3 ** The author disclaims copyright to this source code. In place of
4 ** a legal notice, here is a blessing:
6 ** May you do good and not evil.
7 ** May you find forgiveness for yourself and forgive others.
8 ** May you share freely, never taking more than you give.
10 *************************************************************************
11 ** This file contains code used by the compiler to add foreign key
12 ** support to compiled SQL statements.
14 #include "sqliteInt.h"
16 #ifndef SQLITE_OMIT_FOREIGN_KEY
17 #ifndef SQLITE_OMIT_TRIGGER
20 ** Deferred and Immediate FKs
21 ** --------------------------
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate.
24 ** If an immediate foreign key constraint is violated,
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current
26 ** statement transaction rolled back. If a
27 ** deferred foreign key constraint is violated, no action is taken
28 ** immediately. However if the application attempts to commit the
29 ** transaction before fixing the constraint violation, the attempt fails.
31 ** Deferred constraints are implemented using a simple counter associated
32 ** with the database handle. The counter is set to zero each time a
33 ** database transaction is opened. Each time a statement is executed
34 ** that causes a foreign key violation, the counter is incremented. Each
35 ** time a statement is executed that removes an existing violation from
36 ** the database, the counter is decremented. When the transaction is
37 ** committed, the commit fails if the current value of the counter is
38 ** greater than zero. This scheme has two big drawbacks:
40 ** * When a commit fails due to a deferred foreign key constraint,
41 ** there is no way to tell which foreign constraint is not satisfied,
42 ** or which row it is not satisfied for.
44 ** * If the database contains foreign key violations when the
45 ** transaction is opened, this may cause the mechanism to malfunction.
47 ** Despite these problems, this approach is adopted as it seems simpler
48 ** than the alternatives.
52 ** I.1) For each FK for which the table is the child table, search
53 ** the parent table for a match. If none is found increment the
54 ** constraint counter.
56 ** I.2) For each FK for which the table is the parent table,
57 ** search the child table for rows that correspond to the new
58 ** row in the parent table. Decrement the counter for each row
59 ** found (as the constraint is now satisfied).
63 ** D.1) For each FK for which the table is the child table,
64 ** search the parent table for a row that corresponds to the
65 ** deleted row in the child table. If such a row is not found,
66 ** decrement the counter.
68 ** D.2) For each FK for which the table is the parent table, search
69 ** the child table for rows that correspond to the deleted row
70 ** in the parent table. For each found increment the counter.
74 ** An UPDATE command requires that all 4 steps above are taken, but only
75 ** for FK constraints for which the affected columns are actually
76 ** modified (values must be compared at runtime).
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2.
79 ** This simplifies the implementation a bit.
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict
82 ** resolution is considered to delete rows before the new row is inserted.
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception
84 ** is thrown, even if the FK constraint would be satisfied after the new
87 ** Immediate constraints are usually handled similarly. The only difference
88 ** is that the counter used is stored as part of each individual statement
89 ** object (struct Vdbe). If, after the statement has run, its immediate
90 ** constraint counter is greater than zero,
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY
92 ** and the statement transaction is rolled back. An exception is an INSERT
93 ** statement that inserts a single row only (no triggers). In this case,
94 ** instead of using a counter, an exception is thrown immediately if the
95 ** INSERT violates a foreign key constraint. This is necessary as such
96 ** an INSERT does not open a statement transaction.
98 ** TODO: How should dropping a table be handled? How should renaming a
105 ** Before coding an UPDATE or DELETE row operation, the code-generator
106 ** for those two operations needs to know whether or not the operation
107 ** requires any FK processing and, if so, which columns of the original
108 ** row are required by the FK processing VDBE code (i.e. if FKs were
109 ** implemented using triggers, which of the old.* columns would be
110 ** accessed). No information is required by the code-generator before
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE
112 ** generation code to query for this information are:
114 ** sqlite3FkRequired() - Test to see if FK processing is required.
115 ** sqlite3FkOldmask() - Query for the set of required old.* columns.
118 ** Externally accessible module functions
119 ** --------------------------------------
121 ** sqlite3FkCheck() - Check for foreign key violations.
122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions.
123 ** sqlite3FkDelete() - Delete an FKey structure.
127 ** VDBE Calling Convention
128 ** -----------------------
132 ** For the following INSERT statement:
134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c);
135 ** INSERT INTO t1 VALUES(1, 2, 3.1);
137 ** Register (x): 2 (type integer)
138 ** Register (x+1): 1 (type integer)
139 ** Register (x+2): NULL (type NULL)
140 ** Register (x+3): 3.1 (type real)
144 ** A foreign key constraint requires that the key columns in the parent
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint.
146 ** Given that pParent is the parent table for foreign key constraint pFKey,
147 ** search the schema for a unique index on the parent key columns.
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx
151 ** is set to point to the unique index.
153 ** If the parent key consists of a single column (the foreign key constraint
154 ** is not a composite foreign key), output variable *paiCol is set to NULL.
155 ** Otherwise, it is set to point to an allocated array of size N, where
156 ** N is the number of columns in the parent key. The first element of the
157 ** array is the index of the child table column that is mapped by the FK
158 ** constraint to the parent table column stored in the left-most column
159 ** of index *ppIdx. The second element of the array is the index of the
160 ** child table column that corresponds to the second left-most column of
161 ** *ppIdx, and so on.
163 ** If the required index cannot be found, either because:
165 ** 1) The named parent key columns do not exist, or
167 ** 2) The named parent key columns do exist, but are not subject to a
168 ** UNIQUE or PRIMARY KEY constraint, or
170 ** 3) No parent key columns were provided explicitly as part of the
171 ** foreign key definition, and the parent table does not have a
174 ** 4) No parent key columns were provided explicitly as part of the
175 ** foreign key definition, and the PRIMARY KEY of the parent table
176 ** consists of a different number of columns to the child key in
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded
180 ** into pParse. If an OOM error occurs, non-zero is returned and the
181 ** pParse->db->mallocFailed flag is set.
183 int sqlite3FkLocateIndex(
184 Parse
*pParse
, /* Parse context to store any error in */
185 Table
*pParent
, /* Parent table of FK constraint pFKey */
186 FKey
*pFKey
, /* Foreign key to find index for */
187 Index
**ppIdx
, /* OUT: Unique index on parent table */
188 int **paiCol
/* OUT: Map of index columns in pFKey */
190 Index
*pIdx
= 0; /* Value to return via *ppIdx */
191 int *aiCol
= 0; /* Value to return via *paiCol */
192 int nCol
= pFKey
->nCol
; /* Number of columns in parent key */
193 char *zKey
= pFKey
->aCol
[0].zCol
; /* Name of left-most parent key column */
195 /* The caller is responsible for zeroing output parameters. */
196 assert( ppIdx
&& *ppIdx
==0 );
197 assert( !paiCol
|| *paiCol
==0 );
200 /* If this is a non-composite (single column) foreign key, check if it
201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx
202 ** and *paiCol set to zero and return early.
204 ** Otherwise, for a composite foreign key (more than one column), allocate
205 ** space for the aiCol array (returned via output parameter *paiCol).
206 ** Non-composite foreign keys do not require the aiCol array.
