pMem->z[ROUND8(sizeof(VdbeCursor))];
236 if( isBtreeCursor ){
237 pCx->pCursor = (BtCursor*)
238 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*nField*sizeof(u32)];
239 sqlite3BtreeCursorZero(pCx->pCursor);
242 return pCx;
246 ** Try to convert a value into a numeric representation if we can
247 ** do so without loss of information. In other words, if the string
248 ** looks like a number, convert it into a number. If it does not
249 ** look like a number, leave it alone.
251 static void applyNumericAffinity(Mem *pRec){
252 if( (pRec->flags & (MEM_Real|MEM_Int))==0 ){
253 double rValue;
254 i64 iValue;
255 u8 enc = pRec->enc;
256 if( (pRec->flags&MEM_Str)==0 ) return;
257 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
258 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
259 pRec->u.i = iValue;
260 pRec->flags |= MEM_Int;
261 }else{
262 pRec->r = rValue;
263 pRec->flags |= MEM_Real;
269 ** Processing is determine by the affinity parameter:
271 ** SQLITE_AFF_INTEGER:
272 ** SQLITE_AFF_REAL:
273 ** SQLITE_AFF_NUMERIC:
274 ** Try to convert pRec to an integer representation or a
275 ** floating-point representation if an integer representation
276 ** is not possible. Note that the integer representation is
277 ** always preferred, even if the affinity is REAL, because
278 ** an integer representation is more space efficient on disk.
280 ** SQLITE_AFF_TEXT:
281 ** Convert pRec to a text representation.
283 ** SQLITE_AFF_NONE:
284 ** No-op. pRec is unchanged.
286 static void applyAffinity(
287 Mem *pRec, /* The value to apply affinity to */
288 char affinity, /* The affinity to be applied */
289 u8 enc /* Use this text encoding */
291 if( affinity==SQLITE_AFF_TEXT ){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
294 ** representation.
296 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
297 sqlite3VdbeMemStringify(pRec, enc);
299 pRec->flags &= ~(MEM_Real|MEM_Int);
300 }else if( affinity!=SQLITE_AFF_NONE ){
301 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
302 || affinity==SQLITE_AFF_NUMERIC );
303 applyNumericAffinity(pRec);
304 if( pRec->flags & MEM_Real ){
305 sqlite3VdbeIntegerAffinity(pRec);
311 ** Try to convert the type of a function argument or a result column
312 ** into a numeric representation. Use either INTEGER or REAL whichever
313 ** is appropriate. But only do the conversion if it is possible without
314 ** loss of information and return the revised type of the argument.
316 int sqlite3_value_numeric_type(sqlite3_value *pVal){
317 Mem *pMem = (Mem*)pVal;
318 if( pMem->type==SQLITE_TEXT ){
319 applyNumericAffinity(pMem);
320 sqlite3VdbeMemStoreType(pMem);
322 return pMem->type;
326 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
327 ** not the internal Mem* type.
329 void sqlite3ValueApplyAffinity(
330 sqlite3_value *pVal,
331 u8 affinity,
332 u8 enc
334 applyAffinity((Mem *)pVal, affinity, enc);
337 #ifdef SQLITE_DEBUG
339 ** Write a nice string representation of the contents of cell pMem
340 ** into buffer zBuf, length nBuf.
342 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
343 char *zCsr = zBuf;
344 int f = pMem->flags;
346 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
348 if( f&MEM_Blob ){
349 int i;
350 char c;
351 if( f & MEM_Dyn ){
352 c = 'z';
353 assert( (f & (MEM_Static|MEM_Ephem))==0 );
354 }else if( f & MEM_Static ){
355 c = 't';
356 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
357 }else if( f & MEM_Ephem ){
358 c = 'e';
359 assert( (f & (MEM_Static|MEM_Dyn))==0 );
360 }else{
361 c = 's';
364 sqlite3_snprintf(100, zCsr, "%c", c);
365 zCsr += sqlite3Strlen30(zCsr);
366 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
367 zCsr += sqlite3Strlen30(zCsr);
368 for(i=0; i<16 && i<pMem->n; i++){
369 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
370 zCsr += sqlite3Strlen30(zCsr);
372 for(i=0; i<16 && i<pMem->n; i++){
373 char z = pMem->z[i];
374 if( z<32 || z>126 ) *zCsr++ = '.';
375 else *zCsr++ = z;
378 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
379 zCsr += sqlite3Strlen30(zCsr);
380 if( f & MEM_Zero ){
381 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
382 zCsr += sqlite3Strlen30(zCsr);
384 *zCsr = '\0';
385 }else if( f & MEM_Str ){
386 int j, k;
387 zBuf[0] = ' ';
388 if( f & MEM_Dyn ){
389 zBuf[1] = 'z';
390 assert( (f & (MEM_Static|MEM_Ephem))==0 );
391 }else if( f & MEM_Static ){
392 zBuf[1] = 't';
393 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
394 }else if( f & MEM_Ephem ){
395 zBuf[1] = 'e';
396 assert( (f & (MEM_Static|MEM_Dyn))==0 );
397 }else{
398 zBuf[1] = 's';
400 k = 2;
401 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
402 k += sqlite3Strlen30(&zBuf[k]);
403 zBuf[k++] = '[';
404 for(j=0; j<15 && j<pMem->n; j++){
405 u8 c = pMem->z[j];
406 if( c>=0x20 && c<0x7f ){
407 zBuf[k++] = c;
408 }else{
409 zBuf[k++] = '.';
412 zBuf[k++] = ']';
413 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
414 k += sqlite3Strlen30(&zBuf[k]);
415 zBuf[k++] = 0;
418 #endif
420 #ifdef SQLITE_DEBUG
422 ** Print the value of a register for tracing purposes:
424 static void memTracePrint(FILE *out, Mem *p){
425 if( p->flags & MEM_Null ){
426 fprintf(out, " NULL");
427 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
428 fprintf(out, " si:%lld", p->u.i);
429 }else if( p->flags & MEM_Int ){
430 fprintf(out, " i:%lld", p->u.i);
431 #ifndef SQLITE_OMIT_FLOATING_POINT
432 }else if( p->flags & MEM_Real ){
433 fprintf(out, " r:%g", p->r);
434 #endif
435 }else if( p->flags & MEM_RowSet ){
436 fprintf(out, " (rowset)");
437 }else{
438 char zBuf[200];
439 sqlite3VdbeMemPrettyPrint(p, zBuf);
440 fprintf(out, " ");
441 fprintf(out, "%s", zBuf);
444 static void registerTrace(FILE *out, int iReg, Mem *p){
445 fprintf(out, "REG[%d] = ", iReg);
446 memTracePrint(out, p);
447 fprintf(out, "\n");
449 #endif
451 #ifdef SQLITE_DEBUG
452 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
453 #else
454 # define REGISTER_TRACE(R,M)
455 #endif
458 #ifdef VDBE_PROFILE
461 ** hwtime.h contains inline assembler code for implementing
462 ** high-performance timing routines.
464 #include "hwtime.h"
466 #endif
469 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
470 ** sqlite3_interrupt() routine has been called. If it has been, then
471 ** processing of the VDBE program is interrupted.
473 ** This macro added to every instruction that does a jump in order to
474 ** implement a loop. This test used to be on every single instruction,
475 ** but that meant we more testing than we needed. By only testing the
476 ** flag on jump instructions, we get a (small) speed improvement.
478 #define CHECK_FOR_INTERRUPT \
479 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
482 #ifndef NDEBUG
484 ** This function is only called from within an assert() expression. It
485 ** checks that the sqlite3.nTransaction variable is correctly set to
486 ** the number of non-transaction savepoints currently in the
487 ** linked list starting at sqlite3.pSavepoint.
489 ** Usage:
491 ** assert( checkSavepointCount(db) );
493 static int checkSavepointCount(sqlite3 *db){
494 int n = 0;
495 Savepoint *p;
496 for(p=db->pSavepoint; p; p=p->pNext) n++;
497 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
498 return 1;
500 #endif
503 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
504 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
505 ** in memory obtained from sqlite3DbMalloc).
507 static void importVtabErrMsg(Vdbe *p, sqlite3_vtab *pVtab){
508 sqlite3 *db = p->db;
509 sqlite3DbFree(db, p->zErrMsg);
510 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
511 sqlite3_free(pVtab->zErrMsg);
512 pVtab->zErrMsg = 0;
517 ** Execute as much of a VDBE program as we can then return.
519 ** sqlite3VdbeMakeReady() must be called before this routine in order to
520 ** close the program with a final OP_Halt and to set up the callbacks
521 ** and the error message pointer.
523 ** Whenever a row or result data is available, this routine will either
524 ** invoke the result callback (if there is one) or return with
525 ** SQLITE_ROW.
527 ** If an attempt is made to open a locked database, then this routine
528 ** will either invoke the busy callback (if there is one) or it will
529 ** return SQLITE_BUSY.
531 ** If an error occurs, an error message is written to memory obtained
532 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
533 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
535 ** If the callback ever returns non-zero, then the program exits
536 ** immediately. There will be no error message but the p->rc field is
537 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
539 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
540 ** routine to return SQLITE_ERROR.
542 ** Other fatal errors return SQLITE_ERROR.
544 ** After this routine has finished, sqlite3VdbeFinalize() should be
545 ** used to clean up the mess that was left behind.
547 int sqlite3VdbeExec(
548 Vdbe *p /* The VDBE */
550 int pc=0; /* The program counter */
551 Op *aOp = p->aOp; /* Copy of p->aOp */
552 Op *pOp; /* Current operation */
553 int rc = SQLITE_OK; /* Value to return */
554 sqlite3 *db = p->db; /* The database */
555 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
556 u8 encoding = ENC(db); /* The database encoding */
557 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
558 int checkProgress; /* True if progress callbacks are enabled */
559 int nProgressOps = 0; /* Opcodes executed since progress callback. */
560 #endif
561 Mem *aMem = p->aMem; /* Copy of p->aMem */
562 Mem *pIn1 = 0; /* 1st input operand */
563 Mem *pIn2 = 0; /* 2nd input operand */
564 Mem *pIn3 = 0; /* 3rd input operand */
565 Mem *pOut = 0; /* Output operand */
566 int iCompare = 0; /* Result of last OP_Compare operation */
567 int *aPermute = 0; /* Permutation of columns for OP_Compare */
568 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
569 #ifdef VDBE_PROFILE
570 u64 start; /* CPU clock count at start of opcode */
571 int origPc; /* Program counter at start of opcode */
572 #endif
573 /*** INSERT STACK UNION HERE ***/
575 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
576 sqlite3VdbeEnter(p);
577 if( p->rc==SQLITE_NOMEM ){
578 /* This happens if a malloc() inside a call to sqlite3_column_text() or
579 ** sqlite3_column_text16() failed. */
580 goto no_mem;
582 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY );
583 p->rc = SQLITE_OK;
584 assert( p->explain==0 );
585 p->pResultSet = 0;
586 db->busyHandler.nBusy = 0;
587 CHECK_FOR_INTERRUPT;
588 sqlite3VdbeIOTraceSql(p);
589 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
590 checkProgress = db->xProgress!=0;
591 #endif
592 #ifdef SQLITE_DEBUG
593 sqlite3BeginBenignMalloc();
594 if( p->pc==0 && (p->db->flags & SQLITE_VdbeListing)!=0 ){
595 int i;
596 printf("VDBE Program Listing:\n");
597 sqlite3VdbePrintSql(p);
598 for(i=0; i<p->nOp; i++){
599 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
602 sqlite3EndBenignMalloc();
603 #endif
604 for(pc=p->pc; rc==SQLITE_OK; pc++){
605 assert( pc>=0 && pc<p->nOp );
606 if( db->mallocFailed ) goto no_mem;
607 #ifdef VDBE_PROFILE
608 origPc = pc;
609 start = sqlite3Hwtime();
610 #endif
611 pOp = &aOp[pc];
613 /* Only allow tracing if SQLITE_DEBUG is defined.
615 #ifdef SQLITE_DEBUG
616 if( p->trace ){
617 if( pc==0 ){
618 printf("VDBE Execution Trace:\n");
619 sqlite3VdbePrintSql(p);
621 sqlite3VdbePrintOp(p->trace, pc, pOp);
623 #endif
626 /* Check to see if we need to simulate an interrupt. This only happens
627 ** if we have a special test build.
629 #ifdef SQLITE_TEST
630 if( sqlite3_interrupt_count>0 ){
631 sqlite3_interrupt_count--;
632 if( sqlite3_interrupt_count==0 ){
633 sqlite3_interrupt(db);
636 #endif
638 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
639 /* Call the progress callback if it is configured and the required number
640 ** of VDBE ops have been executed (either since this invocation of
641 ** sqlite3VdbeExec() or since last time the progress callback was called).
642 ** If the progress callback returns non-zero, exit the virtual machine with
643 ** a return code SQLITE_ABORT.
645 if( checkProgress ){
646 if( db->nProgressOps==nProgressOps ){
647 int prc;
648 prc = db->xProgress(db->pProgressArg);
649 if( prc!=0 ){
650 rc = SQLITE_INTERRUPT;
651 goto vdbe_error_halt;
653 nProgressOps = 0;
655 nProgressOps++;
657 #endif
659 /* On any opcode with the "out2-prerelase" tag, free any
660 ** external allocations out of mem[p2] and set mem[p2] to be
661 ** an undefined integer. Opcodes will either fill in the integer
662 ** value or convert mem[p2] to a different type.
664 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
665 if( pOp->opflags & OPFLG_OUT2_PRERELEASE ){
666 assert( pOp->p2>0 );
667 assert( pOp->p2<=p->nMem );
668 pOut = &aMem[pOp->p2];
669 memAboutToChange(p, pOut);
670 VdbeMemRelease(pOut);
671 pOut->flags = MEM_Int;
674 /* Sanity checking on other operands */
675 #ifdef SQLITE_DEBUG
676 if( (pOp->opflags & OPFLG_IN1)!=0 ){
677 assert( pOp->p1>0 );
678 assert( pOp->p1<=p->nMem );
679 assert( memIsValid(&aMem[pOp->p1]) );
680 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
682 if( (pOp->opflags & OPFLG_IN2)!=0 ){
683 assert( pOp->p2>0 );
684 assert( pOp->p2<=p->nMem );
685 assert( memIsValid(&aMem[pOp->p2]) );
686 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
688 if( (pOp->opflags & OPFLG_IN3)!=0 ){
689 assert( pOp->p3>0 );
690 assert( pOp->p3<=p->nMem );
691 assert( memIsValid(&aMem[pOp->p3]) );
692 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
694 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
695 assert( pOp->p2>0 );
696 assert( pOp->p2<=p->nMem );
697 memAboutToChange(p, &aMem[pOp->p2]);
699 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
700 assert( pOp->p3>0 );
701 assert( pOp->p3<=p->nMem );
702 memAboutToChange(p, &aMem[pOp->p3]);
704 #endif
706 switch( pOp->opcode ){
708 /*****************************************************************************
709 ** What follows is a massive switch statement where each case implements a
710 ** separate instruction in the virtual machine. If we follow the usual
711 ** indentation conventions, each case should be indented by 6 spaces. But
712 ** that is a lot of wasted space on the left margin. So the code within
713 ** the switch statement will break with convention and be flush-left. Another
714 ** big comment (similar to this one) will mark the point in the code where
715 ** we transition back to normal indentation.
717 ** The formatting of each case is important. The makefile for SQLite
718 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
719 ** file looking for lines that begin with "case OP_". The opcodes.h files
720 ** will be filled with #defines that give unique integer values to each
721 ** opcode and the opcodes.c file is filled with an array of strings where
722 ** each string is the symbolic name for the corresponding opcode. If the
723 ** case statement is followed by a comment of the form "/# same as ... #/"
724 ** that comment is used to determine the particular value of the opcode.
726 ** Other keywords in the comment that follows each case are used to
727 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
728 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
729 ** the mkopcodeh.awk script for additional information.
731 ** Documentation about VDBE opcodes is generated by scanning this file
732 ** for lines of that contain "Opcode:". That line and all subsequent
733 ** comment lines are used in the generation of the opcode.html documentation
734 ** file.
736 ** SUMMARY:
738 ** Formatting is important to scripts that scan this file.
739 ** Do not deviate from the formatting style currently in use.
741 *****************************************************************************/
743 /* Opcode: Goto * P2 * * *
745 ** An unconditional jump to address P2.
746 ** The next instruction executed will be
747 ** the one at index P2 from the beginning of
748 ** the program.
750 case OP_Goto: { /* jump */
751 CHECK_FOR_INTERRUPT;
752 pc = pOp->p2 - 1;
753 break;
756 /* Opcode: Gosub P1 P2 * * *
758 ** Write the current address onto register P1
759 ** and then jump to address P2.
761 case OP_Gosub: { /* jump */
762 assert( pOp->p1>0 && pOp->p1<=p->nMem );
763 pIn1 = &aMem[pOp->p1];
764 assert( (pIn1->flags & MEM_Dyn)==0 );
765 memAboutToChange(p, pIn1);
766 pIn1->flags = MEM_Int;
767 pIn1->u.i = pc;
768 REGISTER_TRACE(pOp->p1, pIn1);
769 pc = pOp->p2 - 1;
770 break;
773 /* Opcode: Return P1 * * * *
775 ** Jump to the next instruction after the address in register P1.
777 case OP_Return: { /* in1 */
778 pIn1 = &aMem[pOp->p1];
779 assert( pIn1->flags & MEM_Int );
780 pc = (int)pIn1->u.i;
781 break;
784 /* Opcode: Yield P1 * * * *
786 ** Swap the program counter with the value in register P1.
788 case OP_Yield: { /* in1 */
789 int pcDest;
790 pIn1 = &aMem[pOp->p1];
791 assert( (pIn1->flags & MEM_Dyn)==0 );
792 pIn1->flags = MEM_Int;
793 pcDest = (int)pIn1->u.i;
794 pIn1->u.i = pc;
795 REGISTER_TRACE(pOp->p1, pIn1);
796 pc = pcDest;
797 break;
800 /* Opcode: HaltIfNull P1 P2 P3 P4 *
802 ** Check the value in register P3. If it is NULL then Halt using
803 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
804 ** value in register P3 is not NULL, then this routine is a no-op.
806 case OP_HaltIfNull: { /* in3 */
807 pIn3 = &aMem[pOp->p3];
808 if( (pIn3->flags & MEM_Null)==0 ) break;
809 /* Fall through into OP_Halt */
812 /* Opcode: Halt P1 P2 * P4 *
814 ** Exit immediately. All open cursors, etc are closed
815 ** automatically.
817 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
818 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
819 ** For errors, it can be some other value. If P1!=0 then P2 will determine
820 ** whether or not to rollback the current transaction. Do not rollback
821 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
822 ** then back out all changes that have occurred during this execution of the
823 ** VDBE, but do not rollback the transaction.
825 ** If P4 is not null then it is an error message string.
827 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
828 ** every program. So a jump past the last instruction of the program
829 ** is the same as executing Halt.
831 case OP_Halt: {
832 if( pOp->p1==SQLITE_OK && p->pFrame ){
833 /* Halt the sub-program. Return control to the parent frame. */
834 VdbeFrame *pFrame = p->pFrame;
835 p->pFrame = pFrame->pParent;
836 p->nFrame--;
837 sqlite3VdbeSetChanges(db, p->nChange);
838 pc = sqlite3VdbeFrameRestore(pFrame);
839 lastRowid = db->lastRowid;
840 if( pOp->p2==OE_Ignore ){
841 /* Instruction pc is the OP_Program that invoked the sub-program
842 ** currently being halted. If the p2 instruction of this OP_Halt
843 ** instruction is set to OE_Ignore, then the sub-program is throwing
844 ** an IGNORE exception. In this case jump to the address specified
845 ** as the p2 of the calling OP_Program. */
846 pc = p->aOp[pc].p2-1;
848 aOp = p->aOp;
849 aMem = p->aMem;
850 break;
853 p->rc = pOp->p1;
854 p->errorAction = (u8)pOp->p2;
855 p->pc = pc;
856 if( pOp->p4.z ){
857 assert( p->rc!=SQLITE_OK );
858 sqlite3SetString(&p->zErrMsg, db, "%s", pOp->p4.z);
859 testcase( sqlite3GlobalConfig.xLog!=0 );
860 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pc, p->zSql, pOp->p4.z);
861 }else if( p->rc ){
862 testcase( sqlite3GlobalConfig.xLog!=0 );
863 sqlite3_log(pOp->p1, "constraint failed at %d in [%s]", pc, p->zSql);
865 rc = sqlite3VdbeHalt(p);
866 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
867 if( rc==SQLITE_BUSY ){
868 p->rc = rc = SQLITE_BUSY;
869 }else{
870 assert( rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT );
871 assert( rc==SQLITE_OK || db->nDeferredCons>0 );
872 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
874 goto vdbe_return;
877 /* Opcode: Integer P1 P2 * * *
879 ** The 32-bit integer value P1 is written into register P2.
881 case OP_Integer: { /* out2-prerelease */
882 pOut->u.i = pOp->p1;
883 break;
886 /* Opcode: Int64 * P2 * P4 *
888 ** P4 is a pointer to a 64-bit integer value.
889 ** Write that value into register P2.
891 case OP_Int64: { /* out2-prerelease */
892 assert( pOp->p4.pI64!=0 );
893 pOut->u.i = *pOp->p4.pI64;
894 break;
897 #ifndef SQLITE_OMIT_FLOATING_POINT
898 /* Opcode: Real * P2 * P4 *
900 ** P4 is a pointer to a 64-bit floating point value.
901 ** Write that value into register P2.
903 case OP_Real: { /* same as TK_FLOAT, out2-prerelease */
904 pOut->flags = MEM_Real;
905 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
906 pOut->r = *pOp->p4.pReal;
907 break;
909 #endif
911 /* Opcode: String8 * P2 * P4 *
913 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
914 ** into an OP_String before it is executed for the first time.
916 case OP_String8: { /* same as TK_STRING, out2-prerelease */
917 assert( pOp->p4.z!=0 );
918 pOp->opcode = OP_String;
919 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
921 #ifndef SQLITE_OMIT_UTF16
922 if( encoding!=SQLITE_UTF8 ){
923 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
924 if( rc==SQLITE_TOOBIG ) goto too_big;
925 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
926 assert( pOut->zMalloc==pOut->z );
927 assert( pOut->flags & MEM_Dyn );
928 pOut->zMalloc = 0;
929 pOut->flags |= MEM_Static;
930 pOut->flags &= ~MEM_Dyn;
931 if( pOp->p4type==P4_DYNAMIC ){
932 sqlite3DbFree(db, pOp->p4.z);
934 pOp->p4type = P4_DYNAMIC;
935 pOp->p4.z = pOut->z;
936 pOp->p1 = pOut->n;
938 #endif
939 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
940 goto too_big;
942 /* Fall through to the next case, OP_String */
945 /* Opcode: String P1 P2 * P4 *
947 ** The string value P4 of length P1 (bytes) is stored in register P2.
949 case OP_String: { /* out2-prerelease */
950 assert( pOp->p4.z!=0 );
951 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
952 pOut->z = pOp->p4.z;
953 pOut->n = pOp->p1;
954 pOut->enc = encoding;
955 UPDATE_MAX_BLOBSIZE(pOut);
956 break;
959 /* Opcode: Null * P2 P3 * *
961 ** Write a NULL into registers P2. If P3 greater than P2, then also write
962 ** NULL into register P3 and ever register in between P2 and P3. If P3
963 ** is less than P2 (typically P3 is zero) then only register P2 is
964 ** set to NULL
966 case OP_Null: { /* out2-prerelease */
967 int cnt;
968 cnt = pOp->p3-pOp->p2;
969 assert( pOp->p3<=p->nMem );
970 pOut->flags = MEM_Null;
971 while( cnt>0 ){
972 pOut++;
973 memAboutToChange(p, pOut);
974 VdbeMemRelease(pOut);
975 pOut->flags = MEM_Null;
976 cnt--;
978 break;
982 /* Opcode: Blob P1 P2 * P4
984 ** P4 points to a blob of data P1 bytes long. Store this
985 ** blob in register P2.
987 case OP_Blob: { /* out2-prerelease */
988 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
989 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
990 pOut->enc = encoding;
991 UPDATE_MAX_BLOBSIZE(pOut);
992 break;
995 /* Opcode: Variable P1 P2 * P4 *
997 ** Transfer the values of bound parameter P1 into register P2
999 ** If the parameter is named, then its name appears in P4 and P3==1.
1000 ** The P4 value is used by sqlite3_bind_parameter_name().
