4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
20 #ifndef SQLITE_OMIT_FLOATING_POINT
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed further downstream.
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code. To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest
){
45 int (*xCallback
)(int) = sqlite3GlobalConfig
.xTestCallback
;
46 return xCallback
? xCallback(iTest
) : SQLITE_OK
;
50 #ifndef SQLITE_OMIT_FLOATING_POINT
52 ** Return true if the floating point value is Not a Number (NaN).
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
57 int sqlite3IsNaN(double x
){
58 int rc
; /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
61 memcpy(&y
,&x
,sizeof(y
));
65 #endif /* HAVE_ISNAN */
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
75 ** The value returned will never be negative. Nor will it ever be greater
76 ** than the actual length of the string. For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
79 int sqlite3Strlen30(const char *z
){
81 return 0x3fffffff & (int)strlen(z
);
85 ** Return the declared type of a column. Or return zDflt if the column
86 ** has no declared type.
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
91 char *sqlite3ColumnType(Column
*pCol
, char *zDflt
){
92 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
93 return pCol
->zCnName
+ strlen(pCol
->zCnName
) + 1;
94 }else if( pCol
->eCType
){
95 assert( pCol
->eCType
<=SQLITE_N_STDTYPE
);
96 return (char*)sqlite3StdType
[pCol
->eCType
-1];
103 ** Helper function for sqlite3Error() - called rarely. Broken out into
104 ** a separate routine to avoid unnecessary register saves on entry to
107 static SQLITE_NOINLINE
void sqlite3ErrorFinish(sqlite3
*db
, int err_code
){
108 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
109 sqlite3SystemError(db
, err_code
);
113 ** Set the current error code to err_code and clear any prior error message.
114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
115 ** that would be appropriate.
117 void sqlite3Error(sqlite3
*db
, int err_code
){
119 db
->errCode
= err_code
;
120 if( err_code
|| db
->pErr
){
121 sqlite3ErrorFinish(db
, err_code
);
123 db
->errByteOffset
= -1;
128 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
129 ** and error message.
131 void sqlite3ErrorClear(sqlite3
*db
){
133 db
->errCode
= SQLITE_OK
;
134 db
->errByteOffset
= -1;
135 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
140 ** to do based on the SQLite error code in rc.
142 void sqlite3SystemError(sqlite3
*db
, int rc
){
143 if( rc
==SQLITE_IOERR_NOMEM
) return;
144 #ifdef SQLITE_USE_SEH
145 if( rc
==SQLITE_IOERR_IN_PAGE
){
148 sqlite3BtreeEnterAll(db
);
149 for(ii
=0; ii
<db
->nDb
; ii
++){
150 if( db
->aDb
[ii
].pBt
){
151 iErr
= sqlite3PagerWalSystemErrno(sqlite3BtreePager(db
->aDb
[ii
].pBt
));
153 db
->iSysErrno
= iErr
;
157 sqlite3BtreeLeaveAll(db
);
162 if( rc
==SQLITE_CANTOPEN
|| rc
==SQLITE_IOERR
){
163 db
->iSysErrno
= sqlite3OsGetLastError(db
->pVfs
);
168 ** Set the most recent error code and error string for the sqlite
169 ** handle "db". The error code is set to "err_code".
171 ** If it is not NULL, string zFormat specifies the format of the
172 ** error string. zFormat and any string tokens that follow it are
173 ** assumed to be encoded in UTF-8.
175 ** To clear the most recent error for sqlite handle "db", sqlite3Error
176 ** should be called with err_code set to SQLITE_OK and zFormat set
179 void sqlite3ErrorWithMsg(sqlite3
*db
, int err_code
, const char *zFormat
, ...){
181 db
->errCode
= err_code
;
182 sqlite3SystemError(db
, err_code
);
184 sqlite3Error(db
, err_code
);
185 }else if( db
->pErr
|| (db
->pErr
= sqlite3ValueNew(db
))!=0 ){
188 va_start(ap
, zFormat
);
189 z
= sqlite3VMPrintf(db
, zFormat
, ap
);
191 sqlite3ValueSetStr(db
->pErr
, -1, z
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
196 ** Check for interrupts and invoke progress callback.
198 void sqlite3ProgressCheck(Parse
*p
){
200 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
202 p
->rc
= SQLITE_INTERRUPT
;
204 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
206 if( p
->rc
==SQLITE_INTERRUPT
){
207 p
->nProgressSteps
= 0;
208 }else if( (++p
->nProgressSteps
)>=db
->nProgressOps
){
209 if( db
->xProgress(db
->pProgressArg
) ){
211 p
->rc
= SQLITE_INTERRUPT
;
213 p
->nProgressSteps
= 0;
220 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
222 ** This function should be used to report any error that occurs while
223 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
224 ** last thing the sqlite3_prepare() function does is copy the error
225 ** stored by this function into the database handle using sqlite3Error().
226 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
227 ** during statement execution (sqlite3_step() etc.).
229 void sqlite3ErrorMsg(Parse
*pParse
, const char *zFormat
, ...){
232 sqlite3
*db
= pParse
->db
;
234 assert( db
->pParse
==pParse
|| db
->pParse
->pToplevel
==pParse
);
235 db
->errByteOffset
= -2;
236 va_start(ap
, zFormat
);
237 zMsg
= sqlite3VMPrintf(db
, zFormat
, ap
);
239 if( db
->errByteOffset
<-1 ) db
->errByteOffset
= -1;
240 if( db
->suppressErr
){
241 sqlite3DbFree(db
, zMsg
);
242 if( db
->mallocFailed
){
244 pParse
->rc
= SQLITE_NOMEM
;
248 sqlite3DbFree(db
, pParse
->zErrMsg
);
249 pParse
->zErrMsg
= zMsg
;
250 pParse
->rc
= SQLITE_ERROR
;
256 ** If database connection db is currently parsing SQL, then transfer
257 ** error code errCode to that parser if the parser has not already
258 ** encountered some other kind of error.
