4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx
;
24 u8 isTnct
; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx
;
50 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor
; /* Cursor number for the sorter */
53 int regReturn
; /* Register holding block-output return address */
54 int labelBkOut
; /* Start label for the block-output subroutine */
55 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone
; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt
; /* Jump here when sorter is full */
58 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer
; /* Number of valid entries in aDefer[] */
62 Table
*pTab
; /* Table definition */
63 int iCsr
; /* Cursor number for table */
64 int nKey
; /* Number of PK columns for table pTab (>=1) */
67 struct RowLoadInfo
*pDeferredRowLoad
; /* Deferred row loading info or NULL */
68 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
69 int addrPush
; /* First instruction to push data into sorter */
70 int addrPushEnd
; /* Last instruction that pushes data into sorter */
73 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
76 ** Delete all the content of a Select structure. Deallocate the structure
77 ** itself depending on the value of bFree
79 ** If bFree==1, call sqlite3DbFree() on the p object.
80 ** If bFree==0, Leave the first Select object unfreed
82 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
85 Select
*pPrior
= p
->pPrior
;
86 sqlite3ExprListDelete(db
, p
->pEList
);
87 sqlite3SrcListDelete(db
, p
->pSrc
);
88 sqlite3ExprDelete(db
, p
->pWhere
);
89 sqlite3ExprListDelete(db
, p
->pGroupBy
);
90 sqlite3ExprDelete(db
, p
->pHaving
);
91 sqlite3ExprListDelete(db
, p
->pOrderBy
);
92 sqlite3ExprDelete(db
, p
->pLimit
);
93 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ) sqlite3WithDelete(db
, p
->pWith
);
94 #ifndef SQLITE_OMIT_WINDOWFUNC
95 if( OK_IF_ALWAYS_TRUE(p
->pWinDefn
) ){
96 sqlite3WindowListDelete(db
, p
->pWinDefn
);
99 assert( p
->pWin
->ppThis
==&p
->pWin
);
100 sqlite3WindowUnlinkFromSelect(p
->pWin
);
103 if( bFree
) sqlite3DbNNFreeNN(db
, p
);
110 ** Initialize a SelectDest structure.
112 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
113 pDest
->eDest
= (u8
)eDest
;
114 pDest
->iSDParm
= iParm
;
123 ** Allocate a new Select structure and return a pointer to that
126 Select
*sqlite3SelectNew(
127 Parse
*pParse
, /* Parsing context */
128 ExprList
*pEList
, /* which columns to include in the result */
129 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
130 Expr
*pWhere
, /* the WHERE clause */
131 ExprList
*pGroupBy
, /* the GROUP BY clause */
132 Expr
*pHaving
, /* the HAVING clause */
133 ExprList
*pOrderBy
, /* the ORDER BY clause */
134 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
135 Expr
*pLimit
/* LIMIT value. NULL means not used */
137 Select
*pNew
, *pAllocated
;
139 pAllocated
= pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
141 assert( pParse
->db
->mallocFailed
);
145 pEList
= sqlite3ExprListAppend(pParse
, 0,
146 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
148 pNew
->pEList
= pEList
;
149 pNew
->op
= TK_SELECT
;
150 pNew
->selFlags
= selFlags
;
153 pNew
->selId
= ++pParse
->nSelect
;
154 pNew
->addrOpenEphm
[0] = -1;
155 pNew
->addrOpenEphm
[1] = -1;
156 pNew
->nSelectRow
= 0;
157 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
159 pNew
->pWhere
= pWhere
;
160 pNew
->pGroupBy
= pGroupBy
;
161 pNew
->pHaving
= pHaving
;
162 pNew
->pOrderBy
= pOrderBy
;
165 pNew
->pLimit
= pLimit
;
167 #ifndef SQLITE_OMIT_WINDOWFUNC
171 if( pParse
->db
->mallocFailed
) {
172 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
175 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
182 ** Delete the given Select structure and all of its substructures.
184 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
185 if( OK_IF_ALWAYS_TRUE(p
) ) clearSelect(db
, p
, 1);
189 ** Return a pointer to the right-most SELECT statement in a compound.
191 static Select
*findRightmost(Select
*p
){
192 while( p
->pNext
) p
= p
->pNext
;
197 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
198 ** type of join. Return an integer constant that expresses that type
199 ** in terms of the following bit values:
208 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
210 ** If an illegal or unsupported join type is seen, then still return
211 ** a join type, but put an error in the pParse structure.
213 ** These are the valid join types:
216 ** pA pB pC Return Value
217 ** ------- ----- ----- ------------
218 ** CROSS - - JT_CROSS
219 ** INNER - - JT_INNER
220 ** LEFT - - JT_LEFT|JT_OUTER
221 ** LEFT OUTER - JT_LEFT|JT_OUTER
222 ** RIGHT - - JT_RIGHT|JT_OUTER
223 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
224 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
225 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
226 ** NATURAL INNER - JT_NATURAL|JT_INNER
227 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
228 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
229 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
230 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
231 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
232 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
234 ** To preserve historical compatibly, SQLite also accepts a variety
235 ** of other non-standard and in many cases nonsensical join types.
236 ** This routine makes as much sense at it can from the nonsense join
237 ** type and returns a result. Examples of accepted nonsense join types
238 ** include but are not limited to:
240 ** INNER CROSS JOIN -> same as JOIN
241 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
242 ** OUTER LEFT JOIN -> same as LEFT JOIN
243 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
244 ** LEFT RIGHT JOIN -> same as FULL JOIN
245 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
246 ** CROSS CROSS CROSS JOIN -> same as JOIN
248 ** The only restrictions on the join type name are:
250 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
253 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
256 ** * If "OUTER" is present then there must also be one of
257 ** "LEFT", "RIGHT", or "FULL"
259 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
263 /* 0123456789 123456789 123456789 123 */
264 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
265 static const struct {
266 u8 i
; /* Beginning of keyword text in zKeyText[] */
267 u8 nChar
; /* Length of the keyword in characters */
268 u8 code
; /* Join type mask */
270 /* (0) natural */ { 0, 7, JT_NATURAL
},
271 /* (1) left */ { 6, 4, JT_LEFT
|JT_OUTER
},
272 /* (2) outer */ { 10, 5, JT_OUTER
},
273 /* (3) right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
274 /* (4) full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
275 /* (5) inner */ { 23, 5, JT_INNER
},
276 /* (6) cross */ { 28, 5, JT_INNER
|JT_CROSS
},
282 for(i
=0; i
<3 && apAll
[i
]; i
++){
284 for(j
=0; j
<ArraySize(aKeyword
); j
++){
285 if( p
->n
==aKeyword
[j
].nChar
286 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
287 jointype
|= aKeyword
[j
].code
;
291 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
292 if( j
>=ArraySize(aKeyword
) ){
293 jointype
|= JT_ERROR
;
298 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
299 (jointype
& JT_ERROR
)!=0 ||
300 (jointype
& (JT_OUTER
|JT_LEFT
|JT_RIGHT
))==JT_OUTER
302 const char *zSp1
= " ";
303 const char *zSp2
= " ";
304 if( pB
==0 ){ zSp1
++; }
305 if( pC
==0 ){ zSp2
++; }
306 sqlite3ErrorMsg(pParse
, "unknown join type: "
307 "%T%s%T%s%T", pA
, zSp1
, pB
, zSp2
, pC
);
314 ** Return the index of a column in a table. Return -1 if the column
315 ** is not contained in the table.
317 int sqlite3ColumnIndex(Table
*pTab
, const char *zCol
){
319 u8 h
= sqlite3StrIHash(zCol
);
321 for(pCol
=pTab
->aCol
, i
=0; i
<pTab
->nCol
; pCol
++, i
++){
322 if( pCol
->hName
==h
&& sqlite3StrICmp(pCol
->zCnName
, zCol
)==0 ) return i
;
328 ** Mark a subquery result column as having been used.
330 void sqlite3SrcItemColumnUsed(SrcItem
*pItem
, int iCol
){
332 assert( (int)pItem
->fg
.isNestedFrom
== IsNestedFrom(pItem
->pSelect
) );
333 if( pItem
->fg
.isNestedFrom
){
335 assert( pItem
->pSelect
!=0 );
336 pResults
= pItem
->pSelect
->pEList
;
337 assert( pResults
!=0 );
338 assert( iCol
>=0 && iCol
<pResults
->nExpr
);
339 pResults
->a
[iCol
].fg
.bUsed
= 1;
344 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
345 ** table that has a column named zCol. The search is left-to-right.
346 ** The first match found is returned.
348 ** When found, set *piTab and *piCol to the table index and column index
349 ** of the matching column and return TRUE.
351 ** If not found, return FALSE.
353 static int tableAndColumnIndex(
354 SrcList
*pSrc
, /* Array of tables to search */
355 int iStart
, /* First member of pSrc->a[] to check */
356 int iEnd
, /* Last member of pSrc->a[] to check */
357 const char *zCol
, /* Name of the column we are looking for */
358 int *piTab
, /* Write index of pSrc->a[] here */
359 int *piCol
, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
360 int bIgnoreHidden
/* Ignore hidden columns */
362 int i
; /* For looping over tables in pSrc */
363 int iCol
; /* Index of column matching zCol */
365 assert( iEnd
<pSrc
->nSrc
);
367 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
369 for(i
=iStart
; i
<=iEnd
; i
++){
370 iCol
= sqlite3ColumnIndex(pSrc
->a
[i
].pTab
, zCol
);
372 && (bIgnoreHidden
==0 || IsHiddenColumn(&pSrc
->a
[i
].pTab
->aCol
[iCol
])==0)
375 sqlite3SrcItemColumnUsed(&pSrc
->a
[i
], iCol
);
386 ** Set the EP_OuterON property on all terms of the given expression.
387 ** And set the Expr.w.iJoin to iTable for every term in the
390 ** The EP_OuterON property is used on terms of an expression to tell
391 ** the OUTER JOIN processing logic that this term is part of the
392 ** join restriction specified in the ON or USING clause and not a part
393 ** of the more general WHERE clause. These terms are moved over to the
394 ** WHERE clause during join processing but we need to remember that they
395 ** originated in the ON or USING clause.
397 ** The Expr.w.iJoin tells the WHERE clause processing that the
398 ** expression depends on table w.iJoin even if that table is not
399 ** explicitly mentioned in the expression. That information is needed
400 ** for cases like this:
402 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
404 ** The where clause needs to defer the handling of the t1.x=5
405 ** term until after the t2 loop of the join. In that way, a
406 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
407 ** defer the handling of t1.x=5, it will be processed immediately
408 ** after the t1 loop and rows with t1.x!=5 will never appear in
409 ** the output, which is incorrect.
411 void sqlite3SetJoinExpr(Expr
*p
, int iTable
, u32 joinFlag
){
412 assert( joinFlag
==EP_OuterON
|| joinFlag
==EP_InnerON
);
414 ExprSetProperty(p
, joinFlag
);
415 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
416 ExprSetVVAProperty(p
, EP_NoReduce
);
418 if( p
->op
==TK_FUNCTION
){
419 assert( ExprUseXList(p
) );
422 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
423 sqlite3SetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
, joinFlag
);
427 sqlite3SetJoinExpr(p
->pLeft
, iTable
, joinFlag
);
432 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
433 ** is simplified into an ordinary JOIN, and when an ON expression is
434 ** "pushed down" into the WHERE clause of a subquery.
436 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
437 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
438 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
440 ** If nullable is true, that means that Expr p might evaluate to NULL even
441 ** if it is a reference to a NOT NULL column. This can happen, for example,
442 ** if the table that p references is on the left side of a RIGHT JOIN.
443 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
444 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
446 static void unsetJoinExpr(Expr
*p
, int iTable
, int nullable
){
448 if( iTable
<0 || (ExprHasProperty(p
, EP_OuterON
) && p
->w
.iJoin
==iTable
) ){
449 ExprClearProperty(p
, EP_OuterON
|EP_InnerON
);
450 if( iTable
>=0 ) ExprSetProperty(p
, EP_InnerON
);
452 if( p
->op
==TK_COLUMN
&& p
->iTable
==iTable
&& !nullable
){
453 ExprClearProperty(p
, EP_CanBeNull
);
455 if( p
->op
==TK_FUNCTION
){
456 assert( ExprUseXList(p
) );
457 assert( p
->pLeft
==0 );
460 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
461 unsetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
, nullable
);
465 unsetJoinExpr(p
->pLeft
, iTable
, nullable
);
471 ** This routine processes the join information for a SELECT statement.
473 ** * A NATURAL join is converted into a USING join. After that, we
474 ** do not need to be concerned with NATURAL joins and we only have
475 ** think about USING joins.
477 ** * ON and USING clauses result in extra terms being added to the
478 ** WHERE clause to enforce the specified constraints. The extra
479 ** WHERE clause terms will be tagged with EP_OuterON or
480 ** EP_InnerON so that we know that they originated in ON/USING.
482 ** The terms of a FROM clause are contained in the Select.pSrc structure.
483 ** The left most table is the first entry in Select.pSrc. The right-most
484 ** table is the last entry. The join operator is held in the entry to
485 ** the right. Thus entry 1 contains the join operator for the join between
486 ** entries 0 and 1. Any ON or USING clauses associated with the join are
487 ** also attached to the right entry.
489 ** This routine returns the number of errors encountered.
491 static int sqlite3ProcessJoin(Parse
*pParse
, Select
*p
){
492 SrcList
*pSrc
; /* All tables in the FROM clause */
493 int i
, j
; /* Loop counters */
494 SrcItem
*pLeft
; /* Left table being joined */
495 SrcItem
*pRight
; /* Right table being joined */
500 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
501 Table
*pRightTab
= pRight
->pTab
;
504 if( NEVER(pLeft
->pTab
==0 || pRightTab
==0) ) continue;
505 joinType
= (pRight
->fg
.jointype
& JT_OUTER
)!=0 ? EP_OuterON
: EP_InnerON
;
507 /* If this is a NATURAL join, synthesize an appropriate USING clause
508 ** to specify which columns should be joined.
510 if( pRight
->fg
.jointype
& JT_NATURAL
){
512 if( pRight
->fg
.isUsing
|| pRight
->u3
.pOn
){
513 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
514 "an ON or USING clause", 0);
517 for(j
=0; j
<pRightTab
->nCol
; j
++){
518 char *zName
; /* Name of column in the right table */
520 if( IsHiddenColumn(&pRightTab
->aCol
[j
]) ) continue;
521 zName
= pRightTab
->aCol
[j
].zCnName
;
522 if( tableAndColumnIndex(pSrc
, 0, i
, zName
, 0, 0, 1) ){
523 pUsing
= sqlite3IdListAppend(pParse
, pUsing
, 0);
525 assert( pUsing
->nId
>0 );
526 assert( pUsing
->a
[pUsing
->nId
-1].zName
==0 );
527 pUsing
->a
[pUsing
->nId
-1].zName
= sqlite3DbStrDup(pParse
->db
, zName
);
532 pRight
->fg
.isUsing
= 1;
533 pRight
->fg
.isSynthUsing
= 1;
534 pRight
->u3
.pUsing
= pUsing
;
536 if( pParse
->nErr
) return 1;
539 /* Create extra terms on the WHERE clause for each column named
540 ** in the USING clause. Example: If the two tables to be joined are
541 ** A and B and the USING clause names X, Y, and Z, then add this
542 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
543 ** Report an error if any column mentioned in the USING clause is
544 ** not contained in both tables to be joined.
546 if( pRight
->fg
.isUsing
){
547 IdList
*pList
= pRight
->u3
.pUsing
;
548 sqlite3
*db
= pParse
->db
;
550 for(j
=0; j
<pList
->nId
; j
++){
551 char *zName
; /* Name of the term in the USING clause */
552 int iLeft
; /* Table on the left with matching column name */
553 int iLeftCol
; /* Column number of matching column on the left */
554 int iRightCol
; /* Column number of matching column on the right */
555 Expr
*pE1
; /* Reference to the column on the LEFT of the join */
556 Expr
*pE2
; /* Reference to the column on the RIGHT of the join */
557 Expr
*pEq
; /* Equality constraint. pE1 == pE2 */
559 zName
= pList
->a
[j
].zName
;
560 iRightCol
= sqlite3ColumnIndex(pRightTab
, zName
);
562 || tableAndColumnIndex(pSrc
, 0, i
, zName
, &iLeft
, &iLeftCol
,
563 pRight
->fg
.isSynthUsing
)==0
565 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
566 "not present in both tables", zName
);
569 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iLeftCol
);
570 sqlite3SrcItemColumnUsed(&pSrc
->a
[iLeft
], iLeftCol
);
571 if( (pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
572 /* This branch runs if the query contains one or more RIGHT or FULL
573 ** JOINs. If only a single table on the left side of this join
574 ** contains the zName column, then this branch is a no-op.
575 ** But if there are two or more tables on the left side
576 ** of the join, construct a coalesce() function that gathers all
577 ** such tables. Raise an error if more than one of those references
578 ** to zName is not also within a prior USING clause.
580 ** We really ought to raise an error if there are two or more
581 ** non-USING references to zName on the left of an INNER or LEFT
582 ** JOIN. But older versions of SQLite do not do that, so we avoid
583 ** adding a new error so as to not break legacy applications.
585 ExprList
*pFuncArgs
= 0; /* Arguments to the coalesce() */
586 static const Token tkCoalesce
= { "coalesce", 8 };
587 while( tableAndColumnIndex(pSrc
, iLeft
+1, i
, zName
, &iLeft
, &iLeftCol
,
588 pRight
->fg
.isSynthUsing
)!=0 ){
589 if( pSrc
->a
[iLeft
].fg
.isUsing
==0
590 || sqlite3IdListIndex(pSrc
->a
[iLeft
].u3
.pUsing
, zName
)<0
592 sqlite3ErrorMsg(pParse
, "ambiguous reference to %s in USING()",
596 pFuncArgs
= sqlite3ExprListAppend(pParse
, pFuncArgs
, pE1
);
597 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iLeftCol
);
598 sqlite3SrcItemColumnUsed(&pSrc
->a
[iLeft
], iLeftCol
);
601 pFuncArgs
= sqlite3ExprListAppend(pParse
, pFuncArgs
, pE1
);
602 pE1
= sqlite3ExprFunction(pParse
, pFuncArgs
, &tkCoalesce
, 0);
605 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, i
+1, iRightCol
);
606 sqlite3SrcItemColumnUsed(pRight
, iRightCol
);
607 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
608 assert( pE2
!=0 || pEq
==0 );
610 ExprSetProperty(pEq
, joinType
);
611 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
612 ExprSetVVAProperty(pEq
, EP_NoReduce
);
613 pEq
->w
.iJoin
= pE2
->iTable
;
615 p
->pWhere
= sqlite3ExprAnd(pParse
, p
->pWhere
, pEq
);
619 /* Add the ON clause to the end of the WHERE clause, connected by
622 else if( pRight
->u3
.pOn
){
623 sqlite3SetJoinExpr(pRight
->u3
.pOn
, pRight
->iCursor
, joinType
);
624 p
->pWhere
= sqlite3ExprAnd(pParse
, p
->pWhere
, pRight
->u3
.pOn
);
633 ** An instance of this object holds information (beyond pParse and pSelect)
634 ** needed to load the next result row that is to be added to the sorter.
636 typedef struct RowLoadInfo RowLoadInfo
;
638 int regResult
; /* Store results in array of registers here */
639 u8 ecelFlags
; /* Flag argument to ExprCodeExprList() */
640 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
641 ExprList
*pExtra
; /* Extra columns needed by sorter refs */
642 int regExtraResult
; /* Where to load the extra columns */
647 ** This routine does the work of loading query data into an array of
648 ** registers so that it can be added to the sorter.
650 static void innerLoopLoadRow(
651 Parse
*pParse
, /* Statement under construction */
652 Select
*pSelect
, /* The query being coded */
653 RowLoadInfo
*pInfo
/* Info needed to complete the row load */
655 sqlite3ExprCodeExprList(pParse
, pSelect
->pEList
, pInfo
->regResult
,
656 0, pInfo
->ecelFlags
);
657 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
659 sqlite3ExprCodeExprList(pParse
, pInfo
->pExtra
, pInfo
->regExtraResult
, 0, 0);
660 sqlite3ExprListDelete(pParse
->db
, pInfo
->pExtra
);
666 ** Code the OP_MakeRecord instruction that generates the entry to be
667 ** added into the sorter.
669 ** Return the register in which the result is stored.
671 static int makeSorterRecord(
678 int nOBSat
= pSort
->nOBSat
;
679 Vdbe
*v
= pParse
->pVdbe
;
680 int regOut
= ++pParse
->nMem
;
681 if( pSort
->pDeferredRowLoad
){
682 innerLoopLoadRow(pParse
, pSelect
, pSort
->pDeferredRowLoad
);
684 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regOut
);
689 ** Generate code that will push the record in registers regData
690 ** through regData+nData-1 onto the sorter.
692 static void pushOntoSorter(
693 Parse
*pParse
, /* Parser context */
694 SortCtx
*pSort
, /* Information about the ORDER BY clause */
695 Select
*pSelect
, /* The whole SELECT statement */
696 int regData
, /* First register holding data to be sorted */
697 int regOrigData
, /* First register holding data before packing */
698 int nData
, /* Number of elements in the regData data array */
699 int nPrefixReg
/* No. of reg prior to regData available for use */
701 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
702 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
703 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
704 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
705 int regBase
; /* Regs for sorter record */
706 int regRecord
= 0; /* Assembled sorter record */
707 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
708 int op
; /* Opcode to add sorter record to sorter */
709 int iLimit
; /* LIMIT counter */
710 int iSkip
= 0; /* End of the sorter insert loop */
712 assert( bSeq
==0 || bSeq
==1 );
715 ** (1) The data to be sorted has already been packed into a Record
716 ** by a prior OP_MakeRecord. In this case nData==1 and regData
717 ** will be completely unrelated to regOrigData.
718 ** (2) All output columns are included in the sort record. In that
719 ** case regData==regOrigData.
720 ** (3) Some output columns are omitted from the sort record due to
721 ** the SQLITE_ENABLE_SORTER_REFERENCES optimization, or due to the
722 ** SQLITE_ECEL_OMITREF optimization, or due to the
723 ** SortCtx.pDeferredRowLoad optimization. In any of these cases
724 ** regOrigData is 0 to prevent this routine from trying to copy
725 ** values that might not yet exist.
727 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
729 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
730 pSort
->addrPush
= sqlite3VdbeCurrentAddr(v
);
734 assert( nPrefixReg
==nExpr
+bSeq
);
735 regBase
= regData
- nPrefixReg
;
737 regBase
= pParse
->nMem
+ 1;
738 pParse
->nMem
+= nBase
;
740 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
741 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
742 pSort
->labelDone
= sqlite3VdbeMakeLabel(pParse
);
743 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
744 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
746 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
748 if( nPrefixReg
==0 && nData
>0 ){
749 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
752 int regPrevKey
; /* The first nOBSat columns of the previous row */
753 int addrFirst
; /* Address of the OP_IfNot opcode */
754 int addrJmp
; /* Address of the OP_Jump opcode */
755 VdbeOp
*pOp
; /* Opcode that opens the sorter */
756 int nKey
; /* Number of sorting key columns, including OP_Sequence */
757 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
759 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
760 regPrevKey
= pParse
->nMem
+1;
761 pParse
->nMem
+= pSort
->nOBSat
;
762 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
764 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
766 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
769 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
770 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
771 if( pParse
->db
->mallocFailed
) return;
772 pOp
->p2
= nKey
+ nData
;
773 pKI
= pOp
->p4
.pKeyInfo
;
774 memset(pKI
->aSortFlags
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
775 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
776 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
777 pOp
->p4
.pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
,pSort
->pOrderBy
,nOBSat
,
778 pKI
->nAllField
-pKI
->nKeyField
-1);
779 pOp
= 0; /* Ensure pOp not used after sqlite3VdbeAddOp3() */
780 addrJmp
= sqlite3VdbeCurrentAddr(v
);
781 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
782 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(pParse
);
783 pSort
->regReturn
= ++pParse
->nMem
;
784 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
785 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
787 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
790 sqlite3VdbeJumpHere(v
, addrFirst
);
791 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
792 sqlite3VdbeJumpHere(v
, addrJmp
);
795 /* At this point the values for the new sorter entry are stored
796 ** in an array of registers. They need to be composed into a record
797 ** and inserted into the sorter if either (a) there are currently
798 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
799 ** the largest record currently in the sorter. If (b) is true and there
800 ** are already LIMIT+OFFSET items in the sorter, delete the largest
801 ** entry before inserting the new one. This way there are never more
802 ** than LIMIT+OFFSET items in the sorter.
804 ** If the new record does not need to be inserted into the sorter,
805 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
806 ** value is not zero, then it is a label of where to jump. Otherwise,
807 ** just bypass the row insert logic. See the header comment on the
808 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
810 int iCsr
= pSort
->iECursor
;
811 sqlite3VdbeAddOp2(v
, OP_IfNotZero
, iLimit
, sqlite3VdbeCurrentAddr(v
)+4);
813 sqlite3VdbeAddOp2(v
, OP_Last
, iCsr
, 0);
814 iSkip
= sqlite3VdbeAddOp4Int(v
, OP_IdxLE
,
815 iCsr
, 0, regBase
+nOBSat
, nExpr
-nOBSat
);
817 sqlite3VdbeAddOp1(v
, OP_Delete
, iCsr
);
820 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
822 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
823 op
= OP_SorterInsert
;
827 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
828 regBase
+nOBSat
, nBase
-nOBSat
);
830 sqlite3VdbeChangeP2(v
, iSkip
,
831 pSort
->labelOBLopt
? pSort
->labelOBLopt
: sqlite3VdbeCurrentAddr(v
));
833 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
834 pSort
->addrPushEnd
= sqlite3VdbeCurrentAddr(v
)-1;
839 ** Add code to implement the OFFSET
841 static void codeOffset(
842 Vdbe
*v
, /* Generate code into this VM */
843 int iOffset
, /* Register holding the offset counter */
844 int iContinue
/* Jump here to skip the current record */
847 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
848 VdbeComment((v
, "OFFSET"));
853 ** Add code that will check to make sure the array of registers starting at
854 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
855 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
856 ** are available. Which is used depends on the value of parameter eTnctType,
859 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
860 ** Build an ephemeral table that contains all entries seen before and
861 ** skip entries which have been seen before.
863 ** Parameter iTab is the cursor number of an ephemeral table that must
864 ** be opened before the VM code generated by this routine is executed.
865 ** The ephemeral cursor table is queried for a record identical to the
866 ** record formed by the current array of registers. If one is found,
867 ** jump to VM address addrRepeat. Otherwise, insert a new record into
868 ** the ephemeral cursor and proceed.
870 ** The returned value in this case is a copy of parameter iTab.
872 ** WHERE_DISTINCT_ORDERED:
873 ** In this case rows are being delivered sorted order. The ephemeral
874 ** table is not required. Instead, the current set of values
875 ** is compared against previous row. If they match, the new row
876 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
877 ** the VM program proceeds with processing the new row.
879 ** The returned value in this case is the register number of the first
880 ** in an array of registers used to store the previous result row so that
881 ** it can be compared to the next. The caller must ensure that this
882 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
883 ** will take care of this initialization.)
885 ** WHERE_DISTINCT_UNIQUE:
886 ** In this case it has already been determined that the rows are distinct.
887 ** No special action is required. The return value is zero.
889 ** Parameter pEList is the list of expressions used to generated the
890 ** contents of each row. It is used by this routine to determine (a)
891 ** how many elements there are in the array of registers and (b) the
892 ** collation sequences that should be used for the comparisons if
893 ** eTnctType is WHERE_DISTINCT_ORDERED.
895 static int codeDistinct(
896 Parse
*pParse
, /* Parsing and code generating context */
897 int eTnctType
, /* WHERE_DISTINCT_* value */
898 int iTab
, /* A sorting index used to test for distinctness */
899 int addrRepeat
, /* Jump to here if not distinct */
900 ExprList
*pEList
, /* Expression for each element */
901 int regElem
/* First element */
904 int nResultCol
= pEList
->nExpr
;
905 Vdbe
*v
= pParse
->pVdbe
;
908 case WHERE_DISTINCT_ORDERED
: {
910 int iJump
; /* Jump destination */
911 int regPrev
; /* Previous row content */
913 /* Allocate space for the previous row */
914 iRet
= regPrev
= pParse
->nMem
+1;
915 pParse
->nMem
+= nResultCol
;
917 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
918 for(i
=0; i
<nResultCol
; i
++){
919 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pEList
->a
[i
].pExpr
);
920 if( i
<nResultCol
-1 ){
921 sqlite3VdbeAddOp3(v
, OP_Ne
, regElem
+i
, iJump
, regPrev
+i
);
924 sqlite3VdbeAddOp3(v
, OP_Eq
, regElem
+i
, addrRepeat
, regPrev
+i
);
927 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
928 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
930 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
931 sqlite3VdbeAddOp3(v
, OP_Copy
, regElem
, regPrev
, nResultCol
-1);
935 case WHERE_DISTINCT_UNIQUE
: {
941 int r1
= sqlite3GetTempReg(pParse
);
942 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, regElem
, nResultCol
);
944 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regElem
, nResultCol
, r1
);
945 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, regElem
, nResultCol
);
946 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
947 sqlite3ReleaseTempReg(pParse
, r1
);
957 ** This routine runs after codeDistinct(). It makes necessary
958 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
959 ** routine made use of. This processing must be done separately since
960 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
963 ** WHERE_DISTINCT_NOOP:
964 ** WHERE_DISTINCT_UNORDERED:
966 ** No adjustments necessary. This function is a no-op.
968 ** WHERE_DISTINCT_UNIQUE:
970 ** The ephemeral table is not needed. So change the
971 ** OP_OpenEphemeral opcode into an OP_Noop.
973 ** WHERE_DISTINCT_ORDERED:
975 ** The ephemeral table is not needed. But we do need register
976 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
977 ** into an OP_Null on the iVal register.
979 static void fixDistinctOpenEph(
980 Parse
*pParse
, /* Parsing and code generating context */
981 int eTnctType
, /* WHERE_DISTINCT_* value */
982 int iVal
, /* Value returned by codeDistinct() */
983 int iOpenEphAddr
/* Address of OP_OpenEphemeral instruction for iTab */
986 && (eTnctType
==WHERE_DISTINCT_UNIQUE
|| eTnctType
==WHERE_DISTINCT_ORDERED
)
988 Vdbe
*v
= pParse
->pVdbe
;
989 sqlite3VdbeChangeToNoop(v
, iOpenEphAddr
);
990 if( sqlite3VdbeGetOp(v
, iOpenEphAddr
+1)->opcode
==OP_Explain
){
991 sqlite3VdbeChangeToNoop(v
, iOpenEphAddr
+1);
993 if( eTnctType
==WHERE_DISTINCT_ORDERED
){
994 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
995 ** bit on the first register of the previous value. This will cause the
996 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
997 ** the loop even if the first row is all NULLs. */
998 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iOpenEphAddr
);
999 pOp
->opcode
= OP_Null
;
1006 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1008 ** This function is called as part of inner-loop generation for a SELECT
1009 ** statement with an ORDER BY that is not optimized by an index. It
1010 ** determines the expressions, if any, that the sorter-reference
1011 ** optimization should be used for. The sorter-reference optimization
1012 ** is used for SELECT queries like:
1014 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1016 ** If the optimization is used for expression "bigblob", then instead of
1017 ** storing values read from that column in the sorter records, the PK of
1018 ** the row from table t1 is stored instead. Then, as records are extracted from
1019 ** the sorter to return to the user, the required value of bigblob is
1020 ** retrieved directly from table t1. If the values are very large, this
1021 ** can be more efficient than storing them directly in the sorter records.
1023 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1024 ** for which the sorter-reference optimization should be enabled.
1025 ** Additionally, the pSort->aDefer[] array is populated with entries
1026 ** for all cursors required to evaluate all selected expressions. Finally.
1027 ** output variable (*ppExtra) is set to an expression list containing
1028 ** expressions for all extra PK values that should be stored in the
1031 static void selectExprDefer(
1032 Parse
*pParse
, /* Leave any error here */
1033 SortCtx
*pSort
, /* Sorter context */
1034 ExprList
*pEList
, /* Expressions destined for sorter */
1035 ExprList
**ppExtra
/* Expressions to append to sorter record */
1039 ExprList
*pExtra
= 0;
1040 for(i
=0; i
<pEList
->nExpr
; i
++){
1041 struct ExprList_item
*pItem
= &pEList
->a
[i
];
1042 if( pItem
->u
.x
.iOrderByCol
==0 ){
1043 Expr
*pExpr
= pItem
->pExpr
;
1045 if( pExpr
->op
==TK_COLUMN
1046 && pExpr
->iColumn
>=0
1047 && ALWAYS( ExprUseYTab(pExpr
) )
1048 && (pTab
= pExpr
->y
.pTab
)!=0
1049 && IsOrdinaryTable(pTab
)
1050 && (pTab
->aCol
[pExpr
->iColumn
].colFlags
& COLFLAG_SORTERREF
)!=0
1053 for(j
=0; j
<nDefer
; j
++){
1054 if( pSort
->aDefer
[j
].iCsr
==pExpr
->iTable
) break;
1057 if( nDefer
==ArraySize(pSort
->aDefer
) ){
1063 if( !HasRowid(pTab
) ){
1064 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1065 nKey
= pPk
->nKeyCol
;
1067 for(k
=0; k
<nKey
; k
++){
1068 Expr
*pNew
= sqlite3PExpr(pParse
, TK_COLUMN
, 0, 0);
1070 pNew
->iTable
= pExpr
->iTable
;
1071 assert( ExprUseYTab(pNew
) );
1072 pNew
->y
.pTab
= pExpr
->y
.pTab
;
1073 pNew
->iColumn
= pPk
? pPk
->aiColumn
[k
] : -1;
1074 pExtra
= sqlite3ExprListAppend(pParse
, pExtra
, pNew
);
1077 pSort
->aDefer
[nDefer
].pTab
= pExpr
->y
.pTab
;
1078 pSort
->aDefer
[nDefer
].iCsr
= pExpr
->iTable
;
1079 pSort
->aDefer
[nDefer
].nKey
= nKey
;
1083 pItem
->fg
.bSorterRef
= 1;
1087 pSort
->nDefer
= (u8
)nDefer
;
1093 ** This routine generates the code for the inside of the inner loop
1096 ** If srcTab is negative, then the p->pEList expressions
1097 ** are evaluated in order to get the data for this row. If srcTab is
1098 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1099 ** to get the number of columns and the collation sequence for each column.