209 /* The FK maps to the IPK if any of the following are true:
211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly
212 ** mapped to the primary key of table pParent, or
213 ** 2) The FK is explicitly mapped to a column declared as INTEGER
216 if( pParent
->iPKey
>=0 ){
217 if( !zKey
) return 0;
218 if( !sqlite3StrICmp(pParent
->aCol
[pParent
->iPKey
].zCnName
, zKey
) ){
224 aiCol
= (int *)sqlite3DbMallocRawNN(pParse
->db
, nCol
*sizeof(int));
225 if( !aiCol
) return 1;
229 for(pIdx
=pParent
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
230 if( pIdx
->nKeyCol
==nCol
&& IsUniqueIndex(pIdx
) && pIdx
->pPartIdxWhere
==0 ){
231 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number
232 ** of columns. If each indexed column corresponds to a foreign key
233 ** column of pFKey, then this index is a winner. */
236 /* If zKey is NULL, then this foreign key is implicitly mapped to
237 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be
238 ** identified by the test. */
239 if( IsPrimaryKeyIndex(pIdx
) ){
242 for(i
=0; i
<nCol
; i
++) aiCol
[i
] = pFKey
->aCol
[i
].iFrom
;
247 /* If zKey is non-NULL, then this foreign key was declared to
248 ** map to an explicit list of columns in table pParent. Check if this
249 ** index matches those columns. Also, check that the index uses
250 ** the default collation sequences for each column. */
252 for(i
=0; i
<nCol
; i
++){
253 i16 iCol
= pIdx
->aiColumn
[i
]; /* Index of column in parent tbl */
254 const char *zDfltColl
; /* Def. collation for column */
255 char *zIdxCol
; /* Name of indexed column */
257 if( iCol
<0 ) break; /* No foreign keys against expression indexes */
259 /* If the index uses a collation sequence that is different from
260 ** the default collation sequence for the column, this index is
261 ** unusable. Bail out early in this case. */
262 zDfltColl
= sqlite3ColumnColl(&pParent
->aCol
[iCol
]);
263 if( !zDfltColl
) zDfltColl
= sqlite3StrBINARY
;
264 if( sqlite3StrICmp(pIdx
->azColl
[i
], zDfltColl
) ) break;
266 zIdxCol
= pParent
->aCol
[iCol
].zCnName
;
267 for(j
=0; j
<nCol
; j
++){
268 if( sqlite3StrICmp(pFKey
->aCol
[j
].zCol
, zIdxCol
)==0 ){
269 if( aiCol
) aiCol
[i
] = pFKey
->aCol
[j
].iFrom
;
275 if( i
==nCol
) break; /* pIdx is usable */
281 if( !pParse
->disableTriggers
){
282 sqlite3ErrorMsg(pParse
,
283 "foreign key mismatch - \"%w\" referencing \"%w\"",
284 pFKey
->pFrom
->zName
, pFKey
->zTo
);
286 sqlite3DbFree(pParse
->db
, aiCol
);
295 ** This function is called when a row is inserted into or deleted from the
296 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed
297 ** on the child table of pFKey, this function is invoked twice for each row
298 ** affected - once to "delete" the old row, and then again to "insert" the
301 ** Each time it is called, this function generates VDBE code to locate the
302 ** row in the parent table that corresponds to the row being inserted into
303 ** or deleted from the child table. If the parent row can be found, no
304 ** special action is taken. Otherwise, if the parent row can *not* be
305 ** found in the parent table:
307 ** Operation | FK type | Action taken
308 ** --------------------------------------------------------------------------
309 ** INSERT immediate Increment the "immediate constraint counter".
311 ** DELETE immediate Decrement the "immediate constraint counter".
313 ** INSERT deferred Increment the "deferred constraint counter".
315 ** DELETE deferred Decrement the "deferred constraint counter".
317 ** These operations are identified in the comment at the top of this file
318 ** (fkey.c) as "I.1" and "D.1".
320 static void fkLookupParent(
321 Parse
*pParse
, /* Parse context */
322 int iDb
, /* Index of database housing pTab */
323 Table
*pTab
, /* Parent table of FK pFKey */
324 Index
*pIdx
, /* Unique index on parent key columns in pTab */
325 FKey
*pFKey
, /* Foreign key constraint */
326 int *aiCol
, /* Map from parent key columns to child table columns */
327 int regData
, /* Address of array containing child table row */
328 int nIncr
, /* Increment constraint counter by this */
329 int isIgnore
/* If true, pretend pTab contains all NULL values */
331 int i
; /* Iterator variable */
332 Vdbe
*v
= sqlite3GetVdbe(pParse
); /* Vdbe to add code to */
333 int iCur
= pParse
->nTab
- 1; /* Cursor number to use */
334 int iOk
= sqlite3VdbeMakeLabel(pParse
); /* jump here if parent key found */
336 sqlite3VdbeVerifyAbortable(v
,
338 && !(pParse
->db
->flags
& SQLITE_DeferFKs
)
339 && !pParse
->pToplevel
340 && !pParse
->isMultiWrite
) ? OE_Abort
: OE_Ignore
);
342 /* If nIncr is less than zero, then check at runtime if there are any
343 ** outstanding constraints to resolve. If there are not, there is no need
344 ** to check if deleting this row resolves any outstanding violations.
346 ** Check if any of the key columns in the child table row are NULL. If
347 ** any are, then the constraint is considered satisfied. No need to
348 ** search for a matching row in the parent table. */
350 sqlite3VdbeAddOp2(v
, OP_FkIfZero
, pFKey
->isDeferred
, iOk
);
353 for(i
=0; i
<pFKey
->nCol
; i
++){
354 int iReg
= sqlite3TableColumnToStorage(pFKey
->pFrom
,aiCol
[i
]) + regData
+ 1;
355 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, iOk
); VdbeCoverage(v
);
360 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY
361 ** column of the parent table (table pTab). */
362 int iMustBeInt
; /* Address of MustBeInt instruction */
363 int regTemp
= sqlite3GetTempReg(pParse
);
365 /* Invoke MustBeInt to coerce the child key value to an integer (i.e.
366 ** apply the affinity of the parent key). If this fails, then there
367 ** is no matching parent key. Before using MustBeInt, make a copy of
368 ** the value. Otherwise, the value inserted into the child key column
369 ** will have INTEGER affinity applied to it, which may not be correct. */
370 sqlite3VdbeAddOp2(v
, OP_SCopy
,
371 sqlite3TableColumnToStorage(pFKey
->pFrom
,aiCol
[0])+1+regData
, regTemp
);
372 iMustBeInt
= sqlite3VdbeAddOp2(v
, OP_MustBeInt
, regTemp
, 0);
375 /* If the parent table is the same as the child table, and we are about
376 ** to increment the constraint-counter (i.e. this is an INSERT operation),
377 ** then check if the row being inserted matches itself. If so, do not
378 ** increment the constraint-counter. */
379 if( pTab
==pFKey
->pFrom
&& nIncr
==1 ){
380 sqlite3VdbeAddOp3(v
, OP_Eq
, regData
, iOk
, regTemp
); VdbeCoverage(v
);
381 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
384 sqlite3OpenTable(pParse
, iCur
, iDb
, pTab
, OP_OpenRead
);
385 sqlite3VdbeAddOp3(v
, OP_NotExists
, iCur
, 0, regTemp
); VdbeCoverage(v
);
386 sqlite3VdbeGoto(v
, iOk
);
387 sqlite3VdbeJumpHere(v
, sqlite3VdbeCurrentAddr(v
)-2);
388 sqlite3VdbeJumpHere(v
, iMustBeInt
);
389 sqlite3ReleaseTempReg(pParse
, regTemp
);
391 int nCol
= pFKey
->nCol
;
392 int regTemp
= sqlite3GetTempRange(pParse
, nCol
);
394 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iCur
, pIdx
->tnum
, iDb
);
395 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
396 for(i
=0; i
<nCol
; i
++){
397 sqlite3VdbeAddOp2(v
, OP_Copy
,
398 sqlite3TableColumnToStorage(pFKey
->pFrom
, aiCol
[i
])+1+regData
,
402 /* If the parent table is the same as the child table, and we are about
403 ** to increment the constraint-counter (i.e. this is an INSERT operation),
404 ** then check if the row being inserted matches itself. If so, do not
405 ** increment the constraint-counter.