260 int sqlite3ErrorToParser(sqlite3
*db
, int errCode
){
262 if( db
==0 || (pParse
= db
->pParse
)==0 ) return errCode
;
263 pParse
->rc
= errCode
;
269 ** Convert an SQL-style quoted string into a normal string by removing
270 ** the quote characters. The conversion is done in-place. If the
271 ** input does not begin with a quote character, then this routine
274 ** The input string must be zero-terminated. A new zero-terminator
275 ** is added to the dequoted string.
277 ** The return value is -1 if no dequoting occurs or the length of the
278 ** dequoted string, exclusive of the zero terminator, if dequoting does
281 ** 2002-02-14: This routine is extended to remove MS-Access style
282 ** brackets from around identifiers. For example: "[a-b-c]" becomes
285 void sqlite3Dequote(char *z
){
290 if( !sqlite3Isquote(quote
) ) return;
291 if( quote
=='[' ) quote
= ']';
307 void sqlite3DequoteExpr(Expr
*p
){
308 assert( !ExprHasProperty(p
, EP_IntValue
) );
309 assert( sqlite3Isquote(p
->u
.zToken
[0]) );
310 p
->flags
|= p
->u
.zToken
[0]=='"' ? EP_Quoted
|EP_DblQuoted
: EP_Quoted
;
311 sqlite3Dequote(p
->u
.zToken
);
315 ** If the input token p is quoted, try to adjust the token to remove
316 ** the quotes. This is not always possible:
319 ** "ab""cd" -> (not possible because of the interior "")
321 ** Remove the quotes if possible. This is a optimization. The overall
322 ** system should still return the correct answer even if this routine
323 ** is always a no-op.
325 void sqlite3DequoteToken(Token
*p
){
328 if( !sqlite3Isquote(p
->z
[0]) ) return;
329 for(i
=1; i
<p
->n
-1; i
++){
330 if( sqlite3Isquote(p
->z
[i
]) ) return;
337 ** Generate a Token object from a string
339 void sqlite3TokenInit(Token
*p
, char *z
){
341 p
->n
= sqlite3Strlen30(z
);
344 /* Convenient short-hand */
345 #define UpperToLower sqlite3UpperToLower
348 ** Some systems have stricmp(). Others have strcasecmp(). Because
349 ** there is no consistency, we will define our own.
351 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
352 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
353 ** the contents of two buffers containing UTF-8 strings in a
354 ** case-independent fashion, using the same definition of "case
355 ** independence" that SQLite uses internally when comparing identifiers.
357 int sqlite3_stricmp(const char *zLeft
, const char *zRight
){
359 return zRight
? -1 : 0;
360 }else if( zRight
==0 ){
363 return sqlite3StrICmp(zLeft
, zRight
);
365 int sqlite3StrICmp(const char *zLeft
, const char *zRight
){
366 unsigned char *a
, *b
;
368 a
= (unsigned char *)zLeft
;
369 b
= (unsigned char *)zRight
;
376 c
= (int)UpperToLower
[c
] - (int)UpperToLower
[x
];
384 int sqlite3_strnicmp(const char *zLeft
, const char *zRight
, int N
){
385 register unsigned char *a
, *b
;
387 return zRight
? -1 : 0;
388 }else if( zRight
==0 ){
391 a
= (unsigned char *)zLeft
;
392 b
= (unsigned char *)zRight
;
393 while( N
-- > 0 && *a
!=0 && UpperToLower
[*a
]==UpperToLower
[*b
]){ a
++; b
++; }
394 return N
<0 ? 0 : UpperToLower
[*a
] - UpperToLower
[*b
];
398 ** Compute an 8-bit hash on a string that is insensitive to case differences
400 u8
sqlite3StrIHash(const char *z
){
404 h
+= UpperToLower
[(unsigned char)z
[0]];
410 /* Double-Double multiplication. (x[0],x[1]) *= (y,yy)
413 ** T. J. Dekker, "A Floating-Point Technique for Extending the
414 ** Available Precision". 1971-07-26.
416 static void dekkerMul2(volatile double *x
, double y
, double yy
){
418 ** The "volatile" keywords on parameter x[] and on local variables
419 ** below are needed force intermediate results to be truncated to
420 ** binary64 rather than be carried around in an extended-precision
421 ** format. The truncation is necessary for the Dekker algorithm to
422 ** work. Intel x86 floating point might omit the truncation without
423 ** the use of volatile.
425 volatile double tx
, ty
, p
, q
, c
, cc
;
428 memcpy(&m
, (void*)&x
[0], 8);
429 m
&= 0xfffffffffc000000LL
;
433 m
&= 0xfffffffffc000000LL
;
439 cc
= p
- c
+ q
+ tx
*ty
;
440 cc
= x
[0]*yy
+ x
[1]*y
+ cc
;
447 ** The string z[] is an text representation of a real number.
448 ** Convert this string to a double and write it into *pResult.
450 ** The string z[] is length bytes in length (bytes, not characters) and
451 ** uses the encoding enc. The string is not necessarily zero-terminated.
453 ** Return TRUE if the result is a valid real number (or integer) and FALSE
454 ** if the string is empty or contains extraneous text. More specifically
456 ** 1 => The input string is a pure integer
457 ** 2 or more => The input has a decimal point or eNNN clause
458 ** 0 or less => The input string is not a valid number
459 ** -1 => Not a valid number, but has a valid prefix which
460 ** includes a decimal point and/or an eNNN clause
462 ** Valid numbers are in one of these formats:
464 ** [+-]digits[E[+-]digits]
465 ** [+-]digits.[digits][E[+-]digits]
466 ** [+-].digits[E[+-]digits]
468 ** Leading and trailing whitespace is ignored for the purpose of determining
471 ** If some prefix of the input string is a valid number, this routine
472 ** returns FALSE but it still converts the prefix and writes the result
475 #if defined(_MSC_VER)
476 #pragma warning(disable : 4756)
478 int sqlite3AtoF(const char *z
, double *pResult
, int length
, u8 enc
){
479 #ifndef SQLITE_OMIT_FLOATING_POINT
482 /* sign * significand * (10 ^ (esign * exponent)) */
483 int sign
= 1; /* sign of significand */
484 u64 s
= 0; /* significand */
485 int d
= 0; /* adjust exponent for shifting decimal point */
486 int esign
= 1; /* sign of exponent */
487 int e
= 0; /* exponent */
488 int eValid
= 1; /* True exponent is either not used or is well-formed */
489 int nDigit
= 0; /* Number of digits processed */
490 int eType
= 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
492 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
493 *pResult
= 0.0; /* Default return value, in case of an error */
494 if( length
==0 ) return 0;
496 if( enc
==SQLITE_UTF8
){
503 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
504 testcase( enc
==SQLITE_UTF16LE
);
505 testcase( enc
==SQLITE_UTF16BE
);
506 for(i
=3-enc
; i
<length
&& z
[i
]==0; i
+=2){}
507 if( i
<length
) eType
= -100;
512 /* skip leading spaces */
513 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
514 if( z
>=zEnd
) return 0;
516 /* get sign of significand */
524 /* copy max significant digits to significand */
525 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
526 s
= s
*10 + (*z
- '0');
528 if( s
>=((LARGEST_UINT64
-9)/10) ){
529 /* skip non-significant significand digits
530 ** (increase exponent by d to shift decimal left) */
531 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){ z
+=incr
; d
++; }
534 if( z
>=zEnd
) goto do_atof_calc
;
536 /* if decimal point is present */
540 /* copy digits from after decimal to significand
541 ** (decrease exponent by d to shift decimal right) */
542 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
543 if( s
<((LARGEST_UINT64
-9)/10) ){
544 s
= s
*10 + (*z
- '0');
551 if( z
>=zEnd
) goto do_atof_calc
;
553 /* if exponent is present */
554 if( *z
=='e' || *z
=='E' ){
559 /* This branch is needed to avoid a (harmless) buffer overread. The
560 ** special comment alerts the mutation tester that the correct answer
561 ** is obtained even if the branch is omitted */
562 if( z
>=zEnd
) goto do_atof_calc
; /*PREVENTS-HARMLESS-OVERREAD*/
564 /* get sign of exponent */
571 /* copy digits to exponent */
572 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
573 e
= e
<10000 ? (e
*10 + (*z
- '0')) : 10000;
579 /* skip trailing spaces */
580 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
583 /* Zero is a special case */
585 *pResult
= sign
<0 ? -0.0 : +0.0;
589 /* adjust exponent by d, and update sign */
592 /* Try to adjust the exponent to make it smaller */
593 while( e
>0 && s
<(LARGEST_UINT64
/10) ){
597 while( e
<0 && (s
%10)==0 ){
604 }else if( sqlite3Config
.bUseLongDouble
){
605 LONGDOUBLE_TYPE r
= (LONGDOUBLE_TYPE
)s
;
607 while( e
>=100 ){ e
-=100; r
*= 1.0e+100L; }
608 while( e
>=10 ){ e
-=10; r
*= 1.0e+10L; }
609 while( e
>=1 ){ e
-=1; r
*= 1.0e+01L; }
611 while( e
<=-100 ){ e
+=100; r
*= 1.0e-100L; }
612 while( e
<=-10 ){ e
+=10; r
*= 1.0e-10L; }
613 while( e
<=-1 ){ e
+=1; r
*= 1.0e-01L; }
616 if( r
>+1.7976931348623157081452742373e+308L ){
618 *pResult
= +INFINITY
;
620 *pResult
= 1.0e308
*10.0;
623 *pResult
= (double)r
;
630 rr
[1] = s
>=s2
? (double)(s
- s2
) : -(double)(s2
- s
);
634 dekkerMul2(rr
, 1.0e+100, -1.5902891109759918046e+83);
638 dekkerMul2(rr
, 1.0e+10, 0.0);
642 dekkerMul2(rr
, 1.0e+01, 0.0);
647 dekkerMul2(rr
, 1.0e-100, -1.99918998026028836196e-117);
651 dekkerMul2(rr
, 1.0e-10, -3.6432197315497741579e-27);
655 dekkerMul2(rr
, 1.0e-01, -5.5511151231257827021e-18);
658 *pResult
= rr
[0]+rr
[1];
659 if( sqlite3IsNaN(*pResult
) ) *pResult
= 1e300
*1e300
;
661 if( sign
<0 ) *pResult
= -*pResult
;
662 assert( !sqlite3IsNaN(*pResult
) );
665 /* return true if number and no extra non-whitespace characters after */
666 if( z
==zEnd
&& nDigit
>0 && eValid
&& eType
>0 ){
668 }else if( eType
>=2 && (eType
==3 || eValid
) && nDigit
>0 ){
674 return !sqlite3Atoi64(z
, pResult
, length
, enc
);
675 #endif /* SQLITE_OMIT_FLOATING_POINT */
677 #if defined(_MSC_VER)
678 #pragma warning(default : 4756)
682 ** Render an signed 64-bit integer as text. Store the result in zOut[] and
683 ** return the length of the string that was stored, in bytes. The value
684 ** returned does not include the zero terminator at the end of the output
687 ** The caller must ensure that zOut[] is at least 21 bytes in size.
689 int sqlite3Int64ToText(i64 v
, char *zOut
){
694 x
= (v
==SMALLEST_INT64
) ? ((u64
)1)<<63 : (u64
)-v
;
699 zTemp
[sizeof(zTemp
)-1] = 0;
700 while( 1 /*exit-by-break*/ ){
701 zTemp
[i
] = (x
%10) + '0';
706 if( v
<0 ) zTemp
[--i
] = '-';
707 memcpy(zOut
, &zTemp
[i
], sizeof(zTemp
)-i
);
708 return sizeof(zTemp
)-1-i
;
712 ** Compare the 19-character string zNum against the text representation
713 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
714 ** if zNum is less than, equal to, or greater than the string.
715 ** Note that zNum must contain exactly 19 characters.
717 ** Unlike memcmp() this routine is guaranteed to return the difference
718 ** in the values of the last digit if the only difference is in the
719 ** last digit. So, for example,
721 ** compare2pow63("9223372036854775800", 1)
725 static int compare2pow63(const char *zNum
, int incr
){
728 /* 012345678901234567 */
729 const char *pow63
= "922337203685477580";
730 for(i
=0; c
==0 && i
<18; i
++){
731 c
= (zNum
[i
*incr
]-pow63
[i
])*10;
734 c
= zNum
[18*incr
] - '8';
743 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
744 ** routine does *not* accept hexadecimal notation.
748 ** -1 Not even a prefix of the input text looks like an integer
749 ** 0 Successful transformation. Fits in a 64-bit signed integer.
750 ** 1 Excess non-space text after the integer value
751 ** 2 Integer too large for a 64-bit signed integer or is malformed
752 ** 3 Special case of 9223372036854775808
754 ** length is the number of bytes in the string (bytes, not characters).
755 ** The string is not necessarily zero-terminated. The encoding is
758 int sqlite3Atoi64(const char *zNum
, i64
*pNum
, int length
, u8 enc
){
761 int neg
= 0; /* assume positive */
764 int nonNum
= 0; /* True if input contains UTF16 with high byte non-zero */
765 int rc
; /* Baseline return code */
767 const char *zEnd
= zNum
+ length
;
768 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
769 if( enc
==SQLITE_UTF8
){
774 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
775 for(i
=3-enc
; i
<length
&& zNum
[i
]==0; i
+=2){}
780 while( zNum
<zEnd
&& sqlite3Isspace(*zNum
) ) zNum
+=incr
;
785 }else if( *zNum
=='+' ){
790 while( zNum
<zEnd
&& zNum
[0]=='0' ){ zNum
+=incr
; } /* Skip leading zeros. */
791 for(i
=0; &zNum
[i
]<zEnd
&& (c
=zNum
[i
])>='0' && c
<='9'; i
+=incr
){
794 testcase( i
==18*incr
);
795 testcase( i
==19*incr
);
796 testcase( i
==20*incr
);
797 if( u
>LARGEST_INT64
){
798 /* This test and assignment is needed only to suppress UB warnings
799 ** from clang and -fsanitize=undefined. This test and assignment make
800 ** the code a little larger and slower, and no harm comes from omitting
801 ** them, but we must appease the undefined-behavior pharisees. */
802 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
809 if( i
==0 && zStart
==zNum
){ /* No digits */
811 }else if( nonNum
){ /* UTF16 with high-order bytes non-zero */
813 }else if( &zNum
[i
]<zEnd
){ /* Extra bytes at the end */
816 if( !sqlite3Isspace(zNum
[jj
]) ){
817 rc
= 1; /* Extra non-space text after the integer */
821 }while( &zNum
[jj
]<zEnd
);
824 /* Less than 19 digits, so we know that it fits in 64 bits */
825 assert( u
<=LARGEST_INT64
);
828 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
829 c
= i
>19*incr
? 1 : compare2pow63(zNum
, incr
);
831 /* zNum is less than 9223372036854775808 so it fits */
832 assert( u
<=LARGEST_INT64
);
835 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
837 /* zNum is greater than 9223372036854775808 so it overflows */
840 /* zNum is exactly 9223372036854775808. Fits if negative. The
841 ** special case 2 overflow if positive */
842 assert( u
-1==LARGEST_INT64
);
850 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
851 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
852 ** whereas sqlite3Atoi64() does not.
856 ** 0 Successful transformation. Fits in a 64-bit signed integer.
857 ** 1 Excess text after the integer value
858 ** 2 Integer too large for a 64-bit signed integer or is malformed
859 ** 3 Special case of 9223372036854775808
861 int sqlite3DecOrHexToI64(const char *z
, i64
*pOut
){
862 #ifndef SQLITE_OMIT_HEX_INTEGER
864 && (z
[1]=='x' || z
[1]=='X')
868 for(i
=2; z
[i
]=='0'; i
++){}
869 for(k
=i
; sqlite3Isxdigit(z
[k
]); k
++){
870 u
= u
*16 + sqlite3HexToInt(z
[k
]);
873 if( k
-i
>16 ) return 2;
874 if( z
[k
]!=0 ) return 1;
877 #endif /* SQLITE_OMIT_HEX_INTEGER */
879 int n
= (int)(0x3fffffff&strspn(z
,"+- \n\t0123456789"));
881 return sqlite3Atoi64(z
, pOut
, n
, SQLITE_UTF8
);
886 ** If zNum represents an integer that will fit in 32-bits, then set
887 ** *pValue to that integer and return true. Otherwise return false.
889 ** This routine accepts both decimal and hexadecimal notation for integers.
891 ** Any non-numeric characters that following zNum are ignored.
892 ** This is different from sqlite3Atoi64() which requires the
893 ** input number to be zero-terminated.
895 int sqlite3GetInt32(const char *zNum
, int *pValue
){
902 }else if( zNum
[0]=='+' ){
905 #ifndef SQLITE_OMIT_HEX_INTEGER
906 else if( zNum
[0]=='0'
907 && (zNum
[1]=='x' || zNum
[1]=='X')
908 && sqlite3Isxdigit(zNum
[2])
912 while( zNum
[0]=='0' ) zNum
++;
913 for(i
=0; i
<8 && sqlite3Isxdigit(zNum
[i
]); i
++){
914 u
= u
*16 + sqlite3HexToInt(zNum
[i
]);
916 if( (u
&0x80000000)==0 && sqlite3Isxdigit(zNum
[i
])==0 ){
917 memcpy(pValue
, &u
, 4);
924 if( !sqlite3Isdigit(zNum
[0]) ) return 0;
925 while( zNum
[0]=='0' ) zNum
++;
926 for(i
=0; i
<11 && (c
= zNum
[i
] - '0')>=0 && c
<=9; i
++){
930 /* The longest decimal representation of a 32 bit integer is 10 digits:
933 ** 2^31 -> 2147483648
939 testcase( v
-neg
==2147483647 );
940 if( v
-neg
>2147483647 ){
951 ** Return a 32-bit integer value extracted from a string. If the
952 ** string is not an integer, just return 0.
954 int sqlite3Atoi(const char *z
){
956 sqlite3GetInt32(z
, &x
);
961 ** Decode a floating-point value into an approximate decimal
964 ** Round the decimal representation to n significant digits if
965 ** n is positive. Or round to -n signficant digits after the
966 ** decimal point if n is negative. No rounding is performed if
969 ** The significant digits of the decimal representation are
970 ** stored in p->z[] which is a often (but not always) a pointer
971 ** into the middle of p->zBuf[]. There are p->n significant digits.
972 ** The p->z[] array is *not* zero-terminated.
974 void sqlite3FpDecode(FpDecode
*p
, double r
, int iRound
, int mxRound
){
981 /* Convert negative numbers to positive. Deal with Infinity, 0.0, and
997 if( (e
&0x7ff)==0x7ff ){
998 p
->isSpecial
= 1 + (v
!=0x7ff0000000000000LL
);
1004 /* Multiply r by powers of ten until it lands somewhere in between
1005 ** 1.0e+19 and 1.0e+17.
1007 if( sqlite3Config
.bUseLongDouble
){
1008 LONGDOUBLE_TYPE rr
= r
;
1010 while( rr
>=1.0e+119L ){ exp
+=100; rr
*= 1.0e-100L; }
1011 while( rr
>=1.0e+29L ){ exp
+=10; rr
*= 1.0e-10L; }
1012 while( rr
>=1.0e+19L ){ exp
++; rr
*= 1.0e-1L; }
1014 while( rr
<1.0e-97L ){ exp
-=100; rr
*= 1.0e+100L; }
1015 while( rr
<1.0e+07L ){ exp
-=10; rr
*= 1.0e+10L; }
1016 while( rr
<1.0e+17L ){ exp
--; rr
*= 1.0e+1L; }
1020 /* If high-precision floating point is not available using "long double",
1021 ** then use Dekker-style double-double computation to increase the
1024 ** The error terms on constants like 1.0e+100 computed using the
1025 ** decimal extension, for example as follows:
1027 ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
1032 if( rr
[0]>9.223372036854774784e+18 ){
1033 while( rr
[0]>9.223372036854774784e+118 ){
1035 dekkerMul2(rr
, 1.0e-100, -1.99918998026028836196e-117);
1037 while( rr
[0]>9.223372036854774784e+28 ){
1039 dekkerMul2(rr
, 1.0e-10, -3.6432197315497741579e-27);
1041 while( rr
[0]>9.223372036854774784e+18 ){
1043 dekkerMul2(rr
, 1.0e-01, -5.5511151231257827021e-18);
1046 while( rr
[0]<9.223372036854774784e-83 ){
1048 dekkerMul2(rr
, 1.0e+100, -1.5902891109759918046e+83);
1050 while( rr
[0]<9.223372036854774784e+07 ){
1052 dekkerMul2(rr
, 1.0e+10, 0.0);
1054 while( rr
[0]<9.22337203685477478e+17 ){
1056 dekkerMul2(rr
, 1.0e+01, 0.0);
1059 v
= rr
[1]<0.0 ? (u64
)rr
[0]-(u64
)(-rr
[1]) : (u64
)rr
[0]+(u64
)rr
[1];
1063 /* Extract significant digits. */
1064 i
= sizeof(p
->zBuf
)-1;
1066 while( v
){ p
->zBuf
[i
--] = (v
%10) + '0'; v
/= 10; }
1067 assert( i
>=0 && i
<sizeof(p
->zBuf
)-1 );
1068 p
->n
= sizeof(p
->zBuf
) - 1 - i
;
1070 assert( p
->n
<sizeof(p
->zBuf
) );
1071 p
->iDP
= p
->n
+ exp
;
1073 iRound
= p
->iDP
- iRound
;
1074 if( iRound
==0 && p
->zBuf
[i
+1]>='5' ){
1081 if( iRound
>0 && (iRound
<p
->n
|| p
->n
>mxRound
) ){
1082 char *z
= &p
->zBuf
[i
+1];
1083 if( iRound
>mxRound
) iRound
= mxRound
;
1085 if( z
[iRound
]>='5' ){
1087 while( 1 /*exit-by-break*/ ){
1089 if( z
[j
]<='9' ) break;
1102 p
->z
= &p
->zBuf
[i
+1];
1103 assert( i
+p
->n
< sizeof(p
->zBuf
) );
1104 while( ALWAYS(p
->n
>0) && p
->z
[p
->n
-1]=='0' ){ p
->n
--; }
1108 ** Try to convert z into an unsigned 32-bit integer. Return true on
1109 ** success and false if there is an error.
1111 ** Only decimal notation is accepted.
1113 int sqlite3GetUInt32(const char *z
, u32
*pI
){
1116 for(i
=0; sqlite3Isdigit(z
[i
]); i
++){
1117 v
= v
*10 + z
[i
] - '0';
1118 if( v
>4294967296LL ){ *pI
= 0; return 0; }
1120 if( i
==0 || z
[i
]!=0 ){ *pI
= 0; return 0; }
1126 ** The variable-length integer encoding is as follows:
1129 ** A = 0xxxxxxx 7 bits of data and one flag bit
1130 ** B = 1xxxxxxx 7 bits of data and one flag bit
1131 ** C = xxxxxxxx 8 bits of data
1139 ** 49 bits - BBBBBBA
1140 ** 56 bits - BBBBBBBA
1141 ** 64 bits - BBBBBBBBC
1145 ** Write a 64-bit variable-length integer to memory starting at p[0].
1146 ** The length of data write will be between 1 and 9 bytes. The number
1147 ** of bytes written is returned.
1149 ** A variable-length integer consists of the lower 7 bits of each byte
1150 ** for all bytes that have the 8th bit set and one byte with the 8th
1151 ** bit clear. Except, if we get to the 9th byte, it stores the full
1152 ** 8 bits and is the last byte.
1154 static int SQLITE_NOINLINE
putVarint64(unsigned char *p
, u64 v
){
1157 if( v
& (((u64
)0xff000000)<<32) ){
1160 for(i
=7; i
>=0; i
--){
1161 p
[i
] = (u8
)((v
& 0x7f) | 0x80);
1168 buf
[n
++] = (u8
)((v
& 0x7f) | 0x80);
1173 for(i
=0, j
=n
-1; j
>=0; j
--, i
++){
1178 int sqlite3PutVarint(unsigned char *p
, u64 v
){
1184 p
[0] = ((v
>>7)&0x7f)|0x80;
1188 return putVarint64(p
,v
);
1192 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
1193 ** are defined here rather than simply putting the constant expressions
1194 ** inline in order to work around bugs in the RVT compiler.
1196 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
1198 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
1200 #define SLOT_2_0 0x001fc07f
1201 #define SLOT_4_2_0 0xf01fc07f
1205 ** Read a 64-bit variable-length integer from memory starting at p[0].
1206 ** Return the number of bytes read. The value is stored in *v.
1208 u8
sqlite3GetVarint(const unsigned char *p
, u64
*v
){
1211 if( ((signed char*)p
)[0]>=0 ){
1215 if( ((signed char*)p
)[1]>=0 ){
1216 *v
= ((u32
)(p
[0]&0x7f)<<7) | p
[1];
1220 /* Verify that constants are precomputed correctly */
1221 assert( SLOT_2_0
== ((0x7f<<14) | (0x7f)) );
1222 assert( SLOT_4_2_0
== ((0xfU
<<28) | (0x7f<<14) | (0x7f)) );
1224 a
= ((u32
)p
[0])<<14;
1228 /* a: p0<<14 | p2 (unmasked) */
1239 /* CSE1 from below */
1244 /* b: p1<<14 | p3 (unmasked) */
1249 /* a &= (0x7f<<14)|(0x7f); */
1256 /* a: p0<<14 | p2 (masked) */
1257 /* b: p1<<14 | p3 (unmasked) */
1258 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1260 /* a &= (0x7f<<14)|(0x7f); */
1263 /* s: p0<<14 | p2 (masked) */
1268 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1271 /* we can skip these cause they were (effectively) done above
1272 ** while calculating s */
1273 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1274 /* b &= (0x7f<<14)|(0x7f); */
1278 *v
= ((u64
)s
)<<32 | a
;
1282 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1285 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1290 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1293 /* we can skip this cause it was (effectively) done above in calc'ing s */
1294 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1299 *v
= ((u64
)s
)<<32 | a
;
1306 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1314 *v
= ((u64
)s
)<<32 | a
;
1318 /* CSE2 from below */
1323 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1328 /* a &= (0x7f<<14)|(0x7f); */
1332 *v
= ((u64
)s
)<<32 | a
;
1339 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1342 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1353 *v
= ((u64
)s
)<<32 | a
;
1359 ** Read a 32-bit variable-length integer from memory starting at p[0].
1360 ** Return the number of bytes read. The value is stored in *v.
1362 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1363 ** integer, then set *v to 0xffffffff.
1365 ** A MACRO version, getVarint32, is provided which inlines the
1366 ** single-byte case. All code should use the MACRO version as
1367 ** this function assumes the single-byte case has already been handled.
1369 u8
sqlite3GetVarint32(const unsigned char *p
, u32
*v
){
1373 /* Assume that the single-byte case has already been handled by
1374 ** the getVarint32() macro */
1375 assert( (p
[0] & 0x80)!=0 );
1377 if( (p
[1] & 0x80)==0 ){
1378 /* This is the two-byte case */
1379 *v
= ((p
[0]&0x7f)<<7) | p
[1];
1382 if( (p
[2] & 0x80)==0 ){
1383 /* This is the three-byte case */
1384 *v
= ((p
[0]&0x7f)<<14) | ((p
[1]&0x7f)<<7) | p
[2];
1387 /* four or more bytes */
1388 n
= sqlite3GetVarint(p
, &v64
);
1389 assert( n
>3 && n
<=9 );
1390 if( (v64
& SQLITE_MAX_U32
)!=v64
){
1399 ** Return the number of bytes that will be needed to store the given
1402 int sqlite3VarintLen(u64 v
){
1404 for(i
=1; (v
>>= 7)!=0; i
++){ assert( i
<10 ); }
1410 ** Read or write a four-byte big-endian integer value.
1412 u32
sqlite3Get4byte(const u8
*p
){
1413 #if SQLITE_BYTEORDER==4321
1417 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1420 return __builtin_bswap32(x
);
1421 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1424 return _byteswap_ulong(x
);
1426 testcase( p
[0]&0x80 );
1427 return ((unsigned)p
[0]<<24) | (p
[1]<<16) | (p
[2]<<8) | p
[3];
1430 void sqlite3Put4byte(unsigned char *p
, u32 v
){
1431 #if SQLITE_BYTEORDER==4321
1433 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1434 u32 x
= __builtin_bswap32(v
);
1436 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1437 u32 x
= _byteswap_ulong(v
);
1450 ** Translate a single byte of Hex into an integer.