1101 static void selectInnerLoop(
1102 Parse
*pParse
, /* The parser context */
1103 Select
*p
, /* The complete select statement being coded */
1104 int srcTab
, /* Pull data from this table if non-negative */
1105 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
1106 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
1107 SelectDest
*pDest
, /* How to dispose of the results */
1108 int iContinue
, /* Jump here to continue with next row */
1109 int iBreak
/* Jump here to break out of the inner loop */
1111 Vdbe
*v
= pParse
->pVdbe
;
1113 int hasDistinct
; /* True if the DISTINCT keyword is present */
1114 int eDest
= pDest
->eDest
; /* How to dispose of results */
1115 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
1116 int nResultCol
; /* Number of result columns */
1117 int nPrefixReg
= 0; /* Number of extra registers before regResult */
1118 RowLoadInfo sRowLoadInfo
; /* Info for deferred row loading */
1120 /* Usually, regResult is the first cell in an array of memory cells
1121 ** containing the current result row. In this case regOrig is set to the
1122 ** same value. However, if the results are being sent to the sorter, the
1123 ** values for any expressions that are also part of the sort-key are omitted
1124 ** from this array. In this case regOrig is set to zero. */
1125 int regResult
; /* Start of memory holding current results */
1126 int regOrig
; /* Start of memory holding full result (or 0) */
1129 assert( p
->pEList
!=0 );
1130 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
1131 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
1132 if( pSort
==0 && !hasDistinct
){
1133 assert( iContinue
!=0 );
1134 codeOffset(v
, p
->iOffset
, iContinue
);
1137 /* Pull the requested columns.
1139 nResultCol
= p
->pEList
->nExpr
;
1141 if( pDest
->iSdst
==0 ){
1143 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
1144 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
1145 pParse
->nMem
+= nPrefixReg
;
1147 pDest
->iSdst
= pParse
->nMem
+1;
1148 pParse
->nMem
+= nResultCol
;
1149 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
1150 /* This is an error condition that can result, for example, when a SELECT
1151 ** on the right-hand side of an INSERT contains more result columns than
1152 ** there are columns in the table on the left. The error will be caught
1153 ** and reported later. But we need to make sure enough memory is allocated
1154 ** to avoid other spurious errors in the meantime. */
1155 pParse
->nMem
+= nResultCol
;
1157 pDest
->nSdst
= nResultCol
;
1158 regOrig
= regResult
= pDest
->iSdst
;
1160 for(i
=0; i
<nResultCol
; i
++){
1161 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
1162 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zEName
));
1164 }else if( eDest
!=SRT_Exists
){
1165 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1166 ExprList
*pExtra
= 0;
1168 /* If the destination is an EXISTS(...) expression, the actual
1169 ** values returned by the SELECT are not required.
1171 u8 ecelFlags
; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1173 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
1174 ecelFlags
= SQLITE_ECEL_DUP
;
1178 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
1179 /* For each expression in p->pEList that is a copy of an expression in
1180 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1181 ** iOrderByCol value to one more than the index of the ORDER BY
1182 ** expression within the sort-key that pushOntoSorter() will generate.
1183 ** This allows the p->pEList field to be omitted from the sorted record,
1184 ** saving space and CPU cycles. */
1185 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
1187 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
1189 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
1190 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
1193 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1194 selectExprDefer(pParse
, pSort
, p
->pEList
, &pExtra
);
1195 if( pExtra
&& pParse
->db
->mallocFailed
==0 ){
1196 /* If there are any extra PK columns to add to the sorter records,
1197 ** allocate extra memory cells and adjust the OpenEphemeral
1198 ** instruction to account for the larger records. This is only
1199 ** required if there are one or more WITHOUT ROWID tables with
1200 ** composite primary keys in the SortCtx.aDefer[] array. */
1201 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
1202 pOp
->p2
+= (pExtra
->nExpr
- pSort
->nDefer
);
1203 pOp
->p4
.pKeyInfo
->nAllField
+= (pExtra
->nExpr
- pSort
->nDefer
);
1204 pParse
->nMem
+= pExtra
->nExpr
;
1208 /* Adjust nResultCol to account for columns that are omitted
1209 ** from the sorter by the optimizations in this branch */
1211 for(i
=0; i
<pEList
->nExpr
; i
++){
1212 if( pEList
->a
[i
].u
.x
.iOrderByCol
>0
1213 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1214 || pEList
->a
[i
].fg
.bSorterRef
1222 testcase( regOrig
);
1223 testcase( eDest
==SRT_Set
);
1224 testcase( eDest
==SRT_Mem
);
1225 testcase( eDest
==SRT_Coroutine
);
1226 testcase( eDest
==SRT_Output
);
1227 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
1228 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
1229 || eDest
==SRT_Upfrom
);
1231 sRowLoadInfo
.regResult
= regResult
;
1232 sRowLoadInfo
.ecelFlags
= ecelFlags
;
1233 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1234 sRowLoadInfo
.pExtra
= pExtra
;
1235 sRowLoadInfo
.regExtraResult
= regResult
+ nResultCol
;
1236 if( pExtra
) nResultCol
+= pExtra
->nExpr
;
1239 && (ecelFlags
& SQLITE_ECEL_OMITREF
)!=0
1243 assert( hasDistinct
==0 );
1244 pSort
->pDeferredRowLoad
= &sRowLoadInfo
;
1247 innerLoopLoadRow(pParse
, p
, &sRowLoadInfo
);
1251 /* If the DISTINCT keyword was present on the SELECT statement
1252 ** and this row has been seen before, then do not make this row
1253 ** part of the result.
1256 int eType
= pDistinct
->eTnctType
;
1257 int iTab
= pDistinct
->tabTnct
;
1258 assert( nResultCol
==p
->pEList
->nExpr
);
1259 iTab
= codeDistinct(pParse
, eType
, iTab
, iContinue
, p
->pEList
, regResult
);
1260 fixDistinctOpenEph(pParse
, eType
, iTab
, pDistinct
->addrTnct
);
1262 codeOffset(v
, p
->iOffset
, iContinue
);
1267 /* In this mode, write each query result to the key of the temporary
1270 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1273 r1
= sqlite3GetTempReg(pParse
);
1274 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
1275 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1276 sqlite3ReleaseTempReg(pParse
, r1
);
1280 /* Construct a record from the query result, but instead of
1281 ** saving that record, use it as a key to delete elements from
1282 ** the temporary table iParm.
1285 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
1288 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1290 /* Store the result as data using a unique key.
1295 case SRT_EphemTab
: {
1296 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
1297 testcase( eDest
==SRT_Table
);
1298 testcase( eDest
==SRT_EphemTab
);
1299 testcase( eDest
==SRT_Fifo
);
1300 testcase( eDest
==SRT_DistFifo
);
1301 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
1302 #if !defined(SQLITE_ENABLE_NULL_TRIM) && defined(SQLITE_DEBUG)
1303 /* A destination of SRT_Table and a non-zero iSDParm2 parameter means
1304 ** that this is an "UPDATE ... FROM" on a virtual table or view. In this
1305 ** case set the p5 parameter of the OP_MakeRecord to OPFLAG_NOCHNG_MAGIC.
1306 ** This does not affect operation in any way - it just allows MakeRecord
1307 ** to process OPFLAG_NOCHANGE values without an assert() failing. */
1308 if( eDest
==SRT_Table
&& pDest
->iSDParm2
){
1309 sqlite3VdbeChangeP5(v
, OPFLAG_NOCHNG_MAGIC
);
1312 #ifndef SQLITE_OMIT_CTE
1313 if( eDest
==SRT_DistFifo
){
1314 /* If the destination is DistFifo, then cursor (iParm+1) is open
1315 ** on an ephemeral index. If the current row is already present
1316 ** in the index, do not write it to the output. If not, add the
1317 ** current row to the index and proceed with writing it to the
1318 ** output table as well. */
1319 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
1320 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
1322 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
1327 assert( regResult
==regOrig
);
1328 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
, regOrig
, 1, nPrefixReg
);
1330 int r2
= sqlite3GetTempReg(pParse
);
1331 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
1332 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
1333 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1334 sqlite3ReleaseTempReg(pParse
, r2
);
1336 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
1343 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1345 int i2
= pDest
->iSDParm2
;
1346 int r1
= sqlite3GetTempReg(pParse
);
1348 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1349 ** might still be trying to return one row, because that is what
1350 ** aggregates do. Don't record that empty row in the output table. */
1351 sqlite3VdbeAddOp2(v
, OP_IsNull
, regResult
, iBreak
); VdbeCoverage(v
);
1353 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,
1354 regResult
+(i2
<0), nResultCol
-(i2
<0), r1
);
1356 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regResult
);
1358 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, i2
);
1364 #ifndef SQLITE_OMIT_SUBQUERY
1365 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1366 ** then there should be a single item on the stack. Write this
1367 ** item into the set table with bogus data.
1371 /* At first glance you would think we could optimize out the
1372 ** ORDER BY in this case since the order of entries in the set
1373 ** does not matter. But there might be a LIMIT clause, in which
1374 ** case the order does matter */
1376 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1378 int r1
= sqlite3GetTempReg(pParse
);
1379 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
1380 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
1381 r1
, pDest
->zAffSdst
, nResultCol
);
1382 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1383 sqlite3ReleaseTempReg(pParse
, r1
);
1389 /* If any row exist in the result set, record that fact and abort.
1392 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
1393 /* The LIMIT clause will terminate the loop for us */
1397 /* If this is a scalar select that is part of an expression, then
1398 ** store the results in the appropriate memory cell or array of
1399 ** memory cells and break out of the scan loop.
1403 assert( nResultCol
<=pDest
->nSdst
);
1405 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1407 assert( nResultCol
==pDest
->nSdst
);
1408 assert( regResult
==iParm
);
1409 /* The LIMIT clause will jump out of the loop for us */
1413 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1415 case SRT_Coroutine
: /* Send data to a co-routine */
1416 case SRT_Output
: { /* Return the results */
1417 testcase( eDest
==SRT_Coroutine
);
1418 testcase( eDest
==SRT_Output
);
1420 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
1422 }else if( eDest
==SRT_Coroutine
){
1423 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1425 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
1430 #ifndef SQLITE_OMIT_CTE
1431 /* Write the results into a priority queue that is order according to
1432 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1433 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1434 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1435 ** final OP_Sequence column. The last column is the record as a blob.
1443 pSO
= pDest
->pOrderBy
;
1446 r1
= sqlite3GetTempReg(pParse
);
1447 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
1449 if( eDest
==SRT_DistQueue
){
1450 /* If the destination is DistQueue, then cursor (iParm+1) is open
1451 ** on a second ephemeral index that holds all values every previously
1452 ** added to the queue. */
1453 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
1454 regResult
, nResultCol
);
1457 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
1458 if( eDest
==SRT_DistQueue
){
1459 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
1460 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1462 for(i
=0; i
<nKey
; i
++){
1463 sqlite3VdbeAddOp2(v
, OP_SCopy
,
1464 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
1467 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
1468 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
1469 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
1470 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
1471 sqlite3ReleaseTempReg(pParse
, r1
);
1472 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
1475 #endif /* SQLITE_OMIT_CTE */
1479 #if !defined(SQLITE_OMIT_TRIGGER)
1480 /* Discard the results. This is used for SELECT statements inside
1481 ** the body of a TRIGGER. The purpose of such selects is to call
1482 ** user-defined functions that have side effects. We do not care
1483 ** about the actual results of the select.
1486 assert( eDest
==SRT_Discard
);
1492 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1493 ** there is a sorter, in which case the sorter has already limited
1494 ** the output for us.
1496 if( pSort
==0 && p
->iLimit
){
1497 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1502 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1505 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1506 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1507 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1509 p
->aSortFlags
= (u8
*)&p
->aColl
[N
+X
];
1510 p
->nKeyField
= (u16
)N
;
1511 p
->nAllField
= (u16
)(N
+X
);
1515 memset(&p
[1], 0, nExtra
);
1517 return (KeyInfo
*)sqlite3OomFault(db
);
1523 ** Deallocate a KeyInfo object
1525 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1528 assert( p
->nRef
>0 );
1530 if( p
->nRef
==0 ) sqlite3DbNNFreeNN(p
->db
, p
);
1535 ** Make a new pointer to a KeyInfo object
1537 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1539 assert( p
->nRef
>0 );
1547 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1548 ** can only be changed if this is just a single reference to the object.
1550 ** This routine is used only inside of assert() statements.
1552 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1553 #endif /* SQLITE_DEBUG */
1556 ** Given an expression list, generate a KeyInfo structure that records
1557 ** the collating sequence for each expression in that expression list.
1559 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1560 ** KeyInfo structure is appropriate for initializing a virtual index to
1561 ** implement that clause. If the ExprList is the result set of a SELECT
1562 ** then the KeyInfo structure is appropriate for initializing a virtual
1563 ** index to implement a DISTINCT test.
1565 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1566 ** function is responsible for seeing that this structure is eventually
1569 KeyInfo
*sqlite3KeyInfoFromExprList(
1570 Parse
*pParse
, /* Parsing context */
1571 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1572 int iStart
, /* Begin with this column of pList */
1573 int nExtra
/* Add this many extra columns to the end */
1577 struct ExprList_item
*pItem
;
1578 sqlite3
*db
= pParse
->db
;
1581 nExpr
= pList
->nExpr
;
1582 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1584 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1585 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1586 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1587 pInfo
->aSortFlags
[i
-iStart
] = pItem
->fg
.sortFlags
;
1594 ** Name of the connection operator, used for error messages.
1596 const char *sqlite3SelectOpName(int id
){
1599 case TK_ALL
: z
= "UNION ALL"; break;
1600 case TK_INTERSECT
: z
= "INTERSECT"; break;
1601 case TK_EXCEPT
: z
= "EXCEPT"; break;
1602 default: z
= "UNION"; break;
1607 #ifndef SQLITE_OMIT_EXPLAIN
1609 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1610 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1611 ** where the caption is of the form:
1613 ** "USE TEMP B-TREE FOR xxx"
1615 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1616 ** is determined by the zUsage argument.
1618 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1619 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s", zUsage
));
1623 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1624 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1625 ** in sqlite3Select() to assign values to structure member variables that
1626 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1627 ** code with #ifndef directives.
1629 # define explainSetInteger(a, b) a = b
1632 /* No-op versions of the explainXXX() functions and macros. */
1633 # define explainTempTable(y,z)
1634 # define explainSetInteger(y,z)
1639 ** If the inner loop was generated using a non-null pOrderBy argument,
1640 ** then the results were placed in a sorter. After the loop is terminated
1641 ** we need to run the sorter and output the results. The following
1642 ** routine generates the code needed to do that.
1644 static void generateSortTail(
1645 Parse
*pParse
, /* Parsing context */
1646 Select
*p
, /* The SELECT statement */
1647 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1648 int nColumn
, /* Number of columns of data */
1649 SelectDest
*pDest
/* Write the sorted results here */
1651 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1652 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1653 int addrContinue
= sqlite3VdbeMakeLabel(pParse
);/* Jump here for next cycle */
1654 int addr
; /* Top of output loop. Jump for Next. */
1657 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1658 int eDest
= pDest
->eDest
;
1659 int iParm
= pDest
->iSDParm
;
1663 int nKey
; /* Number of key columns in sorter record */
1664 int iSortTab
; /* Sorter cursor to read from */
1666 int bSeq
; /* True if sorter record includes seq. no. */
1668 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1669 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1670 int addrExplain
; /* Address of OP_Explain instruction */
1673 ExplainQueryPlan2(addrExplain
, (pParse
, 0,
1674 "USE TEMP B-TREE FOR %sORDER BY", pSort
->nOBSat
>0?"RIGHT PART OF ":"")
1676 sqlite3VdbeScanStatusRange(v
, addrExplain
,pSort
->addrPush
,pSort
->addrPushEnd
);
1677 sqlite3VdbeScanStatusCounters(v
, addrExplain
, addrExplain
, pSort
->addrPush
);
1680 assert( addrBreak
<0 );
1681 if( pSort
->labelBkOut
){
1682 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1683 sqlite3VdbeGoto(v
, addrBreak
);
1684 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1687 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1688 /* Open any cursors needed for sorter-reference expressions */
1689 for(i
=0; i
<pSort
->nDefer
; i
++){
1690 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1691 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1692 sqlite3OpenTable(pParse
, pSort
->aDefer
[i
].iCsr
, iDb
, pTab
, OP_OpenRead
);
1693 nRefKey
= MAX(nRefKey
, pSort
->aDefer
[i
].nKey
);
1697 iTab
= pSort
->iECursor
;
1698 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1699 if( eDest
==SRT_Mem
&& p
->iOffset
){
1700 sqlite3VdbeAddOp2(v
, OP_Null
, 0, pDest
->iSdst
);
1703 regRow
= pDest
->iSdst
;
1705 regRowid
= sqlite3GetTempReg(pParse
);
1706 if( eDest
==SRT_EphemTab
|| eDest
==SRT_Table
){
1707 regRow
= sqlite3GetTempReg(pParse
);
1710 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1713 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1714 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1715 int regSortOut
= ++pParse
->nMem
;
1716 iSortTab
= pParse
->nTab
++;
1717 if( pSort
->labelBkOut
){
1718 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1720 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
,
1721 nKey
+1+nColumn
+nRefKey
);
1722 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1723 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1725 assert( p
->iLimit
==0 && p
->iOffset
==0 );
1726 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1729 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1730 codeOffset(v
, p
->iOffset
, addrContinue
);
1734 sqlite3VdbeAddOp2(v
, OP_AddImm
, p
->iLimit
, -1);
1737 for(i
=0, iCol
=nKey
+bSeq
-1; i
<nColumn
; i
++){
1738 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1739 if( aOutEx
[i
].fg
.bSorterRef
) continue;
1741 if( aOutEx
[i
].u
.x
.iOrderByCol
==0 ) iCol
++;
1743 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1744 if( pSort
->nDefer
){
1746 int regKey
= sqlite3GetTempRange(pParse
, nRefKey
);
1748 for(i
=0; i
<pSort
->nDefer
; i
++){
1749 int iCsr
= pSort
->aDefer
[i
].iCsr
;
1750 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1751 int nKey
= pSort
->aDefer
[i
].nKey
;
1753 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1754 if( HasRowid(pTab
) ){
1755 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
);
1756 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iCsr
,
1757 sqlite3VdbeCurrentAddr(v
)+1, regKey
);
1761 assert( sqlite3PrimaryKeyIndex(pTab
)->nKeyCol
==nKey
);
1762 for(k
=0; k
<nKey
; k
++){
1763 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
+k
);
1765 iJmp
= sqlite3VdbeCurrentAddr(v
);
1766 sqlite3VdbeAddOp4Int(v
, OP_SeekGE
, iCsr
, iJmp
+2, regKey
, nKey
);
1767 sqlite3VdbeAddOp4Int(v
, OP_IdxLE
, iCsr
, iJmp
+3, regKey
, nKey
);
1768 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1771 sqlite3ReleaseTempRange(pParse
, regKey
, nRefKey
);
1774 for(i
=nColumn
-1; i
>=0; i
--){
1775 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1776 if( aOutEx
[i
].fg
.bSorterRef
){
1777 sqlite3ExprCode(pParse
, aOutEx
[i
].pExpr
, regRow
+i
);
1782 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1783 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1787 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1788 VdbeComment((v
, "%s", aOutEx
[i
].zEName
));
1791 sqlite3VdbeScanStatusRange(v
, addrExplain
, addrExplain
, -1);
1794 case SRT_EphemTab
: {
1795 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, nKey
+bSeq
, regRow
);
1796 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1797 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1798 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1801 #ifndef SQLITE_OMIT_SUBQUERY
1803 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1804 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1805 pDest
->zAffSdst
, nColumn
);
1806 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1810 /* The LIMIT clause will terminate the loop for us */
1815 int i2
= pDest
->iSDParm2
;
1816 int r1
= sqlite3GetTempReg(pParse
);
1817 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,regRow
+(i2
<0),nColumn
-(i2
<0),r1
);
1819 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regRow
);
1821 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regRow
, i2
);
1826 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1827 testcase( eDest
==SRT_Output
);
1828 testcase( eDest
==SRT_Coroutine
);
1829 if( eDest
==SRT_Output
){
1830 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1832 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1838 if( eDest
==SRT_Set
){
1839 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1841 sqlite3ReleaseTempReg(pParse
, regRow
);
1843 sqlite3ReleaseTempReg(pParse
, regRowid
);
1845 /* The bottom of the loop
1847 sqlite3VdbeResolveLabel(v
, addrContinue
);
1848 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1849 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1851 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1853 sqlite3VdbeScanStatusRange(v
, addrExplain
, sqlite3VdbeCurrentAddr(v
)-1, -1);
1854 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1855 sqlite3VdbeResolveLabel(v
, addrBreak
);
1859 ** Return a pointer to a string containing the 'declaration type' of the
1860 ** expression pExpr. The string may be treated as static by the caller.
1862 ** The declaration type is the exact datatype definition extracted from the
1863 ** original CREATE TABLE statement if the expression is a column. The
1864 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1865 ** is considered a column can be complex in the presence of subqueries. The
1866 ** result-set expression in all of the following SELECT statements is
1867 ** considered a column by this function.
1869 ** SELECT col FROM tbl;
1870 ** SELECT (SELECT col FROM tbl;
1871 ** SELECT (SELECT col FROM tbl);
1872 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1874 ** The declaration type for any expression other than a column is NULL.
1876 ** This routine has either 3 or 6 parameters depending on whether or not
1877 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1879 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1880 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1881 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1882 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1884 static const char *columnTypeImpl(
1886 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1890 const char **pzOrigDb
,
1891 const char **pzOrigTab
,
1892 const char **pzOrigCol
1895 char const *zType
= 0;
1897 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1898 char const *zOrigDb
= 0;
1899 char const *zOrigTab
= 0;
1900 char const *zOrigCol
= 0;
1904 assert( pNC
->pSrcList
!=0 );
1905 switch( pExpr
->op
){
1907 /* The expression is a column. Locate the table the column is being
1908 ** extracted from in NameContext.pSrcList. This table may be real
1909 ** database table or a subquery.
1911 Table
*pTab
= 0; /* Table structure column is extracted from */
1912 Select
*pS
= 0; /* Select the column is extracted from */
1913 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1914 while( pNC
&& !pTab
){
1915 SrcList
*pTabList
= pNC
->pSrcList
;
1916 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1917 if( j
<pTabList
->nSrc
){
1918 pTab
= pTabList
->a
[j
].pTab
;
1919 pS
= pTabList
->a
[j
].pSelect
;
1926 /* At one time, code such as "SELECT new.x" within a trigger would
1927 ** cause this condition to run. Since then, we have restructured how
1928 ** trigger code is generated and so this condition is no longer
1929 ** possible. However, it can still be true for statements like
1932 ** CREATE TABLE t1(col INTEGER);
1933 ** SELECT (SELECT t1.col) FROM FROM t1;
1935 ** when columnType() is called on the expression "t1.col" in the
1936 ** sub-select. In this case, set the column type to NULL, even
1937 ** though it should really be "INTEGER".
1939 ** This is not a problem, as the column type of "t1.col" is never
1940 ** used. When columnType() is called on the expression
1941 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1946 assert( pTab
&& ExprUseYTab(pExpr
) && pExpr
->y
.pTab
==pTab
);
1948 /* The "table" is actually a sub-select or a view in the FROM clause
1949 ** of the SELECT statement. Return the declaration type and origin
1950 ** data for the result-set column of the sub-select.
1952 if( iCol
<pS
->pEList
->nExpr
1953 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1959 /* If iCol is less than zero, then the expression requests the
1960 ** rowid of the sub-select or view. This expression is legal (see
1961 ** test case misc2.2.2) - it always evaluates to NULL.
1964 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1965 sNC
.pSrcList
= pS
->pSrc
;
1967 sNC
.pParse
= pNC
->pParse
;
1968 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
);
1971 /* A real table or a CTE table */
1973 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1974 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1975 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1980 zOrigCol
= pTab
->aCol
[iCol
].zCnName
;
1981 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1983 zOrigTab
= pTab
->zName
;
1984 if( pNC
->pParse
&& pTab
->pSchema
){
1985 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1986 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1989 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1993 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1999 #ifndef SQLITE_OMIT_SUBQUERY
2001 /* The expression is a sub-select. Return the declaration type and
2002 ** origin info for the single column in the result set of the SELECT
2008 assert( ExprUseXSelect(pExpr
) );
2009 pS
= pExpr
->x
.pSelect
;
2010 p
= pS
->pEList
->a
[0].pExpr
;
2011 sNC
.pSrcList
= pS
->pSrc
;
2013 sNC
.pParse
= pNC
->pParse
;
2014 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
2020 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2022 assert( pzOrigTab
&& pzOrigCol
);
2023 *pzOrigDb
= zOrigDb
;
2024 *pzOrigTab
= zOrigTab
;
2025 *pzOrigCol
= zOrigCol
;
2032 ** Generate code that will tell the VDBE the declaration types of columns
2033 ** in the result set.
2035 static void generateColumnTypes(
2036 Parse
*pParse
, /* Parser context */
2037 SrcList
*pTabList
, /* List of tables */
2038 ExprList
*pEList
/* Expressions defining the result set */
2040 #ifndef SQLITE_OMIT_DECLTYPE
2041 Vdbe
*v
= pParse
->pVdbe
;
2044 sNC
.pSrcList
= pTabList
;
2045 sNC
.pParse
= pParse
;
2047 for(i
=0; i
<pEList
->nExpr
; i
++){
2048 Expr
*p
= pEList
->a
[i
].pExpr
;
2050 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2051 const char *zOrigDb
= 0;
2052 const char *zOrigTab
= 0;
2053 const char *zOrigCol
= 0;
2054 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
2056 /* The vdbe must make its own copy of the column-type and other
2057 ** column specific strings, in case the schema is reset before this
2058 ** virtual machine is deleted.
2060 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
2061 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
2062 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
2064 zType
= columnType(&sNC
, p
, 0, 0, 0);
2066 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
2068 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2073 ** Compute the column names for a SELECT statement.
2075 ** The only guarantee that SQLite makes about column names is that if the
2076 ** column has an AS clause assigning it a name, that will be the name used.
2077 ** That is the only documented guarantee. However, countless applications
2078 ** developed over the years have made baseless assumptions about column names
2079 ** and will break if those assumptions changes. Hence, use extreme caution
2080 ** when modifying this routine to avoid breaking legacy.
2082 ** See Also: sqlite3ColumnsFromExprList()
2084 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2085 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2086 ** applications should operate this way. Nevertheless, we need to support the
2087 ** other modes for legacy:
2089 ** short=OFF, full=OFF: Column name is the text of the expression has it
2090 ** originally appears in the SELECT statement. In
2091 ** other words, the zSpan of the result expression.
2093 ** short=ON, full=OFF: (This is the default setting). If the result
2094 ** refers directly to a table column, then the
2095 ** result column name is just the table column
2096 ** name: COLUMN. Otherwise use zSpan.
2098 ** full=ON, short=ANY: If the result refers directly to a table column,
2099 ** then the result column name with the table name
2100 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2102 void sqlite3GenerateColumnNames(
2103 Parse
*pParse
, /* Parser context */
2104 Select
*pSelect
/* Generate column names for this SELECT statement */
2106 Vdbe
*v
= pParse
->pVdbe
;
2111 sqlite3
*db
= pParse
->db
;
2112 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2113 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2115 if( pParse
->colNamesSet
) return;
2116 /* Column names are determined by the left-most term of a compound select */
2117 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2118 TREETRACE(0x80,pParse
,pSelect
,("generating column names\n"));
2119 pTabList
= pSelect
->pSrc
;
2120 pEList
= pSelect
->pEList
;
2122 assert( pTabList
!=0 );
2123 pParse
->colNamesSet
= 1;
2124 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
2125 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
2126 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
2127 for(i
=0; i
<pEList
->nExpr
; i
++){
2128 Expr
*p
= pEList
->a
[i
].pExpr
;
2131 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
2132 assert( p
->op
!=TK_COLUMN
2133 || (ExprUseYTab(p
) && p
->y
.pTab
!=0) ); /* Covering idx not yet coded */
2134 if( pEList
->a
[i
].zEName
&& pEList
->a
[i
].fg
.eEName
==ENAME_NAME
){
2135 /* An AS clause always takes first priority */
2136 char *zName
= pEList
->a
[i
].zEName
;
2137 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
2138 }else if( srcName
&& p
->op
==TK_COLUMN
){
2140 int iCol
= p
->iColumn
;
2143 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2144 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
2148 zCol
= pTab
->aCol
[iCol
].zCnName
;
2152 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
2153 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
2155 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
2158 const char *z
= pEList
->a
[i
].zEName
;
2159 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
2160 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
2163 generateColumnTypes(pParse
, pTabList
, pEList
);
2167 ** Given an expression list (which is really the list of expressions
2168 ** that form the result set of a SELECT statement) compute appropriate
2169 ** column names for a table that would hold the expression list.
2171 ** All column names will be unique.
2173 ** Only the column names are computed. Column.zType, Column.zColl,
2174 ** and other fields of Column are zeroed.
2176 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2177 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2179 ** The only guarantee that SQLite makes about column names is that if the
2180 ** column has an AS clause assigning it a name, that will be the name used.
2181 ** That is the only documented guarantee. However, countless applications
2182 ** developed over the years have made baseless assumptions about column names
2183 ** and will break if those assumptions changes. Hence, use extreme caution
2184 ** when modifying this routine to avoid breaking legacy.
2186 ** See Also: sqlite3GenerateColumnNames()
2188 int sqlite3ColumnsFromExprList(
2189 Parse
*pParse
, /* Parsing context */
2190 ExprList
*pEList
, /* Expr list from which to derive column names */
2191 i16
*pnCol
, /* Write the number of columns here */
2192 Column
**paCol
/* Write the new column list here */
2194 sqlite3
*db
= pParse
->db
; /* Database connection */
2195 int i
, j
; /* Loop counters */
2196 u32 cnt
; /* Index added to make the name unique */
2197 Column
*aCol
, *pCol
; /* For looping over result columns */
2198 int nCol
; /* Number of columns in the result set */
2199 char *zName
; /* Column name */
2200 int nName
; /* Size of name in zName[] */
2201 Hash ht
; /* Hash table of column names */
2204 sqlite3HashInit(&ht
);
2206 nCol
= pEList
->nExpr
;
2207 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
2208 testcase( aCol
==0 );
2209 if( NEVER(nCol
>32767) ) nCol
= 32767;
2214 assert( nCol
==(i16
)nCol
);
2218 for(i
=0, pCol
=aCol
; i
<nCol
&& !pParse
->nErr
; i
++, pCol
++){
2219 struct ExprList_item
*pX
= &pEList
->a
[i
];
2220 struct ExprList_item
*pCollide
;
2221 /* Get an appropriate name for the column
2223 if( (zName
= pX
->zEName
)!=0 && pX
->fg
.eEName
==ENAME_NAME
){
2224 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2226 Expr
*pColExpr
= sqlite3ExprSkipCollateAndLikely(pX
->pExpr
);
2227 while( ALWAYS(pColExpr
!=0) && pColExpr
->op
==TK_DOT
){
2228 pColExpr
= pColExpr
->pRight
;
2229 assert( pColExpr
!=0 );
2231 if( pColExpr
->op
==TK_COLUMN
2232 && ALWAYS( ExprUseYTab(pColExpr
) )
2233 && ALWAYS( pColExpr
->y
.pTab
!=0 )
2235 /* For columns use the column name name */
2236 int iCol
= pColExpr
->iColumn
;
2237 pTab
= pColExpr
->y
.pTab
;
2238 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2239 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zCnName
: "rowid";
2240 }else if( pColExpr
->op
==TK_ID
){
2241 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
2242 zName
= pColExpr
->u
.zToken
;
2244 /* Use the original text of the column expression as its name */
2245 assert( zName
==pX
->zEName
); /* pointer comparison intended */
2248 if( zName
&& !sqlite3IsTrueOrFalse(zName
) ){
2249 zName
= sqlite3DbStrDup(db
, zName
);
2251 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
2254 /* Make sure the column name is unique. If the name is not unique,
2255 ** append an integer to the name so that it becomes unique.
2258 while( zName
&& (pCollide
= sqlite3HashFind(&ht
, zName
))!=0 ){
2259 if( pCollide
->fg
.bUsingTerm
){
2260 pCol
->colFlags
|= COLFLAG_NOEXPAND
;
2262 nName
= sqlite3Strlen30(zName
);
2264 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
2265 if( zName
[j
]==':' ) nName
= j
;
2267 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
2268 sqlite3ProgressCheck(pParse
);
2270 sqlite3_randomness(sizeof(cnt
), &cnt
);
2273 pCol
->zCnName
= zName
;
2274 pCol
->hName
= sqlite3StrIHash(zName
);
2275 if( pX
->fg
.bNoExpand
){
2276 pCol
->colFlags
|= COLFLAG_NOEXPAND
;
2278 sqlite3ColumnPropertiesFromName(0, pCol
);
2279 if( zName
&& sqlite3HashInsert(&ht
, zName
, pX
)==pX
){
2280 sqlite3OomFault(db
);
2283 sqlite3HashClear(&ht
);
2286 sqlite3DbFree(db
, aCol
[j
].zCnName
);
2288 sqlite3DbFree(db
, aCol
);
2297 ** pTab is a transient Table object that represents a subquery of some
2298 ** kind (maybe a parenthesized subquery in the FROM clause of a larger
2299 ** query, or a VIEW, or a CTE). This routine computes type information
2300 ** for that Table object based on the Select object that implements the
2301 ** subquery. For the purposes of this routine, "type information" means:
2303 ** * The datatype name, as it might appear in a CREATE TABLE statement
2304 ** * Which collating sequence to use for the column
2305 ** * The affinity of the column
2307 void sqlite3SubqueryColumnTypes(
2308 Parse
*pParse
, /* Parsing contexts */
2309 Table
*pTab
, /* Add column type information to this table */
2310 Select
*pSelect
, /* SELECT used to determine types and collations */
2311 char aff
/* Default affinity. */
2313 sqlite3
*db
= pParse
->db
;
2318 struct ExprList_item
*a
;
2321 assert( pSelect
!=0 );
2322 testcase( (pSelect
->selFlags
& SF_Resolved
)==0 );
2323 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 || IN_RENAME_OBJECT
);
2324 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| pParse
->nErr
>0 );
2325 assert( aff
==SQLITE_AFF_NONE
|| aff
==SQLITE_AFF_BLOB
);
2326 if( db
->mallocFailed
|| IN_RENAME_OBJECT
) return;
2327 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2328 a
= pSelect
->pEList
->a
;
2329 memset(&sNC
, 0, sizeof(sNC
));
2330 sNC
.pSrcList
= pSelect
->pSrc
;
2331 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
2334 pTab
->tabFlags
|= (pCol
->colFlags
& COLFLAG_NOINSERT
);
2336 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2337 pCol
->affinity
= sqlite3ExprAffinity(p
);
2338 if( pCol
->affinity
<=SQLITE_AFF_NONE
){
2339 pCol
->affinity
= aff
;
2341 if( pCol
->affinity
>=SQLITE_AFF_TEXT
&& pSelect
->pNext
){
2344 for(m
=0, pS2
=pSelect
->pNext
; pS2
; pS2
=pS2
->pNext
){
2345 m
|= sqlite3ExprDataType(pS2
->pEList
->a
[i
].pExpr
);
2347 if( pCol
->affinity
==SQLITE_AFF_TEXT
&& (m
&0x01)!=0 ){
2348 pCol
->affinity
= SQLITE_AFF_BLOB
;
2350 if( pCol
->affinity
>=SQLITE_AFF_NUMERIC
&& (m
&0x02)!=0 ){
2351 pCol
->affinity
= SQLITE_AFF_BLOB
;
2353 if( pCol
->affinity
>=SQLITE_AFF_NUMERIC
&& p
->op
==TK_CAST
){
2354 pCol
->affinity
= SQLITE_AFF_FLEXNUM
;
2357 zType
= columnType(&sNC
, p
, 0, 0, 0);
2358 if( zType
==0 || pCol
->affinity
!=sqlite3AffinityType(zType
, 0) ){
2359 if( pCol
->affinity
==SQLITE_AFF_NUMERIC
2360 || pCol
->affinity
==SQLITE_AFF_FLEXNUM
2365 for(j
=1; j
<SQLITE_N_STDTYPE
; j
++){
2366 if( sqlite3StdTypeAffinity
[j
]==pCol
->affinity
){
2367 zType
= sqlite3StdType
[j
];
2374 i64 m
= sqlite3Strlen30(zType
);
2375 n
= sqlite3Strlen30(pCol
->zCnName
);
2376 pCol
->zCnName
= sqlite3DbReallocOrFree(db
, pCol
->zCnName
, n
+m
+2);
2377 pCol
->colFlags
&= ~(COLFLAG_HASTYPE
|COLFLAG_HASCOLL
);
2378 if( pCol
->zCnName
){
2379 memcpy(&pCol
->zCnName
[n
+1], zType
, m
+1);
2380 pCol
->colFlags
|= COLFLAG_HASTYPE
;
2383 pColl
= sqlite3ExprCollSeq(pParse
, p
);
2385 assert( pTab
->pIndex
==0 );
2386 sqlite3ColumnSetColl(db
, pCol
, pColl
->zName
);
2389 pTab
->szTabRow
= 1; /* Any non-zero value works */
2393 ** Given a SELECT statement, generate a Table structure that describes
2394 ** the result set of that SELECT.