1002 case OP_Variable: { /* out2-prerelease */
1003 Mem *pVar; /* Value being transferred */
1005 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1006 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1007 pVar = &p->aVar[pOp->p1 - 1];
1008 if( sqlite3VdbeMemTooBig(pVar) ){
1009 goto too_big;
1011 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1012 UPDATE_MAX_BLOBSIZE(pOut);
1013 break;
1016 /* Opcode: Move P1 P2 P3 * *
1018 ** Move the values in register P1..P1+P3-1 over into
1019 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1020 ** left holding a NULL. It is an error for register ranges
1021 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
1023 case OP_Move: {
1024 char *zMalloc; /* Holding variable for allocated memory */
1025 int n; /* Number of registers left to copy */
1026 int p1; /* Register to copy from */
1027 int p2; /* Register to copy to */
1029 n = pOp->p3;
1030 p1 = pOp->p1;
1031 p2 = pOp->p2;
1032 assert( n>0 && p1>0 && p2>0 );
1033 assert( p1+n<=p2 || p2+n<=p1 );
1035 pIn1 = &aMem[p1];
1036 pOut = &aMem[p2];
1037 while( n-- ){
1038 assert( pOut<=&aMem[p->nMem] );
1039 assert( pIn1<=&aMem[p->nMem] );
1040 assert( memIsValid(pIn1) );
1041 memAboutToChange(p, pOut);
1042 zMalloc = pOut->zMalloc;
1043 pOut->zMalloc = 0;
1044 sqlite3VdbeMemMove(pOut, pIn1);
1045 #ifdef SQLITE_DEBUG
1046 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<&aMem[p1+pOp->p3] ){
1047 pOut->pScopyFrom += p1 - pOp->p2;
1049 #endif
1050 pIn1->zMalloc = zMalloc;
1051 REGISTER_TRACE(p2++, pOut);
1052 pIn1++;
1053 pOut++;
1055 break;
1058 /* Opcode: Copy P1 P2 * * *
1060 ** Make a copy of register P1 into register P2.
1062 ** This instruction makes a deep copy of the value. A duplicate
1063 ** is made of any string or blob constant. See also OP_SCopy.
1065 case OP_Copy: { /* in1, out2 */
1066 pIn1 = &aMem[pOp->p1];
1067 pOut = &aMem[pOp->p2];
1068 assert( pOut!=pIn1 );
1069 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1070 Deephemeralize(pOut);
1071 REGISTER_TRACE(pOp->p2, pOut);
1072 break;
1075 /* Opcode: SCopy P1 P2 * * *
1077 ** Make a shallow copy of register P1 into register P2.
1079 ** This instruction makes a shallow copy of the value. If the value
1080 ** is a string or blob, then the copy is only a pointer to the
1081 ** original and hence if the original changes so will the copy.
1082 ** Worse, if the original is deallocated, the copy becomes invalid.
1083 ** Thus the program must guarantee that the original will not change
1084 ** during the lifetime of the copy. Use OP_Copy to make a complete
1085 ** copy.
1087 case OP_SCopy: { /* in1, out2 */
1088 pIn1 = &aMem[pOp->p1];
1089 pOut = &aMem[pOp->p2];
1090 assert( pOut!=pIn1 );
1091 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1092 #ifdef SQLITE_DEBUG
1093 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1094 #endif
1095 REGISTER_TRACE(pOp->p2, pOut);
1096 break;
1099 /* Opcode: ResultRow P1 P2 * * *
1101 ** The registers P1 through P1+P2-1 contain a single row of
1102 ** results. This opcode causes the sqlite3_step() call to terminate
1103 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1104 ** structure to provide access to the top P1 values as the result
1105 ** row.
1107 case OP_ResultRow: {
1108 Mem *pMem;
1109 int i;
1110 assert( p->nResColumn==pOp->p2 );
1111 assert( pOp->p1>0 );
1112 assert( pOp->p1+pOp->p2<=p->nMem+1 );
1114 /* If this statement has violated immediate foreign key constraints, do
1115 ** not return the number of rows modified. And do not RELEASE the statement
1116 ** transaction. It needs to be rolled back. */
1117 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1118 assert( db->flags&SQLITE_CountRows );
1119 assert( p->usesStmtJournal );
1120 break;
1123 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1124 ** DML statements invoke this opcode to return the number of rows
1125 ** modified to the user. This is the only way that a VM that
1126 ** opens a statement transaction may invoke this opcode.
1128 ** In case this is such a statement, close any statement transaction
1129 ** opened by this VM before returning control to the user. This is to
1130 ** ensure that statement-transactions are always nested, not overlapping.
1131 ** If the open statement-transaction is not closed here, then the user
1132 ** may step another VM that opens its own statement transaction. This
1133 ** may lead to overlapping statement transactions.
1135 ** The statement transaction is never a top-level transaction. Hence
1136 ** the RELEASE call below can never fail.
1138 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1139 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1140 if( NEVER(rc!=SQLITE_OK) ){
1141 break;
1144 /* Invalidate all ephemeral cursor row caches */
1145 p->cacheCtr = (p->cacheCtr + 2)|1;
1147 /* Make sure the results of the current row are \000 terminated
1148 ** and have an assigned type. The results are de-ephemeralized as
1149 ** a side effect.
1151 pMem = p->pResultSet = &aMem[pOp->p1];
1152 for(i=0; i<pOp->p2; i++){
1153 assert( memIsValid(&pMem[i]) );
1154 Deephemeralize(&pMem[i]);
1155 assert( (pMem[i].flags & MEM_Ephem)==0
1156 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1157 sqlite3VdbeMemNulTerminate(&pMem[i]);
1158 sqlite3VdbeMemStoreType(&pMem[i]);
1159 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1161 if( db->mallocFailed ) goto no_mem;
1163 /* Return SQLITE_ROW
1165 p->pc = pc + 1;
1166 rc = SQLITE_ROW;
1167 goto vdbe_return;
1170 /* Opcode: Concat P1 P2 P3 * *
1172 ** Add the text in register P1 onto the end of the text in
1173 ** register P2 and store the result in register P3.
1174 ** If either the P1 or P2 text are NULL then store NULL in P3.
1176 ** P3 = P2 || P1
1178 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1179 ** if P3 is the same register as P2, the implementation is able
1180 ** to avoid a memcpy().
1182 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1183 i64 nByte;
1185 pIn1 = &aMem[pOp->p1];
1186 pIn2 = &aMem[pOp->p2];
1187 pOut = &aMem[pOp->p3];
1188 assert( pIn1!=pOut );
1189 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1190 sqlite3VdbeMemSetNull(pOut);
1191 break;
1193 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1194 Stringify(pIn1, encoding);
1195 Stringify(pIn2, encoding);
1196 nByte = pIn1->n + pIn2->n;
1197 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1198 goto too_big;
1200 MemSetTypeFlag(pOut, MEM_Str);
1201 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1202 goto no_mem;
1204 if( pOut!=pIn2 ){
1205 memcpy(pOut->z, pIn2->z, pIn2->n);
1207 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1208 pOut->z[nByte] = 0;
1209 pOut->z[nByte+1] = 0;
1210 pOut->flags |= MEM_Term;
1211 pOut->n = (int)nByte;
1212 pOut->enc = encoding;
1213 UPDATE_MAX_BLOBSIZE(pOut);
1214 break;
1217 /* Opcode: Add P1 P2 P3 * *
1219 ** Add the value in register P1 to the value in register P2
1220 ** and store the result in register P3.
1221 ** If either input is NULL, the result is NULL.
1223 /* Opcode: Multiply P1 P2 P3 * *
1226 ** Multiply the value in register P1 by the value in register P2
1227 ** and store the result in register P3.
1228 ** If either input is NULL, the result is NULL.
1230 /* Opcode: Subtract P1 P2 P3 * *
1232 ** Subtract the value in register P1 from the value in register P2
1233 ** and store the result in register P3.
1234 ** If either input is NULL, the result is NULL.
1236 /* Opcode: Divide P1 P2 P3 * *
1238 ** Divide the value in register P1 by the value in register P2
1239 ** and store the result in register P3 (P3=P2/P1). If the value in
1240 ** register P1 is zero, then the result is NULL. If either input is
1241 ** NULL, the result is NULL.
1243 /* Opcode: Remainder P1 P2 P3 * *
1245 ** Compute the remainder after integer division of the value in
1246 ** register P1 by the value in register P2 and store the result in P3.
1247 ** If the value in register P2 is zero the result is NULL.
1248 ** If either operand is NULL, the result is NULL.
1250 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1251 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1252 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1253 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1254 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1255 int flags; /* Combined MEM_* flags from both inputs */
1256 i64 iA; /* Integer value of left operand */
1257 i64 iB; /* Integer value of right operand */
1258 double rA; /* Real value of left operand */
1259 double rB; /* Real value of right operand */
1261 pIn1 = &aMem[pOp->p1];
1262 applyNumericAffinity(pIn1);
1263 pIn2 = &aMem[pOp->p2];
1264 applyNumericAffinity(pIn2);
1265 pOut = &aMem[pOp->p3];
1266 flags = pIn1->flags | pIn2->flags;
1267 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1268 if( (pIn1->flags & pIn2->flags & MEM_Int)==MEM_Int ){
1269 iA = pIn1->u.i;
1270 iB = pIn2->u.i;
1271 switch( pOp->opcode ){
1272 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1273 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1274 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1275 case OP_Divide: {
1276 if( iA==0 ) goto arithmetic_result_is_null;
1277 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1278 iB /= iA;
1279 break;
1281 default: {
1282 if( iA==0 ) goto arithmetic_result_is_null;
1283 if( iA==-1 ) iA = 1;
1284 iB %= iA;
1285 break;
1288 pOut->u.i = iB;
1289 MemSetTypeFlag(pOut, MEM_Int);
1290 }else{
1291 fp_math:
1292 rA = sqlite3VdbeRealValue(pIn1);
1293 rB = sqlite3VdbeRealValue(pIn2);
1294 switch( pOp->opcode ){
1295 case OP_Add: rB += rA; break;
1296 case OP_Subtract: rB -= rA; break;
1297 case OP_Multiply: rB *= rA; break;
1298 case OP_Divide: {
1299 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1300 if( rA==(double)0 ) goto arithmetic_result_is_null;
1301 rB /= rA;
1302 break;
1304 default: {
1305 iA = (i64)rA;
1306 iB = (i64)rB;
1307 if( iA==0 ) goto arithmetic_result_is_null;
1308 if( iA==-1 ) iA = 1;
1309 rB = (double)(iB % iA);
1310 break;
1313 #ifdef SQLITE_OMIT_FLOATING_POINT
1314 pOut->u.i = rB;
1315 MemSetTypeFlag(pOut, MEM_Int);
1316 #else
1317 if( sqlite3IsNaN(rB) ){
1318 goto arithmetic_result_is_null;
1320 pOut->r = rB;
1321 MemSetTypeFlag(pOut, MEM_Real);
1322 if( (flags & MEM_Real)==0 ){
1323 sqlite3VdbeIntegerAffinity(pOut);
1325 #endif
1327 break;
1329 arithmetic_result_is_null:
1330 sqlite3VdbeMemSetNull(pOut);
1331 break;
1334 /* Opcode: CollSeq P1 * * P4
1336 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1337 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1338 ** be returned. This is used by the built-in min(), max() and nullif()
1339 ** functions.
1341 ** If P1 is not zero, then it is a register that a subsequent min() or
1342 ** max() aggregate will set to 1 if the current row is not the minimum or
1343 ** maximum. The P1 register is initialized to 0 by this instruction.
1345 ** The interface used by the implementation of the aforementioned functions
1346 ** to retrieve the collation sequence set by this opcode is not available
1347 ** publicly, only to user functions defined in func.c.
1349 case OP_CollSeq: {
1350 assert( pOp->p4type==P4_COLLSEQ );
1351 if( pOp->p1 ){
1352 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1354 break;
1357 /* Opcode: Function P1 P2 P3 P4 P5
1359 ** Invoke a user function (P4 is a pointer to a Function structure that
1360 ** defines the function) with P5 arguments taken from register P2 and
1361 ** successors. The result of the function is stored in register P3.
1362 ** Register P3 must not be one of the function inputs.
1364 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1365 ** function was determined to be constant at compile time. If the first
1366 ** argument was constant then bit 0 of P1 is set. This is used to determine
1367 ** whether meta data associated with a user function argument using the
1368 ** sqlite3_set_auxdata() API may be safely retained until the next
1369 ** invocation of this opcode.
1371 ** See also: AggStep and AggFinal
1373 case OP_Function: {
1374 int i;
1375 Mem *pArg;
1376 sqlite3_context ctx;
1377 sqlite3_value **apVal;
1378 int n;
1380 n = pOp->p5;
1381 apVal = p->apArg;
1382 assert( apVal || n==0 );
1383 assert( pOp->p3>0 && pOp->p3<=p->nMem );
1384 pOut = &aMem[pOp->p3];
1385 memAboutToChange(p, pOut);
1387 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=p->nMem+1) );
1388 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1389 pArg = &aMem[pOp->p2];
1390 for(i=0; i<n; i++, pArg++){
1391 assert( memIsValid(pArg) );
1392 apVal[i] = pArg;
1393 Deephemeralize(pArg);
1394 sqlite3VdbeMemStoreType(pArg);
1395 REGISTER_TRACE(pOp->p2+i, pArg);
1398 assert( pOp->p4type==P4_FUNCDEF || pOp->p4type==P4_VDBEFUNC );
1399 if( pOp->p4type==P4_FUNCDEF ){
1400 ctx.pFunc = pOp->p4.pFunc;
1401 ctx.pVdbeFunc = 0;
1402 }else{
1403 ctx.pVdbeFunc = (VdbeFunc*)pOp->p4.pVdbeFunc;
1404 ctx.pFunc = ctx.pVdbeFunc->pFunc;
1407 ctx.s.flags = MEM_Null;
1408 ctx.s.db = db;
1409 ctx.s.xDel = 0;
1410 ctx.s.zMalloc = 0;
1412 /* The output cell may already have a buffer allocated. Move
1413 ** the pointer to ctx.s so in case the user-function can use
1414 ** the already allocated buffer instead of allocating a new one.
1416 sqlite3VdbeMemMove(&ctx.s, pOut);
1417 MemSetTypeFlag(&ctx.s, MEM_Null);
1419 ctx.isError = 0;
1420 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
1421 assert( pOp>aOp );
1422 assert( pOp[-1].p4type==P4_COLLSEQ );
1423 assert( pOp[-1].opcode==OP_CollSeq );
1424 ctx.pColl = pOp[-1].p4.pColl;
1426 db->lastRowid = lastRowid;
1427 (*ctx.pFunc->xFunc)(&ctx, n, apVal); /* IMP: R-24505-23230 */
1428 lastRowid = db->lastRowid;
1430 /* If any auxiliary data functions have been called by this user function,
1431 ** immediately call the destructor for any non-static values.
1433 if( ctx.pVdbeFunc ){
1434 sqlite3VdbeDeleteAuxData(ctx.pVdbeFunc, pOp->p1);
1435 pOp->p4.pVdbeFunc = ctx.pVdbeFunc;
1436 pOp->p4type = P4_VDBEFUNC;
1439 if( db->mallocFailed ){
1440 /* Even though a malloc() has failed, the implementation of the
1441 ** user function may have called an sqlite3_result_XXX() function
1442 ** to return a value. The following call releases any resources
1443 ** associated with such a value.
1445 sqlite3VdbeMemRelease(&ctx.s);
1446 goto no_mem;
1449 /* If the function returned an error, throw an exception */
1450 if( ctx.isError ){
1451 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
1452 rc = ctx.isError;
1455 /* Copy the result of the function into register P3 */
1456 sqlite3VdbeChangeEncoding(&ctx.s, encoding);
1457 sqlite3VdbeMemMove(pOut, &ctx.s);
1458 if( sqlite3VdbeMemTooBig(pOut) ){
1459 goto too_big;
1462 #if 0
1463 /* The app-defined function has done something that as caused this
1464 ** statement to expire. (Perhaps the function called sqlite3_exec()
1465 ** with a CREATE TABLE statement.)
1467 if( p->expired ) rc = SQLITE_ABORT;
1468 #endif
1470 REGISTER_TRACE(pOp->p3, pOut);
1471 UPDATE_MAX_BLOBSIZE(pOut);
1472 break;
1475 /* Opcode: BitAnd P1 P2 P3 * *
1477 ** Take the bit-wise AND of the values in register P1 and P2 and
1478 ** store the result in register P3.
1479 ** If either input is NULL, the result is NULL.
1481 /* Opcode: BitOr P1 P2 P3 * *
1483 ** Take the bit-wise OR of the values in register P1 and P2 and
1484 ** store the result in register P3.
1485 ** If either input is NULL, the result is NULL.
1487 /* Opcode: ShiftLeft P1 P2 P3 * *
1489 ** Shift the integer value in register P2 to the left by the
1490 ** number of bits specified by the integer in register P1.
1491 ** Store the result in register P3.
1492 ** If either input is NULL, the result is NULL.
1494 /* Opcode: ShiftRight P1 P2 P3 * *
1496 ** Shift the integer value in register P2 to the right by the
1497 ** number of bits specified by the integer in register P1.
1498 ** Store the result in register P3.
1499 ** If either input is NULL, the result is NULL.
1501 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1502 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1503 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1504 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1505 i64 iA;
1506 u64 uA;
1507 i64 iB;
1508 u8 op;
1510 pIn1 = &aMem[pOp->p1];
1511 pIn2 = &aMem[pOp->p2];
1512 pOut = &aMem[pOp->p3];
1513 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1514 sqlite3VdbeMemSetNull(pOut);
1515 break;
1517 iA = sqlite3VdbeIntValue(pIn2);
1518 iB = sqlite3VdbeIntValue(pIn1);
1519 op = pOp->opcode;
1520 if( op==OP_BitAnd ){
1521 iA &= iB;
1522 }else if( op==OP_BitOr ){
1523 iA |= iB;
1524 }else if( iB!=0 ){
1525 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1527 /* If shifting by a negative amount, shift in the other direction */
1528 if( iB<0 ){
1529 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1530 op = 2*OP_ShiftLeft + 1 - op;
1531 iB = iB>(-64) ? -iB : 64;
1534 if( iB>=64 ){
1535 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1536 }else{
1537 memcpy(&uA, &iA, sizeof(uA));
1538 if( op==OP_ShiftLeft ){
1539 uA <<= iB;
1540 }else{
1541 uA >>= iB;
1542 /* Sign-extend on a right shift of a negative number */
1543 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1545 memcpy(&iA, &uA, sizeof(iA));
1548 pOut->u.i = iA;
1549 MemSetTypeFlag(pOut, MEM_Int);
1550 break;
1553 /* Opcode: AddImm P1 P2 * * *
1555 ** Add the constant P2 to the value in register P1.
1556 ** The result is always an integer.
1558 ** To force any register to be an integer, just add 0.
1560 case OP_AddImm: { /* in1 */
1561 pIn1 = &aMem[pOp->p1];
1562 memAboutToChange(p, pIn1);
1563 sqlite3VdbeMemIntegerify(pIn1);
1564 pIn1->u.i += pOp->p2;
1565 break;
1568 /* Opcode: MustBeInt P1 P2 * * *
1570 ** Force the value in register P1 to be an integer. If the value
1571 ** in P1 is not an integer and cannot be converted into an integer
1572 ** without data loss, then jump immediately to P2, or if P2==0
1573 ** raise an SQLITE_MISMATCH exception.
1575 case OP_MustBeInt: { /* jump, in1 */
1576 pIn1 = &aMem[pOp->p1];
1577 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1578 if( (pIn1->flags & MEM_Int)==0 ){
1579 if( pOp->p2==0 ){
1580 rc = SQLITE_MISMATCH;
1581 goto abort_due_to_error;
1582 }else{
1583 pc = pOp->p2 - 1;
1585 }else{
1586 MemSetTypeFlag(pIn1, MEM_Int);
1588 break;
1591 #ifndef SQLITE_OMIT_FLOATING_POINT
1592 /* Opcode: RealAffinity P1 * * * *
1594 ** If register P1 holds an integer convert it to a real value.
1596 ** This opcode is used when extracting information from a column that
1597 ** has REAL affinity. Such column values may still be stored as
1598 ** integers, for space efficiency, but after extraction we want them
1599 ** to have only a real value.
1601 case OP_RealAffinity: { /* in1 */
1602 pIn1 = &aMem[pOp->p1];
1603 if( pIn1->flags & MEM_Int ){
1604 sqlite3VdbeMemRealify(pIn1);
1606 break;
1608 #endif
1610 #ifndef SQLITE_OMIT_CAST
1611 /* Opcode: ToText P1 * * * *
1613 ** Force the value in register P1 to be text.
1614 ** If the value is numeric, convert it to a string using the
1615 ** equivalent of printf(). Blob values are unchanged and
1616 ** are afterwards simply interpreted as text.
1618 ** A NULL value is not changed by this routine. It remains NULL.
1620 case OP_ToText: { /* same as TK_TO_TEXT, in1 */
1621 pIn1 = &aMem[pOp->p1];
1622 memAboutToChange(p, pIn1);
1623 if( pIn1->flags & MEM_Null ) break;
1624 assert( MEM_Str==(MEM_Blob>>3) );
1625 pIn1->flags |= (pIn1->flags&MEM_Blob)>>3;
1626 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1627 rc = ExpandBlob(pIn1);
1628 assert( pIn1->flags & MEM_Str || db->mallocFailed );
1629 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_Blob|MEM_Zero);
1630 UPDATE_MAX_BLOBSIZE(pIn1);
1631 break;
1634 /* Opcode: ToBlob P1 * * * *
1636 ** Force the value in register P1 to be a BLOB.
1637 ** If the value is numeric, convert it to a string first.
1638 ** Strings are simply reinterpreted as blobs with no change
1639 ** to the underlying data.
1641 ** A NULL value is not changed by this routine. It remains NULL.
1643 case OP_ToBlob: { /* same as TK_TO_BLOB, in1 */
1644 pIn1 = &aMem[pOp->p1];
1645 if( pIn1->flags & MEM_Null ) break;
1646 if( (pIn1->flags & MEM_Blob)==0 ){
1647 applyAffinity(pIn1, SQLITE_AFF_TEXT, encoding);
1648 assert( pIn1->flags & MEM_Str || db->mallocFailed );
1649 MemSetTypeFlag(pIn1, MEM_Blob);
1650 }else{
1651 pIn1->flags &= ~(MEM_TypeMask&~MEM_Blob);
1653 UPDATE_MAX_BLOBSIZE(pIn1);
1654 break;
1657 /* Opcode: ToNumeric P1 * * * *
1659 ** Force the value in register P1 to be numeric (either an
1660 ** integer or a floating-point number.)
1661 ** If the value is text or blob, try to convert it to an using the
1662 ** equivalent of atoi() or atof() and store 0 if no such conversion
1663 ** is possible.
1665 ** A NULL value is not changed by this routine. It remains NULL.
1667 case OP_ToNumeric: { /* same as TK_TO_NUMERIC, in1 */
1668 pIn1 = &aMem[pOp->p1];
1669 sqlite3VdbeMemNumerify(pIn1);
1670 break;
1672 #endif /* SQLITE_OMIT_CAST */
1674 /* Opcode: ToInt P1 * * * *
1676 ** Force the value in register P1 to be an integer. If
1677 ** The value is currently a real number, drop its fractional part.
1678 ** If the value is text or blob, try to convert it to an integer using the
1679 ** equivalent of atoi() and store 0 if no such conversion is possible.
1681 ** A NULL value is not changed by this routine. It remains NULL.
1683 case OP_ToInt: { /* same as TK_TO_INT, in1 */
1684 pIn1 = &aMem[pOp->p1];
1685 if( (pIn1->flags & MEM_Null)==0 ){
1686 sqlite3VdbeMemIntegerify(pIn1);
1688 break;
1691 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1692 /* Opcode: ToReal P1 * * * *
1694 ** Force the value in register P1 to be a floating point number.
1695 ** If The value is currently an integer, convert it.
1696 ** If the value is text or blob, try to convert it to an integer using the
1697 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1699 ** A NULL value is not changed by this routine. It remains NULL.
1701 case OP_ToReal: { /* same as TK_TO_REAL, in1 */
1702 pIn1 = &aMem[pOp->p1];
1703 memAboutToChange(p, pIn1);
1704 if( (pIn1->flags & MEM_Null)==0 ){
1705 sqlite3VdbeMemRealify(pIn1);
1707 break;
1709 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1711 /* Opcode: Lt P1 P2 P3 P4 P5
1713 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1714 ** jump to address P2.
1716 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1717 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1718 ** bit is clear then fall through if either operand is NULL.
1720 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1721 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1722 ** to coerce both inputs according to this affinity before the
1723 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1724 ** affinity is used. Note that the affinity conversions are stored
1725 ** back into the input registers P1 and P3. So this opcode can cause
1726 ** persistent changes to registers P1 and P3.
1728 ** Once any conversions have taken place, and neither value is NULL,
1729 ** the values are compared. If both values are blobs then memcmp() is
1730 ** used to determine the results of the comparison. If both values
1731 ** are text, then the appropriate collating function specified in
1732 ** P4 is used to do the comparison. If P4 is not specified then
1733 ** memcmp() is used to compare text string. If both values are
1734 ** numeric, then a numeric comparison is used. If the two values
1735 ** are of different types, then numbers are considered less than
1736 ** strings and strings are considered less than blobs.
1738 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1739 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1741 /* Opcode: Ne P1 P2 P3 P4 P5
1743 ** This works just like the Lt opcode except that the jump is taken if
1744 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1745 ** additional information.
1747 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1748 ** true or false and is never NULL. If both operands are NULL then the result
1749 ** of comparison is false. If either operand is NULL then the result is true.
1750 ** If neither operand is NULL the result is the same as it would be if
1751 ** the SQLITE_NULLEQ flag were omitted from P5.
1753 /* Opcode: Eq P1 P2 P3 P4 P5
1755 ** This works just like the Lt opcode except that the jump is taken if
1756 ** the operands in registers P1 and P3 are equal.
1757 ** See the Lt opcode for additional information.
1759 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1760 ** true or false and is never NULL. If both operands are NULL then the result
1761 ** of comparison is true. If either operand is NULL then the result is false.
1762 ** If neither operand is NULL the result is the same as it would be if
1763 ** the SQLITE_NULLEQ flag were omitted from P5.