1451 ** This routine only works if h really is a valid hexadecimal
1452 ** character: 0..9a..fA..F
1454 u8
sqlite3HexToInt(int h
){
1455 assert( (h
>='0' && h
<='9') || (h
>='a' && h
<='f') || (h
>='A' && h
<='F') );
1459 #ifdef SQLITE_EBCDIC
1462 return (u8
)(h
& 0xf);
1465 /* BEGIN SQLCIPHER */
1466 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1468 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1469 ** value. Return a pointer to its binary value. Space to hold the
1470 ** binary value has been obtained from malloc and must be freed by
1471 ** the calling routine.
1473 void *sqlite3HexToBlob(sqlite3
*db
, const char *z
, int n
){
1477 zBlob
= (char *)sqlite3DbMallocRawNN(db
, n
/2 + 1);
1480 for(i
=0; i
<n
; i
+=2){
1481 zBlob
[i
/2] = (sqlite3HexToInt(z
[i
])<<4) | sqlite3HexToInt(z
[i
+1]);
1487 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1491 ** Log an error that is an API call on a connection pointer that should
1492 ** not have been used. The "type" of connection pointer is given as the
1493 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1495 static void logBadConnection(const char *zType
){
1496 sqlite3_log(SQLITE_MISUSE
,
1497 "API call with %s database connection pointer",
1503 ** Check to make sure we have a valid db pointer. This test is not
1504 ** foolproof but it does provide some measure of protection against
1505 ** misuse of the interface such as passing in db pointers that are
1506 ** NULL or which have been previously closed. If this routine returns
1507 ** 1 it means that the db pointer is valid and 0 if it should not be
1508 ** dereferenced for any reason. The calling function should invoke
1509 ** SQLITE_MISUSE immediately.
1511 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1512 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1513 ** open properly and is not fit for general use but which can be
1514 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1516 int sqlite3SafetyCheckOk(sqlite3
*db
){
1519 logBadConnection("NULL");
1522 eOpenState
= db
->eOpenState
;
1523 if( eOpenState
!=SQLITE_STATE_OPEN
){
1524 if( sqlite3SafetyCheckSickOrOk(db
) ){
1525 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1526 logBadConnection("unopened");
1533 int sqlite3SafetyCheckSickOrOk(sqlite3
*db
){
1535 eOpenState
= db
->eOpenState
;
1536 if( eOpenState
!=SQLITE_STATE_SICK
&&
1537 eOpenState
!=SQLITE_STATE_OPEN
&&
1538 eOpenState
!=SQLITE_STATE_BUSY
){
1539 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1540 logBadConnection("invalid");
1548 ** Attempt to add, subtract, or multiply the 64-bit signed value iB against
1549 ** the other 64-bit signed integer at *pA and store the result in *pA.
1550 ** Return 0 on success. Or if the operation would have resulted in an
1551 ** overflow, leave *pA unchanged and return 1.
1553 int sqlite3AddInt64(i64
*pA
, i64 iB
){
1554 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1555 return __builtin_add_overflow(*pA
, iB
, pA
);
1558 testcase( iA
==0 ); testcase( iA
==1 );
1559 testcase( iB
==-1 ); testcase( iB
==0 );
1561 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
);
1562 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
- 1 );
1563 if( iA
>0 && LARGEST_INT64
- iA
< iB
) return 1;
1565 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 1 );
1566 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 2 );
1567 if( iA
<0 && -(iA
+ LARGEST_INT64
) > iB
+ 1 ) return 1;
1573 int sqlite3SubInt64(i64
*pA
, i64 iB
){
1574 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1575 return __builtin_sub_overflow(*pA
, iB
, pA
);
1577 testcase( iB
==SMALLEST_INT64
+1 );
1578 if( iB
==SMALLEST_INT64
){
1579 testcase( (*pA
)==(-1) ); testcase( (*pA
)==0 );
1580 if( (*pA
)>=0 ) return 1;
1584 return sqlite3AddInt64(pA
, -iB
);
1588 int sqlite3MulInt64(i64
*pA
, i64 iB
){
1589 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1590 return __builtin_mul_overflow(*pA
, iB
, pA
);
1594 if( iA
>LARGEST_INT64
/iB
) return 1;
1595 if( iA
<SMALLEST_INT64
/iB
) return 1;
1598 if( iB
<SMALLEST_INT64
/iA
) return 1;
1600 if( iB
==SMALLEST_INT64
) return 1;
1601 if( iA
==SMALLEST_INT64
) return 1;
1602 if( -iA
>LARGEST_INT64
/-iB
) return 1;
1611 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1612 ** if the integer has a value of -2147483648, return +2147483647
1614 int sqlite3AbsInt32(int x
){
1615 if( x
>=0 ) return x
;
1616 if( x
==(int)0x80000000 ) return 0x7fffffff;
1620 #ifdef SQLITE_ENABLE_8_3_NAMES
1622 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1623 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1624 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1625 ** three characters, then shorten the suffix on z[] to be the last three
1626 ** characters of the original suffix.
1628 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1629 ** do the suffix shortening regardless of URI parameter.
1633 ** test.db-journal => test.nal
1634 ** test.db-wal => test.wal
1635 ** test.db-shm => test.shm
1636 ** test.db-mj7f3319fa => test.9fa
1638 void sqlite3FileSuffix3(const char *zBaseFilename
, char *z
){
1639 #if SQLITE_ENABLE_8_3_NAMES<2
1640 if( sqlite3_uri_boolean(zBaseFilename
, "8_3_names", 0) )
1644 sz
= sqlite3Strlen30(z
);
1645 for(i
=sz
-1; i
>0 && z
[i
]!='/' && z
[i
]!='.'; i
--){}
1646 if( z
[i
]=='.' && ALWAYS(sz
>i
+4) ) memmove(&z
[i
+1], &z
[sz
-3], 4);
1652 ** Find (an approximate) sum of two LogEst values. This computation is
1653 ** not a simple "+" operator because LogEst is stored as a logarithmic
1657 LogEst
sqlite3LogEstAdd(LogEst a
, LogEst b
){
1658 static const unsigned char x
[] = {
1662 7, 7, 7, /* 6,7,8 */
1663 6, 6, 6, /* 9,10,11 */
1664 5, 5, 5, /* 12-14 */
1665 4, 4, 4, 4, /* 15-18 */
1666 3, 3, 3, 3, 3, 3, /* 19-24 */
1667 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1670 if( a
>b
+49 ) return a
;
1671 if( a
>b
+31 ) return a
+1;
1674 if( b
>a
+49 ) return b
;
1675 if( b
>a
+31 ) return b
+1;
1681 ** Convert an integer into a LogEst. In other words, compute an
1682 ** approximation for 10*log2(x).
1684 LogEst
sqlite3LogEst(u64 x
){
1685 static LogEst a
[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1689 while( x
<8 ){ y
-= 10; x
<<= 1; }
1691 #if GCC_VERSION>=5004000
1692 int i
= 60 - __builtin_clzll(x
);
1696 while( x
>255 ){ y
+= 40; x
>>= 4; } /*OPTIMIZATION-IF-TRUE*/
1697 while( x
>15 ){ y
+= 10; x
>>= 1; }
1700 return a
[x
&7] + y
- 10;
1704 ** Convert a double into a LogEst
1705 ** In other words, compute an approximation for 10*log2(x).
1707 LogEst
sqlite3LogEstFromDouble(double x
){
1710 assert( sizeof(x
)==8 && sizeof(a
)==8 );
1711 if( x
<=1 ) return 0;
1712 if( x
<=2000000000 ) return sqlite3LogEst((u64
)x
);
1719 ** Convert a LogEst into an integer.
1721 u64
sqlite3LogEstToInt(LogEst x
){
1726 else if( n
>=1 ) n
-= 1;
1727 if( x
>60 ) return (u64
)LARGEST_INT64
;
1728 return x
>=3 ? (n
+8)<<(x
-3) : (n
+8)>>(3-x
);
1732 ** Add a new name/number pair to a VList. This might require that the
1733 ** VList object be reallocated, so return the new VList. If an OOM
1734 ** error occurs, the original VList returned and the
1735 ** db->mallocFailed flag is set.
1737 ** A VList is really just an array of integers. To destroy a VList,
1738 ** simply pass it to sqlite3DbFree().
1740 ** The first integer is the number of integers allocated for the whole
1741 ** VList. The second integer is the number of integers actually used.
1742 ** Each name/number pair is encoded by subsequent groups of 3 or more
1745 ** Each name/number pair starts with two integers which are the numeric
1746 ** value for the pair and the size of the name/number pair, respectively.
1747 ** The text name overlays one or more following integers. The text name
1748 ** is always zero-terminated.
1753 ** int nAlloc; // Number of allocated slots
1754 ** int nUsed; // Number of used slots
1755 ** struct VListEntry {
1756 ** int iValue; // Value for this entry
1757 ** int nSlot; // Slots used by this entry
1758 ** // ... variable name goes here
1762 ** During code generation, pointers to the variable names within the
1763 ** VList are taken. When that happens, nAlloc is set to zero as an
1764 ** indication that the VList may never again be enlarged, since the
1765 ** accompanying realloc() would invalidate the pointers.
1767 VList
*sqlite3VListAdd(
1768 sqlite3
*db
, /* The database connection used for malloc() */
1769 VList
*pIn
, /* The input VList. Might be NULL */
1770 const char *zName
, /* Name of symbol to add */
1771 int nName
, /* Bytes of text in zName */
1772 int iVal
/* Value to associate with zName */
1774 int nInt
; /* number of sizeof(int) objects needed for zName */
1775 char *z
; /* Pointer to where zName will be stored */
1776 int i
; /* Index in pIn[] where zName is stored */
1779 assert( pIn
==0 || pIn
[0]>=3 ); /* Verify ok to add new elements */
1780 if( pIn
==0 || pIn
[1]+nInt
> pIn
[0] ){
1781 /* Enlarge the allocation */
1782 sqlite3_int64 nAlloc
= (pIn
? 2*(sqlite3_int64
)pIn
[0] : 10) + nInt
;
1783 VList
*pOut
= sqlite3DbRealloc(db
, pIn
, nAlloc
*sizeof(int));
1784 if( pOut
==0 ) return pIn
;
1785 if( pIn
==0 ) pOut
[1] = 2;
1792 z
= (char*)&pIn
[i
+2];
1794 assert( pIn
[1]<=pIn
[0] );
1795 memcpy(z
, zName
, nName
);
1801 ** Return a pointer to the name of a variable in the given VList that
1802 ** has the value iVal. Or return a NULL if there is no such variable in
1805 const char *sqlite3VListNumToName(VList
*pIn
, int iVal
){
1807 if( pIn
==0 ) return 0;
1811 if( pIn
[i
]==iVal
) return (char*)&pIn
[i
+2];
1818 ** Return the number of the variable named zName, if it is in VList.
1819 ** or return 0 if there is no such variable.
1821 int sqlite3VListNameToNum(VList
*pIn
, const char *zName
, int nName
){
1823 if( pIn
==0 ) return 0;
1827 const char *z
= (const char*)&pIn
[i
+2];
1828 if( strncmp(z
,zName
,nName
)==0 && z
[nName
]==0 ) return pIn
[i
];
1835 ** High-resolution hardware timer used for debugging and testing only.
1837 #if defined(VDBE_PROFILE) \
1838 || defined(SQLITE_PERFORMANCE_TRACE) \
1839 || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1840 # include "hwtime.h"