2396 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
, char aff
){
2398 sqlite3
*db
= pParse
->db
;
2401 savedFlags
= db
->flags
;
2402 db
->flags
&= ~(u64
)SQLITE_FullColNames
;
2403 db
->flags
|= SQLITE_ShortColNames
;
2404 sqlite3SelectPrep(pParse
, pSelect
, 0);
2405 db
->flags
= savedFlags
;
2406 if( pParse
->nErr
) return 0;
2407 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2408 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
2414 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
2415 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
2416 sqlite3SubqueryColumnTypes(pParse
, pTab
, pSelect
, aff
);
2418 if( db
->mallocFailed
){
2419 sqlite3DeleteTable(db
, pTab
);
2426 ** Get a VDBE for the given parser context. Create a new one if necessary.
2427 ** If an error occurs, return NULL and leave a message in pParse.
2429 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
2430 if( pParse
->pVdbe
){
2431 return pParse
->pVdbe
;
2433 if( pParse
->pToplevel
==0
2434 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
2436 pParse
->okConstFactor
= 1;
2438 return sqlite3VdbeCreate(pParse
);
2443 ** Compute the iLimit and iOffset fields of the SELECT based on the
2444 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2445 ** that appear in the original SQL statement after the LIMIT and OFFSET
2446 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2447 ** are the integer memory register numbers for counters used to compute
2448 ** the limit and offset. If there is no limit and/or offset, then
2449 ** iLimit and iOffset are negative.
2451 ** This routine changes the values of iLimit and iOffset only if
2452 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2453 ** and iOffset should have been preset to appropriate default values (zero)
2454 ** prior to calling this routine.
2456 ** The iOffset register (if it exists) is initialized to the value
2457 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2458 ** iOffset+1 is initialized to LIMIT+OFFSET.
2460 ** Only if pLimit->pLeft!=0 do the limit registers get
2461 ** redefined. The UNION ALL operator uses this property to force
2462 ** the reuse of the same limit and offset registers across multiple
2463 ** SELECT statements.
2465 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
2470 Expr
*pLimit
= p
->pLimit
;
2472 if( p
->iLimit
) return;
2475 ** "LIMIT -1" always shows all rows. There is some
2476 ** controversy about what the correct behavior should be.
2477 ** The current implementation interprets "LIMIT 0" to mean
2481 assert( pLimit
->op
==TK_LIMIT
);
2482 assert( pLimit
->pLeft
!=0 );
2483 p
->iLimit
= iLimit
= ++pParse
->nMem
;
2484 v
= sqlite3GetVdbe(pParse
);
2486 if( sqlite3ExprIsInteger(pLimit
->pLeft
, &n
) ){
2487 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
2488 VdbeComment((v
, "LIMIT counter"));
2490 sqlite3VdbeGoto(v
, iBreak
);
2491 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
2492 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
2493 p
->selFlags
|= SF_FixedLimit
;
2496 sqlite3ExprCode(pParse
, pLimit
->pLeft
, iLimit
);
2497 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
2498 VdbeComment((v
, "LIMIT counter"));
2499 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
2501 if( pLimit
->pRight
){
2502 p
->iOffset
= iOffset
= ++pParse
->nMem
;
2503 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
2504 sqlite3ExprCode(pParse
, pLimit
->pRight
, iOffset
);
2505 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
2506 VdbeComment((v
, "OFFSET counter"));
2507 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
2508 VdbeComment((v
, "LIMIT+OFFSET"));
2513 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2515 ** Return the appropriate collating sequence for the iCol-th column of
2516 ** the result set for the compound-select statement "p". Return NULL if
2517 ** the column has no default collating sequence.
2519 ** The collating sequence for the compound select is taken from the
2520 ** left-most term of the select that has a collating sequence.
2522 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
2525 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
2530 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2531 ** have been thrown during name resolution and we would not have gotten
2533 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
2534 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
2540 ** The select statement passed as the second parameter is a compound SELECT
2541 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2542 ** structure suitable for implementing the ORDER BY.
2544 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2545 ** function is responsible for ensuring that this structure is eventually
2548 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
2549 ExprList
*pOrderBy
= p
->pOrderBy
;
2550 int nOrderBy
= ALWAYS(pOrderBy
!=0) ? pOrderBy
->nExpr
: 0;
2551 sqlite3
*db
= pParse
->db
;
2552 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
2555 for(i
=0; i
<nOrderBy
; i
++){
2556 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
2557 Expr
*pTerm
= pItem
->pExpr
;
2560 if( pTerm
->flags
& EP_Collate
){
2561 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
2563 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
2564 if( pColl
==0 ) pColl
= db
->pDfltColl
;
2565 pOrderBy
->a
[i
].pExpr
=
2566 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
2568 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2569 pRet
->aColl
[i
] = pColl
;
2570 pRet
->aSortFlags
[i
] = pOrderBy
->a
[i
].fg
.sortFlags
;
2577 #ifndef SQLITE_OMIT_CTE
2579 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2580 ** query of the form:
2582 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2583 ** \___________/ \_______________/
2587 ** There is exactly one reference to the recursive-table in the FROM clause
2588 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2590 ** The setup-query runs once to generate an initial set of rows that go
2591 ** into a Queue table. Rows are extracted from the Queue table one by
2592 ** one. Each row extracted from Queue is output to pDest. Then the single
2593 ** extracted row (now in the iCurrent table) becomes the content of the
2594 ** recursive-table for a recursive-query run. The output of the recursive-query
2595 ** is added back into the Queue table. Then another row is extracted from Queue
2596 ** and the iteration continues until the Queue table is empty.
2598 ** If the compound query operator is UNION then no duplicate rows are ever
2599 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2600 ** that have ever been inserted into Queue and causes duplicates to be
2601 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2603 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2604 ** ORDER BY order and the first entry is extracted for each cycle. Without
2605 ** an ORDER BY, the Queue table is just a FIFO.
2607 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2608 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2609 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2610 ** with a positive value, then the first OFFSET outputs are discarded rather
2611 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2612 ** rows have been skipped.
2614 static void generateWithRecursiveQuery(
2615 Parse
*pParse
, /* Parsing context */
2616 Select
*p
, /* The recursive SELECT to be coded */
2617 SelectDest
*pDest
/* What to do with query results */
2619 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2620 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2621 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2622 Select
*pSetup
; /* The setup query */
2623 Select
*pFirstRec
; /* Left-most recursive term */
2624 int addrTop
; /* Top of the loop */
2625 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2626 int iCurrent
= 0; /* The Current table */
2627 int regCurrent
; /* Register holding Current table */
2628 int iQueue
; /* The Queue table */
2629 int iDistinct
= 0; /* To ensure unique results if UNION */
2630 int eDest
= SRT_Fifo
; /* How to write to Queue */
2631 SelectDest destQueue
; /* SelectDest targeting the Queue table */
2632 int i
; /* Loop counter */
2633 int rc
; /* Result code */
2634 ExprList
*pOrderBy
; /* The ORDER BY clause */
2635 Expr
*pLimit
; /* Saved LIMIT and OFFSET */
2636 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2638 #ifndef SQLITE_OMIT_WINDOWFUNC
2640 sqlite3ErrorMsg(pParse
, "cannot use window functions in recursive queries");
2645 /* Obtain authorization to do a recursive query */
2646 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2648 /* Process the LIMIT and OFFSET clauses, if they exist */
2649 addrBreak
= sqlite3VdbeMakeLabel(pParse
);
2650 p
->nSelectRow
= 320; /* 4 billion rows */
2651 computeLimitRegisters(pParse
, p
, addrBreak
);
2653 regLimit
= p
->iLimit
;
2654 regOffset
= p
->iOffset
;
2656 p
->iLimit
= p
->iOffset
= 0;
2657 pOrderBy
= p
->pOrderBy
;
2659 /* Locate the cursor number of the Current table */
2660 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2661 if( pSrc
->a
[i
].fg
.isRecursive
){
2662 iCurrent
= pSrc
->a
[i
].iCursor
;
2667 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2668 ** the Distinct table must be exactly one greater than Queue in order
2669 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2670 iQueue
= pParse
->nTab
++;
2671 if( p
->op
==TK_UNION
){
2672 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2673 iDistinct
= pParse
->nTab
++;
2675 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2677 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2679 /* Allocate cursors for Current, Queue, and Distinct. */
2680 regCurrent
= ++pParse
->nMem
;
2681 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2683 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2684 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2685 (char*)pKeyInfo
, P4_KEYINFO
);
2686 destQueue
.pOrderBy
= pOrderBy
;
2688 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2690 VdbeComment((v
, "Queue table"));
2692 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2693 p
->selFlags
|= SF_UsesEphemeral
;
2696 /* Detach the ORDER BY clause from the compound SELECT */
2699 /* Figure out how many elements of the compound SELECT are part of the
2700 ** recursive query. Make sure no recursive elements use aggregate
2701 ** functions. Mark the recursive elements as UNION ALL even if they
2702 ** are really UNION because the distinctness will be enforced by the
2703 ** iDistinct table. pFirstRec is left pointing to the left-most
2704 ** recursive term of the CTE.
2706 for(pFirstRec
=p
; ALWAYS(pFirstRec
!=0); pFirstRec
=pFirstRec
->pPrior
){
2707 if( pFirstRec
->selFlags
& SF_Aggregate
){
2708 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2709 goto end_of_recursive_query
;
2711 pFirstRec
->op
= TK_ALL
;
2712 if( (pFirstRec
->pPrior
->selFlags
& SF_Recursive
)==0 ) break;
2715 /* Store the results of the setup-query in Queue. */
2716 pSetup
= pFirstRec
->pPrior
;
2718 ExplainQueryPlan((pParse
, 1, "SETUP"));
2719 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2721 if( rc
) goto end_of_recursive_query
;
2723 /* Find the next row in the Queue and output that row */
2724 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2726 /* Transfer the next row in Queue over to Current */
2727 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2729 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2731 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2733 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2735 /* Output the single row in Current */
2736 addrCont
= sqlite3VdbeMakeLabel(pParse
);
2737 codeOffset(v
, regOffset
, addrCont
);
2738 selectInnerLoop(pParse
, p
, iCurrent
,
2739 0, 0, pDest
, addrCont
, addrBreak
);
2741 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2744 sqlite3VdbeResolveLabel(v
, addrCont
);
2746 /* Execute the recursive SELECT taking the single row in Current as
2747 ** the value for the recursive-table. Store the results in the Queue.
2749 pFirstRec
->pPrior
= 0;
2750 ExplainQueryPlan((pParse
, 1, "RECURSIVE STEP"));
2751 sqlite3Select(pParse
, p
, &destQueue
);
2752 assert( pFirstRec
->pPrior
==0 );
2753 pFirstRec
->pPrior
= pSetup
;
2755 /* Keep running the loop until the Queue is empty */
2756 sqlite3VdbeGoto(v
, addrTop
);
2757 sqlite3VdbeResolveLabel(v
, addrBreak
);
2759 end_of_recursive_query
:
2760 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2761 p
->pOrderBy
= pOrderBy
;
2765 #endif /* SQLITE_OMIT_CTE */
2767 /* Forward references */
2768 static int multiSelectOrderBy(
2769 Parse
*pParse
, /* Parsing context */
2770 Select
*p
, /* The right-most of SELECTs to be coded */
2771 SelectDest
*pDest
/* What to do with query results */
2775 ** Handle the special case of a compound-select that originates from a
2776 ** VALUES clause. By handling this as a special case, we avoid deep
2777 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2778 ** on a VALUES clause.
2780 ** Because the Select object originates from a VALUES clause:
2781 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2782 ** (2) All terms are UNION ALL
2783 ** (3) There is no ORDER BY clause
2785 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2786 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2787 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2788 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2790 static int multiSelectValues(
2791 Parse
*pParse
, /* Parsing context */
2792 Select
*p
, /* The right-most of SELECTs to be coded */
2793 SelectDest
*pDest
/* What to do with query results */
2797 int bShowAll
= p
->pLimit
==0;
2798 assert( p
->selFlags
& SF_MultiValue
);
2800 assert( p
->selFlags
& SF_Values
);
2801 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2802 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2803 #ifndef SQLITE_OMIT_WINDOWFUNC
2804 if( p
->pWin
) return -1;
2806 if( p
->pPrior
==0 ) break;
2807 assert( p
->pPrior
->pNext
==p
);
2811 ExplainQueryPlan((pParse
, 0, "SCAN %d CONSTANT ROW%s", nRow
,
2812 nRow
==1 ? "" : "S"));
2814 selectInnerLoop(pParse
, p
, -1, 0, 0, pDest
, 1, 1);
2815 if( !bShowAll
) break;
2816 p
->nSelectRow
= nRow
;
2823 ** Return true if the SELECT statement which is known to be the recursive
2824 ** part of a recursive CTE still has its anchor terms attached. If the
2825 ** anchor terms have already been removed, then return false.
2827 static int hasAnchor(Select
*p
){
2828 while( p
&& (p
->selFlags
& SF_Recursive
)!=0 ){ p
= p
->pPrior
; }
2833 ** This routine is called to process a compound query form from
2834 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2837 ** "p" points to the right-most of the two queries. the query on the
2838 ** left is p->pPrior. The left query could also be a compound query
2839 ** in which case this routine will be called recursively.
2841 ** The results of the total query are to be written into a destination
2842 ** of type eDest with parameter iParm.
2844 ** Example 1: Consider a three-way compound SQL statement.
2846 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2848 ** This statement is parsed up as follows:
2852 ** `-----> SELECT b FROM t2
2854 ** `------> SELECT a FROM t1
2856 ** The arrows in the diagram above represent the Select.pPrior pointer.
2857 ** So if this routine is called with p equal to the t3 query, then
2858 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2860 ** Notice that because of the way SQLite parses compound SELECTs, the
2861 ** individual selects always group from left to right.
2863 static int multiSelect(
2864 Parse
*pParse
, /* Parsing context */
2865 Select
*p
, /* The right-most of SELECTs to be coded */
2866 SelectDest
*pDest
/* What to do with query results */
2868 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2869 Select
*pPrior
; /* Another SELECT immediately to our left */
2870 Vdbe
*v
; /* Generate code to this VDBE */
2871 SelectDest dest
; /* Alternative data destination */
2872 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2873 sqlite3
*db
; /* Database connection */
2875 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2876 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2878 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2879 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2880 assert( p
->selFlags
& SF_Compound
);
2884 assert( pPrior
->pOrderBy
==0 );
2885 assert( pPrior
->pLimit
==0 );
2887 v
= sqlite3GetVdbe(pParse
);
2888 assert( v
!=0 ); /* The VDBE already created by calling function */
2890 /* Create the destination temporary table if necessary
2892 if( dest
.eDest
==SRT_EphemTab
){
2893 assert( p
->pEList
);
2894 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2895 dest
.eDest
= SRT_Table
;
2898 /* Special handling for a compound-select that originates as a VALUES clause.
2900 if( p
->selFlags
& SF_MultiValue
){
2901 rc
= multiSelectValues(pParse
, p
, &dest
);
2902 if( rc
>=0 ) goto multi_select_end
;
2906 /* Make sure all SELECTs in the statement have the same number of elements
2907 ** in their result sets.
2909 assert( p
->pEList
&& pPrior
->pEList
);
2910 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2912 #ifndef SQLITE_OMIT_CTE
2913 if( (p
->selFlags
& SF_Recursive
)!=0 && hasAnchor(p
) ){
2914 generateWithRecursiveQuery(pParse
, p
, &dest
);
2918 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2921 return multiSelectOrderBy(pParse
, p
, pDest
);
2924 #ifndef SQLITE_OMIT_EXPLAIN
2925 if( pPrior
->pPrior
==0 ){
2926 ExplainQueryPlan((pParse
, 1, "COMPOUND QUERY"));
2927 ExplainQueryPlan((pParse
, 1, "LEFT-MOST SUBQUERY"));
2931 /* Generate code for the left and right SELECT statements.
2936 int nLimit
= 0; /* Initialize to suppress harmless compiler warning */
2937 assert( !pPrior
->pLimit
);
2938 pPrior
->iLimit
= p
->iLimit
;
2939 pPrior
->iOffset
= p
->iOffset
;
2940 pPrior
->pLimit
= p
->pLimit
;
2941 TREETRACE(0x200, pParse
, p
, ("multiSelect UNION ALL left...\n"));
2942 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2945 goto multi_select_end
;
2948 p
->iLimit
= pPrior
->iLimit
;
2949 p
->iOffset
= pPrior
->iOffset
;
2951 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2952 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2954 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2955 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2958 ExplainQueryPlan((pParse
, 1, "UNION ALL"));
2959 TREETRACE(0x200, pParse
, p
, ("multiSelect UNION ALL right...\n"));
2960 rc
= sqlite3Select(pParse
, p
, &dest
);
2961 testcase( rc
!=SQLITE_OK
);
2962 pDelete
= p
->pPrior
;
2964 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2966 && sqlite3ExprIsInteger(p
->pLimit
->pLeft
, &nLimit
)
2967 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2969 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2972 sqlite3VdbeJumpHere(v
, addr
);
2978 int unionTab
; /* Cursor number of the temp table holding result */
2979 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2980 int priorOp
; /* The SRT_ operation to apply to prior selects */
2981 Expr
*pLimit
; /* Saved values of p->nLimit */
2983 SelectDest uniondest
;
2985 testcase( p
->op
==TK_EXCEPT
);
2986 testcase( p
->op
==TK_UNION
);
2987 priorOp
= SRT_Union
;
2988 if( dest
.eDest
==priorOp
){
2989 /* We can reuse a temporary table generated by a SELECT to our
2992 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2993 unionTab
= dest
.iSDParm
;
2995 /* We will need to create our own temporary table to hold the
2996 ** intermediate results.
2998 unionTab
= pParse
->nTab
++;
2999 assert( p
->pOrderBy
==0 );
3000 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
3001 assert( p
->addrOpenEphm
[0] == -1 );
3002 p
->addrOpenEphm
[0] = addr
;
3003 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
3004 assert( p
->pEList
);
3008 /* Code the SELECT statements to our left
3010 assert( !pPrior
->pOrderBy
);
3011 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
3012 TREETRACE(0x200, pParse
, p
, ("multiSelect EXCEPT/UNION left...\n"));
3013 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
3015 goto multi_select_end
;
3018 /* Code the current SELECT statement
3020 if( p
->op
==TK_EXCEPT
){
3023 assert( p
->op
==TK_UNION
);
3029 uniondest
.eDest
= op
;
3030 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
3031 sqlite3SelectOpName(p
->op
)));
3032 TREETRACE(0x200, pParse
, p
, ("multiSelect EXCEPT/UNION right...\n"));
3033 rc
= sqlite3Select(pParse
, p
, &uniondest
);
3034 testcase( rc
!=SQLITE_OK
);
3035 assert( p
->pOrderBy
==0 );
3036 pDelete
= p
->pPrior
;
3039 if( p
->op
==TK_UNION
){
3040 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3042 sqlite3ExprDelete(db
, p
->pLimit
);
3047 /* Convert the data in the temporary table into whatever form
3048 ** it is that we currently need.
3050 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
3051 assert( p
->pEList
|| db
->mallocFailed
);
3052 if( dest
.eDest
!=priorOp
&& db
->mallocFailed
==0 ){
3053 int iCont
, iBreak
, iStart
;
3054 iBreak
= sqlite3VdbeMakeLabel(pParse
);
3055 iCont
= sqlite3VdbeMakeLabel(pParse
);
3056 computeLimitRegisters(pParse
, p
, iBreak
);
3057 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
3058 iStart
= sqlite3VdbeCurrentAddr(v
);
3059 selectInnerLoop(pParse
, p
, unionTab
,
3060 0, 0, &dest
, iCont
, iBreak
);
3061 sqlite3VdbeResolveLabel(v
, iCont
);
3062 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
3063 sqlite3VdbeResolveLabel(v
, iBreak
);
3064 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
3068 default: assert( p
->op
==TK_INTERSECT
); {
3070 int iCont
, iBreak
, iStart
;
3073 SelectDest intersectdest
;
3076 /* INTERSECT is different from the others since it requires
3077 ** two temporary tables. Hence it has its own case. Begin
3078 ** by allocating the tables we will need.
3080 tab1
= pParse
->nTab
++;
3081 tab2
= pParse
->nTab
++;
3082 assert( p
->pOrderBy
==0 );
3084 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
3085 assert( p
->addrOpenEphm
[0] == -1 );
3086 p
->addrOpenEphm
[0] = addr
;
3087 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
3088 assert( p
->pEList
);
3090 /* Code the SELECTs to our left into temporary table "tab1".
3092 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
3093 TREETRACE(0x400, pParse
, p
, ("multiSelect INTERSECT left...\n"));
3094 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
3096 goto multi_select_end
;
3099 /* Code the current SELECT into temporary table "tab2"
3101 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
3102 assert( p
->addrOpenEphm
[1] == -1 );
3103 p
->addrOpenEphm
[1] = addr
;
3107 intersectdest
.iSDParm
= tab2
;
3108 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
3109 sqlite3SelectOpName(p
->op
)));
3110 TREETRACE(0x400, pParse
, p
, ("multiSelect INTERSECT right...\n"));
3111 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
3112 testcase( rc
!=SQLITE_OK
);
3113 pDelete
= p
->pPrior
;
3115 if( p
->nSelectRow
>pPrior
->nSelectRow
){
3116 p
->nSelectRow
= pPrior
->nSelectRow
;
3118 sqlite3ExprDelete(db
, p
->pLimit
);
3121 /* Generate code to take the intersection of the two temporary
3125 assert( p
->pEList
);
3126 iBreak
= sqlite3VdbeMakeLabel(pParse
);
3127 iCont
= sqlite3VdbeMakeLabel(pParse
);
3128 computeLimitRegisters(pParse
, p
, iBreak
);
3129 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
3130 r1
= sqlite3GetTempReg(pParse
);
3131 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
3132 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0);
3134 sqlite3ReleaseTempReg(pParse
, r1
);
3135 selectInnerLoop(pParse
, p
, tab1
,
3136 0, 0, &dest
, iCont
, iBreak
);
3137 sqlite3VdbeResolveLabel(v
, iCont
);
3138 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
3139 sqlite3VdbeResolveLabel(v
, iBreak
);
3140 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
3141 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
3146 #ifndef SQLITE_OMIT_EXPLAIN
3148 ExplainQueryPlanPop(pParse
);
3152 if( pParse
->nErr
) goto multi_select_end
;
3154 /* Compute collating sequences used by
3155 ** temporary tables needed to implement the compound select.
3156 ** Attach the KeyInfo structure to all temporary tables.
3158 ** This section is run by the right-most SELECT statement only.
3159 ** SELECT statements to the left always skip this part. The right-most
3160 ** SELECT might also skip this part if it has no ORDER BY clause and
3161 ** no temp tables are required.
3163 if( p
->selFlags
& SF_UsesEphemeral
){
3164 int i
; /* Loop counter */
3165 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
3166 Select
*pLoop
; /* For looping through SELECT statements */
3167 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
3168 int nCol
; /* Number of columns in result set */
3170 assert( p
->pNext
==0 );
3171 assert( p
->pEList
!=0 );
3172 nCol
= p
->pEList
->nExpr
;
3173 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
3175 rc
= SQLITE_NOMEM_BKPT
;
3176 goto multi_select_end
;
3178 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
3179 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
3181 *apColl
= db
->pDfltColl
;
3185 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
3187 int addr
= pLoop
->addrOpenEphm
[i
];
3189 /* If [0] is unused then [1] is also unused. So we can
3190 ** always safely abort as soon as the first unused slot is found */
3191 assert( pLoop
->addrOpenEphm
[1]<0 );
3194 sqlite3VdbeChangeP2(v
, addr
, nCol
);
3195 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
3197 pLoop
->addrOpenEphm
[i
] = -1;
3200 sqlite3KeyInfoUnref(pKeyInfo
);
3204 pDest
->iSdst
= dest
.iSdst
;
3205 pDest
->nSdst
= dest
.nSdst
;
3207 sqlite3ParserAddCleanup(pParse
,
3208 (void(*)(sqlite3
*,void*))sqlite3SelectDelete
,
3213 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3216 ** Error message for when two or more terms of a compound select have different
3217 ** size result sets.
3219 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
3220 if( p
->selFlags
& SF_Values
){
3221 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
3223 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
3224 " do not have the same number of result columns",
3225 sqlite3SelectOpName(p
->op
));
3230 ** Code an output subroutine for a coroutine implementation of a
3231 ** SELECT statement.
3233 ** The data to be output is contained in pIn->iSdst. There are
3234 ** pIn->nSdst columns to be output. pDest is where the output should
3237 ** regReturn is the number of the register holding the subroutine
3240 ** If regPrev>0 then it is the first register in a vector that
3241 ** records the previous output. mem[regPrev] is a flag that is false
3242 ** if there has been no previous output. If regPrev>0 then code is
3243 ** generated to suppress duplicates. pKeyInfo is used for comparing
3246 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3249 static int generateOutputSubroutine(
3250 Parse
*pParse
, /* Parsing context */
3251 Select
*p
, /* The SELECT statement */
3252 SelectDest
*pIn
, /* Coroutine supplying data */
3253 SelectDest
*pDest
, /* Where to send the data */
3254 int regReturn
, /* The return address register */
3255 int regPrev
, /* Previous result register. No uniqueness if 0 */
3256 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
3257 int iBreak
/* Jump here if we hit the LIMIT */
3259 Vdbe
*v
= pParse
->pVdbe
;
3263 addr
= sqlite3VdbeCurrentAddr(v
);
3264 iContinue
= sqlite3VdbeMakeLabel(pParse
);
3266 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3270 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
3271 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
3272 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
3273 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
3274 sqlite3VdbeJumpHere(v
, addr1
);
3275 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
3276 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
3278 if( pParse
->db
->mallocFailed
) return 0;
3280 /* Suppress the first OFFSET entries if there is an OFFSET clause
3282 codeOffset(v
, p
->iOffset
, iContinue
);
3284 assert( pDest
->eDest
!=SRT_Exists
);
3285 assert( pDest
->eDest
!=SRT_Table
);
3286 switch( pDest
->eDest
){
3287 /* Store the result as data using a unique key.
3289 case SRT_EphemTab
: {
3290 int r1
= sqlite3GetTempReg(pParse
);
3291 int r2
= sqlite3GetTempReg(pParse
);
3292 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
3293 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
3294 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
3295 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
3296 sqlite3ReleaseTempReg(pParse
, r2
);
3297 sqlite3ReleaseTempReg(pParse
, r1
);
3301 #ifndef SQLITE_OMIT_SUBQUERY
3302 /* If we are creating a set for an "expr IN (SELECT ...)".
3306 testcase( pIn
->nSdst
>1 );
3307 r1
= sqlite3GetTempReg(pParse
);
3308 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
3309 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
3310 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
3311 pIn
->iSdst
, pIn
->nSdst
);
3312 sqlite3ReleaseTempReg(pParse
, r1
);
3316 /* If this is a scalar select that is part of an expression, then
3317 ** store the results in the appropriate memory cell and break out
3318 ** of the scan loop. Note that the select might return multiple columns
3319 ** if it is the RHS of a row-value IN operator.
3322 testcase( pIn
->nSdst
>1 );
3323 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, pIn
->nSdst
);
3324 /* The LIMIT clause will jump out of the loop for us */
3327 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3329 /* The results are stored in a sequence of registers
3330 ** starting at pDest->iSdst. Then the co-routine yields.
3332 case SRT_Coroutine
: {
3333 if( pDest
->iSdst
==0 ){
3334 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
3335 pDest
->nSdst
= pIn
->nSdst
;
3337 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
3338 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
3342 /* If none of the above, then the result destination must be
3343 ** SRT_Output. This routine is never called with any other
3344 ** destination other than the ones handled above or SRT_Output.
3346 ** For SRT_Output, results are stored in a sequence of registers.
3347 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3348 ** return the next row of result.
3351 assert( pDest
->eDest
==SRT_Output
);
3352 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
3357 /* Jump to the end of the loop if the LIMIT is reached.
3360 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
3363 /* Generate the subroutine return
3365 sqlite3VdbeResolveLabel(v
, iContinue
);
3366 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
3372 ** Alternative compound select code generator for cases when there
3373 ** is an ORDER BY clause.
3375 ** We assume a query of the following form:
3377 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3379 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3380 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3381 ** co-routines. Then run the co-routines in parallel and merge the results
3382 ** into the output. In addition to the two coroutines (called selectA and
3383 ** selectB) there are 7 subroutines:
3385 ** outA: Move the output of the selectA coroutine into the output
3386 ** of the compound query.
3388 ** outB: Move the output of the selectB coroutine into the output
3389 ** of the compound query. (Only generated for UNION and
3390 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3391 ** appears only in B.)
3393 ** AltB: Called when there is data from both coroutines and A<B.
3395 ** AeqB: Called when there is data from both coroutines and A==B.
3397 ** AgtB: Called when there is data from both coroutines and A>B.
3399 ** EofA: Called when data is exhausted from selectA.
3401 ** EofB: Called when data is exhausted from selectB.
3403 ** The implementation of the latter five subroutines depend on which
3404 ** <operator> is used:
3407 ** UNION ALL UNION EXCEPT INTERSECT
3408 ** ------------- ----------------- -------------- -----------------
3409 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3411 ** AeqB: outA, nextA nextA nextA outA, nextA
3413 ** AgtB: outB, nextB outB, nextB nextB nextB
3415 ** EofA: outB, nextB outB, nextB halt halt
3417 ** EofB: outA, nextA outA, nextA outA, nextA halt
3419 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3420 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3421 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3422 ** following nextX causes a jump to the end of the select processing.
3424 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3425 ** within the output subroutine. The regPrev register set holds the previously
3426 ** output value. A comparison is made against this value and the output
3427 ** is skipped if the next results would be the same as the previous.
3429 ** The implementation plan is to implement the two coroutines and seven
3430 ** subroutines first, then put the control logic at the bottom. Like this:
3433 ** coA: coroutine for left query (A)
3434 ** coB: coroutine for right query (B)
3435 ** outA: output one row of A
3436 ** outB: output one row of B (UNION and UNION ALL only)
3442 ** Init: initialize coroutine registers
3444 ** if eof(A) goto EofA
3446 ** if eof(B) goto EofB
3447 ** Cmpr: Compare A, B
3448 ** Jump AltB, AeqB, AgtB
3451 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3452 ** actually called using Gosub and they do not Return. EofA and EofB loop
3453 ** until all data is exhausted then jump to the "end" label. AltB, AeqB,
3454 ** and AgtB jump to either L2 or to one of EofA or EofB.
3456 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3457 static int multiSelectOrderBy(
3458 Parse
*pParse
, /* Parsing context */
3459 Select
*p
, /* The right-most of SELECTs to be coded */
3460 SelectDest
*pDest
/* What to do with query results */
3462 int i
, j
; /* Loop counters */
3463 Select
*pPrior
; /* Another SELECT immediately to our left */
3464 Select
*pSplit
; /* Left-most SELECT in the right-hand group */
3465 int nSelect
; /* Number of SELECT statements in the compound */
3466 Vdbe
*v
; /* Generate code to this VDBE */
3467 SelectDest destA
; /* Destination for coroutine A */
3468 SelectDest destB
; /* Destination for coroutine B */
3469 int regAddrA
; /* Address register for select-A coroutine */
3470 int regAddrB
; /* Address register for select-B coroutine */
3471 int addrSelectA
; /* Address of the select-A coroutine */
3472 int addrSelectB
; /* Address of the select-B coroutine */
3473 int regOutA
; /* Address register for the output-A subroutine */
3474 int regOutB
; /* Address register for the output-B subroutine */
3475 int addrOutA
; /* Address of the output-A subroutine */
3476 int addrOutB
= 0; /* Address of the output-B subroutine */
3477 int addrEofA
; /* Address of the select-A-exhausted subroutine */
3478 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
3479 int addrEofB
; /* Address of the select-B-exhausted subroutine */
3480 int addrAltB
; /* Address of the A<B subroutine */
3481 int addrAeqB
; /* Address of the A==B subroutine */
3482 int addrAgtB
; /* Address of the A>B subroutine */
3483 int regLimitA
; /* Limit register for select-A */
3484 int regLimitB
; /* Limit register for select-A */
3485 int regPrev
; /* A range of registers to hold previous output */
3486 int savedLimit
; /* Saved value of p->iLimit */
3487 int savedOffset
; /* Saved value of p->iOffset */
3488 int labelCmpr
; /* Label for the start of the merge algorithm */
3489 int labelEnd
; /* Label for the end of the overall SELECT stmt */
3490 int addr1
; /* Jump instructions that get retargeted */
3491 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3492 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
3493 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
3494 sqlite3
*db
; /* Database connection */
3495 ExprList
*pOrderBy
; /* The ORDER BY clause */
3496 int nOrderBy
; /* Number of terms in the ORDER BY clause */
3497 u32
*aPermute
; /* Mapping from ORDER BY terms to result set columns */
3499 assert( p
->pOrderBy
!=0 );
3500 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
3503 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
3504 labelEnd
= sqlite3VdbeMakeLabel(pParse
);
3505 labelCmpr
= sqlite3VdbeMakeLabel(pParse
);
3508 /* Patch up the ORDER BY clause
3511 assert( p
->pPrior
->pOrderBy
==0 );
3512 pOrderBy
= p
->pOrderBy
;
3514 nOrderBy
= pOrderBy
->nExpr
;
3516 /* For operators other than UNION ALL we have to make sure that
3517 ** the ORDER BY clause covers every term of the result set. Add
3518 ** terms to the ORDER BY clause as necessary.
