4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
33 int iDb
; /* The database containing the table to be locked */
34 Pgno iTab
; /* The root page of the table to be locked */
35 u8 isWriteLock
; /* True for write lock. False for a read lock */
36 const char *zLockName
; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 static SQLITE_NOINLINE
void lockTable(
50 Parse
*pParse
, /* Parsing context */
51 int iDb
, /* Index of the database containing the table to lock */
52 Pgno iTab
, /* Root page number of the table to be locked */
53 u8 isWriteLock
, /* True for a write lock */
54 const char *zName
/* Name of the table to be locked */
62 pToplevel
= sqlite3ParseToplevel(pParse
);
63 for(i
=0; i
<pToplevel
->nTableLock
; i
++){
64 p
= &pToplevel
->aTableLock
[i
];
65 if( p
->iDb
==iDb
&& p
->iTab
==iTab
){
66 p
->isWriteLock
= (p
->isWriteLock
|| isWriteLock
);
71 nBytes
= sizeof(TableLock
) * (pToplevel
->nTableLock
+1);
72 pToplevel
->aTableLock
=
73 sqlite3DbReallocOrFree(pToplevel
->db
, pToplevel
->aTableLock
, nBytes
);
74 if( pToplevel
->aTableLock
){
75 p
= &pToplevel
->aTableLock
[pToplevel
->nTableLock
++];
78 p
->isWriteLock
= isWriteLock
;
81 pToplevel
->nTableLock
= 0;
82 sqlite3OomFault(pToplevel
->db
);
85 void sqlite3TableLock(
86 Parse
*pParse
, /* Parsing context */
87 int iDb
, /* Index of the database containing the table to lock */
88 Pgno iTab
, /* Root page number of the table to be locked */
89 u8 isWriteLock
, /* True for a write lock */
90 const char *zName
/* Name of the table to be locked */
93 if( !sqlite3BtreeSharable(pParse
->db
->aDb
[iDb
].pBt
) ) return;
94 lockTable(pParse
, iDb
, iTab
, isWriteLock
, zName
);
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
101 static void codeTableLocks(Parse
*pParse
){
103 Vdbe
*pVdbe
= pParse
->pVdbe
;
106 for(i
=0; i
<pParse
->nTableLock
; i
++){
107 TableLock
*p
= &pParse
->aTableLock
[i
];
109 sqlite3VdbeAddOp4(pVdbe
, OP_TableLock
, p1
, p
->iTab
, p
->isWriteLock
,
110 p
->zLockName
, P4_STATIC
);
114 #define codeTableLocks(x)
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m
){
125 for(i
=0; i
<sizeof(yDbMask
); i
++) if( m
[i
] ) return 0;
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared. This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
140 void sqlite3FinishCoding(Parse
*pParse
){
145 assert( pParse
->pToplevel
==0 );
147 assert( db
->pParse
==pParse
);
148 if( pParse
->nested
) return;
150 if( db
->mallocFailed
) pParse
->rc
= SQLITE_NOMEM
;
153 assert( db
->mallocFailed
==0 );
155 /* Begin by generating some termination code at the end of the
161 pParse
->rc
= SQLITE_DONE
;
164 v
= sqlite3GetVdbe(pParse
);
165 if( v
==0 ) pParse
->rc
= SQLITE_ERROR
;
167 assert( !pParse
->isMultiWrite
168 || sqlite3VdbeAssertMayAbort(v
, pParse
->mayAbort
));
170 if( pParse
->bReturning
){
171 Returning
*pReturning
= pParse
->u1
.pReturning
;
175 if( pReturning
->nRetCol
){
176 sqlite3VdbeAddOp0(v
, OP_FkCheck
);
178 sqlite3VdbeAddOp1(v
, OP_Rewind
, pReturning
->iRetCur
);
180 reg
= pReturning
->iRetReg
;
181 for(i
=0; i
<pReturning
->nRetCol
; i
++){
182 sqlite3VdbeAddOp3(v
, OP_Column
, pReturning
->iRetCur
, i
, reg
+i
);
184 sqlite3VdbeAddOp2(v
, OP_ResultRow
, reg
, i
);
185 sqlite3VdbeAddOp2(v
, OP_Next
, pReturning
->iRetCur
, addrRewind
+1);
187 sqlite3VdbeJumpHere(v
, addrRewind
);
190 sqlite3VdbeAddOp0(v
, OP_Halt
);
192 #if SQLITE_USER_AUTHENTICATION
193 if( pParse
->nTableLock
>0 && db
->init
.busy
==0 ){
194 sqlite3UserAuthInit(db
);
195 if( db
->auth
.authLevel
<UAUTH_User
){
196 sqlite3ErrorMsg(pParse
, "user not authenticated");
197 pParse
->rc
= SQLITE_AUTH_USER
;
203 /* The cookie mask contains one bit for each database file open.
204 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
205 ** set for each database that is used. Generate code to start a
206 ** transaction on each used database and to verify the schema cookie
207 ** on each used database.
209 assert( pParse
->nErr
>0 || sqlite3VdbeGetOp(v
, 0)->opcode
==OP_Init
);
210 sqlite3VdbeJumpHere(v
, 0);
215 if( DbMaskTest(pParse
->cookieMask
, iDb
)==0 ) continue;
216 sqlite3VdbeUsesBtree(v
, iDb
);
217 pSchema
= db
->aDb
[iDb
].pSchema
;
218 sqlite3VdbeAddOp4Int(v
,
219 OP_Transaction
, /* Opcode */
221 DbMaskTest(pParse
->writeMask
,iDb
), /* P2 */
222 pSchema
->schema_cookie
, /* P3 */
223 pSchema
->iGeneration
/* P4 */
225 if( db
->init
.busy
==0 ) sqlite3VdbeChangeP5(v
, 1);
227 "usesStmtJournal=%d", pParse
->mayAbort
&& pParse
->isMultiWrite
));
228 }while( ++iDb
<db
->nDb
);
229 #ifndef SQLITE_OMIT_VIRTUALTABLE
230 for(i
=0; i
<pParse
->nVtabLock
; i
++){
231 char *vtab
= (char *)sqlite3GetVTable(db
, pParse
->apVtabLock
[i
]);
232 sqlite3VdbeAddOp4(v
, OP_VBegin
, 0, 0, 0, vtab
, P4_VTAB
);
234 pParse
->nVtabLock
= 0;
237 #ifndef SQLITE_OMIT_SHARED_CACHE
238 /* Once all the cookies have been verified and transactions opened,
239 ** obtain the required table-locks. This is a no-op unless the
240 ** shared-cache feature is enabled.
242 if( pParse
->nTableLock
) codeTableLocks(pParse
);
245 /* Initialize any AUTOINCREMENT data structures required.
247 if( pParse
->pAinc
) sqlite3AutoincrementBegin(pParse
);
249 /* Code constant expressions that were factored out of inner loops.
251 if( pParse
->pConstExpr
){
252 ExprList
*pEL
= pParse
->pConstExpr
;
253 pParse
->okConstFactor
= 0;
254 for(i
=0; i
<pEL
->nExpr
; i
++){
255 assert( pEL
->a
[i
].u
.iConstExprReg
>0 );
256 sqlite3ExprCode(pParse
, pEL
->a
[i
].pExpr
, pEL
->a
[i
].u
.iConstExprReg
);
260 if( pParse
->bReturning
){
261 Returning
*pRet
= pParse
->u1
.pReturning
;
263 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRet
->iRetCur
, pRet
->nRetCol
);
267 /* Finally, jump back to the beginning of the executable code. */
268 sqlite3VdbeGoto(v
, 1);
271 /* Get the VDBE program ready for execution
273 assert( v
!=0 || pParse
->nErr
);
274 assert( db
->mallocFailed
==0 || pParse
->nErr
);
275 if( pParse
->nErr
==0 ){
276 /* A minimum of one cursor is required if autoincrement is used
277 * See ticket [a696379c1f08866] */
278 assert( pParse
->pAinc
==0 || pParse
->nTab
>0 );
279 sqlite3VdbeMakeReady(v
, pParse
);
280 pParse
->rc
= SQLITE_DONE
;
282 pParse
->rc
= SQLITE_ERROR
;
287 ** Run the parser and code generator recursively in order to generate
288 ** code for the SQL statement given onto the end of the pParse context
289 ** currently under construction. Notes:
291 ** * The final OP_Halt is not appended and other initialization
292 ** and finalization steps are omitted because those are handling by the
295 ** * Built-in SQL functions always take precedence over application-defined
296 ** SQL functions. In other words, it is not possible to override a
297 ** built-in function.
299 void sqlite3NestedParse(Parse
*pParse
, const char *zFormat
, ...){
302 sqlite3
*db
= pParse
->db
;
303 u32 savedDbFlags
= db
->mDbFlags
;
304 char saveBuf
[PARSE_TAIL_SZ
];
306 if( pParse
->nErr
) return;
307 if( pParse
->eParseMode
) return;
308 assert( pParse
->nested
<10 ); /* Nesting should only be of limited depth */
309 va_start(ap
, zFormat
);
310 zSql
= sqlite3VMPrintf(db
, zFormat
, ap
);
313 /* This can result either from an OOM or because the formatted string
314 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
316 if( !db
->mallocFailed
) pParse
->rc
= SQLITE_TOOBIG
;
321 memcpy(saveBuf
, PARSE_TAIL(pParse
), PARSE_TAIL_SZ
);
322 memset(PARSE_TAIL(pParse
), 0, PARSE_TAIL_SZ
);
323 db
->mDbFlags
|= DBFLAG_PreferBuiltin
;
324 sqlite3RunParser(pParse
, zSql
);
325 db
->mDbFlags
= savedDbFlags
;
326 sqlite3DbFree(db
, zSql
);
327 memcpy(PARSE_TAIL(pParse
), saveBuf
, PARSE_TAIL_SZ
);
331 #if SQLITE_USER_AUTHENTICATION
333 ** Return TRUE if zTable is the name of the system table that stores the
334 ** list of users and their access credentials.
336 int sqlite3UserAuthTable(const char *zTable
){
337 return sqlite3_stricmp(zTable
, "sqlite_user")==0;
342 ** Locate the in-memory structure that describes a particular database
343 ** table given the name of that table and (optionally) the name of the
344 ** database containing the table. Return NULL if not found.
346 ** If zDatabase is 0, all databases are searched for the table and the
347 ** first matching table is returned. (No checking for duplicate table
348 ** names is done.) The search order is TEMP first, then MAIN, then any
349 ** auxiliary databases added using the ATTACH command.
351 ** See also sqlite3LocateTable().
353 Table
*sqlite3FindTable(sqlite3
*db
, const char *zName
, const char *zDatabase
){
357 /* All mutexes are required for schema access. Make sure we hold them. */
358 assert( zDatabase
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
359 #if SQLITE_USER_AUTHENTICATION
360 /* Only the admin user is allowed to know that the sqlite_user table
362 if( db
->auth
.authLevel
<UAUTH_Admin
&& sqlite3UserAuthTable(zName
)!=0 ){
367 for(i
=0; i
<db
->nDb
; i
++){
368 if( sqlite3StrICmp(zDatabase
, db
->aDb
[i
].zDbSName
)==0 ) break;
371 /* No match against the official names. But always match "main"
372 ** to schema 0 as a legacy fallback. */
373 if( sqlite3StrICmp(zDatabase
,"main")==0 ){
379 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
380 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
382 if( sqlite3StrICmp(zName
+7, &PREFERRED_TEMP_SCHEMA_TABLE
[7])==0
383 || sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0
384 || sqlite3StrICmp(zName
+7, &LEGACY_SCHEMA_TABLE
[7])==0
386 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
387 LEGACY_TEMP_SCHEMA_TABLE
);
390 if( sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0 ){
391 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
,
392 LEGACY_SCHEMA_TABLE
);
397 /* Match against TEMP first */
398 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
, zName
);
400 /* The main database is second */
401 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, zName
);
403 /* Attached databases are in order of attachment */
404 for(i
=2; i
<db
->nDb
; i
++){
405 assert( sqlite3SchemaMutexHeld(db
, i
, 0) );
406 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
409 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
410 if( sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0 ){
411 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, LEGACY_SCHEMA_TABLE
);
412 }else if( sqlite3StrICmp(zName
+7, &PREFERRED_TEMP_SCHEMA_TABLE
[7])==0 ){
413 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
414 LEGACY_TEMP_SCHEMA_TABLE
);
422 ** Locate the in-memory structure that describes a particular database
423 ** table given the name of that table and (optionally) the name of the
424 ** database containing the table. Return NULL if not found. Also leave an
425 ** error message in pParse->zErrMsg.
427 ** The difference between this routine and sqlite3FindTable() is that this
428 ** routine leaves an error message in pParse->zErrMsg where
429 ** sqlite3FindTable() does not.
431 Table
*sqlite3LocateTable(
432 Parse
*pParse
, /* context in which to report errors */
433 u32 flags
, /* LOCATE_VIEW or LOCATE_NOERR */
434 const char *zName
, /* Name of the table we are looking for */
435 const char *zDbase
/* Name of the database. Might be NULL */
438 sqlite3
*db
= pParse
->db
;
440 /* Read the database schema. If an error occurs, leave an error message
441 ** and code in pParse and return NULL. */
442 if( (db
->mDbFlags
& DBFLAG_SchemaKnownOk
)==0
443 && SQLITE_OK
!=sqlite3ReadSchema(pParse
)
448 p
= sqlite3FindTable(db
, zName
, zDbase
);
450 #ifndef SQLITE_OMIT_VIRTUALTABLE
451 /* If zName is the not the name of a table in the schema created using
452 ** CREATE, then check to see if it is the name of an virtual table that
453 ** can be an eponymous virtual table. */
454 if( (pParse
->prepFlags
& SQLITE_PREPARE_NO_VTAB
)==0 && db
->init
.busy
==0 ){
455 Module
*pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, zName
);
456 if( pMod
==0 && sqlite3_strnicmp(zName
, "pragma_", 7)==0 ){
457 pMod
= sqlite3PragmaVtabRegister(db
, zName
);
459 if( pMod
&& sqlite3VtabEponymousTableInit(pParse
, pMod
) ){
460 testcase( pMod
->pEpoTab
==0 );
461 return pMod
->pEpoTab
;
465 if( flags
& LOCATE_NOERR
) return 0;
466 pParse
->checkSchema
= 1;
467 }else if( IsVirtual(p
) && (pParse
->prepFlags
& SQLITE_PREPARE_NO_VTAB
)!=0 ){
472 const char *zMsg
= flags
& LOCATE_VIEW
? "no such view" : "no such table";
474 sqlite3ErrorMsg(pParse
, "%s: %s.%s", zMsg
, zDbase
, zName
);
476 sqlite3ErrorMsg(pParse
, "%s: %s", zMsg
, zName
);
479 assert( HasRowid(p
) || p
->iPKey
<0 );
486 ** Locate the table identified by *p.
488 ** This is a wrapper around sqlite3LocateTable(). The difference between
489 ** sqlite3LocateTable() and this function is that this function restricts
490 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
491 ** non-NULL if it is part of a view or trigger program definition. See
492 ** sqlite3FixSrcList() for details.
494 Table
*sqlite3LocateTableItem(
500 assert( p
->pSchema
==0 || p
->zDatabase
==0 );
502 int iDb
= sqlite3SchemaToIndex(pParse
->db
, p
->pSchema
);
503 zDb
= pParse
->db
->aDb
[iDb
].zDbSName
;
507 return sqlite3LocateTable(pParse
, flags
, p
->zName
, zDb
);
511 ** Return the preferred table name for system tables. Translate legacy
512 ** names into the new preferred names, as appropriate.
514 const char *sqlite3PreferredTableName(const char *zName
){
515 if( sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
516 if( sqlite3StrICmp(zName
+7, &LEGACY_SCHEMA_TABLE
[7])==0 ){
517 return PREFERRED_SCHEMA_TABLE
;
519 if( sqlite3StrICmp(zName
+7, &LEGACY_TEMP_SCHEMA_TABLE
[7])==0 ){
520 return PREFERRED_TEMP_SCHEMA_TABLE
;
527 ** Locate the in-memory structure that describes
528 ** a particular index given the name of that index
529 ** and the name of the database that contains the index.
530 ** Return NULL if not found.
532 ** If zDatabase is 0, all databases are searched for the
533 ** table and the first matching index is returned. (No checking
534 ** for duplicate index names is done.) The search order is
535 ** TEMP first, then MAIN, then any auxiliary databases added
536 ** using the ATTACH command.
538 Index
*sqlite3FindIndex(sqlite3
*db
, const char *zName
, const char *zDb
){
541 /* All mutexes are required for schema access. Make sure we hold them. */
542 assert( zDb
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
543 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
544 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
545 Schema
*pSchema
= db
->aDb
[j
].pSchema
;
547 if( zDb
&& sqlite3DbIsNamed(db
, j
, zDb
)==0 ) continue;
548 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
549 p
= sqlite3HashFind(&pSchema
->idxHash
, zName
);
556 ** Reclaim the memory used by an index
558 void sqlite3FreeIndex(sqlite3
*db
, Index
*p
){
559 #ifndef SQLITE_OMIT_ANALYZE
560 sqlite3DeleteIndexSamples(db
, p
);
562 sqlite3ExprDelete(db
, p
->pPartIdxWhere
);
563 sqlite3ExprListDelete(db
, p
->aColExpr
);
564 sqlite3DbFree(db
, p
->zColAff
);
565 if( p
->isResized
) sqlite3DbFree(db
, (void *)p
->azColl
);
566 #ifdef SQLITE_ENABLE_STAT4
567 sqlite3_free(p
->aiRowEst
);
569 sqlite3DbFree(db
, p
);
573 ** For the index called zIdxName which is found in the database iDb,
574 ** unlike that index from its Table then remove the index from
575 ** the index hash table and free all memory structures associated
578 void sqlite3UnlinkAndDeleteIndex(sqlite3
*db
, int iDb
, const char *zIdxName
){
582 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
583 pHash
= &db
->aDb
[iDb
].pSchema
->idxHash
;
584 pIndex
= sqlite3HashInsert(pHash
, zIdxName
, 0);
585 if( ALWAYS(pIndex
) ){
586 if( pIndex
->pTable
->pIndex
==pIndex
){
587 pIndex
->pTable
->pIndex
= pIndex
->pNext
;
590 /* Justification of ALWAYS(); The index must be on the list of
592 p
= pIndex
->pTable
->pIndex
;
593 while( ALWAYS(p
) && p
->pNext
!=pIndex
){ p
= p
->pNext
; }
594 if( ALWAYS(p
&& p
->pNext
==pIndex
) ){
595 p
->pNext
= pIndex
->pNext
;
598 sqlite3FreeIndex(db
, pIndex
);
600 db
->mDbFlags
|= DBFLAG_SchemaChange
;
604 ** Look through the list of open database files in db->aDb[] and if
605 ** any have been closed, remove them from the list. Reallocate the
606 ** db->aDb[] structure to a smaller size, if possible.
608 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
609 ** are never candidates for being collapsed.
611 void sqlite3CollapseDatabaseArray(sqlite3
*db
){
613 for(i
=j
=2; i
<db
->nDb
; i
++){
614 struct Db
*pDb
= &db
->aDb
[i
];
616 sqlite3DbFree(db
, pDb
->zDbSName
);
621 db
->aDb
[j
] = db
->aDb
[i
];
626 if( db
->nDb
<=2 && db
->aDb
!=db
->aDbStatic
){
627 memcpy(db
->aDbStatic
, db
->aDb
, 2*sizeof(db
->aDb
[0]));
628 sqlite3DbFree(db
, db
->aDb
);
629 db
->aDb
= db
->aDbStatic
;
634 ** Reset the schema for the database at index iDb. Also reset the
635 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
636 ** Deferred resets may be run by calling with iDb<0.
638 void sqlite3ResetOneSchema(sqlite3
*db
, int iDb
){
640 assert( iDb
<db
->nDb
);
643 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
644 DbSetProperty(db
, iDb
, DB_ResetWanted
);
645 DbSetProperty(db
, 1, DB_ResetWanted
);
646 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
649 if( db
->nSchemaLock
==0 ){
650 for(i
=0; i
<db
->nDb
; i
++){
651 if( DbHasProperty(db
, i
, DB_ResetWanted
) ){
652 sqlite3SchemaClear(db
->aDb
[i
].pSchema
);
659 ** Erase all schema information from all attached databases (including
660 ** "main" and "temp") for a single database connection.
662 void sqlite3ResetAllSchemasOfConnection(sqlite3
*db
){
664 sqlite3BtreeEnterAll(db
);
665 for(i
=0; i
<db
->nDb
; i
++){
666 Db
*pDb
= &db
->aDb
[i
];
668 if( db
->nSchemaLock
==0 ){
669 sqlite3SchemaClear(pDb
->pSchema
);
671 DbSetProperty(db
, i
, DB_ResetWanted
);
675 db
->mDbFlags
&= ~(DBFLAG_SchemaChange
|DBFLAG_SchemaKnownOk
);
676 sqlite3VtabUnlockList(db
);
677 sqlite3BtreeLeaveAll(db
);
678 if( db
->nSchemaLock
==0 ){
679 sqlite3CollapseDatabaseArray(db
);
684 ** This routine is called when a commit occurs.
686 void sqlite3CommitInternalChanges(sqlite3
*db
){
687 db
->mDbFlags
&= ~DBFLAG_SchemaChange
;
691 ** Set the expression associated with a column. This is usually
692 ** the DEFAULT value, but might also be the expression that computes
693 ** the value for a generated column.
695 void sqlite3ColumnSetExpr(
696 Parse
*pParse
, /* Parsing context */
697 Table
*pTab
, /* The table containing the column */
698 Column
*pCol
, /* The column to receive the new DEFAULT expression */
699 Expr
*pExpr
/* The new default expression */
702 assert( IsOrdinaryTable(pTab
) );
703 pList
= pTab
->u
.tab
.pDfltList
;
706 || NEVER(pList
->nExpr
<pCol
->iDflt
)
708 pCol
->iDflt
= pList
==0 ? 1 : pList
->nExpr
+1;
709 pTab
->u
.tab
.pDfltList
= sqlite3ExprListAppend(pParse
, pList
, pExpr
);
711 sqlite3ExprDelete(pParse
->db
, pList
->a
[pCol
->iDflt
-1].pExpr
);
712 pList
->a
[pCol
->iDflt
-1].pExpr
= pExpr
;
717 ** Return the expression associated with a column. The expression might be
718 ** the DEFAULT clause or the AS clause of a generated column.
719 ** Return NULL if the column has no associated expression.
721 Expr
*sqlite3ColumnExpr(Table
*pTab
, Column
*pCol
){
722 if( pCol
->iDflt
==0 ) return 0;
723 if( NEVER(!IsOrdinaryTable(pTab
)) ) return 0;
724 if( NEVER(pTab
->u
.tab
.pDfltList
==0) ) return 0;
725 if( NEVER(pTab
->u
.tab
.pDfltList
->nExpr
<pCol
->iDflt
) ) return 0;
726 return pTab
->u
.tab
.pDfltList
->a
[pCol
->iDflt
-1].pExpr
;
730 ** Set the collating sequence name for a column.
732 void sqlite3ColumnSetColl(
741 n
= sqlite3Strlen30(pCol
->zCnName
) + 1;
742 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
743 n
+= sqlite3Strlen30(pCol
->zCnName
+n
) + 1;
745 nColl
= sqlite3Strlen30(zColl
) + 1;
746 zNew
= sqlite3DbRealloc(db
, pCol
->zCnName
, nColl
+n
);
748 pCol
->zCnName
= zNew
;
749 memcpy(pCol
->zCnName
+ n
, zColl
, nColl
);
750 pCol
->colFlags
|= COLFLAG_HASCOLL
;
755 ** Return the collating sequence name for a column
757 const char *sqlite3ColumnColl(Column
*pCol
){
759 if( (pCol
->colFlags
& COLFLAG_HASCOLL
)==0 ) return 0;
762 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
763 do{ z
++; }while( *z
);
769 ** Delete memory allocated for the column names of a table or view (the
770 ** Table.aCol[] array).
772 void sqlite3DeleteColumnNames(sqlite3
*db
, Table
*pTable
){
777 if( (pCol
= pTable
->aCol
)!=0 ){
778 for(i
=0; i
<pTable
->nCol
; i
++, pCol
++){
779 assert( pCol
->zCnName
==0 || pCol
->hName
==sqlite3StrIHash(pCol
->zCnName
) );
780 sqlite3DbFree(db
, pCol
->zCnName
);
782 sqlite3DbNNFreeNN(db
, pTable
->aCol
);
783 if( IsOrdinaryTable(pTable
) ){
784 sqlite3ExprListDelete(db
, pTable
->u
.tab
.pDfltList
);
786 if( db
->pnBytesFreed
==0 ){
789 if( IsOrdinaryTable(pTable
) ){
790 pTable
->u
.tab
.pDfltList
= 0;
797 ** Remove the memory data structures associated with the given
798 ** Table. No changes are made to disk by this routine.
800 ** This routine just deletes the data structure. It does not unlink
801 ** the table data structure from the hash table. But it does destroy
802 ** memory structures of the indices and foreign keys associated with
805 ** The db parameter is optional. It is needed if the Table object
806 ** contains lookaside memory. (Table objects in the schema do not use
807 ** lookaside memory, but some ephemeral Table objects do.) Or the
808 ** db parameter can be used with db->pnBytesFreed to measure the memory
809 ** used by the Table object.
811 static void SQLITE_NOINLINE
deleteTable(sqlite3
*db
, Table
*pTable
){
812 Index
*pIndex
, *pNext
;
815 /* Record the number of outstanding lookaside allocations in schema Tables
816 ** prior to doing any free() operations. Since schema Tables do not use
817 ** lookaside, this number should not change.