407 ** If any of the parent-key values are NULL, then the row cannot match
408 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any
409 ** of the parent-key values are NULL (at this point it is known that
410 ** none of the child key values are).
412 if( pTab
==pFKey
->pFrom
&& nIncr
==1 ){
413 int iJump
= sqlite3VdbeCurrentAddr(v
) + nCol
+ 1;
414 for(i
=0; i
<nCol
; i
++){
415 int iChild
= sqlite3TableColumnToStorage(pFKey
->pFrom
,aiCol
[i
])
417 int iParent
= 1+regData
;
418 iParent
+= sqlite3TableColumnToStorage(pIdx
->pTable
,
420 assert( pIdx
->aiColumn
[i
]>=0 );
421 assert( aiCol
[i
]!=pTab
->iPKey
);
422 if( pIdx
->aiColumn
[i
]==pTab
->iPKey
){
423 /* The parent key is a composite key that includes the IPK column */
426 sqlite3VdbeAddOp3(v
, OP_Ne
, iChild
, iJump
, iParent
); VdbeCoverage(v
);
427 sqlite3VdbeChangeP5(v
, SQLITE_JUMPIFNULL
);
429 sqlite3VdbeGoto(v
, iOk
);
432 sqlite3VdbeAddOp4(v
, OP_Affinity
, regTemp
, nCol
, 0,
433 sqlite3IndexAffinityStr(pParse
->db
,pIdx
), nCol
);
434 sqlite3VdbeAddOp4Int(v
, OP_Found
, iCur
, iOk
, regTemp
, nCol
);
436 sqlite3ReleaseTempRange(pParse
, regTemp
, nCol
);
440 if( !pFKey
->isDeferred
&& !(pParse
->db
->flags
& SQLITE_DeferFKs
)
441 && !pParse
->pToplevel
442 && !pParse
->isMultiWrite
444 /* Special case: If this is an INSERT statement that will insert exactly
445 ** one row into the table, raise a constraint immediately instead of
446 ** incrementing a counter. This is necessary as the VM code is being
447 ** generated for will not open a statement transaction. */
449 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_FOREIGNKEY
,
450 OE_Abort
, 0, P4_STATIC
, P5_ConstraintFK
);
452 if( nIncr
>0 && pFKey
->isDeferred
==0 ){
453 sqlite3MayAbort(pParse
);
455 sqlite3VdbeAddOp2(v
, OP_FkCounter
, pFKey
->isDeferred
, nIncr
);
458 sqlite3VdbeResolveLabel(v
, iOk
);
459 sqlite3VdbeAddOp1(v
, OP_Close
, iCur
);
464 ** Return an Expr object that refers to a memory register corresponding
465 ** to column iCol of table pTab.
467 ** regBase is the first of an array of register that contains the data
468 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first
469 ** column. regBase+2 holds the second column, and so forth.
471 static Expr
*exprTableRegister(
472 Parse
*pParse
, /* Parsing and code generating context */
473 Table
*pTab
, /* The table whose content is at r[regBase]... */
474 int regBase
, /* Contents of table pTab */
475 i16 iCol
/* Which column of pTab is desired */
480 sqlite3
*db
= pParse
->db
;
482 pExpr
= sqlite3Expr(db
, TK_REGISTER
, 0);
484 if( iCol
>=0 && iCol
!=pTab
->iPKey
){
485 pCol
= &pTab
->aCol
[iCol
];
486 pExpr
->iTable
= regBase
+ sqlite3TableColumnToStorage(pTab
,iCol
) + 1;
487 pExpr
->affExpr
= pCol
->affinity
;
488 zColl
= sqlite3ColumnColl(pCol
);
489 if( zColl
==0 ) zColl
= db
->pDfltColl
->zName
;
490 pExpr
= sqlite3ExprAddCollateString(pParse
, pExpr
, zColl
);
492 pExpr
->iTable
= regBase
;
493 pExpr
->affExpr
= SQLITE_AFF_INTEGER
;
500 ** Return an Expr object that refers to column iCol of table pTab which
503 static Expr
*exprTableColumn(
504 sqlite3
*db
, /* The database connection */
505 Table
*pTab
, /* The table whose column is desired */
506 int iCursor
, /* The open cursor on the table */
507 i16 iCol
/* The column that is wanted */
509 Expr
*pExpr
= sqlite3Expr(db
, TK_COLUMN
, 0);
511 assert( ExprUseYTab(pExpr
) );
512 pExpr
->y
.pTab
= pTab
;
513 pExpr
->iTable
= iCursor
;
514 pExpr
->iColumn
= iCol
;
520 ** This function is called to generate code executed when a row is deleted
521 ** from the parent table of foreign key constraint pFKey and, if pFKey is
522 ** deferred, when a row is inserted into the same table. When generating
523 ** code for an SQL UPDATE operation, this function may be called twice -
524 ** once to "delete" the old row and once to "insert" the new row.
526 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease
527 ** the number of FK violations in the db) or +1 when deleting one (as this
528 ** may increase the number of FK constraint problems).
530 ** The code generated by this function scans through the rows in the child
531 ** table that correspond to the parent table row being deleted or inserted.
532 ** For each child row found, one of the following actions is taken:
534 ** Operation | FK type | Action taken
535 ** --------------------------------------------------------------------------
536 ** DELETE immediate Increment the "immediate constraint counter".
538 ** INSERT immediate Decrement the "immediate constraint counter".
540 ** DELETE deferred Increment the "deferred constraint counter".
542 ** INSERT deferred Decrement the "deferred constraint counter".
544 ** These operations are identified in the comment at the top of this file
545 ** (fkey.c) as "I.2" and "D.2".
547 static void fkScanChildren(
548 Parse
*pParse
, /* Parse context */
549 SrcList
*pSrc
, /* The child table to be scanned */
550 Table
*pTab
, /* The parent table */
551 Index
*pIdx
, /* Index on parent covering the foreign key */
552 FKey
*pFKey
, /* The foreign key linking pSrc to pTab */
553 int *aiCol
, /* Map from pIdx cols to child table cols */
554 int regData
, /* Parent row data starts here */
555 int nIncr
/* Amount to increment deferred counter by */
557 sqlite3
*db
= pParse
->db
; /* Database handle */
558 int i
; /* Iterator variable */
559 Expr
*pWhere
= 0; /* WHERE clause to scan with */
560 NameContext sNameContext
; /* Context used to resolve WHERE clause */
561 WhereInfo
*pWInfo
; /* Context used by sqlite3WhereXXX() */
562 int iFkIfZero
= 0; /* Address of OP_FkIfZero */
563 Vdbe
*v
= sqlite3GetVdbe(pParse
);
565 assert( pIdx
==0 || pIdx
->pTable
==pTab
);
566 assert( pIdx
==0 || pIdx
->nKeyCol
==pFKey
->nCol
);
567 assert( pIdx
!=0 || pFKey
->nCol
==1 );
568 assert( pIdx
!=0 || HasRowid(pTab
) );
571 iFkIfZero
= sqlite3VdbeAddOp2(v
, OP_FkIfZero
, pFKey
->isDeferred
, 0);
575 /* Create an Expr object representing an SQL expression like:
577 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ...
579 ** The collation sequence used for the comparison should be that of
580 ** the parent key columns. The affinity of the parent key column should
581 ** be applied to each child key value before the comparison takes place.