3521 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
3522 struct ExprList_item
*pItem
;
3523 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
3525 assert( pItem
->u
.x
.iOrderByCol
>0 );
3526 if( pItem
->u
.x
.iOrderByCol
==i
) break;
3529 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
3530 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
3531 pNew
->flags
|= EP_IntValue
;
3533 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
3534 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
3539 /* Compute the comparison permutation and keyinfo that is used with
3540 ** the permutation used to determine if the next
3541 ** row of results comes from selectA or selectB. Also add explicit
3542 ** collations to the ORDER BY clause terms so that when the subqueries
3543 ** to the right and the left are evaluated, they use the correct
3546 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(u32
)*(nOrderBy
+ 1));
3548 struct ExprList_item
*pItem
;
3549 aPermute
[0] = nOrderBy
;
3550 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
3552 assert( pItem
->u
.x
.iOrderByCol
>0 );
3553 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
3554 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
3556 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
3561 /* Allocate a range of temporary registers and the KeyInfo needed
3562 ** for the logic that removes duplicate result rows when the
3563 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3568 int nExpr
= p
->pEList
->nExpr
;
3569 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
3570 regPrev
= pParse
->nMem
+1;
3571 pParse
->nMem
+= nExpr
+1;
3572 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
3573 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
3575 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
3576 for(i
=0; i
<nExpr
; i
++){
3577 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
3578 pKeyDup
->aSortFlags
[i
] = 0;
3583 /* Separate the left and the right query from one another
3586 if( (op
==TK_ALL
|| op
==TK_UNION
)
3587 && OptimizationEnabled(db
, SQLITE_BalancedMerge
)
3589 for(pSplit
=p
; pSplit
->pPrior
!=0 && pSplit
->op
==op
; pSplit
=pSplit
->pPrior
){
3591 assert( pSplit
->pPrior
->pNext
==pSplit
);
3598 for(i
=2; i
<nSelect
; i
+=2){ pSplit
= pSplit
->pPrior
; }
3600 pPrior
= pSplit
->pPrior
;
3601 assert( pPrior
!=0 );
3604 assert( p
->pOrderBy
== pOrderBy
);
3605 assert( pOrderBy
!=0 || db
->mallocFailed
);
3606 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
3607 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
3608 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
3610 /* Compute the limit registers */
3611 computeLimitRegisters(pParse
, p
, labelEnd
);
3612 if( p
->iLimit
&& op
==TK_ALL
){
3613 regLimitA
= ++pParse
->nMem
;
3614 regLimitB
= ++pParse
->nMem
;
3615 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
3617 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
3619 regLimitA
= regLimitB
= 0;
3621 sqlite3ExprDelete(db
, p
->pLimit
);
3624 regAddrA
= ++pParse
->nMem
;
3625 regAddrB
= ++pParse
->nMem
;
3626 regOutA
= ++pParse
->nMem
;
3627 regOutB
= ++pParse
->nMem
;
3628 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
3629 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
3631 ExplainQueryPlan((pParse
, 1, "MERGE (%s)", sqlite3SelectOpName(p
->op
)));
3633 /* Generate a coroutine to evaluate the SELECT statement to the
3634 ** left of the compound operator - the "A" select.
3636 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3637 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3638 VdbeComment((v
, "left SELECT"));
3639 pPrior
->iLimit
= regLimitA
;
3640 ExplainQueryPlan((pParse
, 1, "LEFT"));
3641 sqlite3Select(pParse
, pPrior
, &destA
);
3642 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3643 sqlite3VdbeJumpHere(v
, addr1
);
3645 /* Generate a coroutine to evaluate the SELECT statement on
3646 ** the right - the "B" select
3648 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3649 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3650 VdbeComment((v
, "right SELECT"));
3651 savedLimit
= p
->iLimit
;
3652 savedOffset
= p
->iOffset
;
3653 p
->iLimit
= regLimitB
;
3655 ExplainQueryPlan((pParse
, 1, "RIGHT"));
3656 sqlite3Select(pParse
, p
, &destB
);
3657 p
->iLimit
= savedLimit
;
3658 p
->iOffset
= savedOffset
;
3659 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3661 /* Generate a subroutine that outputs the current row of the A
3662 ** select as the next output row of the compound select.
3664 VdbeNoopComment((v
, "Output routine for A"));
3665 addrOutA
= generateOutputSubroutine(pParse
,
3666 p
, &destA
, pDest
, regOutA
,
3667 regPrev
, pKeyDup
, labelEnd
);
3669 /* Generate a subroutine that outputs the current row of the B
3670 ** select as the next output row of the compound select.
3672 if( op
==TK_ALL
|| op
==TK_UNION
){
3673 VdbeNoopComment((v
, "Output routine for B"));
3674 addrOutB
= generateOutputSubroutine(pParse
,
3675 p
, &destB
, pDest
, regOutB
,
3676 regPrev
, pKeyDup
, labelEnd
);
3678 sqlite3KeyInfoUnref(pKeyDup
);
3680 /* Generate a subroutine to run when the results from select A
3681 ** are exhausted and only data in select B remains.
3683 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3684 addrEofA_noB
= addrEofA
= labelEnd
;
3686 VdbeNoopComment((v
, "eof-A subroutine"));
3687 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3688 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3690 sqlite3VdbeGoto(v
, addrEofA
);
3691 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3694 /* Generate a subroutine to run when the results from select B
3695 ** are exhausted and only data in select A remains.
3697 if( op
==TK_INTERSECT
){
3698 addrEofB
= addrEofA
;
3699 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3701 VdbeNoopComment((v
, "eof-B subroutine"));
3702 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3703 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3704 sqlite3VdbeGoto(v
, addrEofB
);
3707 /* Generate code to handle the case of A<B
3709 VdbeNoopComment((v
, "A-lt-B subroutine"));
3710 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3711 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3712 sqlite3VdbeGoto(v
, labelCmpr
);
3714 /* Generate code to handle the case of A==B
3717 addrAeqB
= addrAltB
;
3718 }else if( op
==TK_INTERSECT
){
3719 addrAeqB
= addrAltB
;
3722 VdbeNoopComment((v
, "A-eq-B subroutine"));
3724 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3725 sqlite3VdbeGoto(v
, labelCmpr
);
3728 /* Generate code to handle the case of A>B
3730 VdbeNoopComment((v
, "A-gt-B subroutine"));
3731 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3732 if( op
==TK_ALL
|| op
==TK_UNION
){
3733 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3735 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3736 sqlite3VdbeGoto(v
, labelCmpr
);
3738 /* This code runs once to initialize everything.
3740 sqlite3VdbeJumpHere(v
, addr1
);
3741 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3742 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3744 /* Implement the main merge loop
3746 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3747 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3748 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3749 (char*)pKeyMerge
, P4_KEYINFO
);
3750 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3751 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3753 /* Jump to the this point in order to terminate the query.
3755 sqlite3VdbeResolveLabel(v
, labelEnd
);
3757 /* Make arrangements to free the 2nd and subsequent arms of the compound
3758 ** after the parse has finished */
3759 if( pSplit
->pPrior
){
3760 sqlite3ParserAddCleanup(pParse
,
3761 (void(*)(sqlite3
*,void*))sqlite3SelectDelete
, pSplit
->pPrior
);
3763 pSplit
->pPrior
= pPrior
;
3764 pPrior
->pNext
= pSplit
;
3765 sqlite3ExprListDelete(db
, pPrior
->pOrderBy
);
3766 pPrior
->pOrderBy
= 0;
3768 /*** TBD: Insert subroutine calls to close cursors on incomplete
3769 **** subqueries ****/
3770 ExplainQueryPlanPop(pParse
);
3771 return pParse
->nErr
!=0;
3775 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3777 /* An instance of the SubstContext object describes an substitution edit
3778 ** to be performed on a parse tree.
3780 ** All references to columns in table iTable are to be replaced by corresponding
3781 ** expressions in pEList.
3783 ** ## About "isOuterJoin":
3785 ** The isOuterJoin column indicates that the replacement will occur into a
3786 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3787 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3788 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3789 ** bypass the substituted expression with OP_IfNullRow.
3791 ** Suppose the original expression is an integer constant. Even though the table
3792 ** has the nullRow flag set, because the expression is an integer constant,
3793 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3794 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3795 ** flag is set, then the value in the register is set to NULL and the original
3796 ** expression is bypassed. If the nullRow flag is not set, then the original
3797 ** expression runs to populate the register.
3799 ** Example where this is needed:
3801 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3802 ** CREATE TABLE t2(x INT UNIQUE);
3804 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3806 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3807 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3808 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3809 ** when processing a non-matched row of the left.
3811 typedef struct SubstContext
{
3812 Parse
*pParse
; /* The parsing context */
3813 int iTable
; /* Replace references to this table */
3814 int iNewTable
; /* New table number */
3815 int isOuterJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3816 ExprList
*pEList
; /* Replacement expressions */
3817 ExprList
*pCList
; /* Collation sequences for replacement expr */
3820 /* Forward Declarations */
3821 static void substExprList(SubstContext
*, ExprList
*);
3822 static void substSelect(SubstContext
*, Select
*, int);
3825 ** Scan through the expression pExpr. Replace every reference to
3826 ** a column in table number iTable with a copy of the iColumn-th
3827 ** entry in pEList. (But leave references to the ROWID column
3830 ** This routine is part of the flattening procedure. A subquery
3831 ** whose result set is defined by pEList appears as entry in the
3832 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3833 ** FORM clause entry is iTable. This routine makes the necessary
3834 ** changes to pExpr so that it refers directly to the source table
3835 ** of the subquery rather the result set of the subquery.
3837 static Expr
*substExpr(
3838 SubstContext
*pSubst
, /* Description of the substitution */
3839 Expr
*pExpr
/* Expr in which substitution occurs */
3841 if( pExpr
==0 ) return 0;
3842 if( ExprHasProperty(pExpr
, EP_OuterON
|EP_InnerON
)
3843 && pExpr
->w
.iJoin
==pSubst
->iTable
3845 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
3846 pExpr
->w
.iJoin
= pSubst
->iNewTable
;
3848 if( pExpr
->op
==TK_COLUMN
3849 && pExpr
->iTable
==pSubst
->iTable
3850 && !ExprHasProperty(pExpr
, EP_FixedCol
)
3852 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3853 if( pExpr
->iColumn
<0 ){
3854 pExpr
->op
= TK_NULL
;
3862 iColumn
= pExpr
->iColumn
;
3863 assert( iColumn
>=0 );
3864 assert( pSubst
->pEList
!=0 && iColumn
<pSubst
->pEList
->nExpr
);
3865 assert( pExpr
->pRight
==0 );
3866 pCopy
= pSubst
->pEList
->a
[iColumn
].pExpr
;
3867 if( sqlite3ExprIsVector(pCopy
) ){
3868 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3870 sqlite3
*db
= pSubst
->pParse
->db
;
3871 if( pSubst
->isOuterJoin
3872 && (pCopy
->op
!=TK_COLUMN
|| pCopy
->iTable
!=pSubst
->iNewTable
)
3874 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3875 ifNullRow
.op
= TK_IF_NULL_ROW
;
3876 ifNullRow
.pLeft
= pCopy
;
3877 ifNullRow
.iTable
= pSubst
->iNewTable
;
3878 ifNullRow
.iColumn
= -99;
3879 ifNullRow
.flags
= EP_IfNullRow
;
3882 testcase( ExprHasProperty(pCopy
, EP_Subquery
) );
3883 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3884 if( db
->mallocFailed
){
3885 sqlite3ExprDelete(db
, pNew
);
3888 if( pSubst
->isOuterJoin
){
3889 ExprSetProperty(pNew
, EP_CanBeNull
);
3891 if( ExprHasProperty(pExpr
,EP_OuterON
|EP_InnerON
) ){
3892 sqlite3SetJoinExpr(pNew
, pExpr
->w
.iJoin
,
3893 pExpr
->flags
& (EP_OuterON
|EP_InnerON
));
3895 sqlite3ExprDelete(db
, pExpr
);
3897 if( pExpr
->op
==TK_TRUEFALSE
){
3898 pExpr
->u
.iValue
= sqlite3ExprTruthValue(pExpr
);
3899 pExpr
->op
= TK_INTEGER
;
3900 ExprSetProperty(pExpr
, EP_IntValue
);
3903 /* Ensure that the expression now has an implicit collation sequence,
3904 ** just as it did when it was a column of a view or sub-query. */
3906 CollSeq
*pNat
= sqlite3ExprCollSeq(pSubst
->pParse
, pExpr
);
3907 CollSeq
*pColl
= sqlite3ExprCollSeq(pSubst
->pParse
,
3908 pSubst
->pCList
->a
[iColumn
].pExpr
3910 if( pNat
!=pColl
|| (pExpr
->op
!=TK_COLUMN
&& pExpr
->op
!=TK_COLLATE
) ){
3911 pExpr
= sqlite3ExprAddCollateString(pSubst
->pParse
, pExpr
,
3912 (pColl
? pColl
->zName
: "BINARY")
3916 ExprClearProperty(pExpr
, EP_Collate
);
3920 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3921 pExpr
->iTable
= pSubst
->iNewTable
;
3923 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3924 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3925 if( ExprUseXSelect(pExpr
) ){
3926 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3928 substExprList(pSubst
, pExpr
->x
.pList
);
3930 #ifndef SQLITE_OMIT_WINDOWFUNC
3931 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
3932 Window
*pWin
= pExpr
->y
.pWin
;
3933 pWin
->pFilter
= substExpr(pSubst
, pWin
->pFilter
);
3934 substExprList(pSubst
, pWin
->pPartition
);
3935 substExprList(pSubst
, pWin
->pOrderBy
);
3941 static void substExprList(
3942 SubstContext
*pSubst
, /* Description of the substitution */
3943 ExprList
*pList
/* List to scan and in which to make substitutes */
3946 if( pList
==0 ) return;
3947 for(i
=0; i
<pList
->nExpr
; i
++){
3948 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3951 static void substSelect(
3952 SubstContext
*pSubst
, /* Description of the substitution */
3953 Select
*p
, /* SELECT statement in which to make substitutions */
3954 int doPrior
/* Do substitutes on p->pPrior too */
3961 substExprList(pSubst
, p
->pEList
);
3962 substExprList(pSubst
, p
->pGroupBy
);
3963 substExprList(pSubst
, p
->pOrderBy
);
3964 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3965 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3968 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3969 substSelect(pSubst
, pItem
->pSelect
, 1);
3970 if( pItem
->fg
.isTabFunc
){
3971 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3974 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3976 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3978 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3980 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3981 ** clause of that SELECT.
3983 ** This routine scans the entire SELECT statement and recomputes the
3984 ** pSrcItem->colUsed mask.
3986 static int recomputeColumnsUsedExpr(Walker
*pWalker
, Expr
*pExpr
){
3988 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
3989 pItem
= pWalker
->u
.pSrcItem
;
3990 if( pItem
->iCursor
!=pExpr
->iTable
) return WRC_Continue
;
3991 if( pExpr
->iColumn
<0 ) return WRC_Continue
;
3992 pItem
->colUsed
|= sqlite3ExprColUsed(pExpr
);
3993 return WRC_Continue
;
3995 static void recomputeColumnsUsed(
3996 Select
*pSelect
, /* The complete SELECT statement */
3997 SrcItem
*pSrcItem
/* Which FROM clause item to recompute */
4000 if( NEVER(pSrcItem
->pTab
==0) ) return;
4001 memset(&w
, 0, sizeof(w
));
4002 w
.xExprCallback
= recomputeColumnsUsedExpr
;
4003 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4004 w
.u
.pSrcItem
= pSrcItem
;
4005 pSrcItem
->colUsed
= 0;
4006 sqlite3WalkSelect(&w
, pSelect
);
4008 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4010 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4012 ** Assign new cursor numbers to each of the items in pSrc. For each
4013 ** new cursor number assigned, set an entry in the aCsrMap[] array
4014 ** to map the old cursor number to the new:
4016 ** aCsrMap[iOld+1] = iNew;
4018 ** The array is guaranteed by the caller to be large enough for all
4019 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
4021 ** If pSrc contains any sub-selects, call this routine recursively
4022 ** on the FROM clause of each such sub-select, with iExcept set to -1.
4024 static void srclistRenumberCursors(
4025 Parse
*pParse
, /* Parse context */
4026 int *aCsrMap
, /* Array to store cursor mappings in */
4027 SrcList
*pSrc
, /* FROM clause to renumber */
4028 int iExcept
/* FROM clause item to skip */
4032 for(i
=0, pItem
=pSrc
->a
; i
<pSrc
->nSrc
; i
++, pItem
++){
4035 assert( pItem
->iCursor
< aCsrMap
[0] );
4036 if( !pItem
->fg
.isRecursive
|| aCsrMap
[pItem
->iCursor
+1]==0 ){
4037 aCsrMap
[pItem
->iCursor
+1] = pParse
->nTab
++;
4039 pItem
->iCursor
= aCsrMap
[pItem
->iCursor
+1];
4040 for(p
=pItem
->pSelect
; p
; p
=p
->pPrior
){
4041 srclistRenumberCursors(pParse
, aCsrMap
, p
->pSrc
, -1);
4048 ** *piCursor is a cursor number. Change it if it needs to be mapped.
4050 static void renumberCursorDoMapping(Walker
*pWalker
, int *piCursor
){
4051 int *aCsrMap
= pWalker
->u
.aiCol
;
4052 int iCsr
= *piCursor
;
4053 if( iCsr
< aCsrMap
[0] && aCsrMap
[iCsr
+1]>0 ){
4054 *piCursor
= aCsrMap
[iCsr
+1];
4059 ** Expression walker callback used by renumberCursors() to update
4060 ** Expr objects to match newly assigned cursor numbers.
4062 static int renumberCursorsCb(Walker
*pWalker
, Expr
*pExpr
){
4064 if( op
==TK_COLUMN
|| op
==TK_IF_NULL_ROW
){
4065 renumberCursorDoMapping(pWalker
, &pExpr
->iTable
);
4067 if( ExprHasProperty(pExpr
, EP_OuterON
) ){
4068 renumberCursorDoMapping(pWalker
, &pExpr
->w
.iJoin
);
4070 return WRC_Continue
;
4074 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
4075 ** of the SELECT statement passed as the second argument, and to each
4076 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
4077 ** Except, do not assign a new cursor number to the iExcept'th element in
4078 ** the FROM clause of (*p). Update all expressions and other references
4079 ** to refer to the new cursor numbers.
4081 ** Argument aCsrMap is an array that may be used for temporary working
4082 ** space. Two guarantees are made by the caller:
4084 ** * the array is larger than the largest cursor number used within the
4085 ** select statement passed as an argument, and
4087 ** * the array entries for all cursor numbers that do *not* appear in
4088 ** FROM clauses of the select statement as described above are
4089 ** initialized to zero.
4091 static void renumberCursors(
4092 Parse
*pParse
, /* Parse context */
4093 Select
*p
, /* Select to renumber cursors within */
4094 int iExcept
, /* FROM clause item to skip */
4095 int *aCsrMap
/* Working space */
4098 srclistRenumberCursors(pParse
, aCsrMap
, p
->pSrc
, iExcept
);
4099 memset(&w
, 0, sizeof(w
));
4100 w
.u
.aiCol
= aCsrMap
;
4101 w
.xExprCallback
= renumberCursorsCb
;
4102 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4103 sqlite3WalkSelect(&w
, p
);
4105 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4108 ** If pSel is not part of a compound SELECT, return a pointer to its
4109 ** expression list. Otherwise, return a pointer to the expression list
4110 ** of the leftmost SELECT in the compound.
4112 static ExprList
*findLeftmostExprlist(Select
*pSel
){
4113 while( pSel
->pPrior
){
4114 pSel
= pSel
->pPrior
;
4116 return pSel
->pEList
;
4120 ** Return true if any of the result-set columns in the compound query
4121 ** have incompatible affinities on one or more arms of the compound.
4123 static int compoundHasDifferentAffinities(Select
*p
){
4127 assert( p
->pEList
!=0 );
4128 assert( p
->pPrior
!=0 );
4130 for(ii
=0; ii
<pList
->nExpr
; ii
++){
4133 assert( pList
->a
[ii
].pExpr
!=0 );
4134 aff
= sqlite3ExprAffinity(pList
->a
[ii
].pExpr
);
4135 for(pSub1
=p
->pPrior
; pSub1
; pSub1
=pSub1
->pPrior
){
4136 assert( pSub1
->pEList
!=0 );
4137 assert( pSub1
->pEList
->nExpr
>ii
);
4138 assert( pSub1
->pEList
->a
[ii
].pExpr
!=0 );
4139 if( sqlite3ExprAffinity(pSub1
->pEList
->a
[ii
].pExpr
)!=aff
){
4147 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4149 ** This routine attempts to flatten subqueries as a performance optimization.
4150 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4152 ** To understand the concept of flattening, consider the following
4155 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4157 ** The default way of implementing this query is to execute the
4158 ** subquery first and store the results in a temporary table, then
4159 ** run the outer query on that temporary table. This requires two
4160 ** passes over the data. Furthermore, because the temporary table
4161 ** has no indices, the WHERE clause on the outer query cannot be
4164 ** This routine attempts to rewrite queries such as the above into
4165 ** a single flat select, like this:
4167 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4169 ** The code generated for this simplification gives the same result
4170 ** but only has to scan the data once. And because indices might
4171 ** exist on the table t1, a complete scan of the data might be
4174 ** Flattening is subject to the following constraints:
4176 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4177 ** The subquery and the outer query cannot both be aggregates.
4179 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4180 ** (2) If the subquery is an aggregate then
4181 ** (2a) the outer query must not be a join and
4182 ** (2b) the outer query must not use subqueries
4183 ** other than the one FROM-clause subquery that is a candidate
4184 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4185 ** from 2015-02-09.)
4187 ** (3) If the subquery is the right operand of a LEFT JOIN then
4188 ** (3a) the subquery may not be a join and
4189 ** (3b) the FROM clause of the subquery may not contain a virtual
4191 ** (**) Was: "The outer query may not have a GROUP BY." This case
4192 ** is now managed correctly
4193 ** (3d) the outer query may not be DISTINCT.
4194 ** See also (26) for restrictions on RIGHT JOIN.
4196 ** (4) The subquery can not be DISTINCT.
4198 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4199 ** sub-queries that were excluded from this optimization. Restriction
4200 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4202 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4203 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4205 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4206 ** A FROM clause, consider adding a FROM clause with the special
4207 ** table sqlite_once that consists of a single row containing a
4210 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4212 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4214 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4215 ** accidentally carried the comment forward until 2014-09-15. Original
4216 ** constraint: "If the subquery is aggregate then the outer query
4217 ** may not use LIMIT."
4219 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4221 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4222 ** a separate restriction deriving from ticket #350.
4224 ** (13) The subquery and outer query may not both use LIMIT.
4226 ** (14) The subquery may not use OFFSET.
4228 ** (15) If the outer query is part of a compound select, then the
4229 ** subquery may not use LIMIT.
4230 ** (See ticket #2339 and ticket [02a8e81d44]).
4232 ** (16) If the outer query is aggregate, then the subquery may not
4233 ** use ORDER BY. (Ticket #2942) This used to not matter
4234 ** until we introduced the group_concat() function.
4236 ** (17) If the subquery is a compound select, then
4237 ** (17a) all compound operators must be a UNION ALL, and
4238 ** (17b) no terms within the subquery compound may be aggregate
4240 ** (17c) every term within the subquery compound must have a FROM clause
4241 ** (17d) the outer query may not be
4242 ** (17d1) aggregate, or
4244 ** (17e) the subquery may not contain window functions, and
4245 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4246 ** (17g) either the subquery is the first element of the outer
4247 ** query or there are no RIGHT or FULL JOINs in any arm
4248 ** of the subquery. (This is a duplicate of condition (27b).)
4249 ** (17h) The corresponding result set expressions in all arms of the
4250 ** compound must have the same affinity.
4252 ** The parent and sub-query may contain WHERE clauses. Subject to
4253 ** rules (11), (13) and (14), they may also contain ORDER BY,
4254 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4255 ** operator other than UNION ALL because all the other compound
4256 ** operators have an implied DISTINCT which is disallowed by
4259 ** Also, each component of the sub-query must return the same number
4260 ** of result columns. This is actually a requirement for any compound
4261 ** SELECT statement, but all the code here does is make sure that no
4262 ** such (illegal) sub-query is flattened. The caller will detect the
4263 ** syntax error and return a detailed message.
4265 ** (18) If the sub-query is a compound select, then all terms of the
4266 ** ORDER BY clause of the parent must be copies of a term returned
4267 ** by the parent query.
4269 ** (19) If the subquery uses LIMIT then the outer query may not
4270 ** have a WHERE clause.
4272 ** (20) If the sub-query is a compound select, then it must not use
4273 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4274 ** somewhat by saying that the terms of the ORDER BY clause must
4275 ** appear as unmodified result columns in the outer query. But we
4276 ** have other optimizations in mind to deal with that case.
4278 ** (21) If the subquery uses LIMIT then the outer query may not be
4279 ** DISTINCT. (See ticket [752e1646fc]).
4281 ** (22) The subquery may not be a recursive CTE.
4283 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4284 ** a compound query. This restriction is because transforming the
4285 ** parent to a compound query confuses the code that handles
4286 ** recursive queries in multiSelect().
4288 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4289 ** The subquery may not be an aggregate that uses the built-in min() or
4290 ** or max() functions. (Without this restriction, a query like:
4291 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4292 ** return the value X for which Y was maximal.)
4294 ** (25) If either the subquery or the parent query contains a window
4295 ** function in the select list or ORDER BY clause, flattening
4296 ** is not attempted.
4298 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4299 ** See also (3) for restrictions on LEFT JOIN.
4301 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4302 ** is the first element of the parent query. Two subcases:
4303 ** (27a) the subquery is not a compound query.
4304 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4305 ** in any arm of the compound query. (See also (17g).)
4307 ** (28) The subquery is not a MATERIALIZED CTE. (This is handled
4308 ** in the caller before ever reaching this routine.)
4311 ** In this routine, the "p" parameter is a pointer to the outer query.
4312 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4315 ** If flattening is not attempted, this routine is a no-op and returns 0.
4316 ** If flattening is attempted this routine returns 1.
4318 ** All of the expression analysis must occur on both the outer query and
4319 ** the subquery before this routine runs.
4321 static int flattenSubquery(
4322 Parse
*pParse
, /* Parsing context */
4323 Select
*p
, /* The parent or outer SELECT statement */
4324 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
4325 int isAgg
/* True if outer SELECT uses aggregate functions */
4327 const char *zSavedAuthContext
= pParse
->zAuthContext
;
4328 Select
*pParent
; /* Current UNION ALL term of the other query */
4329 Select
*pSub
; /* The inner query or "subquery" */
4330 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
4331 SrcList
*pSrc
; /* The FROM clause of the outer query */
4332 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
4333 int iParent
; /* VDBE cursor number of the pSub result set temp table */
4334 int iNewParent
= -1;/* Replacement table for iParent */
4335 int isOuterJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
4336 int i
; /* Loop counter */
4337 Expr
*pWhere
; /* The WHERE clause */
4338 SrcItem
*pSubitem
; /* The subquery */
4339 sqlite3
*db
= pParse
->db
;
4340 Walker w
; /* Walker to persist agginfo data */
4343 /* Check to see if flattening is permitted. Return 0 if not.
4346 assert( p
->pPrior
==0 );
4347 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
4349 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
4350 pSubitem
= &pSrc
->a
[iFrom
];
4351 iParent
= pSubitem
->iCursor
;
4352 pSub
= pSubitem
->pSelect
;
4355 #ifndef SQLITE_OMIT_WINDOWFUNC
4356 if( p
->pWin
|| pSub
->pWin
) return 0; /* Restriction (25) */
4359 pSubSrc
= pSub
->pSrc
;
4361 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4362 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4363 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4364 ** became arbitrary expressions, we were forced to add restrictions (13)
4366 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
4367 if( pSub
->pLimit
&& pSub
->pLimit
->pRight
) return 0; /* Restriction (14) */
4368 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
4369 return 0; /* Restriction (15) */
4371 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
4372 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (4) */
4373 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
4374 return 0; /* Restrictions (8)(9) */
4376 if( p
->pOrderBy
&& pSub
->pOrderBy
){
4377 return 0; /* Restriction (11) */
4379 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
4380 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
4381 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
4382 return 0; /* Restriction (21) */
4384 if( pSub
->selFlags
& (SF_Recursive
) ){
4385 return 0; /* Restrictions (22) */
4389 ** If the subquery is the right operand of a LEFT JOIN, then the
4390 ** subquery may not be a join itself (3a). Example of why this is not
4393 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4395 ** If we flatten the above, we would get
4397 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4399 ** which is not at all the same thing.
4401 ** See also tickets #306, #350, and #3300.
4403 if( (pSubitem
->fg
.jointype
& (JT_OUTER
|JT_LTORJ
))!=0 ){
4404 if( pSubSrc
->nSrc
>1 /* (3a) */
4405 || IsVirtual(pSubSrc
->a
[0].pTab
) /* (3b) */
4406 || (p
->selFlags
& SF_Distinct
)!=0 /* (3d) */
4407 || (pSubitem
->fg
.jointype
& JT_RIGHT
)!=0 /* (26) */
4414 assert( pSubSrc
->nSrc
>0 ); /* True by restriction (7) */
4415 if( iFrom
>0 && (pSubSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
4416 return 0; /* Restriction (27a) */
4419 /* Condition (28) is blocked by the caller */
4420 assert( !pSubitem
->fg
.isCte
|| pSubitem
->u2
.pCteUse
->eM10d
!=M10d_Yes
);
4422 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4423 ** use only the UNION ALL operator. And none of the simple select queries
4424 ** that make up the compound SELECT are allowed to be aggregate or distinct
4429 if( pSub
->pOrderBy
){
4430 return 0; /* Restriction (20) */
4432 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || isOuterJoin
>0 ){
4433 return 0; /* (17d1), (17d2), or (17f) */
4435 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
4436 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
4437 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
4438 assert( pSub
->pSrc
!=0 );
4439 assert( (pSub
->selFlags
& SF_Recursive
)==0 );
4440 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
4441 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 /* (17b) */
4442 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
) /* (17a) */
4443 || pSub1
->pSrc
->nSrc
<1 /* (17c) */
4444 #ifndef SQLITE_OMIT_WINDOWFUNC
4445 || pSub1
->pWin
/* (17e) */
4450 if( iFrom
>0 && (pSub1
->pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
4451 /* Without this restriction, the JT_LTORJ flag would end up being
4452 ** omitted on left-hand tables of the right join that is being
4454 return 0; /* Restrictions (17g), (27b) */
4456 testcase( pSub1
->pSrc
->nSrc
>1 );
4459 /* Restriction (18). */
4461 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
4462 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
4466 /* Restriction (23) */
4467 if( (p
->selFlags
& SF_Recursive
) ) return 0;
4469 /* Restriction (17h) */
4470 if( compoundHasDifferentAffinities(pSub
) ) return 0;
4473 if( pParse
->nSelect
>500 ) return 0;
4474 if( OptimizationDisabled(db
, SQLITE_FlttnUnionAll
) ) return 0;
4475 aCsrMap
= sqlite3DbMallocZero(db
, ((i64
)pParse
->nTab
+1)*sizeof(int));
4476 if( aCsrMap
) aCsrMap
[0] = pParse
->nTab
;
4480 /***** If we reach this point, flattening is permitted. *****/
4481 TREETRACE(0x4,pParse
,p
,("flatten %u.%p from term %d\n",
4482 pSub
->selId
, pSub
, iFrom
));
4484 /* Authorize the subquery */
4485 pParse
->zAuthContext
= pSubitem
->zName
;
4486 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
4487 testcase( i
==SQLITE_DENY
);
4488 pParse
->zAuthContext
= zSavedAuthContext
;
4490 /* Delete the transient structures associated with the subquery */
4491 pSub1
= pSubitem
->pSelect
;
4492 sqlite3DbFree(db
, pSubitem
->zDatabase
);
4493 sqlite3DbFree(db
, pSubitem
->zName
);
4494 sqlite3DbFree(db
, pSubitem
->zAlias
);
4495 pSubitem
->zDatabase
= 0;
4496 pSubitem
->zName
= 0;
4497 pSubitem
->zAlias
= 0;
4498 pSubitem
->pSelect
= 0;
4499 assert( pSubitem
->fg
.isUsing
!=0 || pSubitem
->u3
.pOn
==0 );
4501 /* If the sub-query is a compound SELECT statement, then (by restrictions
4502 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4505 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4507 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4508 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4509 ** OFFSET clauses and joins them to the left-hand-side of the original
4510 ** using UNION ALL operators. In this case N is the number of simple
4511 ** select statements in the compound sub-query.
4515 ** SELECT a+1 FROM (
4516 ** SELECT x FROM tab
4518 ** SELECT y FROM tab
4520 ** SELECT abs(z*2) FROM tab2
4521 ** ) WHERE a!=5 ORDER BY 1
4523 ** Transformed into:
4525 ** SELECT x+1 FROM tab WHERE x+1!=5
4527 ** SELECT y+1 FROM tab WHERE y+1!=5
4529 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4532 ** We call this the "compound-subquery flattening".
4534 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
4536 ExprList
*pOrderBy
= p
->pOrderBy
;
4537 Expr
*pLimit
= p
->pLimit
;
4538 Select
*pPrior
= p
->pPrior
;
4539 Table
*pItemTab
= pSubitem
->pTab
;
4544 pNew
= sqlite3SelectDup(db
, p
, 0);
4546 p
->pOrderBy
= pOrderBy
;
4548 pSubitem
->pTab
= pItemTab
;
4552 pNew
->selId
= ++pParse
->nSelect
;
4553 if( aCsrMap
&& ALWAYS(db
->mallocFailed
==0) ){
4554 renumberCursors(pParse
, pNew
, iFrom
, aCsrMap
);
4556 pNew
->pPrior
= pPrior
;
4557 if( pPrior
) pPrior
->pNext
= pNew
;
4560 TREETRACE(0x4,pParse
,p
,("compound-subquery flattener"
4561 " creates %u as peer\n",pNew
->selId
));
4563 assert( pSubitem
->pSelect
==0 );
4565 sqlite3DbFree(db
, aCsrMap
);
4566 if( db
->mallocFailed
){
4567 pSubitem
->pSelect
= pSub1
;
4571 /* Defer deleting the Table object associated with the
4572 ** subquery until code generation is
4573 ** complete, since there may still exist Expr.pTab entries that
4574 ** refer to the subquery even after flattening. Ticket #3346.
4576 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4578 if( ALWAYS(pSubitem
->pTab
!=0) ){
4579 Table
*pTabToDel
= pSubitem
->pTab
;
4580 if( pTabToDel
->nTabRef
==1 ){
4581 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4582 sqlite3ParserAddCleanup(pToplevel
,
4583 (void(*)(sqlite3
*,void*))sqlite3DeleteTable
,
4585 testcase( pToplevel
->earlyCleanup
);
4587 pTabToDel
->nTabRef
--;
4592 /* The following loop runs once for each term in a compound-subquery
4593 ** flattening (as described above). If we are doing a different kind
4594 ** of flattening - a flattening other than a compound-subquery flattening -
4595 ** then this loop only runs once.
4597 ** This loop moves all of the FROM elements of the subquery into the
4598 ** the FROM clause of the outer query. Before doing this, remember
4599 ** the cursor number for the original outer query FROM element in
4600 ** iParent. The iParent cursor will never be used. Subsequent code
4601 ** will scan expressions looking for iParent references and replace
4602 ** those references with expressions that resolve to the subquery FROM
4603 ** elements we are now copying in.