819 ** If malloc has already failed, it may be that it failed while allocating
820 ** a Table object that was going to be marked ephemeral. So do not check
821 ** that no lookaside memory is used in this case either. */
824 if( !db
->mallocFailed
&& (pTable
->tabFlags
& TF_Ephemeral
)==0 ){
825 nLookaside
= sqlite3LookasideUsed(db
, 0);
829 /* Delete all indices associated with this table. */
830 for(pIndex
= pTable
->pIndex
; pIndex
; pIndex
=pNext
){
831 pNext
= pIndex
->pNext
;
832 assert( pIndex
->pSchema
==pTable
->pSchema
833 || (IsVirtual(pTable
) && pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
) );
834 if( db
->pnBytesFreed
==0 && !IsVirtual(pTable
) ){
835 char *zName
= pIndex
->zName
;
836 TESTONLY ( Index
*pOld
= ) sqlite3HashInsert(
837 &pIndex
->pSchema
->idxHash
, zName
, 0
839 assert( db
==0 || sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
840 assert( pOld
==pIndex
|| pOld
==0 );
842 sqlite3FreeIndex(db
, pIndex
);
845 if( IsOrdinaryTable(pTable
) ){
846 sqlite3FkDelete(db
, pTable
);
848 #ifndef SQLITE_OMIT_VIRTUALTABLE
849 else if( IsVirtual(pTable
) ){
850 sqlite3VtabClear(db
, pTable
);
854 assert( IsView(pTable
) );
855 sqlite3SelectDelete(db
, pTable
->u
.view
.pSelect
);
858 /* Delete the Table structure itself.
860 sqlite3DeleteColumnNames(db
, pTable
);
861 sqlite3DbFree(db
, pTable
->zName
);
862 sqlite3DbFree(db
, pTable
->zColAff
);
863 sqlite3ExprListDelete(db
, pTable
->pCheck
);
864 sqlite3DbFree(db
, pTable
);
866 /* Verify that no lookaside memory was used by schema tables */
867 assert( nLookaside
==0 || nLookaside
==sqlite3LookasideUsed(db
,0) );
869 void sqlite3DeleteTable(sqlite3
*db
, Table
*pTable
){
870 /* Do not delete the table until the reference count reaches zero. */
872 if( !pTable
) return;
873 if( db
->pnBytesFreed
==0 && (--pTable
->nTabRef
)>0 ) return;
874 deleteTable(db
, pTable
);
879 ** Unlink the given table from the hash tables and the delete the
880 ** table structure with all its indices and foreign keys.
882 void sqlite3UnlinkAndDeleteTable(sqlite3
*db
, int iDb
, const char *zTabName
){
887 assert( iDb
>=0 && iDb
<db
->nDb
);
889 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
890 testcase( zTabName
[0]==0 ); /* Zero-length table names are allowed */
892 p
= sqlite3HashInsert(&pDb
->pSchema
->tblHash
, zTabName
, 0);
893 sqlite3DeleteTable(db
, p
);
894 db
->mDbFlags
|= DBFLAG_SchemaChange
;
898 ** Given a token, return a string that consists of the text of that
899 ** token. Space to hold the returned string
900 ** is obtained from sqliteMalloc() and must be freed by the calling
903 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
904 ** surround the body of the token are removed.
906 ** Tokens are often just pointers into the original SQL text and so
907 ** are not \000 terminated and are not persistent. The returned string
908 ** is \000 terminated and is persistent.
910 char *sqlite3NameFromToken(sqlite3
*db
, const Token
*pName
){
913 zName
= sqlite3DbStrNDup(db
, (const char*)pName
->z
, pName
->n
);
914 sqlite3Dequote(zName
);
922 ** Open the sqlite_schema table stored in database number iDb for
923 ** writing. The table is opened using cursor 0.
925 void sqlite3OpenSchemaTable(Parse
*p
, int iDb
){
926 Vdbe
*v
= sqlite3GetVdbe(p
);
927 sqlite3TableLock(p
, iDb
, SCHEMA_ROOT
, 1, LEGACY_SCHEMA_TABLE
);
928 sqlite3VdbeAddOp4Int(v
, OP_OpenWrite
, 0, SCHEMA_ROOT
, iDb
, 5);
935 ** Parameter zName points to a nul-terminated buffer containing the name
936 ** of a database ("main", "temp" or the name of an attached db). This
937 ** function returns the index of the named database in db->aDb[], or
938 ** -1 if the named db cannot be found.
940 int sqlite3FindDbName(sqlite3
*db
, const char *zName
){
941 int i
= -1; /* Database number */
944 for(i
=(db
->nDb
-1), pDb
=&db
->aDb
[i
]; i
>=0; i
--, pDb
--){
945 if( 0==sqlite3_stricmp(pDb
->zDbSName
, zName
) ) break;
946 /* "main" is always an acceptable alias for the primary database
947 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
948 if( i
==0 && 0==sqlite3_stricmp("main", zName
) ) break;
955 ** The token *pName contains the name of a database (either "main" or
956 ** "temp" or the name of an attached db). This routine returns the
957 ** index of the named database in db->aDb[], or -1 if the named db
960 int sqlite3FindDb(sqlite3
*db
, Token
*pName
){
961 int i
; /* Database number */
962 char *zName
; /* Name we are searching for */
963 zName
= sqlite3NameFromToken(db
, pName
);
964 i
= sqlite3FindDbName(db
, zName
);
965 sqlite3DbFree(db
, zName
);
969 /* The table or view or trigger name is passed to this routine via tokens
970 ** pName1 and pName2. If the table name was fully qualified, for example:
972 ** CREATE TABLE xxx.yyy (...);
974 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
975 ** the table name is not fully qualified, i.e.:
977 ** CREATE TABLE yyy(...);
979 ** Then pName1 is set to "yyy" and pName2 is "".
981 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
982 ** pName2) that stores the unqualified table name. The index of the
983 ** database "xxx" is returned.
985 int sqlite3TwoPartName(
986 Parse
*pParse
, /* Parsing and code generating context */
987 Token
*pName1
, /* The "xxx" in the name "xxx.yyy" or "xxx" */
988 Token
*pName2
, /* The "yyy" in the name "xxx.yyy" */
989 Token
**pUnqual
/* Write the unqualified object name here */
991 int iDb
; /* Database holding the object */
992 sqlite3
*db
= pParse
->db
;
996 if( db
->init
.busy
) {
997 sqlite3ErrorMsg(pParse
, "corrupt database");
1001 iDb
= sqlite3FindDb(db
, pName1
);
1003 sqlite3ErrorMsg(pParse
, "unknown database %T", pName1
);
1007 assert( db
->init
.iDb
==0 || db
->init
.busy
|| IN_SPECIAL_PARSE
1008 || (db
->mDbFlags
& DBFLAG_Vacuum
)!=0);
1016 ** True if PRAGMA writable_schema is ON
1018 int sqlite3WritableSchema(sqlite3
*db
){
1019 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==0 );
1020 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1021 SQLITE_WriteSchema
);
1022 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1024 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1025 (SQLITE_WriteSchema
|SQLITE_Defensive
) );
1026 return (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==SQLITE_WriteSchema
;
1030 ** This routine is used to check if the UTF-8 string zName is a legal
1031 ** unqualified name for a new schema object (table, index, view or
1032 ** trigger). All names are legal except those that begin with the string
1033 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1034 ** is reserved for internal use.
1036 ** When parsing the sqlite_schema table, this routine also checks to
1037 ** make sure the "type", "name", and "tbl_name" columns are consistent
1040 int sqlite3CheckObjectName(
1041 Parse
*pParse
, /* Parsing context */
1042 const char *zName
, /* Name of the object to check */
1043 const char *zType
, /* Type of this object */
1044 const char *zTblName
/* Parent table name for triggers and indexes */
1046 sqlite3
*db
= pParse
->db
;
1047 if( sqlite3WritableSchema(db
)
1048 || db
->init
.imposterTable
1049 || !sqlite3Config
.bExtraSchemaChecks
1051 /* Skip these error checks for writable_schema=ON */
1054 if( db
->init
.busy
){
1055 if( sqlite3_stricmp(zType
, db
->init
.azInit
[0])
1056 || sqlite3_stricmp(zName
, db
->init
.azInit
[1])
1057 || sqlite3_stricmp(zTblName
, db
->init
.azInit
[2])
1059 sqlite3ErrorMsg(pParse
, ""); /* corruptSchema() will supply the error */
1060 return SQLITE_ERROR
;
1063 if( (pParse
->nested
==0 && 0==sqlite3StrNICmp(zName
, "sqlite_", 7))
1064 || (sqlite3ReadOnlyShadowTables(db
) && sqlite3ShadowTableName(db
, zName
))
1066 sqlite3ErrorMsg(pParse
, "object name reserved for internal use: %s",
1068 return SQLITE_ERROR
;
1076 ** Return the PRIMARY KEY index of a table
1078 Index
*sqlite3PrimaryKeyIndex(Table
*pTab
){
1080 for(p
=pTab
->pIndex
; p
&& !IsPrimaryKeyIndex(p
); p
=p
->pNext
){}
1085 ** Convert an table column number into a index column number. That is,
1086 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1087 ** find the (first) offset of that column in index pIdx. Or return -1
1088 ** if column iCol is not used in index pIdx.
1090 i16
sqlite3TableColumnToIndex(Index
*pIdx
, i16 iCol
){
1092 for(i
=0; i
<pIdx
->nColumn
; i
++){
1093 if( iCol
==pIdx
->aiColumn
[i
] ) return i
;
1098 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1099 /* Convert a storage column number into a table column number.
1101 ** The storage column number (0,1,2,....) is the index of the value
1102 ** as it appears in the record on disk. The true column number
1103 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1105 ** The storage column number is less than the table column number if
1106 ** and only there are VIRTUAL columns to the left.
1108 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1110 i16
sqlite3StorageColumnToTable(Table
*pTab
, i16 iCol
){
1111 if( pTab
->tabFlags
& TF_HasVirtual
){
1113 for(i
=0; i
<=iCol
; i
++){
1114 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) iCol
++;
1121 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1122 /* Convert a table column number into a storage column number.
1124 ** The storage column number (0,1,2,....) is the index of the value
1125 ** as it appears in the record on disk. Or, if the input column is
1126 ** the N-th virtual column (zero-based) then the storage number is
1127 ** the number of non-virtual columns in the table plus N.
1129 ** The true column number is the index (0,1,2,...) of the column in
1130 ** the CREATE TABLE statement.
1132 ** If the input column is a VIRTUAL column, then it should not appear
1133 ** in storage. But the value sometimes is cached in registers that
1134 ** follow the range of registers used to construct storage. This
1135 ** avoids computing the same VIRTUAL column multiple times, and provides
1136 ** values for use by OP_Param opcodes in triggers. Hence, if the
1137 ** input column is a VIRTUAL table, put it after all the other columns.
1139 ** In the following, N means "normal column", S means STORED, and
1140 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
1142 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1143 ** -- 0 1 2 3 4 5 6 7 8
1145 ** Then the mapping from this function is as follows:
1147 ** INPUTS: 0 1 2 3 4 5 6 7 8
1148 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
1150 ** So, in other words, this routine shifts all the virtual columns to
1153 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1154 ** this routine is a no-op macro. If the pTab does not have any virtual
1155 ** columns, then this routine is no-op that always return iCol. If iCol
1156 ** is negative (indicating the ROWID column) then this routine return iCol.
1158 i16
sqlite3TableColumnToStorage(Table
*pTab
, i16 iCol
){
1161 assert( iCol
<pTab
->nCol
);
1162 if( (pTab
->tabFlags
& TF_HasVirtual
)==0 || iCol
<0 ) return iCol
;
1163 for(i
=0, n
=0; i
<iCol
; i
++){
1164 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) n
++;
1166 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
){
1167 /* iCol is a virtual column itself */
1168 return pTab
->nNVCol
+ i
- n
;
1170 /* iCol is a normal or stored column */
1177 ** Insert a single OP_JournalMode query opcode in order to force the
1178 ** prepared statement to return false for sqlite3_stmt_readonly(). This
1179 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1180 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1181 ** will return false for sqlite3_stmt_readonly() even if that statement
1182 ** is a read-only no-op.
1184 static void sqlite3ForceNotReadOnly(Parse
*pParse
){
1185 int iReg
= ++pParse
->nMem
;
1186 Vdbe
*v
= sqlite3GetVdbe(pParse
);
1188 sqlite3VdbeAddOp3(v
, OP_JournalMode
, 0, iReg
, PAGER_JOURNALMODE_QUERY
);
1189 sqlite3VdbeUsesBtree(v
, 0);
1194 ** Begin constructing a new table representation in memory. This is
1195 ** the first of several action routines that get called in response
1196 ** to a CREATE TABLE statement. In particular, this routine is called
1197 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1198 ** flag is true if the table should be stored in the auxiliary database
1199 ** file instead of in the main database file. This is normally the case
1200 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1201 ** CREATE and TABLE.
1203 ** The new table record is initialized and put in pParse->pNewTable.
1204 ** As more of the CREATE TABLE statement is parsed, additional action
1205 ** routines will be called to add more information to this record.
1206 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1207 ** is called to complete the construction of the new table record.
1209 void sqlite3StartTable(
1210 Parse
*pParse
, /* Parser context */
1211 Token
*pName1
, /* First part of the name of the table or view */
1212 Token
*pName2
, /* Second part of the name of the table or view */
1213 int isTemp
, /* True if this is a TEMP table */
1214 int isView
, /* True if this is a VIEW */
1215 int isVirtual
, /* True if this is a VIRTUAL table */
1216 int noErr
/* Do nothing if table already exists */
1219 char *zName
= 0; /* The name of the new table */
1220 sqlite3
*db
= pParse
->db
;
1222 int iDb
; /* Database number to create the table in */
1223 Token
*pName
; /* Unqualified name of the table to create */
1225 if( db
->init
.busy
&& db
->init
.newTnum
==1 ){
1226 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1228 zName
= sqlite3DbStrDup(db
, SCHEMA_TABLE(iDb
));
1231 /* The common case */
1232 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
1234 if( !OMIT_TEMPDB
&& isTemp
&& pName2
->n
>0 && iDb
!=1 ){
1235 /* If creating a temp table, the name may not be qualified. Unless
1236 ** the database name is "temp" anyway. */
1237 sqlite3ErrorMsg(pParse
, "temporary table name must be unqualified");
1240 if( !OMIT_TEMPDB
&& isTemp
) iDb
= 1;
1241 zName
= sqlite3NameFromToken(db
, pName
);
1242 if( IN_RENAME_OBJECT
){
1243 sqlite3RenameTokenMap(pParse
, (void*)zName
, pName
);
1246 pParse
->sNameToken
= *pName
;
1247 if( zName
==0 ) return;
1248 if( sqlite3CheckObjectName(pParse
, zName
, isView
?"view":"table", zName
) ){
1249 goto begin_table_error
;
1251 if( db
->init
.iDb
==1 ) isTemp
= 1;
1252 #ifndef SQLITE_OMIT_AUTHORIZATION
1253 assert( isTemp
==0 || isTemp
==1 );
1254 assert( isView
==0 || isView
==1 );
1256 static const u8 aCode
[] = {
1257 SQLITE_CREATE_TABLE
,
1258 SQLITE_CREATE_TEMP_TABLE
,
1260 SQLITE_CREATE_TEMP_VIEW
1262 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1263 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(isTemp
), 0, zDb
) ){
1264 goto begin_table_error
;
1266 if( !isVirtual
&& sqlite3AuthCheck(pParse
, (int)aCode
[isTemp
+2*isView
],
1268 goto begin_table_error
;
1273 /* Make sure the new table name does not collide with an existing
1274 ** index or table name in the same database. Issue an error message if
1275 ** it does. The exception is if the statement being parsed was passed
1276 ** to an sqlite3_declare_vtab() call. In that case only the column names
1277 ** and types will be used, so there is no need to test for namespace
1280 if( !IN_SPECIAL_PARSE
){
1281 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1282 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
1283 goto begin_table_error
;
1285 pTable
= sqlite3FindTable(db
, zName
, zDb
);
1288 sqlite3ErrorMsg(pParse
, "%s %T already exists",
1289 (IsView(pTable
)? "view" : "table"), pName
);
1291 assert( !db
->init
.busy
|| CORRUPT_DB
);
1292 sqlite3CodeVerifySchema(pParse
, iDb
);
1293 sqlite3ForceNotReadOnly(pParse
);
1295 goto begin_table_error
;
1297 if( sqlite3FindIndex(db
, zName
, zDb
)!=0 ){
1298 sqlite3ErrorMsg(pParse
, "there is already an index named %s", zName
);
1299 goto begin_table_error
;
1303 pTable
= sqlite3DbMallocZero(db
, sizeof(Table
));
1305 assert( db
->mallocFailed
);
1306 pParse
->rc
= SQLITE_NOMEM_BKPT
;
1308 goto begin_table_error
;
1310 pTable
->zName
= zName
;
1312 pTable
->pSchema
= db
->aDb
[iDb
].pSchema
;
1313 pTable
->nTabRef
= 1;
1314 #ifdef SQLITE_DEFAULT_ROWEST
1315 pTable
->nRowLogEst
= sqlite3LogEst(SQLITE_DEFAULT_ROWEST
);
1317 pTable
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1319 assert( pParse
->pNewTable
==0 );
1320 pParse
->pNewTable
= pTable
;
1322 /* Begin generating the code that will insert the table record into
1323 ** the schema table. Note in particular that we must go ahead
1324 ** and allocate the record number for the table entry now. Before any
1325 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1326 ** indices to be created and the table record must come before the
1327 ** indices. Hence, the record number for the table must be allocated
1330 if( !db
->init
.busy
&& (v
= sqlite3GetVdbe(pParse
))!=0 ){
1333 int reg1
, reg2
, reg3
;
1334 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1335 static const char nullRow
[] = { 6, 0, 0, 0, 0, 0 };
1336 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
1338 #ifndef SQLITE_OMIT_VIRTUALTABLE
1340 sqlite3VdbeAddOp0(v
, OP_VBegin
);
1344 /* If the file format and encoding in the database have not been set,
1347 reg1
= pParse
->regRowid
= ++pParse
->nMem
;
1348 reg2
= pParse
->regRoot
= ++pParse
->nMem
;
1349 reg3
= ++pParse
->nMem
;
1350 sqlite3VdbeAddOp3(v
, OP_ReadCookie
, iDb
, reg3
, BTREE_FILE_FORMAT
);
1351 sqlite3VdbeUsesBtree(v
, iDb
);
1352 addr1
= sqlite3VdbeAddOp1(v
, OP_If
, reg3
); VdbeCoverage(v
);
1353 fileFormat
= (db
->flags
& SQLITE_LegacyFileFmt
)!=0 ?
1354 1 : SQLITE_MAX_FILE_FORMAT
;
1355 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_FILE_FORMAT
, fileFormat
);
1356 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_TEXT_ENCODING
, ENC(db
));
1357 sqlite3VdbeJumpHere(v
, addr1
);
1359 /* This just creates a place-holder record in the sqlite_schema table.
1360 ** The record created does not contain anything yet. It will be replaced
1361 ** by the real entry in code generated at sqlite3EndTable().
1363 ** The rowid for the new entry is left in register pParse->regRowid.
1364 ** The root page number of the new table is left in reg pParse->regRoot.
1365 ** The rowid and root page number values are needed by the code that
1366 ** sqlite3EndTable will generate.
1368 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1369 if( isView
|| isVirtual
){
1370 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, reg2
);
1374 assert( !pParse
->bReturning
);
1375 pParse
->u1
.addrCrTab
=
1376 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, reg2
, BTREE_INTKEY
);
1378 sqlite3OpenSchemaTable(pParse
, iDb
);
1379 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 0, reg1
);
1380 sqlite3VdbeAddOp4(v
, OP_Blob
, 6, reg3
, 0, nullRow
, P4_STATIC
);
1381 sqlite3VdbeAddOp3(v
, OP_Insert
, 0, reg3
, reg1
);
1382 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1383 sqlite3VdbeAddOp0(v
, OP_Close
);
1386 /* Normal (non-error) return. */
1389 /* If an error occurs, we jump here */
1391 pParse
->checkSchema
= 1;
1392 sqlite3DbFree(db
, zName
);
1396 /* Set properties of a table column based on the (magical)
1397 ** name of the column.
1399 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1400 void sqlite3ColumnPropertiesFromName(Table
*pTab
, Column
*pCol
){
1401 if( sqlite3_strnicmp(pCol
->zCnName
, "__hidden__", 10)==0 ){
1402 pCol
->colFlags
|= COLFLAG_HIDDEN
;
1403 if( pTab
) pTab
->tabFlags
|= TF_HasHidden
;
1404 }else if( pTab
&& pCol
!=pTab
->aCol
&& (pCol
[-1].colFlags
& COLFLAG_HIDDEN
) ){
1405 pTab
->tabFlags
|= TF_OOOHidden
;
1411 ** Clean up the data structures associated with the RETURNING clause.
1413 static void sqlite3DeleteReturning(sqlite3
*db
, Returning
*pRet
){
1415 pHash
= &(db
->aDb
[1].pSchema
->trigHash
);
1416 sqlite3HashInsert(pHash
, pRet
->zName
, 0);
1417 sqlite3ExprListDelete(db
, pRet
->pReturnEL
);
1418 sqlite3DbFree(db
, pRet
);
1422 ** Add the RETURNING clause to the parse currently underway.
1424 ** This routine creates a special TEMP trigger that will fire for each row
1425 ** of the DML statement. That TEMP trigger contains a single SELECT
1426 ** statement with a result set that is the argument of the RETURNING clause.
1427 ** The trigger has the Trigger.bReturning flag and an opcode of
1428 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1429 ** knows to handle it specially. The TEMP trigger is automatically
1430 ** removed at the end of the parse.
1432 ** When this routine is called, we do not yet know if the RETURNING clause
1433 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1434 ** RETURNING trigger instead. It will then be converted into the appropriate
1435 ** type on the first call to sqlite3TriggersExist().
1437 void sqlite3AddReturning(Parse
*pParse
, ExprList
*pList
){
1440 sqlite3
*db
= pParse
->db
;
1441 if( pParse
->pNewTrigger
){
1442 sqlite3ErrorMsg(pParse
, "cannot use RETURNING in a trigger");
1444 assert( pParse
->bReturning
==0 || pParse
->ifNotExists
);
1446 pParse
->bReturning
= 1;
1447 pRet
= sqlite3DbMallocZero(db
, sizeof(*pRet
));
1449 sqlite3ExprListDelete(db
, pList
);
1452 pParse
->u1
.pReturning
= pRet
;
1453 pRet
->pParse
= pParse
;
1454 pRet
->pReturnEL
= pList
;
1455 sqlite3ParserAddCleanup(pParse
,
1456 (void(*)(sqlite3
*,void*))sqlite3DeleteReturning
, pRet
);
1457 testcase( pParse
->earlyCleanup
);
1458 if( db
->mallocFailed
) return;
1459 sqlite3_snprintf(sizeof(pRet
->zName
), pRet
->zName
,
1460 "sqlite_returning_%p", pParse
);
1461 pRet
->retTrig
.zName
= pRet
->zName
;
1462 pRet
->retTrig
.op
= TK_RETURNING
;
1463 pRet
->retTrig
.tr_tm
= TRIGGER_AFTER
;
1464 pRet
->retTrig
.bReturning
= 1;
1465 pRet
->retTrig
.pSchema
= db
->aDb
[1].pSchema
;
1466 pRet
->retTrig
.pTabSchema
= db
->aDb
[1].pSchema
;
1467 pRet
->retTrig
.step_list
= &pRet
->retTStep
;
1468 pRet
->retTStep
.op
= TK_RETURNING
;
1469 pRet
->retTStep
.pTrig
= &pRet
->retTrig
;
1470 pRet
->retTStep
.pExprList
= pList
;
1471 pHash
= &(db
->aDb
[1].pSchema
->trigHash
);
1472 assert( sqlite3HashFind(pHash
, pRet
->zName
)==0
1473 || pParse
->nErr
|| pParse
->ifNotExists
);
1474 if( sqlite3HashInsert(pHash
, pRet
->zName
, &pRet
->retTrig
)
1476 sqlite3OomFault(db
);
1481 ** Add a new column to the table currently being constructed.