583 for(i
=0; i
<pFKey
->nCol
; i
++){
584 Expr
*pLeft
; /* Value from parent table row */
585 Expr
*pRight
; /* Column ref to child table */
586 Expr
*pEq
; /* Expression (pLeft = pRight) */
587 i16 iCol
; /* Index of column in child table */
588 const char *zCol
; /* Name of column in child table */
590 iCol
= pIdx
? pIdx
->aiColumn
[i
] : -1;
591 pLeft
= exprTableRegister(pParse
, pTab
, regData
, iCol
);
592 iCol
= aiCol
? aiCol
[i
] : pFKey
->aCol
[0].iFrom
;
594 zCol
= pFKey
->pFrom
->aCol
[iCol
].zCnName
;
595 pRight
= sqlite3Expr(db
, TK_ID
, zCol
);
596 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pLeft
, pRight
);
597 pWhere
= sqlite3ExprAnd(pParse
, pWhere
, pEq
);
600 /* If the child table is the same as the parent table, then add terms
601 ** to the WHERE clause that prevent this entry from being scanned.
602 ** The added WHERE clause terms are like this:
604 ** $current_rowid!=rowid
605 ** NOT( $current_a==a AND $current_b==b AND ... )
607 ** The first form is used for rowid tables. The second form is used
608 ** for WITHOUT ROWID tables. In the second form, the *parent* key is
609 ** (a,b,...). Either the parent or primary key could be used to
610 ** uniquely identify the current row, but the parent key is more convenient
611 ** as the required values have already been loaded into registers
614 if( pTab
==pFKey
->pFrom
&& nIncr
>0 ){
615 Expr
*pNe
; /* Expression (pLeft != pRight) */
616 Expr
*pLeft
; /* Value from parent table row */
617 Expr
*pRight
; /* Column ref to child table */
618 if( HasRowid(pTab
) ){
619 pLeft
= exprTableRegister(pParse
, pTab
, regData
, -1);
620 pRight
= exprTableColumn(db
, pTab
, pSrc
->a
[0].iCursor
, -1);
621 pNe
= sqlite3PExpr(pParse
, TK_NE
, pLeft
, pRight
);
623 Expr
*pEq
, *pAll
= 0;
625 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
626 i16 iCol
= pIdx
->aiColumn
[i
];
628 pLeft
= exprTableRegister(pParse
, pTab
, regData
, iCol
);
629 pRight
= sqlite3Expr(db
, TK_ID
, pTab
->aCol
[iCol
].zCnName
);
630 pEq
= sqlite3PExpr(pParse
, TK_IS
, pLeft
, pRight
);
631 pAll
= sqlite3ExprAnd(pParse
, pAll
, pEq
);
633 pNe
= sqlite3PExpr(pParse
, TK_NOT
, pAll
, 0);
635 pWhere
= sqlite3ExprAnd(pParse
, pWhere
, pNe
);
638 /* Resolve the references in the WHERE clause. */
639 memset(&sNameContext
, 0, sizeof(NameContext
));
640 sNameContext
.pSrcList
= pSrc
;
641 sNameContext
.pParse
= pParse
;
642 sqlite3ResolveExprNames(&sNameContext
, pWhere
);
644 /* Create VDBE to loop through the entries in pSrc that match the WHERE
645 ** clause. For each row found, increment either the deferred or immediate
646 ** foreign key constraint counter. */
647 if( pParse
->nErr
==0 ){
648 pWInfo
= sqlite3WhereBegin(pParse
, pSrc
, pWhere
, 0, 0, 0, 0, 0);
649 sqlite3VdbeAddOp2(v
, OP_FkCounter
, pFKey
->isDeferred
, nIncr
);
651 sqlite3WhereEnd(pWInfo
);
655 /* Clean up the WHERE clause constructed above. */
656 sqlite3ExprDelete(db
, pWhere
);
658 sqlite3VdbeJumpHereOrPopInst(v
, iFkIfZero
);
663 ** This function returns a linked list of FKey objects (connected by
664 ** FKey.pNextTo) holding all children of table pTab. For example,
665 ** given the following schema:
667 ** CREATE TABLE t1(a PRIMARY KEY);
668 ** CREATE TABLE t2(b REFERENCES t1(a);
670 ** Calling this function with table "t1" as an argument returns a pointer
671 ** to the FKey structure representing the foreign key constraint on table
672 ** "t2". Calling this function with "t2" as the argument would return a
673 ** NULL pointer (as there are no FK constraints for which t2 is the parent
676 FKey
*sqlite3FkReferences(Table
*pTab
){
677 return (FKey
*)sqlite3HashFind(&pTab
->pSchema
->fkeyHash
, pTab
->zName
);
681 ** The second argument is a Trigger structure allocated by the
682 ** fkActionTrigger() routine. This function deletes the Trigger structure
683 ** and all of its sub-components.
685 ** The Trigger structure or any of its sub-components may be allocated from
686 ** the lookaside buffer belonging to database handle dbMem.
688 static void fkTriggerDelete(sqlite3
*dbMem
, Trigger
*p
){
690 TriggerStep
*pStep
= p
->step_list
;
691 sqlite3ExprDelete(dbMem
, pStep
->pWhere
);
692 sqlite3ExprListDelete(dbMem
, pStep
->pExprList
);
693 sqlite3SelectDelete(dbMem
, pStep
->pSelect
);
694 sqlite3ExprDelete(dbMem
, p
->pWhen
);
695 sqlite3DbFree(dbMem
, p
);
700 ** Clear the apTrigger[] cache of CASCADE triggers for all foreign keys
701 ** in a particular database. This needs to happen when the schema
704 void sqlite3FkClearTriggerCache(sqlite3
*db
, int iDb
){
706 Hash
*pHash
= &db
->aDb
[iDb
].pSchema
->tblHash
;
707 for(k
=sqliteHashFirst(pHash
); k
; k
=sqliteHashNext(k
)){
708 Table
*pTab
= sqliteHashData(k
);
710 if( !IsOrdinaryTable(pTab
) ) continue;
711 for(pFKey
=pTab
->u
.tab
.pFKey
; pFKey
; pFKey
=pFKey
->pNextFrom
){
712 fkTriggerDelete(db
, pFKey
->apTrigger
[0]); pFKey
->apTrigger
[0] = 0;
713 fkTriggerDelete(db
, pFKey
->apTrigger
[1]); pFKey
->apTrigger
[1] = 0;
719 ** This function is called to generate code that runs when table pTab is
720 ** being dropped from the database. The SrcList passed as the second argument
721 ** to this function contains a single entry guaranteed to resolve to
724 ** Normally, no code is required. However, if either
726 ** (a) The table is the parent table of a FK constraint, or
727 ** (b) The table is the child table of a deferred FK constraint and it is
728 ** determined at runtime that there are outstanding deferred FK
729 ** constraint violations in the database,
731 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping
732 ** the table from the database. Triggers are disabled while running this
733 ** DELETE, but foreign key actions are not.
735 void sqlite3FkDropTable(Parse
*pParse
, SrcList
*pName
, Table
*pTab
){
736 sqlite3
*db
= pParse
->db
;
737 if( (db
->flags
&SQLITE_ForeignKeys
) && IsOrdinaryTable(pTab
) ){
739 Vdbe
*v
= sqlite3GetVdbe(pParse
);
741 assert( v
); /* VDBE has already been allocated */
742 assert( IsOrdinaryTable(pTab
) );
743 if( sqlite3FkReferences(pTab
)==0 ){
744 /* Search for a deferred foreign key constraint for which this table
745 ** is the child table. If one cannot be found, return without
746 ** generating any VDBE code. If one can be found, then jump over
747 ** the entire DELETE if there are no outstanding deferred constraints
748 ** when this statement is run. */
750 for(p
=pTab
->u
.tab
.pFKey
; p
; p
=p
->pNextFrom
){
751 if( p
->isDeferred
|| (db
->flags
& SQLITE_DeferFKs
) ) break;
754 iSkip
= sqlite3VdbeMakeLabel(pParse
);
755 sqlite3VdbeAddOp2(v
, OP_FkIfZero
, 1, iSkip
); VdbeCoverage(v
);
758 pParse
->disableTriggers
= 1;
759 sqlite3DeleteFrom(pParse
, sqlite3SrcListDup(db
, pName
, 0), 0, 0, 0);
760 pParse
->disableTriggers
= 0;
762 /* If the DELETE has generated immediate foreign key constraint
763 ** violations, halt the VDBE and return an error at this point, before
764 ** any modifications to the schema are made. This is because statement
765 ** transactions are not able to rollback schema changes.