4606 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
4609 u8 ltorj
= pSrc
->a
[iFrom
].fg
.jointype
& JT_LTORJ
;
4611 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
4612 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
4613 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
4616 jointype
= pSubitem
->fg
.jointype
; /* First time through the loop */
4619 /* The subquery uses a single slot of the FROM clause of the outer
4620 ** query. If the subquery has more than one element in its FROM clause,
4621 ** then expand the outer query to make space for it to hold all elements
4626 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4628 ** The outer query has 3 slots in its FROM clause. One slot of the
4629 ** outer query (the middle slot) is used by the subquery. The next
4630 ** block of code will expand the outer query FROM clause to 4 slots.
4631 ** The middle slot is expanded to two slots in order to make space
4632 ** for the two elements in the FROM clause of the subquery.
4635 pSrc
= sqlite3SrcListEnlarge(pParse
, pSrc
, nSubSrc
-1,iFrom
+1);
4636 if( pSrc
==0 ) break;
4637 pParent
->pSrc
= pSrc
;
4640 /* Transfer the FROM clause terms from the subquery into the
4643 for(i
=0; i
<nSubSrc
; i
++){
4644 SrcItem
*pItem
= &pSrc
->a
[i
+iFrom
];
4645 if( pItem
->fg
.isUsing
) sqlite3IdListDelete(db
, pItem
->u3
.pUsing
);
4646 assert( pItem
->fg
.isTabFunc
==0 );
4647 *pItem
= pSubSrc
->a
[i
];
4648 pItem
->fg
.jointype
|= ltorj
;
4649 iNewParent
= pSubSrc
->a
[i
].iCursor
;
4650 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
4652 pSrc
->a
[iFrom
].fg
.jointype
&= JT_LTORJ
;
4653 pSrc
->a
[iFrom
].fg
.jointype
|= jointype
| ltorj
;
4655 /* Now begin substituting subquery result set expressions for
4656 ** references to the iParent in the outer query.
4660 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4661 ** \ \_____________ subquery __________/ /
4662 ** \_____________________ outer query ______________________________/
4664 ** We look at every expression in the outer query and every place we see
4665 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4667 if( pSub
->pOrderBy
&& (pParent
->selFlags
& SF_NoopOrderBy
)==0 ){
4668 /* At this point, any non-zero iOrderByCol values indicate that the
4669 ** ORDER BY column expression is identical to the iOrderByCol'th
4670 ** expression returned by SELECT statement pSub. Since these values
4671 ** do not necessarily correspond to columns in SELECT statement pParent,
4672 ** zero them before transferring the ORDER BY clause.
4674 ** Not doing this may cause an error if a subsequent call to this
4675 ** function attempts to flatten a compound sub-query into pParent
4676 ** (the only way this can happen is if the compound sub-query is
4677 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4678 ExprList
*pOrderBy
= pSub
->pOrderBy
;
4679 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
4680 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
4682 assert( pParent
->pOrderBy
==0 );
4683 pParent
->pOrderBy
= pOrderBy
;
4686 pWhere
= pSub
->pWhere
;
4688 if( isOuterJoin
>0 ){
4689 sqlite3SetJoinExpr(pWhere
, iNewParent
, EP_OuterON
);
4692 if( pParent
->pWhere
){
4693 pParent
->pWhere
= sqlite3PExpr(pParse
, TK_AND
, pWhere
, pParent
->pWhere
);
4695 pParent
->pWhere
= pWhere
;
4698 if( db
->mallocFailed
==0 ){
4702 x
.iNewTable
= iNewParent
;
4703 x
.isOuterJoin
= isOuterJoin
;
4704 x
.pEList
= pSub
->pEList
;
4705 x
.pCList
= findLeftmostExprlist(pSub
);
4706 substSelect(&x
, pParent
, 0);
4709 /* The flattened query is a compound if either the inner or the
4710 ** outer query is a compound. */
4711 pParent
->selFlags
|= pSub
->selFlags
& SF_Compound
;
4712 assert( (pSub
->selFlags
& SF_Distinct
)==0 ); /* restriction (17b) */
4715 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4717 ** One is tempted to try to add a and b to combine the limits. But this
4718 ** does not work if either limit is negative.
4721 pParent
->pLimit
= pSub
->pLimit
;
4725 /* Recompute the SrcItem.colUsed masks for the flattened
4727 for(i
=0; i
<nSubSrc
; i
++){
4728 recomputeColumnsUsed(pParent
, &pSrc
->a
[i
+iFrom
]);
4732 /* Finally, delete what is left of the subquery and return success.
4734 sqlite3AggInfoPersistWalkerInit(&w
, pParse
);
4735 sqlite3WalkSelect(&w
,pSub1
);
4736 sqlite3SelectDelete(db
, pSub1
);
4738 #if TREETRACE_ENABLED
4739 if( sqlite3TreeTrace
& 0x4 ){
4740 TREETRACE(0x4,pParse
,p
,("After flattening:\n"));
4741 sqlite3TreeViewSelect(0, p
, 0);
4747 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4750 ** A structure to keep track of all of the column values that are fixed to
4751 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4753 typedef struct WhereConst WhereConst
;
4755 Parse
*pParse
; /* Parsing context */
4756 u8
*pOomFault
; /* Pointer to pParse->db->mallocFailed */
4757 int nConst
; /* Number for COLUMN=CONSTANT terms */
4758 int nChng
; /* Number of times a constant is propagated */
4759 int bHasAffBlob
; /* At least one column in apExpr[] as affinity BLOB */
4760 u32 mExcludeOn
; /* Which ON expressions to exclude from considertion.
4761 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4762 Expr
**apExpr
; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4766 ** Add a new entry to the pConst object. Except, do not add duplicate
4767 ** pColumn entries. Also, do not add if doing so would not be appropriate.
4769 ** The caller guarantees the pColumn is a column and pValue is a constant.
4770 ** This routine has to do some additional checks before completing the
4773 static void constInsert(
4774 WhereConst
*pConst
, /* The WhereConst into which we are inserting */
4775 Expr
*pColumn
, /* The COLUMN part of the constraint */
4776 Expr
*pValue
, /* The VALUE part of the constraint */
4777 Expr
*pExpr
/* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4780 assert( pColumn
->op
==TK_COLUMN
);
4781 assert( sqlite3ExprIsConstant(pValue
) );
4783 if( ExprHasProperty(pColumn
, EP_FixedCol
) ) return;
4784 if( sqlite3ExprAffinity(pValue
)!=0 ) return;
4785 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst
->pParse
,pExpr
)) ){
4789 /* 2018-10-25 ticket [cf5ed20f]
4790 ** Make sure the same pColumn is not inserted more than once */
4791 for(i
=0; i
<pConst
->nConst
; i
++){
4792 const Expr
*pE2
= pConst
->apExpr
[i
*2];
4793 assert( pE2
->op
==TK_COLUMN
);
4794 if( pE2
->iTable
==pColumn
->iTable
4795 && pE2
->iColumn
==pColumn
->iColumn
4797 return; /* Already present. Return without doing anything. */
4800 if( sqlite3ExprAffinity(pColumn
)==SQLITE_AFF_BLOB
){
4801 pConst
->bHasAffBlob
= 1;
4805 pConst
->apExpr
= sqlite3DbReallocOrFree(pConst
->pParse
->db
, pConst
->apExpr
,
4806 pConst
->nConst
*2*sizeof(Expr
*));
4807 if( pConst
->apExpr
==0 ){
4810 pConst
->apExpr
[pConst
->nConst
*2-2] = pColumn
;
4811 pConst
->apExpr
[pConst
->nConst
*2-1] = pValue
;
4816 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4817 ** is a constant expression and where the term must be true because it
4818 ** is part of the AND-connected terms of the expression. For each term
4819 ** found, add it to the pConst structure.
4821 static void findConstInWhere(WhereConst
*pConst
, Expr
*pExpr
){
4822 Expr
*pRight
, *pLeft
;
4823 if( NEVER(pExpr
==0) ) return;
4824 if( ExprHasProperty(pExpr
, pConst
->mExcludeOn
) ){
4825 testcase( ExprHasProperty(pExpr
, EP_OuterON
) );
4826 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
4829 if( pExpr
->op
==TK_AND
){
4830 findConstInWhere(pConst
, pExpr
->pRight
);
4831 findConstInWhere(pConst
, pExpr
->pLeft
);
4834 if( pExpr
->op
!=TK_EQ
) return;
4835 pRight
= pExpr
->pRight
;
4836 pLeft
= pExpr
->pLeft
;
4837 assert( pRight
!=0 );
4839 if( pRight
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pLeft
) ){
4840 constInsert(pConst
,pRight
,pLeft
,pExpr
);
4842 if( pLeft
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pRight
) ){
4843 constInsert(pConst
,pLeft
,pRight
,pExpr
);
4848 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4850 ** Argument pExpr is a candidate expression to be replaced by a value. If
4851 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4852 ** then overwrite it with the corresponding value. Except, do not do so
4853 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4854 ** is SQLITE_AFF_BLOB.
4856 static int propagateConstantExprRewriteOne(
4862 if( pConst
->pOomFault
[0] ) return WRC_Prune
;
4863 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
4864 if( ExprHasProperty(pExpr
, EP_FixedCol
|pConst
->mExcludeOn
) ){
4865 testcase( ExprHasProperty(pExpr
, EP_FixedCol
) );
4866 testcase( ExprHasProperty(pExpr
, EP_OuterON
) );
4867 testcase( ExprHasProperty(pExpr
, EP_InnerON
) );
4868 return WRC_Continue
;
4870 for(i
=0; i
<pConst
->nConst
; i
++){
4871 Expr
*pColumn
= pConst
->apExpr
[i
*2];
4872 if( pColumn
==pExpr
) continue;
4873 if( pColumn
->iTable
!=pExpr
->iTable
) continue;
4874 if( pColumn
->iColumn
!=pExpr
->iColumn
) continue;
4875 if( bIgnoreAffBlob
&& sqlite3ExprAffinity(pColumn
)==SQLITE_AFF_BLOB
){
4878 /* A match is found. Add the EP_FixedCol property */
4880 ExprClearProperty(pExpr
, EP_Leaf
);
4881 ExprSetProperty(pExpr
, EP_FixedCol
);
4882 assert( pExpr
->pLeft
==0 );
4883 pExpr
->pLeft
= sqlite3ExprDup(pConst
->pParse
->db
, pConst
->apExpr
[i
*2+1], 0);
4884 if( pConst
->pParse
->db
->mallocFailed
) return WRC_Prune
;
4891 ** This is a Walker expression callback. pExpr is a node from the WHERE
4892 ** clause of a SELECT statement. This function examines pExpr to see if
4893 ** any substitutions based on the contents of pWalker->u.pConst should
4894 ** be made to pExpr or its immediate children.
4896 ** A substitution is made if:
4898 ** + pExpr is a column with an affinity other than BLOB that matches
4899 ** one of the columns in pWalker->u.pConst, or
4901 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4902 ** uses an affinity other than TEXT and one of its immediate
4903 ** children is a column that matches one of the columns in
4904 ** pWalker->u.pConst.
4906 static int propagateConstantExprRewrite(Walker
*pWalker
, Expr
*pExpr
){
4907 WhereConst
*pConst
= pWalker
->u
.pConst
;
4908 assert( TK_GT
==TK_EQ
+1 );
4909 assert( TK_LE
==TK_EQ
+2 );
4910 assert( TK_LT
==TK_EQ
+3 );
4911 assert( TK_GE
==TK_EQ
+4 );
4912 if( pConst
->bHasAffBlob
){
4913 if( (pExpr
->op
>=TK_EQ
&& pExpr
->op
<=TK_GE
)
4916 propagateConstantExprRewriteOne(pConst
, pExpr
->pLeft
, 0);
4917 if( pConst
->pOomFault
[0] ) return WRC_Prune
;
4918 if( sqlite3ExprAffinity(pExpr
->pLeft
)!=SQLITE_AFF_TEXT
){
4919 propagateConstantExprRewriteOne(pConst
, pExpr
->pRight
, 0);
4923 return propagateConstantExprRewriteOne(pConst
, pExpr
, pConst
->bHasAffBlob
);
4927 ** The WHERE-clause constant propagation optimization.
4929 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4930 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4931 ** part of a ON clause from a LEFT JOIN, then throughout the query
4932 ** replace all other occurrences of COLUMN with CONSTANT.
4934 ** For example, the query:
4936 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4938 ** Is transformed into
4940 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4942 ** Return true if any transformations where made and false if not.
4944 ** Implementation note: Constant propagation is tricky due to affinity
4945 ** and collating sequence interactions. Consider this example:
4947 ** CREATE TABLE t1(a INT,b TEXT);
4948 ** INSERT INTO t1 VALUES(123,'0123');
4949 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4950 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4952 ** The two SELECT statements above should return different answers. b=a
4953 ** is always true because the comparison uses numeric affinity, but b=123
4954 ** is false because it uses text affinity and '0123' is not the same as '123'.
4955 ** To work around this, the expression tree is not actually changed from
4956 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4957 ** and the "123" value is hung off of the pLeft pointer. Code generator
4958 ** routines know to generate the constant "123" instead of looking up the
4959 ** column value. Also, to avoid collation problems, this optimization is
4960 ** only attempted if the "a=123" term uses the default BINARY collation.
4962 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4964 ** CREATE TABLE t1(x);
4965 ** INSERT INTO t1 VALUES(10.0);
4966 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4968 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4969 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4970 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4971 ** resulting in a false positive. To avoid this, constant propagation for
4972 ** columns with BLOB affinity is only allowed if the constant is used with
4973 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4974 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4977 static int propagateConstants(
4978 Parse
*pParse
, /* The parsing context */
4979 Select
*p
/* The query in which to propagate constants */
4985 x
.pOomFault
= &pParse
->db
->mallocFailed
;
4991 if( ALWAYS(p
->pSrc
!=0)
4993 && (p
->pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0
4995 /* Do not propagate constants on any ON clause if there is a
4996 ** RIGHT JOIN anywhere in the query */
4997 x
.mExcludeOn
= EP_InnerON
| EP_OuterON
;
4999 /* Do not propagate constants through the ON clause of a LEFT JOIN */
5000 x
.mExcludeOn
= EP_OuterON
;
5002 findConstInWhere(&x
, p
->pWhere
);
5004 memset(&w
, 0, sizeof(w
));
5006 w
.xExprCallback
= propagateConstantExprRewrite
;
5007 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
5008 w
.xSelectCallback2
= 0;
5011 sqlite3WalkExpr(&w
, p
->pWhere
);
5012 sqlite3DbFree(x
.pParse
->db
, x
.apExpr
);
5019 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5020 # if !defined(SQLITE_OMIT_WINDOWFUNC)
5022 ** This function is called to determine whether or not it is safe to
5023 ** push WHERE clause expression pExpr down to FROM clause sub-query
5024 ** pSubq, which contains at least one window function. Return 1
5025 ** if it is safe and the expression should be pushed down, or 0
5028 ** It is only safe to push the expression down if it consists only
5029 ** of constants and copies of expressions that appear in the PARTITION
5030 ** BY clause of all window function used by the sub-query. It is safe
5031 ** to filter out entire partitions, but not rows within partitions, as
5032 ** this may change the results of the window functions.
5034 ** At the time this function is called it is guaranteed that
5036 ** * the sub-query uses only one distinct window frame, and
5037 ** * that the window frame has a PARTITION BY clause.
5039 static int pushDownWindowCheck(Parse
*pParse
, Select
*pSubq
, Expr
*pExpr
){
5040 assert( pSubq
->pWin
->pPartition
);
5041 assert( (pSubq
->selFlags
& SF_MultiPart
)==0 );
5042 assert( pSubq
->pPrior
==0 );
5043 return sqlite3ExprIsConstantOrGroupBy(pParse
, pExpr
, pSubq
->pWin
->pPartition
);
5045 # endif /* SQLITE_OMIT_WINDOWFUNC */
5046 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5048 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5050 ** Make copies of relevant WHERE clause terms of the outer query into
5051 ** the WHERE clause of subquery. Example:
5053 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
5055 ** Transformed into:
5057 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
5058 ** WHERE x=5 AND y=10;
5060 ** The hope is that the terms added to the inner query will make it more
5063 ** Do not attempt this optimization if:
5065 ** (1) (** This restriction was removed on 2017-09-29. We used to
5066 ** disallow this optimization for aggregate subqueries, but now
5067 ** it is allowed by putting the extra terms on the HAVING clause.
5068 ** The added HAVING clause is pointless if the subquery lacks
5069 ** a GROUP BY clause. But such a HAVING clause is also harmless
5070 ** so there does not appear to be any reason to add extra logic
5071 ** to suppress it. **)
5073 ** (2) The inner query is the recursive part of a common table expression.
5075 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
5076 ** clause would change the meaning of the LIMIT).
5078 ** (4) The inner query is the right operand of a LEFT JOIN and the
5079 ** expression to be pushed down does not come from the ON clause
5080 ** on that LEFT JOIN.
5082 ** (5) The WHERE clause expression originates in the ON or USING clause
5083 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5084 ** left join. An example:
5087 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5088 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5089 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5091 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5092 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5093 ** then the (1,1,NULL) row would be suppressed.
5095 ** (6) Window functions make things tricky as changes to the WHERE clause
5096 ** of the inner query could change the window over which window
5097 ** functions are calculated. Therefore, do not attempt the optimization
5100 ** (6a) The inner query uses multiple incompatible window partitions.
5102 ** (6b) The inner query is a compound and uses window-functions.
5104 ** (6c) The WHERE clause does not consist entirely of constants and
5105 ** copies of expressions found in the PARTITION BY clause of
5106 ** all window-functions used by the sub-query. It is safe to
5107 ** filter out entire partitions, as this does not change the
5108 ** window over which any window-function is calculated.
5110 ** (7) The inner query is a Common Table Expression (CTE) that should
5111 ** be materialized. (This restriction is implemented in the calling
5114 ** (8) If the subquery is a compound that uses UNION, INTERSECT,
5115 ** or EXCEPT, then all of the result set columns for all arms of
5116 ** the compound must use the BINARY collating sequence.
5118 ** (9) All three of the following are true:
5120 ** (9a) The WHERE clause expression originates in the ON or USING clause
5121 ** of a join (either an INNER or an OUTER join), and
5123 ** (9b) The subquery is to the right of the ON/USING clause
5125 ** (9c) There is a RIGHT JOIN (or FULL JOIN) in between the ON/USING
5126 ** clause and the subquery.
5128 ** Without this restriction, the push-down optimization might move
5129 ** the ON/USING filter expression from the left side of a RIGHT JOIN
5130 ** over to the right side, which leads to incorrect answers. See
5131 ** also restriction (6) in sqlite3ExprIsSingleTableConstraint().
5133 ** (10) The inner query is not the right-hand table of a RIGHT JOIN.
5135 ** (11) The subquery is not a VALUES clause
5137 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5138 ** terms are duplicated into the subquery.
5140 static int pushDownWhereTerms(
5141 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
5142 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
5143 Expr
*pWhere
, /* The WHERE clause of the outer query */
5144 SrcList
*pSrcList
, /* The complete from clause of the outer query */
5145 int iSrc
/* Which FROM clause term to try to push into */
5148 SrcItem
*pSrc
; /* The subquery FROM term into which WHERE is pushed */
5150 pSrc
= &pSrcList
->a
[iSrc
];
5151 if( pWhere
==0 ) return 0;
5152 if( pSubq
->selFlags
& (SF_Recursive
|SF_MultiPart
) ){
5153 return 0; /* restrictions (2) and (11) */
5155 if( pSrc
->fg
.jointype
& (JT_LTORJ
|JT_RIGHT
) ){
5156 return 0; /* restrictions (10) */
5159 if( pSubq
->pPrior
){
5161 int notUnionAll
= 0;
5162 for(pSel
=pSubq
; pSel
; pSel
=pSel
->pPrior
){
5164 assert( op
==TK_ALL
|| op
==TK_SELECT
5165 || op
==TK_UNION
|| op
==TK_INTERSECT
|| op
==TK_EXCEPT
);
5166 if( op
!=TK_ALL
&& op
!=TK_SELECT
){
5169 #ifndef SQLITE_OMIT_WINDOWFUNC
5170 if( pSel
->pWin
) return 0; /* restriction (6b) */
5174 /* If any of the compound arms are connected using UNION, INTERSECT,
5175 ** or EXCEPT, then we must ensure that none of the columns use a
5176 ** non-BINARY collating sequence. */
5177 for(pSel
=pSubq
; pSel
; pSel
=pSel
->pPrior
){
5179 const ExprList
*pList
= pSel
->pEList
;
5181 for(ii
=0; ii
<pList
->nExpr
; ii
++){
5182 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pList
->a
[ii
].pExpr
);
5183 if( !sqlite3IsBinary(pColl
) ){
5184 return 0; /* Restriction (8) */
5190 #ifndef SQLITE_OMIT_WINDOWFUNC
5191 if( pSubq
->pWin
&& pSubq
->pWin
->pPartition
==0 ) return 0;
5196 /* Only the first term of a compound can have a WITH clause. But make
5197 ** sure no other terms are marked SF_Recursive in case something changes
5202 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
5203 assert( (pX
->selFlags
& (SF_Recursive
))==0 );
5208 if( pSubq
->pLimit
!=0 ){
5209 return 0; /* restriction (3) */
5211 while( pWhere
->op
==TK_AND
){
5212 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
, pSrcList
, iSrc
);
5213 pWhere
= pWhere
->pLeft
;
5216 #if 0 /* These checks now done by sqlite3ExprIsSingleTableConstraint() */
5217 if( ExprHasProperty(pWhere
, EP_OuterON
|EP_InnerON
) /* (9a) */
5218 && (pSrcList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 /* Fast pre-test of (9c) */
5221 for(jj
=0; jj
<iSrc
; jj
++){
5222 if( pWhere
->w
.iJoin
==pSrcList
->a
[jj
].iCursor
){
5223 /* If we reach this point, both (9a) and (9b) are satisfied.
5224 ** The following loop checks (9c):
5226 for(jj
++; jj
<iSrc
; jj
++){
5227 if( (pSrcList
->a
[jj
].fg
.jointype
& JT_RIGHT
)!=0 ){
5228 return 0; /* restriction (9) */
5235 && (ExprHasProperty(pWhere
,EP_OuterON
)==0
5236 || pWhere
->w
.iJoin
!=iCursor
)
5238 return 0; /* restriction (4) */
5240 if( ExprHasProperty(pWhere
,EP_OuterON
)
5241 && pWhere
->w
.iJoin
!=iCursor
5243 return 0; /* restriction (5) */
5247 if( sqlite3ExprIsSingleTableConstraint(pWhere
, pSrcList
, iSrc
) ){
5249 pSubq
->selFlags
|= SF_PushDown
;
5252 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
5253 unsetJoinExpr(pNew
, -1, 1);
5255 x
.iTable
= pSrc
->iCursor
;
5256 x
.iNewTable
= pSrc
->iCursor
;
5258 x
.pEList
= pSubq
->pEList
;
5259 x
.pCList
= findLeftmostExprlist(pSubq
);
5260 pNew
= substExpr(&x
, pNew
);
5261 #ifndef SQLITE_OMIT_WINDOWFUNC
5262 if( pSubq
->pWin
&& 0==pushDownWindowCheck(pParse
, pSubq
, pNew
) ){
5263 /* Restriction 6c has prevented push-down in this case */
5264 sqlite3ExprDelete(pParse
->db
, pNew
);
5269 if( pSubq
->selFlags
& SF_Aggregate
){
5270 pSubq
->pHaving
= sqlite3ExprAnd(pParse
, pSubq
->pHaving
, pNew
);
5272 pSubq
->pWhere
= sqlite3ExprAnd(pParse
, pSubq
->pWhere
, pNew
);
5274 pSubq
= pSubq
->pPrior
;
5279 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5282 ** Check to see if a subquery contains result-set columns that are
5283 ** never used. If it does, change the value of those result-set columns
5284 ** to NULL so that they do not cause unnecessary work to compute.
5286 ** Return the number of column that were changed to NULL.
5288 static int disableUnusedSubqueryResultColumns(SrcItem
*pItem
){
5290 Select
*pSub
; /* The subquery to be simplified */
5291 Select
*pX
; /* For looping over compound elements of pSub */
5292 Table
*pTab
; /* The table that describes the subquery */
5293 int j
; /* Column number */
5294 int nChng
= 0; /* Number of columns converted to NULL */
5295 Bitmask colUsed
; /* Columns that may not be NULLed out */
5298 if( pItem
->fg
.isCorrelated
|| pItem
->fg
.isCte
){
5301 assert( pItem
->pTab
!=0 );
5303 assert( pItem
->pSelect
!=0 );
5304 pSub
= pItem
->pSelect
;
5305 assert( pSub
->pEList
->nExpr
==pTab
->nCol
);
5306 for(pX
=pSub
; pX
; pX
=pX
->pPrior
){
5307 if( (pX
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 ){
5308 testcase( pX
->selFlags
& SF_Distinct
);
5309 testcase( pX
->selFlags
& SF_Aggregate
);
5312 if( pX
->pPrior
&& pX
->op
!=TK_ALL
){
5313 /* This optimization does not work for compound subqueries that
5314 ** use UNION, INTERSECT, or EXCEPT. Only UNION ALL is allowed. */
5317 #ifndef SQLITE_OMIT_WINDOWFUNC
5319 /* This optimization does not work for subqueries that use window
5325 colUsed
= pItem
->colUsed
;
5326 if( pSub
->pOrderBy
){
5327 ExprList
*pList
= pSub
->pOrderBy
;
5328 for(j
=0; j
<pList
->nExpr
; j
++){
5329 u16 iCol
= pList
->a
[j
].u
.x
.iOrderByCol
;
5332 colUsed
|= ((Bitmask
)1)<<(iCol
>=BMS
? BMS
-1 : iCol
);
5337 for(j
=0; j
<nCol
; j
++){
5338 Bitmask m
= j
<BMS
-1 ? MASKBIT(j
) : TOPBIT
;
5339 if( (m
& colUsed
)!=0 ) continue;
5340 for(pX
=pSub
; pX
; pX
=pX
->pPrior
) {
5341 Expr
*pY
= pX
->pEList
->a
[j
].pExpr
;
5342 if( pY
->op
==TK_NULL
) continue;
5344 ExprClearProperty(pY
, EP_Skip
|EP_Unlikely
);
5345 pX
->selFlags
|= SF_PushDown
;
5354 ** The pFunc is the only aggregate function in the query. Check to see
5355 ** if the query is a candidate for the min/max optimization.
5357 ** If the query is a candidate for the min/max optimization, then set
5358 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5359 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5360 ** whether pFunc is a min() or max() function.
5362 ** If the query is not a candidate for the min/max optimization, return
5363 ** WHERE_ORDERBY_NORMAL (which must be zero).
5365 ** This routine must be called after aggregate functions have been
5366 ** located but before their arguments have been subjected to aggregate
5369 static u8
minMaxQuery(sqlite3
*db
, Expr
*pFunc
, ExprList
**ppMinMax
){
5370 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
5371 ExprList
*pEList
; /* Arguments to agg function */
5372 const char *zFunc
; /* Name of aggregate function pFunc */
5376 assert( *ppMinMax
==0 );
5377 assert( pFunc
->op
==TK_AGG_FUNCTION
);
5378 assert( !IsWindowFunc(pFunc
) );
5379 assert( ExprUseXList(pFunc
) );
5380 pEList
= pFunc
->x
.pList
;
5383 || ExprHasProperty(pFunc
, EP_WinFunc
)
5384 || OptimizationDisabled(db
, SQLITE_MinMaxOpt
)
5388 assert( !ExprHasProperty(pFunc
, EP_IntValue
) );
5389 zFunc
= pFunc
->u
.zToken
;
5390 if( sqlite3StrICmp(zFunc
, "min")==0 ){
5391 eRet
= WHERE_ORDERBY_MIN
;
5392 if( sqlite3ExprCanBeNull(pEList
->a
[0].pExpr
) ){
5393 sortFlags
= KEYINFO_ORDER_BIGNULL
;
5395 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
5396 eRet
= WHERE_ORDERBY_MAX
;
5397 sortFlags
= KEYINFO_ORDER_DESC
;
5401 *ppMinMax
= pOrderBy
= sqlite3ExprListDup(db
, pEList
, 0);
5402 assert( pOrderBy
!=0 || db
->mallocFailed
);
5403 if( pOrderBy
) pOrderBy
->a
[0].fg
.sortFlags
= sortFlags
;
5408 ** The select statement passed as the first argument is an aggregate query.
5409 ** The second argument is the associated aggregate-info object. This
5410 ** function tests if the SELECT is of the form:
5412 ** SELECT count(*) FROM <tbl>
5414 ** where table is a database table, not a sub-select or view. If the query
5415 ** does match this pattern, then a pointer to the Table object representing
5416 ** <tbl> is returned. Otherwise, NULL is returned.
5418 ** This routine checks to see if it is safe to use the count optimization.
5419 ** A correct answer is still obtained (though perhaps more slowly) if
5420 ** this routine returns NULL when it could have returned a table pointer.
5421 ** But returning the pointer when NULL should have been returned can
5422 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5424 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
5428 assert( !p
->pGroupBy
);
5431 || p
->pEList
->nExpr
!=1
5433 || p
->pSrc
->a
[0].pSelect
5434 || pAggInfo
->nFunc
!=1
5439 pTab
= p
->pSrc
->a
[0].pTab
;
5441 assert( !IsView(pTab
) );
5442 if( !IsOrdinaryTable(pTab
) ) return 0;
5443 pExpr
= p
->pEList
->a
[0].pExpr
;
5445 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
5446 if( pExpr
->pAggInfo
!=pAggInfo
) return 0;
5447 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
5448 assert( pAggInfo
->aFunc
[0].pFExpr
==pExpr
);
5449 testcase( ExprHasProperty(pExpr
, EP_Distinct
) );
5450 testcase( ExprHasProperty(pExpr
, EP_WinFunc
) );
5451 if( ExprHasProperty(pExpr
, EP_Distinct
|EP_WinFunc
) ) return 0;
5457 ** If the source-list item passed as an argument was augmented with an
5458 ** INDEXED BY clause, then try to locate the specified index. If there
5459 ** was such a clause and the named index cannot be found, return
5460 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5461 ** pFrom->pIndex and return SQLITE_OK.
5463 int sqlite3IndexedByLookup(Parse
*pParse
, SrcItem
*pFrom
){
5464 Table
*pTab
= pFrom
->pTab
;
5465 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
5468 assert( pFrom
->fg
.isIndexedBy
!=0 );
5470 for(pIdx
=pTab
->pIndex
;
5471 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
5475 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
5476 pParse
->checkSchema
= 1;
5477 return SQLITE_ERROR
;
5479 assert( pFrom
->fg
.isCte
==0 );
5480 pFrom
->u2
.pIBIndex
= pIdx
;
5485 ** Detect compound SELECT statements that use an ORDER BY clause with
5486 ** an alternative collating sequence.
5488 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5490 ** These are rewritten as a subquery:
5492 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5493 ** ORDER BY ... COLLATE ...
5495 ** This transformation is necessary because the multiSelectOrderBy() routine
5496 ** above that generates the code for a compound SELECT with an ORDER BY clause
5497 ** uses a merge algorithm that requires the same collating sequence on the
5498 ** result columns as on the ORDER BY clause. See ticket
5499 ** http://www.sqlite.org/src/info/6709574d2a
5501 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5502 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5503 ** there are COLLATE terms in the ORDER BY.
5505 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
5510 struct ExprList_item
*a
;
5515 if( p
->pPrior
==0 ) return WRC_Continue
;
5516 if( p
->pOrderBy
==0 ) return WRC_Continue
;
5517 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
5518 if( pX
==0 ) return WRC_Continue
;
5520 #ifndef SQLITE_OMIT_WINDOWFUNC
5521 /* If iOrderByCol is already non-zero, then it has already been matched
5522 ** to a result column of the SELECT statement. This occurs when the
5523 ** SELECT is rewritten for window-functions processing and then passed
5524 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5525 ** by this function is not required in this case. */
5526 if( a
[0].u
.x
.iOrderByCol
) return WRC_Continue
;
5528 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
5529 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
5531 if( i
<0 ) return WRC_Continue
;
5533 /* If we reach this point, that means the transformation is required. */
5535 pParse
= pWalker
->pParse
;
5537 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
5538 if( pNew
==0 ) return WRC_Abort
;
5539 memset(&dummy
, 0, sizeof(dummy
));
5540 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0);
5541 if( pNewSrc
==0 ) return WRC_Abort
;
5544 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
5553 #ifndef SQLITE_OMIT_WINDOWFUNC
5556 p
->selFlags
&= ~SF_Compound
;
5557 assert( (p
->selFlags
& SF_Converted
)==0 );
5558 p
->selFlags
|= SF_Converted
;
5559 assert( pNew
->pPrior
!=0 );
5560 pNew
->pPrior
->pNext
= pNew
;
5562 return WRC_Continue
;
5566 ** Check to see if the FROM clause term pFrom has table-valued function
5567 ** arguments. If it does, leave an error message in pParse and return
5568 ** non-zero, since pFrom is not allowed to be a table-valued function.
5570 static int cannotBeFunction(Parse
*pParse
, SrcItem
*pFrom
){
5571 if( pFrom
->fg
.isTabFunc
){
5572 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
5578 #ifndef SQLITE_OMIT_CTE
5580 ** Argument pWith (which may be NULL) points to a linked list of nested
5581 ** WITH contexts, from inner to outermost. If the table identified by
5582 ** FROM clause element pItem is really a common-table-expression (CTE)
5583 ** then return a pointer to the CTE definition for that table. Otherwise
5586 ** If a non-NULL value is returned, set *ppContext to point to the With
5587 ** object that the returned CTE belongs to.
5589 static struct Cte
*searchWith(
5590 With
*pWith
, /* Current innermost WITH clause */
5591 SrcItem
*pItem
, /* FROM clause element to resolve */
5592 With
**ppContext
/* OUT: WITH clause return value belongs to */
5594 const char *zName
= pItem
->zName
;
5596 assert( pItem
->zDatabase
==0 );
5598 for(p
=pWith
; p
; p
=p
->pOuter
){
5600 for(i
=0; i
<p
->nCte
; i
++){
5601 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
5606 if( p
->bView
) break;
5611 /* The code generator maintains a stack of active WITH clauses
5612 ** with the inner-most WITH clause being at the top of the stack.
5614 ** This routine pushes the WITH clause passed as the second argument
5615 ** onto the top of the stack. If argument bFree is true, then this
5616 ** WITH clause will never be popped from the stack but should instead
5617 ** be freed along with the Parse object. In other cases, when
5618 ** bFree==0, the With object will be freed along with the SELECT
5619 ** statement with which it is associated.
5621 ** This routine returns a copy of pWith. Or, if bFree is true and
5622 ** the pWith object is destroyed immediately due to an OOM condition,
5623 ** then this routine return NULL.
5625 ** If bFree is true, do not continue to use the pWith pointer after
5626 ** calling this routine, Instead, use only the return value.