1483 ** The parser calls this routine once for each column declaration
1484 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1485 ** first to get things going. Then this routine is called for each
1488 void sqlite3AddColumn(Parse
*pParse
, Token sName
, Token sType
){
1494 sqlite3
*db
= pParse
->db
;
1497 u8 eType
= COLTYPE_CUSTOM
;
1499 char affinity
= SQLITE_AFF_BLOB
;
1501 if( (p
= pParse
->pNewTable
)==0 ) return;
1502 if( p
->nCol
+1>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
1503 sqlite3ErrorMsg(pParse
, "too many columns on %s", p
->zName
);
1506 if( !IN_RENAME_OBJECT
) sqlite3DequoteToken(&sName
);
1508 /* Because keywords GENERATE ALWAYS can be converted into identifiers
1509 ** by the parser, we can sometimes end up with a typename that ends
1510 ** with "generated always". Check for this case and omit the surplus
1513 && sqlite3_strnicmp(sType
.z
+(sType
.n
-6),"always",6)==0
1516 while( ALWAYS(sType
.n
>0) && sqlite3Isspace(sType
.z
[sType
.n
-1]) ) sType
.n
--;
1518 && sqlite3_strnicmp(sType
.z
+(sType
.n
-9),"generated",9)==0
1521 while( sType
.n
>0 && sqlite3Isspace(sType
.z
[sType
.n
-1]) ) sType
.n
--;
1525 /* Check for standard typenames. For standard typenames we will
1526 ** set the Column.eType field rather than storing the typename after
1527 ** the column name, in order to save space. */
1529 sqlite3DequoteToken(&sType
);
1530 for(i
=0; i
<SQLITE_N_STDTYPE
; i
++){
1531 if( sType
.n
==sqlite3StdTypeLen
[i
]
1532 && sqlite3_strnicmp(sType
.z
, sqlite3StdType
[i
], sType
.n
)==0
1536 affinity
= sqlite3StdTypeAffinity
[i
];
1537 if( affinity
<=SQLITE_AFF_TEXT
) szEst
= 5;
1543 z
= sqlite3DbMallocRaw(db
, (i64
)sName
.n
+ 1 + (i64
)sType
.n
+ (sType
.n
>0) );
1545 if( IN_RENAME_OBJECT
) sqlite3RenameTokenMap(pParse
, (void*)z
, &sName
);
1546 memcpy(z
, sName
.z
, sName
.n
);
1549 hName
= sqlite3StrIHash(z
);
1550 for(i
=0; i
<p
->nCol
; i
++){
1551 if( p
->aCol
[i
].hName
==hName
&& sqlite3StrICmp(z
, p
->aCol
[i
].zCnName
)==0 ){
1552 sqlite3ErrorMsg(pParse
, "duplicate column name: %s", z
);
1553 sqlite3DbFree(db
, z
);
1557 aNew
= sqlite3DbRealloc(db
,p
->aCol
,((i64
)p
->nCol
+1)*sizeof(p
->aCol
[0]));
1559 sqlite3DbFree(db
, z
);
1563 pCol
= &p
->aCol
[p
->nCol
];
1564 memset(pCol
, 0, sizeof(p
->aCol
[0]));
1566 pCol
->hName
= hName
;
1567 sqlite3ColumnPropertiesFromName(p
, pCol
);
1570 /* If there is no type specified, columns have the default affinity
1571 ** 'BLOB' with a default size of 4 bytes. */
1572 pCol
->affinity
= affinity
;
1573 pCol
->eCType
= eType
;
1574 pCol
->szEst
= szEst
;
1575 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1576 if( affinity
==SQLITE_AFF_BLOB
){
1577 if( 4>=sqlite3GlobalConfig
.szSorterRef
){
1578 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1583 zType
= z
+ sqlite3Strlen30(z
) + 1;
1584 memcpy(zType
, sType
.z
, sType
.n
);
1586 sqlite3Dequote(zType
);
1587 pCol
->affinity
= sqlite3AffinityType(zType
, pCol
);
1588 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1592 pParse
->constraintName
.n
= 0;
1596 ** This routine is called by the parser while in the middle of
1597 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1598 ** been seen on a column. This routine sets the notNull flag on
1599 ** the column currently under construction.
1601 void sqlite3AddNotNull(Parse
*pParse
, int onError
){
1604 p
= pParse
->pNewTable
;
1605 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1606 pCol
= &p
->aCol
[p
->nCol
-1];
1607 pCol
->notNull
= (u8
)onError
;
1608 p
->tabFlags
|= TF_HasNotNull
;
1610 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1611 ** on this column. */
1612 if( pCol
->colFlags
& COLFLAG_UNIQUE
){
1614 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1615 assert( pIdx
->nKeyCol
==1 && pIdx
->onError
!=OE_None
);
1616 if( pIdx
->aiColumn
[0]==p
->nCol
-1 ){
1617 pIdx
->uniqNotNull
= 1;
1624 ** Scan the column type name zType (length nType) and return the
1625 ** associated affinity type.
1627 ** This routine does a case-independent search of zType for the
1628 ** substrings in the following table. If one of the substrings is
1629 ** found, the corresponding affinity is returned. If zType contains
1630 ** more than one of the substrings, entries toward the top of
1631 ** the table take priority. For example, if zType is 'BLOBINT',
1632 ** SQLITE_AFF_INTEGER is returned.
1634 ** Substring | Affinity
1635 ** --------------------------------
1636 ** 'INT' | SQLITE_AFF_INTEGER
1637 ** 'CHAR' | SQLITE_AFF_TEXT
1638 ** 'CLOB' | SQLITE_AFF_TEXT
1639 ** 'TEXT' | SQLITE_AFF_TEXT
1640 ** 'BLOB' | SQLITE_AFF_BLOB
1641 ** 'REAL' | SQLITE_AFF_REAL
1642 ** 'FLOA' | SQLITE_AFF_REAL
1643 ** 'DOUB' | SQLITE_AFF_REAL
1645 ** If none of the substrings in the above table are found,
1646 ** SQLITE_AFF_NUMERIC is returned.
1648 char sqlite3AffinityType(const char *zIn
, Column
*pCol
){
1650 char aff
= SQLITE_AFF_NUMERIC
;
1651 const char *zChar
= 0;
1655 h
= (h
<<8) + sqlite3UpperToLower
[(*zIn
)&0xff];
1657 if( h
==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1658 aff
= SQLITE_AFF_TEXT
;
1660 }else if( h
==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1661 aff
= SQLITE_AFF_TEXT
;
1662 }else if( h
==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1663 aff
= SQLITE_AFF_TEXT
;
1664 }else if( h
==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1665 && (aff
==SQLITE_AFF_NUMERIC
|| aff
==SQLITE_AFF_REAL
) ){
1666 aff
= SQLITE_AFF_BLOB
;
1667 if( zIn
[0]=='(' ) zChar
= zIn
;
1668 #ifndef SQLITE_OMIT_FLOATING_POINT
1669 }else if( h
==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1670 && aff
==SQLITE_AFF_NUMERIC
){
1671 aff
= SQLITE_AFF_REAL
;
1672 }else if( h
==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1673 && aff
==SQLITE_AFF_NUMERIC
){
1674 aff
= SQLITE_AFF_REAL
;
1675 }else if( h
==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1676 && aff
==SQLITE_AFF_NUMERIC
){
1677 aff
= SQLITE_AFF_REAL
;
1679 }else if( (h
&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1680 aff
= SQLITE_AFF_INTEGER
;
1685 /* If pCol is not NULL, store an estimate of the field size. The
1686 ** estimate is scaled so that the size of an integer is 1. */
1688 int v
= 0; /* default size is approx 4 bytes */
1689 if( aff
<SQLITE_AFF_NUMERIC
){
1692 if( sqlite3Isdigit(zChar
[0]) ){
1693 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1694 sqlite3GetInt32(zChar
, &v
);
1700 v
= 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1703 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1704 if( v
>=sqlite3GlobalConfig
.szSorterRef
){
1705 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1709 if( v
>255 ) v
= 255;
1716 ** The expression is the default value for the most recently added column
1717 ** of the table currently under construction.
1719 ** Default value expressions must be constant. Raise an exception if this
1722 ** This routine is called by the parser while in the middle of
1723 ** parsing a CREATE TABLE statement.
1725 void sqlite3AddDefaultValue(
1726 Parse
*pParse
, /* Parsing context */
1727 Expr
*pExpr
, /* The parsed expression of the default value */
1728 const char *zStart
, /* Start of the default value text */
1729 const char *zEnd
/* First character past end of default value text */
1733 sqlite3
*db
= pParse
->db
;
1734 p
= pParse
->pNewTable
;
1736 int isInit
= db
->init
.busy
&& db
->init
.iDb
!=1;
1737 pCol
= &(p
->aCol
[p
->nCol
-1]);
1738 if( !sqlite3ExprIsConstantOrFunction(pExpr
, isInit
) ){
1739 sqlite3ErrorMsg(pParse
, "default value of column [%s] is not constant",
1741 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1742 }else if( pCol
->colFlags
& COLFLAG_GENERATED
){
1743 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1744 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1745 sqlite3ErrorMsg(pParse
, "cannot use DEFAULT on a generated column");
1748 /* A copy of pExpr is used instead of the original, as pExpr contains
1749 ** tokens that point to volatile memory.
1752 memset(&x
, 0, sizeof(x
));
1754 x
.u
.zToken
= sqlite3DbSpanDup(db
, zStart
, zEnd
);
1757 pDfltExpr
= sqlite3ExprDup(db
, &x
, EXPRDUP_REDUCE
);
1758 sqlite3DbFree(db
, x
.u
.zToken
);
1759 sqlite3ColumnSetExpr(pParse
, p
, pCol
, pDfltExpr
);
1762 if( IN_RENAME_OBJECT
){
1763 sqlite3RenameExprUnmap(pParse
, pExpr
);
1765 sqlite3ExprDelete(db
, pExpr
);
1769 ** Backwards Compatibility Hack:
1771 ** Historical versions of SQLite accepted strings as column names in
1772 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1774 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1775 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1777 ** This is goofy. But to preserve backwards compatibility we continue to
1778 ** accept it. This routine does the necessary conversion. It converts
1779 ** the expression given in its argument from a TK_STRING into a TK_ID
1780 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1781 ** If the expression is anything other than TK_STRING, the expression is
1784 static void sqlite3StringToId(Expr
*p
){
1785 if( p
->op
==TK_STRING
){
1787 }else if( p
->op
==TK_COLLATE
&& p
->pLeft
->op
==TK_STRING
){
1788 p
->pLeft
->op
= TK_ID
;
1793 ** Tag the given column as being part of the PRIMARY KEY
1795 static void makeColumnPartOfPrimaryKey(Parse
*pParse
, Column
*pCol
){
1796 pCol
->colFlags
|= COLFLAG_PRIMKEY
;
1797 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1798 if( pCol
->colFlags
& COLFLAG_GENERATED
){
1799 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1800 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1801 sqlite3ErrorMsg(pParse
,
1802 "generated columns cannot be part of the PRIMARY KEY");
1808 ** Designate the PRIMARY KEY for the table. pList is a list of names
1809 ** of columns that form the primary key. If pList is NULL, then the
1810 ** most recently added column of the table is the primary key.
1812 ** A table can have at most one primary key. If the table already has
1813 ** a primary key (and this is the second primary key) then create an
1816 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1817 ** then we will try to use that column as the rowid. Set the Table.iPKey
1818 ** field of the table under construction to be the index of the
1819 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1820 ** no INTEGER PRIMARY KEY.
1822 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1823 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1825 void sqlite3AddPrimaryKey(
1826 Parse
*pParse
, /* Parsing context */
1827 ExprList
*pList
, /* List of field names to be indexed */
1828 int onError
, /* What to do with a uniqueness conflict */
1829 int autoInc
, /* True if the AUTOINCREMENT keyword is present */
1830 int sortOrder
/* SQLITE_SO_ASC or SQLITE_SO_DESC */
1832 Table
*pTab
= pParse
->pNewTable
;
1836 if( pTab
==0 ) goto primary_key_exit
;
1837 if( pTab
->tabFlags
& TF_HasPrimaryKey
){
1838 sqlite3ErrorMsg(pParse
,
1839 "table \"%s\" has more than one primary key", pTab
->zName
);
1840 goto primary_key_exit
;
1842 pTab
->tabFlags
|= TF_HasPrimaryKey
;
1844 iCol
= pTab
->nCol
- 1;
1845 pCol
= &pTab
->aCol
[iCol
];
1846 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1849 nTerm
= pList
->nExpr
;
1850 for(i
=0; i
<nTerm
; i
++){
1851 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[i
].pExpr
);
1852 assert( pCExpr
!=0 );
1853 sqlite3StringToId(pCExpr
);
1854 if( pCExpr
->op
==TK_ID
){
1856 assert( !ExprHasProperty(pCExpr
, EP_IntValue
) );
1857 zCName
= pCExpr
->u
.zToken
;
1858 for(iCol
=0; iCol
<pTab
->nCol
; iCol
++){
1859 if( sqlite3StrICmp(zCName
, pTab
->aCol
[iCol
].zCnName
)==0 ){
1860 pCol
= &pTab
->aCol
[iCol
];
1861 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1870 && pCol
->eCType
==COLTYPE_INTEGER
1871 && sortOrder
!=SQLITE_SO_DESC
1873 if( IN_RENAME_OBJECT
&& pList
){
1874 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[0].pExpr
);
1875 sqlite3RenameTokenRemap(pParse
, &pTab
->iPKey
, pCExpr
);
1878 pTab
->keyConf
= (u8
)onError
;
1879 assert( autoInc
==0 || autoInc
==1 );
1880 pTab
->tabFlags
|= autoInc
*TF_Autoincrement
;
1881 if( pList
) pParse
->iPkSortOrder
= pList
->a
[0].fg
.sortFlags
;
1882 (void)sqlite3HasExplicitNulls(pParse
, pList
);
1883 }else if( autoInc
){
1884 #ifndef SQLITE_OMIT_AUTOINCREMENT
1885 sqlite3ErrorMsg(pParse
, "AUTOINCREMENT is only allowed on an "
1886 "INTEGER PRIMARY KEY");
1889 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, onError
, 0,
1890 0, sortOrder
, 0, SQLITE_IDXTYPE_PRIMARYKEY
);
1895 sqlite3ExprListDelete(pParse
->db
, pList
);
1900 ** Add a new CHECK constraint to the table currently under construction.
1902 void sqlite3AddCheckConstraint(
1903 Parse
*pParse
, /* Parsing context */
1904 Expr
*pCheckExpr
, /* The check expression */
1905 const char *zStart
, /* Opening "(" */
1906 const char *zEnd
/* Closing ")" */
1908 #ifndef SQLITE_OMIT_CHECK
1909 Table
*pTab
= pParse
->pNewTable
;
1910 sqlite3
*db
= pParse
->db
;
1911 if( pTab
&& !IN_DECLARE_VTAB
1912 && !sqlite3BtreeIsReadonly(db
->aDb
[db
->init
.iDb
].pBt
)
1914 pTab
->pCheck
= sqlite3ExprListAppend(pParse
, pTab
->pCheck
, pCheckExpr
);
1915 if( pParse
->constraintName
.n
){
1916 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &pParse
->constraintName
, 1);
1919 for(zStart
++; sqlite3Isspace(zStart
[0]); zStart
++){}
1920 while( sqlite3Isspace(zEnd
[-1]) ){ zEnd
--; }
1922 t
.n
= (int)(zEnd
- t
.z
);
1923 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &t
, 1);
1928 sqlite3ExprDelete(pParse
->db
, pCheckExpr
);
1933 ** Set the collation function of the most recently parsed table column
1934 ** to the CollSeq given.
1936 void sqlite3AddCollateType(Parse
*pParse
, Token
*pToken
){
1939 char *zColl
; /* Dequoted name of collation sequence */
1942 if( (p
= pParse
->pNewTable
)==0 || IN_RENAME_OBJECT
) return;
1945 zColl
= sqlite3NameFromToken(db
, pToken
);
1946 if( !zColl
) return;
1948 if( sqlite3LocateCollSeq(pParse
, zColl
) ){
1950 sqlite3ColumnSetColl(db
, &p
->aCol
[i
], zColl
);
1952 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1953 ** then an index may have been created on this column before the
1954 ** collation type was added. Correct this if it is the case.
1956 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1957 assert( pIdx
->nKeyCol
==1 );
1958 if( pIdx
->aiColumn
[0]==i
){
1959 pIdx
->azColl
[0] = sqlite3ColumnColl(&p
->aCol
[i
]);
1963 sqlite3DbFree(db
, zColl
);
1966 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1969 void sqlite3AddGenerated(Parse
*pParse
, Expr
*pExpr
, Token
*pType
){
1970 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1971 u8 eType
= COLFLAG_VIRTUAL
;
1972 Table
*pTab
= pParse
->pNewTable
;
1975 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1976 goto generated_done
;
1978 pCol
= &(pTab
->aCol
[pTab
->nCol
-1]);
1979 if( IN_DECLARE_VTAB
){
1980 sqlite3ErrorMsg(pParse
, "virtual tables cannot use computed columns");
1981 goto generated_done
;
1983 if( pCol
->iDflt
>0 ) goto generated_error
;
1985 if( pType
->n
==7 && sqlite3StrNICmp("virtual",pType
->z
,7)==0 ){
1987 }else if( pType
->n
==6 && sqlite3StrNICmp("stored",pType
->z
,6)==0 ){
1988 eType
= COLFLAG_STORED
;
1990 goto generated_error
;
1993 if( eType
==COLFLAG_VIRTUAL
) pTab
->nNVCol
--;
1994 pCol
->colFlags
|= eType
;
1995 assert( TF_HasVirtual
==COLFLAG_VIRTUAL
);
1996 assert( TF_HasStored
==COLFLAG_STORED
);
1997 pTab
->tabFlags
|= eType
;
1998 if( pCol
->colFlags
& COLFLAG_PRIMKEY
){
1999 makeColumnPartOfPrimaryKey(pParse
, pCol
); /* For the error message */
2001 if( ALWAYS(pExpr
) && pExpr
->op
==TK_ID
){
2002 /* The value of a generated column needs to be a real expression, not
2003 ** just a reference to another column, in order for covering index
2004 ** optimizations to work correctly. So if the value is not an expression,
2005 ** turn it into one by adding a unary "+" operator. */
2006 pExpr
= sqlite3PExpr(pParse
, TK_UPLUS
, pExpr
, 0);
2008 if( pExpr
&& pExpr
->op
!=TK_RAISE
) pExpr
->affExpr
= pCol
->affinity
;
2009 sqlite3ColumnSetExpr(pParse
, pTab
, pCol
, pExpr
);
2011 goto generated_done
;
2014 sqlite3ErrorMsg(pParse
, "error in generated column \"%s\"",
2017 sqlite3ExprDelete(pParse
->db
, pExpr
);
2019 /* Throw and error for the GENERATED ALWAYS AS clause if the
2020 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2021 sqlite3ErrorMsg(pParse
, "generated columns not supported");
2022 sqlite3ExprDelete(pParse
->db
, pExpr
);
2027 ** Generate code that will increment the schema cookie.
2029 ** The schema cookie is used to determine when the schema for the
2030 ** database changes. After each schema change, the cookie value
2031 ** changes. When a process first reads the schema it records the
2032 ** cookie. Thereafter, whenever it goes to access the database,
2033 ** it checks the cookie to make sure the schema has not changed
2034 ** since it was last read.
2036 ** This plan is not completely bullet-proof. It is possible for
2037 ** the schema to change multiple times and for the cookie to be
2038 ** set back to prior value. But schema changes are infrequent
2039 ** and the probability of hitting the same cookie value is only
2040 ** 1 chance in 2^32. So we're safe enough.
2042 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2043 ** the schema-version whenever the schema changes.
2045 void sqlite3ChangeCookie(Parse
*pParse
, int iDb
){
2046 sqlite3
*db
= pParse
->db
;
2047 Vdbe
*v
= pParse
->pVdbe
;
2048 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2049 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_SCHEMA_VERSION
,
2050 (int)(1+(unsigned)db
->aDb
[iDb
].pSchema
->schema_cookie
));
2054 ** Measure the number of characters needed to output the given
2055 ** identifier. The number returned includes any quotes used
2056 ** but does not include the null terminator.
2058 ** The estimate is conservative. It might be larger that what is
2061 static int identLength(const char *z
){
2063 for(n
=0; *z
; n
++, z
++){
2064 if( *z
=='"' ){ n
++; }
2070 ** The first parameter is a pointer to an output buffer. The second
2071 ** parameter is a pointer to an integer that contains the offset at
2072 ** which to write into the output buffer. This function copies the
2073 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2074 ** to the specified offset in the buffer and updates *pIdx to refer
2075 ** to the first byte after the last byte written before returning.
2077 ** If the string zSignedIdent consists entirely of alphanumeric
2078 ** characters, does not begin with a digit and is not an SQL keyword,
2079 ** then it is copied to the output buffer exactly as it is. Otherwise,
2080 ** it is quoted using double-quotes.
2082 static void identPut(char *z
, int *pIdx
, char *zSignedIdent
){
2083 unsigned char *zIdent
= (unsigned char*)zSignedIdent
;
2084 int i
, j
, needQuote
;
2087 for(j
=0; zIdent
[j
]; j
++){
2088 if( !sqlite3Isalnum(zIdent
[j
]) && zIdent
[j
]!='_' ) break;
2090 needQuote
= sqlite3Isdigit(zIdent
[0])
2091 || sqlite3KeywordCode(zIdent
, j
)!=TK_ID
2095 if( needQuote
) z
[i
++] = '"';
2096 for(j
=0; zIdent
[j
]; j
++){
2098 if( zIdent
[j
]=='"' ) z
[i
++] = '"';
2100 if( needQuote
) z
[i
++] = '"';
2106 ** Generate a CREATE TABLE statement appropriate for the given
2107 ** table. Memory to hold the text of the statement is obtained
2108 ** from sqliteMalloc() and must be freed by the calling function.
2110 static char *createTableStmt(sqlite3
*db
, Table
*p
){
2113 char *zSep
, *zSep2
, *zEnd
;
2116 for(pCol
= p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
2117 n
+= identLength(pCol
->zCnName
) + 5;
2119 n
+= identLength(p
->zName
);
2129 n
+= 35 + 6*p
->nCol
;
2130 zStmt
= sqlite3DbMallocRaw(0, n
);
2132 sqlite3OomFault(db
);
2135 sqlite3_snprintf(n
, zStmt
, "CREATE TABLE ");
2136 k
= sqlite3Strlen30(zStmt
);
2137 identPut(zStmt
, &k
, p
->zName
);
2139 for(pCol
=p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
2140 static const char * const azType
[] = {
2141 /* SQLITE_AFF_BLOB */ "",
2142 /* SQLITE_AFF_TEXT */ " TEXT",
2143 /* SQLITE_AFF_NUMERIC */ " NUM",
2144 /* SQLITE_AFF_INTEGER */ " INT",
2145 /* SQLITE_AFF_REAL */ " REAL",
2146 /* SQLITE_AFF_FLEXNUM */ " NUM",
2151 sqlite3_snprintf(n
-k
, &zStmt
[k
], zSep
);
2152 k
+= sqlite3Strlen30(&zStmt
[k
]);
2154 identPut(zStmt
, &k
, pCol
->zCnName
);
2155 assert( pCol
->affinity
-SQLITE_AFF_BLOB
>= 0 );
2156 assert( pCol
->affinity
-SQLITE_AFF_BLOB
< ArraySize(azType
) );
2157 testcase( pCol
->affinity
==SQLITE_AFF_BLOB
);
2158 testcase( pCol
->affinity
==SQLITE_AFF_TEXT
);
2159 testcase( pCol
->affinity
==SQLITE_AFF_NUMERIC
);
2160 testcase( pCol
->affinity
==SQLITE_AFF_INTEGER
);
2161 testcase( pCol
->affinity
==SQLITE_AFF_REAL
);
2162 testcase( pCol
->affinity
==SQLITE_AFF_FLEXNUM
);
2164 zType
= azType
[pCol
->affinity
- SQLITE_AFF_BLOB
];
2165 len
= sqlite3Strlen30(zType
);
2166 assert( pCol
->affinity
==SQLITE_AFF_BLOB
2167 || pCol
->affinity
==SQLITE_AFF_FLEXNUM
2168 || pCol
->affinity
==sqlite3AffinityType(zType
, 0) );
2169 memcpy(&zStmt
[k
], zType
, len
);
2173 sqlite3_snprintf(n
-k
, &zStmt
[k
], "%s", zEnd
);
2178 ** Resize an Index object to hold N columns total. Return SQLITE_OK
2179 ** on success and SQLITE_NOMEM on an OOM error.
2181 static int resizeIndexObject(sqlite3
*db
, Index
*pIdx
, int N
){
2184 if( pIdx
->nColumn
>=N
) return SQLITE_OK
;
2185 assert( pIdx
->isResized
==0 );
2186 nByte
= (sizeof(char*) + sizeof(LogEst
) + sizeof(i16
) + 1)*N
;
2187 zExtra
= sqlite3DbMallocZero(db
, nByte
);
2188 if( zExtra
==0 ) return SQLITE_NOMEM_BKPT
;
2189 memcpy(zExtra
, pIdx
->azColl
, sizeof(char*)*pIdx
->nColumn
);
2190 pIdx
->azColl
= (const char**)zExtra
;
2191 zExtra
+= sizeof(char*)*N
;
2192 memcpy(zExtra
, pIdx
->aiRowLogEst
, sizeof(LogEst
)*(pIdx
->nKeyCol
+1));
2193 pIdx
->aiRowLogEst
= (LogEst
*)zExtra
;
2194 zExtra
+= sizeof(LogEst
)*N
;
2195 memcpy(zExtra
, pIdx
->aiColumn
, sizeof(i16
)*pIdx
->nColumn
);
2196 pIdx
->aiColumn
= (i16
*)zExtra
;
2197 zExtra
+= sizeof(i16
)*N
;
2198 memcpy(zExtra
, pIdx
->aSortOrder
, pIdx
->nColumn
);
2199 pIdx
->aSortOrder
= (u8
*)zExtra
;
2201 pIdx
->isResized
= 1;
2206 ** Estimate the total row width for a table.
2208 static void estimateTableWidth(Table
*pTab
){
2209 unsigned wTable
= 0;
2210 const Column
*pTabCol
;
2212 for(i
=pTab
->nCol
, pTabCol
=pTab
->aCol
; i
>0; i
--, pTabCol
++){
2213 wTable
+= pTabCol
->szEst
;
2215 if( pTab
->iPKey
<0 ) wTable
++;
2216 pTab
->szTabRow
= sqlite3LogEst(wTable
*4);
2220 ** Estimate the average size of a row for an index.
2222 static void estimateIndexWidth(Index
*pIdx
){
2223 unsigned wIndex
= 0;
2225 const Column
*aCol
= pIdx
->pTable
->aCol
;
2226 for(i
=0; i
<pIdx
->nColumn
; i
++){
2227 i16 x
= pIdx
->aiColumn
[i
];
2228 assert( x
<pIdx
->pTable
->nCol
);
2229 wIndex
+= x
<0 ? 1 : aCol
[x
].szEst
;
2231 pIdx
->szIdxRow
= sqlite3LogEst(wIndex
*4);
2234 /* Return true if column number x is any of the first nCol entries of aiCol[].