1765 /* Opcode: Le P1 P2 P3 P4 P5
1767 ** This works just like the Lt opcode except that the jump is taken if
1768 ** the content of register P3 is less than or equal to the content of
1769 ** register P1. See the Lt opcode for additional information.
1771 /* Opcode: Gt P1 P2 P3 P4 P5
1773 ** This works just like the Lt opcode except that the jump is taken if
1774 ** the content of register P3 is greater than the content of
1775 ** register P1. See the Lt opcode for additional information.
1777 /* Opcode: Ge P1 P2 P3 P4 P5
1779 ** This works just like the Lt opcode except that the jump is taken if
1780 ** the content of register P3 is greater than or equal to the content of
1781 ** register P1. See the Lt opcode for additional information.
1783 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1784 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1785 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1786 case OP_Le: /* same as TK_LE, jump, in1, in3 */
1787 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1788 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
1789 int res; /* Result of the comparison of pIn1 against pIn3 */
1790 char affinity; /* Affinity to use for comparison */
1791 u16 flags1; /* Copy of initial value of pIn1->flags */
1792 u16 flags3; /* Copy of initial value of pIn3->flags */
1794 pIn1 = &aMem[pOp->p1];
1795 pIn3 = &aMem[pOp->p3];
1796 flags1 = pIn1->flags;
1797 flags3 = pIn3->flags;
1798 if( (flags1 | flags3)&MEM_Null ){
1799 /* One or both operands are NULL */
1800 if( pOp->p5 & SQLITE_NULLEQ ){
1801 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1802 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1803 ** or not both operands are null.
1805 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1806 res = (flags1 & flags3 & MEM_Null)==0;
1807 }else{
1808 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1809 ** then the result is always NULL.
1810 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1812 if( pOp->p5 & SQLITE_STOREP2 ){
1813 pOut = &aMem[pOp->p2];
1814 MemSetTypeFlag(pOut, MEM_Null);
1815 REGISTER_TRACE(pOp->p2, pOut);
1816 }else if( pOp->p5 & SQLITE_JUMPIFNULL ){
1817 pc = pOp->p2-1;
1819 break;
1821 }else{
1822 /* Neither operand is NULL. Do a comparison. */
1823 affinity = pOp->p5 & SQLITE_AFF_MASK;
1824 if( affinity ){
1825 applyAffinity(pIn1, affinity, encoding);
1826 applyAffinity(pIn3, affinity, encoding);
1827 if( db->mallocFailed ) goto no_mem;
1830 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
1831 ExpandBlob(pIn1);
1832 ExpandBlob(pIn3);
1833 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
1835 switch( pOp->opcode ){
1836 case OP_Eq: res = res==0; break;
1837 case OP_Ne: res = res!=0; break;
1838 case OP_Lt: res = res<0; break;
1839 case OP_Le: res = res<=0; break;
1840 case OP_Gt: res = res>0; break;
1841 default: res = res>=0; break;
1844 if( pOp->p5 & SQLITE_STOREP2 ){
1845 pOut = &aMem[pOp->p2];
1846 memAboutToChange(p, pOut);
1847 MemSetTypeFlag(pOut, MEM_Int);
1848 pOut->u.i = res;
1849 REGISTER_TRACE(pOp->p2, pOut);
1850 }else if( res ){
1851 pc = pOp->p2-1;
1854 /* Undo any changes made by applyAffinity() to the input registers. */
1855 pIn1->flags = (pIn1->flags&~MEM_TypeMask) | (flags1&MEM_TypeMask);
1856 pIn3->flags = (pIn3->flags&~MEM_TypeMask) | (flags3&MEM_TypeMask);
1857 break;
1860 /* Opcode: Permutation * * * P4 *
1862 ** Set the permutation used by the OP_Compare operator to be the array
1863 ** of integers in P4.
1865 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
1866 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1867 ** immediately prior to the OP_Compare.
1869 case OP_Permutation: {
1870 assert( pOp->p4type==P4_INTARRAY );
1871 assert( pOp->p4.ai );
1872 aPermute = pOp->p4.ai;
1873 break;
1876 /* Opcode: Compare P1 P2 P3 P4 *
1878 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1879 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1880 ** the comparison for use by the next OP_Jump instruct.
1882 ** P4 is a KeyInfo structure that defines collating sequences and sort
1883 ** orders for the comparison. The permutation applies to registers
1884 ** only. The KeyInfo elements are used sequentially.
1886 ** The comparison is a sort comparison, so NULLs compare equal,
1887 ** NULLs are less than numbers, numbers are less than strings,
1888 ** and strings are less than blobs.
1890 case OP_Compare: {
1891 int n;
1892 int i;
1893 int p1;
1894 int p2;
1895 const KeyInfo *pKeyInfo;
1896 int idx;
1897 CollSeq *pColl; /* Collating sequence to use on this term */
1898 int bRev; /* True for DESCENDING sort order */
1900 n = pOp->p3;
1901 pKeyInfo = pOp->p4.pKeyInfo;
1902 assert( n>0 );
1903 assert( pKeyInfo!=0 );
1904 p1 = pOp->p1;
1905 p2 = pOp->p2;
1906 #if SQLITE_DEBUG
1907 if( aPermute ){
1908 int k, mx = 0;
1909 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
1910 assert( p1>0 && p1+mx<=p->nMem+1 );
1911 assert( p2>0 && p2+mx<=p->nMem+1 );
1912 }else{
1913 assert( p1>0 && p1+n<=p->nMem+1 );
1914 assert( p2>0 && p2+n<=p->nMem+1 );
1916 #endif /* SQLITE_DEBUG */
1917 for(i=0; i<n; i++){
1918 idx = aPermute ? aPermute[i] : i;
1919 assert( memIsValid(&aMem[p1+idx]) );
1920 assert( memIsValid(&aMem[p2+idx]) );
1921 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
1922 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
1923 assert( i<pKeyInfo->nField );
1924 pColl = pKeyInfo->aColl[i];
1925 bRev = pKeyInfo->aSortOrder[i];
1926 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
1927 if( iCompare ){
1928 if( bRev ) iCompare = -iCompare;
1929 break;
1932 aPermute = 0;
1933 break;
1936 /* Opcode: Jump P1 P2 P3 * *
1938 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1939 ** in the most recent OP_Compare instruction the P1 vector was less than
1940 ** equal to, or greater than the P2 vector, respectively.
1942 case OP_Jump: { /* jump */
1943 if( iCompare<0 ){
1944 pc = pOp->p1 - 1;
1945 }else if( iCompare==0 ){
1946 pc = pOp->p2 - 1;
1947 }else{
1948 pc = pOp->p3 - 1;
1950 break;
1953 /* Opcode: And P1 P2 P3 * *
1955 ** Take the logical AND of the values in registers P1 and P2 and
1956 ** write the result into register P3.
1958 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1959 ** the other input is NULL. A NULL and true or two NULLs give
1960 ** a NULL output.
1962 /* Opcode: Or P1 P2 P3 * *
1964 ** Take the logical OR of the values in register P1 and P2 and
1965 ** store the answer in register P3.
1967 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1968 ** even if the other input is NULL. A NULL and false or two NULLs
1969 ** give a NULL output.
1971 case OP_And: /* same as TK_AND, in1, in2, out3 */
1972 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
1973 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1974 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1976 pIn1 = &aMem[pOp->p1];
1977 if( pIn1->flags & MEM_Null ){
1978 v1 = 2;
1979 }else{
1980 v1 = sqlite3VdbeIntValue(pIn1)!=0;
1982 pIn2 = &aMem[pOp->p2];
1983 if( pIn2->flags & MEM_Null ){
1984 v2 = 2;
1985 }else{
1986 v2 = sqlite3VdbeIntValue(pIn2)!=0;
1988 if( pOp->opcode==OP_And ){
1989 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1990 v1 = and_logic[v1*3+v2];
1991 }else{
1992 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1993 v1 = or_logic[v1*3+v2];
1995 pOut = &aMem[pOp->p3];
1996 if( v1==2 ){
1997 MemSetTypeFlag(pOut, MEM_Null);
1998 }else{
1999 pOut->u.i = v1;
2000 MemSetTypeFlag(pOut, MEM_Int);
2002 break;
2005 /* Opcode: Not P1 P2 * * *
2007 ** Interpret the value in register P1 as a boolean value. Store the
2008 ** boolean complement in register P2. If the value in register P1 is
2009 ** NULL, then a NULL is stored in P2.
2011 case OP_Not: { /* same as TK_NOT, in1, out2 */
2012 pIn1 = &aMem[pOp->p1];
2013 pOut = &aMem[pOp->p2];
2014 if( pIn1->flags & MEM_Null ){
2015 sqlite3VdbeMemSetNull(pOut);
2016 }else{
2017 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeIntValue(pIn1));
2019 break;
2022 /* Opcode: BitNot P1 P2 * * *
2024 ** Interpret the content of register P1 as an integer. Store the
2025 ** ones-complement of the P1 value into register P2. If P1 holds
2026 ** a NULL then store a NULL in P2.
2028 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2029 pIn1 = &aMem[pOp->p1];
2030 pOut = &aMem[pOp->p2];
2031 if( pIn1->flags & MEM_Null ){
2032 sqlite3VdbeMemSetNull(pOut);
2033 }else{
2034 sqlite3VdbeMemSetInt64(pOut, ~sqlite3VdbeIntValue(pIn1));
2036 break;
2039 /* Opcode: Once P1 P2 * * *
2041 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2042 ** set the flag and fall through to the next instruction.
2044 ** See also: JumpOnce
2046 case OP_Once: { /* jump */
2047 assert( pOp->p1<p->nOnceFlag );
2048 if( p->aOnceFlag[pOp->p1] ){
2049 pc = pOp->p2-1;
2050 }else{
2051 p->aOnceFlag[pOp->p1] = 1;
2053 break;
2056 /* Opcode: If P1 P2 P3 * *
2058 ** Jump to P2 if the value in register P1 is true. The value
2059 ** is considered true if it is numeric and non-zero. If the value
2060 ** in P1 is NULL then take the jump if P3 is non-zero.
2062 /* Opcode: IfNot P1 P2 P3 * *
2064 ** Jump to P2 if the value in register P1 is False. The value
2065 ** is considered false if it has a numeric value of zero. If the value
2066 ** in P1 is NULL then take the jump if P3 is zero.
2068 case OP_If: /* jump, in1 */
2069 case OP_IfNot: { /* jump, in1 */
2070 int c;
2071 pIn1 = &aMem[pOp->p1];
2072 if( pIn1->flags & MEM_Null ){
2073 c = pOp->p3;
2074 }else{
2075 #ifdef SQLITE_OMIT_FLOATING_POINT
2076 c = sqlite3VdbeIntValue(pIn1)!=0;
2077 #else
2078 c = sqlite3VdbeRealValue(pIn1)!=0.0;
2079 #endif
2080 if( pOp->opcode==OP_IfNot ) c = !c;
2082 if( c ){
2083 pc = pOp->p2-1;
2085 break;
2088 /* Opcode: IsNull P1 P2 * * *
2090 ** Jump to P2 if the value in register P1 is NULL.
2092 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2093 pIn1 = &aMem[pOp->p1];
2094 if( (pIn1->flags & MEM_Null)!=0 ){
2095 pc = pOp->p2 - 1;
2097 break;
2100 /* Opcode: NotNull P1 P2 * * *
2102 ** Jump to P2 if the value in register P1 is not NULL.
2104 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2105 pIn1 = &aMem[pOp->p1];
2106 if( (pIn1->flags & MEM_Null)==0 ){
2107 pc = pOp->p2 - 1;
2109 break;
2112 /* Opcode: Column P1 P2 P3 P4 P5
2114 ** Interpret the data that cursor P1 points to as a structure built using
2115 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2116 ** information about the format of the data.) Extract the P2-th column
2117 ** from this record. If there are less that (P2+1)
2118 ** values in the record, extract a NULL.
2120 ** The value extracted is stored in register P3.
2122 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2123 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2124 ** the result.
2126 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2127 ** then the cache of the cursor is reset prior to extracting the column.
2128 ** The first OP_Column against a pseudo-table after the value of the content
2129 ** register has changed should have this bit set.
2131 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2132 ** the result is guaranteed to only be used as the argument of a length()
2133 ** or typeof() function, respectively. The loading of large blobs can be
2134 ** skipped for length() and all content loading can be skipped for typeof().
2136 case OP_Column: {
2137 u32 payloadSize; /* Number of bytes in the record */
2138 i64 payloadSize64; /* Number of bytes in the record */
2139 int p1; /* P1 value of the opcode */
2140 int p2; /* column number to retrieve */
2141 VdbeCursor *pC; /* The VDBE cursor */
2142 char *zRec; /* Pointer to complete record-data */
2143 BtCursor *pCrsr; /* The BTree cursor */
2144 u32 *aType; /* aType[i] holds the numeric type of the i-th column */
2145 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2146 int nField; /* number of fields in the record */
2147 int len; /* The length of the serialized data for the column */
2148 int i; /* Loop counter */
2149 char *zData; /* Part of the record being decoded */
2150 Mem *pDest; /* Where to write the extracted value */
2151 Mem sMem; /* For storing the record being decoded */
2152 u8 *zIdx; /* Index into header */
2153 u8 *zEndHdr; /* Pointer to first byte after the header */
2154 u32 offset; /* Offset into the data */
2155 u32 szField; /* Number of bytes in the content of a field */
2156 int szHdr; /* Size of the header size field at start of record */
2157 int avail; /* Number of bytes of available data */
2158 u32 t; /* A type code from the record header */
2159 Mem *pReg; /* PseudoTable input register */
2162 p1 = pOp->p1;
2163 p2 = pOp->p2;
2164 pC = 0;
2165 memset(&sMem, 0, sizeof(sMem));
2166 assert( p1<p->nCursor );
2167 assert( pOp->p3>0 && pOp->p3<=p->nMem );
2168 pDest = &aMem[pOp->p3];
2169 memAboutToChange(p, pDest);
2170 zRec = 0;
2172 /* This block sets the variable payloadSize to be the total number of
2173 ** bytes in the record.
2175 ** zRec is set to be the complete text of the record if it is available.
2176 ** The complete record text is always available for pseudo-tables
2177 ** If the record is stored in a cursor, the complete record text
2178 ** might be available in the pC->aRow cache. Or it might not be.
2179 ** If the data is unavailable, zRec is set to NULL.
2181 ** We also compute the number of columns in the record. For cursors,
2182 ** the number of columns is stored in the VdbeCursor.nField element.
2184 pC = p->apCsr[p1];
2185 assert( pC!=0 );
2186 #ifndef SQLITE_OMIT_VIRTUALTABLE
2187 assert( pC->pVtabCursor==0 );
2188 #endif
2189 pCrsr = pC->pCursor;
2190 if( pCrsr!=0 ){
2191 /* The record is stored in a B-Tree */
2192 rc = sqlite3VdbeCursorMoveto(pC);
2193 if( rc ) goto abort_due_to_error;
2194 if( pC->nullRow ){
2195 payloadSize = 0;
2196 }else if( pC->cacheStatus==p->cacheCtr ){
2197 payloadSize = pC->payloadSize;
2198 zRec = (char*)pC->aRow;
2199 }else if( pC->isIndex ){
2200 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2201 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2202 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2203 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2204 ** payload size, so it is impossible for payloadSize64 to be
2205 ** larger than 32 bits. */
2206 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2207 payloadSize = (u32)payloadSize64;
2208 }else{
2209 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2210 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &payloadSize);
2211 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2213 }else if( ALWAYS(pC->pseudoTableReg>0) ){
2214 pReg = &aMem[pC->pseudoTableReg];
2215 assert( pReg->flags & MEM_Blob );
2216 assert( memIsValid(pReg) );
2217 payloadSize = pReg->n;
2218 zRec = pReg->z;
2219 pC->cacheStatus = (pOp->p5&OPFLAG_CLEARCACHE) ? CACHE_STALE : p->cacheCtr;
2220 assert( payloadSize==0 || zRec!=0 );
2221 }else{
2222 /* Consider the row to be NULL */
2223 payloadSize = 0;
2226 /* If payloadSize is 0, then just store a NULL. This can happen because of
2227 ** nullRow or because of a corrupt database. */
2228 if( payloadSize==0 ){
2229 MemSetTypeFlag(pDest, MEM_Null);
2230 goto op_column_out;
2232 assert( db->aLimit[SQLITE_LIMIT_LENGTH]>=0 );
2233 if( payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2234 goto too_big;
2237 nField = pC->nField;
2238 assert( p2<nField );
2240 /* Read and parse the table header. Store the results of the parse
2241 ** into the record header cache fields of the cursor.
2243 aType = pC->aType;
2244 if( pC->cacheStatus==p->cacheCtr ){
2245 aOffset = pC->aOffset;
2246 }else{
2247 assert(aType);
2248 avail = 0;
2249 pC->aOffset = aOffset = &aType[nField];
2250 pC->payloadSize = payloadSize;
2251 pC->cacheStatus = p->cacheCtr;
2253 /* Figure out how many bytes are in the header */
2254 if( zRec ){
2255 zData = zRec;
2256 }else{
2257 if( pC->isIndex ){
2258 zData = (char*)sqlite3BtreeKeyFetch(pCrsr, &avail);
2259 }else{
2260 zData = (char*)sqlite3BtreeDataFetch(pCrsr, &avail);
2262 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2263 ** save the payload in the pC->aRow cache. That will save us from
2264 ** having to make additional calls to fetch the content portion of
2265 ** the record.
2267 assert( avail>=0 );
2268 if( payloadSize <= (u32)avail ){
2269 zRec = zData;
2270 pC->aRow = (u8*)zData;
2271 }else{
2272 pC->aRow = 0;
2275 /* The following assert is true in all cases except when
2276 ** the database file has been corrupted externally.
2277 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2278 szHdr = getVarint32((u8*)zData, offset);
2280 /* Make sure a corrupt database has not given us an oversize header.
2281 ** Do this now to avoid an oversize memory allocation.
2283 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2284 ** types use so much data space that there can only be 4096 and 32 of
2285 ** them, respectively. So the maximum header length results from a
2286 ** 3-byte type for each of the maximum of 32768 columns plus three
2287 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2289 if( offset > 98307 ){
2290 rc = SQLITE_CORRUPT_BKPT;
2291 goto op_column_out;
2294 /* Compute in len the number of bytes of data we need to read in order
2295 ** to get nField type values. offset is an upper bound on this. But
2296 ** nField might be significantly less than the true number of columns
2297 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2298 ** We want to minimize len in order to limit the size of the memory
2299 ** allocation, especially if a corrupt database file has caused offset
2300 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2301 ** still exceed Robson memory allocation limits on some configurations.
2302 ** On systems that cannot tolerate large memory allocations, nField*5+3
2303 ** will likely be much smaller since nField will likely be less than
2304 ** 20 or so. This insures that Robson memory allocation limits are
2305 ** not exceeded even for corrupt database files.
2307 len = nField*5 + 3;
2308 if( len > (int)offset ) len = (int)offset;
2310 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2311 ** record header in most cases. But they will fail to get the complete
2312 ** record header if the record header does not fit on a single page
2313 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2314 ** acquire the complete header text.
2316 if( !zRec && avail<len ){
2317 sMem.flags = 0;
2318 sMem.db = 0;
2319 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, len, pC->isIndex, &sMem);
2320 if( rc!=SQLITE_OK ){
2321 goto op_column_out;
2323 zData = sMem.z;
2325 zEndHdr = (u8 *)&zData[len];
2326 zIdx = (u8 *)&zData[szHdr];
2328 /* Scan the header and use it to fill in the aType[] and aOffset[]
2329 ** arrays. aType[i] will contain the type integer for the i-th
2330 ** column and aOffset[i] will contain the offset from the beginning
2331 ** of the record to the start of the data for the i-th column
2333 for(i=0; i<nField; i++){
2334 if( zIdx<zEndHdr ){
2335 aOffset[i] = offset;
2336 if( zIdx[0]<0x80 ){
2337 t = zIdx[0];
2338 zIdx++;
2339 }else{
2340 zIdx += sqlite3GetVarint32(zIdx, &t);
2342 aType[i] = t;
2343 szField = sqlite3VdbeSerialTypeLen(t);
2344 offset += szField;
2345 if( offset<szField ){ /* True if offset overflows */
2346 zIdx = &zEndHdr[1]; /* Forces SQLITE_CORRUPT return below */
2347 break;
2349 }else{
2350 /* If i is less that nField, then there are fewer fields in this
2351 ** record than SetNumColumns indicated there are columns in the
2352 ** table. Set the offset for any extra columns not present in
2353 ** the record to 0. This tells code below to store the default value
2354 ** for the column instead of deserializing a value from the record.
2356 aOffset[i] = 0;
2359 sqlite3VdbeMemRelease(&sMem);
2360 sMem.flags = MEM_Null;
2362 /* If we have read more header data than was contained in the header,
2363 ** or if the end of the last field appears to be past the end of the
2364 ** record, or if the end of the last field appears to be before the end
2365 ** of the record (when all fields present), then we must be dealing
2366 ** with a corrupt database.
2368 if( (zIdx > zEndHdr) || (offset > payloadSize)
2369 || (zIdx==zEndHdr && offset!=payloadSize) ){
2370 rc = SQLITE_CORRUPT_BKPT;
2371 goto op_column_out;
2375 /* Get the column information. If aOffset[p2] is non-zero, then
2376 ** deserialize the value from the record. If aOffset[p2] is zero,
2377 ** then there are not enough fields in the record to satisfy the
2378 ** request. In this case, set the value NULL or to P4 if P4 is
2379 ** a pointer to a Mem object.
2381 if( aOffset[p2] ){
2382 assert( rc==SQLITE_OK );
2383 if( zRec ){
2384 /* This is the common case where the whole row fits on a single page */
2385 VdbeMemRelease(pDest);
2386 sqlite3VdbeSerialGet((u8 *)&zRec[aOffset[p2]], aType[p2], pDest);
2387 }else{
2388 /* This branch happens only when the row overflows onto multiple pages */
2389 t = aType[p2];
2390 if( (pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2391 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0)
2393 /* Content is irrelevant for the typeof() function and for
2394 ** the length(X) function if X is a blob. So we might as well use
2395 ** bogus content rather than reading content from disk. NULL works
2396 ** for text and blob and whatever is in the payloadSize64 variable
2397 ** will work for everything else. */
2398 zData = t<12 ? (char*)&payloadSize64 : 0;
2399 }else{
2400 len = sqlite3VdbeSerialTypeLen(t);
2401 sqlite3VdbeMemMove(&sMem, pDest);
2402 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, pC->isIndex,
2403 &sMem);
2404 if( rc!=SQLITE_OK ){
2405 goto op_column_out;
2407 zData = sMem.z;
2409 sqlite3VdbeSerialGet((u8*)zData, t, pDest);
2411 pDest->enc = encoding;
2412 }else{
2413 if( pOp->p4type==P4_MEM ){
2414 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2415 }else{
2416 MemSetTypeFlag(pDest, MEM_Null);
2420 /* If we dynamically allocated space to hold the data (in the
2421 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2422 ** dynamically allocated space over to the pDest structure.
2423 ** This prevents a memory copy.
2425 if( sMem.zMalloc ){
2426 assert( sMem.z==sMem.zMalloc );
2427 assert( !(pDest->flags & MEM_Dyn) );
2428 assert( !(pDest->flags & (MEM_Blob|MEM_Str)) || pDest->z==sMem.z );
2429 pDest->flags &= ~(MEM_Ephem|MEM_Static);
2430 pDest->flags |= MEM_Term;
2431 pDest->z = sMem.z;
2432 pDest->zMalloc = sMem.zMalloc;
2435 rc = sqlite3VdbeMemMakeWriteable(pDest);
2437 op_column_out:
2438 UPDATE_MAX_BLOBSIZE(pDest);
2439 REGISTER_TRACE(pOp->p3, pDest);
2440 break;
2443 /* Opcode: Affinity P1 P2 * P4 *
2445 ** Apply affinities to a range of P2 registers starting with P1.
2447 ** P4 is a string that is P2 characters long. The nth character of the
2448 ** string indicates the column affinity that should be used for the nth
2449 ** memory cell in the range.
2451 case OP_Affinity: {
2452 const char *zAffinity; /* The affinity to be applied */
2453 char cAff; /* A single character of affinity */
2455 zAffinity = pOp->p4.z;
2456 assert( zAffinity!=0 );
2457 assert( zAffinity[pOp->p2]==0 );
2458 pIn1 = &aMem[pOp->p1];
2459 while( (cAff = *(zAffinity++))!=0 ){
2460 assert( pIn1 <= &p->aMem[p->nMem] );
2461 assert( memIsValid(pIn1) );
2462 ExpandBlob(pIn1);
2463 applyAffinity(pIn1, cAff, encoding);
2464 pIn1++;
2466 break;
2469 /* Opcode: MakeRecord P1 P2 P3 P4 *
2471 ** Convert P2 registers beginning with P1 into the [record format]
2472 ** use as a data record in a database table or as a key
2473 ** in an index. The OP_Column opcode can decode the record later.
2475 ** P4 may be a string that is P2 characters long. The nth character of the
2476 ** string indicates the column affinity that should be used for the nth
2477 ** field of the index key.
2479 ** The mapping from character to affinity is given by the SQLITE_AFF_
2480 ** macros defined in sqliteInt.h.
2482 ** If P4 is NULL then all index fields have the affinity NONE.