5628 With
*sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
5631 pWith
= (With
*)sqlite3ParserAddCleanup(pParse
,
5632 (void(*)(sqlite3
*,void*))sqlite3WithDelete
,
5634 if( pWith
==0 ) return 0;
5636 if( pParse
->nErr
==0 ){
5637 assert( pParse
->pWith
!=pWith
);
5638 pWith
->pOuter
= pParse
->pWith
;
5639 pParse
->pWith
= pWith
;
5646 ** This function checks if argument pFrom refers to a CTE declared by
5647 ** a WITH clause on the stack currently maintained by the parser (on the
5648 ** pParse->pWith linked list). And if currently processing a CTE
5649 ** CTE expression, through routine checks to see if the reference is
5650 ** a recursive reference to the CTE.
5652 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5653 ** and other fields are populated accordingly.
5655 ** Return 0 if no match is found.
5656 ** Return 1 if a match is found.
5657 ** Return 2 if an error condition is detected.
5659 static int resolveFromTermToCte(
5660 Parse
*pParse
, /* The parsing context */
5661 Walker
*pWalker
, /* Current tree walker */
5662 SrcItem
*pFrom
/* The FROM clause term to check */
5664 Cte
*pCte
; /* Matched CTE (or NULL if no match) */
5665 With
*pWith
; /* The matching WITH */
5667 assert( pFrom
->pTab
==0 );
5668 if( pParse
->pWith
==0 ){
5669 /* There are no WITH clauses in the stack. No match is possible */
5673 /* Prior errors might have left pParse->pWith in a goofy state, so
5674 ** go no further. */
5677 if( pFrom
->zDatabase
!=0 ){
5678 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5679 ** it cannot possibly be a CTE reference. */
5682 if( pFrom
->fg
.notCte
){
5683 /* The FROM term is specifically excluded from matching a CTE.
5684 ** (1) It is part of a trigger that used to have zDatabase but had
5685 ** zDatabase removed by sqlite3FixTriggerStep().
5686 ** (2) This is the first term in the FROM clause of an UPDATE.
5690 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
5692 sqlite3
*db
= pParse
->db
;
5696 Select
*pLeft
; /* Left-most SELECT statement */
5697 Select
*pRecTerm
; /* Left-most recursive term */
5698 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
5699 With
*pSavedWith
; /* Initial value of pParse->pWith */
5700 int iRecTab
= -1; /* Cursor for recursive table */
5703 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5704 ** recursive reference to CTE pCte. Leave an error in pParse and return
5705 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5706 ** In this case, proceed. */
5707 if( pCte
->zCteErr
){
5708 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
5711 if( cannotBeFunction(pParse
, pFrom
) ) return 2;
5713 assert( pFrom
->pTab
==0 );
5714 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
5715 if( pTab
==0 ) return 2;
5716 pCteUse
= pCte
->pUse
;
5718 pCte
->pUse
= pCteUse
= sqlite3DbMallocZero(db
, sizeof(pCteUse
[0]));
5720 || sqlite3ParserAddCleanup(pParse
,sqlite3DbFree
,pCteUse
)==0
5722 sqlite3DbFree(db
, pTab
);
5725 pCteUse
->eM10d
= pCte
->eM10d
;
5729 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
5731 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
5732 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
5733 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
5734 if( db
->mallocFailed
) return 2;
5735 pFrom
->pSelect
->selFlags
|= SF_CopyCte
;
5736 assert( pFrom
->pSelect
);
5737 if( pFrom
->fg
.isIndexedBy
){
5738 sqlite3ErrorMsg(pParse
, "no such index: \"%s\"", pFrom
->u1
.zIndexedBy
);
5741 pFrom
->fg
.isCte
= 1;
5742 pFrom
->u2
.pCteUse
= pCteUse
;
5745 /* Check if this is a recursive CTE. */
5746 pRecTerm
= pSel
= pFrom
->pSelect
;
5747 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
5748 while( bMayRecursive
&& pRecTerm
->op
==pSel
->op
){
5750 SrcList
*pSrc
= pRecTerm
->pSrc
;
5751 assert( pRecTerm
->pPrior
!=0 );
5752 for(i
=0; i
<pSrc
->nSrc
; i
++){
5753 SrcItem
*pItem
= &pSrc
->a
[i
];
5754 if( pItem
->zDatabase
==0
5756 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
5760 pItem
->fg
.isRecursive
= 1;
5761 if( pRecTerm
->selFlags
& SF_Recursive
){
5762 sqlite3ErrorMsg(pParse
,
5763 "multiple references to recursive table: %s", pCte
->zName
5767 pRecTerm
->selFlags
|= SF_Recursive
;
5768 if( iRecTab
<0 ) iRecTab
= pParse
->nTab
++;
5769 pItem
->iCursor
= iRecTab
;
5772 if( (pRecTerm
->selFlags
& SF_Recursive
)==0 ) break;
5773 pRecTerm
= pRecTerm
->pPrior
;
5776 pCte
->zCteErr
= "circular reference: %s";
5777 pSavedWith
= pParse
->pWith
;
5778 pParse
->pWith
= pWith
;
5779 if( pSel
->selFlags
& SF_Recursive
){
5781 assert( pRecTerm
!=0 );
5782 assert( (pRecTerm
->selFlags
& SF_Recursive
)==0 );
5783 assert( pRecTerm
->pNext
!=0 );
5784 assert( (pRecTerm
->pNext
->selFlags
& SF_Recursive
)!=0 );
5785 assert( pRecTerm
->pWith
==0 );
5786 pRecTerm
->pWith
= pSel
->pWith
;
5787 rc
= sqlite3WalkSelect(pWalker
, pRecTerm
);
5788 pRecTerm
->pWith
= 0;
5790 pParse
->pWith
= pSavedWith
;
5794 if( sqlite3WalkSelect(pWalker
, pSel
) ){
5795 pParse
->pWith
= pSavedWith
;
5799 pParse
->pWith
= pWith
;
5801 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
5802 pEList
= pLeft
->pEList
;
5804 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
5805 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
5806 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
5808 pParse
->pWith
= pSavedWith
;
5811 pEList
= pCte
->pCols
;
5814 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
5815 if( bMayRecursive
){
5816 if( pSel
->selFlags
& SF_Recursive
){
5817 pCte
->zCteErr
= "multiple recursive references: %s";
5819 pCte
->zCteErr
= "recursive reference in a subquery: %s";
5821 sqlite3WalkSelect(pWalker
, pSel
);
5824 pParse
->pWith
= pSavedWith
;
5825 return 1; /* Success */
5827 return 0; /* No match */
5831 #ifndef SQLITE_OMIT_CTE
5833 ** If the SELECT passed as the second argument has an associated WITH
5834 ** clause, pop it from the stack stored as part of the Parse object.
5836 ** This function is used as the xSelectCallback2() callback by
5837 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5838 ** names and other FROM clause elements.
5840 void sqlite3SelectPopWith(Walker
*pWalker
, Select
*p
){
5841 Parse
*pParse
= pWalker
->pParse
;
5842 if( OK_IF_ALWAYS_TRUE(pParse
->pWith
) && p
->pPrior
==0 ){
5843 With
*pWith
= findRightmost(p
)->pWith
;
5845 assert( pParse
->pWith
==pWith
|| pParse
->nErr
);
5846 pParse
->pWith
= pWith
->pOuter
;
5853 ** The SrcItem structure passed as the second argument represents a
5854 ** sub-query in the FROM clause of a SELECT statement. This function
5855 ** allocates and populates the SrcItem.pTab object. If successful,
5856 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5859 int sqlite3ExpandSubquery(Parse
*pParse
, SrcItem
*pFrom
){
5860 Select
*pSel
= pFrom
->pSelect
;
5864 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(pParse
->db
, sizeof(Table
));
5865 if( pTab
==0 ) return SQLITE_NOMEM
;
5867 if( pFrom
->zAlias
){
5868 pTab
->zName
= sqlite3DbStrDup(pParse
->db
, pFrom
->zAlias
);
5870 pTab
->zName
= sqlite3MPrintf(pParse
->db
, "%!S", pFrom
);
5872 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
5873 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
5875 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
5876 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5877 /* The usual case - do not allow ROWID on a subquery */
5878 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
5880 pTab
->tabFlags
|= TF_Ephemeral
; /* Legacy compatibility mode */
5882 return pParse
->nErr
? SQLITE_ERROR
: SQLITE_OK
;
5887 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5888 ** If any of those SrcItem objects have a USING clause containing zName
5889 ** then return true.
5891 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5892 ** contains a USING clause, or if none of the USING clauses contain zName,
5893 ** then return false.
5895 static int inAnyUsingClause(
5896 const char *zName
, /* Name we are looking for */
5897 SrcItem
*pBase
, /* The base SrcItem. Looking at pBase[1] and following */
5898 int N
/* How many SrcItems to check */
5903 if( pBase
->fg
.isUsing
==0 ) continue;
5904 if( NEVER(pBase
->u3
.pUsing
==0) ) continue;
5905 if( sqlite3IdListIndex(pBase
->u3
.pUsing
, zName
)>=0 ) return 1;
5912 ** This routine is a Walker callback for "expanding" a SELECT statement.
5913 ** "Expanding" means to do the following:
5915 ** (1) Make sure VDBE cursor numbers have been assigned to every
5916 ** element of the FROM clause.
5918 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5919 ** defines FROM clause. When views appear in the FROM clause,
5920 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5921 ** that implements the view. A copy is made of the view's SELECT
5922 ** statement so that we can freely modify or delete that statement
5923 ** without worrying about messing up the persistent representation
5926 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5927 ** on joins and the ON and USING clause of joins.
5929 ** (4) Scan the list of columns in the result set (pEList) looking
5930 ** for instances of the "*" operator or the TABLE.* operator.
5931 ** If found, expand each "*" to be every column in every table
5932 ** and TABLE.* to be every column in TABLE.
5935 static int selectExpander(Walker
*pWalker
, Select
*p
){
5936 Parse
*pParse
= pWalker
->pParse
;
5941 sqlite3
*db
= pParse
->db
;
5942 Expr
*pE
, *pRight
, *pExpr
;
5943 u16 selFlags
= p
->selFlags
;
5946 p
->selFlags
|= SF_Expanded
;
5947 if( db
->mallocFailed
){
5950 assert( p
->pSrc
!=0 );
5951 if( (selFlags
& SF_Expanded
)!=0 ){
5954 if( pWalker
->eCode
){
5955 /* Renumber selId because it has been copied from a view */
5956 p
->selId
= ++pParse
->nSelect
;
5960 if( pParse
->pWith
&& (p
->selFlags
& SF_View
) ){
5962 p
->pWith
= (With
*)sqlite3DbMallocZero(db
, sizeof(With
));
5967 p
->pWith
->bView
= 1;
5969 sqlite3WithPush(pParse
, p
->pWith
, 0);
5971 /* Make sure cursor numbers have been assigned to all entries in
5972 ** the FROM clause of the SELECT statement.
5974 sqlite3SrcListAssignCursors(pParse
, pTabList
);
5976 /* Look up every table named in the FROM clause of the select. If
5977 ** an entry of the FROM clause is a subquery instead of a table or view,
5978 ** then create a transient table structure to describe the subquery.
5980 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5982 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
5983 if( pFrom
->pTab
) continue;
5984 assert( pFrom
->fg
.isRecursive
==0 );
5985 if( pFrom
->zName
==0 ){
5986 #ifndef SQLITE_OMIT_SUBQUERY
5987 Select
*pSel
= pFrom
->pSelect
;
5988 /* A sub-query in the FROM clause of a SELECT */
5990 assert( pFrom
->pTab
==0 );
5991 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
5992 if( sqlite3ExpandSubquery(pParse
, pFrom
) ) return WRC_Abort
;
5994 #ifndef SQLITE_OMIT_CTE
5995 }else if( (rc
= resolveFromTermToCte(pParse
, pWalker
, pFrom
))!=0 ){
5996 if( rc
>1 ) return WRC_Abort
;
6001 /* An ordinary table or view name in the FROM clause */
6002 assert( pFrom
->pTab
==0 );
6003 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
6004 if( pTab
==0 ) return WRC_Abort
;
6005 if( pTab
->nTabRef
>=0xffff ){
6006 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
6012 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
6015 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
6016 if( !IsOrdinaryTable(pTab
) ){
6018 u8 eCodeOrig
= pWalker
->eCode
;
6019 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
6020 assert( pFrom
->pSelect
==0 );
6022 if( (db
->flags
& SQLITE_EnableView
)==0
6023 && pTab
->pSchema
!=db
->aDb
[1].pSchema
6025 sqlite3ErrorMsg(pParse
, "access to view \"%s\" prohibited",
6028 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->u
.view
.pSelect
, 0);
6030 #ifndef SQLITE_OMIT_VIRTUALTABLE
6031 else if( ALWAYS(IsVirtual(pTab
))
6032 && pFrom
->fg
.fromDDL
6033 && ALWAYS(pTab
->u
.vtab
.p
!=0)
6034 && pTab
->u
.vtab
.p
->eVtabRisk
> ((db
->flags
& SQLITE_TrustedSchema
)!=0)
6036 sqlite3ErrorMsg(pParse
, "unsafe use of virtual table \"%s\"",
6039 assert( SQLITE_VTABRISK_Normal
==1 && SQLITE_VTABRISK_High
==2 );
6043 pWalker
->eCode
= 1; /* Turn on Select.selId renumbering */
6044 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
6045 pWalker
->eCode
= eCodeOrig
;
6051 /* Locate the index named by the INDEXED BY clause, if any. */
6052 if( pFrom
->fg
.isIndexedBy
&& sqlite3IndexedByLookup(pParse
, pFrom
) ){
6057 /* Process NATURAL keywords, and ON and USING clauses of joins.
6059 assert( db
->mallocFailed
==0 || pParse
->nErr
!=0 );
6060 if( pParse
->nErr
|| sqlite3ProcessJoin(pParse
, p
) ){
6064 /* For every "*" that occurs in the column list, insert the names of
6065 ** all columns in all tables. And for every TABLE.* insert the names
6066 ** of all columns in TABLE. The parser inserted a special expression
6067 ** with the TK_ASTERISK operator for each "*" that it found in the column
6068 ** list. The following code just has to locate the TK_ASTERISK
6069 ** expressions and expand each one to the list of all columns in
6072 ** The first loop just checks to see if there are any "*" operators
6073 ** that need expanding.
6075 for(k
=0; k
<pEList
->nExpr
; k
++){
6076 pE
= pEList
->a
[k
].pExpr
;
6077 if( pE
->op
==TK_ASTERISK
) break;
6078 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
6079 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
6080 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
6081 elistFlags
|= pE
->flags
;
6083 if( k
<pEList
->nExpr
){
6085 ** If we get here it means the result set contains one or more "*"
6086 ** operators that need to be expanded. Loop through each expression
6087 ** in the result set and expand them one by one.
6089 struct ExprList_item
*a
= pEList
->a
;
6091 int flags
= pParse
->db
->flags
;
6092 int longNames
= (flags
& SQLITE_FullColNames
)!=0
6093 && (flags
& SQLITE_ShortColNames
)==0;
6095 for(k
=0; k
<pEList
->nExpr
; k
++){
6097 elistFlags
|= pE
->flags
;
6098 pRight
= pE
->pRight
;
6099 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
6100 if( pE
->op
!=TK_ASTERISK
6101 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
6103 /* This particular expression does not need to be expanded.
6105 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
6107 pNew
->a
[pNew
->nExpr
-1].zEName
= a
[k
].zEName
;
6108 pNew
->a
[pNew
->nExpr
-1].fg
.eEName
= a
[k
].fg
.eEName
;
6113 /* This expression is a "*" or a "TABLE.*" and needs to be
6115 int tableSeen
= 0; /* Set to 1 when TABLE matches */
6116 char *zTName
= 0; /* text of name of TABLE */
6118 if( pE
->op
==TK_DOT
){
6119 assert( (selFlags
& SF_NestedFrom
)==0 );
6120 assert( pE
->pLeft
!=0 );
6121 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
6122 zTName
= pE
->pLeft
->u
.zToken
;
6123 assert( ExprUseWOfst(pE
->pLeft
) );
6124 iErrOfst
= pE
->pRight
->w
.iOfst
;
6126 assert( ExprUseWOfst(pE
) );
6127 iErrOfst
= pE
->w
.iOfst
;
6129 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
6130 int nAdd
; /* Number of cols including rowid */
6131 Table
*pTab
= pFrom
->pTab
; /* Table for this data source */
6132 ExprList
*pNestedFrom
; /* Result-set of a nested FROM clause */
6133 char *zTabName
; /* AS name for this data source */
6134 const char *zSchemaName
= 0; /* Schema name for this data source */
6135 int iDb
; /* Schema index for this data src */
6136 IdList
*pUsing
; /* USING clause for pFrom[1] */
6138 if( (zTabName
= pFrom
->zAlias
)==0 ){
6139 zTabName
= pTab
->zName
;
6141 if( db
->mallocFailed
) break;
6142 assert( (int)pFrom
->fg
.isNestedFrom
== IsNestedFrom(pFrom
->pSelect
) );
6143 if( pFrom
->fg
.isNestedFrom
){
6144 assert( pFrom
->pSelect
!=0 );
6145 pNestedFrom
= pFrom
->pSelect
->pEList
;
6146 assert( pNestedFrom
!=0 );
6147 assert( pNestedFrom
->nExpr
==pTab
->nCol
);
6148 assert( VisibleRowid(pTab
)==0 );
6150 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
6154 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
6155 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
6157 if( i
+1<pTabList
->nSrc
6158 && pFrom
[1].fg
.isUsing
6159 && (selFlags
& SF_NestedFrom
)!=0
6162 pUsing
= pFrom
[1].u3
.pUsing
;
6163 for(ii
=0; ii
<pUsing
->nId
; ii
++){
6164 const char *zUName
= pUsing
->a
[ii
].zName
;
6165 pRight
= sqlite3Expr(db
, TK_ID
, zUName
);
6166 sqlite3ExprSetErrorOffset(pRight
, iErrOfst
);
6167 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pRight
);
6169 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
6170 assert( pX
->zEName
==0 );
6171 pX
->zEName
= sqlite3MPrintf(db
,"..%s", zUName
);
6172 pX
->fg
.eEName
= ENAME_TAB
;
6173 pX
->fg
.bUsingTerm
= 1;
6180 nAdd
= pTab
->nCol
+ (VisibleRowid(pTab
) && (selFlags
&SF_NestedFrom
));
6181 for(j
=0; j
<nAdd
; j
++){
6183 struct ExprList_item
*pX
; /* Newly added ExprList term */
6185 if( j
==pTab
->nCol
){
6186 zName
= sqlite3RowidAlias(pTab
);
6187 if( zName
==0 ) continue;
6189 zName
= pTab
->aCol
[j
].zCnName
;
6191 /* If pTab is actually an SF_NestedFrom sub-select, do not
6192 ** expand any ENAME_ROWID columns. */
6193 if( pNestedFrom
&& pNestedFrom
->a
[j
].fg
.eEName
==ENAME_ROWID
){
6199 && sqlite3MatchEName(&pNestedFrom
->a
[j
], 0, zTName
, 0, 0)==0
6204 /* If a column is marked as 'hidden', omit it from the expanded
6205 ** result-set list unless the SELECT has the SF_IncludeHidden
6208 if( (p
->selFlags
& SF_IncludeHidden
)==0
6209 && IsHiddenColumn(&pTab
->aCol
[j
])
6213 if( (pTab
->aCol
[j
].colFlags
& COLFLAG_NOEXPAND
)!=0
6215 && (selFlags
& (SF_NestedFrom
))==0
6223 if( i
>0 && zTName
==0 && (selFlags
& SF_NestedFrom
)==0 ){
6224 if( pFrom
->fg
.isUsing
6225 && sqlite3IdListIndex(pFrom
->u3
.pUsing
, zName
)>=0
6227 /* In a join with a USING clause, omit columns in the
6228 ** using clause from the table on the right. */
6232 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
6233 if( (pTabList
->nSrc
>1
6234 && ( (pFrom
->fg
.jointype
& JT_LTORJ
)==0
6235 || (selFlags
& SF_NestedFrom
)!=0
6236 || !inAnyUsingClause(zName
,pFrom
,pTabList
->nSrc
-i
-1)
6242 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
6243 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
6244 if( IN_RENAME_OBJECT
&& pE
->pLeft
){
6245 sqlite3RenameTokenRemap(pParse
, pLeft
, pE
->pLeft
);
6248 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
6249 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
6254 sqlite3ExprSetErrorOffset(pExpr
, iErrOfst
);
6255 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
6259 pX
= &pNew
->a
[pNew
->nExpr
-1];
6260 assert( pX
->zEName
==0 );
6261 if( (selFlags
& SF_NestedFrom
)!=0 && !IN_RENAME_OBJECT
){
6263 pX
->zEName
= sqlite3DbStrDup(db
, pNestedFrom
->a
[j
].zEName
);
6264 testcase( pX
->zEName
==0 );
6266 pX
->zEName
= sqlite3MPrintf(db
, "%s.%s.%s",
6267 zSchemaName
, zTabName
, zName
);
6268 testcase( pX
->zEName
==0 );
6270 pX
->fg
.eEName
= (j
==pTab
->nCol
? ENAME_ROWID
: ENAME_TAB
);
6271 if( (pFrom
->fg
.isUsing
6272 && sqlite3IdListIndex(pFrom
->u3
.pUsing
, zName
)>=0)
6273 || (pUsing
&& sqlite3IdListIndex(pUsing
, zName
)>=0)
6274 || (j
<pTab
->nCol
&& (pTab
->aCol
[j
].colFlags
& COLFLAG_NOEXPAND
))
6276 pX
->fg
.bNoExpand
= 1;
6278 }else if( longNames
){
6279 pX
->zEName
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
6280 pX
->fg
.eEName
= ENAME_NAME
;
6282 pX
->zEName
= sqlite3DbStrDup(db
, zName
);
6283 pX
->fg
.eEName
= ENAME_NAME
;
6289 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
6291 sqlite3ErrorMsg(pParse
, "no tables specified");
6296 sqlite3ExprListDelete(db
, pEList
);
6300 if( p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
6301 sqlite3ErrorMsg(pParse
, "too many columns in result set");
6304 if( (elistFlags
& (EP_HasFunc
|EP_Subquery
))!=0 ){
6305 p
->selFlags
|= SF_ComplexResult
;
6308 #if TREETRACE_ENABLED
6309 if( sqlite3TreeTrace
& 0x8 ){
6310 TREETRACE(0x8,pParse
,p
,("After result-set wildcard expansion:\n"));
6311 sqlite3TreeViewSelect(0, p
, 0);
6314 return WRC_Continue
;
6319 ** Always assert. This xSelectCallback2 implementation proves that the
6320 ** xSelectCallback2 is never invoked.
6322 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
6323 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
6328 ** This routine "expands" a SELECT statement and all of its subqueries.
6329 ** For additional information on what it means to "expand" a SELECT
6330 ** statement, see the comment on the selectExpand worker callback above.
6332 ** Expanding a SELECT statement is the first step in processing a
6333 ** SELECT statement. The SELECT statement must be expanded before
6334 ** name resolution is performed.
6336 ** If anything goes wrong, an error message is written into pParse.
6337 ** The calling function can detect the problem by looking at pParse->nErr
6338 ** and/or pParse->db->mallocFailed.
6340 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
6342 w
.xExprCallback
= sqlite3ExprWalkNoop
;
6344 if( OK_IF_ALWAYS_TRUE(pParse
->hasCompound
) ){
6345 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
6346 w
.xSelectCallback2
= 0;
6347 sqlite3WalkSelect(&w
, pSelect
);
6349 w
.xSelectCallback
= selectExpander
;
6350 w
.xSelectCallback2
= sqlite3SelectPopWith
;
6352 sqlite3WalkSelect(&w
, pSelect
);
6356 #ifndef SQLITE_OMIT_SUBQUERY
6358 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6361 ** For each FROM-clause subquery, add Column.zType, Column.zColl, and
6362 ** Column.affinity information to the Table structure that represents
6363 ** the result set of that subquery.
6365 ** The Table structure that represents the result set was constructed
6366 ** by selectExpander() but the type and collation and affinity information
6367 ** was omitted at that point because identifiers had not yet been resolved.
6368 ** This routine is called after identifier resolution.
6370 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
6376 if( p
->selFlags
& SF_HasTypeInfo
) return;
6377 p
->selFlags
|= SF_HasTypeInfo
;
6378 pParse
= pWalker
->pParse
;
6379 testcase( (p
->selFlags
& SF_Resolved
)==0 );
6380 assert( (p
->selFlags
& SF_Resolved
) || IN_RENAME_OBJECT
);
6382 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
6383 Table
*pTab
= pFrom
->pTab
;
6385 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
6386 /* A sub-query in the FROM clause of a SELECT */
6387 Select
*pSel
= pFrom
->pSelect
;
6389 sqlite3SubqueryColumnTypes(pParse
, pTab
, pSel
, SQLITE_AFF_NONE
);
6398 ** This routine adds datatype and collating sequence information to
6399 ** the Table structures of all FROM-clause subqueries in a
6400 ** SELECT statement.
6402 ** Use this routine after name resolution.
6404 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
6405 #ifndef SQLITE_OMIT_SUBQUERY
6407 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
6408 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
6409 w
.xExprCallback
= sqlite3ExprWalkNoop
;
6411 sqlite3WalkSelect(&w
, pSelect
);
6417 ** This routine sets up a SELECT statement for processing. The
6418 ** following is accomplished:
6420 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6421 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6422 ** * ON and USING clauses are shifted into WHERE statements
6423 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6424 ** * Identifiers in expression are matched to tables.
6426 ** This routine acts recursively on all subqueries within the SELECT.
6428 void sqlite3SelectPrep(
6429 Parse
*pParse
, /* The parser context */
6430 Select
*p
, /* The SELECT statement being coded. */
6431 NameContext
*pOuterNC
/* Name context for container */
6433 assert( p
!=0 || pParse
->db
->mallocFailed
);
6434 assert( pParse
->db
->pParse
==pParse
);
6435 if( pParse
->db
->mallocFailed
) return;
6436 if( p
->selFlags
& SF_HasTypeInfo
) return;
6437 sqlite3SelectExpand(pParse
, p
);
6438 if( pParse
->nErr
) return;
6439 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
6440 if( pParse
->nErr
) return;
6441 sqlite3SelectAddTypeInfo(pParse
, p
);
6444 #if TREETRACE_ENABLED
6446 ** Display all information about an AggInfo object
6448 static void printAggInfo(AggInfo
*pAggInfo
){
6450 for(ii
=0; ii
<pAggInfo
->nColumn
; ii
++){
6451 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[ii
];
6453 "agg-column[%d] pTab=%s iTable=%d iColumn=%d iMem=%d"
6454 " iSorterColumn=%d %s\n",
6455 ii
, pCol
->pTab
? pCol
->pTab
->zName
: "NULL",
6456 pCol
->iTable
, pCol
->iColumn
, pAggInfo
->iFirstReg
+ii
,
6457 pCol
->iSorterColumn
,
6458 ii
>=pAggInfo
->nAccumulator
? "" : " Accumulator");
6459 sqlite3TreeViewExpr(0, pAggInfo
->aCol
[ii
].pCExpr
, 0);
6461 for(ii
=0; ii
<pAggInfo
->nFunc
; ii
++){
6462 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6463 ii
, pAggInfo
->iFirstReg
+pAggInfo
->nColumn
+ii
);
6464 sqlite3TreeViewExpr(0, pAggInfo
->aFunc
[ii
].pFExpr
, 0);
6467 #endif /* TREETRACE_ENABLED */
6470 ** Analyze the arguments to aggregate functions. Create new pAggInfo->aCol[]
6471 ** entries for columns that are arguments to aggregate functions but which
6472 ** are not otherwise used.
6474 ** The aCol[] entries in AggInfo prior to nAccumulator are columns that
6475 ** are referenced outside of aggregate functions. These might be columns
6476 ** that are part of the GROUP by clause, for example. Other database engines
6477 ** would throw an error if there is a column reference that is not in the
6478 ** GROUP BY clause and that is not part of an aggregate function argument.
6479 ** But SQLite allows this.
6481 ** The aCol[] entries beginning with the aCol[nAccumulator] and following
6482 ** are column references that are used exclusively as arguments to
6483 ** aggregate functions. This routine is responsible for computing
6484 ** (or recomputing) those aCol[] entries.
6486 static void analyzeAggFuncArgs(
6491 assert( pAggInfo
!=0 );
6492 assert( pAggInfo
->iFirstReg
==0 );
6493 pNC
->ncFlags
|= NC_InAggFunc
;
6494 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6495 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
6496 assert( pExpr
->op
==TK_FUNCTION
|| pExpr
->op
==TK_AGG_FUNCTION
);
6497 assert( ExprUseXList(pExpr
) );
6498 sqlite3ExprAnalyzeAggList(pNC
, pExpr
->x
.pList
);
6500 assert( pExpr
->pLeft
->op
==TK_ORDER
);
6501 assert( ExprUseXList(pExpr
->pLeft
) );
6502 sqlite3ExprAnalyzeAggList(pNC
, pExpr
->pLeft
->x
.pList
);
6504 #ifndef SQLITE_OMIT_WINDOWFUNC
6505 assert( !IsWindowFunc(pExpr
) );
6506 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
6507 sqlite3ExprAnalyzeAggregates(pNC
, pExpr
->y
.pWin
->pFilter
);
6511 pNC
->ncFlags
&= ~NC_InAggFunc
;
6515 ** An index on expressions is being used in the inner loop of an
6516 ** aggregate query with a GROUP BY clause. This routine attempts
6517 ** to adjust the AggInfo object to take advantage of index and to
6518 ** perhaps use the index as a covering index.
6521 static void optimizeAggregateUseOfIndexedExpr(
6522 Parse
*pParse
, /* Parsing context */
6523 Select
*pSelect
, /* The SELECT statement being processed */
6524 AggInfo
*pAggInfo
, /* The aggregate info */
6525 NameContext
*pNC
/* Name context used to resolve agg-func args */
6527 assert( pAggInfo
->iFirstReg
==0 );
6528 assert( pSelect
!=0 );
6529 assert( pSelect
->pGroupBy
!=0 );
6530 pAggInfo
->nColumn
= pAggInfo
->nAccumulator
;
6531 if( ALWAYS(pAggInfo
->nSortingColumn
>0) ){
6532 int mx
= pSelect
->pGroupBy
->nExpr
- 1;
6534 for(j
=0; j
<pAggInfo
->nColumn
; j
++){
6535 k
= pAggInfo
->aCol
[j
].iSorterColumn
;
6538 pAggInfo
->nSortingColumn
= mx
+1;
6540 analyzeAggFuncArgs(pAggInfo
, pNC
);
6541 #if TREETRACE_ENABLED
6542 if( sqlite3TreeTrace
& 0x20 ){
6544 TREETRACE(0x20, pParse
, pSelect
,
6545 ("AggInfo (possibly) adjusted for Indexed Exprs\n"));
6546 sqlite3TreeViewSelect(0, pSelect
, 0);
6547 for(pIEpr
=pParse
->pIdxEpr
; pIEpr
; pIEpr
=pIEpr
->pIENext
){
6548 printf("data-cursor=%d index={%d,%d}\n",
6549 pIEpr
->iDataCur
, pIEpr
->iIdxCur
, pIEpr
->iIdxCol
);
6550 sqlite3TreeViewExpr(0, pIEpr
->pExpr
, 0);
6552 printAggInfo(pAggInfo
);
6555 UNUSED_PARAMETER(pSelect
);
6556 UNUSED_PARAMETER(pParse
);
6561 ** Walker callback for aggregateConvertIndexedExprRefToColumn().
6563 static int aggregateIdxEprRefToColCallback(Walker
*pWalker
, Expr
*pExpr
){
6565 struct AggInfo_col
*pCol
;
6566 UNUSED_PARAMETER(pWalker
);
6567 if( pExpr
->pAggInfo
==0 ) return WRC_Continue
;
6568 if( pExpr
->op
==TK_AGG_COLUMN
) return WRC_Continue
;
6569 if( pExpr
->op
==TK_AGG_FUNCTION
) return WRC_Continue
;
6570 if( pExpr
->op
==TK_IF_NULL_ROW
) return WRC_Continue
;
6571 pAggInfo
= pExpr
->pAggInfo
;
6572 if( NEVER(pExpr
->iAgg
>=pAggInfo
->nColumn
) ) return WRC_Continue
;
6573 assert( pExpr
->iAgg
>=0 );
6574 pCol
= &pAggInfo
->aCol
[pExpr
->iAgg
];
6575 pExpr
->op
= TK_AGG_COLUMN
;
6576 pExpr
->iTable
= pCol
->iTable
;
6577 pExpr
->iColumn
= pCol
->iColumn
;
6578 ExprClearProperty(pExpr
, EP_Skip
|EP_Collate
|EP_Unlikely
);
6583 ** Convert every pAggInfo->aFunc[].pExpr such that any node within
6584 ** those expressions that has pAppInfo set is changed into a TK_AGG_COLUMN
6587 static void aggregateConvertIndexedExprRefToColumn(AggInfo
*pAggInfo
){
6590 memset(&w
, 0, sizeof(w
));
6591 w
.xExprCallback
= aggregateIdxEprRefToColCallback
;
6592 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6593 sqlite3WalkExpr(&w
, pAggInfo
->aFunc
[i
].pFExpr
);
6599 ** Allocate a block of registers so that there is one register for each
6600 ** pAggInfo->aCol[] and pAggInfo->aFunc[] entry in pAggInfo. The first
6601 ** register in this block is stored in pAggInfo->iFirstReg.
6603 ** This routine may only be called once for each AggInfo object. Prior
6604 ** to calling this routine:
6606 ** * The aCol[] and aFunc[] arrays may be modified
6607 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may not be used
6609 ** After calling this routine:
6611 ** * The aCol[] and aFunc[] arrays are fixed
6612 ** * The AggInfoColumnReg() and AggInfoFuncReg() macros may be used
6615 static void assignAggregateRegisters(Parse
*pParse
, AggInfo
*pAggInfo
){
6616 assert( pAggInfo
!=0 );
6617 assert( pAggInfo
->iFirstReg
==0 );
6618 pAggInfo
->iFirstReg
= pParse
->nMem
+ 1;
6619 pParse
->nMem
+= pAggInfo
->nColumn
+ pAggInfo
->nFunc
;
6623 ** Reset the aggregate accumulator.