2235 ** This is used to determine if the column number x appears in any of the
2236 ** first nCol entries of an index.
2238 static int hasColumn(const i16
*aiCol
, int nCol
, int x
){
2239 while( nCol
-- > 0 ){
2240 if( x
==*(aiCol
++) ){
2248 ** Return true if any of the first nKey entries of index pIdx exactly
2249 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
2250 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
2251 ** or may not be the same index as pPk.
2253 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2254 ** not a rowid or expression.
2256 ** This routine differs from hasColumn() in that both the column and the
2257 ** collating sequence must match for this routine, but for hasColumn() only
2258 ** the column name must match.
2260 static int isDupColumn(Index
*pIdx
, int nKey
, Index
*pPk
, int iCol
){
2262 assert( nKey
<=pIdx
->nColumn
);
2263 assert( iCol
<MAX(pPk
->nColumn
,pPk
->nKeyCol
) );
2264 assert( pPk
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
);
2265 assert( pPk
->pTable
->tabFlags
& TF_WithoutRowid
);
2266 assert( pPk
->pTable
==pIdx
->pTable
);
2267 testcase( pPk
==pIdx
);
2268 j
= pPk
->aiColumn
[iCol
];
2269 assert( j
!=XN_ROWID
&& j
!=XN_EXPR
);
2270 for(i
=0; i
<nKey
; i
++){
2271 assert( pIdx
->aiColumn
[i
]>=0 || j
>=0 );
2272 if( pIdx
->aiColumn
[i
]==j
2273 && sqlite3StrICmp(pIdx
->azColl
[i
], pPk
->azColl
[iCol
])==0
2281 /* Recompute the colNotIdxed field of the Index.
2283 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2284 ** columns that are within the first 63 columns of the table and a 1 for
2285 ** all other bits (all columns that are not in the index). The
2286 ** high-order bit of colNotIdxed is always 1. All unindexed columns
2287 ** of the table have a 1.
2289 ** 2019-10-24: For the purpose of this computation, virtual columns are
2290 ** not considered to be covered by the index, even if they are in the
2291 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2292 ** able to find all instances of a reference to the indexed table column
2293 ** and convert them into references to the index. Hence we always want
2294 ** the actual table at hand in order to recompute the virtual column, if
2297 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2298 ** to determine if the index is covering index.
2300 static void recomputeColumnsNotIndexed(Index
*pIdx
){
2303 Table
*pTab
= pIdx
->pTable
;
2304 for(j
=pIdx
->nColumn
-1; j
>=0; j
--){
2305 int x
= pIdx
->aiColumn
[j
];
2306 if( x
>=0 && (pTab
->aCol
[x
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
2307 testcase( x
==BMS
-1 );
2308 testcase( x
==BMS
-2 );
2309 if( x
<BMS
-1 ) m
|= MASKBIT(x
);
2312 pIdx
->colNotIdxed
= ~m
;
2313 assert( (pIdx
->colNotIdxed
>>63)==1 ); /* See note-20221022-a */
2317 ** This routine runs at the end of parsing a CREATE TABLE statement that
2318 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2319 ** internal schema data structures and the generated VDBE code so that they
2320 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2323 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2324 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2325 ** into BTREE_BLOBKEY.
2326 ** (3) Bypass the creation of the sqlite_schema table entry
2327 ** for the PRIMARY KEY as the primary key index is now
2328 ** identified by the sqlite_schema table entry of the table itself.
2329 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2330 ** schema to the rootpage from the main table.
2331 ** (5) Add all table columns to the PRIMARY KEY Index object
2332 ** so that the PRIMARY KEY is a covering index. The surplus
2333 ** columns are part of KeyInfo.nAllField and are not used for
2334 ** sorting or lookup or uniqueness checks.
2335 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2336 ** indices with the PRIMARY KEY columns.
2338 ** For virtual tables, only (1) is performed.
2340 static void convertToWithoutRowidTable(Parse
*pParse
, Table
*pTab
){
2346 sqlite3
*db
= pParse
->db
;
2347 Vdbe
*v
= pParse
->pVdbe
;
2349 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2351 if( !db
->init
.imposterTable
){
2352 for(i
=0; i
<pTab
->nCol
; i
++){
2353 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
)!=0
2354 && (pTab
->aCol
[i
].notNull
==OE_None
)
2356 pTab
->aCol
[i
].notNull
= OE_Abort
;
2359 pTab
->tabFlags
|= TF_HasNotNull
;
2362 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2363 ** into BTREE_BLOBKEY.
2365 assert( !pParse
->bReturning
);
2366 if( pParse
->u1
.addrCrTab
){
2368 sqlite3VdbeChangeP3(v
, pParse
->u1
.addrCrTab
, BTREE_BLOBKEY
);
2371 /* Locate the PRIMARY KEY index. Or, if this table was originally
2372 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2374 if( pTab
->iPKey
>=0 ){
2377 sqlite3TokenInit(&ipkToken
, pTab
->aCol
[pTab
->iPKey
].zCnName
);
2378 pList
= sqlite3ExprListAppend(pParse
, 0,
2379 sqlite3ExprAlloc(db
, TK_ID
, &ipkToken
, 0));
2381 pTab
->tabFlags
&= ~TF_WithoutRowid
;
2384 if( IN_RENAME_OBJECT
){
2385 sqlite3RenameTokenRemap(pParse
, pList
->a
[0].pExpr
, &pTab
->iPKey
);
2387 pList
->a
[0].fg
.sortFlags
= pParse
->iPkSortOrder
;
2388 assert( pParse
->pNewTable
==pTab
);
2390 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, pTab
->keyConf
, 0, 0, 0, 0,
2391 SQLITE_IDXTYPE_PRIMARYKEY
);
2393 pTab
->tabFlags
&= ~TF_WithoutRowid
;
2396 assert( db
->mallocFailed
==0 );
2397 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2398 assert( pPk
->nKeyCol
==1 );
2400 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2404 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2405 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2406 ** code assumes the PRIMARY KEY contains no repeated columns.
2408 for(i
=j
=1; i
<pPk
->nKeyCol
; i
++){
2409 if( isDupColumn(pPk
, j
, pPk
, i
) ){
2412 testcase( hasColumn(pPk
->aiColumn
, j
, pPk
->aiColumn
[i
]) );
2413 pPk
->azColl
[j
] = pPk
->azColl
[i
];
2414 pPk
->aSortOrder
[j
] = pPk
->aSortOrder
[i
];
2415 pPk
->aiColumn
[j
++] = pPk
->aiColumn
[i
];
2421 pPk
->isCovering
= 1;
2422 if( !db
->init
.imposterTable
) pPk
->uniqNotNull
= 1;
2423 nPk
= pPk
->nColumn
= pPk
->nKeyCol
;
2425 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2426 ** table entry. This is only required if currently generating VDBE
2427 ** code for a CREATE TABLE (not when parsing one as part of reading
2428 ** a database schema). */
2429 if( v
&& pPk
->tnum
>0 ){
2430 assert( db
->init
.busy
==0 );
2431 sqlite3VdbeChangeOpcode(v
, (int)pPk
->tnum
, OP_Goto
);
2434 /* The root page of the PRIMARY KEY is the table root page */
2435 pPk
->tnum
= pTab
->tnum
;
2437 /* Update the in-memory representation of all UNIQUE indices by converting
2438 ** the final rowid column into one or more columns of the PRIMARY KEY.
2440 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2442 if( IsPrimaryKeyIndex(pIdx
) ) continue;
2443 for(i
=n
=0; i
<nPk
; i
++){
2444 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2445 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2450 /* This index is a superset of the primary key */
2451 pIdx
->nColumn
= pIdx
->nKeyCol
;
2454 if( resizeIndexObject(db
, pIdx
, pIdx
->nKeyCol
+n
) ) return;
2455 for(i
=0, j
=pIdx
->nKeyCol
; i
<nPk
; i
++){
2456 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2457 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2458 pIdx
->aiColumn
[j
] = pPk
->aiColumn
[i
];
2459 pIdx
->azColl
[j
] = pPk
->azColl
[i
];
2460 if( pPk
->aSortOrder
[i
] ){
2461 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2462 pIdx
->bAscKeyBug
= 1;
2467 assert( pIdx
->nColumn
>=pIdx
->nKeyCol
+n
);
2468 assert( pIdx
->nColumn
>=j
);
2471 /* Add all table columns to the PRIMARY KEY index
2474 for(i
=0; i
<pTab
->nCol
; i
++){
2475 if( !hasColumn(pPk
->aiColumn
, nPk
, i
)
2476 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) nExtra
++;
2478 if( resizeIndexObject(db
, pPk
, nPk
+nExtra
) ) return;
2479 for(i
=0, j
=nPk
; i
<pTab
->nCol
; i
++){
2480 if( !hasColumn(pPk
->aiColumn
, j
, i
)
2481 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0
2483 assert( j
<pPk
->nColumn
);
2484 pPk
->aiColumn
[j
] = i
;
2485 pPk
->azColl
[j
] = sqlite3StrBINARY
;
2489 assert( pPk
->nColumn
==j
);
2490 assert( pTab
->nNVCol
<=j
);
2491 recomputeColumnsNotIndexed(pPk
);
2495 #ifndef SQLITE_OMIT_VIRTUALTABLE
2497 ** Return true if pTab is a virtual table and zName is a shadow table name
2498 ** for that virtual table.
2500 int sqlite3IsShadowTableOf(sqlite3
*db
, Table
*pTab
, const char *zName
){
2501 int nName
; /* Length of zName */
2502 Module
*pMod
; /* Module for the virtual table */
2504 if( !IsVirtual(pTab
) ) return 0;
2505 nName
= sqlite3Strlen30(pTab
->zName
);
2506 if( sqlite3_strnicmp(zName
, pTab
->zName
, nName
)!=0 ) return 0;
2507 if( zName
[nName
]!='_' ) return 0;
2508 pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, pTab
->u
.vtab
.azArg
[0]);
2509 if( pMod
==0 ) return 0;
2510 if( pMod
->pModule
->iVersion
<3 ) return 0;
2511 if( pMod
->pModule
->xShadowName
==0 ) return 0;
2512 return pMod
->pModule
->xShadowName(zName
+nName
+1);
2514 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2516 #ifndef SQLITE_OMIT_VIRTUALTABLE
2518 ** Table pTab is a virtual table. If it the virtual table implementation
2519 ** exists and has an xShadowName method, then loop over all other ordinary
2520 ** tables within the same schema looking for shadow tables of pTab, and mark
2521 ** any shadow tables seen using the TF_Shadow flag.
2523 void sqlite3MarkAllShadowTablesOf(sqlite3
*db
, Table
*pTab
){
2524 int nName
; /* Length of pTab->zName */
2525 Module
*pMod
; /* Module for the virtual table */
2526 HashElem
*k
; /* For looping through the symbol table */
2528 assert( IsVirtual(pTab
) );
2529 pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, pTab
->u
.vtab
.azArg
[0]);
2530 if( pMod
==0 ) return;
2531 if( NEVER(pMod
->pModule
==0) ) return;
2532 if( pMod
->pModule
->iVersion
<3 ) return;
2533 if( pMod
->pModule
->xShadowName
==0 ) return;
2534 assert( pTab
->zName
!=0 );
2535 nName
= sqlite3Strlen30(pTab
->zName
);
2536 for(k
=sqliteHashFirst(&pTab
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
2537 Table
*pOther
= sqliteHashData(k
);
2538 assert( pOther
->zName
!=0 );
2539 if( !IsOrdinaryTable(pOther
) ) continue;
2540 if( pOther
->tabFlags
& TF_Shadow
) continue;
2541 if( sqlite3StrNICmp(pOther
->zName
, pTab
->zName
, nName
)==0
2542 && pOther
->zName
[nName
]=='_'
2543 && pMod
->pModule
->xShadowName(pOther
->zName
+nName
+1)
2545 pOther
->tabFlags
|= TF_Shadow
;
2549 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2551 #ifndef SQLITE_OMIT_VIRTUALTABLE
2553 ** Return true if zName is a shadow table name in the current database
2556 ** zName is temporarily modified while this routine is running, but is
2557 ** restored to its original value prior to this routine returning.
2559 int sqlite3ShadowTableName(sqlite3
*db
, const char *zName
){
2560 char *zTail
; /* Pointer to the last "_" in zName */
2561 Table
*pTab
; /* Table that zName is a shadow of */
2562 zTail
= strrchr(zName
, '_');
2563 if( zTail
==0 ) return 0;
2565 pTab
= sqlite3FindTable(db
, zName
, 0);
2567 if( pTab
==0 ) return 0;
2568 if( !IsVirtual(pTab
) ) return 0;
2569 return sqlite3IsShadowTableOf(db
, pTab
, zName
);
2571 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2576 ** Mark all nodes of an expression as EP_Immutable, indicating that
2577 ** they should not be changed. Expressions attached to a table or
2578 ** index definition are tagged this way to help ensure that we do
2579 ** not pass them into code generator routines by mistake.
2581 static int markImmutableExprStep(Walker
*pWalker
, Expr
*pExpr
){
2583 ExprSetVVAProperty(pExpr
, EP_Immutable
);
2584 return WRC_Continue
;
2586 static void markExprListImmutable(ExprList
*pList
){
2589 memset(&w
, 0, sizeof(w
));
2590 w
.xExprCallback
= markImmutableExprStep
;
2591 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
2592 w
.xSelectCallback2
= 0;
2593 sqlite3WalkExprList(&w
, pList
);
2597 #define markExprListImmutable(X) /* no-op */
2598 #endif /* SQLITE_DEBUG */
2602 ** This routine is called to report the final ")" that terminates
2603 ** a CREATE TABLE statement.
2605 ** The table structure that other action routines have been building
2606 ** is added to the internal hash tables, assuming no errors have
2609 ** An entry for the table is made in the schema table on disk, unless
2610 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2611 ** it means we are reading the sqlite_schema table because we just
2612 ** connected to the database or because the sqlite_schema table has
2613 ** recently changed, so the entry for this table already exists in
2614 ** the sqlite_schema table. We do not want to create it again.
2616 ** If the pSelect argument is not NULL, it means that this routine
2617 ** was called to create a table generated from a
2618 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2619 ** the new table will match the result set of the SELECT.
2621 void sqlite3EndTable(
2622 Parse
*pParse
, /* Parse context */
2623 Token
*pCons
, /* The ',' token after the last column defn. */
2624 Token
*pEnd
, /* The ')' before options in the CREATE TABLE */
2625 u32 tabOpts
, /* Extra table options. Usually 0. */
2626 Select
*pSelect
/* Select from a "CREATE ... AS SELECT" */
2628 Table
*p
; /* The new table */
2629 sqlite3
*db
= pParse
->db
; /* The database connection */
2630 int iDb
; /* Database in which the table lives */
2631 Index
*pIdx
; /* An implied index of the table */
2633 if( pEnd
==0 && pSelect
==0 ){
2636 p
= pParse
->pNewTable
;
2639 if( pSelect
==0 && sqlite3ShadowTableName(db
, p
->zName
) ){
2640 p
->tabFlags
|= TF_Shadow
;
2643 /* If the db->init.busy is 1 it means we are reading the SQL off the
2644 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2645 ** So do not write to the disk again. Extract the root page number
2646 ** for the table from the db->init.newTnum field. (The page number
2647 ** should have been put there by the sqliteOpenCb routine.)
2649 ** If the root page number is 1, that means this is the sqlite_schema
2650 ** table itself. So mark it read-only.
2652 if( db
->init
.busy
){
2653 if( pSelect
|| (!IsOrdinaryTable(p
) && db
->init
.newTnum
) ){
2654 sqlite3ErrorMsg(pParse
, "");
2657 p
->tnum
= db
->init
.newTnum
;
2658 if( p
->tnum
==1 ) p
->tabFlags
|= TF_Readonly
;
2661 /* Special processing for tables that include the STRICT keyword:
2663 ** * Do not allow custom column datatypes. Every column must have
2664 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2666 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2667 ** then all columns of the PRIMARY KEY must have a NOT NULL
2670 if( tabOpts
& TF_Strict
){
2672 p
->tabFlags
|= TF_Strict
;
2673 for(ii
=0; ii
<p
->nCol
; ii
++){
2674 Column
*pCol
= &p
->aCol
[ii
];
2675 if( pCol
->eCType
==COLTYPE_CUSTOM
){
2676 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
2677 sqlite3ErrorMsg(pParse
,
2678 "unknown datatype for %s.%s: \"%s\"",
2679 p
->zName
, pCol
->zCnName
, sqlite3ColumnType(pCol
, "")
2682 sqlite3ErrorMsg(pParse
, "missing datatype for %s.%s",
2683 p
->zName
, pCol
->zCnName
);
2686 }else if( pCol
->eCType
==COLTYPE_ANY
){
2687 pCol
->affinity
= SQLITE_AFF_BLOB
;
2689 if( (pCol
->colFlags
& COLFLAG_PRIMKEY
)!=0
2691 && pCol
->notNull
== OE_None
2693 pCol
->notNull
= OE_Abort
;
2694 p
->tabFlags
|= TF_HasNotNull
;
2699 assert( (p
->tabFlags
& TF_HasPrimaryKey
)==0
2700 || p
->iPKey
>=0 || sqlite3PrimaryKeyIndex(p
)!=0 );
2701 assert( (p
->tabFlags
& TF_HasPrimaryKey
)!=0
2702 || (p
->iPKey
<0 && sqlite3PrimaryKeyIndex(p
)==0) );
2704 /* Special processing for WITHOUT ROWID Tables */
2705 if( tabOpts
& TF_WithoutRowid
){
2706 if( (p
->tabFlags
& TF_Autoincrement
) ){
2707 sqlite3ErrorMsg(pParse
,
2708 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2711 if( (p
->tabFlags
& TF_HasPrimaryKey
)==0 ){
2712 sqlite3ErrorMsg(pParse
, "PRIMARY KEY missing on table %s", p
->zName
);
2715 p
->tabFlags
|= TF_WithoutRowid
| TF_NoVisibleRowid
;
2716 convertToWithoutRowidTable(pParse
, p
);
2718 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2720 #ifndef SQLITE_OMIT_CHECK
2721 /* Resolve names in all CHECK constraint expressions.
2724 sqlite3ResolveSelfReference(pParse
, p
, NC_IsCheck
, 0, p
->pCheck
);
2726 /* If errors are seen, delete the CHECK constraints now, else they might
2727 ** actually be used if PRAGMA writable_schema=ON is set. */
2728 sqlite3ExprListDelete(db
, p
->pCheck
);
2731 markExprListImmutable(p
->pCheck
);
2734 #endif /* !defined(SQLITE_OMIT_CHECK) */
2735 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2736 if( p
->tabFlags
& TF_HasGenerated
){
2738 testcase( p
->tabFlags
& TF_HasVirtual
);
2739 testcase( p
->tabFlags
& TF_HasStored
);
2740 for(ii
=0; ii
<p
->nCol
; ii
++){
2741 u32 colFlags
= p
->aCol
[ii
].colFlags
;
2742 if( (colFlags
& COLFLAG_GENERATED
)!=0 ){
2743 Expr
*pX
= sqlite3ColumnExpr(p
, &p
->aCol
[ii
]);
2744 testcase( colFlags
& COLFLAG_VIRTUAL
);
2745 testcase( colFlags
& COLFLAG_STORED
);
2746 if( sqlite3ResolveSelfReference(pParse
, p
, NC_GenCol
, pX
, 0) ){
2747 /* If there are errors in resolving the expression, change the
2748 ** expression to a NULL. This prevents code generators that operate
2749 ** on the expression from inserting extra parts into the expression
2750 ** tree that have been allocated from lookaside memory, which is
2751 ** illegal in a schema and will lead to errors or heap corruption
2752 ** when the database connection closes. */
2753 sqlite3ColumnSetExpr(pParse
, p
, &p
->aCol
[ii
],
2754 sqlite3ExprAlloc(db
, TK_NULL
, 0, 0));
2761 sqlite3ErrorMsg(pParse
, "must have at least one non-generated column");
2767 /* Estimate the average row size for the table and for all implied indices */
2768 estimateTableWidth(p
);
2769 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2770 estimateIndexWidth(pIdx
);
2773 /* If not initializing, then create a record for the new table
2774 ** in the schema table of the database.
2776 ** If this is a TEMPORARY table, write the entry into the auxiliary
2777 ** file instead of into the main database file.
2779 if( !db
->init
.busy
){
2782 char *zType
; /* "view" or "table" */
2783 char *zType2
; /* "VIEW" or "TABLE" */
2784 char *zStmt
; /* Text of the CREATE TABLE or CREATE VIEW statement */
2786 v
= sqlite3GetVdbe(pParse
);
2787 if( NEVER(v
==0) ) return;
2789 sqlite3VdbeAddOp1(v
, OP_Close
, 0);
2792 ** Initialize zType for the new view or table.
2794 if( IsOrdinaryTable(p
) ){
2795 /* A regular table */
2798 #ifndef SQLITE_OMIT_VIEW
2806 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2807 ** statement to populate the new table. The root-page number for the
2808 ** new table is in register pParse->regRoot.
2810 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2811 ** suitable state to query for the column names and types to be used
2812 ** by the new table.
2814 ** A shared-cache write-lock is not required to write to the new table,
2815 ** as a schema-lock must have already been obtained to create it. Since
2816 ** a schema-lock excludes all other database users, the write-lock would
2820 SelectDest dest
; /* Where the SELECT should store results */
2821 int regYield
; /* Register holding co-routine entry-point */
2822 int addrTop
; /* Top of the co-routine */
2823 int regRec
; /* A record to be insert into the new table */
2824 int regRowid
; /* Rowid of the next row to insert */
2825 int addrInsLoop
; /* Top of the loop for inserting rows */
2826 Table
*pSelTab
; /* A table that describes the SELECT results */
2828 if( IN_SPECIAL_PARSE
){
2829 pParse
->rc
= SQLITE_ERROR
;
2833 regYield
= ++pParse
->nMem
;
2834 regRec
= ++pParse
->nMem
;
2835 regRowid
= ++pParse
->nMem
;
2836 assert(pParse
->nTab
==1);
2837 sqlite3MayAbort(pParse
);
2838 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, 1, pParse
->regRoot
, iDb
);
2839 sqlite3VdbeChangeP5(v
, OPFLAG_P2ISREG
);
2841 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
2842 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
2843 if( pParse
->nErr
) return;
2844 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSelect
, SQLITE_AFF_BLOB
);
2845 if( pSelTab
==0 ) return;
2846 assert( p
->aCol
==0 );
2847 p
->nCol
= p
->nNVCol
= pSelTab
->nCol
;
2848 p
->aCol
= pSelTab
->aCol
;
2851 sqlite3DeleteTable(db
, pSelTab
);
2852 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
2853 sqlite3Select(pParse
, pSelect
, &dest
);
2854 if( pParse
->nErr
) return;
2855 sqlite3VdbeEndCoroutine(v
, regYield
);
2856 sqlite3VdbeJumpHere(v
, addrTop
- 1);
2857 addrInsLoop
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
2859 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, dest
.iSdst
, dest
.nSdst
, regRec
);
2860 sqlite3TableAffinity(v
, p
, 0);
2861 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 1, regRowid
);
2862 sqlite3VdbeAddOp3(v
, OP_Insert
, 1, regRec
, regRowid
);
2863 sqlite3VdbeGoto(v
, addrInsLoop
);
2864 sqlite3VdbeJumpHere(v
, addrInsLoop
);
2865 sqlite3VdbeAddOp1(v
, OP_Close
, 1);
2868 /* Compute the complete text of the CREATE statement */
2870 zStmt
= createTableStmt(db
, p
);
2872 Token
*pEnd2
= tabOpts
? &pParse
->sLastToken
: pEnd
;
2873 n
= (int)(pEnd2
->z
- pParse
->sNameToken
.z
);
2874 if( pEnd2
->z
[0]!=';' ) n
+= pEnd2
->n
;
2875 zStmt
= sqlite3MPrintf(db
,
2876 "CREATE %s %.*s", zType2
, n
, pParse
->sNameToken
.z
2880 /* A slot for the record has already been allocated in the
2881 ** schema table. We just need to update that slot with all
2882 ** the information we've collected.
2884 sqlite3NestedParse(pParse
,
2885 "UPDATE %Q." LEGACY_SCHEMA_TABLE
2886 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2888 db
->aDb
[iDb
].zDbSName
,
2896 sqlite3DbFree(db
, zStmt
);
2897 sqlite3ChangeCookie(pParse
, iDb
);
2899 #ifndef SQLITE_OMIT_AUTOINCREMENT
2900 /* Check to see if we need to create an sqlite_sequence table for
2901 ** keeping track of autoincrement keys.
2903 if( (p
->tabFlags
& TF_Autoincrement
)!=0 && !IN_SPECIAL_PARSE
){
2904 Db
*pDb
= &db
->aDb
[iDb
];
2905 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2906 if( pDb
->pSchema
->pSeqTab
==0 ){
2907 sqlite3NestedParse(pParse
,
2908 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2915 /* Reparse everything to update our internal data structures */
2916 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
2917 sqlite3MPrintf(db
, "tbl_name='%q' AND type!='trigger'", p
->zName
),0);
2919 /* Test for cycles in generated columns and illegal expressions
2920 ** in CHECK constraints and in DEFAULT clauses. */
2921 if( p
->tabFlags
& TF_HasGenerated
){
2922 sqlite3VdbeAddOp4(v
, OP_SqlExec
, 1, 0, 0,
2923 sqlite3MPrintf(db
, "SELECT*FROM\"%w\".\"%w\"",
2924 db
->aDb
[iDb
].zDbSName
, p
->zName
), P4_DYNAMIC
);
2926 sqlite3VdbeAddOp4(v
, OP_SqlExec
, 1, 0, 0,
2927 sqlite3MPrintf(db
, "PRAGMA \"%w\".integrity_check(%Q)",
2928 db
->aDb
[iDb
].zDbSName
, p
->zName
), P4_DYNAMIC
);
2931 /* Add the table to the in-memory representation of the database.