767 ** If the SQLITE_DeferFKs flag is set, then this is not required, as
768 ** the statement transaction will not be rolled back even if FK
769 ** constraints are violated.
771 if( (db
->flags
& SQLITE_DeferFKs
)==0 ){
772 sqlite3VdbeVerifyAbortable(v
, OE_Abort
);
773 sqlite3VdbeAddOp2(v
, OP_FkIfZero
, 0, sqlite3VdbeCurrentAddr(v
)+2);
775 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_FOREIGNKEY
,
776 OE_Abort
, 0, P4_STATIC
, P5_ConstraintFK
);
780 sqlite3VdbeResolveLabel(v
, iSkip
);
787 ** The second argument points to an FKey object representing a foreign key
788 ** for which pTab is the child table. An UPDATE statement against pTab
789 ** is currently being processed. For each column of the table that is
790 ** actually updated, the corresponding element in the aChange[] array
791 ** is zero or greater (if a column is unmodified the corresponding element
792 ** is set to -1). If the rowid column is modified by the UPDATE statement
793 ** the bChngRowid argument is non-zero.
795 ** This function returns true if any of the columns that are part of the
796 ** child key for FK constraint *p are modified.
798 static int fkChildIsModified(
799 Table
*pTab
, /* Table being updated */
800 FKey
*p
, /* Foreign key for which pTab is the child */
801 int *aChange
, /* Array indicating modified columns */
802 int bChngRowid
/* True if rowid is modified by this update */
805 for(i
=0; i
<p
->nCol
; i
++){
806 int iChildKey
= p
->aCol
[i
].iFrom
;
807 if( aChange
[iChildKey
]>=0 ) return 1;
808 if( iChildKey
==pTab
->iPKey
&& bChngRowid
) return 1;
814 ** The second argument points to an FKey object representing a foreign key
815 ** for which pTab is the parent table. An UPDATE statement against pTab
816 ** is currently being processed. For each column of the table that is
817 ** actually updated, the corresponding element in the aChange[] array
818 ** is zero or greater (if a column is unmodified the corresponding element
819 ** is set to -1). If the rowid column is modified by the UPDATE statement
820 ** the bChngRowid argument is non-zero.
822 ** This function returns true if any of the columns that are part of the
823 ** parent key for FK constraint *p are modified.
825 static int fkParentIsModified(
832 for(i
=0; i
<p
->nCol
; i
++){
833 char *zKey
= p
->aCol
[i
].zCol
;
835 for(iKey
=0; iKey
<pTab
->nCol
; iKey
++){
836 if( aChange
[iKey
]>=0 || (iKey
==pTab
->iPKey
&& bChngRowid
) ){
837 Column
*pCol
= &pTab
->aCol
[iKey
];
839 if( 0==sqlite3StrICmp(pCol
->zCnName
, zKey
) ) return 1;
840 }else if( pCol
->colFlags
& COLFLAG_PRIMKEY
){
850 ** Return true if the parser passed as the first argument is being
851 ** used to code a trigger that is really a "SET NULL" action belonging
854 static int isSetNullAction(Parse
*pParse
, FKey
*pFKey
){
855 Parse
*pTop
= sqlite3ParseToplevel(pParse
);
856 if( pTop
->pTriggerPrg
){
857 Trigger
*p
= pTop
->pTriggerPrg
->pTrigger
;
858 if( (p
==pFKey
->apTrigger
[0] && pFKey
->aAction
[0]==OE_SetNull
)
859 || (p
==pFKey
->apTrigger
[1] && pFKey
->aAction
[1]==OE_SetNull
)
861 assert( (pTop
->db
->flags
& SQLITE_FkNoAction
)==0 );
869 ** This function is called when inserting, deleting or updating a row of
870 ** table pTab to generate VDBE code to perform foreign key constraint
871 ** processing for the operation.
873 ** For a DELETE operation, parameter regOld is passed the index of the
874 ** first register in an array of (pTab->nCol+1) registers containing the
875 ** rowid of the row being deleted, followed by each of the column values
876 ** of the row being deleted, from left to right. Parameter regNew is passed
877 ** zero in this case.
879 ** For an INSERT operation, regOld is passed zero and regNew is passed the
880 ** first register of an array of (pTab->nCol+1) registers containing the new
883 ** For an UPDATE operation, this function is called twice. Once before
884 ** the original record is deleted from the table using the calling convention
885 ** described for DELETE. Then again after the original record is deleted
886 ** but before the new record is inserted using the INSERT convention.
889 Parse
*pParse
, /* Parse context */
890 Table
*pTab
, /* Row is being deleted from this table */
891 int regOld
, /* Previous row data is stored here */
892 int regNew
, /* New row data is stored here */
893 int *aChange
, /* Array indicating UPDATEd columns (or 0) */
894 int bChngRowid
/* True if rowid is UPDATEd */
896 sqlite3
*db
= pParse
->db
; /* Database handle */
897 FKey
*pFKey
; /* Used to iterate through FKs */
898 int iDb
; /* Index of database containing pTab */
899 const char *zDb
; /* Name of database containing pTab */
900 int isIgnoreErrors
= pParse
->disableTriggers
;
902 /* Exactly one of regOld and regNew should be non-zero. */
903 assert( (regOld
==0)!=(regNew
==0) );
905 /* If foreign-keys are disabled, this function is a no-op. */
906 if( (db
->flags
&SQLITE_ForeignKeys
)==0 ) return;
907 if( !IsOrdinaryTable(pTab
) ) return;
909 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
910 zDb
= db
->aDb
[iDb
].zDbSName
;
912 /* Loop through all the foreign key constraints for which pTab is the
913 ** child table (the table that the foreign key definition is part of). */
914 for(pFKey
=pTab
->u
.tab
.pFKey
; pFKey
; pFKey
=pFKey
->pNextFrom
){
915 Table
*pTo
; /* Parent table of foreign key pFKey */
916 Index
*pIdx
= 0; /* Index on key columns in pTo */
924 && sqlite3_stricmp(pTab
->zName
, pFKey
->zTo
)!=0
925 && fkChildIsModified(pTab
, pFKey
, aChange
, bChngRowid
)==0
930 /* Find the parent table of this foreign key. Also find a unique index
931 ** on the parent key columns in the parent table. If either of these
932 ** schema items cannot be located, set an error in pParse and return
934 if( pParse
->disableTriggers
){
935 pTo
= sqlite3FindTable(db
, pFKey
->zTo
, zDb
);
937 pTo
= sqlite3LocateTable(pParse
, 0, pFKey
->zTo
, zDb
);
939 if( !pTo
|| sqlite3FkLocateIndex(pParse
, pTo
, pFKey
, &pIdx
, &aiFree
) ){
940 assert( isIgnoreErrors
==0 || (regOld
!=0 && regNew
==0) );
941 if( !isIgnoreErrors
|| db
->mallocFailed
) return;
943 /* If isIgnoreErrors is true, then a table is being dropped. In this
944 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped
945 ** before actually dropping it in order to check FK constraints.
946 ** If the parent table of an FK constraint on the current table is
947 ** missing, behave as if it is empty. i.e. decrement the relevant
948 ** FK counter for each row of the current table with non-NULL keys.