2484 case OP_MakeRecord: {
2485 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2486 Mem *pRec; /* The new record */
2487 u64 nData; /* Number of bytes of data space */
2488 int nHdr; /* Number of bytes of header space */
2489 i64 nByte; /* Data space required for this record */
2490 int nZero; /* Number of zero bytes at the end of the record */
2491 int nVarint; /* Number of bytes in a varint */
2492 u32 serial_type; /* Type field */
2493 Mem *pData0; /* First field to be combined into the record */
2494 Mem *pLast; /* Last field of the record */
2495 int nField; /* Number of fields in the record */
2496 char *zAffinity; /* The affinity string for the record */
2497 int file_format; /* File format to use for encoding */
2498 int i; /* Space used in zNewRecord[] */
2499 int len; /* Length of a field */
2501 /* Assuming the record contains N fields, the record format looks
2502 ** like this:
2504 ** ------------------------------------------------------------------------
2505 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2506 ** ------------------------------------------------------------------------
2508 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2509 ** and so froth.
2511 ** Each type field is a varint representing the serial type of the
2512 ** corresponding data element (see sqlite3VdbeSerialType()). The
2513 ** hdr-size field is also a varint which is the offset from the beginning
2514 ** of the record to data0.
2516 nData = 0; /* Number of bytes of data space */
2517 nHdr = 0; /* Number of bytes of header space */
2518 nZero = 0; /* Number of zero bytes at the end of the record */
2519 nField = pOp->p1;
2520 zAffinity = pOp->p4.z;
2521 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=p->nMem+1 );
2522 pData0 = &aMem[nField];
2523 nField = pOp->p2;
2524 pLast = &pData0[nField-1];
2525 file_format = p->minWriteFileFormat;
2527 /* Identify the output register */
2528 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2529 pOut = &aMem[pOp->p3];
2530 memAboutToChange(p, pOut);
2532 /* Loop through the elements that will make up the record to figure
2533 ** out how much space is required for the new record.
2535 for(pRec=pData0; pRec<=pLast; pRec++){
2536 assert( memIsValid(pRec) );
2537 if( zAffinity ){
2538 applyAffinity(pRec, zAffinity[pRec-pData0], encoding);
2540 if( pRec->flags&MEM_Zero && pRec->n>0 ){
2541 sqlite3VdbeMemExpandBlob(pRec);
2543 serial_type = sqlite3VdbeSerialType(pRec, file_format);
2544 len = sqlite3VdbeSerialTypeLen(serial_type);
2545 nData += len;
2546 nHdr += sqlite3VarintLen(serial_type);
2547 if( pRec->flags & MEM_Zero ){
2548 /* Only pure zero-filled BLOBs can be input to this Opcode.
2549 ** We do not allow blobs with a prefix and a zero-filled tail. */
2550 nZero += pRec->u.nZero;
2551 }else if( len ){
2552 nZero = 0;
2556 /* Add the initial header varint and total the size */
2557 nHdr += nVarint = sqlite3VarintLen(nHdr);
2558 if( nVarint<sqlite3VarintLen(nHdr) ){
2559 nHdr++;
2561 nByte = nHdr+nData-nZero;
2562 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2563 goto too_big;
2566 /* Make sure the output register has a buffer large enough to store
2567 ** the new record. The output register (pOp->p3) is not allowed to
2568 ** be one of the input registers (because the following call to
2569 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2571 if( sqlite3VdbeMemGrow(pOut, (int)nByte, 0) ){
2572 goto no_mem;
2574 zNewRecord = (u8 *)pOut->z;
2576 /* Write the record */
2577 i = putVarint32(zNewRecord, nHdr);
2578 for(pRec=pData0; pRec<=pLast; pRec++){
2579 serial_type = sqlite3VdbeSerialType(pRec, file_format);
2580 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2582 for(pRec=pData0; pRec<=pLast; pRec++){ /* serial data */
2583 i += sqlite3VdbeSerialPut(&zNewRecord[i], (int)(nByte-i), pRec,file_format);
2585 assert( i==nByte );
2587 assert( pOp->p3>0 && pOp->p3<=p->nMem );
2588 pOut->n = (int)nByte;
2589 pOut->flags = MEM_Blob | MEM_Dyn;
2590 pOut->xDel = 0;
2591 if( nZero ){
2592 pOut->u.nZero = nZero;
2593 pOut->flags |= MEM_Zero;
2595 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2596 REGISTER_TRACE(pOp->p3, pOut);
2597 UPDATE_MAX_BLOBSIZE(pOut);
2598 break;
2601 /* Opcode: Count P1 P2 * * *
2603 ** Store the number of entries (an integer value) in the table or index
2604 ** opened by cursor P1 in register P2
2606 #ifndef SQLITE_OMIT_BTREECOUNT
2607 case OP_Count: { /* out2-prerelease */
2608 i64 nEntry;
2609 BtCursor *pCrsr;
2611 pCrsr = p->apCsr[pOp->p1]->pCursor;
2612 if( ALWAYS(pCrsr) ){
2613 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2614 }else{
2615 nEntry = 0;
2617 pOut->u.i = nEntry;
2618 break;
2620 #endif
2622 /* Opcode: Savepoint P1 * * P4 *
2624 ** Open, release or rollback the savepoint named by parameter P4, depending
2625 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2626 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2628 case OP_Savepoint: {
2629 int p1; /* Value of P1 operand */
2630 char *zName; /* Name of savepoint */
2631 int nName;
2632 Savepoint *pNew;
2633 Savepoint *pSavepoint;
2634 Savepoint *pTmp;
2635 int iSavepoint;
2636 int ii;
2638 p1 = pOp->p1;
2639 zName = pOp->p4.z;
2641 /* Assert that the p1 parameter is valid. Also that if there is no open
2642 ** transaction, then there cannot be any savepoints.
2644 assert( db->pSavepoint==0 || db->autoCommit==0 );
2645 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2646 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2647 assert( checkSavepointCount(db) );
2649 if( p1==SAVEPOINT_BEGIN ){
2650 if( db->writeVdbeCnt>0 ){
2651 /* A new savepoint cannot be created if there are active write
2652 ** statements (i.e. open read/write incremental blob handles).
2654 sqlite3SetString(&p->zErrMsg, db, "cannot open savepoint - "
2655 "SQL statements in progress");
2656 rc = SQLITE_BUSY;
2657 }else{
2658 nName = sqlite3Strlen30(zName);
2660 #ifndef SQLITE_OMIT_VIRTUALTABLE
2661 /* This call is Ok even if this savepoint is actually a transaction
2662 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2663 ** If this is a transaction savepoint being opened, it is guaranteed
2664 ** that the db->aVTrans[] array is empty. */
2665 assert( db->autoCommit==0 || db->nVTrans==0 );
2666 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2667 db->nStatement+db->nSavepoint);
2668 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2669 #endif
2671 /* Create a new savepoint structure. */
2672 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2673 if( pNew ){
2674 pNew->zName = (char *)&pNew[1];
2675 memcpy(pNew->zName, zName, nName+1);
2677 /* If there is no open transaction, then mark this as a special
2678 ** "transaction savepoint". */
2679 if( db->autoCommit ){
2680 db->autoCommit = 0;
2681 db->isTransactionSavepoint = 1;
2682 }else{
2683 db->nSavepoint++;
2686 /* Link the new savepoint into the database handle's list. */
2687 pNew->pNext = db->pSavepoint;
2688 db->pSavepoint = pNew;
2689 pNew->nDeferredCons = db->nDeferredCons;
2692 }else{
2693 iSavepoint = 0;
2695 /* Find the named savepoint. If there is no such savepoint, then an
2696 ** an error is returned to the user. */
2697 for(
2698 pSavepoint = db->pSavepoint;
2699 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2700 pSavepoint = pSavepoint->pNext
2702 iSavepoint++;
2704 if( !pSavepoint ){
2705 sqlite3SetString(&p->zErrMsg, db, "no such savepoint: %s", zName);
2706 rc = SQLITE_ERROR;
2707 }else if( db->writeVdbeCnt>0 && p1==SAVEPOINT_RELEASE ){
2708 /* It is not possible to release (commit) a savepoint if there are
2709 ** active write statements.
2711 sqlite3SetString(&p->zErrMsg, db,
2712 "cannot release savepoint - SQL statements in progress"
2714 rc = SQLITE_BUSY;
2715 }else{
2717 /* Determine whether or not this is a transaction savepoint. If so,
2718 ** and this is a RELEASE command, then the current transaction
2719 ** is committed.
2721 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2722 if( isTransaction && p1==SAVEPOINT_RELEASE ){
2723 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2724 goto vdbe_return;
2726 db->autoCommit = 1;
2727 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2728 p->pc = pc;
2729 db->autoCommit = 0;
2730 p->rc = rc = SQLITE_BUSY;
2731 goto vdbe_return;
2733 db->isTransactionSavepoint = 0;
2734 rc = p->rc;
2735 }else{
2736 iSavepoint = db->nSavepoint - iSavepoint - 1;
2737 if( p1==SAVEPOINT_ROLLBACK ){
2738 for(ii=0; ii<db->nDb; ii++){
2739 sqlite3BtreeTripAllCursors(db->aDb[ii].pBt, SQLITE_ABORT);
2742 for(ii=0; ii<db->nDb; ii++){
2743 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2744 if( rc!=SQLITE_OK ){
2745 goto abort_due_to_error;
2748 if( p1==SAVEPOINT_ROLLBACK && (db->flags&SQLITE_InternChanges)!=0 ){
2749 sqlite3ExpirePreparedStatements(db);
2750 sqlite3ResetInternalSchema(db, -1);
2751 db->flags = (db->flags | SQLITE_InternChanges);
2755 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2756 ** savepoints nested inside of the savepoint being operated on. */
2757 while( db->pSavepoint!=pSavepoint ){
2758 pTmp = db->pSavepoint;
2759 db->pSavepoint = pTmp->pNext;
2760 sqlite3DbFree(db, pTmp);
2761 db->nSavepoint--;
2764 /* If it is a RELEASE, then destroy the savepoint being operated on
2765 ** too. If it is a ROLLBACK TO, then set the number of deferred
2766 ** constraint violations present in the database to the value stored
2767 ** when the savepoint was created. */
2768 if( p1==SAVEPOINT_RELEASE ){
2769 assert( pSavepoint==db->pSavepoint );
2770 db->pSavepoint = pSavepoint->pNext;
2771 sqlite3DbFree(db, pSavepoint);
2772 if( !isTransaction ){
2773 db->nSavepoint--;
2775 }else{
2776 db->nDeferredCons = pSavepoint->nDeferredCons;
2779 if( !isTransaction ){
2780 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2781 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2786 break;
2789 /* Opcode: AutoCommit P1 P2 * * *
2791 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2792 ** back any currently active btree transactions. If there are any active
2793 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2794 ** there are active writing VMs or active VMs that use shared cache.
2796 ** This instruction causes the VM to halt.
2798 case OP_AutoCommit: {
2799 int desiredAutoCommit;
2800 int iRollback;
2801 int turnOnAC;
2803 desiredAutoCommit = pOp->p1;
2804 iRollback = pOp->p2;
2805 turnOnAC = desiredAutoCommit && !db->autoCommit;
2806 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
2807 assert( desiredAutoCommit==1 || iRollback==0 );
2808 assert( db->activeVdbeCnt>0 ); /* At least this one VM is active */
2810 #if 0
2811 if( turnOnAC && iRollback && db->activeVdbeCnt>1 ){
2812 /* If this instruction implements a ROLLBACK and other VMs are
2813 ** still running, and a transaction is active, return an error indicating
2814 ** that the other VMs must complete first.
2816 sqlite3SetString(&p->zErrMsg, db, "cannot rollback transaction - "
2817 "SQL statements in progress");
2818 rc = SQLITE_BUSY;
2819 }else
2820 #endif
2821 if( turnOnAC && !iRollback && db->writeVdbeCnt>0 ){
2822 /* If this instruction implements a COMMIT and other VMs are writing
2823 ** return an error indicating that the other VMs must complete first.
2825 sqlite3SetString(&p->zErrMsg, db, "cannot commit transaction - "
2826 "SQL statements in progress");
2827 rc = SQLITE_BUSY;
2828 }else if( desiredAutoCommit!=db->autoCommit ){
2829 if( iRollback ){
2830 assert( desiredAutoCommit==1 );
2831 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2832 db->autoCommit = 1;
2833 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2834 goto vdbe_return;
2835 }else{
2836 db->autoCommit = (u8)desiredAutoCommit;
2837 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2838 p->pc = pc;
2839 db->autoCommit = (u8)(1-desiredAutoCommit);
2840 p->rc = rc = SQLITE_BUSY;
2841 goto vdbe_return;
2844 assert( db->nStatement==0 );
2845 sqlite3CloseSavepoints(db);
2846 if( p->rc==SQLITE_OK ){
2847 rc = SQLITE_DONE;
2848 }else{
2849 rc = SQLITE_ERROR;
2851 goto vdbe_return;
2852 }else{
2853 sqlite3SetString(&p->zErrMsg, db,
2854 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
2855 (iRollback)?"cannot rollback - no transaction is active":
2856 "cannot commit - no transaction is active"));
2858 rc = SQLITE_ERROR;
2860 break;
2863 /* Opcode: Transaction P1 P2 * * *
2865 ** Begin a transaction. The transaction ends when a Commit or Rollback
2866 ** opcode is encountered. Depending on the ON CONFLICT setting, the
2867 ** transaction might also be rolled back if an error is encountered.
2869 ** P1 is the index of the database file on which the transaction is
2870 ** started. Index 0 is the main database file and index 1 is the
2871 ** file used for temporary tables. Indices of 2 or more are used for
2872 ** attached databases.
2874 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
2875 ** obtained on the database file when a write-transaction is started. No
2876 ** other process can start another write transaction while this transaction is
2877 ** underway. Starting a write transaction also creates a rollback journal. A
2878 ** write transaction must be started before any changes can be made to the
2879 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2880 ** on the file.
2882 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2883 ** true (this flag is set if the Vdbe may modify more than one row and may
2884 ** throw an ABORT exception), a statement transaction may also be opened.
2885 ** More specifically, a statement transaction is opened iff the database
2886 ** connection is currently not in autocommit mode, or if there are other
2887 ** active statements. A statement transaction allows the changes made by this
2888 ** VDBE to be rolled back after an error without having to roll back the
2889 ** entire transaction. If no error is encountered, the statement transaction
2890 ** will automatically commit when the VDBE halts.
2892 ** If P2 is zero, then a read-lock is obtained on the database file.
2894 case OP_Transaction: {
2895 Btree *pBt;
2897 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2898 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2899 pBt = db->aDb[pOp->p1].pBt;
2901 if( pBt ){
2902 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
2903 if( rc==SQLITE_BUSY ){
2904 p->pc = pc;
2905 p->rc = rc = SQLITE_BUSY;
2906 goto vdbe_return;
2908 if( rc!=SQLITE_OK ){
2909 goto abort_due_to_error;
2912 if( pOp->p2 && p->usesStmtJournal
2913 && (db->autoCommit==0 || db->activeVdbeCnt>1)
2915 assert( sqlite3BtreeIsInTrans(pBt) );
2916 if( p->iStatement==0 ){
2917 assert( db->nStatement>=0 && db->nSavepoint>=0 );
2918 db->nStatement++;
2919 p->iStatement = db->nSavepoint + db->nStatement;
2922 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
2923 if( rc==SQLITE_OK ){
2924 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
2927 /* Store the current value of the database handles deferred constraint
2928 ** counter. If the statement transaction needs to be rolled back,
2929 ** the value of this counter needs to be restored too. */
2930 p->nStmtDefCons = db->nDeferredCons;
2933 break;
2936 /* Opcode: ReadCookie P1 P2 P3 * *
2938 ** Read cookie number P3 from database P1 and write it into register P2.
2939 ** P3==1 is the schema version. P3==2 is the database format.
2940 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
2941 ** the main database file and P1==1 is the database file used to store
2942 ** temporary tables.
2944 ** There must be a read-lock on the database (either a transaction
2945 ** must be started or there must be an open cursor) before
2946 ** executing this instruction.
2948 case OP_ReadCookie: { /* out2-prerelease */
2949 int iMeta;
2950 int iDb;
2951 int iCookie;
2953 iDb = pOp->p1;
2954 iCookie = pOp->p3;
2955 assert( pOp->p3<SQLITE_N_BTREE_META );
2956 assert( iDb>=0 && iDb<db->nDb );
2957 assert( db->aDb[iDb].pBt!=0 );
2958 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
2960 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
2961 pOut->u.i = iMeta;
2962 break;
2965 /* Opcode: SetCookie P1 P2 P3 * *
2967 ** Write the content of register P3 (interpreted as an integer)
2968 ** into cookie number P2 of database P1. P2==1 is the schema version.
2969 ** P2==2 is the database format. P2==3 is the recommended pager cache
2970 ** size, and so forth. P1==0 is the main database file and P1==1 is the
2971 ** database file used to store temporary tables.
2973 ** A transaction must be started before executing this opcode.
2975 case OP_SetCookie: { /* in3 */
2976 Db *pDb;
2977 assert( pOp->p2<SQLITE_N_BTREE_META );
2978 assert( pOp->p1>=0 && pOp->p1<db->nDb );
2979 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
2980 pDb = &db->aDb[pOp->p1];
2981 assert( pDb->pBt!=0 );
2982 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
2983 pIn3 = &aMem[pOp->p3];
2984 sqlite3VdbeMemIntegerify(pIn3);
2985 /* See note about index shifting on OP_ReadCookie */
2986 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
2987 if( pOp->p2==BTREE_SCHEMA_VERSION ){
2988 /* When the schema cookie changes, record the new cookie internally */
2989 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
2990 db->flags |= SQLITE_InternChanges;
2991 }else if( pOp->p2==BTREE_FILE_FORMAT ){
2992 /* Record changes in the file format */
2993 pDb->pSchema->file_format = (u8)pIn3->u.i;
2995 if( pOp->p1==1 ){
2996 /* Invalidate all prepared statements whenever the TEMP database
2997 ** schema is changed. Ticket #1644 */
2998 sqlite3ExpirePreparedStatements(db);
2999 p->expired = 0;
3001 break;
3004 /* Opcode: VerifyCookie P1 P2 P3 * *
3006 ** Check the value of global database parameter number 0 (the
3007 ** schema version) and make sure it is equal to P2 and that the
3008 ** generation counter on the local schema parse equals P3.
3010 ** P1 is the database number which is 0 for the main database file
3011 ** and 1 for the file holding temporary tables and some higher number
3012 ** for auxiliary databases.
3014 ** The cookie changes its value whenever the database schema changes.
3015 ** This operation is used to detect when that the cookie has changed
3016 ** and that the current process needs to reread the schema.
3018 ** Either a transaction needs to have been started or an OP_Open needs
3019 ** to be executed (to establish a read lock) before this opcode is
3020 ** invoked.
3022 case OP_VerifyCookie: {
3023 int iMeta;
3024 int iGen;
3025 Btree *pBt;
3027 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3028 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
3029 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3030 pBt = db->aDb[pOp->p1].pBt;
3031 if( pBt ){
3032 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3033 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3034 }else{
3035 iGen = iMeta = 0;
3037 if( iMeta!=pOp->p2 || iGen!=pOp->p3 ){
3038 sqlite3DbFree(db, p->zErrMsg);
3039 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3040 /* If the schema-cookie from the database file matches the cookie
3041 ** stored with the in-memory representation of the schema, do
3042 ** not reload the schema from the database file.
3044 ** If virtual-tables are in use, this is not just an optimization.
3045 ** Often, v-tables store their data in other SQLite tables, which
3046 ** are queried from within xNext() and other v-table methods using
3047 ** prepared queries. If such a query is out-of-date, we do not want to
3048 ** discard the database schema, as the user code implementing the
3049 ** v-table would have to be ready for the sqlite3_vtab structure itself
3050 ** to be invalidated whenever sqlite3_step() is called from within
3051 ** a v-table method.
3053 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3054 sqlite3ResetInternalSchema(db, pOp->p1);
3057 p->expired = 1;
3058 rc = SQLITE_SCHEMA;
3060 break;
3063 /* Opcode: OpenRead P1 P2 P3 P4 P5
3065 ** Open a read-only cursor for the database table whose root page is
3066 ** P2 in a database file. The database file is determined by P3.
3067 ** P3==0 means the main database, P3==1 means the database used for
3068 ** temporary tables, and P3>1 means used the corresponding attached
3069 ** database. Give the new cursor an identifier of P1. The P1
3070 ** values need not be contiguous but all P1 values should be small integers.
3071 ** It is an error for P1 to be negative.
3073 ** If P5!=0 then use the content of register P2 as the root page, not
3074 ** the value of P2 itself.
3076 ** There will be a read lock on the database whenever there is an
3077 ** open cursor. If the database was unlocked prior to this instruction
3078 ** then a read lock is acquired as part of this instruction. A read
3079 ** lock allows other processes to read the database but prohibits
3080 ** any other process from modifying the database. The read lock is
3081 ** released when all cursors are closed. If this instruction attempts
3082 ** to get a read lock but fails, the script terminates with an
3083 ** SQLITE_BUSY error code.
3085 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3086 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3087 ** structure, then said structure defines the content and collating
3088 ** sequence of the index being opened. Otherwise, if P4 is an integer
3089 ** value, it is set to the number of columns in the table.
3091 ** See also OpenWrite.
3093 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3095 ** Open a read/write cursor named P1 on the table or index whose root
3096 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3097 ** root page.
3099 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3100 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3101 ** structure, then said structure defines the content and collating
3102 ** sequence of the index being opened. Otherwise, if P4 is an integer
3103 ** value, it is set to the number of columns in the table, or to the
3104 ** largest index of any column of the table that is actually used.
3106 ** This instruction works just like OpenRead except that it opens the cursor
3107 ** in read/write mode. For a given table, there can be one or more read-only
3108 ** cursors or a single read/write cursor but not both.
3110 ** See also OpenRead.
3112 case OP_OpenRead:
3113 case OP_OpenWrite: {
3114 int nField;
3115 KeyInfo *pKeyInfo;
3116 int p2;
3117 int iDb;
3118 int wrFlag;
3119 Btree *pX;
3120 VdbeCursor *pCur;
3121 Db *pDb;
3123 if( p->expired ){
3124 rc = SQLITE_ABORT;
3125 break;
3128 nField = 0;
3129 pKeyInfo = 0;
3130 p2 = pOp->p2;
3131 iDb = pOp->p3;
3132 assert( iDb>=0 && iDb<db->nDb );
3133 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
3134 pDb = &db->aDb[iDb];
3135 pX = pDb->pBt;
3136 assert( pX!=0 );
3137 if( pOp->opcode==OP_OpenWrite ){
3138 wrFlag = 1;
3139 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3140 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3141 p->minWriteFileFormat = pDb->pSchema->file_format;
3143 }else{
3144 wrFlag = 0;
3146 if( pOp->p5 ){
3147 assert( p2>0 );
3148 assert( p2<=p->nMem );
3149 pIn2 = &aMem[p2];
3150 assert( memIsValid(pIn2) );
3151 assert( (pIn2->flags & MEM_Int)!=0 );
3152 sqlite3VdbeMemIntegerify(pIn2);
3153 p2 = (int)pIn2->u.i;
3154 /* The p2 value always comes from a prior OP_CreateTable opcode and
3155 ** that opcode will always set the p2 value to 2 or more or else fail.
3156 ** If there were a failure, the prepared statement would have halted
3157 ** before reaching this instruction. */
3158 if( NEVER(p2<2) ) {
3159 rc = SQLITE_CORRUPT_BKPT;
3160 goto abort_due_to_error;
3163 if( pOp->p4type==P4_KEYINFO ){
3164 pKeyInfo = pOp->p4.pKeyInfo;
3165 pKeyInfo->enc = ENC(p->db);
3166 nField = pKeyInfo->nField+1;
3167 }else if( pOp->p4type==P4_INT32 ){
3168 nField = pOp->p4.i;
3170 assert( pOp->p1>=0 );
3171 pCur = allocateCursor(p, pOp->p1, nField, iDb, 1);
3172 if( pCur==0 ) goto no_mem;
3173 pCur->nullRow = 1;
3174 pCur->isOrdered = 1;
3175 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->pCursor);
3176 pCur->pKeyInfo = pKeyInfo;
3178 /* Since it performs no memory allocation or IO, the only value that
3179 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3180 assert( rc==SQLITE_OK );
3182 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3183 ** SQLite used to check if the root-page flags were sane at this point
3184 ** and report database corruption if they were not, but this check has
3185 ** since moved into the btree layer. */
3186 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3187 pCur->isIndex = !pCur->isTable;
3188 break;
3191 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3193 ** Open a new cursor P1 to a transient table.
3194 ** The cursor is always opened read/write even if
3195 ** the main database is read-only. The ephemeral
3196 ** table is deleted automatically when the cursor is closed.
3198 ** P2 is the number of columns in the ephemeral table.
3199 ** The cursor points to a BTree table if P4==0 and to a BTree index
3200 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3201 ** that defines the format of keys in the index.
3203 ** This opcode was once called OpenTemp. But that created
3204 ** confusion because the term "temp table", might refer either
3205 ** to a TEMP table at the SQL level, or to a table opened by
3206 ** this opcode. Then this opcode was call OpenVirtual. But
3207 ** that created confusion with the whole virtual-table idea.
3209 ** The P5 parameter can be a mask of the BTREE_* flags defined
3210 ** in btree.h. These flags control aspects of the operation of
3211 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3212 ** added automatically.