2933 if( db
->init
.busy
){
2935 Schema
*pSchema
= p
->pSchema
;
2936 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2937 assert( HasRowid(p
) || p
->iPKey
<0 );
2938 pOld
= sqlite3HashInsert(&pSchema
->tblHash
, p
->zName
, p
);
2940 assert( p
==pOld
); /* Malloc must have failed inside HashInsert() */
2941 sqlite3OomFault(db
);
2944 pParse
->pNewTable
= 0;
2945 db
->mDbFlags
|= DBFLAG_SchemaChange
;
2947 /* If this is the magic sqlite_sequence table used by autoincrement,
2948 ** then record a pointer to this table in the main database structure
2949 ** so that INSERT can find the table easily. */
2950 assert( !pParse
->nested
);
2951 #ifndef SQLITE_OMIT_AUTOINCREMENT
2952 if( strcmp(p
->zName
, "sqlite_sequence")==0 ){
2953 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2954 p
->pSchema
->pSeqTab
= p
;
2959 #ifndef SQLITE_OMIT_ALTERTABLE
2960 if( !pSelect
&& IsOrdinaryTable(p
) ){
2961 assert( pCons
&& pEnd
);
2965 p
->u
.tab
.addColOffset
= 13 + (int)(pCons
->z
- pParse
->sNameToken
.z
);
2970 #ifndef SQLITE_OMIT_VIEW
2972 ** The parser calls this routine in order to create a new VIEW
2974 void sqlite3CreateView(
2975 Parse
*pParse
, /* The parsing context */
2976 Token
*pBegin
, /* The CREATE token that begins the statement */
2977 Token
*pName1
, /* The token that holds the name of the view */
2978 Token
*pName2
, /* The token that holds the name of the view */
2979 ExprList
*pCNames
, /* Optional list of view column names */
2980 Select
*pSelect
, /* A SELECT statement that will become the new view */
2981 int isTemp
, /* TRUE for a TEMPORARY view */
2982 int noErr
/* Suppress error messages if VIEW already exists */
2991 sqlite3
*db
= pParse
->db
;
2993 if( pParse
->nVar
>0 ){
2994 sqlite3ErrorMsg(pParse
, "parameters are not allowed in views");
2995 goto create_view_fail
;
2997 sqlite3StartTable(pParse
, pName1
, pName2
, isTemp
, 1, 0, noErr
);
2998 p
= pParse
->pNewTable
;
2999 if( p
==0 || pParse
->nErr
) goto create_view_fail
;
3001 /* Legacy versions of SQLite allowed the use of the magic "rowid" column
3002 ** on a view, even though views do not have rowids. The following flag
3003 ** setting fixes this problem. But the fix can be disabled by compiling
3004 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
3005 ** depend upon the old buggy behavior. */
3006 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
3007 p
->tabFlags
|= TF_NoVisibleRowid
;
3010 sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
3011 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
3012 sqlite3FixInit(&sFix
, pParse
, iDb
, "view", pName
);
3013 if( sqlite3FixSelect(&sFix
, pSelect
) ) goto create_view_fail
;
3015 /* Make a copy of the entire SELECT statement that defines the view.
3016 ** This will force all the Expr.token.z values to be dynamically
3017 ** allocated rather than point to the input string - which means that
3018 ** they will persist after the current sqlite3_exec() call returns.
3020 pSelect
->selFlags
|= SF_View
;
3021 if( IN_RENAME_OBJECT
){
3022 p
->u
.view
.pSelect
= pSelect
;
3025 p
->u
.view
.pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
3027 p
->pCheck
= sqlite3ExprListDup(db
, pCNames
, EXPRDUP_REDUCE
);
3028 p
->eTabType
= TABTYP_VIEW
;
3029 if( db
->mallocFailed
) goto create_view_fail
;
3031 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
3034 sEnd
= pParse
->sLastToken
;
3035 assert( sEnd
.z
[0]!=0 || sEnd
.n
==0 );
3036 if( sEnd
.z
[0]!=';' ){
3040 n
= (int)(sEnd
.z
- pBegin
->z
);
3043 while( sqlite3Isspace(z
[n
-1]) ){ n
--; }
3047 /* Use sqlite3EndTable() to add the view to the schema table */
3048 sqlite3EndTable(pParse
, 0, &sEnd
, 0, 0);
3051 sqlite3SelectDelete(db
, pSelect
);
3052 if( IN_RENAME_OBJECT
){
3053 sqlite3RenameExprlistUnmap(pParse
, pCNames
);
3055 sqlite3ExprListDelete(db
, pCNames
);
3058 #endif /* SQLITE_OMIT_VIEW */
3060 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3062 ** The Table structure pTable is really a VIEW. Fill in the names of
3063 ** the columns of the view in the pTable structure. Return the number
3064 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
3066 static SQLITE_NOINLINE
int viewGetColumnNames(Parse
*pParse
, Table
*pTable
){
3067 Table
*pSelTab
; /* A fake table from which we get the result set */
3068 Select
*pSel
; /* Copy of the SELECT that implements the view */
3069 int nErr
= 0; /* Number of errors encountered */
3070 sqlite3
*db
= pParse
->db
; /* Database connection for malloc errors */
3071 #ifndef SQLITE_OMIT_VIRTUALTABLE
3074 #ifndef SQLITE_OMIT_AUTHORIZATION
3075 sqlite3_xauth xAuth
; /* Saved xAuth pointer */
3080 #ifndef SQLITE_OMIT_VIRTUALTABLE
3081 if( IsVirtual(pTable
) ){
3083 rc
= sqlite3VtabCallConnect(pParse
, pTable
);
3089 #ifndef SQLITE_OMIT_VIEW
3090 /* A positive nCol means the columns names for this view are
3091 ** already known. This routine is not called unless either the
3092 ** table is virtual or nCol is zero.
3094 assert( pTable
->nCol
<=0 );
3096 /* A negative nCol is a special marker meaning that we are currently
3097 ** trying to compute the column names. If we enter this routine with
3098 ** a negative nCol, it means two or more views form a loop, like this:
3100 ** CREATE VIEW one AS SELECT * FROM two;
3101 ** CREATE VIEW two AS SELECT * FROM one;
3103 ** Actually, the error above is now caught prior to reaching this point.
3104 ** But the following test is still important as it does come up
3105 ** in the following:
3107 ** CREATE TABLE main.ex1(a);
3108 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3109 ** SELECT * FROM temp.ex1;
3111 if( pTable
->nCol
<0 ){
3112 sqlite3ErrorMsg(pParse
, "view %s is circularly defined", pTable
->zName
);
3115 assert( pTable
->nCol
>=0 );
3117 /* If we get this far, it means we need to compute the table names.
3118 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3119 ** "*" elements in the results set of the view and will assign cursors
3120 ** to the elements of the FROM clause. But we do not want these changes
3121 ** to be permanent. So the computation is done on a copy of the SELECT
3122 ** statement that defines the view.
3124 assert( IsView(pTable
) );
3125 pSel
= sqlite3SelectDup(db
, pTable
->u
.view
.pSelect
, 0);
3127 u8 eParseMode
= pParse
->eParseMode
;
3128 int nTab
= pParse
->nTab
;
3129 int nSelect
= pParse
->nSelect
;
3130 pParse
->eParseMode
= PARSE_MODE_NORMAL
;
3131 sqlite3SrcListAssignCursors(pParse
, pSel
->pSrc
);
3134 #ifndef SQLITE_OMIT_AUTHORIZATION
3137 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
3140 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
3142 pParse
->nTab
= nTab
;
3143 pParse
->nSelect
= nSelect
;
3147 }else if( pTable
->pCheck
){
3148 /* CREATE VIEW name(arglist) AS ...
3149 ** The names of the columns in the table are taken from
3150 ** arglist which is stored in pTable->pCheck. The pCheck field
3151 ** normally holds CHECK constraints on an ordinary table, but for
3152 ** a VIEW it holds the list of column names.
3154 sqlite3ColumnsFromExprList(pParse
, pTable
->pCheck
,
3155 &pTable
->nCol
, &pTable
->aCol
);
3157 && pTable
->nCol
==pSel
->pEList
->nExpr
3159 assert( db
->mallocFailed
==0 );
3160 sqlite3SubqueryColumnTypes(pParse
, pTable
, pSel
, SQLITE_AFF_NONE
);
3163 /* CREATE VIEW name AS... without an argument list. Construct
3164 ** the column names from the SELECT statement that defines the view.
3166 assert( pTable
->aCol
==0 );
3167 pTable
->nCol
= pSelTab
->nCol
;
3168 pTable
->aCol
= pSelTab
->aCol
;
3169 pTable
->tabFlags
|= (pSelTab
->tabFlags
& COLFLAG_NOINSERT
);
3172 assert( sqlite3SchemaMutexHeld(db
, 0, pTable
->pSchema
) );
3174 pTable
->nNVCol
= pTable
->nCol
;
3175 sqlite3DeleteTable(db
, pSelTab
);
3176 sqlite3SelectDelete(db
, pSel
);
3178 pParse
->eParseMode
= eParseMode
;
3182 pTable
->pSchema
->schemaFlags
|= DB_UnresetViews
;
3183 if( db
->mallocFailed
){
3184 sqlite3DeleteColumnNames(db
, pTable
);
3186 #endif /* SQLITE_OMIT_VIEW */
3189 int sqlite3ViewGetColumnNames(Parse
*pParse
, Table
*pTable
){
3190 assert( pTable
!=0 );
3191 if( !IsVirtual(pTable
) && pTable
->nCol
>0 ) return 0;
3192 return viewGetColumnNames(pParse
, pTable
);
3194 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3196 #ifndef SQLITE_OMIT_VIEW
3198 ** Clear the column names from every VIEW in database idx.
3200 static void sqliteViewResetAll(sqlite3
*db
, int idx
){
3202 assert( sqlite3SchemaMutexHeld(db
, idx
, 0) );
3203 if( !DbHasProperty(db
, idx
, DB_UnresetViews
) ) return;
3204 for(i
=sqliteHashFirst(&db
->aDb
[idx
].pSchema
->tblHash
); i
;i
=sqliteHashNext(i
)){
3205 Table
*pTab
= sqliteHashData(i
);
3207 sqlite3DeleteColumnNames(db
, pTab
);
3210 DbClearProperty(db
, idx
, DB_UnresetViews
);
3213 # define sqliteViewResetAll(A,B)
3214 #endif /* SQLITE_OMIT_VIEW */
3217 ** This function is called by the VDBE to adjust the internal schema
3218 ** used by SQLite when the btree layer moves a table root page. The
3219 ** root-page of a table or index in database iDb has changed from iFrom
3222 ** Ticket #1728: The symbol table might still contain information
3223 ** on tables and/or indices that are the process of being deleted.
3224 ** If you are unlucky, one of those deleted indices or tables might
3225 ** have the same rootpage number as the real table or index that is
3226 ** being moved. So we cannot stop searching after the first match
3227 ** because the first match might be for one of the deleted indices
3228 ** or tables and not the table/index that is actually being moved.
3229 ** We must continue looping until all tables and indices with
3230 ** rootpage==iFrom have been converted to have a rootpage of iTo
3231 ** in order to be certain that we got the right one.
3233 #ifndef SQLITE_OMIT_AUTOVACUUM
3234 void sqlite3RootPageMoved(sqlite3
*db
, int iDb
, Pgno iFrom
, Pgno iTo
){
3239 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3240 pDb
= &db
->aDb
[iDb
];
3241 pHash
= &pDb
->pSchema
->tblHash
;
3242 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
3243 Table
*pTab
= sqliteHashData(pElem
);
3244 if( pTab
->tnum
==iFrom
){
3248 pHash
= &pDb
->pSchema
->idxHash
;
3249 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
3250 Index
*pIdx
= sqliteHashData(pElem
);
3251 if( pIdx
->tnum
==iFrom
){
3259 ** Write code to erase the table with root-page iTable from database iDb.
3260 ** Also write code to modify the sqlite_schema table and internal schema
3261 ** if a root-page of another table is moved by the btree-layer whilst
3262 ** erasing iTable (this can happen with an auto-vacuum database).
3264 static void destroyRootPage(Parse
*pParse
, int iTable
, int iDb
){
3265 Vdbe
*v
= sqlite3GetVdbe(pParse
);
3266 int r1
= sqlite3GetTempReg(pParse
);
3267 if( iTable
<2 ) sqlite3ErrorMsg(pParse
, "corrupt schema");
3268 sqlite3VdbeAddOp3(v
, OP_Destroy
, iTable
, r1
, iDb
);
3269 sqlite3MayAbort(pParse
);
3270 #ifndef SQLITE_OMIT_AUTOVACUUM
3271 /* OP_Destroy stores an in integer r1. If this integer
3272 ** is non-zero, then it is the root page number of a table moved to
3273 ** location iTable. The following code modifies the sqlite_schema table to
3276 ** The "#NNN" in the SQL is a special constant that means whatever value
3277 ** is in register NNN. See grammar rules associated with the TK_REGISTER
3278 ** token for additional information.
3280 sqlite3NestedParse(pParse
,
3281 "UPDATE %Q." LEGACY_SCHEMA_TABLE
3282 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3283 pParse
->db
->aDb
[iDb
].zDbSName
, iTable
, r1
, r1
);
3285 sqlite3ReleaseTempReg(pParse
, r1
);
3289 ** Write VDBE code to erase table pTab and all associated indices on disk.
3290 ** Code to update the sqlite_schema tables and internal schema definitions
3291 ** in case a root-page belonging to another table is moved by the btree layer
3292 ** is also added (this can happen with an auto-vacuum database).
3294 static void destroyTable(Parse
*pParse
, Table
*pTab
){
3295 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3296 ** is not defined), then it is important to call OP_Destroy on the
3297 ** table and index root-pages in order, starting with the numerically
3298 ** largest root-page number. This guarantees that none of the root-pages
3299 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3300 ** following were coded:
3306 ** and root page 5 happened to be the largest root-page number in the
3307 ** database, then root page 5 would be moved to page 4 by the
3308 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3309 ** a free-list page.
3311 Pgno iTab
= pTab
->tnum
;
3312 Pgno iDestroyed
= 0;
3318 if( iDestroyed
==0 || iTab
<iDestroyed
){
3321 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
3322 Pgno iIdx
= pIdx
->tnum
;
3323 assert( pIdx
->pSchema
==pTab
->pSchema
);
3324 if( (iDestroyed
==0 || (iIdx
<iDestroyed
)) && iIdx
>iLargest
){
3331 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
3332 assert( iDb
>=0 && iDb
<pParse
->db
->nDb
);
3333 destroyRootPage(pParse
, iLargest
, iDb
);
3334 iDestroyed
= iLargest
;
3340 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3341 ** after a DROP INDEX or DROP TABLE command.
3343 static void sqlite3ClearStatTables(
3344 Parse
*pParse
, /* The parsing context */
3345 int iDb
, /* The database number */
3346 const char *zType
, /* "idx" or "tbl" */
3347 const char *zName
/* Name of index or table */
3350 const char *zDbName
= pParse
->db
->aDb
[iDb
].zDbSName
;
3351 for(i
=1; i
<=4; i
++){
3353 sqlite3_snprintf(sizeof(zTab
),zTab
,"sqlite_stat%d",i
);
3354 if( sqlite3FindTable(pParse
->db
, zTab
, zDbName
) ){
3355 sqlite3NestedParse(pParse
,
3356 "DELETE FROM %Q.%s WHERE %s=%Q",
3357 zDbName
, zTab
, zType
, zName
3364 ** Generate code to drop a table.
3366 void sqlite3CodeDropTable(Parse
*pParse
, Table
*pTab
, int iDb
, int isView
){
3368 sqlite3
*db
= pParse
->db
;
3370 Db
*pDb
= &db
->aDb
[iDb
];
3372 v
= sqlite3GetVdbe(pParse
);
3374 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3376 #ifndef SQLITE_OMIT_VIRTUALTABLE
3377 if( IsVirtual(pTab
) ){
3378 sqlite3VdbeAddOp0(v
, OP_VBegin
);
3382 /* Drop all triggers associated with the table being dropped. Code
3383 ** is generated to remove entries from sqlite_schema and/or
3384 ** sqlite_temp_schema if required.
3386 pTrigger
= sqlite3TriggerList(pParse
, pTab
);
3388 assert( pTrigger
->pSchema
==pTab
->pSchema
||
3389 pTrigger
->pSchema
==db
->aDb
[1].pSchema
);
3390 sqlite3DropTriggerPtr(pParse
, pTrigger
);
3391 pTrigger
= pTrigger
->pNext
;
3394 #ifndef SQLITE_OMIT_AUTOINCREMENT
3395 /* Remove any entries of the sqlite_sequence table associated with
3396 ** the table being dropped. This is done before the table is dropped
3397 ** at the btree level, in case the sqlite_sequence table needs to
3398 ** move as a result of the drop (can happen in auto-vacuum mode).
3400 if( pTab
->tabFlags
& TF_Autoincrement
){
3401 sqlite3NestedParse(pParse
,
3402 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3403 pDb
->zDbSName
, pTab
->zName
3408 /* Drop all entries in the schema table that refer to the
3409 ** table. The program name loops through the schema table and deletes
3410 ** every row that refers to a table of the same name as the one being
3411 ** dropped. Triggers are handled separately because a trigger can be
3412 ** created in the temp database that refers to a table in another
3415 sqlite3NestedParse(pParse
,
3416 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3417 " WHERE tbl_name=%Q and type!='trigger'",
3418 pDb
->zDbSName
, pTab
->zName
);
3419 if( !isView
&& !IsVirtual(pTab
) ){
3420 destroyTable(pParse
, pTab
);
3423 /* Remove the table entry from SQLite's internal schema and modify
3424 ** the schema cookie.
3426 if( IsVirtual(pTab
) ){
3427 sqlite3VdbeAddOp4(v
, OP_VDestroy
, iDb
, 0, 0, pTab
->zName
, 0);
3428 sqlite3MayAbort(pParse
);
3430 sqlite3VdbeAddOp4(v
, OP_DropTable
, iDb
, 0, 0, pTab
->zName
, 0);
3431 sqlite3ChangeCookie(pParse
, iDb
);
3432 sqliteViewResetAll(db
, iDb
);
3436 ** Return TRUE if shadow tables should be read-only in the current
3439 int sqlite3ReadOnlyShadowTables(sqlite3
*db
){
3440 #ifndef SQLITE_OMIT_VIRTUALTABLE
3441 if( (db
->flags
& SQLITE_Defensive
)!=0
3444 && !sqlite3VtabInSync(db
)
3453 ** Return true if it is not allowed to drop the given table
3455 static int tableMayNotBeDropped(sqlite3
*db
, Table
*pTab
){
3456 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0 ){
3457 if( sqlite3StrNICmp(pTab
->zName
+7, "stat", 4)==0 ) return 0;
3458 if( sqlite3StrNICmp(pTab
->zName
+7, "parameters", 10)==0 ) return 0;
3461 if( (pTab
->tabFlags
& TF_Shadow
)!=0 && sqlite3ReadOnlyShadowTables(db
) ){
3464 if( pTab
->tabFlags
& TF_Eponymous
){
3471 ** This routine is called to do the work of a DROP TABLE statement.
3472 ** pName is the name of the table to be dropped.
3474 void sqlite3DropTable(Parse
*pParse
, SrcList
*pName
, int isView
, int noErr
){
3477 sqlite3
*db
= pParse
->db
;
3480 if( db
->mallocFailed
){
3481 goto exit_drop_table
;
3483 assert( pParse
->nErr
==0 );
3484 assert( pName
->nSrc
==1 );
3485 if( sqlite3ReadSchema(pParse
) ) goto exit_drop_table
;
3486 if( noErr
) db
->suppressErr
++;
3487 assert( isView
==0 || isView
==LOCATE_VIEW
);
3488 pTab
= sqlite3LocateTableItem(pParse
, isView
, &pName
->a
[0]);
3489 if( noErr
) db
->suppressErr
--;
3493 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
3494 sqlite3ForceNotReadOnly(pParse
);
3496 goto exit_drop_table
;
3498 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3499 assert( iDb
>=0 && iDb
<db
->nDb
);
3501 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3502 ** it is initialized.
3504 if( IsVirtual(pTab
) && sqlite3ViewGetColumnNames(pParse
, pTab
) ){
3505 goto exit_drop_table
;
3507 #ifndef SQLITE_OMIT_AUTHORIZATION
3510 const char *zTab
= SCHEMA_TABLE(iDb
);
3511 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
3512 const char *zArg2
= 0;
3513 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
)){
3514 goto exit_drop_table
;
3517 if( !OMIT_TEMPDB
&& iDb
==1 ){
3518 code
= SQLITE_DROP_TEMP_VIEW
;
3520 code
= SQLITE_DROP_VIEW
;
3522 #ifndef SQLITE_OMIT_VIRTUALTABLE
3523 }else if( IsVirtual(pTab
) ){
3524 code
= SQLITE_DROP_VTABLE
;
3525 zArg2
= sqlite3GetVTable(db
, pTab
)->pMod
->zName
;
3528 if( !OMIT_TEMPDB
&& iDb
==1 ){
3529 code
= SQLITE_DROP_TEMP_TABLE
;
3531 code
= SQLITE_DROP_TABLE
;
3534 if( sqlite3AuthCheck(pParse
, code
, pTab
->zName
, zArg2
, zDb
) ){
3535 goto exit_drop_table
;
3537 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, pTab
->zName
, 0, zDb
) ){
3538 goto exit_drop_table
;
3542 if( tableMayNotBeDropped(db
, pTab
) ){
3543 sqlite3ErrorMsg(pParse
, "table %s may not be dropped", pTab
->zName
);
3544 goto exit_drop_table
;
3547 #ifndef SQLITE_OMIT_VIEW
3548 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3551 if( isView
&& !IsView(pTab
) ){
3552 sqlite3ErrorMsg(pParse
, "use DROP TABLE to delete table %s", pTab
->zName
);
3553 goto exit_drop_table
;
3555 if( !isView
&& IsView(pTab
) ){
3556 sqlite3ErrorMsg(pParse
, "use DROP VIEW to delete view %s", pTab
->zName
);
3557 goto exit_drop_table
;
3561 /* Generate code to remove the table from the schema table
3564 v
= sqlite3GetVdbe(pParse
);
3566 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3568 sqlite3ClearStatTables(pParse
, iDb
, "tbl", pTab
->zName
);
3569 sqlite3FkDropTable(pParse
, pName
, pTab
);
3571 sqlite3CodeDropTable(pParse
, pTab
, iDb
, isView
);
3575 sqlite3SrcListDelete(db
, pName
);
3579 ** This routine is called to create a new foreign key on the table
3580 ** currently under construction. pFromCol determines which columns
3581 ** in the current table point to the foreign key. If pFromCol==0 then
3582 ** connect the key to the last column inserted. pTo is the name of
3583 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3584 ** of tables in the parent pTo table. flags contains all
3585 ** information about the conflict resolution algorithms specified
3586 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3588 ** An FKey structure is created and added to the table currently
3589 ** under construction in the pParse->pNewTable field.
3591 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3592 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3594 void sqlite3CreateForeignKey(
3595 Parse
*pParse
, /* Parsing context */
3596 ExprList
*pFromCol
, /* Columns in this table that point to other table */
3597 Token
*pTo
, /* Name of the other table */
3598 ExprList
*pToCol
, /* Columns in the other table */
3599 int flags
/* Conflict resolution algorithms. */
3601 sqlite3
*db
= pParse
->db
;
3602 #ifndef SQLITE_OMIT_FOREIGN_KEY
3605 Table
*p
= pParse
->pNewTable
;
3612 if( p
==0 || IN_DECLARE_VTAB
) goto fk_end
;
3614 int iCol
= p
->nCol
-1;
3615 if( NEVER(iCol
<0) ) goto fk_end
;
3616 if( pToCol
&& pToCol
->nExpr
!=1 ){
3617 sqlite3ErrorMsg(pParse
, "foreign key on %s"
3618 " should reference only one column of table %T",
3619 p
->aCol
[iCol
].zCnName
, pTo
);
3623 }else if( pToCol
&& pToCol
->nExpr
!=pFromCol
->nExpr
){
3624 sqlite3ErrorMsg(pParse
,
3625 "number of columns in foreign key does not match the number of "
3626 "columns in the referenced table");
3629 nCol
= pFromCol
->nExpr
;
3631 nByte
= sizeof(*pFKey
) + (nCol
-1)*sizeof(pFKey
->aCol
[0]) + pTo
->n
+ 1;
3633 for(i
=0; i
<pToCol
->nExpr
; i
++){
3634 nByte
+= sqlite3Strlen30(pToCol
->a
[i
].zEName
) + 1;
3637 pFKey
= sqlite3DbMallocZero(db
, nByte
);
3642 assert( IsOrdinaryTable(p
) );
3643 pFKey
->pNextFrom
= p
->u
.tab
.pFKey
;
3644 z
= (char*)&pFKey
->aCol
[nCol
];
3646 if( IN_RENAME_OBJECT
){
3647 sqlite3RenameTokenMap(pParse
, (void*)z
, pTo
);
3649 memcpy(z
, pTo
->z
, pTo
->n
);
3655 pFKey
->aCol
[0].iFrom
= p
->nCol
-1;
3657 for(i
=0; i
<nCol
; i
++){
3659 for(j
=0; j
<p
->nCol
; j
++){
3660 if( sqlite3StrICmp(p
->aCol
[j
].zCnName
, pFromCol
->a
[i
].zEName
)==0 ){
3661 pFKey
->aCol
[i
].iFrom
= j
;
3666 sqlite3ErrorMsg(pParse
,
3667 "unknown column \"%s\" in foreign key definition",
3668 pFromCol
->a
[i
].zEName
);
3671 if( IN_RENAME_OBJECT
){
3672 sqlite3RenameTokenRemap(pParse
, &pFKey
->aCol
[i
], pFromCol
->a
[i
].zEName
);
3677 for(i
=0; i
<nCol
; i
++){
3678 int n
= sqlite3Strlen30(pToCol
->a
[i
].zEName
);
3679 pFKey
->aCol
[i
].zCol
= z
;
3680 if( IN_RENAME_OBJECT
){
3681 sqlite3RenameTokenRemap(pParse
, z
, pToCol
->a
[i
].zEName
);
3683 memcpy(z
, pToCol
->a
[i
].zEName
, n
);
3688 pFKey
->isDeferred
= 0;
3689 pFKey
->aAction
[0] = (u8
)(flags
& 0xff); /* ON DELETE action */
3690 pFKey
->aAction
[1] = (u8
)((flags
>> 8 ) & 0xff); /* ON UPDATE action */
3692 assert( sqlite3SchemaMutexHeld(db
, 0, p
->pSchema
) );
3693 pNextTo
= (FKey
*)sqlite3HashInsert(&p
->pSchema
->fkeyHash
,
3694 pFKey
->zTo
, (void *)pFKey
3696 if( pNextTo
==pFKey
){
3697 sqlite3OomFault(db
);
3701 assert( pNextTo
->pPrevTo
==0 );
3702 pFKey
->pNextTo
= pNextTo
;
3703 pNextTo
->pPrevTo
= pFKey
;
3706 /* Link the foreign key to the table as the last step.
3708 assert( IsOrdinaryTable(p
) );
3709 p
->u
.tab
.pFKey
= pFKey
;
3713 sqlite3DbFree(db
, pFKey
);
3714 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3715 sqlite3ExprListDelete(db
, pFromCol
);
3716 sqlite3ExprListDelete(db
, pToCol
);
3720 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3721 ** clause is seen as part of a foreign key definition. The isDeferred
3722 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3723 ** The behavior of the most recently created foreign key is adjusted
3726 void sqlite3DeferForeignKey(Parse
*pParse
, int isDeferred
){
3727 #ifndef SQLITE_OMIT_FOREIGN_KEY
3730 if( (pTab
= pParse
->pNewTable
)==0 ) return;
3731 if( NEVER(!IsOrdinaryTable(pTab
)) ) return;
3732 if( (pFKey
= pTab
->u
.tab
.pFKey
)==0 ) return;
3733 assert( isDeferred
==0 || isDeferred
==1 ); /* EV: R-30323-21917 */
3734 pFKey
->isDeferred
= (u8
)isDeferred
;
3739 ** Generate code that will erase and refill index *pIdx. This is
3740 ** used to initialize a newly created index or to recompute the
3741 ** content of an index in response to a REINDEX command.
3743 ** if memRootPage is not negative, it means that the index is newly
3744 ** created. The register specified by memRootPage contains the
3745 ** root page number of the index. If memRootPage is negative, then
3746 ** the index already exists and must be cleared before being refilled and
3747 ** the root page number of the index is taken from pIndex->tnum.
3749 static void sqlite3RefillIndex(Parse
*pParse
, Index
*pIndex
, int memRootPage
){
3750 Table
*pTab
= pIndex
->pTable
; /* The table that is indexed */
3751 int iTab
= pParse
->nTab
++; /* Btree cursor used for pTab */
3752 int iIdx
= pParse
->nTab
++; /* Btree cursor used for pIndex */
3753 int iSorter
; /* Cursor opened by OpenSorter (if in use) */
3754 int addr1
; /* Address of top of loop */
3755 int addr2
; /* Address to jump to for next iteration */
3756 Pgno tnum
; /* Root page of index */
3757 int iPartIdxLabel
; /* Jump to this label to skip a row */
3758 Vdbe
*v
; /* Generate code into this virtual machine */
3759 KeyInfo
*pKey
; /* KeyInfo for index */
3760 int regRecord
; /* Register holding assembled index record */
3761 sqlite3
*db
= pParse
->db
; /* The database connection */
3762 int iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
3764 #ifndef SQLITE_OMIT_AUTHORIZATION
3765 if( sqlite3AuthCheck(pParse
, SQLITE_REINDEX
, pIndex
->zName
, 0,
3766 db
->aDb
[iDb
].zDbSName
) ){
3771 /* Require a write-lock on the table to perform this operation */
3772 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 1, pTab
->zName
);
3774 v
= sqlite3GetVdbe(pParse
);
3776 if( memRootPage
>=0 ){
3777 tnum
= (Pgno
)memRootPage
;
3779 tnum
= pIndex
->tnum
;
3781 pKey
= sqlite3KeyInfoOfIndex(pParse
, pIndex
);
3782 assert( pKey
!=0 || pParse
->nErr
);
3784 /* Open the sorter cursor if we are to use one. */
3785 iSorter
= pParse
->nTab
++;
3786 sqlite3VdbeAddOp4(v
, OP_SorterOpen
, iSorter
, 0, pIndex
->nKeyCol
, (char*)
3787 sqlite3KeyInfoRef(pKey
), P4_KEYINFO
);
3789 /* Open the table. Loop through all rows of the table, inserting index
3790 ** records into the sorter. */
3791 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
3792 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0); VdbeCoverage(v
);
3793 regRecord
= sqlite3GetTempReg(pParse
);
3794 sqlite3MultiWrite(pParse
);
3796 sqlite3GenerateIndexKey(pParse
,pIndex
,iTab
,regRecord
,0,&iPartIdxLabel
,0,0);
3797 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, iSorter
, regRecord
);
3798 sqlite3ResolvePartIdxLabel(pParse
, iPartIdxLabel
);
3799 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr1
+1); VdbeCoverage(v
);
3800 sqlite3VdbeJumpHere(v
, addr1
);
3801 if( memRootPage
<0 ) sqlite3VdbeAddOp2(v
, OP_Clear
, tnum
, iDb
);
3802 sqlite3VdbeAddOp4(v
, OP_OpenWrite
, iIdx
, (int)tnum
, iDb
,
3803 (char *)pKey
, P4_KEYINFO
);
3804 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
|((memRootPage
>=0)?OPFLAG_P2ISREG
:0));
3806 addr1
= sqlite3VdbeAddOp2(v
, OP_SorterSort
, iSorter
, 0); VdbeCoverage(v
);
3807 if( IsUniqueIndex(pIndex
) ){
3808 int j2
= sqlite3VdbeGoto(v
, 1);
3809 addr2
= sqlite3VdbeCurrentAddr(v
);
3810 sqlite3VdbeVerifyAbortable(v
, OE_Abort
);
3811 sqlite3VdbeAddOp4Int(v
, OP_SorterCompare
, iSorter
, j2
, regRecord
,
3812 pIndex
->nKeyCol
); VdbeCoverage(v
);
3813 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIndex
);
3814 sqlite3VdbeJumpHere(v
, j2
);
3816 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3817 ** abort. The exception is if one of the indexed expressions contains a
3818 ** user function that throws an exception when it is evaluated. But the
3819 ** overhead of adding a statement journal to a CREATE INDEX statement is
3820 ** very small (since most of the pages written do not contain content that
3821 ** needs to be restored if the statement aborts), so we call
3822 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3823 sqlite3MayAbort(pParse
);
3824 addr2
= sqlite3VdbeCurrentAddr(v
);
3826 sqlite3VdbeAddOp3(v
, OP_SorterData
, iSorter
, regRecord
, iIdx
);
3827 if( !pIndex
->bAscKeyBug
){
3828 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3829 ** faster by avoiding unnecessary seeks. But the optimization does
3830 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3831 ** with DESC primary keys, since those indexes have there keys in
3832 ** a different order from the main table.
3833 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3835 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iIdx
);
3837 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iIdx
, regRecord
);
3838 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
3839 sqlite3ReleaseTempReg(pParse
, regRecord
);
3840 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iSorter
, addr2
); VdbeCoverage(v
);
3841 sqlite3VdbeJumpHere(v
, addr1
);
3843 sqlite3VdbeAddOp1(v
, OP_Close
, iTab
);
3844 sqlite3VdbeAddOp1(v
, OP_Close
, iIdx
);
3845 sqlite3VdbeAddOp1(v
, OP_Close
, iSorter
);
3849 ** Allocate heap space to hold an Index object with nCol columns.
3851 ** Increase the allocation size to provide an extra nExtra bytes
3852 ** of 8-byte aligned space after the Index object and return a
3853 ** pointer to this extra space in *ppExtra.
3855 Index
*sqlite3AllocateIndexObject(
3856 sqlite3
*db
, /* Database connection */
3857 i16 nCol
, /* Total number of columns in the index */
3858 int nExtra
, /* Number of bytes of extra space to alloc */
3859 char **ppExtra
/* Pointer to the "extra" space */
3861 Index
*p
; /* Allocated index object */
3862 int nByte
; /* Bytes of space for Index object + arrays */
3864 nByte
= ROUND8(sizeof(Index
)) + /* Index structure */
3865 ROUND8(sizeof(char*)*nCol
) + /* Index.azColl */
3866 ROUND8(sizeof(LogEst
)*(nCol
+1) + /* Index.aiRowLogEst */
3867 sizeof(i16
)*nCol
+ /* Index.aiColumn */
3868 sizeof(u8
)*nCol
); /* Index.aSortOrder */
3869 p
= sqlite3DbMallocZero(db
, nByte
+ nExtra
);
3871 char *pExtra
= ((char*)p
)+ROUND8(sizeof(Index
));
3872 p
->azColl
= (const char**)pExtra
; pExtra
+= ROUND8(sizeof(char*)*nCol
);
3873 p
->aiRowLogEst
= (LogEst
*)pExtra
; pExtra
+= sizeof(LogEst
)*(nCol
+1);
3874 p
->aiColumn
= (i16
*)pExtra
; pExtra
+= sizeof(i16
)*nCol
;
3875 p
->aSortOrder
= (u8
*)pExtra
;
3877 p
->nKeyCol
= nCol
- 1;
3878 *ppExtra
= ((char*)p
) + nByte
;
3884 ** If expression list pList contains an expression that was parsed with
3885 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3886 ** pParse and return non-zero. Otherwise, return zero.
3888 int sqlite3HasExplicitNulls(Parse
*pParse
, ExprList
*pList
){
3891 for(i
=0; i
<pList
->nExpr
; i
++){
3892 if( pList
->a
[i
].fg
.bNulls
){
3893 u8 sf
= pList
->a
[i
].fg
.sortFlags
;
3894 sqlite3ErrorMsg(pParse
, "unsupported use of NULLS %s",
3895 (sf
==0 || sf
==3) ? "FIRST" : "LAST"
3905 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3906 ** and pTblList is the name of the table that is to be indexed. Both will
3907 ** be NULL for a primary key or an index that is created to satisfy a
3908 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3909 ** as the table to be indexed. pParse->pNewTable is a table that is
3910 ** currently being constructed by a CREATE TABLE statement.
3912 ** pList is a list of columns to be indexed. pList will be NULL if this
3913 ** is a primary key or unique-constraint on the most recent column added
3914 ** to the table currently under construction.
3916 void sqlite3CreateIndex(
3917 Parse
*pParse
, /* All information about this parse */
3918 Token
*pName1
, /* First part of index name. May be NULL */
3919 Token
*pName2
, /* Second part of index name. May be NULL */
3920 SrcList
*pTblName
, /* Table to index. Use pParse->pNewTable if 0 */
3921 ExprList
*pList
, /* A list of columns to be indexed */
3922 int onError
, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3923 Token
*pStart
, /* The CREATE token that begins this statement */
3924 Expr
*pPIWhere
, /* WHERE clause for partial indices */
3925 int sortOrder
, /* Sort order of primary key when pList==NULL */
3926 int ifNotExist
, /* Omit error if index already exists */
3927 u8 idxType
/* The index type */
3929 Table
*pTab
= 0; /* Table to be indexed */
3930 Index
*pIndex
= 0; /* The index to be created */
3931 char *zName
= 0; /* Name of the index */
3932 int nName
; /* Number of characters in zName */
3934 DbFixer sFix
; /* For assigning database names to pTable */
3935 int sortOrderMask
; /* 1 to honor DESC in index. 0 to ignore. */
3936 sqlite3
*db
= pParse
->db
;
3937 Db
*pDb
; /* The specific table containing the indexed database */
3938 int iDb
; /* Index of the database that is being written */
3939 Token
*pName
= 0; /* Unqualified name of the index to create */
3940 struct ExprList_item
*pListItem
; /* For looping over pList */
3941 int nExtra
= 0; /* Space allocated for zExtra[] */
3942 int nExtraCol
; /* Number of extra columns needed */
3943 char *zExtra
= 0; /* Extra space after the Index object */
3944 Index
*pPk
= 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3946 assert( db
->pParse
==pParse
);
3948 goto exit_create_index
;
3950 assert( db
->mallocFailed
==0 );
3951 if( IN_DECLARE_VTAB
&& idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
){
3952 goto exit_create_index
;
3954 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
3955 goto exit_create_index
;
3957 if( sqlite3HasExplicitNulls(pParse
, pList
) ){
3958 goto exit_create_index
;
3962 ** Find the table that is to be indexed. Return early if not found.
3966 /* Use the two-part index name to determine the database
3967 ** to search for the table. 'Fix' the table name to this db
3968 ** before looking up the table.
3970 assert( pName1
&& pName2
);
3971 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
3972 if( iDb
<0 ) goto exit_create_index
;
3973 assert( pName
&& pName
->z
);
3975 #ifndef SQLITE_OMIT_TEMPDB
3976 /* If the index name was unqualified, check if the table
3977 ** is a temp table. If so, set the database to 1. Do not do this
3978 ** if initializing a database schema.
3980 if( !db
->init
.busy
){
3981 pTab
= sqlite3SrcListLookup(pParse
, pTblName
);
3982 if( pName2
->n
==0 && pTab
&& pTab
->pSchema
==db
->aDb
[1].pSchema
){
3988 sqlite3FixInit(&sFix
, pParse
, iDb
, "index", pName
);
3989 if( sqlite3FixSrcList(&sFix
, pTblName
) ){
3990 /* Because the parser constructs pTblName from a single identifier,
3991 ** sqlite3FixSrcList can never fail. */
3994 pTab
= sqlite3LocateTableItem(pParse
, 0, &pTblName
->a
[0]);
3995 assert( db
->mallocFailed
==0 || pTab
==0 );
3996 if( pTab
==0 ) goto exit_create_index
;
3997 if( iDb
==1 && db
->aDb
[iDb
].pSchema
!=pTab
->pSchema
){
3998 sqlite3ErrorMsg(pParse
,
3999 "cannot create a TEMP index on non-TEMP table \"%s\"",
4001 goto exit_create_index
;
4003 if( !HasRowid(pTab
) ) pPk
= sqlite3PrimaryKeyIndex(pTab
);
4006 assert( pStart
==0 );
4007 pTab
= pParse
->pNewTable
;
4008 if( !pTab
) goto exit_create_index
;
4009 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
4011 pDb
= &db
->aDb
[iDb
];
4014 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
4017 #if SQLITE_USER_AUTHENTICATION
4018 && sqlite3UserAuthTable(pTab
->zName
)==0
4021 sqlite3ErrorMsg(pParse
, "table %s may not be indexed", pTab
->zName
);
4022 goto exit_create_index
;
4024 #ifndef SQLITE_OMIT_VIEW
4026 sqlite3ErrorMsg(pParse
, "views may not be indexed");
4027 goto exit_create_index
;
4030 #ifndef SQLITE_OMIT_VIRTUALTABLE
4031 if( IsVirtual(pTab
) ){
4032 sqlite3ErrorMsg(pParse
, "virtual tables may not be indexed");
4033 goto exit_create_index
;
4038 ** Find the name of the index. Make sure there is not already another
4039 ** index or table with the same name.
4041 ** Exception: If we are reading the names of permanent indices from the
4042 ** sqlite_schema table (because some other process changed the schema) and
4043 ** one of the index names collides with the name of a temporary table or
4044 ** index, then we will continue to process this index.
4046 ** If pName==0 it means that we are
4047 ** dealing with a primary key or UNIQUE constraint. We have to invent our
4051 zName
= sqlite3NameFromToken(db
, pName
);
4052 if( zName
==0 ) goto exit_create_index
;
4053 assert( pName
->z
!=0 );
4054 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
,"index",pTab
->zName
) ){
4055 goto exit_create_index
;
4057 if( !IN_RENAME_OBJECT
){
4058 if( !db
->init
.busy
){
4059 if( sqlite3FindTable(db
, zName
, pDb
->zDbSName
)!=0 ){
4060 sqlite3ErrorMsg(pParse
, "there is already a table named %s", zName
);
4061 goto exit_create_index
;
4064 if( sqlite3FindIndex(db
, zName
, pDb
->zDbSName
)!=0 ){
4066 sqlite3ErrorMsg(pParse
, "index %s already exists", zName
);
4068 assert( !db
->init
.busy
);
4069 sqlite3CodeVerifySchema(pParse
, iDb
);
4070 sqlite3ForceNotReadOnly(pParse
);
4072 goto exit_create_index
;
4078 for(pLoop
=pTab
->pIndex
, n
=1; pLoop
; pLoop
=pLoop
->pNext
, n
++){}
4079 zName
= sqlite3MPrintf(db
, "sqlite_autoindex_%s_%d", pTab
->zName
, n
);
4081 goto exit_create_index
;
4084 /* Automatic index names generated from within sqlite3_declare_vtab()
4085 ** must have names that are distinct from normal automatic index names.
4086 ** The following statement converts "sqlite3_autoindex..." into
4087 ** "sqlite3_butoindex..." in order to make the names distinct.
4088 ** The "vtab_err.test" test demonstrates the need of this statement. */
4089 if( IN_SPECIAL_PARSE
) zName
[7]++;
4092 /* Check for authorization to create an index.
4094 #ifndef SQLITE_OMIT_AUTHORIZATION
4095 if( !IN_RENAME_OBJECT
){
4096 const char *zDb
= pDb
->zDbSName
;
4097 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(iDb
), 0, zDb
) ){
4098 goto exit_create_index
;
4100 i
= SQLITE_CREATE_INDEX
;
4101 if( !OMIT_TEMPDB
&& iDb
==1 ) i
= SQLITE_CREATE_TEMP_INDEX
;
4102 if( sqlite3AuthCheck(pParse
, i
, zName
, pTab
->zName
, zDb
) ){
4103 goto exit_create_index
;
4108 /* If pList==0, it means this routine was called to make a primary
4109 ** key out of the last column added to the table under construction.
4110 ** So create a fake list to simulate this.
4114 Column
*pCol
= &pTab
->aCol
[pTab
->nCol
-1];
4115 pCol
->colFlags
|= COLFLAG_UNIQUE
;
4116 sqlite3TokenInit(&prevCol
, pCol
->zCnName
);
4117 pList
= sqlite3ExprListAppend(pParse
, 0,
4118 sqlite3ExprAlloc(db
, TK_ID
, &prevCol
, 0));
4119 if( pList
==0 ) goto exit_create_index
;
4120 assert( pList
->nExpr
==1 );
4121 sqlite3ExprListSetSortOrder(pList
, sortOrder
, SQLITE_SO_UNDEFINED
);
4123 sqlite3ExprListCheckLength(pParse
, pList
, "index");
4124 if( pParse
->nErr
) goto exit_create_index
;
4127 /* Figure out how many bytes of space are required to store explicitly
4128 ** specified collation sequence names.
4130 for(i
=0; i
<pList
->nExpr
; i
++){
4131 Expr
*pExpr
= pList
->a
[i
].pExpr
;
4133 if( pExpr
->op
==TK_COLLATE
){
4134 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4135 nExtra
+= (1 + sqlite3Strlen30(pExpr
->u
.zToken
));
4140 ** Allocate the index structure.
4142 nName
= sqlite3Strlen30(zName
);
4143 nExtraCol
= pPk
? pPk
->nKeyCol
: 1;
4144 assert( pList
->nExpr
+ nExtraCol
<= 32767 /* Fits in i16 */ );
4145 pIndex
= sqlite3AllocateIndexObject(db
, pList
->nExpr
+ nExtraCol
,
4146 nName
+ nExtra
+ 1, &zExtra
);
4147 if( db
->mallocFailed
){
4148 goto exit_create_index
;
4150 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->aiRowLogEst
) );
4151 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->azColl
) );
4152 pIndex
->zName
= zExtra
;
4153 zExtra
+= nName
+ 1;
4154 memcpy(pIndex
->zName
, zName
, nName
+1);
4155 pIndex
->pTable
= pTab
;
4156 pIndex
->onError
= (u8
)onError
;
4157 pIndex
->uniqNotNull
= onError
!=OE_None
;
4158 pIndex
->idxType
= idxType
;
4159 pIndex
->pSchema
= db
->aDb
[iDb
].pSchema
;
4160 pIndex
->nKeyCol
= pList
->nExpr
;
4162 sqlite3ResolveSelfReference(pParse
, pTab
, NC_PartIdx
, pPIWhere
, 0);
4163 pIndex
->pPartIdxWhere
= pPIWhere
;
4166 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
4168 /* Check to see if we should honor DESC requests on index columns
4170 if( pDb
->pSchema
->file_format
>=4 ){
4171 sortOrderMask
= -1; /* Honor DESC */
4173 sortOrderMask
= 0; /* Ignore DESC */
4176 /* Analyze the list of expressions that form the terms of the index and
4177 ** report any errors. In the common case where the expression is exactly
4178 ** a table column, store that column in aiColumn[]. For general expressions,
4179 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4181 ** TODO: Issue a warning if two or more columns of the index are identical.
4182 ** TODO: Issue a warning if the table primary key is used as part of the
4185 pListItem
= pList
->a
;
4186 if( IN_RENAME_OBJECT
){
4187 pIndex
->aColExpr
= pList
;
4190 for(i
=0; i
<pIndex
->nKeyCol
; i
++, pListItem
++){
4191 Expr
*pCExpr
; /* The i-th index expression */
4192 int requestedSortOrder
; /* ASC or DESC on the i-th expression */
4193 const char *zColl
; /* Collation sequence name */
4195 sqlite3StringToId(pListItem
->pExpr
);
4196 sqlite3ResolveSelfReference(pParse
, pTab
, NC_IdxExpr
, pListItem
->pExpr
, 0);
4197 if( pParse
->nErr
) goto exit_create_index
;
4198 pCExpr
= sqlite3ExprSkipCollate(pListItem
->pExpr
);
4199 if( pCExpr
->op
!=TK_COLUMN
){
4200 if( pTab
==pParse
->pNewTable
){
4201 sqlite3ErrorMsg(pParse
, "expressions prohibited in PRIMARY KEY and "
4202 "UNIQUE constraints");
4203 goto exit_create_index
;
4205 if( pIndex
->aColExpr
==0 ){
4206 pIndex
->aColExpr
= pList
;
4210 pIndex
->aiColumn
[i
] = XN_EXPR
;
4211 pIndex
->uniqNotNull
= 0;
4212 pIndex
->bHasExpr
= 1;
4214 j
= pCExpr
->iColumn
;
4215 assert( j
<=0x7fff );
4219 if( pTab
->aCol
[j
].notNull
==0 ){
4220 pIndex
->uniqNotNull
= 0;
4222 if( pTab
->aCol
[j
].colFlags
& COLFLAG_VIRTUAL
){
4223 pIndex
->bHasVCol
= 1;
4224 pIndex
->bHasExpr
= 1;
4227 pIndex
->aiColumn
[i
] = (i16
)j
;
4230 if( pListItem
->pExpr
->op
==TK_COLLATE
){
4232 assert( !ExprHasProperty(pListItem
->pExpr
, EP_IntValue
) );
4233 zColl
= pListItem
->pExpr
->u
.zToken
;
4234 nColl
= sqlite3Strlen30(zColl
) + 1;
4235 assert( nExtra
>=nColl
);
4236 memcpy(zExtra
, zColl
, nColl
);
4241 zColl
= sqlite3ColumnColl(&pTab
->aCol
[j
]);
4243 if( !zColl
) zColl
= sqlite3StrBINARY
;
4244 if( !db
->init
.busy
&& !sqlite3LocateCollSeq(pParse
, zColl
) ){
4245 goto exit_create_index
;
4247 pIndex
->azColl
[i
] = zColl
;
4248 requestedSortOrder
= pListItem
->fg
.sortFlags
& sortOrderMask
;
4249 pIndex
->aSortOrder
[i
] = (u8
)requestedSortOrder
;
4252 /* Append the table key to the end of the index. For WITHOUT ROWID
4253 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
4254 ** normal tables (when pPk==0) this will be the rowid.
4257 for(j
=0; j
<pPk
->nKeyCol
; j
++){
4258 int x
= pPk
->aiColumn
[j
];
4260 if( isDupColumn(pIndex
, pIndex
->nKeyCol
, pPk
, j
) ){
4263 testcase( hasColumn(pIndex
->aiColumn
,pIndex
->nKeyCol
,x
) );
4264 pIndex
->aiColumn
[i
] = x
;
4265 pIndex
->azColl
[i
] = pPk
->azColl
[j
];
4266 pIndex
->aSortOrder
[i
] = pPk
->aSortOrder
[j
];
4270 assert( i
==pIndex
->nColumn
);
4272 pIndex
->aiColumn
[i
] = XN_ROWID
;
4273 pIndex
->azColl
[i
] = sqlite3StrBINARY
;
4275 sqlite3DefaultRowEst(pIndex
);
4276 if( pParse
->pNewTable
==0 ) estimateIndexWidth(pIndex
);
4278 /* If this index contains every column of its table, then mark
4279 ** it as a covering index */
4280 assert( HasRowid(pTab
)
4281 || pTab
->iPKey
<0 || sqlite3TableColumnToIndex(pIndex
, pTab
->iPKey
)>=0 );
4282 recomputeColumnsNotIndexed(pIndex
);
4283 if( pTblName
!=0 && pIndex
->nColumn
>=pTab
->nCol
){
4284 pIndex
->isCovering
= 1;
4285 for(j
=0; j
<pTab
->nCol
; j
++){
4286 if( j
==pTab
->iPKey
) continue;
4287 if( sqlite3TableColumnToIndex(pIndex
,j
)>=0 ) continue;
4288 pIndex
->isCovering
= 0;
4293 if( pTab
==pParse
->pNewTable
){
4294 /* This routine has been called to create an automatic index as a
4295 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4296 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4299 ** CREATE TABLE t(x PRIMARY KEY, y);
4300 ** CREATE TABLE t(x, y, UNIQUE(x, y));
4302 ** Either way, check to see if the table already has such an index. If
4303 ** so, don't bother creating this one. This only applies to
4304 ** automatically created indices. Users can do as they wish with
4305 ** explicit indices.
4307 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4308 ** (and thus suppressing the second one) even if they have different
4311 ** If there are different collating sequences or if the columns of
4312 ** the constraint occur in different orders, then the constraints are
4313 ** considered distinct and both result in separate indices.
4316 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
4318 assert( IsUniqueIndex(pIdx
) );
4319 assert( pIdx
->idxType
!=SQLITE_IDXTYPE_APPDEF
);
4320 assert( IsUniqueIndex(pIndex
) );
4322 if( pIdx
->nKeyCol
!=pIndex
->nKeyCol
) continue;
4323 for(k
=0; k
<pIdx
->nKeyCol
; k
++){
4326 assert( pIdx
->aiColumn
[k
]>=0 );
4327 if( pIdx
->aiColumn
[k
]!=pIndex
->aiColumn
[k
] ) break;
4328 z1
= pIdx
->azColl
[k
];
4329 z2
= pIndex
->azColl
[k
];
4330 if( sqlite3StrICmp(z1
, z2
) ) break;
4332 if( k
==pIdx
->nKeyCol
){
4333 if( pIdx
->onError
!=pIndex
->onError
){
4334 /* This constraint creates the same index as a previous
4335 ** constraint specified somewhere in the CREATE TABLE statement.
4336 ** However the ON CONFLICT clauses are different. If both this
4337 ** constraint and the previous equivalent constraint have explicit
4338 ** ON CONFLICT clauses this is an error. Otherwise, use the
4339 ** explicitly specified behavior for the index.
4341 if( !(pIdx
->onError
==OE_Default
|| pIndex
->onError
==OE_Default
) ){
4342 sqlite3ErrorMsg(pParse
,
4343 "conflicting ON CONFLICT clauses specified", 0);
4345 if( pIdx
->onError
==OE_Default
){
4346 pIdx
->onError
= pIndex
->onError
;
4349 if( idxType
==SQLITE_IDXTYPE_PRIMARYKEY
) pIdx
->idxType
= idxType
;
4350 if( IN_RENAME_OBJECT
){
4351 pIndex
->pNext
= pParse
->pNewIndex
;
4352 pParse
->pNewIndex
= pIndex
;
4355 goto exit_create_index
;
4360 if( !IN_RENAME_OBJECT
){
4362 /* Link the new Index structure to its table and to the other
4363 ** in-memory database structures.
4365 assert( pParse
->nErr
==0 );
4366 if( db
->init
.busy
){
4368 assert( !IN_SPECIAL_PARSE
);
4369 assert( sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
4371 pIndex
->tnum
= db
->init
.newTnum
;
4372 if( sqlite3IndexHasDuplicateRootPage(pIndex
) ){
4373 sqlite3ErrorMsg(pParse
, "invalid rootpage");
4374 pParse
->rc
= SQLITE_CORRUPT_BKPT
;
4375 goto exit_create_index
;
4378 p
= sqlite3HashInsert(&pIndex
->pSchema
->idxHash
,
4379 pIndex
->zName
, pIndex
);
4381 assert( p
==pIndex
); /* Malloc must have failed */
4382 sqlite3OomFault(db
);
4383 goto exit_create_index
;
4385 db
->mDbFlags
|= DBFLAG_SchemaChange
;
4388 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4389 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4390 ** emit code to allocate the index rootpage on disk and make an entry for
4391 ** the index in the sqlite_schema table and populate the index with
4392 ** content. But, do not do this if we are simply reading the sqlite_schema
4393 ** table to parse the schema, or if this index is the PRIMARY KEY index
4394 ** of a WITHOUT ROWID table.
4396 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4397 ** or UNIQUE index in a CREATE TABLE statement. Since the table
4398 ** has just been created, it contains no data and the index initialization
4399 ** step can be skipped.
4401 else if( HasRowid(pTab
) || pTblName
!=0 ){
4404 int iMem
= ++pParse
->nMem
;
4406 v
= sqlite3GetVdbe(pParse
);
4407 if( v
==0 ) goto exit_create_index
;
4409 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4411 /* Create the rootpage for the index using CreateIndex. But before
4412 ** doing so, code a Noop instruction and store its address in
4413 ** Index.tnum. This is required in case this index is actually a
4414 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4415 ** that case the convertToWithoutRowidTable() routine will replace
4416 ** the Noop with a Goto to jump over the VDBE code generated below. */
4417 pIndex
->tnum
= (Pgno
)sqlite3VdbeAddOp0(v
, OP_Noop
);
4418 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, iMem
, BTREE_BLOBKEY
);
4420 /* Gather the complete text of the CREATE INDEX statement into
4421 ** the zStmt variable
4423 assert( pName
!=0 || pStart
==0 );
4425 int n
= (int)(pParse
->sLastToken
.z
- pName
->z
) + pParse
->sLastToken
.n
;
4426 if( pName
->z
[n
-1]==';' ) n
--;
4427 /* A named index with an explicit CREATE INDEX statement */
4428 zStmt
= sqlite3MPrintf(db
, "CREATE%s INDEX %.*s",
4429 onError
==OE_None
? "" : " UNIQUE", n
, pName
->z
);
4431 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4432 /* zStmt = sqlite3MPrintf(""); */
4436 /* Add an entry in sqlite_schema for this index
4438 sqlite3NestedParse(pParse
,
4439 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE
" VALUES('index',%Q,%Q,#%d,%Q);",
4440 db
->aDb
[iDb
].zDbSName
,
4446 sqlite3DbFree(db
, zStmt
);
4448 /* Fill the index with data and reparse the schema. Code an OP_Expire
4449 ** to invalidate all pre-compiled statements.
4452 sqlite3RefillIndex(pParse
, pIndex
, iMem
);
4453 sqlite3ChangeCookie(pParse
, iDb
);
4454 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
4455 sqlite3MPrintf(db
, "name='%q' AND type='index'", pIndex
->zName
), 0);
4456 sqlite3VdbeAddOp2(v
, OP_Expire
, 0, 1);
4459 sqlite3VdbeJumpHere(v
, (int)pIndex
->tnum
);
4462 if( db
->init
.busy
|| pTblName
==0 ){
4463 pIndex
->pNext
= pTab
->pIndex
;
4464 pTab
->pIndex
= pIndex
;
4467 else if( IN_RENAME_OBJECT
){
4468 assert( pParse
->pNewIndex
==0 );
4469 pParse
->pNewIndex
= pIndex
;
4473 /* Clean up before exiting */
4475 if( pIndex
) sqlite3FreeIndex(db
, pIndex
);
4477 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4478 ** The list was already ordered when this routine was entered, so at this
4479 ** point at most a single index (the newly added index) will be out of
4480 ** order. So we have to reorder at most one index. */
4483 for(ppFrom
=&pTab
->pIndex
; (pThis
= *ppFrom
)!=0; ppFrom
=&pThis
->pNext
){
4485 if( pThis
->onError
!=OE_Replace
) continue;
4486 while( (pNext
= pThis
->pNext
)!=0 && pNext
->onError
!=OE_Replace
){
4488 pThis
->pNext
= pNext
->pNext
;
4489 pNext
->pNext
= pThis
;
4490 ppFrom
= &pNext
->pNext
;
4495 /* Verify that all REPLACE indexes really are now at the end
4496 ** of the index list. In other words, no other index type ever
4497 ** comes after a REPLACE index on the list. */
4498 for(pThis
= pTab
->pIndex
; pThis
; pThis
=pThis
->pNext
){
4499 assert( pThis
->onError
!=OE_Replace
4501 || pThis
->pNext
->onError
==OE_Replace
);
4505 sqlite3ExprDelete(db
, pPIWhere
);
4506 sqlite3ExprListDelete(db
, pList
);
4507 sqlite3SrcListDelete(db
, pTblName
);
4508 sqlite3DbFree(db
, zName
);
4512 ** Fill the Index.aiRowEst[] array with default information - information
4513 ** to be used when we have not run the ANALYZE command.
4515 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4516 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4517 ** number of rows in the table that match any particular value of the
4518 ** first column of the index. aiRowEst[2] is an estimate of the number
4519 ** of rows that match any particular combination of the first 2 columns
4520 ** of the index. And so forth. It must always be the case that
4522 ** aiRowEst[N]<=aiRowEst[N-1]
4525 ** Apart from that, we have little to go on besides intuition as to
4526 ** how aiRowEst[] should be initialized. The numbers generated here
4527 ** are based on typical values found in actual indices.
4529 void sqlite3DefaultRowEst(Index
*pIdx
){
4530 /* 10, 9, 8, 7, 6 */
4531 static const LogEst aVal
[] = { 33, 32, 30, 28, 26 };
4532 LogEst
*a
= pIdx
->aiRowLogEst
;
4534 int nCopy
= MIN(ArraySize(aVal
), pIdx
->nKeyCol
);
4537 /* Indexes with default row estimates should not have stat1 data */
4538 assert( !pIdx
->hasStat1
);
4540 /* Set the first entry (number of rows in the index) to the estimated
4541 ** number of rows in the table, or half the number of rows in the table
4542 ** for a partial index.
4544 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4545 ** table but other parts we are having to guess at, then do not let the
4546 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4547 ** Failure to do this can cause the indexes for which we do not have
4548 ** stat1 data to be ignored by the query planner.
4550 x
= pIdx
->pTable
->nRowLogEst
;
4551 assert( 99==sqlite3LogEst(1000) );
4553 pIdx
->pTable
->nRowLogEst
= x
= 99;
4555 if( pIdx
->pPartIdxWhere
!=0 ){ x
-= 10; assert( 10==sqlite3LogEst(2) ); }
4558 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4559 ** 6 and each subsequent value (if any) is 5. */
4560 memcpy(&a
[1], aVal
, nCopy
*sizeof(LogEst
));
4561 for(i
=nCopy
+1; i
<=pIdx
->nKeyCol
; i
++){
4562 a
[i
] = 23; assert( 23==sqlite3LogEst(5) );
4565 assert( 0==sqlite3LogEst(1) );
4566 if( IsUniqueIndex(pIdx
) ) a
[pIdx
->nKeyCol
] = 0;
4570 ** This routine will drop an existing named index. This routine
4571 ** implements the DROP INDEX statement.
4573 void sqlite3DropIndex(Parse
*pParse
, SrcList
*pName
, int ifExists
){
4576 sqlite3
*db
= pParse
->db
;
4579 if( db
->mallocFailed
){
4580 goto exit_drop_index
;
4582 assert( pParse
->nErr
==0 ); /* Never called with prior non-OOM errors */
4583 assert( pName
->nSrc
==1 );
4584 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
4585 goto exit_drop_index
;
4587 pIndex
= sqlite3FindIndex(db
, pName
->a
[0].zName
, pName
->a
[0].zDatabase
);
4590 sqlite3ErrorMsg(pParse
, "no such index: %S", pName
->a
);
4592 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
4593 sqlite3ForceNotReadOnly(pParse
);
4595 pParse
->checkSchema
= 1;
4596 goto exit_drop_index
;
4598 if( pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
){
4599 sqlite3ErrorMsg(pParse
, "index associated with UNIQUE "
4600 "or PRIMARY KEY constraint cannot be dropped", 0);
4601 goto exit_drop_index
;
4603 iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
4604 #ifndef SQLITE_OMIT_AUTHORIZATION
4606 int code
= SQLITE_DROP_INDEX
;
4607 Table
*pTab
= pIndex
->pTable
;
4608 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
4609 const char *zTab
= SCHEMA_TABLE(iDb
);
4610 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
) ){
4611 goto exit_drop_index
;
4613 if( !OMIT_TEMPDB
&& iDb
==1 ) code
= SQLITE_DROP_TEMP_INDEX
;
4614 if( sqlite3AuthCheck(pParse
, code
, pIndex
->zName
, pTab
->zName
, zDb
) ){
4615 goto exit_drop_index
;
4620 /* Generate code to remove the index and from the schema table */
4621 v
= sqlite3GetVdbe(pParse
);
4623 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4624 sqlite3NestedParse(pParse
,
4625 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
" WHERE name=%Q AND type='index'",
4626 db
->aDb
[iDb
].zDbSName
, pIndex
->zName
4628 sqlite3ClearStatTables(pParse
, iDb
, "idx", pIndex
->zName
);
4629 sqlite3ChangeCookie(pParse
, iDb
);
4630 destroyRootPage(pParse
, pIndex
->tnum
, iDb
);
4631 sqlite3VdbeAddOp4(v
, OP_DropIndex
, iDb
, 0, 0, pIndex
->zName
, 0);
4635 sqlite3SrcListDelete(db
, pName
);
4639 ** pArray is a pointer to an array of objects. Each object in the
4640 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4641 ** to extend the array so that there is space for a new object at the end.
4643 ** When this function is called, *pnEntry contains the current size of
4644 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4647 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4648 ** space allocated for the new object is zeroed, *pnEntry updated to
4649 ** reflect the new size of the array and a pointer to the new allocation
4650 ** returned. *pIdx is set to the index of the new array entry in this case.
4652 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4653 ** unchanged and a copy of pArray returned.
4655 void *sqlite3ArrayAllocate(
4656 sqlite3
*db
, /* Connection to notify of malloc failures */
4657 void *pArray
, /* Array of objects. Might be reallocated */
4658 int szEntry
, /* Size of each object in the array */
4659 int *pnEntry
, /* Number of objects currently in use */
4660 int *pIdx
/* Write the index of a new slot here */
4663 sqlite3_int64 n
= *pIdx
= *pnEntry
;
4664 if( (n
& (n
-1))==0 ){
4665 sqlite3_int64 sz
= (n
==0) ? 1 : 2*n
;
4666 void *pNew
= sqlite3DbRealloc(db
, pArray
, sz
*szEntry
);
4674 memset(&z
[n
* szEntry
], 0, szEntry
);
4680 ** Append a new element to the given IdList. Create a new IdList if
4683 ** A new IdList is returned, or NULL if malloc() fails.
4685 IdList
*sqlite3IdListAppend(Parse
*pParse
, IdList
*pList
, Token
*pToken
){
4686 sqlite3
*db
= pParse
->db
;
4689 pList
= sqlite3DbMallocZero(db
, sizeof(IdList
) );
4690 if( pList
==0 ) return 0;
4693 pNew
= sqlite3DbRealloc(db
, pList
,
4694 sizeof(IdList
) + pList
->nId
*sizeof(pList
->a
));
4696 sqlite3IdListDelete(db
, pList
);
4702 pList
->a
[i
].zName
= sqlite3NameFromToken(db
, pToken
);
4703 if( IN_RENAME_OBJECT
&& pList
->a
[i
].zName
){
4704 sqlite3RenameTokenMap(pParse
, (void*)pList
->a
[i
].zName
, pToken
);
4710 ** Delete an IdList.
4712 void sqlite3IdListDelete(sqlite3
*db
, IdList
*pList
){
4715 if( pList
==0 ) return;
4716 assert( pList
->eU4
!=EU4_EXPR
); /* EU4_EXPR mode is not currently used */
4717 for(i
=0; i
<pList
->nId
; i
++){
4718 sqlite3DbFree(db
, pList
->a
[i
].zName
);
4720 sqlite3DbNNFreeNN(db
, pList
);
4724 ** Return the index in pList of the identifier named zId. Return -1
4727 int sqlite3IdListIndex(IdList
*pList
, const char *zName
){
4730 for(i
=0; i
<pList
->nId
; i
++){
4731 if( sqlite3StrICmp(pList
->a
[i
].zName
, zName
)==0 ) return i
;
4737 ** Maximum size of a SrcList object.
4738 ** The SrcList object is used to represent the FROM clause of a
4739 ** SELECT statement, and the query planner cannot deal with more
4740 ** than 64 tables in a join. So any value larger than 64 here
4741 ** is sufficient for most uses. Smaller values, like say 10, are
4742 ** appropriate for small and memory-limited applications.
4744 #ifndef SQLITE_MAX_SRCLIST
4745 # define SQLITE_MAX_SRCLIST 200
4749 ** Expand the space allocated for the given SrcList object by
4750 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4751 ** New slots are zeroed.
4753 ** For example, suppose a SrcList initially contains two entries: A,B.
4754 ** To append 3 new entries onto the end, do this:
4756 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4758 ** After the call above it would contain: A, B, nil, nil, nil.
4759 ** If the iStart argument had been 1 instead of 2, then the result
4760 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4761 ** the iStart value would be 0. The result then would
4762 ** be: nil, nil, nil, A, B.
4764 ** If a memory allocation fails or the SrcList becomes too large, leave
4765 ** the original SrcList unchanged, return NULL, and leave an error message
4768 SrcList
*sqlite3SrcListEnlarge(
4769 Parse
*pParse
, /* Parsing context into which errors are reported */
4770 SrcList
*pSrc
, /* The SrcList to be enlarged */
4771 int nExtra
, /* Number of new slots to add to pSrc->a[] */
4772 int iStart
/* Index in pSrc->a[] of first new slot */
4776 /* Sanity checking on calling parameters */
4777 assert( iStart
>=0 );
4778 assert( nExtra
>=1 );
4780 assert( iStart
<=pSrc
->nSrc
);
4782 /* Allocate additional space if needed */
4783 if( (u32
)pSrc
->nSrc
+nExtra
>pSrc
->nAlloc
){
4785 sqlite3_int64 nAlloc
= 2*(sqlite3_int64
)pSrc
->nSrc
+nExtra
;
4786 sqlite3
*db
= pParse
->db
;
4788 if( pSrc
->nSrc
+nExtra
>=SQLITE_MAX_SRCLIST
){
4789 sqlite3ErrorMsg(pParse
, "too many FROM clause terms, max: %d",
4790 SQLITE_MAX_SRCLIST
);
4793 if( nAlloc
>SQLITE_MAX_SRCLIST
) nAlloc
= SQLITE_MAX_SRCLIST
;
4794 pNew
= sqlite3DbRealloc(db
, pSrc
,
4795 sizeof(*pSrc
) + (nAlloc
-1)*sizeof(pSrc
->a
[0]) );
4797 assert( db
->mallocFailed
);
4801 pSrc
->nAlloc
= nAlloc
;
4804 /* Move existing slots that come after the newly inserted slots
4805 ** out of the way */
4806 for(i
=pSrc
->nSrc
-1; i
>=iStart
; i
--){
4807 pSrc
->a
[i
+nExtra
] = pSrc
->a
[i
];
4809 pSrc
->nSrc
+= nExtra
;
4811 /* Zero the newly allocated slots */
4812 memset(&pSrc
->a
[iStart
], 0, sizeof(pSrc
->a
[0])*nExtra
);
4813 for(i
=iStart
; i
<iStart
+nExtra
; i
++){
4814 pSrc
->a
[i
].iCursor
= -1;
4817 /* Return a pointer to the enlarged SrcList */
4823 ** Append a new table name to the given SrcList. Create a new SrcList if
4824 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4826 ** A SrcList is returned, or NULL if there is an OOM error or if the
4827 ** SrcList grows to large. The returned
4828 ** SrcList might be the same as the SrcList that was input or it might be
4829 ** a new one. If an OOM error does occurs, then the prior value of pList
4830 ** that is input to this routine is automatically freed.
4832 ** If pDatabase is not null, it means that the table has an optional
4833 ** database name prefix. Like this: "database.table". The pDatabase
4834 ** points to the table name and the pTable points to the database name.
4835 ** The SrcList.a[].zName field is filled with the table name which might
4836 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4837 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4838 ** or with NULL if no database is specified.
4840 ** In other words, if call like this:
4842 ** sqlite3SrcListAppend(D,A,B,0);
4844 ** Then B is a table name and the database name is unspecified. If called
4847 ** sqlite3SrcListAppend(D,A,B,C);
4849 ** Then C is the table name and B is the database name. If C is defined
4850 ** then so is B. In other words, we never have a case where:
4852 ** sqlite3SrcListAppend(D,A,0,C);
4854 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4855 ** before being added to the SrcList.
4857 SrcList
*sqlite3SrcListAppend(
4858 Parse
*pParse
, /* Parsing context, in which errors are reported */
4859 SrcList
*pList
, /* Append to this SrcList. NULL creates a new SrcList */
4860 Token
*pTable
, /* Table to append */
4861 Token
*pDatabase
/* Database of the table */
4865 assert( pDatabase
==0 || pTable
!=0 ); /* Cannot have C without B */
4866 assert( pParse
!=0 );
4867 assert( pParse
->db
!=0 );
4870 pList
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(SrcList
) );
4871 if( pList
==0 ) return 0;
4874 memset(&pList
->a
[0], 0, sizeof(pList
->a
[0]));
4875 pList
->a
[0].iCursor
= -1;
4877 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, pList
, 1, pList
->nSrc
);
4879 sqlite3SrcListDelete(db
, pList
);
4885 pItem
= &pList
->a
[pList
->nSrc
-1];
4886 if( pDatabase
&& pDatabase
->z
==0 ){
4890 pItem
->zName
= sqlite3NameFromToken(db
, pDatabase
);
4891 pItem
->zDatabase
= sqlite3NameFromToken(db
, pTable
);
4893 pItem
->zName
= sqlite3NameFromToken(db
, pTable
);
4894 pItem
->zDatabase
= 0;
4900 ** Assign VdbeCursor index numbers to all tables in a SrcList
4902 void sqlite3SrcListAssignCursors(Parse
*pParse
, SrcList
*pList
){
4905 assert( pList
|| pParse
->db
->mallocFailed
);
4906 if( ALWAYS(pList
) ){
4907 for(i
=0, pItem
=pList
->a
; i
<pList
->nSrc
; i
++, pItem
++){
4908 if( pItem
->iCursor
>=0 ) continue;
4909 pItem
->iCursor
= pParse
->nTab
++;
4910 if( pItem
->pSelect
){
4911 sqlite3SrcListAssignCursors(pParse
, pItem
->pSelect
->pSrc
);
4918 ** Delete an entire SrcList including all its substructure.
4920 void sqlite3SrcListDelete(sqlite3
*db
, SrcList
*pList
){
4924 if( pList
==0 ) return;
4925 for(pItem
=pList
->a
, i
=0; i
<pList
->nSrc
; i
++, pItem
++){
4926 if( pItem
->zDatabase
) sqlite3DbNNFreeNN(db
, pItem
->zDatabase
);
4927 if( pItem
->zName
) sqlite3DbNNFreeNN(db
, pItem
->zName
);
4928 if( pItem
->zAlias
) sqlite3DbNNFreeNN(db
, pItem
->zAlias
);
4929 if( pItem
->fg
.isIndexedBy
) sqlite3DbFree(db
, pItem
->u1
.zIndexedBy
);
4930 if( pItem
->fg
.isTabFunc
) sqlite3ExprListDelete(db
, pItem
->u1
.pFuncArg
);
4931 sqlite3DeleteTable(db
, pItem
->pTab
);
4932 if( pItem
->pSelect
) sqlite3SelectDelete(db
, pItem
->pSelect
);
4933 if( pItem
->fg
.isUsing
){
4934 sqlite3IdListDelete(db
, pItem
->u3
.pUsing
);
4935 }else if( pItem
->u3
.pOn
){
4936 sqlite3ExprDelete(db
, pItem
->u3
.pOn
);
4939 sqlite3DbNNFreeNN(db
, pList
);
4943 ** This routine is called by the parser to add a new term to the
4944 ** end of a growing FROM clause. The "p" parameter is the part of
4945 ** the FROM clause that has already been constructed. "p" is NULL
4946 ** if this is the first term of the FROM clause. pTable and pDatabase
4947 ** are the name of the table and database named in the FROM clause term.
4948 ** pDatabase is NULL if the database name qualifier is missing - the
4949 ** usual case. If the term has an alias, then pAlias points to the
4950 ** alias token. If the term is a subquery, then pSubquery is the
4951 ** SELECT statement that the subquery encodes. The pTable and
4952 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4953 ** parameters are the content of the ON and USING clauses.
4955 ** Return a new SrcList which encodes is the FROM with the new
4958 SrcList
*sqlite3SrcListAppendFromTerm(
4959 Parse
*pParse
, /* Parsing context */
4960 SrcList
*p
, /* The left part of the FROM clause already seen */
4961 Token
*pTable
, /* Name of the table to add to the FROM clause */
4962 Token
*pDatabase
, /* Name of the database containing pTable */
4963 Token
*pAlias
, /* The right-hand side of the AS subexpression */
4964 Select
*pSubquery
, /* A subquery used in place of a table name */
4965 OnOrUsing
*pOnUsing
/* Either the ON clause or the USING clause */
4968 sqlite3
*db
= pParse
->db
;
4969 if( !p
&& pOnUsing
!=0 && (pOnUsing
->pOn
|| pOnUsing
->pUsing
) ){
4970 sqlite3ErrorMsg(pParse
, "a JOIN clause is required before %s",
4971 (pOnUsing
->pOn
? "ON" : "USING")
4973 goto append_from_error
;
4975 p
= sqlite3SrcListAppend(pParse
, p
, pTable
, pDatabase
);
4977 goto append_from_error
;
4979 assert( p
->nSrc
>0 );
4980 pItem
= &p
->a
[p
->nSrc
-1];
4981 assert( (pTable
==0)==(pDatabase
==0) );
4982 assert( pItem
->zName
==0 || pDatabase
!=0 );
4983 if( IN_RENAME_OBJECT
&& pItem
->zName
){
4984 Token
*pToken
= (ALWAYS(pDatabase
) && pDatabase
->z
) ? pDatabase
: pTable
;
4985 sqlite3RenameTokenMap(pParse
, pItem
->zName
, pToken
);
4987 assert( pAlias
!=0 );
4989 pItem
->zAlias
= sqlite3NameFromToken(db
, pAlias
);
4992 pItem
->pSelect
= pSubquery
;
4993 if( pSubquery
->selFlags
& SF_NestedFrom
){
4994 pItem
->fg
.isNestedFrom
= 1;
4997 assert( pOnUsing
==0 || pOnUsing
->pOn
==0 || pOnUsing
->pUsing
==0 );
4998 assert( pItem
->fg
.isUsing
==0 );
5001 }else if( pOnUsing
->pUsing
){
5002 pItem
->fg
.isUsing
= 1;
5003 pItem
->u3
.pUsing
= pOnUsing
->pUsing
;
5005 pItem
->u3
.pOn
= pOnUsing
->pOn
;
5011 sqlite3ClearOnOrUsing(db
, pOnUsing
);
5012 sqlite3SelectDelete(db
, pSubquery
);
5017 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
5018 ** element of the source-list passed as the second argument.
5020 void sqlite3SrcListIndexedBy(Parse
*pParse
, SrcList
*p
, Token
*pIndexedBy
){
5021 assert( pIndexedBy
!=0 );
5022 if( p
&& pIndexedBy
->n
>0 ){
5024 assert( p
->nSrc
>0 );
5025 pItem
= &p
->a
[p
->nSrc
-1];
5026 assert( pItem
->fg
.notIndexed
==0 );
5027 assert( pItem
->fg
.isIndexedBy
==0 );
5028 assert( pItem
->fg
.isTabFunc
==0 );
5029 if( pIndexedBy
->n
==1 && !pIndexedBy
->z
){
5030 /* A "NOT INDEXED" clause was supplied. See parse.y
5031 ** construct "indexed_opt" for details. */
5032 pItem
->fg
.notIndexed
= 1;
5034 pItem
->u1
.zIndexedBy
= sqlite3NameFromToken(pParse
->db
, pIndexedBy
);
5035 pItem
->fg
.isIndexedBy
= 1;
5036 assert( pItem
->fg
.isCte
==0 ); /* No collision on union u2 */
5042 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5043 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5044 ** are deleted by this function.
5046 SrcList
*sqlite3SrcListAppendList(Parse
*pParse
, SrcList
*p1
, SrcList
*p2
){
5047 assert( p1
&& p1
->nSrc
==1 );
5049 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, p1
, p2
->nSrc
, 1);
5051 sqlite3SrcListDelete(pParse
->db
, p2
);
5054 memcpy(&p1
->a
[1], p2
->a
, p2
->nSrc
*sizeof(SrcItem
));
5055 sqlite3DbFree(pParse
->db
, p2
);
5056 p1
->a
[0].fg
.jointype
|= (JT_LTORJ
& p1
->a
[1].fg
.jointype
);
5063 ** Add the list of function arguments to the SrcList entry for a
5064 ** table-valued-function.
5066 void sqlite3SrcListFuncArgs(Parse
*pParse
, SrcList
*p
, ExprList
*pList
){
5068 SrcItem
*pItem
= &p
->a
[p
->nSrc
-1];
5069 assert( pItem
->fg
.notIndexed
==0 );
5070 assert( pItem
->fg
.isIndexedBy
==0 );
5071 assert( pItem
->fg
.isTabFunc
==0 );
5072 pItem
->u1
.pFuncArg
= pList
;
5073 pItem
->fg
.isTabFunc
= 1;
5075 sqlite3ExprListDelete(pParse
->db
, pList
);
5080 ** When building up a FROM clause in the parser, the join operator
5081 ** is initially attached to the left operand. But the code generator
5082 ** expects the join operator to be on the right operand. This routine
5083 ** Shifts all join operators from left to right for an entire FROM
5086 ** Example: Suppose the join is like this:
5088 ** A natural cross join B
5090 ** The operator is "natural cross join". The A and B operands are stored
5091 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
5092 ** operator with A. This routine shifts that operator over to B.
5094 ** Additional changes:
5096 ** * All tables to the left of the right-most RIGHT JOIN are tagged with
5097 ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
5098 ** code generator can easily tell that the table is part of
5099 ** the left operand of at least one RIGHT JOIN.
5101 void sqlite3SrcListShiftJoinType(Parse
*pParse
, SrcList
*p
){
5103 if( p
&& p
->nSrc
>1 ){
5107 allFlags
|= p
->a
[i
].fg
.jointype
= p
->a
[i
-1].fg
.jointype
;
5109 p
->a
[0].fg
.jointype
= 0;
5111 /* All terms to the left of a RIGHT JOIN should be tagged with the
5112 ** JT_LTORJ flags */
5113 if( allFlags
& JT_RIGHT
){
5114 for(i
=p
->nSrc
-1; ALWAYS(i
>0) && (p
->a
[i
].fg
.jointype
&JT_RIGHT
)==0; i
--){}
5118 p
->a
[i
].fg
.jointype
|= JT_LTORJ
;
5125 ** Generate VDBE code for a BEGIN statement.
5127 void sqlite3BeginTransaction(Parse
*pParse
, int type
){
5132 assert( pParse
!=0 );
5135 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "BEGIN", 0, 0) ){
5138 v
= sqlite3GetVdbe(pParse
);
5140 if( type
!=TK_DEFERRED
){
5141 for(i
=0; i
<db
->nDb
; i
++){
5143 Btree
*pBt
= db
->aDb
[i
].pBt
;
5144 if( pBt
&& sqlite3BtreeIsReadonly(pBt
) ){
5145 eTxnType
= 0; /* Read txn */
5146 }else if( type
==TK_EXCLUSIVE
){
5147 eTxnType
= 2; /* Exclusive txn */
5149 eTxnType
= 1; /* Write txn */
5151 sqlite3VdbeAddOp2(v
, OP_Transaction
, i
, eTxnType
);
5152 sqlite3VdbeUsesBtree(v
, i
);
5155 sqlite3VdbeAddOp0(v
, OP_AutoCommit
);
5159 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5160 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
5161 ** code is generated for a COMMIT.
5163 void sqlite3EndTransaction(Parse
*pParse
, int eType
){
5167 assert( pParse
!=0 );
5168 assert( pParse
->db
!=0 );
5169 assert( eType
==TK_COMMIT
|| eType
==TK_END
|| eType
==TK_ROLLBACK
);
5170 isRollback
= eType
==TK_ROLLBACK
;
5171 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
,
5172 isRollback
? "ROLLBACK" : "COMMIT", 0, 0) ){
5175 v
= sqlite3GetVdbe(pParse
);
5177 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, isRollback
);
5182 ** This function is called by the parser when it parses a command to create,
5183 ** release or rollback an SQL savepoint.
5185 void sqlite3Savepoint(Parse
*pParse
, int op
, Token
*pName
){
5186 char *zName
= sqlite3NameFromToken(pParse
->db
, pName
);
5188 Vdbe
*v
= sqlite3GetVdbe(pParse
);
5189 #ifndef SQLITE_OMIT_AUTHORIZATION
5190 static const char * const az
[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5191 assert( !SAVEPOINT_BEGIN
&& SAVEPOINT_RELEASE
==1 && SAVEPOINT_ROLLBACK
==2 );
5193 if( !v
|| sqlite3AuthCheck(pParse
, SQLITE_SAVEPOINT
, az
[op
], zName
, 0) ){
5194 sqlite3DbFree(pParse
->db
, zName
);
5197 sqlite3VdbeAddOp4(v
, OP_Savepoint
, op
, 0, 0, zName
, P4_DYNAMIC
);
5202 ** Make sure the TEMP database is open and available for use. Return
5203 ** the number of errors. Leave any error messages in the pParse structure.
5205 int sqlite3OpenTempDatabase(Parse
*pParse
){
5206 sqlite3
*db
= pParse
->db
;
5207 if( db
->aDb
[1].pBt
==0 && !pParse
->explain
){
5210 static const int flags
=
5211 SQLITE_OPEN_READWRITE
|
5212 SQLITE_OPEN_CREATE
|
5213 SQLITE_OPEN_EXCLUSIVE
|
5214 SQLITE_OPEN_DELETEONCLOSE
|
5215 SQLITE_OPEN_TEMP_DB
;
5217 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pBt
, 0, flags
);
5218 if( rc
!=SQLITE_OK
){
5219 sqlite3ErrorMsg(pParse
, "unable to open a temporary database "
5220 "file for storing temporary tables");
5224 db
->aDb
[1].pBt
= pBt
;
5225 assert( db
->aDb
[1].pSchema
);
5226 if( SQLITE_NOMEM
==sqlite3BtreeSetPageSize(pBt
, db
->nextPagesize
, 0, 0) ){
5227 sqlite3OomFault(db
);
5235 ** Record the fact that the schema cookie will need to be verified
5236 ** for database iDb. The code to actually verify the schema cookie
5237 ** will occur at the end of the top-level VDBE and will be generated
5238 ** later, by sqlite3FinishCoding().
5240 static void sqlite3CodeVerifySchemaAtToplevel(Parse
*pToplevel
, int iDb
){
5241 assert( iDb
>=0 && iDb
<pToplevel
->db
->nDb
);
5242 assert( pToplevel
->db
->aDb
[iDb
].pBt
!=0 || iDb
==1 );
5243 assert( iDb
<SQLITE_MAX_DB
);
5244 assert( sqlite3SchemaMutexHeld(pToplevel
->db
, iDb
, 0) );
5245 if( DbMaskTest(pToplevel
->cookieMask
, iDb
)==0 ){
5246 DbMaskSet(pToplevel
->cookieMask
, iDb
);
5247 if( !OMIT_TEMPDB
&& iDb
==1 ){
5248 sqlite3OpenTempDatabase(pToplevel
);
5252 void sqlite3CodeVerifySchema(Parse
*pParse
, int iDb
){
5253 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse
), iDb
);
5258 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5259 ** attached database. Otherwise, invoke it for the database named zDb only.
5261 void sqlite3CodeVerifyNamedSchema(Parse
*pParse
, const char *zDb
){
5262 sqlite3
*db
= pParse
->db
;
5264 for(i
=0; i
<db
->nDb
; i
++){
5265 Db
*pDb
= &db
->aDb
[i
];
5266 if( pDb
->pBt
&& (!zDb
|| 0==sqlite3StrICmp(zDb
, pDb
->zDbSName
)) ){
5267 sqlite3CodeVerifySchema(pParse
, i
);
5273 ** Generate VDBE code that prepares for doing an operation that
5274 ** might change the database.
5276 ** This routine starts a new transaction if we are not already within
5277 ** a transaction. If we are already within a transaction, then a checkpoint
5278 ** is set if the setStatement parameter is true. A checkpoint should
5279 ** be set for operations that might fail (due to a constraint) part of
5280 ** the way through and which will need to undo some writes without having to
5281 ** rollback the whole transaction. For operations where all constraints
5282 ** can be checked before any changes are made to the database, it is never
5283 ** necessary to undo a write and the checkpoint should not be set.
5285 void sqlite3BeginWriteOperation(Parse
*pParse
, int setStatement
, int iDb
){
5286 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5287 sqlite3CodeVerifySchemaAtToplevel(pToplevel
, iDb
);
5288 DbMaskSet(pToplevel
->writeMask
, iDb
);
5289 pToplevel
->isMultiWrite
|= setStatement
;
5293 ** Indicate that the statement currently under construction might write
5294 ** more than one entry (example: deleting one row then inserting another,
5295 ** inserting multiple rows in a table, or inserting a row and index entries.)
5296 ** If an abort occurs after some of these writes have completed, then it will
5297 ** be necessary to undo the completed writes.
5299 void sqlite3MultiWrite(Parse
*pParse
){
5300 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5301 pToplevel
->isMultiWrite
= 1;
5305 ** The code generator calls this routine if is discovers that it is
5306 ** possible to abort a statement prior to completion. In order to
5307 ** perform this abort without corrupting the database, we need to make
5308 ** sure that the statement is protected by a statement transaction.
5310 ** Technically, we only need to set the mayAbort flag if the
5311 ** isMultiWrite flag was previously set. There is a time dependency
5312 ** such that the abort must occur after the multiwrite. This makes
5313 ** some statements involving the REPLACE conflict resolution algorithm
5314 ** go a little faster. But taking advantage of this time dependency
5315 ** makes it more difficult to prove that the code is correct (in
5316 ** particular, it prevents us from writing an effective
5317 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5318 ** to take the safe route and skip the optimization.
5320 void sqlite3MayAbort(Parse
*pParse
){
5321 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5322 pToplevel
->mayAbort
= 1;
5326 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5327 ** error. The onError parameter determines which (if any) of the statement
5328 ** and/or current transaction is rolled back.
5330 void sqlite3HaltConstraint(
5331 Parse
*pParse
, /* Parsing context */
5332 int errCode
, /* extended error code */
5333 int onError
, /* Constraint type */
5334 char *p4
, /* Error message */
5335 i8 p4type
, /* P4_STATIC or P4_TRANSIENT */
5336 u8 p5Errmsg
/* P5_ErrMsg type */
5339 assert( pParse
->pVdbe
!=0 );
5340 v
= sqlite3GetVdbe(pParse
);
5341 assert( (errCode
&0xff)==SQLITE_CONSTRAINT
|| pParse
->nested
);
5342 if( onError
==OE_Abort
){
5343 sqlite3MayAbort(pParse
);
5345 sqlite3VdbeAddOp4(v
, OP_Halt
, errCode
, onError
, 0, p4
, p4type
);
5346 sqlite3VdbeChangeP5(v
, p5Errmsg
);
5350 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5352 void sqlite3UniqueConstraint(
5353 Parse
*pParse
, /* Parsing context */
5354 int onError
, /* Constraint type */
5355 Index
*pIdx
/* The index that triggers the constraint */
5360 Table
*pTab
= pIdx
->pTable
;
5362 sqlite3StrAccumInit(&errMsg
, pParse
->db
, 0, 0,
5363 pParse
->db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
5364 if( pIdx
->aColExpr
){
5365 sqlite3_str_appendf(&errMsg
, "index '%q'", pIdx
->zName
);
5367 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5369 assert( pIdx
->aiColumn
[j
]>=0 );
5370 zCol
= pTab
->aCol
[pIdx
->aiColumn
[j
]].zCnName
;
5371 if( j
) sqlite3_str_append(&errMsg
, ", ", 2);
5372 sqlite3_str_appendall(&errMsg
, pTab
->zName
);
5373 sqlite3_str_append(&errMsg
, ".", 1);
5374 sqlite3_str_appendall(&errMsg
, zCol
);
5377 zErr
= sqlite3StrAccumFinish(&errMsg
);
5378 sqlite3HaltConstraint(pParse
,
5379 IsPrimaryKeyIndex(pIdx
) ? SQLITE_CONSTRAINT_PRIMARYKEY
5380 : SQLITE_CONSTRAINT_UNIQUE
,
5381 onError
, zErr
, P4_DYNAMIC
, P5_ConstraintUnique
);
5386 ** Code an OP_Halt due to non-unique rowid.
5388 void sqlite3RowidConstraint(
5389 Parse
*pParse
, /* Parsing context */
5390 int onError
, /* Conflict resolution algorithm */
5391 Table
*pTab
/* The table with the non-unique rowid */
5395 if( pTab
->iPKey
>=0 ){
5396 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.%s", pTab
->zName
,
5397 pTab
->aCol
[pTab
->iPKey
].zCnName
);
5398 rc
= SQLITE_CONSTRAINT_PRIMARYKEY
;
5400 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.rowid", pTab
->zName
);
5401 rc
= SQLITE_CONSTRAINT_ROWID
;
5403 sqlite3HaltConstraint(pParse
, rc
, onError
, zMsg
, P4_DYNAMIC
,
5404 P5_ConstraintUnique
);
5408 ** Check to see if pIndex uses the collating sequence pColl. Return
5409 ** true if it does and false if it does not.
5411 #ifndef SQLITE_OMIT_REINDEX
5412 static int collationMatch(const char *zColl
, Index
*pIndex
){
5415 for(i
=0; i
<pIndex
->nColumn
; i
++){
5416 const char *z
= pIndex
->azColl
[i
];
5417 assert( z
!=0 || pIndex
->aiColumn
[i
]<0 );
5418 if( pIndex
->aiColumn
[i
]>=0 && 0==sqlite3StrICmp(z
, zColl
) ){
5427 ** Recompute all indices of pTab that use the collating sequence pColl.
5428 ** If pColl==0 then recompute all indices of pTab.
5430 #ifndef SQLITE_OMIT_REINDEX
5431 static void reindexTable(Parse
*pParse
, Table
*pTab
, char const *zColl
){
5432 if( !IsVirtual(pTab
) ){
5433 Index
*pIndex
; /* An index associated with pTab */
5435 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
5436 if( zColl
==0 || collationMatch(zColl
, pIndex
) ){
5437 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5438 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5439 sqlite3RefillIndex(pParse
, pIndex
, -1);
5447 ** Recompute all indices of all tables in all databases where the
5448 ** indices use the collating sequence pColl. If pColl==0 then recompute
5449 ** all indices everywhere.
5451 #ifndef SQLITE_OMIT_REINDEX
5452 static void reindexDatabases(Parse
*pParse
, char const *zColl
){
5453 Db
*pDb
; /* A single database */
5454 int iDb
; /* The database index number */
5455 sqlite3
*db
= pParse
->db
; /* The database connection */
5456 HashElem
*k
; /* For looping over tables in pDb */
5457 Table
*pTab
; /* A table in the database */
5459 assert( sqlite3BtreeHoldsAllMutexes(db
) ); /* Needed for schema access */
5460 for(iDb
=0, pDb
=db
->aDb
; iDb
<db
->nDb
; iDb
++, pDb
++){
5462 for(k
=sqliteHashFirst(&pDb
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
5463 pTab
= (Table
*)sqliteHashData(k
);
5464 reindexTable(pParse
, pTab
, zColl
);
5471 ** Generate code for the REINDEX command.
5474 ** REINDEX <collation> -- 2
5475 ** REINDEX ?<database>.?<tablename> -- 3
5476 ** REINDEX ?<database>.?<indexname> -- 4
5478 ** Form 1 causes all indices in all attached databases to be rebuilt.
5479 ** Form 2 rebuilds all indices in all databases that use the named
5480 ** collating function. Forms 3 and 4 rebuild the named index or all
5481 ** indices associated with the named table.
5483 #ifndef SQLITE_OMIT_REINDEX
5484 void sqlite3Reindex(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
5485 CollSeq
*pColl
; /* Collating sequence to be reindexed, or NULL */
5486 char *z
; /* Name of a table or index */
5487 const char *zDb
; /* Name of the database */
5488 Table
*pTab
; /* A table in the database */
5489 Index
*pIndex
; /* An index associated with pTab */
5490 int iDb
; /* The database index number */
5491 sqlite3
*db
= pParse
->db
; /* The database connection */
5492 Token
*pObjName
; /* Name of the table or index to be reindexed */
5494 /* Read the database schema. If an error occurs, leave an error message
5495 ** and code in pParse and return NULL. */
5496 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
5501 reindexDatabases(pParse
, 0);
5503 }else if( NEVER(pName2
==0) || pName2
->z
==0 ){
5505 assert( pName1
->z
);
5506 zColl
= sqlite3NameFromToken(pParse
->db
, pName1
);
5507 if( !zColl
) return;
5508 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
5510 reindexDatabases(pParse
, zColl
);
5511 sqlite3DbFree(db
, zColl
);
5514 sqlite3DbFree(db
, zColl
);
5516 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pObjName
);
5518 z
= sqlite3NameFromToken(db
, pObjName
);
5520 zDb
= db
->aDb
[iDb
].zDbSName
;
5521 pTab
= sqlite3FindTable(db
, z
, zDb
);
5523 reindexTable(pParse
, pTab
, 0);
5524 sqlite3DbFree(db
, z
);
5527 pIndex
= sqlite3FindIndex(db
, z
, zDb
);
5528 sqlite3DbFree(db
, z
);
5530 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5531 sqlite3RefillIndex(pParse
, pIndex
, -1);
5534 sqlite3ErrorMsg(pParse
, "unable to identify the object to be reindexed");
5539 ** Return a KeyInfo structure that is appropriate for the given Index.
5541 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5542 ** when it has finished using it.
5544 KeyInfo
*sqlite3KeyInfoOfIndex(Parse
*pParse
, Index
*pIdx
){
5546 int nCol
= pIdx
->nColumn
;
5547 int nKey
= pIdx
->nKeyCol
;
5549 if( pParse
->nErr
) return 0;
5550 if( pIdx
->uniqNotNull
){
5551 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nKey
, nCol
-nKey
);
5553 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nCol
, 0);
5556 assert( sqlite3KeyInfoIsWriteable(pKey
) );
5557 for(i
=0; i
<nCol
; i
++){
5558 const char *zColl
= pIdx
->azColl
[i
];
5559 pKey
->aColl
[i
] = zColl
==sqlite3StrBINARY
? 0 :
5560 sqlite3LocateCollSeq(pParse
, zColl
);
5561 pKey
->aSortFlags
[i
] = pIdx
->aSortOrder
[i
];
5562 assert( 0==(pKey
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
) );
5565 assert( pParse
->rc
==SQLITE_ERROR_MISSING_COLLSEQ
);
5566 if( pIdx
->bNoQuery
==0 ){
5567 /* Deactivate the index because it contains an unknown collating
5568 ** sequence. The only way to reactive the index is to reload the
5569 ** schema. Adding the missing collating sequence later does not
5570 ** reactive the index. The application had the chance to register
5571 ** the missing index using the collation-needed callback. For
5572 ** simplicity, SQLite will not give the application a second chance.
5575 pParse
->rc
= SQLITE_ERROR_RETRY
;
5577 sqlite3KeyInfoUnref(pKey
);
5584 #ifndef SQLITE_OMIT_CTE
5586 ** Create a new CTE object
5589 Parse
*pParse
, /* Parsing context */
5590 Token
*pName
, /* Name of the common-table */
5591 ExprList
*pArglist
, /* Optional column name list for the table */
5592 Select
*pQuery
, /* Query used to initialize the table */
5593 u8 eM10d
/* The MATERIALIZED flag */
5596 sqlite3
*db
= pParse
->db
;
5598 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
));
5599 assert( pNew
!=0 || db
->mallocFailed
);
5601 if( db
->mallocFailed
){
5602 sqlite3ExprListDelete(db
, pArglist
);
5603 sqlite3SelectDelete(db
, pQuery
);
5605 pNew
->pSelect
= pQuery
;
5606 pNew
->pCols
= pArglist
;
5607 pNew
->zName
= sqlite3NameFromToken(pParse
->db
, pName
);
5608 pNew
->eM10d
= eM10d
;
5614 ** Clear information from a Cte object, but do not deallocate storage
5615 ** for the object itself.
5617 static void cteClear(sqlite3
*db
, Cte
*pCte
){
5619 sqlite3ExprListDelete(db
, pCte
->pCols
);
5620 sqlite3SelectDelete(db
, pCte
->pSelect
);
5621 sqlite3DbFree(db
, pCte
->zName
);
5625 ** Free the contents of the CTE object passed as the second argument.
5627 void sqlite3CteDelete(sqlite3
*db
, Cte
*pCte
){
5630 sqlite3DbFree(db
, pCte
);
5634 ** This routine is invoked once per CTE by the parser while parsing a
5635 ** WITH clause. The CTE described by the third argument is added to
5636 ** the WITH clause of the second argument. If the second argument is
5637 ** NULL, then a new WITH argument is created.
5639 With
*sqlite3WithAdd(
5640 Parse
*pParse
, /* Parsing context */
5641 With
*pWith
, /* Existing WITH clause, or NULL */
5642 Cte
*pCte
/* CTE to add to the WITH clause */
5644 sqlite3
*db
= pParse
->db
;
5652 /* Check that the CTE name is unique within this WITH clause. If
5653 ** not, store an error in the Parse structure. */
5654 zName
= pCte
->zName
;
5655 if( zName
&& pWith
){
5657 for(i
=0; i
<pWith
->nCte
; i
++){
5658 if( sqlite3StrICmp(zName
, pWith
->a
[i
].zName
)==0 ){
5659 sqlite3ErrorMsg(pParse
, "duplicate WITH table name: %s", zName
);
5665 sqlite3_int64 nByte
= sizeof(*pWith
) + (sizeof(pWith
->a
[1]) * pWith
->nCte
);
5666 pNew
= sqlite3DbRealloc(db
, pWith
, nByte
);
5668 pNew
= sqlite3DbMallocZero(db
, sizeof(*pWith
));
5670 assert( (pNew
!=0 && zName
!=0) || db
->mallocFailed
);
5672 if( db
->mallocFailed
){
5673 sqlite3CteDelete(db
, pCte
);
5676 pNew
->a
[pNew
->nCte
++] = *pCte
;
5677 sqlite3DbFree(db
, pCte
);
5684 ** Free the contents of the With object passed as the second argument.
5686 void sqlite3WithDelete(sqlite3
*db
, With
*pWith
){
5689 for(i
=0; i
<pWith
->nCte
; i
++){
5690 cteClear(db
, &pWith
->a
[i
]);
5692 sqlite3DbFree(db
, pWith
);
5695 #endif /* !defined(SQLITE_OMIT_CTE) */