950 Vdbe
*v
= sqlite3GetVdbe(pParse
);
951 int iJump
= sqlite3VdbeCurrentAddr(v
) + pFKey
->nCol
+ 1;
952 for(i
=0; i
<pFKey
->nCol
; i
++){
954 iFromCol
= pFKey
->aCol
[i
].iFrom
;
955 iReg
= sqlite3TableColumnToStorage(pFKey
->pFrom
,iFromCol
) + regOld
+1;
956 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, iJump
); VdbeCoverage(v
);
958 sqlite3VdbeAddOp2(v
, OP_FkCounter
, pFKey
->isDeferred
, -1);
962 assert( pFKey
->nCol
==1 || (aiFree
&& pIdx
) );
967 iCol
= pFKey
->aCol
[0].iFrom
;
970 for(i
=0; i
<pFKey
->nCol
; i
++){
971 if( aiCol
[i
]==pTab
->iPKey
){
974 assert( pIdx
==0 || pIdx
->aiColumn
[i
]>=0 );
975 #ifndef SQLITE_OMIT_AUTHORIZATION
976 /* Request permission to read the parent key columns. If the
977 ** authorization callback returns SQLITE_IGNORE, behave as if any
978 ** values read from the parent table are NULL. */
981 char *zCol
= pTo
->aCol
[pIdx
? pIdx
->aiColumn
[i
] : pTo
->iPKey
].zCnName
;
982 rcauth
= sqlite3AuthReadCol(pParse
, pTo
->zName
, zCol
, iDb
);
983 bIgnore
= (rcauth
==SQLITE_IGNORE
);
988 /* Take a shared-cache advisory read-lock on the parent table. Allocate
989 ** a cursor to use to search the unique index on the parent key columns
990 ** in the parent table. */
991 sqlite3TableLock(pParse
, iDb
, pTo
->tnum
, 0, pTo
->zName
);
995 /* A row is being removed from the child table. Search for the parent.
996 ** If the parent does not exist, removing the child row resolves an
997 ** outstanding foreign key constraint violation. */
998 fkLookupParent(pParse
, iDb
, pTo
, pIdx
, pFKey
, aiCol
, regOld
, -1, bIgnore
);
1000 if( regNew
!=0 && !isSetNullAction(pParse
, pFKey
) ){
1001 /* A row is being added to the child table. If a parent row cannot
1002 ** be found, adding the child row has violated the FK constraint.
1004 ** If this operation is being performed as part of a trigger program
1005 ** that is actually a "SET NULL" action belonging to this very
1006 ** foreign key, then omit this scan altogether. As all child key
1007 ** values are guaranteed to be NULL, it is not possible for adding
1008 ** this row to cause an FK violation. */
1009 fkLookupParent(pParse
, iDb
, pTo
, pIdx
, pFKey
, aiCol
, regNew
, +1, bIgnore
);
1012 sqlite3DbFree(db
, aiFree
);
1015 /* Loop through all the foreign key constraints that refer to this table.
1016 ** (the "child" constraints) */
1017 for(pFKey
= sqlite3FkReferences(pTab
); pFKey
; pFKey
=pFKey
->pNextTo
){
1018 Index
*pIdx
= 0; /* Foreign key index for pFKey */
1022 if( aChange
&& fkParentIsModified(pTab
, pFKey
, aChange
, bChngRowid
)==0 ){
1026 if( !pFKey
->isDeferred
&& !(db
->flags
& SQLITE_DeferFKs
)
1027 && !pParse
->pToplevel
&& !pParse
->isMultiWrite
1029 assert( regOld
==0 && regNew
!=0 );
1030 /* Inserting a single row into a parent table cannot cause (or fix)
1031 ** an immediate foreign key violation. So do nothing in this case. */
1035 if( sqlite3FkLocateIndex(pParse
, pTab
, pFKey
, &pIdx
, &aiCol
) ){
1036 if( !isIgnoreErrors
|| db
->mallocFailed
) return;
1039 assert( aiCol
|| pFKey
->nCol
==1 );
1041 /* Create a SrcList structure containing the child table. We need the
1042 ** child table as a SrcList for sqlite3WhereBegin() */
1043 pSrc
= sqlite3SrcListAppend(pParse
, 0, 0, 0);
1045 SrcItem
*pItem
= pSrc
->a
;
1046 pItem
->pTab
= pFKey
->pFrom
;
1047 pItem
->zName
= pFKey
->pFrom
->zName
;
1048 pItem
->pTab
->nTabRef
++;
1049 pItem
->iCursor
= pParse
->nTab
++;
1052 fkScanChildren(pParse
, pSrc
, pTab
, pIdx
, pFKey
, aiCol
, regNew
, -1);
1055 int eAction
= pFKey
->aAction
[aChange
!=0];
1056 if( (db
->flags
& SQLITE_FkNoAction
) ) eAction
= OE_None
;
1058 fkScanChildren(pParse
, pSrc
, pTab
, pIdx
, pFKey
, aiCol
, regOld
, 1);
1059 /* If this is a deferred FK constraint, or a CASCADE or SET NULL
1060 ** action applies, then any foreign key violations caused by
1061 ** removing the parent key will be rectified by the action trigger.
1062 ** So do not set the "may-abort" flag in this case.
1064 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the
1065 ** may-abort flag will eventually be set on this statement anyway
1066 ** (when this function is called as part of processing the UPDATE
1067 ** within the action trigger).
1069 ** Note 2: At first glance it may seem like SQLite could simply omit
1070 ** all OP_FkCounter related scans when either CASCADE or SET NULL
1071 ** applies. The trouble starts if the CASCADE or SET NULL action
1072 ** trigger causes other triggers or action rules attached to the
1073 ** child table to fire. In these cases the fk constraint counters
1074 ** might be set incorrectly if any OP_FkCounter related scans are
1076 if( !pFKey
->isDeferred
&& eAction
!=OE_Cascade
&& eAction
!=OE_SetNull
){
1077 sqlite3MayAbort(pParse
);
1081 sqlite3SrcListDelete(db
, pSrc
);
1083 sqlite3DbFree(db
, aiCol
);
1087 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x)))
1090 ** This function is called before generating code to update or delete a
1091 ** row contained in table pTab.
1093 u32
sqlite3FkOldmask(
1094 Parse
*pParse
, /* Parse context */
1095 Table
*pTab
/* Table being modified */
1098 if( pParse
->db
->flags
&SQLITE_ForeignKeys
&& IsOrdinaryTable(pTab
) ){
1101 for(p
=pTab
->u
.tab
.pFKey
; p
; p
=p
->pNextFrom
){
1102 for(i
=0; i
<p
->nCol
; i
++) mask
|= COLUMN_MASK(p
->aCol
[i
].iFrom
);
1104 for(p
=sqlite3FkReferences(pTab
); p
; p
=p
->pNextTo
){
1106 sqlite3FkLocateIndex(pParse
, pTab
, p
, &pIdx
, 0);
1108 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
1109 assert( pIdx
->aiColumn
[i
]>=0 );
1110 mask
|= COLUMN_MASK(pIdx
->aiColumn
[i
]);
1120 ** This function is called before generating code to update or delete a
1121 ** row contained in table pTab. If the operation is a DELETE, then
1122 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points
1123 ** to an array of size N, where N is the number of columns in table pTab.
1124 ** If the i'th column is not modified by the UPDATE, then the corresponding
1125 ** entry in the aChange[] array is set to -1. If the column is modified,
1126 ** the value is 0 or greater. Parameter chngRowid is set to true if the
1127 ** UPDATE statement modifies the rowid fields of the table.
1129 ** If any foreign key processing will be required, this function returns
1130 ** non-zero. If there is no foreign key related processing, this function
1133 ** For an UPDATE, this function returns 2 if:
1135 ** * There are any FKs for which pTab is the child and the parent table
1136 ** and any FK processing at all is required (even of a different FK), or
1138 ** * the UPDATE modifies one or more parent keys for which the action is
1139 ** not "NO ACTION" (i.e. is CASCADE, SET DEFAULT or SET NULL).