6625 ** The aggregate accumulator is a set of memory cells that hold
6626 ** intermediate results while calculating an aggregate. This
6627 ** routine generates code that stores NULLs in all of those memory
6630 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
6631 Vdbe
*v
= pParse
->pVdbe
;
6633 struct AggInfo_func
*pFunc
;
6634 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
6635 assert( pAggInfo
->iFirstReg
>0 );
6636 assert( pParse
->db
->pParse
==pParse
);
6637 assert( pParse
->db
->mallocFailed
==0 || pParse
->nErr
!=0 );
6638 if( nReg
==0 ) return;
6639 if( pParse
->nErr
) return;
6640 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->iFirstReg
,
6641 pAggInfo
->iFirstReg
+nReg
-1);
6642 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
6643 if( pFunc
->iDistinct
>=0 ){
6644 Expr
*pE
= pFunc
->pFExpr
;
6645 assert( ExprUseXList(pE
) );
6646 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
6647 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
6649 pFunc
->iDistinct
= -1;
6651 KeyInfo
*pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pE
->x
.pList
,0,0);
6652 pFunc
->iDistAddr
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6653 pFunc
->iDistinct
, 0, 0, (char*)pKeyInfo
, P4_KEYINFO
);
6654 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6655 pFunc
->pFunc
->zName
));
6658 if( pFunc
->iOBTab
>=0 ){
6662 assert( pFunc
->pFExpr
->pLeft
!=0 );
6663 assert( pFunc
->pFExpr
->pLeft
->op
==TK_ORDER
);
6664 assert( ExprUseXList(pFunc
->pFExpr
->pLeft
) );
6665 pOBList
= pFunc
->pFExpr
->pLeft
->x
.pList
;
6666 if( !pFunc
->bOBUnique
){
6667 nExtra
++; /* One extra column for the OP_Sequence */
6669 if( pFunc
->bOBPayload
){
6670 /* extra columns for the function arguments */
6671 assert( ExprUseXList(pFunc
->pFExpr
) );
6672 nExtra
+= pFunc
->pFExpr
->x
.pList
->nExpr
;
6674 pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pOBList
, 0, nExtra
);
6675 if( !pFunc
->bOBUnique
&& pParse
->nErr
==0 ){
6676 pKeyInfo
->nKeyField
++;
6678 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6679 pFunc
->iOBTab
, pOBList
->nExpr
+nExtra
, 0,
6680 (char*)pKeyInfo
, P4_KEYINFO
);
6681 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s(ORDER BY)",
6682 pFunc
->pFunc
->zName
));
6688 ** Invoke the OP_AggFinalize opcode for every aggregate function
6689 ** in the AggInfo structure.
6691 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
6692 Vdbe
*v
= pParse
->pVdbe
;
6694 struct AggInfo_func
*pF
;
6695 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
6697 assert( ExprUseXList(pF
->pFExpr
) );
6698 pList
= pF
->pFExpr
->x
.pList
;
6699 if( pF
->iOBTab
>=0 ){
6700 /* For an ORDER BY aggregate, calls to OP_AggStep where deferred and
6701 ** all content was stored in emphermal table pF->iOBTab. Extract that
6702 ** content now (in ORDER BY order) and make all calls to OP_AggStep
6703 ** before doing the OP_AggFinal call. */
6704 int iTop
; /* Start of loop for extracting columns */
6705 int nArg
; /* Number of columns to extract */
6706 int nKey
; /* Key columns to be skipped */
6707 int regAgg
; /* Extract into this array */
6708 int j
; /* Loop counter */
6710 nArg
= pList
->nExpr
;
6711 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
6713 if( pF
->bOBPayload
==0 ){
6716 assert( pF
->pFExpr
->pLeft
!=0 );
6717 assert( ExprUseXList(pF
->pFExpr
->pLeft
) );
6718 assert( pF
->pFExpr
->pLeft
->x
.pList
!=0 );
6719 nKey
= pF
->pFExpr
->pLeft
->x
.pList
->nExpr
;
6720 if( ALWAYS(!pF
->bOBUnique
) ) nKey
++;
6722 iTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pF
->iOBTab
); VdbeCoverage(v
);
6723 for(j
=nArg
-1; j
>=0; j
--){
6724 sqlite3VdbeAddOp3(v
, OP_Column
, pF
->iOBTab
, nKey
+j
, regAgg
+j
);
6726 sqlite3VdbeAddOp3(v
, OP_AggStep
, 0, regAgg
, AggInfoFuncReg(pAggInfo
,i
));
6727 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
6728 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
6729 sqlite3VdbeAddOp2(v
, OP_Next
, pF
->iOBTab
, iTop
+1); VdbeCoverage(v
);
6730 sqlite3VdbeJumpHere(v
, iTop
);
6731 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
6733 sqlite3VdbeAddOp2(v
, OP_AggFinal
, AggInfoFuncReg(pAggInfo
,i
),
6734 pList
? pList
->nExpr
: 0);
6735 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
6740 ** Generate code that will update the accumulator memory cells for an
6741 ** aggregate based on the current cursor position.
6743 ** If regAcc is non-zero and there are no min() or max() aggregates
6744 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6745 ** registers if register regAcc contains 0. The caller will take care
6746 ** of setting and clearing regAcc.
6748 ** For an ORDER BY aggregate, the actual accumulator memory cell update
6749 ** is deferred until after all input rows have been received, so that they
6750 ** can be run in the requested order. In that case, instead of invoking
6751 ** OP_AggStep to update the accumulator, just add the arguments that would
6752 ** have been passed into OP_AggStep into the sorting ephemeral table
6753 ** (along with the appropriate sort key).
6755 static void updateAccumulator(
6761 Vdbe
*v
= pParse
->pVdbe
;
6764 int addrHitTest
= 0;
6765 struct AggInfo_func
*pF
;
6766 struct AggInfo_col
*pC
;
6768 assert( pAggInfo
->iFirstReg
>0 );
6769 if( pParse
->nErr
) return;
6770 pAggInfo
->directMode
= 1;
6771 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
6776 int regDistinct
= 0;
6778 assert( ExprUseXList(pF
->pFExpr
) );
6779 assert( !IsWindowFunc(pF
->pFExpr
) );
6780 pList
= pF
->pFExpr
->x
.pList
;
6781 if( ExprHasProperty(pF
->pFExpr
, EP_WinFunc
) ){
6782 Expr
*pFilter
= pF
->pFExpr
->y
.pWin
->pFilter
;
6783 if( pAggInfo
->nAccumulator
6784 && (pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
6787 /* If regAcc==0, there there exists some min() or max() function
6788 ** without a FILTER clause that will ensure the magnet registers
6789 ** are populated. */
6790 if( regHit
==0 ) regHit
= ++pParse
->nMem
;
6791 /* If this is the first row of the group (regAcc contains 0), clear the
6792 ** "magnet" register regHit so that the accumulator registers
6793 ** are populated if the FILTER clause jumps over the the
6794 ** invocation of min() or max() altogether. Or, if this is not
6795 ** the first row (regAcc contains 1), set the magnet register so that
6796 ** the accumulators are not populated unless the min()/max() is invoked
6797 ** and indicates that they should be. */
6798 sqlite3VdbeAddOp2(v
, OP_Copy
, regAcc
, regHit
);
6800 addrNext
= sqlite3VdbeMakeLabel(pParse
);
6801 sqlite3ExprIfFalse(pParse
, pFilter
, addrNext
, SQLITE_JUMPIFNULL
);
6803 if( pF
->iOBTab
>=0 ){
6804 /* Instead of invoking AggStep, we must push the arguments that would
6805 ** have been passed to AggStep onto the sorting table. */
6806 int jj
; /* Registered used so far in building the record */
6807 ExprList
*pOBList
; /* The ORDER BY clause */
6809 nArg
= pList
->nExpr
;
6811 assert( pF
->pFExpr
->pLeft
!=0 );
6812 assert( pF
->pFExpr
->pLeft
->op
==TK_ORDER
);
6813 assert( ExprUseXList(pF
->pFExpr
->pLeft
) );
6814 pOBList
= pF
->pFExpr
->pLeft
->x
.pList
;
6815 assert( pOBList
!=0 );
6816 assert( pOBList
->nExpr
>0 );
6817 regAggSz
= pOBList
->nExpr
;
6818 if( !pF
->bOBUnique
){
6819 regAggSz
++; /* One register for OP_Sequence */
6821 if( pF
->bOBPayload
){
6824 regAggSz
++; /* One extra register to hold result of MakeRecord */
6825 regAgg
= sqlite3GetTempRange(pParse
, regAggSz
);
6826 regDistinct
= regAgg
;
6827 sqlite3ExprCodeExprList(pParse
, pOBList
, regAgg
, 0, SQLITE_ECEL_DUP
);
6828 jj
= pOBList
->nExpr
;
6829 if( !pF
->bOBUnique
){
6830 sqlite3VdbeAddOp2(v
, OP_Sequence
, pF
->iOBTab
, regAgg
+jj
);
6833 if( pF
->bOBPayload
){
6834 regDistinct
= regAgg
+jj
;
6835 sqlite3ExprCodeExprList(pParse
, pList
, regDistinct
, 0, SQLITE_ECEL_DUP
);
6838 nArg
= pList
->nExpr
;
6839 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
6840 regDistinct
= regAgg
;
6841 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
6846 if( pF
->iDistinct
>=0 && pList
){
6848 addrNext
= sqlite3VdbeMakeLabel(pParse
);
6850 pF
->iDistinct
= codeDistinct(pParse
, eDistinctType
,
6851 pF
->iDistinct
, addrNext
, pList
, regDistinct
);
6853 if( pF
->iOBTab
>=0 ){
6854 /* Insert a new record into the ORDER BY table */
6855 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regAgg
, regAggSz
-1,
6857 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pF
->iOBTab
, regAgg
+regAggSz
-1,
6858 regAgg
, regAggSz
-1);
6859 sqlite3ReleaseTempRange(pParse
, regAgg
, regAggSz
);
6861 /* Invoke the AggStep function */
6862 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
6864 struct ExprList_item
*pItem
;
6866 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6867 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
6868 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
6871 pColl
= pParse
->db
->pDfltColl
;
6873 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
6874 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0,
6875 (char *)pColl
, P4_COLLSEQ
);
6877 sqlite3VdbeAddOp3(v
, OP_AggStep
, 0, regAgg
, AggInfoFuncReg(pAggInfo
,i
));
6878 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
6879 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
6880 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
6883 sqlite3VdbeResolveLabel(v
, addrNext
);
6886 if( regHit
==0 && pAggInfo
->nAccumulator
){
6890 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
6892 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
6893 sqlite3ExprCode(pParse
, pC
->pCExpr
, AggInfoColumnReg(pAggInfo
,i
));
6896 pAggInfo
->directMode
= 0;
6898 sqlite3VdbeJumpHereOrPopInst(v
, addrHitTest
);
6903 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6904 ** count(*) query ("SELECT count(*) FROM pTab").
6906 #ifndef SQLITE_OMIT_EXPLAIN
6907 static void explainSimpleCount(
6908 Parse
*pParse
, /* Parse context */
6909 Table
*pTab
, /* Table being queried */
6910 Index
*pIdx
/* Index used to optimize scan, or NULL */
6912 if( pParse
->explain
==2 ){
6913 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
6914 sqlite3VdbeExplain(pParse
, 0, "SCAN %s%s%s",
6916 bCover
? " USING COVERING INDEX " : "",
6917 bCover
? pIdx
->zName
: ""
6922 # define explainSimpleCount(a,b,c)
6926 ** sqlite3WalkExpr() callback used by havingToWhere().
6928 ** If the node passed to the callback is a TK_AND node, return
6929 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6931 ** Otherwise, return WRC_Prune. In this case, also check if the
6932 ** sub-expression matches the criteria for being moved to the WHERE
6933 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6934 ** within the HAVING expression with a constant "1".
6936 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
6937 if( pExpr
->op
!=TK_AND
){
6938 Select
*pS
= pWalker
->u
.pSelect
;
6939 /* This routine is called before the HAVING clause of the current
6940 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6941 ** here, it indicates that the expression is a correlated reference to a
6942 ** column from an outer aggregate query, or an aggregate function that
6943 ** belongs to an outer query. Do not move the expression to the WHERE
6944 ** clause in this obscure case, as doing so may corrupt the outer Select
6945 ** statements AggInfo structure. */
6946 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, pS
->pGroupBy
)
6947 && ExprAlwaysFalse(pExpr
)==0
6948 && pExpr
->pAggInfo
==0
6950 sqlite3
*db
= pWalker
->pParse
->db
;
6951 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, "1");
6953 Expr
*pWhere
= pS
->pWhere
;
6954 SWAP(Expr
, *pNew
, *pExpr
);
6955 pNew
= sqlite3ExprAnd(pWalker
->pParse
, pWhere
, pNew
);
6962 return WRC_Continue
;
6966 ** Transfer eligible terms from the HAVING clause of a query, which is
6967 ** processed after grouping, to the WHERE clause, which is processed before
6968 ** grouping. For example, the query:
6970 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6972 ** can be rewritten as:
6974 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6976 ** A term of the HAVING expression is eligible for transfer if it consists
6977 ** entirely of constants and expressions that are also GROUP BY terms that
6978 ** use the "BINARY" collation sequence.
6980 static void havingToWhere(Parse
*pParse
, Select
*p
){
6982 memset(&sWalker
, 0, sizeof(sWalker
));
6983 sWalker
.pParse
= pParse
;
6984 sWalker
.xExprCallback
= havingToWhereExprCb
;
6985 sWalker
.u
.pSelect
= p
;
6986 sqlite3WalkExpr(&sWalker
, p
->pHaving
);
6987 #if TREETRACE_ENABLED
6988 if( sWalker
.eCode
&& (sqlite3TreeTrace
& 0x100)!=0 ){
6989 TREETRACE(0x100,pParse
,p
,("Move HAVING terms into WHERE:\n"));
6990 sqlite3TreeViewSelect(0, p
, 0);
6996 ** Check to see if the pThis entry of pTabList is a self-join of another view.
6997 ** Search FROM-clause entries in the range of iFirst..iEnd, including iFirst
6998 ** but stopping before iEnd.
7000 ** If pThis is a self-join, then return the SrcItem for the first other
7001 ** instance of that view found. If pThis is not a self-join then return 0.
7003 static SrcItem
*isSelfJoinView(
7004 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
7005 SrcItem
*pThis
, /* Search for prior reference to this subquery */
7006 int iFirst
, int iEnd
/* Range of FROM-clause entries to search. */
7009 assert( pThis
->pSelect
!=0 );
7010 if( pThis
->pSelect
->selFlags
& SF_PushDown
) return 0;
7011 while( iFirst
<iEnd
){
7013 pItem
= &pTabList
->a
[iFirst
++];
7014 if( pItem
->pSelect
==0 ) continue;
7015 if( pItem
->fg
.viaCoroutine
) continue;
7016 if( pItem
->zName
==0 ) continue;
7017 assert( pItem
->pTab
!=0 );
7018 assert( pThis
->pTab
!=0 );
7019 if( pItem
->pTab
->pSchema
!=pThis
->pTab
->pSchema
) continue;
7020 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
7021 pS1
= pItem
->pSelect
;
7022 if( pItem
->pTab
->pSchema
==0 && pThis
->pSelect
->selId
!=pS1
->selId
){
7023 /* The query flattener left two different CTE tables with identical
7024 ** names in the same FROM clause. */
7027 if( pItem
->pSelect
->selFlags
& SF_PushDown
){
7028 /* The view was modified by some other optimization such as
7029 ** pushDownWhereTerms() */
7038 ** Deallocate a single AggInfo object
7040 static void agginfoFree(sqlite3
*db
, AggInfo
*p
){
7041 sqlite3DbFree(db
, p
->aCol
);
7042 sqlite3DbFree(db
, p
->aFunc
);
7043 sqlite3DbFreeNN(db
, p
);
7047 ** Attempt to transform a query of the form
7049 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
7053 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
7055 ** The transformation only works if all of the following are true:
7057 ** * The subquery is a UNION ALL of two or more terms
7058 ** * The subquery does not have a LIMIT clause
7059 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
7060 ** * The outer query is a simple count(*) with no WHERE clause or other
7061 ** extraneous syntax.
7063 ** Return TRUE if the optimization is undertaken.
7065 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
7066 Select
*pSub
, *pPrior
;
7070 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
7071 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
7072 if( p
->pWhere
) return 0;
7073 if( p
->pHaving
) return 0;
7074 if( p
->pGroupBy
) return 0;
7075 if( p
->pOrderBy
) return 0;
7076 pExpr
= p
->pEList
->a
[0].pExpr
;
7077 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
7078 assert( ExprUseUToken(pExpr
) );
7079 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
7080 assert( ExprUseXList(pExpr
) );
7081 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
7082 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
7083 if( ExprHasProperty(pExpr
, EP_WinFunc
) ) return 0;/* Not a window function */
7084 pSub
= p
->pSrc
->a
[0].pSelect
;
7085 if( pSub
==0 ) return 0; /* The FROM is a subquery */
7086 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound */
7087 if( pSub
->selFlags
& SF_CopyCte
) return 0; /* Not a CTE */
7089 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
7090 if( pSub
->pWhere
) return 0; /* No WHERE clause */
7091 if( pSub
->pLimit
) return 0; /* No LIMIT clause */
7092 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
7093 assert( pSub
->pHaving
==0 ); /* Due to the previous */
7094 pSub
= pSub
->pPrior
; /* Repeat over compound */
7097 /* If we reach this point then it is OK to perform the transformation */
7102 pSub
= p
->pSrc
->a
[0].pSelect
;
7103 p
->pSrc
->a
[0].pSelect
= 0;
7104 sqlite3SrcListDelete(db
, p
->pSrc
);
7105 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
7108 pPrior
= pSub
->pPrior
;
7111 pSub
->selFlags
|= SF_Aggregate
;
7112 pSub
->selFlags
&= ~SF_Compound
;
7113 pSub
->nSelectRow
= 0;
7114 sqlite3ExprListDelete(db
, pSub
->pEList
);
7115 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
7116 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
7117 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
7118 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
7122 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
7126 p
->pEList
->a
[0].pExpr
= pExpr
;
7127 p
->selFlags
&= ~SF_Aggregate
;
7129 #if TREETRACE_ENABLED
7130 if( sqlite3TreeTrace
& 0x200 ){
7131 TREETRACE(0x200,pParse
,p
,("After count-of-view optimization:\n"));
7132 sqlite3TreeViewSelect(0, p
, 0);
7139 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
7140 ** as pSrcItem but has the same alias as p0, then return true.
7141 ** Otherwise return false.
7143 static int sameSrcAlias(SrcItem
*p0
, SrcList
*pSrc
){
7145 for(i
=0; i
<pSrc
->nSrc
; i
++){
7146 SrcItem
*p1
= &pSrc
->a
[i
];
7147 if( p1
==p0
) continue;
7148 if( p0
->pTab
==p1
->pTab
&& 0==sqlite3_stricmp(p0
->zAlias
, p1
->zAlias
) ){
7152 && (p1
->pSelect
->selFlags
& SF_NestedFrom
)!=0
7153 && sameSrcAlias(p0
, p1
->pSelect
->pSrc
)
7162 ** Return TRUE (non-zero) if the i-th entry in the pTabList SrcList can
7163 ** be implemented as a co-routine. The i-th entry is guaranteed to be
7166 ** The subquery is implemented as a co-routine if all of the following are
7169 ** (1) The subquery will likely be implemented in the outer loop of
7170 ** the query. This will be the case if any one of the following
7172 ** (a) The subquery is the only term in the FROM clause
7173 ** (b) The subquery is the left-most term and a CROSS JOIN or similar
7174 ** requires it to be the outer loop
7175 ** (c) All of the following are true:
7176 ** (i) The subquery is the left-most subquery in the FROM clause
7177 ** (ii) There is nothing that would prevent the subquery from
7178 ** being used as the outer loop if the sqlite3WhereBegin()
7179 ** routine nominates it to that position.
7180 ** (iii) The query is not a UPDATE ... FROM
7181 ** (2) The subquery is not a CTE that should be materialized because
7182 ** (a) the AS MATERIALIZED keyword is used, or
7183 ** (b) the CTE is used multiple times and does not have the
7184 ** NOT MATERIALIZED keyword
7185 ** (3) The subquery is not part of a left operand for a RIGHT JOIN
7186 ** (4) The SQLITE_Coroutine optimization disable flag is not set
7187 ** (5) The subquery is not self-joined
7189 static int fromClauseTermCanBeCoroutine(
7190 Parse
*pParse
, /* Parsing context */
7191 SrcList
*pTabList
, /* FROM clause */
7192 int i
, /* Which term of the FROM clause holds the subquery */
7193 int selFlags
/* Flags on the SELECT statement */
7195 SrcItem
*pItem
= &pTabList
->a
[i
];
7196 if( pItem
->fg
.isCte
){
7197 const CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
7198 if( pCteUse
->eM10d
==M10d_Yes
) return 0; /* (2a) */
7199 if( pCteUse
->nUse
>=2 && pCteUse
->eM10d
!=M10d_No
) return 0; /* (2b) */
7201 if( pTabList
->a
[0].fg
.jointype
& JT_LTORJ
) return 0; /* (3) */
7202 if( OptimizationDisabled(pParse
->db
, SQLITE_Coroutines
) ) return 0; /* (4) */
7203 if( isSelfJoinView(pTabList
, pItem
, i
+1, pTabList
->nSrc
)!=0 ){
7207 if( pTabList
->nSrc
==1 ) return 1; /* (1a) */
7208 if( pTabList
->a
[1].fg
.jointype
& JT_CROSS
) return 1; /* (1b) */
7209 if( selFlags
& SF_UpdateFrom
) return 0; /* (1c-iii) */
7212 if( selFlags
& SF_UpdateFrom
) return 0; /* (1c-iii) */
7213 while( 1 /*exit-by-break*/ ){
7214 if( pItem
->fg
.jointype
& (JT_OUTER
|JT_CROSS
) ) return 0; /* (1c-ii) */
7218 if( pItem
->pSelect
!=0 ) return 0; /* (1c-i) */
7224 ** Generate code for the SELECT statement given in the p argument.
7226 ** The results are returned according to the SelectDest structure.
7227 ** See comments in sqliteInt.h for further information.
7229 ** This routine returns the number of errors. If any errors are
7230 ** encountered, then an appropriate error message is left in
7233 ** This routine does NOT free the Select structure passed in. The
7234 ** calling function needs to do that.
7237 Parse
*pParse
, /* The parser context */
7238 Select
*p
, /* The SELECT statement being coded. */
7239 SelectDest
*pDest
/* What to do with the query results */
7241 int i
, j
; /* Loop counters */
7242 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
7243 Vdbe
*v
; /* The virtual machine under construction */
7244 int isAgg
; /* True for select lists like "count(*)" */
7245 ExprList
*pEList
= 0; /* List of columns to extract. */
7246 SrcList
*pTabList
; /* List of tables to select from */
7247 Expr
*pWhere
; /* The WHERE clause. May be NULL */
7248 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
7249 Expr
*pHaving
; /* The HAVING clause. May be NULL */
7250 AggInfo
*pAggInfo
= 0; /* Aggregate information */
7251 int rc
= 1; /* Value to return from this function */
7252 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
7253 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
7254 int iEnd
; /* Address of the end of the query */
7255 sqlite3
*db
; /* The database connection */
7256 ExprList
*pMinMaxOrderBy
= 0; /* Added ORDER BY for min/max queries */
7257 u8 minMaxFlag
; /* Flag for min/max queries */
7260 assert( pParse
==db
->pParse
);
7261 v
= sqlite3GetVdbe(pParse
);
7262 if( p
==0 || pParse
->nErr
){
7265 assert( db
->mallocFailed
==0 );
7266 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
7267 #if TREETRACE_ENABLED
7268 TREETRACE(0x1,pParse
,p
, ("begin processing:\n", pParse
->addrExplain
));
7269 if( sqlite3TreeTrace
& 0x10000 ){
7270 if( (sqlite3TreeTrace
& 0x10001)==0x10000 ){
7271 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
7272 __FILE__
, __LINE__
);
7274 sqlite3ShowSelect(p
);
7278 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
7279 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
7280 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
7281 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
7282 if( IgnorableDistinct(pDest
) ){
7283 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
7284 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
7285 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_DistFifo
);
7286 /* All of these destinations are also able to ignore the ORDER BY clause */
7288 #if TREETRACE_ENABLED
7289 TREETRACE(0x800,pParse
,p
, ("dropping superfluous ORDER BY:\n"));
7290 if( sqlite3TreeTrace
& 0x800 ){
7291 sqlite3TreeViewExprList(0, p
->pOrderBy
, 0, "ORDERBY");
7294 sqlite3ParserAddCleanup(pParse
,
7295 (void(*)(sqlite3
*,void*))sqlite3ExprListDelete
,
7297 testcase( pParse
->earlyCleanup
);
7300 p
->selFlags
&= ~SF_Distinct
;
7301 p
->selFlags
|= SF_NoopOrderBy
;
7303 sqlite3SelectPrep(pParse
, p
, 0);
7307 assert( db
->mallocFailed
==0 );
7308 assert( p
->pEList
!=0 );
7309 #if TREETRACE_ENABLED
7310 if( sqlite3TreeTrace
& 0x10 ){
7311 TREETRACE(0x10,pParse
,p
, ("after name resolution:\n"));
7312 sqlite3TreeViewSelect(0, p
, 0);
7316 /* If the SF_UFSrcCheck flag is set, then this function is being called
7317 ** as part of populating the temp table for an UPDATE...FROM statement.
7318 ** In this case, it is an error if the target object (pSrc->a[0]) name
7319 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
7321 ** Postgres disallows this case too. The reason is that some other
7322 ** systems handle this case differently, and not all the same way,
7323 ** which is just confusing. To avoid this, we follow PG's lead and
7324 ** disallow it altogether. */
7325 if( p
->selFlags
& SF_UFSrcCheck
){
7326 SrcItem
*p0
= &p
->pSrc
->a
[0];
7327 if( sameSrcAlias(p0
, p
->pSrc
) ){
7328 sqlite3ErrorMsg(pParse
,
7329 "target object/alias may not appear in FROM clause: %s",
7330 p0
->zAlias
? p0
->zAlias
: p0
->pTab
->zName
7335 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
7336 ** and leaving this flag set can cause errors if a compound sub-query
7337 ** in p->pSrc is flattened into this query and this function called
7338 ** again as part of compound SELECT processing. */
7339 p
->selFlags
&= ~SF_UFSrcCheck
;
7342 if( pDest
->eDest
==SRT_Output
){
7343 sqlite3GenerateColumnNames(pParse
, p
);
7346 #ifndef SQLITE_OMIT_WINDOWFUNC
7347 if( sqlite3WindowRewrite(pParse
, p
) ){
7348 assert( pParse
->nErr
);
7351 #if TREETRACE_ENABLED
7352 if( p
->pWin
&& (sqlite3TreeTrace
& 0x40)!=0 ){
7353 TREETRACE(0x40,pParse
,p
, ("after window rewrite:\n"));
7354 sqlite3TreeViewSelect(0, p
, 0);
7357 #endif /* SQLITE_OMIT_WINDOWFUNC */
7359 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
7360 memset(&sSort
, 0, sizeof(sSort
));
7361 sSort
.pOrderBy
= p
->pOrderBy
;
7363 /* Try to do various optimizations (flattening subqueries, and strength
7364 ** reduction of join operators) in the FROM clause up into the main query
7366 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7367 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
7368 SrcItem
*pItem
= &pTabList
->a
[i
];
7369 Select
*pSub
= pItem
->pSelect
;
7370 Table
*pTab
= pItem
->pTab
;
7372 /* The expander should have already created transient Table objects
7373 ** even for FROM clause elements such as subqueries that do not correspond
7374 ** to a real table */
7377 /* Try to simplify joins:
7379 ** LEFT JOIN -> JOIN
7380 ** RIGHT JOIN -> JOIN
7381 ** FULL JOIN -> RIGHT JOIN
7383 ** If terms of the i-th table are used in the WHERE clause in such a
7384 ** way that the i-th table cannot be the NULL row of a join, then
7385 ** perform the appropriate simplification. This is called
7386 ** "OUTER JOIN strength reduction" in the SQLite documentation.
7388 if( (pItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
))!=0
7389 && sqlite3ExprImpliesNonNullRow(p
->pWhere
, pItem
->iCursor
,
7390 pItem
->fg
.jointype
& JT_LTORJ
)
7391 && OptimizationEnabled(db
, SQLITE_SimplifyJoin
)
7393 if( pItem
->fg
.jointype
& JT_LEFT
){
7394 if( pItem
->fg
.jointype
& JT_RIGHT
){
7395 TREETRACE(0x1000,pParse
,p
,
7396 ("FULL-JOIN simplifies to RIGHT-JOIN on term %d\n",i
));
7397 pItem
->fg
.jointype
&= ~JT_LEFT
;
7399 TREETRACE(0x1000,pParse
,p
,
7400 ("LEFT-JOIN simplifies to JOIN on term %d\n",i
));
7401 pItem
->fg
.jointype
&= ~(JT_LEFT
|JT_OUTER
);
7402 unsetJoinExpr(p
->pWhere
, pItem
->iCursor
, 0);
7405 if( pItem
->fg
.jointype
& JT_LTORJ
){
7406 for(j
=i
+1; j
<pTabList
->nSrc
; j
++){
7407 SrcItem
*pI2
= &pTabList
->a
[j
];
7408 if( pI2
->fg
.jointype
& JT_RIGHT
){
7409 if( pI2
->fg
.jointype
& JT_LEFT
){
7410 TREETRACE(0x1000,pParse
,p
,
7411 ("FULL-JOIN simplifies to LEFT-JOIN on term %d\n",j
));
7412 pI2
->fg
.jointype
&= ~JT_RIGHT
;
7414 TREETRACE(0x1000,pParse
,p
,
7415 ("RIGHT-JOIN simplifies to JOIN on term %d\n",j
));
7416 pI2
->fg
.jointype
&= ~(JT_RIGHT
|JT_OUTER
);
7417 unsetJoinExpr(p
->pWhere
, pI2
->iCursor
, 1);
7421 for(j
=pTabList
->nSrc
-1; j
>=0; j
--){
7422 pTabList
->a
[j
].fg
.jointype
&= ~JT_LTORJ
;
7423 if( pTabList
->a
[j
].fg
.jointype
& JT_RIGHT
) break;
7428 /* No further action if this term of the FROM clause is not a subquery */
7429 if( pSub
==0 ) continue;
7431 /* Catch mismatch in the declared columns of a view and the number of
7432 ** columns in the SELECT on the RHS */
7433 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
7434 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
7435 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
7439 /* Do not attempt the usual optimizations (flattening and ORDER BY
7440 ** elimination) on a MATERIALIZED common table expression because
7441 ** a MATERIALIZED common table expression is an optimization fence.
7443 if( pItem
->fg
.isCte
&& pItem
->u2
.pCteUse
->eM10d
==M10d_Yes
){
7447 /* Do not try to flatten an aggregate subquery.
7449 ** Flattening an aggregate subquery is only possible if the outer query
7450 ** is not a join. But if the outer query is not a join, then the subquery
7451 ** will be implemented as a co-routine and there is no advantage to
7452 ** flattening in that case.
7454 if( (pSub
->selFlags
& SF_Aggregate
)!=0 ) continue;
7455 assert( pSub
->pGroupBy
==0 );
7457 /* If a FROM-clause subquery has an ORDER BY clause that is not
7458 ** really doing anything, then delete it now so that it does not
7459 ** interfere with query flattening. See the discussion at
7460 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
7462 ** Beware of these cases where the ORDER BY clause may not be safely
7465 ** (1) There is also a LIMIT clause
7466 ** (2) The subquery was added to help with window-function
7468 ** (3) The subquery is in the FROM clause of an UPDATE
7469 ** (4) The outer query uses an aggregate function other than
7470 ** the built-in count(), min(), or max().
7471 ** (5) The ORDER BY isn't going to accomplish anything because
7473 ** (a) The outer query has a different ORDER BY clause
7474 ** (b) The subquery is part of a join
7475 ** See forum post 062d576715d277c8
7477 ** Also retain the ORDER BY if the OmitOrderBy optimization is disabled.
7479 if( pSub
->pOrderBy
!=0
7480 && (p
->pOrderBy
!=0 || pTabList
->nSrc
>1) /* Condition (5) */
7481 && pSub
->pLimit
==0 /* Condition (1) */
7482 && (pSub
->selFlags
& SF_OrderByReqd
)==0 /* Condition (2) */
7483 && (p
->selFlags
& SF_OrderByReqd
)==0 /* Condition (3) and (4) */
7484 && OptimizationEnabled(db
, SQLITE_OmitOrderBy
)
7486 TREETRACE(0x800,pParse
,p
,
7487 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i
+1));
7488 sqlite3ParserAddCleanup(pParse
,
7489 (void(*)(sqlite3
*,void*))sqlite3ExprListDelete
,
7494 /* If the outer query contains a "complex" result set (that is,
7495 ** if the result set of the outer query uses functions or subqueries)
7496 ** and if the subquery contains an ORDER BY clause and if
7497 ** it will be implemented as a co-routine, then do not flatten. This
7498 ** restriction allows SQL constructs like this:
7500 ** SELECT expensive_function(x)
7501 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7503 ** The expensive_function() is only computed on the 10 rows that
7504 ** are output, rather than every row of the table.
7506 ** The requirement that the outer query have a complex result set
7507 ** means that flattening does occur on simpler SQL constraints without
7508 ** the expensive_function() like:
7510 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
7512 if( pSub
->pOrderBy
!=0
7514 && (p
->selFlags
& SF_ComplexResult
)!=0
7515 && (pTabList
->nSrc
==1
7516 || (pTabList
->a
[1].fg
.jointype
&(JT_OUTER
|JT_CROSS
))!=0)
7521 if( flattenSubquery(pParse
, p
, i
, isAgg
) ){
7522 if( pParse
->nErr
) goto select_end
;
7523 /* This subquery can be absorbed into its parent. */
7527 if( db
->mallocFailed
) goto select_end
;
7528 if( !IgnorableOrderby(pDest
) ){
7529 sSort
.pOrderBy
= p
->pOrderBy
;
7534 #ifndef SQLITE_OMIT_COMPOUND_SELECT
7535 /* Handle compound SELECT statements using the separate multiSelect()
7539 rc
= multiSelect(pParse
, p
, pDest
);
7540 #if TREETRACE_ENABLED
7541 TREETRACE(0x400,pParse
,p
,("end compound-select processing\n"));
7542 if( (sqlite3TreeTrace
& 0x400)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
7543 sqlite3TreeViewSelect(0, p
, 0);
7546 if( p
->pNext
==0 ) ExplainQueryPlanPop(pParse
);
7551 /* Do the WHERE-clause constant propagation optimization if this is
7552 ** a join. No need to speed time on this operation for non-join queries
7553 ** as the equivalent optimization will be handled by query planner in
7554 ** sqlite3WhereBegin().
7557 && p
->pWhere
->op
==TK_AND
7558 && OptimizationEnabled(db
, SQLITE_PropagateConst
)
7559 && propagateConstants(pParse
, p
)
7561 #if TREETRACE_ENABLED
7562 if( sqlite3TreeTrace
& 0x2000 ){
7563 TREETRACE(0x2000,pParse
,p
,("After constant propagation:\n"));
7564 sqlite3TreeViewSelect(0, p
, 0);
7568 TREETRACE(0x2000,pParse
,p
,("Constant propagation not helpful\n"));
7571 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
7572 && countOfViewOptimization(pParse
, p
)
7574 if( db
->mallocFailed
) goto select_end
;
7578 /* For each term in the FROM clause, do two things:
7579 ** (1) Authorized unreferenced tables
7580 ** (2) Generate code for all sub-queries
7582 for(i
=0; i
<pTabList
->nSrc
; i
++){
7583 SrcItem
*pItem
= &pTabList
->a
[i
];
7587 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7588 const char *zSavedAuthContext
;
7591 /* Issue SQLITE_READ authorizations with a fake column name for any
7592 ** tables that are referenced but from which no values are extracted.
7593 ** Examples of where these kinds of null SQLITE_READ authorizations
7596 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
7597 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
7599 ** The fake column name is an empty string. It is possible for a table to
7600 ** have a column named by the empty string, in which case there is no way to
7601 ** distinguish between an unreferenced table and an actual reference to the
7602 ** "" column. The original design was for the fake column name to be a NULL,
7603 ** which would be unambiguous. But legacy authorization callbacks might
7604 ** assume the column name is non-NULL and segfault. The use of an empty
7605 ** string for the fake column name seems safer.
7607 if( pItem
->colUsed
==0 && pItem
->zName
!=0 ){
7608 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
7611 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
7612 /* Generate code for all sub-queries in the FROM clause
7614 pSub
= pItem
->pSelect
;
7615 if( pSub
==0 ) continue;
7617 /* The code for a subquery should only be generated once. */
7618 assert( pItem
->addrFillSub
==0 );
7620 /* Increment Parse.nHeight by the height of the largest expression
7621 ** tree referred to by this, the parent select. The child select
7622 ** may contain expression trees of at most
7623 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
7624 ** more conservative than necessary, but much easier than enforcing
7627 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
7629 /* Make copies of constant WHERE-clause terms in the outer query down
7630 ** inside the subquery. This can help the subquery to run more efficiently.
7632 if( OptimizationEnabled(db
, SQLITE_PushDown
)
7633 && (pItem
->fg
.isCte
==0
7634 || (pItem
->u2
.pCteUse
->eM10d
!=M10d_Yes
&& pItem
->u2
.pCteUse
->nUse
<2))
7635 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pTabList
, i
)
7637 #if TREETRACE_ENABLED
7638 if( sqlite3TreeTrace
& 0x4000 ){
7639 TREETRACE(0x4000,pParse
,p
,
7640 ("After WHERE-clause push-down into subquery %d:\n", pSub
->selId
));
7641 sqlite3TreeViewSelect(0, p
, 0);
7644 assert( pItem
->pSelect
&& (pItem
->pSelect
->selFlags
& SF_PushDown
)!=0 );
7646 TREETRACE(0x4000,pParse
,p
,("Push-down not possible\n"));
7649 /* Convert unused result columns of the subquery into simple NULL
7650 ** expressions, to avoid unneeded searching and computation.
7652 if( OptimizationEnabled(db
, SQLITE_NullUnusedCols
)
7653 && disableUnusedSubqueryResultColumns(pItem
)
7655 #if TREETRACE_ENABLED
7656 if( sqlite3TreeTrace
& 0x4000 ){
7657 TREETRACE(0x4000,pParse
,p
,
7658 ("Change unused result columns to NULL for subquery %d:\n",
7660 sqlite3TreeViewSelect(0, p
, 0);
7665 zSavedAuthContext
= pParse
->zAuthContext
;
7666 pParse
->zAuthContext
= pItem
->zName
;
7668 /* Generate code to implement the subquery
7670 if( fromClauseTermCanBeCoroutine(pParse
, pTabList
, i
, p
->selFlags
) ){
7671 /* Implement a co-routine that will return a single row of the result
7672 ** set on each invocation.
7674 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
7676 pItem
->regReturn
= ++pParse
->nMem
;
7677 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
7678 VdbeComment((v
, "%!S", pItem
));
7679 pItem
->addrFillSub
= addrTop
;
7680 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
7681 ExplainQueryPlan((pParse
, 1, "CO-ROUTINE %!S", pItem
));
7682 sqlite3Select(pParse
, pSub
, &dest
);
7683 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
7684 pItem
->fg
.viaCoroutine
= 1;
7685 pItem
->regResult
= dest
.iSdst
;
7686 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
7687 sqlite3VdbeJumpHere(v
, addrTop
-1);
7688 sqlite3ClearTempRegCache(pParse
);
7689 }else if( pItem
->fg
.isCte
&& pItem
->u2
.pCteUse
->addrM9e
>0 ){
7690 /* This is a CTE for which materialization code has already been
7691 ** generated. Invoke the subroutine to compute the materialization,
7692 ** the make the pItem->iCursor be a copy of the ephemeral table that
7693 ** holds the result of the materialization. */
7694 CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
7695 sqlite3VdbeAddOp2(v
, OP_Gosub
, pCteUse
->regRtn
, pCteUse
->addrM9e
);
7696 if( pItem
->iCursor
!=pCteUse
->iCur
){
7697 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pCteUse
->iCur
);
7698 VdbeComment((v
, "%!S", pItem
));
7700 pSub
->nSelectRow
= pCteUse
->nRowEst
;
7701 }else if( (pPrior
= isSelfJoinView(pTabList
, pItem
, 0, i
))!=0 ){
7702 /* This view has already been materialized by a prior entry in
7703 ** this same FROM clause. Reuse it. */
7704 if( pPrior
->addrFillSub
){
7705 sqlite3VdbeAddOp2(v
, OP_Gosub
, pPrior
->regReturn
, pPrior
->addrFillSub
);
7707 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
7708 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
7710 /* Materialize the view. If the view is not correlated, generate a
7711 ** subroutine to do the materialization so that subsequent uses of
7712 ** the same view can reuse the materialization. */
7715 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7719 pItem
->regReturn
= ++pParse
->nMem
;
7720 topAddr
= sqlite3VdbeAddOp0(v
, OP_Goto
);
7721 pItem
->addrFillSub
= topAddr
+1;
7722 pItem
->fg
.isMaterialized
= 1;
7723 if( pItem
->fg
.isCorrelated
==0 ){
7724 /* If the subquery is not correlated and if we are not inside of
7725 ** a trigger, then we only need to compute the value of the subquery
7727 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
7728 VdbeComment((v
, "materialize %!S", pItem
));
7730 VdbeNoopComment((v
, "materialize %!S", pItem
));
7732 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
7734 ExplainQueryPlan2(addrExplain
, (pParse
, 1, "MATERIALIZE %!S", pItem
));
7735 sqlite3Select(pParse
, pSub
, &dest
);
7736 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
7737 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
7738 sqlite3VdbeAddOp2(v
, OP_Return
, pItem
->regReturn
, topAddr
+1);
7739 VdbeComment((v
, "end %!S", pItem
));
7740 sqlite3VdbeScanStatusRange(v
, addrExplain
, addrExplain
, -1);
7741 sqlite3VdbeJumpHere(v
, topAddr
);
7742 sqlite3ClearTempRegCache(pParse
);
7743 if( pItem
->fg
.isCte
&& pItem
->fg
.isCorrelated
==0 ){
7744 CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
7745 pCteUse
->addrM9e
= pItem
->addrFillSub
;
7746 pCteUse
->regRtn
= pItem
->regReturn
;
7747 pCteUse
->iCur
= pItem
->iCursor
;
7748 pCteUse
->nRowEst
= pSub
->nSelectRow
;
7751 if( db
->mallocFailed
) goto select_end
;
7752 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
7753 pParse
->zAuthContext
= zSavedAuthContext
;
7757 /* Various elements of the SELECT copied into local variables for
7761 pGroupBy
= p
->pGroupBy
;
7762 pHaving
= p
->pHaving
;
7763 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
7765 #if TREETRACE_ENABLED
7766 if( sqlite3TreeTrace
& 0x8000 ){
7767 TREETRACE(0x8000,pParse
,p
,("After all FROM-clause analysis:\n"));
7768 sqlite3TreeViewSelect(0, p
, 0);
7772 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7773 ** if the select-list is the same as the ORDER BY list, then this query
7774 ** can be rewritten as a GROUP BY. In other words, this:
7776 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7778 ** is transformed to:
7780 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7782 ** The second form is preferred as a single index (or temp-table) may be
7783 ** used for both the ORDER BY and DISTINCT processing. As originally
7784 ** written the query must use a temp-table for at least one of the ORDER
7785 ** BY and DISTINCT, and an index or separate temp-table for the other.
7787 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
7788 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
7789 #ifndef SQLITE_OMIT_WINDOWFUNC
7793 p
->selFlags
&= ~SF_Distinct
;
7794 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
7795 p
->selFlags
|= SF_Aggregate
;
7796 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7797 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7798 ** original setting of the SF_Distinct flag, not the current setting */
7799 assert( sDistinct
.isTnct
);
7800 sDistinct
.isTnct
= 2;
7802 #if TREETRACE_ENABLED
7803 if( sqlite3TreeTrace
& 0x20000 ){
7804 TREETRACE(0x20000,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
7805 sqlite3TreeViewSelect(0, p
, 0);
7810 /* If there is an ORDER BY clause, then create an ephemeral index to
7811 ** do the sorting. But this sorting ephemeral index might end up
7812 ** being unused if the data can be extracted in pre-sorted order.
7813 ** If that is the case, then the OP_OpenEphemeral instruction will be
7814 ** changed to an OP_Noop once we figure out that the sorting index is
7815 ** not needed. The sSort.addrSortIndex variable is used to facilitate
7818 if( sSort
.pOrderBy
){
7820 pKeyInfo
= sqlite3KeyInfoFromExprList(
7821 pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
7822 sSort
.iECursor
= pParse
->nTab
++;
7823 sSort
.addrSortIndex
=
7824 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
7825 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
7826 (char*)pKeyInfo
, P4_KEYINFO
7829 sSort
.addrSortIndex
= -1;
7832 /* If the output is destined for a temporary table, open that table.
7834 if( pDest
->eDest
==SRT_EphemTab
){
7835 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
7836 if( p
->selFlags
& SF_NestedFrom
){
7837 /* Delete or NULL-out result columns that will never be used */
7839 for(ii
=pEList
->nExpr
-1; ii
>0 && pEList
->a
[ii
].fg
.bUsed
==0; ii
--){
7840 sqlite3ExprDelete(db
, pEList
->a
[ii
].pExpr
);
7841 sqlite3DbFree(db
, pEList
->a
[ii
].zEName
);
7844 for(ii
=0; ii
<pEList
->nExpr
; ii
++){
7845 if( pEList
->a
[ii
].fg
.bUsed
==0 ) pEList
->a
[ii
].pExpr
->op
= TK_NULL
;
7852 iEnd
= sqlite3VdbeMakeLabel(pParse
);
7853 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
7854 p
->nSelectRow
= 320; /* 4 billion rows */
7856 if( p
->pLimit
) computeLimitRegisters(pParse
, p
, iEnd
);
7857 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
7858 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
7859 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
7862 /* Open an ephemeral index to use for the distinct set.
7864 if( p
->selFlags
& SF_Distinct
){
7865 sDistinct
.tabTnct
= pParse
->nTab
++;
7866 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
7867 sDistinct
.tabTnct
, 0, 0,
7868 (char*)sqlite3KeyInfoFromExprList(pParse
, p
->pEList
,0,0),
7870 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
7871 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
7873 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
7876 if( !isAgg
&& pGroupBy
==0 ){
7877 /* No aggregate functions and no GROUP BY clause */
7878 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0)
7879 | (p
->selFlags
& SF_FixedLimit
);
7880 #ifndef SQLITE_OMIT_WINDOWFUNC
7881 Window
*pWin
= p
->pWin
; /* Main window object (or NULL) */
7883 sqlite3WindowCodeInit(pParse
, p
);
7886 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
7889 /* Begin the database scan. */
7890 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
7891 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
7892 p
->pEList
, p
, wctrlFlags
, p
->nSelectRow
);
7893 if( pWInfo
==0 ) goto select_end
;
7894 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
7895 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
7897 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
7898 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
7900 if( sSort
.pOrderBy
){
7901 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
7902 sSort
.labelOBLopt
= sqlite3WhereOrderByLimitOptLabel(pWInfo
);
7903 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
7907 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
7909 /* If sorting index that was created by a prior OP_OpenEphemeral
7910 ** instruction ended up not being needed, then change the OP_OpenEphemeral
7913 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
7914 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
7917 assert( p
->pEList
==pEList
);
7918 #ifndef SQLITE_OMIT_WINDOWFUNC
7920 int addrGosub
= sqlite3VdbeMakeLabel(pParse
);
7921 int iCont
= sqlite3VdbeMakeLabel(pParse
);
7922 int iBreak
= sqlite3VdbeMakeLabel(pParse
);
7923 int regGosub
= ++pParse
->nMem
;
7925 sqlite3WindowCodeStep(pParse
, p
, pWInfo
, regGosub
, addrGosub
);
7927 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, iBreak
);
7928 sqlite3VdbeResolveLabel(v
, addrGosub
);
7929 VdbeNoopComment((v
, "inner-loop subroutine"));
7930 sSort
.labelOBLopt
= 0;
7931 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
, iCont
, iBreak
);
7932 sqlite3VdbeResolveLabel(v
, iCont
);
7933 sqlite3VdbeAddOp1(v
, OP_Return
, regGosub
);
7934 VdbeComment((v
, "end inner-loop subroutine"));
7935 sqlite3VdbeResolveLabel(v
, iBreak
);
7937 #endif /* SQLITE_OMIT_WINDOWFUNC */
7939 /* Use the standard inner loop. */
7940 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
7941 sqlite3WhereContinueLabel(pWInfo
),
7942 sqlite3WhereBreakLabel(pWInfo
));
7944 /* End the database scan loop.
7946 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
7947 sqlite3WhereEnd(pWInfo
);
7950 /* This case when there exist aggregate functions or a GROUP BY clause
7952 NameContext sNC
; /* Name context for processing aggregate information */
7953 int iAMem
; /* First Mem address for storing current GROUP BY */
7954 int iBMem
; /* First Mem address for previous GROUP BY */
7955 int iUseFlag
; /* Mem address holding flag indicating that at least
7956 ** one row of the input to the aggregator has been
7958 int iAbortFlag
; /* Mem address which causes query abort if positive */
7959 int groupBySort
; /* Rows come from source in GROUP BY order */
7960 int addrEnd
; /* End of processing for this SELECT */
7961 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
7962 int sortOut
= 0; /* Output register from the sorter */
7963 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
7965 /* Remove any and all aliases between the result set and the
7969 int k
; /* Loop counter */
7970 struct ExprList_item
*pItem
; /* For looping over expression in a list */
7972 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
7973 pItem
->u
.x
.iAlias
= 0;
7975 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
7976 pItem
->u
.x
.iAlias
= 0;
7978 assert( 66==sqlite3LogEst(100) );
7979 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
7981 /* If there is both a GROUP BY and an ORDER BY clause and they are
7982 ** identical, then it may be possible to disable the ORDER BY clause
7983 ** on the grounds that the GROUP BY will cause elements to come out
7984 ** in the correct order. It also may not - the GROUP BY might use a
7985 ** database index that causes rows to be grouped together as required
7986 ** but not actually sorted. Either way, record the fact that the
7987 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7989 if( sSort
.pOrderBy
&& pGroupBy
->nExpr
==sSort
.pOrderBy
->nExpr
){
7991 /* The GROUP BY processing doesn't care whether rows are delivered in
7992 ** ASC or DESC order - only that each group is returned contiguously.
7993 ** So set the ASC/DESC flags in the GROUP BY to match those in the
7994 ** ORDER BY to maximize the chances of rows being delivered in an
7995 ** order that makes the ORDER BY redundant. */
7996 for(ii
=0; ii
<pGroupBy
->nExpr
; ii
++){
7998 sortFlags
= sSort
.pOrderBy
->a
[ii
].fg
.sortFlags
& KEYINFO_ORDER_DESC
;
7999 pGroupBy
->a
[ii
].fg
.sortFlags
= sortFlags
;
8001 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
8006 assert( 0==sqlite3LogEst(1) );
8010 /* Create a label to jump to when we want to abort the query */
8011 addrEnd
= sqlite3VdbeMakeLabel(pParse
);
8013 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
8014 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
8015 ** SELECT statement.
8017 pAggInfo
= sqlite3DbMallocZero(db
, sizeof(*pAggInfo
) );
8019 sqlite3ParserAddCleanup(pParse
,
8020 (void(*)(sqlite3
*,void*))agginfoFree
, pAggInfo
);
8021 testcase( pParse
->earlyCleanup
);
8023 if( db
->mallocFailed
){
8026 pAggInfo
->selId
= p
->selId
;
8028 pAggInfo
->pSelect
= p
;
8030 memset(&sNC
, 0, sizeof(sNC
));
8031 sNC
.pParse
= pParse
;
8032 sNC
.pSrcList
= pTabList
;
8033 sNC
.uNC
.pAggInfo
= pAggInfo
;
8034 VVA_ONLY( sNC
.ncFlags
= NC_UAggInfo
; )
8035 pAggInfo
->nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
8036 pAggInfo
->pGroupBy
= pGroupBy
;
8037 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
8038 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
8041 assert( pWhere
==p
->pWhere
);
8042 assert( pHaving
==p
->pHaving
);
8043 assert( pGroupBy
==p
->pGroupBy
);
8044 havingToWhere(pParse
, p
);
8047 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
8049 pAggInfo
->nAccumulator
= pAggInfo
->nColumn
;
8050 if( p
->pGroupBy
==0 && p
->pHaving
==0 && pAggInfo
->nFunc
==1 ){
8051 minMaxFlag
= minMaxQuery(db
, pAggInfo
->aFunc
[0].pFExpr
, &pMinMaxOrderBy
);
8053 minMaxFlag
= WHERE_ORDERBY_NORMAL
;
8055 analyzeAggFuncArgs(pAggInfo
, &sNC
);
8056 if( db
->mallocFailed
) goto select_end
;
8057 #if TREETRACE_ENABLED
8058 if( sqlite3TreeTrace
& 0x20 ){
8059 TREETRACE(0x20,pParse
,p
,("After aggregate analysis %p:\n", pAggInfo
));
8060 sqlite3TreeViewSelect(0, p
, 0);
8062 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag
);
8063 sqlite3TreeViewExprList(0, pMinMaxOrderBy
, 0, "ORDERBY");
8065 printAggInfo(pAggInfo
);
8070 /* Processing for aggregates with GROUP BY is very different and
8071 ** much more complex than aggregates without a GROUP BY.
8074 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
8075 int addr1
; /* A-vs-B comparison jump */
8076 int addrOutputRow
; /* Start of subroutine that outputs a result row */
8077 int regOutputRow
; /* Return address register for output subroutine */
8078 int addrSetAbort
; /* Set the abort flag and return */
8079 int addrTopOfLoop
; /* Top of the input loop */
8080 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
8081 int addrReset
; /* Subroutine for resetting the accumulator */
8082 int regReset
; /* Return address register for reset subroutine */
8083 ExprList
*pDistinct
= 0;
8085 int eDist
= WHERE_DISTINCT_NOOP
;
8087 if( pAggInfo
->nFunc
==1
8088 && pAggInfo
->aFunc
[0].iDistinct
>=0
8089 && ALWAYS(pAggInfo
->aFunc
[0].pFExpr
!=0)
8090 && ALWAYS(ExprUseXList(pAggInfo
->aFunc
[0].pFExpr
))
8091 && pAggInfo
->aFunc
[0].pFExpr
->x
.pList
!=0
8093 Expr
*pExpr
= pAggInfo
->aFunc
[0].pFExpr
->x
.pList
->a
[0].pExpr
;
8094 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
8095 pDistinct
= sqlite3ExprListDup(db
, pGroupBy
, 0);
8096 pDistinct
= sqlite3ExprListAppend(pParse
, pDistinct
, pExpr
);
8097 distFlag
= pDistinct
? (WHERE_WANT_DISTINCT
|WHERE_AGG_DISTINCT
) : 0;
8100 /* If there is a GROUP BY clause we might need a sorting index to
8101 ** implement it. Allocate that sorting index now. If it turns out
8102 ** that we do not need it after all, the OP_SorterOpen instruction
8103 ** will be converted into a Noop.
8105 pAggInfo
->sortingIdx
= pParse
->nTab
++;
8106 pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pGroupBy
,
8107 0, pAggInfo
->nColumn
);
8108 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
8109 pAggInfo
->sortingIdx
, pAggInfo
->nSortingColumn
,
8110 0, (char*)pKeyInfo
, P4_KEYINFO
);
8112 /* Initialize memory locations used by GROUP BY aggregate processing
8114 iUseFlag
= ++pParse
->nMem
;
8115 iAbortFlag
= ++pParse
->nMem
;
8116 regOutputRow
= ++pParse
->nMem
;
8117 addrOutputRow
= sqlite3VdbeMakeLabel(pParse
);
8118 regReset
= ++pParse
->nMem
;
8119 addrReset
= sqlite3VdbeMakeLabel(pParse
);
8120 iAMem
= pParse
->nMem
+ 1;
8121 pParse
->nMem
+= pGroupBy
->nExpr
;
8122 iBMem
= pParse
->nMem
+ 1;
8123 pParse
->nMem
+= pGroupBy
->nExpr
;
8124 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
8125 VdbeComment((v
, "clear abort flag"));
8126 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
8128 /* Begin a loop that will extract all source rows in GROUP BY order.
8129 ** This might involve two separate loops with an OP_Sort in between, or
8130 ** it might be a single loop that uses an index to extract information
8131 ** in the right order to begin with.
8133 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
8134 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
8135 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, pDistinct
,
8136 p
, (sDistinct
.isTnct
==2 ? WHERE_DISTINCTBY
: WHERE_GROUPBY
)
8137 | (orderByGrp
? WHERE_SORTBYGROUP
: 0) | distFlag
, 0
8140 sqlite3ExprListDelete(db
, pDistinct
);
8143 if( pParse
->pIdxEpr
){
8144 optimizeAggregateUseOfIndexedExpr(pParse
, p
, pAggInfo
, &sNC
);
8146 assignAggregateRegisters(pParse
, pAggInfo
);
8147 eDist
= sqlite3WhereIsDistinct(pWInfo
);
8148 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
8149 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
8150 /* The optimizer is able to deliver rows in group by order so
8151 ** we do not have to sort. The OP_OpenEphemeral table will be
8152 ** cancelled later because we still need to use the pKeyInfo
8156 /* Rows are coming out in undetermined order. We have to push
8157 ** each row into a sorting index, terminate the first loop,
8158 ** then loop over the sorting index in order to get the output
8166 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
8167 int addrExp
; /* Address of OP_Explain instruction */
8169 ExplainQueryPlan2(addrExp
, (pParse
, 0, "USE TEMP B-TREE FOR %s",
8170 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
8171 "DISTINCT" : "GROUP BY"
8175 nGroupBy
= pGroupBy
->nExpr
;
8178 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
8179 if( pAggInfo
->aCol
[i
].iSorterColumn
>=j
){
8184 regBase
= sqlite3GetTempRange(pParse
, nCol
);
8185 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
8187 pAggInfo
->directMode
= 1;
8188 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
8189 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[i
];
8190 if( pCol
->iSorterColumn
>=j
){
8191 sqlite3ExprCode(pParse
, pCol
->pCExpr
, j
+ regBase
);
8195 pAggInfo
->directMode
= 0;
8196 regRecord
= sqlite3GetTempReg(pParse
);
8197 sqlite3VdbeScanStatusCounters(v
, addrExp
, 0, sqlite3VdbeCurrentAddr(v
));
8198 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
8199 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, pAggInfo
->sortingIdx
, regRecord
);
8200 sqlite3VdbeScanStatusRange(v
, addrExp
, sqlite3VdbeCurrentAddr(v
)-2, -1);
8201 sqlite3ReleaseTempReg(pParse
, regRecord
);
8202 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
8203 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
8204 sqlite3WhereEnd(pWInfo
);
8205 pAggInfo
->sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
8206 sortOut
= sqlite3GetTempReg(pParse
);
8207 sqlite3VdbeScanStatusCounters(v
, addrExp
, sqlite3VdbeCurrentAddr(v
), 0);
8208 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
8209 sqlite3VdbeAddOp2(v
, OP_SorterSort
, pAggInfo
->sortingIdx
, addrEnd
);
8210 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
8211 pAggInfo
->useSortingIdx
= 1;
8212 sqlite3VdbeScanStatusRange(v
, addrExp
, -1, sortPTab
);
8213 sqlite3VdbeScanStatusRange(v
, addrExp
, -1, pAggInfo
->sortingIdx
);
8216 /* If there are entries in pAgggInfo->aFunc[] that contain subexpressions
8217 ** that are indexed (and that were previously identified and tagged
8218 ** in optimizeAggregateUseOfIndexedExpr()) then those subexpressions
8219 ** must now be converted into a TK_AGG_COLUMN node so that the value
8220 ** is correctly pulled from the index rather than being recomputed. */
8221 if( pParse
->pIdxEpr
){
8222 aggregateConvertIndexedExprRefToColumn(pAggInfo
);
8223 #if TREETRACE_ENABLED
8224 if( sqlite3TreeTrace
& 0x20 ){
8225 TREETRACE(0x20, pParse
, p
,
8226 ("AggInfo function expressions converted to reference index\n"));
8227 sqlite3TreeViewSelect(0, p
, 0);
8228 printAggInfo(pAggInfo
);
8233 /* If the index or temporary table used by the GROUP BY sort
8234 ** will naturally deliver rows in the order required by the ORDER BY
8235 ** clause, cancel the ephemeral table open coded earlier.
8237 ** This is an optimization - the correct answer should result regardless.
8238 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
8239 ** disable this optimization for testing purposes. */
8240 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
8241 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
8244 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
8247 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
8248 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
8249 ** Then compare the current GROUP BY terms against the GROUP BY terms
8250 ** from the previous row currently stored in a0, a1, a2...
8252 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
8254 sqlite3VdbeAddOp3(v
, OP_SorterData
, pAggInfo
->sortingIdx
,
8257 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
8259 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
8261 pAggInfo
->directMode
= 1;
8262 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
8265 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
8266 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
8267 addr1
= sqlite3VdbeCurrentAddr(v
);
8268 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
8270 /* Generate code that runs whenever the GROUP BY changes.
8271 ** Changes in the GROUP BY are detected by the previous code
8272 ** block. If there were no changes, this block is skipped.
8274 ** This code copies current group by terms in b0,b1,b2,...
8275 ** over to a0,a1,a2. It then calls the output subroutine
8276 ** and resets the aggregate accumulator registers in preparation
8277 ** for the next GROUP BY batch.
8279 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
8280 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
8281 VdbeComment((v
, "output one row"));
8282 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
8283 VdbeComment((v
, "check abort flag"));
8284 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
8285 VdbeComment((v
, "reset accumulator"));
8287 /* Update the aggregate accumulators based on the content of
8290 sqlite3VdbeJumpHere(v
, addr1
);
8291 updateAccumulator(pParse
, iUseFlag
, pAggInfo
, eDist
);
8292 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
8293 VdbeComment((v
, "indicate data in accumulator"));
8298 sqlite3VdbeAddOp2(v
, OP_SorterNext
, pAggInfo
->sortingIdx
,addrTopOfLoop
);
8301 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
8302 sqlite3WhereEnd(pWInfo
);
8303 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
8305 sqlite3ExprListDelete(db
, pDistinct
);
8307 /* Output the final row of result
8309 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
8310 VdbeComment((v
, "output final row"));
8312 /* Jump over the subroutines
8314 sqlite3VdbeGoto(v
, addrEnd
);
8316 /* Generate a subroutine that outputs a single row of the result
8317 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
8318 ** is less than or equal to zero, the subroutine is a no-op. If
8319 ** the processing calls for the query to abort, this subroutine
8320 ** increments the iAbortFlag memory location before returning in
8321 ** order to signal the caller to abort.
8323 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
8324 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
8325 VdbeComment((v
, "set abort flag"));
8326 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
8327 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
8328 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
8329 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
8331 VdbeComment((v
, "Groupby result generator entry point"));
8332 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
8333 finalizeAggFunctions(pParse
, pAggInfo
);
8334 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
8335 selectInnerLoop(pParse
, p
, -1, &sSort
,
8337 addrOutputRow
+1, addrSetAbort
);
8338 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
8339 VdbeComment((v
, "end groupby result generator"));
8341 /* Generate a subroutine that will reset the group-by accumulator
8343 sqlite3VdbeResolveLabel(v
, addrReset
);
8344 resetAccumulator(pParse
, pAggInfo
);
8345 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
8346 VdbeComment((v
, "indicate accumulator empty"));
8347 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
8349 if( distFlag
!=0 && eDist
!=WHERE_DISTINCT_NOOP
){
8350 struct AggInfo_func
*pF
= &pAggInfo
->aFunc
[0];
8351 fixDistinctOpenEph(pParse
, eDist
, pF
->iDistinct
, pF
->iDistAddr
);
8353 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
8356 if( (pTab
= isSimpleCount(p
, pAggInfo
))!=0 ){
8357 /* If isSimpleCount() returns a pointer to a Table structure, then
8358 ** the SQL statement is of the form:
8360 ** SELECT count(*) FROM <tbl>
8362 ** where the Table structure returned represents table <tbl>.
8364 ** This statement is so common that it is optimized specially. The
8365 ** OP_Count instruction is executed either on the intkey table that
8366 ** contains the data for table <tbl> or on one of its indexes. It
8367 ** is better to execute the op on an index, as indexes are almost
8368 ** always spread across less pages than their corresponding tables.
8370 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
8371 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
8372 Index
*pIdx
; /* Iterator variable */
8373 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
8374 Index
*pBest
= 0; /* Best index found so far */
8375 Pgno iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
8377 sqlite3CodeVerifySchema(pParse
, iDb
);
8378 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
8380 /* Search for the index that has the lowest scan cost.
8382 ** (2011-04-15) Do not do a full scan of an unordered index.
8384 ** (2013-10-03) Do not count the entries in a partial index.
8386 ** In practice the KeyInfo structure will not be used. It is only
8387 ** passed to keep OP_OpenRead happy.
8389 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
8390 if( !p
->pSrc
->a
[0].fg
.notIndexed
){
8391 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
8392 if( pIdx
->bUnordered
==0
8393 && pIdx
->szIdxRow
<pTab
->szTabRow
8394 && pIdx
->pPartIdxWhere
==0
8395 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
8402 iRoot
= pBest
->tnum
;
8403 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
8406 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
8407 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, (int)iRoot
, iDb
, 1);
8409 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
8411 assignAggregateRegisters(pParse
, pAggInfo
);
8412 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, AggInfoFuncReg(pAggInfo
,0));
8413 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
8414 explainSimpleCount(pParse
, pTab
, pBest
);
8416 int regAcc
= 0; /* "populate accumulators" flag */
8417 ExprList
*pDistinct
= 0;
8421 /* If there are accumulator registers but no min() or max() functions
8422 ** without FILTER clauses, allocate register regAcc. Register regAcc
8423 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
8424 ** The code generated by updateAccumulator() uses this to ensure
8425 ** that the accumulator registers are (a) updated only once if
8426 ** there are no min() or max functions or (b) always updated for the
8427 ** first row visited by the aggregate, so that they are updated at
8428 ** least once even if the FILTER clause means the min() or max()
8429 ** function visits zero rows. */
8430 if( pAggInfo
->nAccumulator
){
8431 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
8432 if( ExprHasProperty(pAggInfo
->aFunc
[i
].pFExpr
, EP_WinFunc
) ){
8435 if( pAggInfo
->aFunc
[i
].pFunc
->funcFlags
&SQLITE_FUNC_NEEDCOLL
){
8439 if( i
==pAggInfo
->nFunc
){
8440 regAcc
= ++pParse
->nMem
;
8441 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regAcc
);
8443 }else if( pAggInfo
->nFunc
==1 && pAggInfo
->aFunc
[0].iDistinct
>=0 ){
8444 assert( ExprUseXList(pAggInfo
->aFunc
[0].pFExpr
) );
8445 pDistinct
= pAggInfo
->aFunc
[0].pFExpr
->x
.pList
;
8446 distFlag
= pDistinct
? (WHERE_WANT_DISTINCT
|WHERE_AGG_DISTINCT
) : 0;
8448 assignAggregateRegisters(pParse
, pAggInfo
);
8450 /* This case runs if the aggregate has no GROUP BY clause. The
8451 ** processing is much simpler since there is only a single row
8454 assert( p
->pGroupBy
==0 );
8455 resetAccumulator(pParse
, pAggInfo
);
8457 /* If this query is a candidate for the min/max optimization, then
8458 ** minMaxFlag will have been previously set to either
8459 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
8460 ** be an appropriate ORDER BY expression for the optimization.
8462 assert( minMaxFlag
==WHERE_ORDERBY_NORMAL
|| pMinMaxOrderBy
!=0 );
8463 assert( pMinMaxOrderBy
==0 || pMinMaxOrderBy
->nExpr
==1 );
8465 TREETRACE(0x2,pParse
,p
,("WhereBegin\n"));
8466 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMaxOrderBy
,
8467 pDistinct
, p
, minMaxFlag
|distFlag
, 0);
8471 TREETRACE(0x2,pParse
,p
,("WhereBegin returns\n"));
8472 eDist
= sqlite3WhereIsDistinct(pWInfo
);
8473 updateAccumulator(pParse
, regAcc
, pAggInfo
, eDist
);
8474 if( eDist
!=WHERE_DISTINCT_NOOP
){
8475 struct AggInfo_func
*pF
= pAggInfo
->aFunc
;
8477 fixDistinctOpenEph(pParse
, eDist
, pF
->iDistinct
, pF
->iDistAddr
);
8481 if( regAcc
) sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regAcc
);
8483 sqlite3WhereMinMaxOptEarlyOut(v
, pWInfo
);
8485 TREETRACE(0x2,pParse
,p
,("WhereEnd\n"));
8486 sqlite3WhereEnd(pWInfo
);
8487 finalizeAggFunctions(pParse
, pAggInfo
);
8491 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
8492 selectInnerLoop(pParse
, p
, -1, 0, 0,
8493 pDest
, addrEnd
, addrEnd
);
8495 sqlite3VdbeResolveLabel(v
, addrEnd
);
8497 } /* endif aggregate query */
8499 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
8500 explainTempTable(pParse
, "DISTINCT");
8503 /* If there is an ORDER BY clause, then we need to sort the results
8504 ** and send them to the callback one by one.
8506 if( sSort
.pOrderBy
){
8507 assert( p
->pEList
==pEList
);
8508 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
8511 /* Jump here to skip this query
8513 sqlite3VdbeResolveLabel(v
, iEnd
);
8515 /* The SELECT has been coded. If there is an error in the Parse structure,
8516 ** set the return code to 1. Otherwise 0. */
8517 rc
= (pParse
->nErr
>0);
8519 /* Control jumps to here if an error is encountered above, or upon
8520 ** successful coding of the SELECT.
8523 assert( db
->mallocFailed
==0 || db
->mallocFailed
==1 );
8524 assert( db
->mallocFailed
==0 || pParse
->nErr
!=0 );
8525 sqlite3ExprListDelete(db
, pMinMaxOrderBy
);
8527 if( pAggInfo
&& !db
->mallocFailed
){
8528 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
8529 Expr
*pExpr
= pAggInfo
->aCol
[i
].pCExpr
;
8530 if( pExpr
==0 ) continue;
8531 assert( pExpr
->pAggInfo
==pAggInfo
);
8532 assert( pExpr
->iAgg
==i
);
8534 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
8535 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
8537 assert( pExpr
->pAggInfo
==pAggInfo
);
8538 assert( pExpr
->iAgg
==i
);
8543 #if TREETRACE_ENABLED
8544 TREETRACE(0x1,pParse
,p
,("end processing\n"));
8545 if( (sqlite3TreeTrace
& 0x40000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
8546 sqlite3TreeViewSelect(0, p
, 0);
8549 ExplainQueryPlanPop(pParse
);