3214 /* Opcode: OpenAutoindex P1 P2 * P4 *
3216 ** This opcode works the same as OP_OpenEphemeral. It has a
3217 ** different name to distinguish its use. Tables created using
3218 ** by this opcode will be used for automatically created transient
3219 ** indices in joins.
3221 case OP_OpenAutoindex:
3222 case OP_OpenEphemeral: {
3223 VdbeCursor *pCx;
3224 static const int vfsFlags =
3225 SQLITE_OPEN_READWRITE |
3226 SQLITE_OPEN_CREATE |
3227 SQLITE_OPEN_EXCLUSIVE |
3228 SQLITE_OPEN_DELETEONCLOSE |
3229 SQLITE_OPEN_TRANSIENT_DB;
3231 assert( pOp->p1>=0 );
3232 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3233 if( pCx==0 ) goto no_mem;
3234 pCx->nullRow = 1;
3235 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3236 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3237 if( rc==SQLITE_OK ){
3238 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3240 if( rc==SQLITE_OK ){
3241 /* If a transient index is required, create it by calling
3242 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3243 ** opening it. If a transient table is required, just use the
3244 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3246 if( pOp->p4.pKeyInfo ){
3247 int pgno;
3248 assert( pOp->p4type==P4_KEYINFO );
3249 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3250 if( rc==SQLITE_OK ){
3251 assert( pgno==MASTER_ROOT+1 );
3252 rc = sqlite3BtreeCursor(pCx->pBt, pgno, 1,
3253 (KeyInfo*)pOp->p4.z, pCx->pCursor);
3254 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3255 pCx->pKeyInfo->enc = ENC(p->db);
3257 pCx->isTable = 0;
3258 }else{
3259 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, 1, 0, pCx->pCursor);
3260 pCx->isTable = 1;
3263 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3264 pCx->isIndex = !pCx->isTable;
3265 break;
3268 /* Opcode: OpenSorter P1 P2 * P4 *
3270 ** This opcode works like OP_OpenEphemeral except that it opens
3271 ** a transient index that is specifically designed to sort large
3272 ** tables using an external merge-sort algorithm.
3274 case OP_SorterOpen: {
3275 VdbeCursor *pCx;
3276 #ifndef SQLITE_OMIT_MERGE_SORT
3277 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, 1);
3278 if( pCx==0 ) goto no_mem;
3279 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3280 pCx->pKeyInfo->enc = ENC(p->db);
3281 pCx->isSorter = 1;
3282 rc = sqlite3VdbeSorterInit(db, pCx);
3283 #else
3284 pOp->opcode = OP_OpenEphemeral;
3285 pc--;
3286 #endif
3287 break;
3290 /* Opcode: OpenPseudo P1 P2 P3 * *
3292 ** Open a new cursor that points to a fake table that contains a single
3293 ** row of data. The content of that one row in the content of memory
3294 ** register P2. In other words, cursor P1 becomes an alias for the
3295 ** MEM_Blob content contained in register P2.
3297 ** A pseudo-table created by this opcode is used to hold a single
3298 ** row output from the sorter so that the row can be decomposed into
3299 ** individual columns using the OP_Column opcode. The OP_Column opcode
3300 ** is the only cursor opcode that works with a pseudo-table.
3302 ** P3 is the number of fields in the records that will be stored by
3303 ** the pseudo-table.
3305 case OP_OpenPseudo: {
3306 VdbeCursor *pCx;
3308 assert( pOp->p1>=0 );
3309 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, 0);
3310 if( pCx==0 ) goto no_mem;
3311 pCx->nullRow = 1;
3312 pCx->pseudoTableReg = pOp->p2;
3313 pCx->isTable = 1;
3314 pCx->isIndex = 0;
3315 break;
3318 /* Opcode: Close P1 * * * *
3320 ** Close a cursor previously opened as P1. If P1 is not
3321 ** currently open, this instruction is a no-op.
3323 case OP_Close: {
3324 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3325 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3326 p->apCsr[pOp->p1] = 0;
3327 break;
3330 /* Opcode: SeekGe P1 P2 P3 P4 *
3332 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3333 ** use the value in register P3 as the key. If cursor P1 refers
3334 ** to an SQL index, then P3 is the first in an array of P4 registers
3335 ** that are used as an unpacked index key.
3337 ** Reposition cursor P1 so that it points to the smallest entry that
3338 ** is greater than or equal to the key value. If there are no records
3339 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3341 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3343 /* Opcode: SeekGt P1 P2 P3 P4 *
3345 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3346 ** use the value in register P3 as a key. If cursor P1 refers
3347 ** to an SQL index, then P3 is the first in an array of P4 registers
3348 ** that are used as an unpacked index key.
3350 ** Reposition cursor P1 so that it points to the smallest entry that
3351 ** is greater than the key value. If there are no records greater than
3352 ** the key and P2 is not zero, then jump to P2.
3354 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3356 /* Opcode: SeekLt P1 P2 P3 P4 *
3358 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3359 ** use the value in register P3 as a key. If cursor P1 refers
3360 ** to an SQL index, then P3 is the first in an array of P4 registers
3361 ** that are used as an unpacked index key.
3363 ** Reposition cursor P1 so that it points to the largest entry that
3364 ** is less than the key value. If there are no records less than
3365 ** the key and P2 is not zero, then jump to P2.
3367 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3369 /* Opcode: SeekLe P1 P2 P3 P4 *
3371 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3372 ** use the value in register P3 as a key. If cursor P1 refers
3373 ** to an SQL index, then P3 is the first in an array of P4 registers
3374 ** that are used as an unpacked index key.
3376 ** Reposition cursor P1 so that it points to the largest entry that
3377 ** is less than or equal to the key value. If there are no records
3378 ** less than or equal to the key and P2 is not zero, then jump to P2.
3380 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3382 case OP_SeekLt: /* jump, in3 */
3383 case OP_SeekLe: /* jump, in3 */
3384 case OP_SeekGe: /* jump, in3 */
3385 case OP_SeekGt: { /* jump, in3 */
3386 int res;
3387 int oc;
3388 VdbeCursor *pC;
3389 UnpackedRecord r;
3390 int nField;
3391 i64 iKey; /* The rowid we are to seek to */
3393 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3394 assert( pOp->p2!=0 );
3395 pC = p->apCsr[pOp->p1];
3396 assert( pC!=0 );
3397 assert( pC->pseudoTableReg==0 );
3398 assert( OP_SeekLe == OP_SeekLt+1 );
3399 assert( OP_SeekGe == OP_SeekLt+2 );
3400 assert( OP_SeekGt == OP_SeekLt+3 );
3401 assert( pC->isOrdered );
3402 if( ALWAYS(pC->pCursor!=0) ){
3403 oc = pOp->opcode;
3404 pC->nullRow = 0;
3405 if( pC->isTable ){
3406 /* The input value in P3 might be of any type: integer, real, string,
3407 ** blob, or NULL. But it needs to be an integer before we can do
3408 ** the seek, so covert it. */
3409 pIn3 = &aMem[pOp->p3];
3410 applyNumericAffinity(pIn3);
3411 iKey = sqlite3VdbeIntValue(pIn3);
3412 pC->rowidIsValid = 0;
3414 /* If the P3 value could not be converted into an integer without
3415 ** loss of information, then special processing is required... */
3416 if( (pIn3->flags & MEM_Int)==0 ){
3417 if( (pIn3->flags & MEM_Real)==0 ){
3418 /* If the P3 value cannot be converted into any kind of a number,
3419 ** then the seek is not possible, so jump to P2 */
3420 pc = pOp->p2 - 1;
3421 break;
3423 /* If we reach this point, then the P3 value must be a floating
3424 ** point number. */
3425 assert( (pIn3->flags & MEM_Real)!=0 );
3427 if( iKey==SMALLEST_INT64 && (pIn3->r<(double)iKey || pIn3->r>0) ){
3428 /* The P3 value is too large in magnitude to be expressed as an
3429 ** integer. */
3430 res = 1;
3431 if( pIn3->r<0 ){
3432 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
3433 rc = sqlite3BtreeFirst(pC->pCursor, &res);
3434 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3436 }else{
3437 if( oc<=OP_SeekLe ){ assert( oc==OP_SeekLt || oc==OP_SeekLe );
3438 rc = sqlite3BtreeLast(pC->pCursor, &res);
3439 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3442 if( res ){
3443 pc = pOp->p2 - 1;
3445 break;
3446 }else if( oc==OP_SeekLt || oc==OP_SeekGe ){
3447 /* Use the ceiling() function to convert real->int */
3448 if( pIn3->r > (double)iKey ) iKey++;
3449 }else{
3450 /* Use the floor() function to convert real->int */
3451 assert( oc==OP_SeekLe || oc==OP_SeekGt );
3452 if( pIn3->r < (double)iKey ) iKey--;
3455 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)iKey, 0, &res);
3456 if( rc!=SQLITE_OK ){
3457 goto abort_due_to_error;
3459 if( res==0 ){
3460 pC->rowidIsValid = 1;
3461 pC->lastRowid = iKey;
3463 }else{
3464 nField = pOp->p4.i;
3465 assert( pOp->p4type==P4_INT32 );
3466 assert( nField>0 );
3467 r.pKeyInfo = pC->pKeyInfo;
3468 r.nField = (u16)nField;
3470 /* The next line of code computes as follows, only faster:
3471 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3472 ** r.flags = UNPACKED_INCRKEY;
3473 ** }else{
3474 ** r.flags = 0;
3475 ** }
3477 r.flags = (u16)(UNPACKED_INCRKEY * (1 & (oc - OP_SeekLt)));
3478 assert( oc!=OP_SeekGt || r.flags==UNPACKED_INCRKEY );
3479 assert( oc!=OP_SeekLe || r.flags==UNPACKED_INCRKEY );
3480 assert( oc!=OP_SeekGe || r.flags==0 );
3481 assert( oc!=OP_SeekLt || r.flags==0 );
3483 r.aMem = &aMem[pOp->p3];
3484 #ifdef SQLITE_DEBUG
3485 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3486 #endif
3487 ExpandBlob(r.aMem);
3488 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, &r, 0, 0, &res);
3489 if( rc!=SQLITE_OK ){
3490 goto abort_due_to_error;
3492 pC->rowidIsValid = 0;
3494 pC->deferredMoveto = 0;
3495 pC->cacheStatus = CACHE_STALE;
3496 #ifdef SQLITE_TEST
3497 sqlite3_search_count++;
3498 #endif
3499 if( oc>=OP_SeekGe ){ assert( oc==OP_SeekGe || oc==OP_SeekGt );
3500 if( res<0 || (res==0 && oc==OP_SeekGt) ){
3501 rc = sqlite3BtreeNext(pC->pCursor, &res);
3502 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3503 pC->rowidIsValid = 0;
3504 }else{
3505 res = 0;
3507 }else{
3508 assert( oc==OP_SeekLt || oc==OP_SeekLe );
3509 if( res>0 || (res==0 && oc==OP_SeekLt) ){
3510 rc = sqlite3BtreePrevious(pC->pCursor, &res);
3511 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3512 pC->rowidIsValid = 0;
3513 }else{
3514 /* res might be negative because the table is empty. Check to
3515 ** see if this is the case.
3517 res = sqlite3BtreeEof(pC->pCursor);
3520 assert( pOp->p2>0 );
3521 if( res ){
3522 pc = pOp->p2 - 1;
3524 }else{
3525 /* This happens when attempting to open the sqlite3_master table
3526 ** for read access returns SQLITE_EMPTY. In this case always
3527 ** take the jump (since there are no records in the table).
3529 pc = pOp->p2 - 1;
3531 break;
3534 /* Opcode: Seek P1 P2 * * *
3536 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3537 ** for P1 to move so that it points to the rowid given by P2.
3539 ** This is actually a deferred seek. Nothing actually happens until
3540 ** the cursor is used to read a record. That way, if no reads
3541 ** occur, no unnecessary I/O happens.
3543 case OP_Seek: { /* in2 */
3544 VdbeCursor *pC;
3546 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3547 pC = p->apCsr[pOp->p1];
3548 assert( pC!=0 );
3549 if( ALWAYS(pC->pCursor!=0) ){
3550 assert( pC->isTable );
3551 pC->nullRow = 0;
3552 pIn2 = &aMem[pOp->p2];
3553 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3554 pC->rowidIsValid = 0;
3555 pC->deferredMoveto = 1;
3557 break;
3561 /* Opcode: Found P1 P2 P3 P4 *
3563 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3564 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3565 ** record.
3567 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3568 ** is a prefix of any entry in P1 then a jump is made to P2 and
3569 ** P1 is left pointing at the matching entry.
3571 /* Opcode: NotFound P1 P2 P3 P4 *
3573 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3574 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3575 ** record.
3577 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3578 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3579 ** does contain an entry whose prefix matches the P3/P4 record then control
3580 ** falls through to the next instruction and P1 is left pointing at the
3581 ** matching entry.
3583 ** See also: Found, NotExists, IsUnique
3585 case OP_NotFound: /* jump, in3 */
3586 case OP_Found: { /* jump, in3 */
3587 int alreadyExists;
3588 VdbeCursor *pC;
3589 int res;
3590 char *pFree;
3591 UnpackedRecord *pIdxKey;
3592 UnpackedRecord r;
3593 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*3 + 7];
3595 #ifdef SQLITE_TEST
3596 sqlite3_found_count++;
3597 #endif
3599 alreadyExists = 0;
3600 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3601 assert( pOp->p4type==P4_INT32 );
3602 pC = p->apCsr[pOp->p1];
3603 assert( pC!=0 );
3604 pIn3 = &aMem[pOp->p3];
3605 if( ALWAYS(pC->pCursor!=0) ){
3607 assert( pC->isTable==0 );
3608 if( pOp->p4.i>0 ){
3609 r.pKeyInfo = pC->pKeyInfo;
3610 r.nField = (u16)pOp->p4.i;
3611 r.aMem = pIn3;
3612 #ifdef SQLITE_DEBUG
3613 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3614 #endif
3615 r.flags = UNPACKED_PREFIX_MATCH;
3616 pIdxKey = &r;
3617 }else{
3618 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3619 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3621 if( pIdxKey==0 ) goto no_mem;
3622 assert( pIn3->flags & MEM_Blob );
3623 assert( (pIn3->flags & MEM_Zero)==0 ); /* zeroblobs already expanded */
3624 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3625 pIdxKey->flags |= UNPACKED_PREFIX_MATCH;
3627 rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, pIdxKey, 0, 0, &res);
3628 if( pOp->p4.i==0 ){
3629 sqlite3DbFree(db, pFree);
3631 if( rc!=SQLITE_OK ){
3632 break;
3634 alreadyExists = (res==0);
3635 pC->deferredMoveto = 0;
3636 pC->cacheStatus = CACHE_STALE;
3638 if( pOp->opcode==OP_Found ){
3639 if( alreadyExists ) pc = pOp->p2 - 1;
3640 }else{
3641 if( !alreadyExists ) pc = pOp->p2 - 1;
3643 break;
3646 /* Opcode: IsUnique P1 P2 P3 P4 *
3648 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3649 ** no data and where the key are records generated by OP_MakeRecord with
3650 ** the list field being the integer ROWID of the entry that the index
3651 ** entry refers to.
3653 ** The P3 register contains an integer record number. Call this record
3654 ** number R. Register P4 is the first in a set of N contiguous registers
3655 ** that make up an unpacked index key that can be used with cursor P1.
3656 ** The value of N can be inferred from the cursor. N includes the rowid
3657 ** value appended to the end of the index record. This rowid value may
3658 ** or may not be the same as R.
3660 ** If any of the N registers beginning with register P4 contains a NULL
3661 ** value, jump immediately to P2.
3663 ** Otherwise, this instruction checks if cursor P1 contains an entry
3664 ** where the first (N-1) fields match but the rowid value at the end
3665 ** of the index entry is not R. If there is no such entry, control jumps
3666 ** to instruction P2. Otherwise, the rowid of the conflicting index
3667 ** entry is copied to register P3 and control falls through to the next
3668 ** instruction.
3670 ** See also: NotFound, NotExists, Found
3672 case OP_IsUnique: { /* jump, in3 */
3673 u16 ii;
3674 VdbeCursor *pCx;
3675 BtCursor *pCrsr;
3676 u16 nField;
3677 Mem *aMx;
3678 UnpackedRecord r; /* B-Tree index search key */
3679 i64 R; /* Rowid stored in register P3 */
3681 pIn3 = &aMem[pOp->p3];
3682 aMx = &aMem[pOp->p4.i];
3683 /* Assert that the values of parameters P1 and P4 are in range. */
3684 assert( pOp->p4type==P4_INT32 );
3685 assert( pOp->p4.i>0 && pOp->p4.i<=p->nMem );
3686 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3688 /* Find the index cursor. */
3689 pCx = p->apCsr[pOp->p1];
3690 assert( pCx->deferredMoveto==0 );
3691 pCx->seekResult = 0;
3692 pCx->cacheStatus = CACHE_STALE;
3693 pCrsr = pCx->pCursor;
3695 /* If any of the values are NULL, take the jump. */
3696 nField = pCx->pKeyInfo->nField;
3697 for(ii=0; ii<nField; ii++){
3698 if( aMx[ii].flags & MEM_Null ){
3699 pc = pOp->p2 - 1;
3700 pCrsr = 0;
3701 break;
3704 assert( (aMx[nField].flags & MEM_Null)==0 );
3706 if( pCrsr!=0 ){
3707 /* Populate the index search key. */
3708 r.pKeyInfo = pCx->pKeyInfo;
3709 r.nField = nField + 1;
3710 r.flags = UNPACKED_PREFIX_SEARCH;
3711 r.aMem = aMx;
3712 #ifdef SQLITE_DEBUG
3713 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3714 #endif
3716 /* Extract the value of R from register P3. */
3717 sqlite3VdbeMemIntegerify(pIn3);
3718 R = pIn3->u.i;
3720 /* Search the B-Tree index. If no conflicting record is found, jump
3721 ** to P2. Otherwise, copy the rowid of the conflicting record to
3722 ** register P3 and fall through to the next instruction. */
3723 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &pCx->seekResult);
3724 if( (r.flags & UNPACKED_PREFIX_SEARCH) || r.rowid==R ){
3725 pc = pOp->p2 - 1;
3726 }else{
3727 pIn3->u.i = r.rowid;
3730 break;
3733 /* Opcode: NotExists P1 P2 P3 * *
3735 ** Use the content of register P3 as an integer key. If a record
3736 ** with that key does not exist in table of P1, then jump to P2.
3737 ** If the record does exist, then fall through. The cursor is left
3738 ** pointing to the record if it exists.
3740 ** The difference between this operation and NotFound is that this
3741 ** operation assumes the key is an integer and that P1 is a table whereas
3742 ** NotFound assumes key is a blob constructed from MakeRecord and
3743 ** P1 is an index.
3745 ** See also: Found, NotFound, IsUnique
3747 case OP_NotExists: { /* jump, in3 */
3748 VdbeCursor *pC;
3749 BtCursor *pCrsr;
3750 int res;
3751 u64 iKey;
3753 pIn3 = &aMem[pOp->p3];
3754 assert( pIn3->flags & MEM_Int );
3755 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3756 pC = p->apCsr[pOp->p1];
3757 assert( pC!=0 );
3758 assert( pC->isTable );
3759 assert( pC->pseudoTableReg==0 );
3760 pCrsr = pC->pCursor;
3761 if( ALWAYS(pCrsr!=0) ){
3762 res = 0;
3763 iKey = pIn3->u.i;
3764 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
3765 pC->lastRowid = pIn3->u.i;
3766 pC->rowidIsValid = res==0 ?1:0;
3767 pC->nullRow = 0;
3768 pC->cacheStatus = CACHE_STALE;
3769 pC->deferredMoveto = 0;
3770 if( res!=0 ){
3771 pc = pOp->p2 - 1;
3772 assert( pC->rowidIsValid==0 );
3774 pC->seekResult = res;
3775 }else{
3776 /* This happens when an attempt to open a read cursor on the
3777 ** sqlite_master table returns SQLITE_EMPTY.
3779 pc = pOp->p2 - 1;
3780 assert( pC->rowidIsValid==0 );
3781 pC->seekResult = 0;
3783 break;
3786 /* Opcode: Sequence P1 P2 * * *
3788 ** Find the next available sequence number for cursor P1.
3789 ** Write the sequence number into register P2.
3790 ** The sequence number on the cursor is incremented after this
3791 ** instruction.
3793 case OP_Sequence: { /* out2-prerelease */
3794 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3795 assert( p->apCsr[pOp->p1]!=0 );
3796 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
3797 break;
3801 /* Opcode: NewRowid P1 P2 P3 * *
3803 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3804 ** The record number is not previously used as a key in the database
3805 ** table that cursor P1 points to. The new record number is written
3806 ** written to register P2.
3808 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3809 ** the largest previously generated record number. No new record numbers are
3810 ** allowed to be less than this value. When this value reaches its maximum,
3811 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3812 ** generated record number. This P3 mechanism is used to help implement the
3813 ** AUTOINCREMENT feature.
3815 case OP_NewRowid: { /* out2-prerelease */
3816 i64 v; /* The new rowid */
3817 VdbeCursor *pC; /* Cursor of table to get the new rowid */
3818 int res; /* Result of an sqlite3BtreeLast() */
3819 int cnt; /* Counter to limit the number of searches */
3820 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
3821 VdbeFrame *pFrame; /* Root frame of VDBE */
3823 v = 0;
3824 res = 0;
3825 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3826 pC = p->apCsr[pOp->p1];
3827 assert( pC!=0 );
3828 if( NEVER(pC->pCursor==0) ){
3829 /* The zero initialization above is all that is needed */
3830 }else{
3831 /* The next rowid or record number (different terms for the same
3832 ** thing) is obtained in a two-step algorithm.
3834 ** First we attempt to find the largest existing rowid and add one
3835 ** to that. But if the largest existing rowid is already the maximum
3836 ** positive integer, we have to fall through to the second
3837 ** probabilistic algorithm
3839 ** The second algorithm is to select a rowid at random and see if
3840 ** it already exists in the table. If it does not exist, we have
3841 ** succeeded. If the random rowid does exist, we select a new one
3842 ** and try again, up to 100 times.
3844 assert( pC->isTable );
3846 #ifdef SQLITE_32BIT_ROWID
3847 # define MAX_ROWID 0x7fffffff
3848 #else
3849 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3850 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3851 ** to provide the constant while making all compilers happy.
3853 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3854 #endif
3856 if( !pC->useRandomRowid ){
3857 v = sqlite3BtreeGetCachedRowid(pC->pCursor);
3858 if( v==0 ){
3859 rc = sqlite3BtreeLast(pC->pCursor, &res);
3860 if( rc!=SQLITE_OK ){
3861 goto abort_due_to_error;
3863 if( res ){
3864 v = 1; /* IMP: R-61914-48074 */
3865 }else{
3866 assert( sqlite3BtreeCursorIsValid(pC->pCursor) );
3867 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
3868 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
3869 if( v>=MAX_ROWID ){
3870 pC->useRandomRowid = 1;
3871 }else{
3872 v++; /* IMP: R-29538-34987 */
3877 #ifndef SQLITE_OMIT_AUTOINCREMENT
3878 if( pOp->p3 ){
3879 /* Assert that P3 is a valid memory cell. */
3880 assert( pOp->p3>0 );
3881 if( p->pFrame ){
3882 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
3883 /* Assert that P3 is a valid memory cell. */
3884 assert( pOp->p3<=pFrame->nMem );
3885 pMem = &pFrame->aMem[pOp->p3];
3886 }else{
3887 /* Assert that P3 is a valid memory cell. */
3888 assert( pOp->p3<=p->nMem );
3889 pMem = &aMem[pOp->p3];
3890 memAboutToChange(p, pMem);
3892 assert( memIsValid(pMem) );
3894 REGISTER_TRACE(pOp->p3, pMem);
3895 sqlite3VdbeMemIntegerify(pMem);
3896 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
3897 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
3898 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
3899 goto abort_due_to_error;
3901 if( v<pMem->u.i+1 ){
3902 v = pMem->u.i + 1;
3904 pMem->u.i = v;
3906 #endif
3908 sqlite3BtreeSetCachedRowid(pC->pCursor, v<MAX_ROWID ? v+1 : 0);
3910 if( pC->useRandomRowid ){
3911 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3912 ** largest possible integer (9223372036854775807) then the database
3913 ** engine starts picking positive candidate ROWIDs at random until
3914 ** it finds one that is not previously used. */
3915 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
3916 ** an AUTOINCREMENT table. */
3917 /* on the first attempt, simply do one more than previous */
3918 v = lastRowid;
3919 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3920 v++; /* ensure non-zero */
3921 cnt = 0;
3922 while( ((rc = sqlite3BtreeMovetoUnpacked(pC->pCursor, 0, (u64)v,
3923 0, &res))==SQLITE_OK)
3924 && (res==0)
3925 && (++cnt<100)){
3926 /* collision - try another random rowid */
3927 sqlite3_randomness(sizeof(v), &v);
3928 if( cnt<5 ){
3929 /* try "small" random rowids for the initial attempts */
3930 v &= 0xffffff;
3931 }else{
3932 v &= (MAX_ROWID>>1); /* ensure doesn't go negative */
3934 v++; /* ensure non-zero */
3936 if( rc==SQLITE_OK && res==0 ){
3937 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
3938 goto abort_due_to_error;
3940 assert( v>0 ); /* EV: R-40812-03570 */
3942 pC->rowidIsValid = 0;
3943 pC->deferredMoveto = 0;
3944 pC->cacheStatus = CACHE_STALE;
3946 pOut->u.i = v;
3947 break;
3950 /* Opcode: Insert P1 P2 P3 P4 P5
3952 ** Write an entry into the table of cursor P1. A new entry is
3953 ** created if it doesn't already exist or the data for an existing
3954 ** entry is overwritten. The data is the value MEM_Blob stored in register
3955 ** number P2. The key is stored in register P3. The key must
3956 ** be a MEM_Int.
3958 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3959 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
3960 ** then rowid is stored for subsequent return by the
3961 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
3963 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3964 ** the last seek operation (OP_NotExists) was a success, then this
3965 ** operation will not attempt to find the appropriate row before doing
3966 ** the insert but will instead overwrite the row that the cursor is
3967 ** currently pointing to. Presumably, the prior OP_NotExists opcode
3968 ** has already positioned the cursor correctly. This is an optimization
3969 ** that boosts performance by avoiding redundant seeks.
3971 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3972 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3973 ** is part of an INSERT operation. The difference is only important to
3974 ** the update hook.
3976 ** Parameter P4 may point to a string containing the table-name, or
3977 ** may be NULL. If it is not NULL, then the update-hook
3978 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3980 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3981 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
3982 ** and register P2 becomes ephemeral. If the cursor is changed, the
3983 ** value of register P2 will then change. Make sure this does not
3984 ** cause any problems.)
3986 ** This instruction only works on tables. The equivalent instruction
3987 ** for indices is OP_IdxInsert.
3989 /* Opcode: InsertInt P1 P2 P3 P4 P5
3991 ** This works exactly like OP_Insert except that the key is the
3992 ** integer value P3, not the value of the integer stored in register P3.
3994 case OP_Insert:
3995 case OP_InsertInt: {
3996 Mem *pData; /* MEM cell holding data for the record to be inserted */
3997 Mem *pKey; /* MEM cell holding key for the record */
3998 i64 iKey; /* The integer ROWID or key for the record to be inserted */
3999 VdbeCursor *pC; /* Cursor to table into which insert is written */
4000 int nZero; /* Number of zero-bytes to append */
4001 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4002 const char *zDb; /* database name - used by the update hook */
4003 const char *zTbl; /* Table name - used by the opdate hook */
4004 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4006 pData = &aMem[pOp->p2];
4007 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4008 assert( memIsValid(pData) );
4009 pC = p->apCsr[pOp->p1];
4010 assert( pC!=0 );
4011 assert( pC->pCursor!=0 );
4012 assert( pC->pseudoTableReg==0 );
4013 assert( pC->isTable );
4014 REGISTER_TRACE(pOp->p2, pData);
4016 if( pOp->opcode==OP_Insert ){
4017 pKey = &aMem[pOp->p3];
4018 assert( pKey->flags & MEM_Int );
4019 assert( memIsValid(pKey) );
4020 REGISTER_TRACE(pOp->p3, pKey);
4021 iKey = pKey->u.i;
4022 }else{
4023 assert( pOp->opcode==OP_InsertInt );
4024 iKey = pOp->p3;
4027 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4028 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4029 if( pData->flags & MEM_Null ){
4030 pData->z = 0;
4031 pData->n = 0;
4032 }else{
4033 assert( pData->flags & (MEM_Blob|MEM_Str) );
4035 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4036 if( pData->flags & MEM_Zero ){
4037 nZero = pData->u.nZero;
4038 }else{
4039 nZero = 0;
4041 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4042 rc = sqlite3BtreeInsert(pC->pCursor, 0, iKey,
4043 pData->z, pData->n, nZero,
4044 pOp->p5 & OPFLAG_APPEND, seekResult
4046 pC->rowidIsValid = 0;
4047 pC->deferredMoveto = 0;
4048 pC->cacheStatus = CACHE_STALE;
4050 /* Invoke the update-hook if required. */
4051 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4052 zDb = db->aDb[pC->iDb].zName;
4053 zTbl = pOp->p4.z;
4054 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4055 assert( pC->isTable );
4056 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4057 assert( pC->iDb>=0 );
4059 break;
4062 /* Opcode: Delete P1 P2 * P4 *
4064 ** Delete the record at which the P1 cursor is currently pointing.
4066 ** The cursor will be left pointing at either the next or the previous
4067 ** record in the table. If it is left pointing at the next record, then
4068 ** the next Next instruction will be a no-op. Hence it is OK to delete
4069 ** a record from within an Next loop.
4071 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4072 ** incremented (otherwise not).
4074 ** P1 must not be pseudo-table. It has to be a real table with
4075 ** multiple rows.
4077 ** If P4 is not NULL, then it is the name of the table that P1 is
4078 ** pointing to. The update hook will be invoked, if it exists.
4079 ** If P4 is not NULL then the P1 cursor must have been positioned
4080 ** using OP_NotFound prior to invoking this opcode.
4082 case OP_Delete: {
4083 i64 iKey;
4084 VdbeCursor *pC;
4086 iKey = 0;
4087 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4088 pC = p->apCsr[pOp->p1];
4089 assert( pC!=0 );
4090 assert( pC->pCursor!=0 ); /* Only valid for real tables, no pseudotables */
4092 /* If the update-hook will be invoked, set iKey to the rowid of the
4093 ** row being deleted.
4095 if( db->xUpdateCallback && pOp->p4.z ){
4096 assert( pC->isTable );
4097 assert( pC->rowidIsValid ); /* lastRowid set by previous OP_NotFound */
4098 iKey = pC->lastRowid;
4101 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4102 ** OP_Column on the same table without any intervening operations that
4103 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4104 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4105 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4106 ** to guard against future changes to the code generator.
4108 assert( pC->deferredMoveto==0 );
4109 rc = sqlite3VdbeCursorMoveto(pC);
4110 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4112 sqlite3BtreeSetCachedRowid(pC->pCursor, 0);
4113 rc = sqlite3BtreeDelete(pC->pCursor);
4114 pC->cacheStatus = CACHE_STALE;
4116 /* Invoke the update-hook if required. */
4117 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4118 const char *zDb = db->aDb[pC->iDb].zName;
4119 const char *zTbl = pOp->p4.z;
4120 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, zTbl, iKey);
4121 assert( pC->iDb>=0 );
4123 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4124 break;
4126 /* Opcode: ResetCount * * * * *
4128 ** The value of the change counter is copied to the database handle
4129 ** change counter (returned by subsequent calls to sqlite3_changes()).
4130 ** Then the VMs internal change counter resets to 0.
4131 ** This is used by trigger programs.
4133 case OP_ResetCount: {
4134 sqlite3VdbeSetChanges(db, p->nChange);
4135 p->nChange = 0;
4136 break;
4139 /* Opcode: SorterCompare P1 P2 P3
4141 ** P1 is a sorter cursor. This instruction compares the record blob in
4142 ** register P3 with the entry that the sorter cursor currently points to.
4143 ** If, excluding the rowid fields at the end, the two records are a match,
4144 ** fall through to the next instruction. Otherwise, jump to instruction P2.
4146 case OP_SorterCompare: {
4147 VdbeCursor *pC;
4148 int res;
4150 pC = p->apCsr[pOp->p1];
4151 assert( isSorter(pC) );
4152 pIn3 = &aMem[pOp->p3];
4153 rc = sqlite3VdbeSorterCompare(pC, pIn3, &res);
4154 if( res ){
4155 pc = pOp->p2-1;
4157 break;
4160 /* Opcode: SorterData P1 P2 * * *
4162 ** Write into register P2 the current sorter data for sorter cursor P1.
4164 case OP_SorterData: {
4165 VdbeCursor *pC;
4166 #ifndef SQLITE_OMIT_MERGE_SORT
4167 pOut = &aMem[pOp->p2];
4168 pC = p->apCsr[pOp->p1];
4169 assert( pC->isSorter );
4170 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4171 #else
4172 pOp->opcode = OP_RowKey;
4173 pc--;
4174 #endif
4175 break;
4178 /* Opcode: RowData P1 P2 * * *
4180 ** Write into register P2 the complete row data for cursor P1.
4181 ** There is no interpretation of the data.
4182 ** It is just copied onto the P2 register exactly as
4183 ** it is found in the database file.
4185 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4186 ** of a real table, not a pseudo-table.
4188 /* Opcode: RowKey P1 P2 * * *
4190 ** Write into register P2 the complete row key for cursor P1.
4191 ** There is no interpretation of the data.
4192 ** The key is copied onto the P3 register exactly as
4193 ** it is found in the database file.
4195 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4196 ** of a real table, not a pseudo-table.
4198 case OP_RowKey:
4199 case OP_RowData: {
4200 VdbeCursor *pC;
4201 BtCursor *pCrsr;
4202 u32 n;
4203 i64 n64;
4205 pOut = &aMem[pOp->p2];
4206 memAboutToChange(p, pOut);
4208 /* Note that RowKey and RowData are really exactly the same instruction */
4209 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4210 pC = p->apCsr[pOp->p1];
4211 assert( pC->isSorter==0 );
4212 assert( pC->isTable || pOp->opcode!=OP_RowData );
4213 assert( pC->isIndex || pOp->opcode==OP_RowData );
4214 assert( pC!=0 );
4215 assert( pC->nullRow==0 );
4216 assert( pC->pseudoTableReg==0 );
4217 assert( !pC->isSorter );
4218 assert( pC->pCursor!=0 );
4219 pCrsr = pC->pCursor;
4220 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4222 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4223 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4224 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4225 ** a no-op and can never fail. But we leave it in place as a safety.
4227 assert( pC->deferredMoveto==0 );
4228 rc = sqlite3VdbeCursorMoveto(pC);
4229 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4231 if( pC->isIndex ){
4232 assert( !pC->isTable );
4233 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4234 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
4235 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4236 goto too_big;
4238 n = (u32)n64;
4239 }else{
4240 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4241 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
4242 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4243 goto too_big;
4246 if( sqlite3VdbeMemGrow(pOut, n, 0) ){
4247 goto no_mem;
4249 pOut->n = n;
4250 MemSetTypeFlag(pOut, MEM_Blob);
4251 if( pC->isIndex ){
4252 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4253 }else{
4254 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4256 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
4257 UPDATE_MAX_BLOBSIZE(pOut);
4258 break;
4261 /* Opcode: Rowid P1 P2 * * *
4263 ** Store in register P2 an integer which is the key of the table entry that
4264 ** P1 is currently point to.
4266 ** P1 can be either an ordinary table or a virtual table. There used to
4267 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4268 ** one opcode now works for both table types.
4270 case OP_Rowid: { /* out2-prerelease */
4271 VdbeCursor *pC;
4272 i64 v;
4273 sqlite3_vtab *pVtab;
4274 const sqlite3_module *pModule;
4276 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4277 pC = p->apCsr[pOp->p1];
4278 assert( pC!=0 );
4279 assert( pC->pseudoTableReg==0 );
4280 if( pC->nullRow ){
4281 pOut->flags = MEM_Null;
4282 break;
4283 }else if( pC->deferredMoveto ){
4284 v = pC->movetoTarget;
4285 #ifndef SQLITE_OMIT_VIRTUALTABLE
4286 }else if( pC->pVtabCursor ){
4287 pVtab = pC->pVtabCursor->pVtab;
4288 pModule = pVtab->pModule;
4289 assert( pModule->xRowid );
4290 rc = pModule->xRowid(pC->pVtabCursor, &v);
4291 importVtabErrMsg(p, pVtab);
4292 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4293 }else{
4294 assert( pC->pCursor!=0 );
4295 rc = sqlite3VdbeCursorMoveto(pC);
4296 if( rc ) goto abort_due_to_error;
4297 if( pC->rowidIsValid ){
4298 v = pC->lastRowid;
4299 }else{
4300 rc = sqlite3BtreeKeySize(pC->pCursor, &v);
4301 assert( rc==SQLITE_OK ); /* Always so because of CursorMoveto() above */
4304 pOut->u.i = v;
4305 break;
4308 /* Opcode: NullRow P1 * * * *
4310 ** Move the cursor P1 to a null row. Any OP_Column operations
4311 ** that occur while the cursor is on the null row will always
4312 ** write a NULL.
4314 case OP_NullRow: {
4315 VdbeCursor *pC;
4317 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4318 pC = p->apCsr[pOp->p1];
4319 assert( pC!=0 );
4320 pC->nullRow = 1;
4321 pC->rowidIsValid = 0;
4322 assert( pC->pCursor || pC->pVtabCursor );
4323 if( pC->pCursor ){
4324 sqlite3BtreeClearCursor(pC->pCursor);
4326 break;
4329 /* Opcode: Last P1 P2 * * *
4331 ** The next use of the Rowid or Column or Next instruction for P1
4332 ** will refer to the last entry in the database table or index.
4333 ** If the table or index is empty and P2>0, then jump immediately to P2.
4334 ** If P2 is 0 or if the table or index is not empty, fall through
4335 ** to the following instruction.
4337 case OP_Last: { /* jump */
4338 VdbeCursor *pC;
4339 BtCursor *pCrsr;
4340 int res;
4342 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4343 pC = p->apCsr[pOp->p1];
4344 assert( pC!=0 );
4345 pCrsr = pC->pCursor;
4346 res = 0;
4347 if( ALWAYS(pCrsr!=0) ){
4348 rc = sqlite3BtreeLast(pCrsr, &res);
4350 pC->nullRow = (u8)res;
4351 pC->deferredMoveto = 0;
4352 pC->rowidIsValid = 0;
4353 pC->cacheStatus = CACHE_STALE;
4354 if( pOp->p2>0 && res ){
4355 pc = pOp->p2 - 1;
4357 break;
4361 /* Opcode: Sort P1 P2 * * *
4363 ** This opcode does exactly the same thing as OP_Rewind except that
4364 ** it increments an undocumented global variable used for testing.
4366 ** Sorting is accomplished by writing records into a sorting index,
4367 ** then rewinding that index and playing it back from beginning to
4368 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4369 ** rewinding so that the global variable will be incremented and
4370 ** regression tests can determine whether or not the optimizer is
4371 ** correctly optimizing out sorts.
4373 case OP_SorterSort: /* jump */
4374 #ifdef SQLITE_OMIT_MERGE_SORT
4375 pOp->opcode = OP_Sort;
4376 #endif
4377 case OP_Sort: { /* jump */
4378 #ifdef SQLITE_TEST
4379 sqlite3_sort_count++;
4380 sqlite3_search_count--;
4381 #endif
4382 p->aCounter[SQLITE_STMTSTATUS_SORT-1]++;
4383 /* Fall through into OP_Rewind */
4385 /* Opcode: Rewind P1 P2 * * *
4387 ** The next use of the Rowid or Column or Next instruction for P1
4388 ** will refer to the first entry in the database table or index.
4389 ** If the table or index is empty and P2>0, then jump immediately to P2.
4390 ** If P2 is 0 or if the table or index is not empty, fall through
4391 ** to the following instruction.
4393 case OP_Rewind: { /* jump */
4394 VdbeCursor *pC;
4395 BtCursor *pCrsr;
4396 int res;
4398 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4399 pC = p->apCsr[pOp->p1];
4400 assert( pC!=0 );
4401 assert( pC->isSorter==(pOp->opcode==OP_SorterSort) );
4402 res = 1;
4403 if( isSorter(pC) ){
4404 rc = sqlite3VdbeSorterRewind(db, pC, &res);
4405 }else{
4406 pCrsr = pC->pCursor;
4407 assert( pCrsr );
4408 rc = sqlite3BtreeFirst(pCrsr, &res);
4409 pC->atFirst = res==0 ?1:0;
4410 pC->deferredMoveto = 0;
4411 pC->cacheStatus = CACHE_STALE;
4412 pC->rowidIsValid = 0;
4414 pC->nullRow = (u8)res;
4415 assert( pOp->p2>0 && pOp->p2<p->nOp );
4416 if( res ){
4417 pc = pOp->p2 - 1;
4419 break;
4422 /* Opcode: Next P1 P2 * P4 P5
4424 ** Advance cursor P1 so that it points to the next key/data pair in its
4425 ** table or index. If there are no more key/value pairs then fall through
4426 ** to the following instruction. But if the cursor advance was successful,
4427 ** jump immediately to P2.
4429 ** The P1 cursor must be for a real table, not a pseudo-table.
4431 ** P4 is always of type P4_ADVANCE. The function pointer points to
4432 ** sqlite3BtreeNext().
4434 ** If P5 is positive and the jump is taken, then event counter
4435 ** number P5-1 in the prepared statement is incremented.
4437 ** See also: Prev
4439 /* Opcode: Prev P1 P2 * * P5
4441 ** Back up cursor P1 so that it points to the previous key/data pair in its
4442 ** table or index. If there is no previous key/value pairs then fall through
4443 ** to the following instruction. But if the cursor backup was successful,
4444 ** jump immediately to P2.
4446 ** The P1 cursor must be for a real table, not a pseudo-table.
4448 ** P4 is always of type P4_ADVANCE. The function pointer points to
4449 ** sqlite3BtreePrevious().
4451 ** If P5 is positive and the jump is taken, then event counter
4452 ** number P5-1 in the prepared statement is incremented.
4454 case OP_SorterNext: /* jump */
4455 #ifdef SQLITE_OMIT_MERGE_SORT
4456 pOp->opcode = OP_Next;
4457 #endif
4458 case OP_Prev: /* jump */
4459 case OP_Next: { /* jump */
4460 VdbeCursor *pC;
4461 int res;
4463 CHECK_FOR_INTERRUPT;
4464 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4465 assert( pOp->p5<=ArraySize(p->aCounter) );
4466 pC = p->apCsr[pOp->p1];
4467 if( pC==0 ){
4468 break; /* See ticket #2273 */
4470 assert( pC->isSorter==(pOp->opcode==OP_SorterNext) );
4471 if( isSorter(pC) ){
4472 assert( pOp->opcode==OP_SorterNext );
4473 rc = sqlite3VdbeSorterNext(db, pC, &res);
4474 }else{
4475 res = 1;
4476 assert( pC->deferredMoveto==0 );
4477 assert( pC->pCursor );
4478 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4479 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4480 rc = pOp->p4.xAdvance(pC->pCursor, &res);
4482 pC->nullRow = (u8)res;
4483 pC->cacheStatus = CACHE_STALE;
4484 if( res==0 ){
4485 pc = pOp->p2 - 1;
4486 if( pOp->p5 ) p->aCounter[pOp->p5-1]++;
4487 #ifdef SQLITE_TEST
4488 sqlite3_search_count++;
4489 #endif
4491 pC->rowidIsValid = 0;
4492 break;
4495 /* Opcode: IdxInsert P1 P2 P3 * P5
4497 ** Register P2 holds an SQL index key made using the
4498 ** MakeRecord instructions. This opcode writes that key
4499 ** into the index P1. Data for the entry is nil.
4501 ** P3 is a flag that provides a hint to the b-tree layer that this
4502 ** insert is likely to be an append.
4504 ** This instruction only works for indices. The equivalent instruction
4505 ** for tables is OP_Insert.
4507 case OP_SorterInsert: /* in2 */
4508 #ifdef SQLITE_OMIT_MERGE_SORT
4509 pOp->opcode = OP_IdxInsert;
4510 #endif
4511 case OP_IdxInsert: { /* in2 */
4512 VdbeCursor *pC;
4513 BtCursor *pCrsr;
4514 int nKey;
4515 const char *zKey;
4517 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4518 pC = p->apCsr[pOp->p1];
4519 assert( pC!=0 );
4520 assert( pC->isSorter==(pOp->opcode==OP_SorterInsert) );
4521 pIn2 = &aMem[pOp->p2];
4522 assert( pIn2->flags & MEM_Blob );
4523 pCrsr = pC->pCursor;
4524 if( ALWAYS(pCrsr!=0) ){
4525 assert( pC->isTable==0 );
4526 rc = ExpandBlob(pIn2);
4527 if( rc==SQLITE_OK ){
4528 if( isSorter(pC) ){
4529 rc = sqlite3VdbeSorterWrite(db, pC, pIn2);
4530 }else{
4531 nKey = pIn2->n;
4532 zKey = pIn2->z;
4533 rc = sqlite3BtreeInsert(pCrsr, zKey, nKey, "", 0, 0, pOp->p3,
4534 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4536 assert( pC->deferredMoveto==0 );
4537 pC->cacheStatus = CACHE_STALE;
4541 break;
4544 /* Opcode: IdxDelete P1 P2 P3 * *
4546 ** The content of P3 registers starting at register P2 form
4547 ** an unpacked index key. This opcode removes that entry from the
4548 ** index opened by cursor P1.
4550 case OP_IdxDelete: {
4551 VdbeCursor *pC;
4552 BtCursor *pCrsr;
4553 int res;
4554 UnpackedRecord r;
4556 assert( pOp->p3>0 );
4557 assert( pOp->p2>0 && pOp->p2+pOp->p3<=p->nMem+1 );
4558 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4559 pC = p->apCsr[pOp->p1];
4560 assert( pC!=0 );
4561 pCrsr = pC->pCursor;
4562 if( ALWAYS(pCrsr!=0) ){
4563 r.pKeyInfo = pC->pKeyInfo;
4564 r.nField = (u16)pOp->p3;
4565 r.flags = 0;
4566 r.aMem = &aMem[pOp->p2];
4567 #ifdef SQLITE_DEBUG
4568 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4569 #endif
4570 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4571 if( rc==SQLITE_OK && res==0 ){
4572 rc = sqlite3BtreeDelete(pCrsr);
4574 assert( pC->deferredMoveto==0 );
4575 pC->cacheStatus = CACHE_STALE;
4577 break;
4580 /* Opcode: IdxRowid P1 P2 * * *
4582 ** Write into register P2 an integer which is the last entry in the record at
4583 ** the end of the index key pointed to by cursor P1. This integer should be
4584 ** the rowid of the table entry to which this index entry points.
4586 ** See also: Rowid, MakeRecord.
4588 case OP_IdxRowid: { /* out2-prerelease */
4589 BtCursor *pCrsr;
4590 VdbeCursor *pC;
4591 i64 rowid;
4593 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4594 pC = p->apCsr[pOp->p1];
4595 assert( pC!=0 );
4596 pCrsr = pC->pCursor;
4597 pOut->flags = MEM_Null;
4598 if( ALWAYS(pCrsr!=0) ){
4599 rc = sqlite3VdbeCursorMoveto(pC);
4600 if( NEVER(rc) ) goto abort_due_to_error;
4601 assert( pC->deferredMoveto==0 );
4602 assert( pC->isTable==0 );
4603 if( !pC->nullRow ){
4604 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4605 if( rc!=SQLITE_OK ){
4606 goto abort_due_to_error;
4608 pOut->u.i = rowid;
4609 pOut->flags = MEM_Int;
4612 break;
4615 /* Opcode: IdxGE P1 P2 P3 P4 P5
4617 ** The P4 register values beginning with P3 form an unpacked index
4618 ** key that omits the ROWID. Compare this key value against the index
4619 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4621 ** If the P1 index entry is greater than or equal to the key value
4622 ** then jump to P2. Otherwise fall through to the next instruction.
4624 ** If P5 is non-zero then the key value is increased by an epsilon
4625 ** prior to the comparison. This make the opcode work like IdxGT except
4626 ** that if the key from register P3 is a prefix of the key in the cursor,
4627 ** the result is false whereas it would be true with IdxGT.
4629 /* Opcode: IdxLT P1 P2 P3 P4 P5
4631 ** The P4 register values beginning with P3 form an unpacked index
4632 ** key that omits the ROWID. Compare this key value against the index
4633 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4635 ** If the P1 index entry is less than the key value then jump to P2.
4636 ** Otherwise fall through to the next instruction.
4638 ** If P5 is non-zero then the key value is increased by an epsilon prior
4639 ** to the comparison. This makes the opcode work like IdxLE.
4641 case OP_IdxLT: /* jump */
4642 case OP_IdxGE: { /* jump */
4643 VdbeCursor *pC;
4644 int res;
4645 UnpackedRecord r;
4647 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4648 pC = p->apCsr[pOp->p1];
4649 assert( pC!=0 );
4650 assert( pC->isOrdered );
4651 if( ALWAYS(pC->pCursor!=0) ){
4652 assert( pC->deferredMoveto==0 );
4653 assert( pOp->p5==0 || pOp->p5==1 );
4654 assert( pOp->p4type==P4_INT32 );
4655 r.pKeyInfo = pC->pKeyInfo;
4656 r.nField = (u16)pOp->p4.i;
4657 if( pOp->p5 ){
4658 r.flags = UNPACKED_INCRKEY | UNPACKED_PREFIX_MATCH;
4659 }else{
4660 r.flags = UNPACKED_PREFIX_MATCH;
4662 r.aMem = &aMem[pOp->p3];
4663 #ifdef SQLITE_DEBUG
4664 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4665 #endif
4666 rc = sqlite3VdbeIdxKeyCompare(pC, &r, &res);
4667 if( pOp->opcode==OP_IdxLT ){
4668 res = -res;
4669 }else{
4670 assert( pOp->opcode==OP_IdxGE );
4671 res++;
4673 if( res>0 ){
4674 pc = pOp->p2 - 1 ;
4677 break;
4680 /* Opcode: Destroy P1 P2 P3 * *
4682 ** Delete an entire database table or index whose root page in the database
4683 ** file is given by P1.
4685 ** The table being destroyed is in the main database file if P3==0. If
4686 ** P3==1 then the table to be clear is in the auxiliary database file
4687 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4689 ** If AUTOVACUUM is enabled then it is possible that another root page
4690 ** might be moved into the newly deleted root page in order to keep all
4691 ** root pages contiguous at the beginning of the database. The former
4692 ** value of the root page that moved - its value before the move occurred -
4693 ** is stored in register P2. If no page
4694 ** movement was required (because the table being dropped was already
4695 ** the last one in the database) then a zero is stored in register P2.
4696 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4698 ** See also: Clear
4700 case OP_Destroy: { /* out2-prerelease */
4701 int iMoved;
4702 int iCnt;
4703 Vdbe *pVdbe;
4704 int iDb;
4705 #ifndef SQLITE_OMIT_VIRTUALTABLE
4706 iCnt = 0;
4707 for(pVdbe=db->pVdbe; pVdbe; pVdbe = pVdbe->pNext){
4708 if( pVdbe->magic==VDBE_MAGIC_RUN && pVdbe->inVtabMethod<2 && pVdbe->pc>=0 ){
4709 iCnt++;
4712 #else
4713 iCnt = db->activeVdbeCnt;
4714 #endif
4715 pOut->flags = MEM_Null;
4716 if( iCnt>1 ){
4717 rc = SQLITE_LOCKED;
4718 p->errorAction = OE_Abort;
4719 }else{
4720 iDb = pOp->p3;
4721 assert( iCnt==1 );
4722 assert( (p->btreeMask & (((yDbMask)1)<<iDb))!=0 );
4723 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
4724 pOut->flags = MEM_Int;
4725 pOut->u.i = iMoved;
4726 #ifndef SQLITE_OMIT_AUTOVACUUM
4727 if( rc==SQLITE_OK && iMoved!=0 ){
4728 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
4729 /* All OP_Destroy operations occur on the same btree */
4730 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
4731 resetSchemaOnFault = iDb+1;
4733 #endif
4735 break;
4738 /* Opcode: Clear P1 P2 P3
4740 ** Delete all contents of the database table or index whose root page
4741 ** in the database file is given by P1. But, unlike Destroy, do not
4742 ** remove the table or index from the database file.
4744 ** The table being clear is in the main database file if P2==0. If
4745 ** P2==1 then the table to be clear is in the auxiliary database file
4746 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4748 ** If the P3 value is non-zero, then the table referred to must be an
4749 ** intkey table (an SQL table, not an index). In this case the row change
4750 ** count is incremented by the number of rows in the table being cleared.
4751 ** If P3 is greater than zero, then the value stored in register P3 is
4752 ** also incremented by the number of rows in the table being cleared.
4754 ** See also: Destroy
4756 case OP_Clear: {
4757 int nChange;
4759 nChange = 0;
4760 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p2))!=0 );
4761 rc = sqlite3BtreeClearTable(
4762 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
4764 if( pOp->p3 ){
4765 p->nChange += nChange;
4766 if( pOp->p3>0 ){
4767 assert( memIsValid(&aMem[pOp->p3]) );
4768 memAboutToChange(p, &aMem[pOp->p3]);
4769 aMem[pOp->p3].u.i += nChange;
4772 break;
4775 /* Opcode: CreateTable P1 P2 * * *
4777 ** Allocate a new table in the main database file if P1==0 or in the
4778 ** auxiliary database file if P1==1 or in an attached database if
4779 ** P1>1. Write the root page number of the new table into
4780 ** register P2
4782 ** The difference between a table and an index is this: A table must
4783 ** have a 4-byte integer key and can have arbitrary data. An index
4784 ** has an arbitrary key but no data.
4786 ** See also: CreateIndex
4788 /* Opcode: CreateIndex P1 P2 * * *
4790 ** Allocate a new index in the main database file if P1==0 or in the
4791 ** auxiliary database file if P1==1 or in an attached database if
4792 ** P1>1. Write the root page number of the new table into
4793 ** register P2.
4795 ** See documentation on OP_CreateTable for additional information.
4797 case OP_CreateIndex: /* out2-prerelease */
4798 case OP_CreateTable: { /* out2-prerelease */
4799 int pgno;
4800 int flags;
4801 Db *pDb;
4803 pgno = 0;
4804 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4805 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
4806 pDb = &db->aDb[pOp->p1];
4807 assert( pDb->pBt!=0 );
4808 if( pOp->opcode==OP_CreateTable ){
4809 /* flags = BTREE_INTKEY; */
4810 flags = BTREE_INTKEY;
4811 }else{
4812 flags = BTREE_BLOBKEY;
4814 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
4815 pOut->u.i = pgno;
4816 break;
4819 /* Opcode: ParseSchema P1 * * P4 *
4821 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4822 ** that match the WHERE clause P4.
4824 ** This opcode invokes the parser to create a new virtual machine,
4825 ** then runs the new virtual machine. It is thus a re-entrant opcode.
4827 case OP_ParseSchema: {
4828 int iDb;
4829 const char *zMaster;
4830 char *zSql;
4831 InitData initData;
4833 /* Any prepared statement that invokes this opcode will hold mutexes
4834 ** on every btree. This is a prerequisite for invoking
4835 ** sqlite3InitCallback().
4837 #ifdef SQLITE_DEBUG
4838 for(iDb=0; iDb<db->nDb; iDb++){
4839 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
4841 #endif
4843 iDb = pOp->p1;
4844 assert( iDb>=0 && iDb<db->nDb );
4845 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
4846 /* Used to be a conditional */ {
4847 zMaster = SCHEMA_TABLE(iDb);
4848 initData.db = db;
4849 initData.iDb = pOp->p1;
4850 initData.pzErrMsg = &p->zErrMsg;
4851 zSql = sqlite3MPrintf(db,
4852 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4853 db->aDb[iDb].zName, zMaster, pOp->p4.z);
4854 if( zSql==0 ){
4855 rc = SQLITE_NOMEM;
4856 }else{
4857 assert( db->init.busy==0 );
4858 db->init.busy = 1;
4859 initData.rc = SQLITE_OK;
4860 assert( !db->mallocFailed );
4861 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
4862 if( rc==SQLITE_OK ) rc = initData.rc;
4863 sqlite3DbFree(db, zSql);
4864 db->init.busy = 0;
4867 if( rc ) sqlite3ResetInternalSchema(db, -1);
4868 if( rc==SQLITE_NOMEM ){
4869 goto no_mem;
4871 break;
4874 #if !defined(SQLITE_OMIT_ANALYZE)
4875 /* Opcode: LoadAnalysis P1 * * * *
4877 ** Read the sqlite_stat1 table for database P1 and load the content
4878 ** of that table into the internal index hash table. This will cause
4879 ** the analysis to be used when preparing all subsequent queries.
4881 case OP_LoadAnalysis: {
4882 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4883 rc = sqlite3AnalysisLoad(db, pOp->p1);
4884 break;
4886 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4888 /* Opcode: DropTable P1 * * P4 *
4890 ** Remove the internal (in-memory) data structures that describe
4891 ** the table named P4 in database P1. This is called after a table
4892 ** is dropped in order to keep the internal representation of the
4893 ** schema consistent with what is on disk.
4895 case OP_DropTable: {
4896 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
4897 break;
4900 /* Opcode: DropIndex P1 * * P4 *
4902 ** Remove the internal (in-memory) data structures that describe
4903 ** the index named P4 in database P1. This is called after an index
4904 ** is dropped in order to keep the internal representation of the
4905 ** schema consistent with what is on disk.
4907 case OP_DropIndex: {
4908 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
4909 break;
4912 /* Opcode: DropTrigger P1 * * P4 *
4914 ** Remove the internal (in-memory) data structures that describe
4915 ** the trigger named P4 in database P1. This is called after a trigger
4916 ** is dropped in order to keep the internal representation of the
4917 ** schema consistent with what is on disk.
4919 case OP_DropTrigger: {
4920 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
4921 break;
4925 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4926 /* Opcode: IntegrityCk P1 P2 P3 * P5
4928 ** Do an analysis of the currently open database. Store in
4929 ** register P1 the text of an error message describing any problems.
4930 ** If no problems are found, store a NULL in register P1.
4932 ** The register P3 contains the maximum number of allowed errors.
4933 ** At most reg(P3) errors will be reported.
4934 ** In other words, the analysis stops as soon as reg(P1) errors are
4935 ** seen. Reg(P1) is updated with the number of errors remaining.
4937 ** The root page numbers of all tables in the database are integer
4938 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
4939 ** total.
4941 ** If P5 is not zero, the check is done on the auxiliary database
4942 ** file, not the main database file.
4944 ** This opcode is used to implement the integrity_check pragma.
4946 case OP_IntegrityCk: {
4947 int nRoot; /* Number of tables to check. (Number of root pages.) */
4948 int *aRoot; /* Array of rootpage numbers for tables to be checked */
4949 int j; /* Loop counter */
4950 int nErr; /* Number of errors reported */
4951 char *z; /* Text of the error report */
4952 Mem *pnErr; /* Register keeping track of errors remaining */
4954 nRoot = pOp->p2;
4955 assert( nRoot>0 );
4956 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
4957 if( aRoot==0 ) goto no_mem;
4958 assert( pOp->p3>0 && pOp->p3<=p->nMem );
4959 pnErr = &aMem[pOp->p3];
4960 assert( (pnErr->flags & MEM_Int)!=0 );
4961 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
4962 pIn1 = &aMem[pOp->p1];
4963 for(j=0; j<nRoot; j++){
4964 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
4966 aRoot[j] = 0;
4967 assert( pOp->p5<db->nDb );
4968 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p5))!=0 );
4969 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
4970 (int)pnErr->u.i, &nErr);
4971 sqlite3DbFree(db, aRoot);
4972 pnErr->u.i -= nErr;
4973 sqlite3VdbeMemSetNull(pIn1);
4974 if( nErr==0 ){
4975 assert( z==0 );
4976 }else if( z==0 ){
4977 goto no_mem;
4978 }else{
4979 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
4981 UPDATE_MAX_BLOBSIZE(pIn1);
4982 sqlite3VdbeChangeEncoding(pIn1, encoding);
4983 break;
4985 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
4987 /* Opcode: RowSetAdd P1 P2 * * *
4989 ** Insert the integer value held by register P2 into a boolean index
4990 ** held in register P1.
4992 ** An assertion fails if P2 is not an integer.
4994 case OP_RowSetAdd: { /* in1, in2 */
4995 pIn1 = &aMem[pOp->p1];
4996 pIn2 = &aMem[pOp->p2];
4997 assert( (pIn2->flags & MEM_Int)!=0 );
4998 if( (pIn1->flags & MEM_RowSet)==0 ){
4999 sqlite3VdbeMemSetRowSet(pIn1);
5000 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5002 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5003 break;
5006 /* Opcode: RowSetRead P1 P2 P3 * *
5008 ** Extract the smallest value from boolean index P1 and put that value into
5009 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5010 ** unchanged and jump to instruction P2.
5012 case OP_RowSetRead: { /* jump, in1, out3 */
5013 i64 val;
5014 CHECK_FOR_INTERRUPT;
5015 pIn1 = &aMem[pOp->p1];
5016 if( (pIn1->flags & MEM_RowSet)==0
5017 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5019 /* The boolean index is empty */
5020 sqlite3VdbeMemSetNull(pIn1);
5021 pc = pOp->p2 - 1;
5022 }else{
5023 /* A value was pulled from the index */
5024 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5026 break;
5029 /* Opcode: RowSetTest P1 P2 P3 P4
5031 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5032 ** contains a RowSet object and that RowSet object contains
5033 ** the value held in P3, jump to register P2. Otherwise, insert the
5034 ** integer in P3 into the RowSet and continue on to the
5035 ** next opcode.
5037 ** The RowSet object is optimized for the case where successive sets
5038 ** of integers, where each set contains no duplicates. Each set
5039 ** of values is identified by a unique P4 value. The first set
5040 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5041 ** non-negative. For non-negative values of P4 only the lower 4
5042 ** bits are significant.
5044 ** This allows optimizations: (a) when P4==0 there is no need to test
5045 ** the rowset object for P3, as it is guaranteed not to contain it,
5046 ** (b) when P4==-1 there is no need to insert the value, as it will
5047 ** never be tested for, and (c) when a value that is part of set X is
5048 ** inserted, there is no need to search to see if the same value was
5049 ** previously inserted as part of set X (only if it was previously
5050 ** inserted as part of some other set).
5052 case OP_RowSetTest: { /* jump, in1, in3 */
5053 int iSet;
5054 int exists;
5056 pIn1 = &aMem[pOp->p1];
5057 pIn3 = &aMem[pOp->p3];
5058 iSet = pOp->p4.i;
5059 assert( pIn3->flags&MEM_Int );
5061 /* If there is anything other than a rowset object in memory cell P1,
5062 ** delete it now and initialize P1 with an empty rowset
5064 if( (pIn1->flags & MEM_RowSet)==0 ){
5065 sqlite3VdbeMemSetRowSet(pIn1);
5066 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5069 assert( pOp->p4type==P4_INT32 );
5070 assert( iSet==-1 || iSet>=0 );
5071 if( iSet ){
5072 exists = sqlite3RowSetTest(pIn1->u.pRowSet,
5073 (u8)(iSet>=0 ? iSet & 0xf : 0xff),
5074 pIn3->u.i);
5075 if( exists ){
5076 pc = pOp->p2 - 1;
5077 break;
5080 if( iSet>=0 ){
5081 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5083 break;
5087 #ifndef SQLITE_OMIT_TRIGGER
5089 /* Opcode: Program P1 P2 P3 P4 *
5091 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5093 ** P1 contains the address of the memory cell that contains the first memory
5094 ** cell in an array of values used as arguments to the sub-program. P2
5095 ** contains the address to jump to if the sub-program throws an IGNORE
5096 ** exception using the RAISE() function. Register P3 contains the address
5097 ** of a memory cell in this (the parent) VM that is used to allocate the
5098 ** memory required by the sub-vdbe at runtime.
5100 ** P4 is a pointer to the VM containing the trigger program.
5102 case OP_Program: { /* jump */
5103 int nMem; /* Number of memory registers for sub-program */
5104 int nByte; /* Bytes of runtime space required for sub-program */
5105 Mem *pRt; /* Register to allocate runtime space */
5106 Mem *pMem; /* Used to iterate through memory cells */
5107 Mem *pEnd; /* Last memory cell in new array */
5108 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5109 SubProgram *pProgram; /* Sub-program to execute */
5110 void *t; /* Token identifying trigger */
5112 pProgram = pOp->p4.pProgram;
5113 pRt = &aMem[pOp->p3];
5114 assert( pProgram->nOp>0 );
5116 /* If the p5 flag is clear, then recursive invocation of triggers is
5117 ** disabled for backwards compatibility (p5 is set if this sub-program
5118 ** is really a trigger, not a foreign key action, and the flag set
5119 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5121 ** It is recursive invocation of triggers, at the SQL level, that is
5122 ** disabled. In some cases a single trigger may generate more than one
5123 ** SubProgram (if the trigger may be executed with more than one different
5124 ** ON CONFLICT algorithm). SubProgram structures associated with a
5125 ** single trigger all have the same value for the SubProgram.token
5126 ** variable. */
5127 if( pOp->p5 ){
5128 t = pProgram->token;
5129 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5130 if( pFrame ) break;
5133 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5134 rc = SQLITE_ERROR;
5135 sqlite3SetString(&p->zErrMsg, db, "too many levels of trigger recursion");
5136 break;
5139 /* Register pRt is used to store the memory required to save the state
5140 ** of the current program, and the memory required at runtime to execute
5141 ** the trigger program. If this trigger has been fired before, then pRt
5142 ** is already allocated. Otherwise, it must be initialized. */
5143 if( (pRt->flags&MEM_Frame)==0 ){
5144 /* SubProgram.nMem is set to the number of memory cells used by the
5145 ** program stored in SubProgram.aOp. As well as these, one memory
5146 ** cell is required for each cursor used by the program. Set local
5147 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5149 nMem = pProgram->nMem + pProgram->nCsr;
5150 nByte = ROUND8(sizeof(VdbeFrame))
5151 + nMem * sizeof(Mem)
5152 + pProgram->nCsr * sizeof(VdbeCursor *)
5153 + pProgram->nOnce * sizeof(u8);
5154 pFrame = sqlite3DbMallocZero(db, nByte);
5155 if( !pFrame ){
5156 goto no_mem;
5158 sqlite3VdbeMemRelease(pRt);
5159 pRt->flags = MEM_Frame;
5160 pRt->u.pFrame = pFrame;
5162 pFrame->v = p;
5163 pFrame->nChildMem = nMem;
5164 pFrame->nChildCsr = pProgram->nCsr;
5165 pFrame->pc = pc;
5166 pFrame->aMem = p->aMem;
5167 pFrame->nMem = p->nMem;
5168 pFrame->apCsr = p->apCsr;
5169 pFrame->nCursor = p->nCursor;
5170 pFrame->aOp = p->aOp;
5171 pFrame->nOp = p->nOp;
5172 pFrame->token = pProgram->token;
5173 pFrame->aOnceFlag = p->aOnceFlag;
5174 pFrame->nOnceFlag = p->nOnceFlag;
5176 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5177 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5178 pMem->flags = MEM_Invalid;
5179 pMem->db = db;
5181 }else{
5182 pFrame = pRt->u.pFrame;
5183 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5184 assert( pProgram->nCsr==pFrame->nChildCsr );
5185 assert( pc==pFrame->pc );
5188 p->nFrame++;
5189 pFrame->pParent = p->pFrame;
5190 pFrame->lastRowid = lastRowid;
5191 pFrame->nChange = p->nChange;
5192 p->nChange = 0;
5193 p->pFrame = pFrame;
5194 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5195 p->nMem = pFrame->nChildMem;
5196 p->nCursor = (u16)pFrame->nChildCsr;
5197 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5198 p->aOp = aOp = pProgram->aOp;
5199 p->nOp = pProgram->nOp;
5200 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5201 p->nOnceFlag = pProgram->nOnce;
5202 pc = -1;
5203 memset(p->aOnceFlag, 0, p->nOnceFlag);
5205 break;
5208 /* Opcode: Param P1 P2 * * *
5210 ** This opcode is only ever present in sub-programs called via the
5211 ** OP_Program instruction. Copy a value currently stored in a memory
5212 ** cell of the calling (parent) frame to cell P2 in the current frames
5213 ** address space. This is used by trigger programs to access the new.*
5214 ** and old.* values.
5216 ** The address of the cell in the parent frame is determined by adding
5217 ** the value of the P1 argument to the value of the P1 argument to the
5218 ** calling OP_Program instruction.
5220 case OP_Param: { /* out2-prerelease */
5221 VdbeFrame *pFrame;
5222 Mem *pIn;
5223 pFrame = p->pFrame;
5224 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5225 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5226 break;
5229 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5231 #ifndef SQLITE_OMIT_FOREIGN_KEY
5232 /* Opcode: FkCounter P1 P2 * * *
5234 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5235 ** If P1 is non-zero, the database constraint counter is incremented
5236 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5237 ** statement counter is incremented (immediate foreign key constraints).
5239 case OP_FkCounter: {
5240 if( pOp->p1 ){
5241 db->nDeferredCons += pOp->p2;
5242 }else{
5243 p->nFkConstraint += pOp->p2;
5245 break;
5248 /* Opcode: FkIfZero P1 P2 * * *
5250 ** This opcode tests if a foreign key constraint-counter is currently zero.
5251 ** If so, jump to instruction P2. Otherwise, fall through to the next
5252 ** instruction.
5254 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5255 ** is zero (the one that counts deferred constraint violations). If P1 is
5256 ** zero, the jump is taken if the statement constraint-counter is zero
5257 ** (immediate foreign key constraint violations).
5259 case OP_FkIfZero: { /* jump */
5260 if( pOp->p1 ){
5261 if( db->nDeferredCons==0 ) pc = pOp->p2-1;
5262 }else{
5263 if( p->nFkConstraint==0 ) pc = pOp->p2-1;
5265 break;
5267 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5269 #ifndef SQLITE_OMIT_AUTOINCREMENT
5270 /* Opcode: MemMax P1 P2 * * *
5272 ** P1 is a register in the root frame of this VM (the root frame is
5273 ** different from the current frame if this instruction is being executed
5274 ** within a sub-program). Set the value of register P1 to the maximum of
5275 ** its current value and the value in register P2.
5277 ** This instruction throws an error if the memory cell is not initially
5278 ** an integer.
5280 case OP_MemMax: { /* in2 */
5281 Mem *pIn1;
5282 VdbeFrame *pFrame;
5283 if( p->pFrame ){
5284 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5285 pIn1 = &pFrame->aMem[pOp->p1];
5286 }else{
5287 pIn1 = &aMem[pOp->p1];
5289 assert( memIsValid(pIn1) );
5290 sqlite3VdbeMemIntegerify(pIn1);
5291 pIn2 = &aMem[pOp->p2];
5292 sqlite3VdbeMemIntegerify(pIn2);
5293 if( pIn1->u.i<pIn2->u.i){
5294 pIn1->u.i = pIn2->u.i;
5296 break;
5298 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5300 /* Opcode: IfPos P1 P2 * * *
5302 ** If the value of register P1 is 1 or greater, jump to P2.
5304 ** It is illegal to use this instruction on a register that does
5305 ** not contain an integer. An assertion fault will result if you try.
5307 case OP_IfPos: { /* jump, in1 */
5308 pIn1 = &aMem[pOp->p1];
5309 assert( pIn1->flags&MEM_Int );
5310 if( pIn1->u.i>0 ){
5311 pc = pOp->p2 - 1;
5313 break;
5316 /* Opcode: IfNeg P1 P2 * * *
5318 ** If the value of register P1 is less than zero, jump to P2.
5320 ** It is illegal to use this instruction on a register that does
5321 ** not contain an integer. An assertion fault will result if you try.
5323 case OP_IfNeg: { /* jump, in1 */
5324 pIn1 = &aMem[pOp->p1];
5325 assert( pIn1->flags&MEM_Int );
5326 if( pIn1->u.i<0 ){
5327 pc = pOp->p2 - 1;
5329 break;
5332 /* Opcode: IfZero P1 P2 P3 * *
5334 ** The register P1 must contain an integer. Add literal P3 to the
5335 ** value in register P1. If the result is exactly 0, jump to P2.
5337 ** It is illegal to use this instruction on a register that does
5338 ** not contain an integer. An assertion fault will result if you try.
5340 case OP_IfZero: { /* jump, in1 */
5341 pIn1 = &aMem[pOp->p1];
5342 assert( pIn1->flags&MEM_Int );
5343 pIn1->u.i += pOp->p3;
5344 if( pIn1->u.i==0 ){
5345 pc = pOp->p2 - 1;
5347 break;
5350 /* Opcode: AggStep * P2 P3 P4 P5
5352 ** Execute the step function for an aggregate. The
5353 ** function has P5 arguments. P4 is a pointer to the FuncDef
5354 ** structure that specifies the function. Use register
5355 ** P3 as the accumulator.
5357 ** The P5 arguments are taken from register P2 and its
5358 ** successors.
5360 case OP_AggStep: {
5361 int n;
5362 int i;
5363 Mem *pMem;
5364 Mem *pRec;
5365 sqlite3_context ctx;
5366 sqlite3_value **apVal;
5368 n = pOp->p5;
5369 assert( n>=0 );
5370 pRec = &aMem[pOp->p2];
5371 apVal = p->apArg;
5372 assert( apVal || n==0 );
5373 for(i=0; i<n; i++, pRec++){
5374 assert( memIsValid(pRec) );
5375 apVal[i] = pRec;
5376 memAboutToChange(p, pRec);
5377 sqlite3VdbeMemStoreType(pRec);
5379 ctx.pFunc = pOp->p4.pFunc;
5380 assert( pOp->p3>0 && pOp->p3<=p->nMem );
5381 ctx.pMem = pMem = &aMem[pOp->p3];
5382 pMem->n++;
5383 ctx.s.flags = MEM_Null;
5384 ctx.s.z = 0;
5385 ctx.s.zMalloc = 0;
5386 ctx.s.xDel = 0;
5387 ctx.s.db = db;
5388 ctx.isError = 0;
5389 ctx.pColl = 0;
5390 ctx.skipFlag = 0;
5391 if( ctx.pFunc->flags & SQLITE_FUNC_NEEDCOLL ){
5392 assert( pOp>p->aOp );
5393 assert( pOp[-1].p4type==P4_COLLSEQ );
5394 assert( pOp[-1].opcode==OP_CollSeq );
5395 ctx.pColl = pOp[-1].p4.pColl;
5397 (ctx.pFunc->xStep)(&ctx, n, apVal); /* IMP: R-24505-23230 */
5398 if( ctx.isError ){
5399 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(&ctx.s));
5400 rc = ctx.isError;
5402 if( ctx.skipFlag ){
5403 assert( pOp[-1].opcode==OP_CollSeq );
5404 i = pOp[-1].p1;
5405 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5408 sqlite3VdbeMemRelease(&ctx.s);
5410 break;
5413 /* Opcode: AggFinal P1 P2 * P4 *
5415 ** Execute the finalizer function for an aggregate. P1 is
5416 ** the memory location that is the accumulator for the aggregate.
5418 ** P2 is the number of arguments that the step function takes and
5419 ** P4 is a pointer to the FuncDef for this function. The P2
5420 ** argument is not used by this opcode. It is only there to disambiguate
5421 ** functions that can take varying numbers of arguments. The
5422 ** P4 argument is only needed for the degenerate case where
5423 ** the step function was not previously called.
5425 case OP_AggFinal: {
5426 Mem *pMem;
5427 assert( pOp->p1>0 && pOp->p1<=p->nMem );
5428 pMem = &aMem[pOp->p1];
5429 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5430 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5431 if( rc ){
5432 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3_value_text(pMem));
5434 sqlite3VdbeChangeEncoding(pMem, encoding);
5435 UPDATE_MAX_BLOBSIZE(pMem);
5436 if( sqlite3VdbeMemTooBig(pMem) ){
5437 goto too_big;
5439 break;
5442 #ifndef SQLITE_OMIT_WAL
5443 /* Opcode: Checkpoint P1 P2 P3 * *
5445 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5446 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5447 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5448 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5449 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5450 ** in the WAL that have been checkpointed after the checkpoint
5451 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5452 ** mem[P3+2] are initialized to -1.
5454 case OP_Checkpoint: {
5455 int i; /* Loop counter */
5456 int aRes[3]; /* Results */
5457 Mem *pMem; /* Write results here */
5459 aRes[0] = 0;
5460 aRes[1] = aRes[2] = -1;
5461 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5462 || pOp->p2==SQLITE_CHECKPOINT_FULL
5463 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5465 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5466 if( rc==SQLITE_BUSY ){
5467 rc = SQLITE_OK;
5468 aRes[0] = 1;
5470 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5471 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5473 break;
5475 #endif
5477 #ifndef SQLITE_OMIT_PRAGMA
5478 /* Opcode: JournalMode P1 P2 P3 * P5
5480 ** Change the journal mode of database P1 to P3. P3 must be one of the
5481 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5482 ** modes (delete, truncate, persist, off and memory), this is a simple
5483 ** operation. No IO is required.
5485 ** If changing into or out of WAL mode the procedure is more complicated.
5487 ** Write a string containing the final journal-mode to register P2.
5489 case OP_JournalMode: { /* out2-prerelease */
5490 Btree *pBt; /* Btree to change journal mode of */
5491 Pager *pPager; /* Pager associated with pBt */
5492 int eNew; /* New journal mode */
5493 int eOld; /* The old journal mode */
5494 const char *zFilename; /* Name of database file for pPager */
5496 eNew = pOp->p3;
5497 assert( eNew==PAGER_JOURNALMODE_DELETE
5498 || eNew==PAGER_JOURNALMODE_TRUNCATE
5499 || eNew==PAGER_JOURNALMODE_PERSIST
5500 || eNew==PAGER_JOURNALMODE_OFF
5501 || eNew==PAGER_JOURNALMODE_MEMORY
5502 || eNew==PAGER_JOURNALMODE_WAL
5503 || eNew==PAGER_JOURNALMODE_QUERY
5505 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5507 pBt = db->aDb[pOp->p1].pBt;
5508 pPager = sqlite3BtreePager(pBt);
5509 eOld = sqlite3PagerGetJournalMode(pPager);
5510 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
5511 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
5513 #ifndef SQLITE_OMIT_WAL
5514 zFilename = sqlite3PagerFilename(pPager);
5516 /* Do not allow a transition to journal_mode=WAL for a database
5517 ** in temporary storage or if the VFS does not support shared memory
5519 if( eNew==PAGER_JOURNALMODE_WAL
5520 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
5521 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
5523 eNew = eOld;
5526 if( (eNew!=eOld)
5527 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
5529 if( !db->autoCommit || db->activeVdbeCnt>1 ){
5530 rc = SQLITE_ERROR;
5531 sqlite3SetString(&p->zErrMsg, db,
5532 "cannot change %s wal mode from within a transaction",
5533 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
5535 break;
5536 }else{
5538 if( eOld==PAGER_JOURNALMODE_WAL ){
5539 /* If leaving WAL mode, close the log file. If successful, the call
5540 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5541 ** file. An EXCLUSIVE lock may still be held on the database file
5542 ** after a successful return.
5544 rc = sqlite3PagerCloseWal(pPager);
5545 if( rc==SQLITE_OK ){
5546 sqlite3PagerSetJournalMode(pPager, eNew);
5548 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
5549 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5550 ** as an intermediate */
5551 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
5554 /* Open a transaction on the database file. Regardless of the journal
5555 ** mode, this transaction always uses a rollback journal.
5557 assert( sqlite3BtreeIsInTrans(pBt)==0 );
5558 if( rc==SQLITE_OK ){
5559 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
5563 #endif /* ifndef SQLITE_OMIT_WAL */
5565 if( rc ){
5566 eNew = eOld;
5568 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
5570 pOut = &aMem[pOp->p2];
5571 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
5572 pOut->z = (char *)sqlite3JournalModename(eNew);
5573 pOut->n = sqlite3Strlen30(pOut->z);
5574 pOut->enc = SQLITE_UTF8;
5575 sqlite3VdbeChangeEncoding(pOut, encoding);
5576 break;
5578 #endif /* SQLITE_OMIT_PRAGMA */
5580 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5581 /* Opcode: Vacuum * * * * *
5583 ** Vacuum the entire database. This opcode will cause other virtual
5584 ** machines to be created and run. It may not be called from within
5585 ** a transaction.
5587 case OP_Vacuum: {
5588 rc = sqlite3RunVacuum(&p->zErrMsg, db);
5589 break;
5591 #endif
5593 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5594 /* Opcode: IncrVacuum P1 P2 * * *
5596 ** Perform a single step of the incremental vacuum procedure on
5597 ** the P1 database. If the vacuum has finished, jump to instruction
5598 ** P2. Otherwise, fall through to the next instruction.
5600 case OP_IncrVacuum: { /* jump */
5601 Btree *pBt;
5603 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5604 assert( (p->btreeMask & (((yDbMask)1)<<pOp->p1))!=0 );
5605 pBt = db->aDb[pOp->p1].pBt;
5606 rc = sqlite3BtreeIncrVacuum(pBt);
5607 if( rc==SQLITE_DONE ){
5608 pc = pOp->p2 - 1;
5609 rc = SQLITE_OK;
5611 break;
5613 #endif
5615 /* Opcode: Expire P1 * * * *
5617 ** Cause precompiled statements to become expired. An expired statement
5618 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5619 ** (via sqlite3_step()).
5621 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5622 ** then only the currently executing statement is affected.
5624 case OP_Expire: {
5625 if( !pOp->p1 ){
5626 sqlite3ExpirePreparedStatements(db);
5627 }else{
5628 p->expired = 1;
5630 break;
5633 #ifndef SQLITE_OMIT_SHARED_CACHE
5634 /* Opcode: TableLock P1 P2 P3 P4 *
5636 ** Obtain a lock on a particular table. This instruction is only used when
5637 ** the shared-cache feature is enabled.
5639 ** P1 is the index of the database in sqlite3.aDb[] of the database
5640 ** on which the lock is acquired. A readlock is obtained if P3==0 or
5641 ** a write lock if P3==1.
5643 ** P2 contains the root-page of the table to lock.
5645 ** P4 contains a pointer to the name of the table being locked. This is only
5646 ** used to generate an error message if the lock cannot be obtained.
5648 case OP_TableLock: {
5649 u8 isWriteLock = (u8)pOp->p3;
5650 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
5651 int p1 = pOp->p1;
5652 assert( p1>=0 && p1<db->nDb );
5653 assert( (p->btreeMask & (((yDbMask)1)<<p1))!=0 );
5654 assert( isWriteLock==0 || isWriteLock==1 );
5655 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
5656 if( (rc&0xFF)==SQLITE_LOCKED ){
5657 const char *z = pOp->p4.z;
5658 sqlite3SetString(&p->zErrMsg, db, "database table is locked: %s", z);
5661 break;
5663 #endif /* SQLITE_OMIT_SHARED_CACHE */
5665 #ifndef SQLITE_OMIT_VIRTUALTABLE
5666 /* Opcode: VBegin * * * P4 *
5668 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5669 ** xBegin method for that table.
5671 ** Also, whether or not P4 is set, check that this is not being called from
5672 ** within a callback to a virtual table xSync() method. If it is, the error
5673 ** code will be set to SQLITE_LOCKED.
5675 case OP_VBegin: {
5676 VTable *pVTab;
5677 pVTab = pOp->p4.pVtab;
5678 rc = sqlite3VtabBegin(db, pVTab);
5679 if( pVTab ) importVtabErrMsg(p, pVTab->pVtab);
5680 break;
5682 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5684 #ifndef SQLITE_OMIT_VIRTUALTABLE
5685 /* Opcode: VCreate P1 * * P4 *
5687 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5688 ** for that table.
5690 case OP_VCreate: {
5691 rc = sqlite3VtabCallCreate(db, pOp->p1, pOp->p4.z, &p->zErrMsg);
5692 break;
5694 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5696 #ifndef SQLITE_OMIT_VIRTUALTABLE
5697 /* Opcode: VDestroy P1 * * P4 *
5699 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5700 ** of that table.
5702 case OP_VDestroy: {
5703 p->inVtabMethod = 2;
5704 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
5705 p->inVtabMethod = 0;
5706 break;
5708 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5710 #ifndef SQLITE_OMIT_VIRTUALTABLE
5711 /* Opcode: VOpen P1 * * P4 *
5713 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5714 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5715 ** table and stores that cursor in P1.
5717 case OP_VOpen: {
5718 VdbeCursor *pCur;
5719 sqlite3_vtab_cursor *pVtabCursor;
5720 sqlite3_vtab *pVtab;
5721 sqlite3_module *pModule;
5723 pCur = 0;
5724 pVtabCursor = 0;
5725 pVtab = pOp->p4.pVtab->pVtab;
5726 pModule = (sqlite3_module *)pVtab->pModule;
5727 assert(pVtab && pModule);
5728 rc = pModule->xOpen(pVtab, &pVtabCursor);
5729 importVtabErrMsg(p, pVtab);
5730 if( SQLITE_OK==rc ){
5731 /* Initialize sqlite3_vtab_cursor base class */
5732 pVtabCursor->pVtab = pVtab;
5734 /* Initialise vdbe cursor object */
5735 pCur = allocateCursor(p, pOp->p1, 0, -1, 0);
5736 if( pCur ){
5737 pCur->pVtabCursor = pVtabCursor;
5738 pCur->pModule = pVtabCursor->pVtab->pModule;
5739 }else{
5740 db->mallocFailed = 1;
5741 pModule->xClose(pVtabCursor);
5744 break;
5746 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5748 #ifndef SQLITE_OMIT_VIRTUALTABLE
5749 /* Opcode: VFilter P1 P2 P3 P4 *
5751 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5752 ** the filtered result set is empty.
5754 ** P4 is either NULL or a string that was generated by the xBestIndex
5755 ** method of the module. The interpretation of the P4 string is left
5756 ** to the module implementation.
5758 ** This opcode invokes the xFilter method on the virtual table specified
5759 ** by P1. The integer query plan parameter to xFilter is stored in register
5760 ** P3. Register P3+1 stores the argc parameter to be passed to the
5761 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5762 ** additional parameters which are passed to
5763 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5765 ** A jump is made to P2 if the result set after filtering would be empty.
5767 case OP_VFilter: { /* jump */
5768 int nArg;
5769 int iQuery;
5770 const sqlite3_module *pModule;
5771 Mem *pQuery;
5772 Mem *pArgc;
5773 sqlite3_vtab_cursor *pVtabCursor;
5774 sqlite3_vtab *pVtab;
5775 VdbeCursor *pCur;
5776 int res;
5777 int i;
5778 Mem **apArg;
5780 pQuery = &aMem[pOp->p3];
5781 pArgc = &pQuery[1];
5782 pCur = p->apCsr[pOp->p1];
5783 assert( memIsValid(pQuery) );
5784 REGISTER_TRACE(pOp->p3, pQuery);
5785 assert( pCur->pVtabCursor );
5786 pVtabCursor = pCur->pVtabCursor;
5787 pVtab = pVtabCursor->pVtab;
5788 pModule = pVtab->pModule;
5790 /* Grab the index number and argc parameters */
5791 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
5792 nArg = (int)pArgc->u.i;
5793 iQuery = (int)pQuery->u.i;
5795 /* Invoke the xFilter method */
5797 res = 0;
5798 apArg = p->apArg;
5799 for(i = 0; i<nArg; i++){
5800 apArg[i] = &pArgc[i+1];
5801 sqlite3VdbeMemStoreType(apArg[i]);
5804 p->inVtabMethod = 1;
5805 rc = pModule->xFilter(pVtabCursor, iQuery, pOp->p4.z, nArg, apArg);
5806 p->inVtabMethod = 0;
5807 importVtabErrMsg(p, pVtab);
5808 if( rc==SQLITE_OK ){
5809 res = pModule->xEof(pVtabCursor);
5812 if( res ){
5813 pc = pOp->p2 - 1;
5816 pCur->nullRow = 0;
5818 break;
5820 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5822 #ifndef SQLITE_OMIT_VIRTUALTABLE
5823 /* Opcode: VColumn P1 P2 P3 * *
5825 ** Store the value of the P2-th column of
5826 ** the row of the virtual-table that the
5827 ** P1 cursor is pointing to into register P3.
5829 case OP_VColumn: {
5830 sqlite3_vtab *pVtab;
5831 const sqlite3_module *pModule;
5832 Mem *pDest;
5833 sqlite3_context sContext;
5835 VdbeCursor *pCur = p->apCsr[pOp->p1];
5836 assert( pCur->pVtabCursor );
5837 assert( pOp->p3>0 && pOp->p3<=p->nMem );
5838 pDest = &aMem[pOp->p3];
5839 memAboutToChange(p, pDest);
5840 if( pCur->nullRow ){
5841 sqlite3VdbeMemSetNull(pDest);
5842 break;
5844 pVtab = pCur->pVtabCursor->pVtab;
5845 pModule = pVtab->pModule;
5846 assert( pModule->xColumn );
5847 memset(&sContext, 0, sizeof(sContext));
5849 /* The output cell may already have a buffer allocated. Move
5850 ** the current contents to sContext.s so in case the user-function
5851 ** can use the already allocated buffer instead of allocating a
5852 ** new one.
5854 sqlite3VdbeMemMove(&sContext.s, pDest);
5855 MemSetTypeFlag(&sContext.s, MEM_Null);
5857 rc = pModule->xColumn(pCur->pVtabCursor, &sContext, pOp->p2);
5858 importVtabErrMsg(p, pVtab);
5859 if( sContext.isError ){
5860 rc = sContext.isError;
5863 /* Copy the result of the function to the P3 register. We
5864 ** do this regardless of whether or not an error occurred to ensure any
5865 ** dynamic allocation in sContext.s (a Mem struct) is released.
5867 sqlite3VdbeChangeEncoding(&sContext.s, encoding);
5868 sqlite3VdbeMemMove(pDest, &sContext.s);
5869 REGISTER_TRACE(pOp->p3, pDest);
5870 UPDATE_MAX_BLOBSIZE(pDest);
5872 if( sqlite3VdbeMemTooBig(pDest) ){
5873 goto too_big;
5875 break;
5877 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5879 #ifndef SQLITE_OMIT_VIRTUALTABLE
5880 /* Opcode: VNext P1 P2 * * *
5882 ** Advance virtual table P1 to the next row in its result set and
5883 ** jump to instruction P2. Or, if the virtual table has reached
5884 ** the end of its result set, then fall through to the next instruction.
5886 case OP_VNext: { /* jump */
5887 sqlite3_vtab *pVtab;
5888 const sqlite3_module *pModule;
5889 int res;
5890 VdbeCursor *pCur;
5892 res = 0;
5893 pCur = p->apCsr[pOp->p1];
5894 assert( pCur->pVtabCursor );
5895 if( pCur->nullRow ){
5896 break;
5898 pVtab = pCur->pVtabCursor->pVtab;
5899 pModule = pVtab->pModule;
5900 assert( pModule->xNext );
5902 /* Invoke the xNext() method of the module. There is no way for the
5903 ** underlying implementation to return an error if one occurs during
5904 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5905 ** data is available) and the error code returned when xColumn or
5906 ** some other method is next invoked on the save virtual table cursor.
5908 p->inVtabMethod = 1;
5909 rc = pModule->xNext(pCur->pVtabCursor);
5910 p->inVtabMethod = 0;
5911 importVtabErrMsg(p, pVtab);
5912 if( rc==SQLITE_OK ){
5913 res = pModule->xEof(pCur->pVtabCursor);
5916 if( !res ){
5917 /* If there is data, jump to P2 */
5918 pc = pOp->p2 - 1;
5920 break;
5922 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5924 #ifndef SQLITE_OMIT_VIRTUALTABLE
5925 /* Opcode: VRename P1 * * P4 *
5927 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5928 ** This opcode invokes the corresponding xRename method. The value
5929 ** in register P1 is passed as the zName argument to the xRename method.
5931 case OP_VRename: {
5932 sqlite3_vtab *pVtab;
5933 Mem *pName;
5935 pVtab = pOp->p4.pVtab->pVtab;
5936 pName = &aMem[pOp->p1];
5937 assert( pVtab->pModule->xRename );
5938 assert( memIsValid(pName) );
5939 REGISTER_TRACE(pOp->p1, pName);
5940 assert( pName->flags & MEM_Str );
5941 testcase( pName->enc==SQLITE_UTF8 );
5942 testcase( pName->enc==SQLITE_UTF16BE );
5943 testcase( pName->enc==SQLITE_UTF16LE );
5944 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
5945 if( rc==SQLITE_OK ){
5946 rc = pVtab->pModule->xRename(pVtab, pName->z);
5947 importVtabErrMsg(p, pVtab);
5948 p->expired = 0;
5950 break;
5952 #endif
5954 #ifndef SQLITE_OMIT_VIRTUALTABLE
5955 /* Opcode: VUpdate P1 P2 P3 P4 *
5957 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5958 ** This opcode invokes the corresponding xUpdate method. P2 values
5959 ** are contiguous memory cells starting at P3 to pass to the xUpdate
5960 ** invocation. The value in register (P3+P2-1) corresponds to the
5961 ** p2th element of the argv array passed to xUpdate.
5963 ** The xUpdate method will do a DELETE or an INSERT or both.
5964 ** The argv[0] element (which corresponds to memory cell P3)
5965 ** is the rowid of a row to delete. If argv[0] is NULL then no
5966 ** deletion occurs. The argv[1] element is the rowid of the new
5967 ** row. This can be NULL to have the virtual table select the new
5968 ** rowid for itself. The subsequent elements in the array are
5969 ** the values of columns in the new row.
5971 ** If P2==1 then no insert is performed. argv[0] is the rowid of
5972 ** a row to delete.
5974 ** P1 is a boolean flag. If it is set to true and the xUpdate call
5975 ** is successful, then the value returned by sqlite3_last_insert_rowid()
5976 ** is set to the value of the rowid for the row just inserted.
5978 case OP_VUpdate: {
5979 sqlite3_vtab *pVtab;
5980 sqlite3_module *pModule;
5981 int nArg;
5982 int i;
5983 sqlite_int64 rowid;
5984 Mem **apArg;
5985 Mem *pX;
5987 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
5988 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
5990 pVtab = pOp->p4.pVtab->pVtab;
5991 pModule = (sqlite3_module *)pVtab->pModule;
5992 nArg = pOp->p2;
5993 assert( pOp->p4type==P4_VTAB );
5994 if( ALWAYS(pModule->xUpdate) ){
5995 u8 vtabOnConflict = db->vtabOnConflict;
5996 apArg = p->apArg;
5997 pX = &aMem[pOp->p3];
5998 for(i=0; i<nArg; i++){
5999 assert( memIsValid(pX) );
6000 memAboutToChange(p, pX);
6001 sqlite3VdbeMemStoreType(pX);
6002 apArg[i] = pX;
6003 pX++;
6005 db->vtabOnConflict = pOp->p5;
6006 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6007 db->vtabOnConflict = vtabOnConflict;
6008 importVtabErrMsg(p, pVtab);
6009 if( rc==SQLITE_OK && pOp->p1 ){
6010 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6011 db->lastRowid = lastRowid = rowid;
6013 if( rc==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6014 if( pOp->p5==OE_Ignore ){
6015 rc = SQLITE_OK;
6016 }else{
6017 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6019 }else{
6020 p->nChange++;
6023 break;
6025 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6027 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6028 /* Opcode: Pagecount P1 P2 * * *
6030 ** Write the current number of pages in database P1 to memory cell P2.
6032 case OP_Pagecount: { /* out2-prerelease */
6033 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6034 break;
6036 #endif
6039 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6040 /* Opcode: MaxPgcnt P1 P2 P3 * *
6042 ** Try to set the maximum page count for database P1 to the value in P3.
6043 ** Do not let the maximum page count fall below the current page count and
6044 ** do not change the maximum page count value if P3==0.
6046 ** Store the maximum page count after the change in register P2.
6048 case OP_MaxPgcnt: { /* out2-prerelease */
6049 unsigned int newMax;
6050 Btree *pBt;
6052 pBt = db->aDb[pOp->p1].pBt;
6053 newMax = 0;
6054 if( pOp->p3 ){
6055 newMax = sqlite3BtreeLastPage(pBt);
6056 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6058 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6059 break;
6061 #endif
6064 #ifndef SQLITE_OMIT_TRACE
6065 /* Opcode: Trace * * * P4 *
6067 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6068 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6070 case OP_Trace: {
6071 char *zTrace;
6072 char *z;
6074 if( db->xTrace && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0 ){
6075 z = sqlite3VdbeExpandSql(p, zTrace);
6076 db->xTrace(db->pTraceArg, z);
6077 sqlite3DbFree(db, z);
6079 #ifdef SQLITE_DEBUG
6080 if( (db->flags & SQLITE_SqlTrace)!=0
6081 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6083 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6085 #endif /* SQLITE_DEBUG */
6086 break;
6088 #endif
6091 /* Opcode: Noop * * * * *
6093 ** Do nothing. This instruction is often useful as a jump
6094 ** destination.
6097 ** The magic Explain opcode are only inserted when explain==2 (which
6098 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6099 ** This opcode records information from the optimizer. It is the
6100 ** the same as a no-op. This opcodesnever appears in a real VM program.
6102 default: { /* This is really OP_Noop and OP_Explain */
6103 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6104 break;
6107 /*****************************************************************************
6108 ** The cases of the switch statement above this line should all be indented
6109 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6110 ** readability. From this point on down, the normal indentation rules are
6111 ** restored.
6112 *****************************************************************************/
6115 #ifdef VDBE_PROFILE
6117 u64 elapsed = sqlite3Hwtime() - start;
6118 pOp->cycles += elapsed;
6119 pOp->cnt++;
6120 #if 0
6121 fprintf(stdout, "%10llu ", elapsed);
6122 sqlite3VdbePrintOp(stdout, origPc, &aOp[origPc]);
6123 #endif
6125 #endif
6127 /* The following code adds nothing to the actual functionality
6128 ** of the program. It is only here for testing and debugging.
6129 ** On the other hand, it does burn CPU cycles every time through
6130 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6132 #ifndef NDEBUG
6133 assert( pc>=-1 && pc<p->nOp );
6135 #ifdef SQLITE_DEBUG
6136 if( p->trace ){
6137 if( rc!=0 ) fprintf(p->trace,"rc=%d\n",rc);
6138 if( pOp->opflags & (OPFLG_OUT2_PRERELEASE|OPFLG_OUT2) ){
6139 registerTrace(p->trace, pOp->p2, &aMem[pOp->p2]);
6141 if( pOp->opflags & OPFLG_OUT3 ){
6142 registerTrace(p->trace, pOp->p3, &aMem[pOp->p3]);
6145 #endif /* SQLITE_DEBUG */
6146 #endif /* NDEBUG */
6147 } /* The end of the for(;;) loop the loops through opcodes */
6149 /* If we reach this point, it means that execution is finished with
6150 ** an error of some kind.
6152 vdbe_error_halt:
6153 assert( rc );
6154 p->rc = rc;
6155 testcase( sqlite3GlobalConfig.xLog!=0 );
6156 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6157 pc, p->zSql, p->zErrMsg);
6158 sqlite3VdbeHalt(p);
6159 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6160 rc = SQLITE_ERROR;
6161 if( resetSchemaOnFault>0 ){
6162 sqlite3ResetInternalSchema(db, resetSchemaOnFault-1);
6165 /* This is the only way out of this procedure. We have to
6166 ** release the mutexes on btrees that were acquired at the
6167 ** top. */
6168 vdbe_return:
6169 db->lastRowid = lastRowid;
6170 sqlite3VdbeLeave(p);
6171 return rc;
6173 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6174 ** is encountered.
6176 too_big:
6177 sqlite3SetString(&p->zErrMsg, db, "string or blob too big");
6178 rc = SQLITE_TOOBIG;
6179 goto vdbe_error_halt;
6181 /* Jump to here if a malloc() fails.
6183 no_mem:
6184 db->mallocFailed = 1;
6185 sqlite3SetString(&p->zErrMsg, db, "out of memory");
6186 rc = SQLITE_NOMEM;
6187 goto vdbe_error_halt;
6189 /* Jump to here for any other kind of fatal error. The "rc" variable
6190 ** should hold the error number.
6192 abort_due_to_error:
6193 assert( p->zErrMsg==0 );
6194 if( db->mallocFailed ) rc = SQLITE_NOMEM;
6195 if( rc!=SQLITE_IOERR_NOMEM ){
6196 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6198 goto vdbe_error_halt;
6200 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6201 ** flag.
6203 abort_due_to_interrupt:
6204 assert( db->u1.isInterrupted );
6205 rc = SQLITE_INTERRUPT;
6206 p->rc = rc;
6207 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(rc));
6208 goto vdbe_error_halt;