1141 ** Or, assuming some other foreign key processing is required, 1.
1143 int sqlite3FkRequired(
1144 Parse
*pParse
, /* Parse context */
1145 Table
*pTab
, /* Table being modified */
1146 int *aChange
, /* Non-NULL for UPDATE operations */
1147 int chngRowid
/* True for UPDATE that affects rowid */
1149 int eRet
= 1; /* Value to return if bHaveFK is true */
1150 int bHaveFK
= 0; /* If FK processing is required */
1151 if( pParse
->db
->flags
&SQLITE_ForeignKeys
&& IsOrdinaryTable(pTab
) ){
1153 /* A DELETE operation. Foreign key processing is required if the
1154 ** table in question is either the child or parent table for any
1155 ** foreign key constraint. */
1156 bHaveFK
= (sqlite3FkReferences(pTab
) || pTab
->u
.tab
.pFKey
);
1158 /* This is an UPDATE. Foreign key processing is only required if the
1159 ** operation modifies one or more child or parent key columns. */
1162 /* Check if any child key columns are being modified. */
1163 for(p
=pTab
->u
.tab
.pFKey
; p
; p
=p
->pNextFrom
){
1164 if( fkChildIsModified(pTab
, p
, aChange
, chngRowid
) ){
1165 if( 0==sqlite3_stricmp(pTab
->zName
, p
->zTo
) ) eRet
= 2;
1170 /* Check if any parent key columns are being modified. */
1171 for(p
=sqlite3FkReferences(pTab
); p
; p
=p
->pNextTo
){
1172 if( fkParentIsModified(pTab
, p
, aChange
, chngRowid
) ){
1173 if( (pParse
->db
->flags
& SQLITE_FkNoAction
)==0
1174 && p
->aAction
[1]!=OE_None
1183 return bHaveFK
? eRet
: 0;
1187 ** This function is called when an UPDATE or DELETE operation is being
1188 ** compiled on table pTab, which is the parent table of foreign-key pFKey.
1189 ** If the current operation is an UPDATE, then the pChanges parameter is
1190 ** passed a pointer to the list of columns being modified. If it is a
1191 ** DELETE, pChanges is passed a NULL pointer.
1193 ** It returns a pointer to a Trigger structure containing a trigger
1194 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey.
1195 ** If the action is "NO ACTION" then a NULL pointer is returned (these actions
1196 ** require no special handling by the triggers sub-system, code for them is
1197 ** created by fkScanChildren()).
1199 ** For example, if pFKey is the foreign key and pTab is table "p" in
1200 ** the following schema:
1202 ** CREATE TABLE p(pk PRIMARY KEY);
1203 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE);
1205 ** then the returned trigger structure is equivalent to:
1207 ** CREATE TRIGGER ... DELETE ON p BEGIN
1208 ** DELETE FROM c WHERE ck = old.pk;
1211 ** The returned pointer is cached as part of the foreign key object. It
1212 ** is eventually freed along with the rest of the foreign key object by
1213 ** sqlite3FkDelete().
1215 static Trigger
*fkActionTrigger(
1216 Parse
*pParse
, /* Parse context */
1217 Table
*pTab
, /* Table being updated or deleted from */
1218 FKey
*pFKey
, /* Foreign key to get action for */
1219 ExprList
*pChanges
/* Change-list for UPDATE, NULL for DELETE */
1221 sqlite3
*db
= pParse
->db
; /* Database handle */
1222 int action
; /* One of OE_None, OE_Cascade etc. */
1223 Trigger
*pTrigger
; /* Trigger definition to return */
1224 int iAction
= (pChanges
!=0); /* 1 for UPDATE, 0 for DELETE */
1226 action
= pFKey
->aAction
[iAction
];
1227 if( (db
->flags
& SQLITE_FkNoAction
) ) action
= OE_None
;
1228 if( action
==OE_Restrict
&& (db
->flags
& SQLITE_DeferFKs
) ){
1231 pTrigger
= pFKey
->apTrigger
[iAction
];
1233 if( action
!=OE_None
&& !pTrigger
){
1234 char const *zFrom
; /* Name of child table */
1235 int nFrom
; /* Length in bytes of zFrom */
1236 Index
*pIdx
= 0; /* Parent key index for this FK */
1237 int *aiCol
= 0; /* child table cols -> parent key cols */
1238 TriggerStep
*pStep
= 0; /* First (only) step of trigger program */
1239 Expr
*pWhere
= 0; /* WHERE clause of trigger step */
1240 ExprList
*pList
= 0; /* Changes list if ON UPDATE CASCADE */
1241 Select
*pSelect
= 0; /* If RESTRICT, "SELECT RAISE(...)" */
1242 int i
; /* Iterator variable */
1243 Expr
*pWhen
= 0; /* WHEN clause for the trigger */
1245 if( sqlite3FkLocateIndex(pParse
, pTab
, pFKey
, &pIdx
, &aiCol
) ) return 0;
1246 assert( aiCol
|| pFKey
->nCol
==1 );
1248 for(i
=0; i
<pFKey
->nCol
; i
++){
1249 Token tOld
= { "old", 3 }; /* Literal "old" token */
1250 Token tNew
= { "new", 3 }; /* Literal "new" token */
1251 Token tFromCol
; /* Name of column in child table */
1252 Token tToCol
; /* Name of column in parent table */
1253 int iFromCol
; /* Idx of column in child table */
1254 Expr
*pEq
; /* tFromCol = OLD.tToCol */
1256 iFromCol
= aiCol
? aiCol
[i
] : pFKey
->aCol
[0].iFrom
;
1257 assert( iFromCol
>=0 );
1258 assert( pIdx
!=0 || (pTab
->iPKey
>=0 && pTab
->iPKey
<pTab
->nCol
) );
1259 assert( pIdx
==0 || pIdx
->aiColumn
[i
]>=0 );
1260 sqlite3TokenInit(&tToCol
,
1261 pTab
->aCol
[pIdx
? pIdx
->aiColumn
[i
] : pTab
->iPKey
].zCnName
);
1262 sqlite3TokenInit(&tFromCol
, pFKey
->pFrom
->aCol
[iFromCol
].zCnName
);
1264 /* Create the expression "OLD.zToCol = zFromCol". It is important
1265 ** that the "OLD.zToCol" term is on the LHS of the = operator, so
1266 ** that the affinity and collation sequence associated with the
1267 ** parent table are used for the comparison. */
1268 pEq
= sqlite3PExpr(pParse
, TK_EQ
,
1269 sqlite3PExpr(pParse
, TK_DOT
,
1270 sqlite3ExprAlloc(db
, TK_ID
, &tOld
, 0),
1271 sqlite3ExprAlloc(db
, TK_ID
, &tToCol
, 0)),
1272 sqlite3ExprAlloc(db
, TK_ID
, &tFromCol
, 0)
1274 pWhere
= sqlite3ExprAnd(pParse
, pWhere
, pEq
);
1276 /* For ON UPDATE, construct the next term of the WHEN clause.
1277 ** The final WHEN clause will be like this:
1279 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN)
1282 pEq
= sqlite3PExpr(pParse
, TK_IS
,
1283 sqlite3PExpr(pParse
, TK_DOT
,
1284 sqlite3ExprAlloc(db
, TK_ID
, &tOld
, 0),
1285 sqlite3ExprAlloc(db
, TK_ID
, &tToCol
, 0)),
1286 sqlite3PExpr(pParse
, TK_DOT
,
1287 sqlite3ExprAlloc(db
, TK_ID
, &tNew
, 0),
1288 sqlite3ExprAlloc(db
, TK_ID
, &tToCol
, 0))
1290 pWhen
= sqlite3ExprAnd(pParse
, pWhen
, pEq
);
1293 if( action
!=OE_Restrict
&& (action
!=OE_Cascade
|| pChanges
) ){
1295 if( action
==OE_Cascade
){
1296 pNew
= sqlite3PExpr(pParse
, TK_DOT
,
1297 sqlite3ExprAlloc(db
, TK_ID
, &tNew
, 0),
1298 sqlite3ExprAlloc(db
, TK_ID
, &tToCol
, 0));
1299 }else if( action
==OE_SetDflt
){
1300 Column
*pCol
= pFKey
->pFrom
->aCol
+ iFromCol
;
1302 if( pCol
->colFlags
& COLFLAG_GENERATED
){
1303 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1304 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1307 pDflt
= sqlite3ColumnExpr(pFKey
->pFrom
, pCol
);
1310 pNew
= sqlite3ExprDup(db
, pDflt
, 0);
1312 pNew
= sqlite3ExprAlloc(db
, TK_NULL
, 0, 0);
1315 pNew
= sqlite3ExprAlloc(db
, TK_NULL
, 0, 0);
1317 pList
= sqlite3ExprListAppend(pParse
, pList
, pNew
);
1318 sqlite3ExprListSetName(pParse
, pList
, &tFromCol
, 0);
1321 sqlite3DbFree(db
, aiCol
);
1323 zFrom
= pFKey
->pFrom
->zName
;
1324 nFrom
= sqlite3Strlen30(zFrom
);
1326 if( action
==OE_Restrict
){
1327 int iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
1331 pRaise
= sqlite3Expr(db
, TK_RAISE
, "FOREIGN KEY constraint failed");
1333 pRaise
->affExpr
= OE_Abort
;
1335 pSrc
= sqlite3SrcListAppend(pParse
, 0, 0, 0);
1337 assert( pSrc
->nSrc
==1 );
1338 pSrc
->a
[0].zName
= sqlite3DbStrDup(db
, zFrom
);
1339 pSrc
->a
[0].zDatabase
= sqlite3DbStrDup(db
, db
->aDb
[iDb
].zDbSName
);
1341 pSelect
= sqlite3SelectNew(pParse
,
1342 sqlite3ExprListAppend(pParse
, 0, pRaise
),
1350 /* Disable lookaside memory allocation */
1353 pTrigger
= (Trigger
*)sqlite3DbMallocZero(db
,
1354 sizeof(Trigger
) + /* struct Trigger */
1355 sizeof(TriggerStep
) + /* Single step in trigger program */
1356 nFrom
+ 1 /* Space for pStep->zTarget */
1359 pStep
= pTrigger
->step_list
= (TriggerStep
*)&pTrigger
[1];
1360 pStep
->zTarget
= (char *)&pStep
[1];
1361 memcpy((char *)pStep
->zTarget
, zFrom
, nFrom
);
1363 pStep
->pWhere
= sqlite3ExprDup(db
, pWhere
, EXPRDUP_REDUCE
);
1364 pStep
->pExprList
= sqlite3ExprListDup(db
, pList
, EXPRDUP_REDUCE
);
1365 pStep
->pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
1367 pWhen
= sqlite3PExpr(pParse
, TK_NOT
, pWhen
, 0);
1368 pTrigger
->pWhen
= sqlite3ExprDup(db
, pWhen
, EXPRDUP_REDUCE
);
1372 /* Re-enable the lookaside buffer, if it was disabled earlier. */
1375 sqlite3ExprDelete(db
, pWhere
);
1376 sqlite3ExprDelete(db
, pWhen
);
1377 sqlite3ExprListDelete(db
, pList
);
1378 sqlite3SelectDelete(db
, pSelect
);
1379 if( db
->mallocFailed
==1 ){
1380 fkTriggerDelete(db
, pTrigger
);
1384 assert( pTrigger
!=0 );
1388 pStep
->op
= TK_SELECT
;
1392 pStep
->op
= TK_DELETE
;
1395 /* no break */ deliberate_fall_through
1397 pStep
->op
= TK_UPDATE
;
1399 pStep
->pTrig
= pTrigger
;
1400 pTrigger
->pSchema
= pTab
->pSchema
;
1401 pTrigger
->pTabSchema
= pTab
->pSchema
;
1402 pFKey
->apTrigger
[iAction
] = pTrigger
;
1403 pTrigger
->op
= (pChanges
? TK_UPDATE
: TK_DELETE
);
1410 ** This function is called when deleting or updating a row to implement
1411 ** any required CASCADE, SET NULL or SET DEFAULT actions.
1413 void sqlite3FkActions(
1414 Parse
*pParse
, /* Parse context */
1415 Table
*pTab
, /* Table being updated or deleted from */
1416 ExprList
*pChanges
, /* Change-list for UPDATE, NULL for DELETE */
1417 int regOld
, /* Address of array containing old row */
1418 int *aChange
, /* Array indicating UPDATEd columns (or 0) */
1419 int bChngRowid
/* True if rowid is UPDATEd */
1421 /* If foreign-key support is enabled, iterate through all FKs that
1422 ** refer to table pTab. If there is an action associated with the FK
1423 ** for this operation (either update or delete), invoke the associated
1424 ** trigger sub-program. */
1425 if( pParse
->db
->flags
&SQLITE_ForeignKeys
){
1426 FKey
*pFKey
; /* Iterator variable */
1427 for(pFKey
= sqlite3FkReferences(pTab
); pFKey
; pFKey
=pFKey
->pNextTo
){
1428 if( aChange
==0 || fkParentIsModified(pTab
, pFKey
, aChange
, bChngRowid
) ){
1429 Trigger
*pAct
= fkActionTrigger(pParse
, pTab
, pFKey
, pChanges
);
1431 sqlite3CodeRowTriggerDirect(pParse
, pAct
, pTab
, regOld
, OE_Abort
, 0);
1438 #endif /* ifndef SQLITE_OMIT_TRIGGER */
1441 ** Free all memory associated with foreign key definitions attached to
1442 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash
1445 void sqlite3FkDelete(sqlite3
*db
, Table
*pTab
){
1446 FKey
*pFKey
; /* Iterator variable */
1447 FKey
*pNext
; /* Copy of pFKey->pNextFrom */
1449 assert( IsOrdinaryTable(pTab
) );
1451 for(pFKey
=pTab
->u
.tab
.pFKey
; pFKey
; pFKey
=pNext
){
1452 assert( db
==0 || sqlite3SchemaMutexHeld(db
, 0, pTab
->pSchema
) );
1454 /* Remove the FK from the fkeyHash hash table. */
1455 if( db
->pnBytesFreed
==0 ){
1456 if( pFKey
->pPrevTo
){
1457 pFKey
->pPrevTo
->pNextTo
= pFKey
->pNextTo
;
1459 const char *z
= (pFKey
->pNextTo
? pFKey
->pNextTo
->zTo
: pFKey
->zTo
);
1460 sqlite3HashInsert(&pTab
->pSchema
->fkeyHash
, z
, pFKey
->pNextTo
);
1462 if( pFKey
->pNextTo
){
1463 pFKey
->pNextTo
->pPrevTo
= pFKey
->pPrevTo
;
1467 /* EV: R-30323-21917 Each foreign key constraint in SQLite is
1468 ** classified as either immediate or deferred.
1470 assert( pFKey
->isDeferred
==0 || pFKey
->isDeferred
==1 );
1472 /* Delete any triggers created to implement actions for this FK. */
1473 #ifndef SQLITE_OMIT_TRIGGER
1474 fkTriggerDelete(db
, pFKey
->apTrigger
[0]);
1475 fkTriggerDelete(db
, pFKey
->apTrigger
[1]);
1478 pNext
= pFKey
->pNextFrom
;
1479 sqlite3DbFree(db
, pFKey
);
1482 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */