4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to implement APIs that are part of the
16 #include "sqliteInt.h"
20 #ifndef SQLITE_OMIT_DEPRECATED
22 ** Return TRUE (non-zero) of the statement supplied as an argument needs
23 ** to be recompiled. A statement needs to be recompiled whenever the
24 ** execution environment changes in a way that would alter the program
25 ** that sqlite3_prepare() generates. For example, if new functions or
26 ** collating sequences are registered or if an authorizer function is
29 int sqlite3_expired(sqlite3_stmt
*pStmt
){
30 Vdbe
*p
= (Vdbe
*)pStmt
;
31 return p
==0 || p
->expired
;
36 ** Check on a Vdbe to make sure it has not been finalized. Log
37 ** an error and return true if it has been finalized (or is otherwise
38 ** invalid). Return false if it is ok.
40 static int vdbeSafety(Vdbe
*p
){
42 sqlite3_log(SQLITE_MISUSE
, "API called with finalized prepared statement");
48 static int vdbeSafetyNotNull(Vdbe
*p
){
50 sqlite3_log(SQLITE_MISUSE
, "API called with NULL prepared statement");
57 #ifndef SQLITE_OMIT_TRACE
59 ** Invoke the profile callback. This routine is only called if we already
60 ** know that the profile callback is defined and needs to be invoked.
62 static SQLITE_NOINLINE
void invokeProfileCallback(sqlite3
*db
, Vdbe
*p
){
64 sqlite3_int64 iElapse
;
65 assert( p
->startTime
>0 );
66 assert( (db
->mTrace
& (SQLITE_TRACE_PROFILE
|SQLITE_TRACE_XPROFILE
))!=0 );
67 assert( db
->init
.busy
==0 );
69 sqlite3OsCurrentTimeInt64(db
->pVfs
, &iNow
);
70 iElapse
= (iNow
- p
->startTime
)*1000000;
71 #ifndef SQLITE_OMIT_DEPRECATED
73 db
->xProfile(db
->pProfileArg
, p
->zSql
, iElapse
);
76 if( db
->mTrace
& SQLITE_TRACE_PROFILE
){
77 db
->trace
.xV2(SQLITE_TRACE_PROFILE
, db
->pTraceArg
, p
, (void*)&iElapse
);
82 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
83 ** is needed, and it invokes the callback if it is needed.
85 # define checkProfileCallback(DB,P) \
86 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
88 # define checkProfileCallback(DB,P) /*no-op*/
92 ** The following routine destroys a virtual machine that is created by
93 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
94 ** success/failure code that describes the result of executing the virtual
97 ** This routine sets the error code and string returned by
98 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
100 int sqlite3_finalize(sqlite3_stmt
*pStmt
){
103 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
104 ** pointer is a harmless no-op. */
107 Vdbe
*v
= (Vdbe
*)pStmt
;
109 if( vdbeSafety(v
) ) return SQLITE_MISUSE_BKPT
;
110 sqlite3_mutex_enter(db
->mutex
);
111 checkProfileCallback(db
, v
);
112 assert( v
->eVdbeState
>=VDBE_READY_STATE
);
113 rc
= sqlite3VdbeReset(v
);
114 sqlite3VdbeDelete(v
);
115 rc
= sqlite3ApiExit(db
, rc
);
116 sqlite3LeaveMutexAndCloseZombie(db
);
122 ** Terminate the current execution of an SQL statement and reset it
123 ** back to its starting state so that it can be reused. A success code from
124 ** the prior execution is returned.
126 ** This routine sets the error code and string returned by
127 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
129 int sqlite3_reset(sqlite3_stmt
*pStmt
){
134 Vdbe
*v
= (Vdbe
*)pStmt
;
136 sqlite3_mutex_enter(db
->mutex
);
137 checkProfileCallback(db
, v
);
138 rc
= sqlite3VdbeReset(v
);
139 sqlite3VdbeRewind(v
);
140 assert( (rc
& (db
->errMask
))==rc
);
141 rc
= sqlite3ApiExit(db
, rc
);
142 sqlite3_mutex_leave(db
->mutex
);
148 ** Set all the parameters in the compiled SQL statement to NULL.
150 int sqlite3_clear_bindings(sqlite3_stmt
*pStmt
){
153 Vdbe
*p
= (Vdbe
*)pStmt
;
154 #if SQLITE_THREADSAFE
155 sqlite3_mutex
*mutex
= ((Vdbe
*)pStmt
)->db
->mutex
;
157 sqlite3_mutex_enter(mutex
);
158 for(i
=0; i
<p
->nVar
; i
++){
159 sqlite3VdbeMemRelease(&p
->aVar
[i
]);
160 p
->aVar
[i
].flags
= MEM_Null
;
162 assert( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || p
->expmask
==0 );
166 sqlite3_mutex_leave(mutex
);
171 /**************************** sqlite3_value_ *******************************
172 ** The following routines extract information from a Mem or sqlite3_value
175 const void *sqlite3_value_blob(sqlite3_value
*pVal
){
177 if( p
->flags
& (MEM_Blob
|MEM_Str
) ){
178 if( ExpandBlob(p
)!=SQLITE_OK
){
179 assert( p
->flags
==MEM_Null
&& p
->z
==0 );
182 p
->flags
|= MEM_Blob
;
183 return p
->n
? p
->z
: 0;
185 return sqlite3_value_text(pVal
);
188 int sqlite3_value_bytes(sqlite3_value
*pVal
){
189 return sqlite3ValueBytes(pVal
, SQLITE_UTF8
);
191 int sqlite3_value_bytes16(sqlite3_value
*pVal
){
192 return sqlite3ValueBytes(pVal
, SQLITE_UTF16NATIVE
);
194 double sqlite3_value_double(sqlite3_value
*pVal
){
195 return sqlite3VdbeRealValue((Mem
*)pVal
);
197 int sqlite3_value_int(sqlite3_value
*pVal
){
198 return (int)sqlite3VdbeIntValue((Mem
*)pVal
);
200 sqlite_int64
sqlite3_value_int64(sqlite3_value
*pVal
){
201 return sqlite3VdbeIntValue((Mem
*)pVal
);
203 unsigned int sqlite3_value_subtype(sqlite3_value
*pVal
){
204 Mem
*pMem
= (Mem
*)pVal
;
205 return ((pMem
->flags
& MEM_Subtype
) ? pMem
->eSubtype
: 0);
207 void *sqlite3_value_pointer(sqlite3_value
*pVal
, const char *zPType
){
209 if( (p
->flags
&(MEM_TypeMask
|MEM_Term
|MEM_Subtype
)) ==
210 (MEM_Null
|MEM_Term
|MEM_Subtype
)
213 && strcmp(p
->u
.zPType
, zPType
)==0
220 const unsigned char *sqlite3_value_text(sqlite3_value
*pVal
){
221 return (const unsigned char *)sqlite3ValueText(pVal
, SQLITE_UTF8
);
223 #ifndef SQLITE_OMIT_UTF16
224 const void *sqlite3_value_text16(sqlite3_value
* pVal
){
225 return sqlite3ValueText(pVal
, SQLITE_UTF16NATIVE
);
227 const void *sqlite3_value_text16be(sqlite3_value
*pVal
){
228 return sqlite3ValueText(pVal
, SQLITE_UTF16BE
);
230 const void *sqlite3_value_text16le(sqlite3_value
*pVal
){
231 return sqlite3ValueText(pVal
, SQLITE_UTF16LE
);
233 #endif /* SQLITE_OMIT_UTF16 */
234 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
235 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
236 ** point number string BLOB NULL
238 int sqlite3_value_type(sqlite3_value
* pVal
){
239 static const u8 aType
[] = {
240 SQLITE_BLOB
, /* 0x00 (not possible) */
241 SQLITE_NULL
, /* 0x01 NULL */
242 SQLITE_TEXT
, /* 0x02 TEXT */
243 SQLITE_NULL
, /* 0x03 (not possible) */
244 SQLITE_INTEGER
, /* 0x04 INTEGER */
245 SQLITE_NULL
, /* 0x05 (not possible) */
246 SQLITE_INTEGER
, /* 0x06 INTEGER + TEXT */
247 SQLITE_NULL
, /* 0x07 (not possible) */
248 SQLITE_FLOAT
, /* 0x08 FLOAT */
249 SQLITE_NULL
, /* 0x09 (not possible) */
250 SQLITE_FLOAT
, /* 0x0a FLOAT + TEXT */
251 SQLITE_NULL
, /* 0x0b (not possible) */
252 SQLITE_INTEGER
, /* 0x0c (not possible) */
253 SQLITE_NULL
, /* 0x0d (not possible) */
254 SQLITE_INTEGER
, /* 0x0e (not possible) */
255 SQLITE_NULL
, /* 0x0f (not possible) */
256 SQLITE_BLOB
, /* 0x10 BLOB */
257 SQLITE_NULL
, /* 0x11 (not possible) */
258 SQLITE_TEXT
, /* 0x12 (not possible) */
259 SQLITE_NULL
, /* 0x13 (not possible) */
260 SQLITE_INTEGER
, /* 0x14 INTEGER + BLOB */
261 SQLITE_NULL
, /* 0x15 (not possible) */
262 SQLITE_INTEGER
, /* 0x16 (not possible) */
263 SQLITE_NULL
, /* 0x17 (not possible) */
264 SQLITE_FLOAT
, /* 0x18 FLOAT + BLOB */
265 SQLITE_NULL
, /* 0x19 (not possible) */
266 SQLITE_FLOAT
, /* 0x1a (not possible) */
267 SQLITE_NULL
, /* 0x1b (not possible) */
268 SQLITE_INTEGER
, /* 0x1c (not possible) */
269 SQLITE_NULL
, /* 0x1d (not possible) */
270 SQLITE_INTEGER
, /* 0x1e (not possible) */
271 SQLITE_NULL
, /* 0x1f (not possible) */
272 SQLITE_FLOAT
, /* 0x20 INTREAL */
273 SQLITE_NULL
, /* 0x21 (not possible) */
274 SQLITE_FLOAT
, /* 0x22 INTREAL + TEXT */
275 SQLITE_NULL
, /* 0x23 (not possible) */
276 SQLITE_FLOAT
, /* 0x24 (not possible) */
277 SQLITE_NULL
, /* 0x25 (not possible) */
278 SQLITE_FLOAT
, /* 0x26 (not possible) */
279 SQLITE_NULL
, /* 0x27 (not possible) */
280 SQLITE_FLOAT
, /* 0x28 (not possible) */
281 SQLITE_NULL
, /* 0x29 (not possible) */
282 SQLITE_FLOAT
, /* 0x2a (not possible) */
283 SQLITE_NULL
, /* 0x2b (not possible) */
284 SQLITE_FLOAT
, /* 0x2c (not possible) */
285 SQLITE_NULL
, /* 0x2d (not possible) */
286 SQLITE_FLOAT
, /* 0x2e (not possible) */
287 SQLITE_NULL
, /* 0x2f (not possible) */
288 SQLITE_BLOB
, /* 0x30 (not possible) */
289 SQLITE_NULL
, /* 0x31 (not possible) */
290 SQLITE_TEXT
, /* 0x32 (not possible) */
291 SQLITE_NULL
, /* 0x33 (not possible) */
292 SQLITE_FLOAT
, /* 0x34 (not possible) */
293 SQLITE_NULL
, /* 0x35 (not possible) */
294 SQLITE_FLOAT
, /* 0x36 (not possible) */
295 SQLITE_NULL
, /* 0x37 (not possible) */
296 SQLITE_FLOAT
, /* 0x38 (not possible) */
297 SQLITE_NULL
, /* 0x39 (not possible) */
298 SQLITE_FLOAT
, /* 0x3a (not possible) */
299 SQLITE_NULL
, /* 0x3b (not possible) */
300 SQLITE_FLOAT
, /* 0x3c (not possible) */
301 SQLITE_NULL
, /* 0x3d (not possible) */
302 SQLITE_FLOAT
, /* 0x3e (not possible) */
303 SQLITE_NULL
, /* 0x3f (not possible) */
307 int eType
= SQLITE_BLOB
;
308 if( pVal
->flags
& MEM_Null
){
310 }else if( pVal
->flags
& (MEM_Real
|MEM_IntReal
) ){
311 eType
= SQLITE_FLOAT
;
312 }else if( pVal
->flags
& MEM_Int
){
313 eType
= SQLITE_INTEGER
;
314 }else if( pVal
->flags
& MEM_Str
){
317 assert( eType
== aType
[pVal
->flags
&MEM_AffMask
] );
320 return aType
[pVal
->flags
&MEM_AffMask
];
322 int sqlite3_value_encoding(sqlite3_value
*pVal
){
326 /* Return true if a parameter to xUpdate represents an unchanged column */
327 int sqlite3_value_nochange(sqlite3_value
*pVal
){
328 return (pVal
->flags
&(MEM_Null
|MEM_Zero
))==(MEM_Null
|MEM_Zero
);
331 /* Return true if a parameter value originated from an sqlite3_bind() */
332 int sqlite3_value_frombind(sqlite3_value
*pVal
){
333 return (pVal
->flags
&MEM_FromBind
)!=0;
336 /* Make a copy of an sqlite3_value object
338 sqlite3_value
*sqlite3_value_dup(const sqlite3_value
*pOrig
){
340 if( pOrig
==0 ) return 0;
341 pNew
= sqlite3_malloc( sizeof(*pNew
) );
342 if( pNew
==0 ) return 0;
343 memset(pNew
, 0, sizeof(*pNew
));
344 memcpy(pNew
, pOrig
, MEMCELLSIZE
);
345 pNew
->flags
&= ~MEM_Dyn
;
347 if( pNew
->flags
&(MEM_Str
|MEM_Blob
) ){
348 pNew
->flags
&= ~(MEM_Static
|MEM_Dyn
);
349 pNew
->flags
|= MEM_Ephem
;
350 if( sqlite3VdbeMemMakeWriteable(pNew
)!=SQLITE_OK
){
351 sqlite3ValueFree(pNew
);
354 }else if( pNew
->flags
& MEM_Null
){
355 /* Do not duplicate pointer values */
356 pNew
->flags
&= ~(MEM_Term
|MEM_Subtype
);
361 /* Destroy an sqlite3_value object previously obtained from
362 ** sqlite3_value_dup().
364 void sqlite3_value_free(sqlite3_value
*pOld
){
365 sqlite3ValueFree(pOld
);
369 /**************************** sqlite3_result_ *******************************
370 ** The following routines are used by user-defined functions to specify
371 ** the function result.
373 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
374 ** result as a string or blob. Appropriate errors are set if the string/blob
375 ** is too big or if an OOM occurs.
377 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
378 ** on value P if P is not going to be used and need to be destroyed.
380 static void setResultStrOrError(
381 sqlite3_context
*pCtx
, /* Function context */
382 const char *z
, /* String pointer */
383 int n
, /* Bytes in string, or negative */
384 u8 enc
, /* Encoding of z. 0 for BLOBs */
385 void (*xDel
)(void*) /* Destructor function */
387 Mem
*pOut
= pCtx
->pOut
;
388 int rc
= sqlite3VdbeMemSetStr(pOut
, z
, n
, enc
, xDel
);
390 if( rc
==SQLITE_TOOBIG
){
391 sqlite3_result_error_toobig(pCtx
);
393 /* The only errors possible from sqlite3VdbeMemSetStr are
394 ** SQLITE_TOOBIG and SQLITE_NOMEM */
395 assert( rc
==SQLITE_NOMEM
);
396 sqlite3_result_error_nomem(pCtx
);
400 sqlite3VdbeChangeEncoding(pOut
, pCtx
->enc
);
401 if( sqlite3VdbeMemTooBig(pOut
) ){
402 sqlite3_result_error_toobig(pCtx
);
405 static int invokeValueDestructor(
406 const void *p
, /* Value to destroy */
407 void (*xDel
)(void*), /* The destructor */
408 sqlite3_context
*pCtx
/* Set a SQLITE_TOOBIG error if not NULL */
410 assert( xDel
!=SQLITE_DYNAMIC
);
413 }else if( xDel
==SQLITE_TRANSIENT
){
418 #ifdef SQLITE_ENABLE_API_ARMOR
420 sqlite3_result_error_toobig(pCtx
);
424 sqlite3_result_error_toobig(pCtx
);
426 return SQLITE_TOOBIG
;
428 void sqlite3_result_blob(
429 sqlite3_context
*pCtx
,
434 #ifdef SQLITE_ENABLE_API_ARMOR
435 if( pCtx
==0 || n
<0 ){
436 invokeValueDestructor(z
, xDel
, pCtx
);
441 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
442 setResultStrOrError(pCtx
, z
, n
, 0, xDel
);
444 void sqlite3_result_blob64(
445 sqlite3_context
*pCtx
,
450 assert( xDel
!=SQLITE_DYNAMIC
);
451 #ifdef SQLITE_ENABLE_API_ARMOR
453 invokeValueDestructor(z
, xDel
, 0);
457 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
459 (void)invokeValueDestructor(z
, xDel
, pCtx
);
461 setResultStrOrError(pCtx
, z
, (int)n
, 0, xDel
);
464 void sqlite3_result_double(sqlite3_context
*pCtx
, double rVal
){
465 #ifdef SQLITE_ENABLE_API_ARMOR
466 if( pCtx
==0 ) return;
468 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
469 sqlite3VdbeMemSetDouble(pCtx
->pOut
, rVal
);
471 void sqlite3_result_error(sqlite3_context
*pCtx
, const char *z
, int n
){
472 #ifdef SQLITE_ENABLE_API_ARMOR
473 if( pCtx
==0 ) return;
475 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
476 pCtx
->isError
= SQLITE_ERROR
;
477 sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
479 #ifndef SQLITE_OMIT_UTF16
480 void sqlite3_result_error16(sqlite3_context
*pCtx
, const void *z
, int n
){
481 #ifdef SQLITE_ENABLE_API_ARMOR
482 if( pCtx
==0 ) return;
484 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
485 pCtx
->isError
= SQLITE_ERROR
;
486 sqlite3VdbeMemSetStr(pCtx
->pOut
, z
, n
, SQLITE_UTF16NATIVE
, SQLITE_TRANSIENT
);
489 void sqlite3_result_int(sqlite3_context
*pCtx
, int iVal
){
490 #ifdef SQLITE_ENABLE_API_ARMOR
491 if( pCtx
==0 ) return;
493 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
494 sqlite3VdbeMemSetInt64(pCtx
->pOut
, (i64
)iVal
);
496 void sqlite3_result_int64(sqlite3_context
*pCtx
, i64 iVal
){
497 #ifdef SQLITE_ENABLE_API_ARMOR
498 if( pCtx
==0 ) return;
500 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
501 sqlite3VdbeMemSetInt64(pCtx
->pOut
, iVal
);
503 void sqlite3_result_null(sqlite3_context
*pCtx
){
504 #ifdef SQLITE_ENABLE_API_ARMOR
505 if( pCtx
==0 ) return;
507 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
508 sqlite3VdbeMemSetNull(pCtx
->pOut
);
510 void sqlite3_result_pointer(
511 sqlite3_context
*pCtx
,
514 void (*xDestructor
)(void*)
517 #ifdef SQLITE_ENABLE_API_ARMOR
519 invokeValueDestructor(pPtr
, xDestructor
, 0);
524 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
525 sqlite3VdbeMemRelease(pOut
);
526 pOut
->flags
= MEM_Null
;
527 sqlite3VdbeMemSetPointer(pOut
, pPtr
, zPType
, xDestructor
);
529 void sqlite3_result_subtype(sqlite3_context
*pCtx
, unsigned int eSubtype
){
531 #ifdef SQLITE_ENABLE_API_ARMOR
532 if( pCtx
==0 ) return;
534 #if defined(SQLITE_STRICT_SUBTYPE) && SQLITE_STRICT_SUBTYPE+0!=0
536 && (pCtx
->pFunc
->funcFlags
& SQLITE_RESULT_SUBTYPE
)==0
539 sqlite3_snprintf(sizeof(zErr
), zErr
,
540 "misuse of sqlite3_result_subtype() by %s()",
542 sqlite3_result_error(pCtx
, zErr
, -1);
545 #endif /* SQLITE_STRICT_SUBTYPE */
547 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
548 pOut
->eSubtype
= eSubtype
& 0xff;
549 pOut
->flags
|= MEM_Subtype
;
551 void sqlite3_result_text(
552 sqlite3_context
*pCtx
,
557 #ifdef SQLITE_ENABLE_API_ARMOR
559 invokeValueDestructor(z
, xDel
, 0);
563 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
564 setResultStrOrError(pCtx
, z
, n
, SQLITE_UTF8
, xDel
);
566 void sqlite3_result_text64(
567 sqlite3_context
*pCtx
,
570 void (*xDel
)(void *),
573 #ifdef SQLITE_ENABLE_API_ARMOR
575 invokeValueDestructor(z
, xDel
, 0);
579 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
580 assert( xDel
!=SQLITE_DYNAMIC
);
581 if( enc
!=SQLITE_UTF8
){
582 if( enc
==SQLITE_UTF16
) enc
= SQLITE_UTF16NATIVE
;
586 (void)invokeValueDestructor(z
, xDel
, pCtx
);
588 setResultStrOrError(pCtx
, z
, (int)n
, enc
, xDel
);
589 sqlite3VdbeMemZeroTerminateIfAble(pCtx
->pOut
);
592 #ifndef SQLITE_OMIT_UTF16
593 void sqlite3_result_text16(
594 sqlite3_context
*pCtx
,
599 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
600 setResultStrOrError(pCtx
, z
, n
& ~(u64
)1, SQLITE_UTF16NATIVE
, xDel
);
602 void sqlite3_result_text16be(
603 sqlite3_context
*pCtx
,
608 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
609 setResultStrOrError(pCtx
, z
, n
& ~(u64
)1, SQLITE_UTF16BE
, xDel
);
611 void sqlite3_result_text16le(
612 sqlite3_context
*pCtx
,
617 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
618 setResultStrOrError(pCtx
, z
, n
& ~(u64
)1, SQLITE_UTF16LE
, xDel
);
620 #endif /* SQLITE_OMIT_UTF16 */
621 void sqlite3_result_value(sqlite3_context
*pCtx
, sqlite3_value
*pValue
){
624 #ifdef SQLITE_ENABLE_API_ARMOR
625 if( pCtx
==0 ) return;
627 sqlite3_result_null(pCtx
);
632 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
633 sqlite3VdbeMemCopy(pOut
, pValue
);
634 sqlite3VdbeChangeEncoding(pOut
, pCtx
->enc
);
635 if( sqlite3VdbeMemTooBig(pOut
) ){
636 sqlite3_result_error_toobig(pCtx
);
639 void sqlite3_result_zeroblob(sqlite3_context
*pCtx
, int n
){
640 sqlite3_result_zeroblob64(pCtx
, n
>0 ? n
: 0);
642 int sqlite3_result_zeroblob64(sqlite3_context
*pCtx
, u64 n
){
645 #ifdef SQLITE_ENABLE_API_ARMOR
646 if( pCtx
==0 ) return SQLITE_MISUSE_BKPT
;
649 assert( sqlite3_mutex_held(pOut
->db
->mutex
) );
650 if( n
>(u64
)pOut
->db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
651 sqlite3_result_error_toobig(pCtx
);
652 return SQLITE_TOOBIG
;
654 #ifndef SQLITE_OMIT_INCRBLOB
655 sqlite3VdbeMemSetZeroBlob(pCtx
->pOut
, (int)n
);
658 return sqlite3VdbeMemSetZeroBlob(pCtx
->pOut
, (int)n
);
661 void sqlite3_result_error_code(sqlite3_context
*pCtx
, int errCode
){
662 #ifdef SQLITE_ENABLE_API_ARMOR
663 if( pCtx
==0 ) return;
665 pCtx
->isError
= errCode
? errCode
: -1;
667 if( pCtx
->pVdbe
) pCtx
->pVdbe
->rcApp
= errCode
;
669 if( pCtx
->pOut
->flags
& MEM_Null
){
670 setResultStrOrError(pCtx
, sqlite3ErrStr(errCode
), -1, SQLITE_UTF8
,
675 /* Force an SQLITE_TOOBIG error. */
676 void sqlite3_result_error_toobig(sqlite3_context
*pCtx
){
677 #ifdef SQLITE_ENABLE_API_ARMOR
678 if( pCtx
==0 ) return;
680 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
681 pCtx
->isError
= SQLITE_TOOBIG
;
682 sqlite3VdbeMemSetStr(pCtx
->pOut
, "string or blob too big", -1,
683 SQLITE_UTF8
, SQLITE_STATIC
);
686 /* An SQLITE_NOMEM error. */
687 void sqlite3_result_error_nomem(sqlite3_context
*pCtx
){
688 #ifdef SQLITE_ENABLE_API_ARMOR
689 if( pCtx
==0 ) return;
691 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
692 sqlite3VdbeMemSetNull(pCtx
->pOut
);
693 pCtx
->isError
= SQLITE_NOMEM_BKPT
;
694 sqlite3OomFault(pCtx
->pOut
->db
);
697 #ifndef SQLITE_UNTESTABLE
698 /* Force the INT64 value currently stored as the result to be
699 ** a MEM_IntReal value. See the SQLITE_TESTCTRL_RESULT_INTREAL
702 void sqlite3ResultIntReal(sqlite3_context
*pCtx
){
703 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
704 if( pCtx
->pOut
->flags
& MEM_Int
){
705 pCtx
->pOut
->flags
&= ~MEM_Int
;
706 pCtx
->pOut
->flags
|= MEM_IntReal
;
713 ** This function is called after a transaction has been committed. It
714 ** invokes callbacks registered with sqlite3_wal_hook() as required.
716 static int doWalCallbacks(sqlite3
*db
){
718 #ifndef SQLITE_OMIT_WAL
720 for(i
=0; i
<db
->nDb
; i
++){
721 Btree
*pBt
= db
->aDb
[i
].pBt
;
724 sqlite3BtreeEnter(pBt
);
725 nEntry
= sqlite3PagerWalCallback(sqlite3BtreePager(pBt
));
726 sqlite3BtreeLeave(pBt
);
727 if( nEntry
>0 && db
->xWalCallback
&& rc
==SQLITE_OK
){
728 rc
= db
->xWalCallback(db
->pWalArg
, db
, db
->aDb
[i
].zDbSName
, nEntry
);
738 ** Execute the statement pStmt, either until a row of data is ready, the
739 ** statement is completely executed or an error occurs.
741 ** This routine implements the bulk of the logic behind the sqlite_step()
742 ** API. The only thing omitted is the automatic recompile if a
743 ** schema change has occurred. That detail is handled by the
744 ** outer sqlite3_step() wrapper procedure.
746 static int sqlite3Step(Vdbe
*p
){
752 if( p
->eVdbeState
!=VDBE_RUN_STATE
){
754 if( p
->eVdbeState
==VDBE_READY_STATE
){
756 p
->rc
= SQLITE_SCHEMA
;
758 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 ){
759 /* If this statement was prepared using saved SQL and an
760 ** error has occurred, then return the error code in p->rc to the
761 ** caller. Set the error code in the database handle to the same
764 rc
= sqlite3VdbeTransferError(p
);
769 /* If there are no other statements currently running, then
770 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
771 ** from interrupting a statement that has not yet started.
773 if( db
->nVdbeActive
==0 ){
774 AtomicStore(&db
->u1
.isInterrupted
, 0);
777 assert( db
->nVdbeWrite
>0 || db
->autoCommit
==0
778 || (db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0)
781 #ifndef SQLITE_OMIT_TRACE
782 if( (db
->mTrace
& (SQLITE_TRACE_PROFILE
|SQLITE_TRACE_XPROFILE
))!=0
783 && !db
->init
.busy
&& p
->zSql
){
784 sqlite3OsCurrentTimeInt64(db
->pVfs
, &p
->startTime
);
786 assert( p
->startTime
==0 );
791 if( p
->readOnly
==0 ) db
->nVdbeWrite
++;
792 if( p
->bIsReader
) db
->nVdbeRead
++;
794 p
->eVdbeState
= VDBE_RUN_STATE
;
797 if( ALWAYS(p
->eVdbeState
==VDBE_HALT_STATE
) ){
798 /* We used to require that sqlite3_reset() be called before retrying
799 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
800 ** with version 3.7.0, we changed this so that sqlite3_reset() would
801 ** be called automatically instead of throwing the SQLITE_MISUSE error.
802 ** This "automatic-reset" change is not technically an incompatibility,
803 ** since any application that receives an SQLITE_MISUSE is broken by
806 ** Nevertheless, some published applications that were originally written
807 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
808 ** returns, and those were broken by the automatic-reset change. As a
809 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
810 ** legacy behavior of returning SQLITE_MISUSE for cases where the
811 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
812 ** or SQLITE_BUSY error.
814 #ifdef SQLITE_OMIT_AUTORESET
815 if( (rc
= p
->rc
&0xff)==SQLITE_BUSY
|| rc
==SQLITE_LOCKED
){
816 sqlite3_reset((sqlite3_stmt
*)p
);
818 return SQLITE_MISUSE_BKPT
;
821 sqlite3_reset((sqlite3_stmt
*)p
);
823 assert( p
->eVdbeState
==VDBE_READY_STATE
);
829 p
->rcApp
= SQLITE_OK
;
831 #ifndef SQLITE_OMIT_EXPLAIN
833 rc
= sqlite3VdbeList(p
);
835 #endif /* SQLITE_OMIT_EXPLAIN */
838 rc
= sqlite3VdbeExec(p
);
842 if( rc
==SQLITE_ROW
){
843 assert( p
->rc
==SQLITE_OK
);
844 assert( db
->mallocFailed
==0 );
845 db
->errCode
= SQLITE_ROW
;
848 #ifndef SQLITE_OMIT_TRACE
849 /* If the statement completed successfully, invoke the profile callback */
850 checkProfileCallback(db
, p
);
853 if( rc
==SQLITE_DONE
&& db
->autoCommit
){
854 assert( p
->rc
==SQLITE_OK
);
855 p
->rc
= doWalCallbacks(db
);
856 if( p
->rc
!=SQLITE_OK
){
859 }else if( rc
!=SQLITE_DONE
&& (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 ){
860 /* If this statement was prepared using saved SQL and an
861 ** error has occurred, then return the error code in p->rc to the
862 ** caller. Set the error code in the database handle to the same value.
864 rc
= sqlite3VdbeTransferError(p
);
869 if( SQLITE_NOMEM
==sqlite3ApiExit(p
->db
, p
->rc
) ){
870 p
->rc
= SQLITE_NOMEM_BKPT
;
871 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 ) rc
= p
->rc
;
874 /* There are only a limited number of result codes allowed from the
875 ** statements prepared using the legacy sqlite3_prepare() interface */
876 assert( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0
877 || rc
==SQLITE_ROW
|| rc
==SQLITE_DONE
|| rc
==SQLITE_ERROR
878 || (rc
&0xff)==SQLITE_BUSY
|| rc
==SQLITE_MISUSE
880 return (rc
&db
->errMask
);
884 ** This is the top-level implementation of sqlite3_step(). Call
885 ** sqlite3Step() to do most of the work. If a schema error occurs,
886 ** call sqlite3Reprepare() and try again.
888 int sqlite3_step(sqlite3_stmt
*pStmt
){
889 int rc
= SQLITE_OK
; /* Result from sqlite3Step() */
890 Vdbe
*v
= (Vdbe
*)pStmt
; /* the prepared statement */
891 int cnt
= 0; /* Counter to prevent infinite loop of reprepares */
892 sqlite3
*db
; /* The database connection */
894 if( vdbeSafetyNotNull(v
) ){
895 return SQLITE_MISUSE_BKPT
;
898 sqlite3_mutex_enter(db
->mutex
);
899 while( (rc
= sqlite3Step(v
))==SQLITE_SCHEMA
900 && cnt
++ < SQLITE_MAX_SCHEMA_RETRY
){
902 rc
= sqlite3Reprepare(v
);
904 /* This case occurs after failing to recompile an sql statement.
905 ** The error message from the SQL compiler has already been loaded
906 ** into the database handle. This block copies the error message
907 ** from the database handle into the statement and sets the statement
908 ** program counter to 0 to ensure that when the statement is
909 ** finalized or reset the parser error message is available via
910 ** sqlite3_errmsg() and sqlite3_errcode().
912 const char *zErr
= (const char *)sqlite3_value_text(db
->pErr
);
913 sqlite3DbFree(db
, v
->zErrMsg
);
914 if( !db
->mallocFailed
){
915 v
->zErrMsg
= sqlite3DbStrDup(db
, zErr
);
916 v
->rc
= rc
= sqlite3ApiExit(db
, rc
);
919 v
->rc
= rc
= SQLITE_NOMEM_BKPT
;
923 sqlite3_reset(pStmt
);
925 /* Setting minWriteFileFormat to 254 is a signal to the OP_Init and
926 ** OP_Trace opcodes to *not* perform SQLITE_TRACE_STMT because it has
927 ** already been done once on a prior invocation that failed due to
928 ** SQLITE_SCHEMA. tag-20220401a */
929 v
->minWriteFileFormat
= 254;
931 assert( v
->expired
==0 );
933 sqlite3_mutex_leave(db
->mutex
);
939 ** Extract the user data from a sqlite3_context structure and return a
942 void *sqlite3_user_data(sqlite3_context
*p
){
943 #ifdef SQLITE_ENABLE_API_ARMOR
946 assert( p
&& p
->pFunc
);
948 return p
->pFunc
->pUserData
;
952 ** Extract the user data from a sqlite3_context structure and return a
955 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
956 ** returns a copy of the pointer to the database connection (the 1st
957 ** parameter) of the sqlite3_create_function() and
958 ** sqlite3_create_function16() routines that originally registered the
959 ** application defined function.
961 sqlite3
*sqlite3_context_db_handle(sqlite3_context
*p
){
962 #ifdef SQLITE_ENABLE_API_ARMOR
965 assert( p
&& p
->pOut
);
971 ** If this routine is invoked from within an xColumn method of a virtual
972 ** table, then it returns true if and only if the the call is during an
973 ** UPDATE operation and the value of the column will not be modified
976 ** If this routine is called from any context other than within the
977 ** xColumn method of a virtual table, then the return value is meaningless
980 ** Virtual table implements might use this routine to optimize their
981 ** performance by substituting a NULL result, or some other light-weight
982 ** value, as a signal to the xUpdate routine that the column is unchanged.
984 int sqlite3_vtab_nochange(sqlite3_context
*p
){
985 #ifdef SQLITE_ENABLE_API_ARMOR
990 return sqlite3_value_nochange(p
->pOut
);
994 ** The destructor function for a ValueList object. This needs to be
995 ** a separate function, unknowable to the application, to ensure that
996 ** calls to sqlite3_vtab_in_first()/sqlite3_vtab_in_next() that are not
997 ** preceded by activation of IN processing via sqlite3_vtab_int() do not
998 ** try to access a fake ValueList object inserted by a hostile extension.
1000 void sqlite3VdbeValueListFree(void *pToDelete
){
1001 sqlite3_free(pToDelete
);
1005 ** Implementation of sqlite3_vtab_in_first() (if bNext==0) and
1006 ** sqlite3_vtab_in_next() (if bNext!=0).
1008 static int valueFromValueList(
1009 sqlite3_value
*pVal
, /* Pointer to the ValueList object */
1010 sqlite3_value
**ppOut
, /* Store the next value from the list here */
1011 int bNext
/* 1 for _next(). 0 for _first() */
1017 if( pVal
==0 ) return SQLITE_MISUSE_BKPT
;
1018 if( (pVal
->flags
& MEM_Dyn
)==0 || pVal
->xDel
!=sqlite3VdbeValueListFree
){
1019 return SQLITE_ERROR
;
1021 assert( (pVal
->flags
&(MEM_TypeMask
|MEM_Term
|MEM_Subtype
)) ==
1022 (MEM_Null
|MEM_Term
|MEM_Subtype
) );
1023 assert( pVal
->eSubtype
=='p' );
1024 assert( pVal
->u
.zPType
!=0 && strcmp(pVal
->u
.zPType
,"ValueList")==0 );
1025 pRhs
= (ValueList
*)pVal
->z
;
1028 rc
= sqlite3BtreeNext(pRhs
->pCsr
, 0);
1031 rc
= sqlite3BtreeFirst(pRhs
->pCsr
, &dummy
);
1032 assert( rc
==SQLITE_OK
|| sqlite3BtreeEof(pRhs
->pCsr
) );
1033 if( sqlite3BtreeEof(pRhs
->pCsr
) ) rc
= SQLITE_DONE
;
1035 if( rc
==SQLITE_OK
){
1036 u32 sz
; /* Size of current row in bytes */
1037 Mem sMem
; /* Raw content of current row */
1038 memset(&sMem
, 0, sizeof(sMem
));
1039 sz
= sqlite3BtreePayloadSize(pRhs
->pCsr
);
1040 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pRhs
->pCsr
,(int)sz
,&sMem
);
1041 if( rc
==SQLITE_OK
){
1042 u8
*zBuf
= (u8
*)sMem
.z
;
1044 sqlite3_value
*pOut
= pRhs
->pOut
;
1045 int iOff
= 1 + getVarint32(&zBuf
[1], iSerial
);
1046 sqlite3VdbeSerialGet(&zBuf
[iOff
], iSerial
, pOut
);
1047 pOut
->enc
= ENC(pOut
->db
);
1048 if( (pOut
->flags
& MEM_Ephem
)!=0 && sqlite3VdbeMemMakeWriteable(pOut
) ){
1054 sqlite3VdbeMemRelease(&sMem
);
1060 ** Set the iterator value pVal to point to the first value in the set.
1061 ** Set (*ppOut) to point to this value before returning.
1063 int sqlite3_vtab_in_first(sqlite3_value
*pVal
, sqlite3_value
**ppOut
){
1064 return valueFromValueList(pVal
, ppOut
, 0);
1068 ** Set the iterator value pVal to point to the next value in the set.
1069 ** Set (*ppOut) to point to this value before returning.
1071 int sqlite3_vtab_in_next(sqlite3_value
*pVal
, sqlite3_value
**ppOut
){
1072 return valueFromValueList(pVal
, ppOut
, 1);
1076 ** Return the current time for a statement. If the current time
1077 ** is requested more than once within the same run of a single prepared
1078 ** statement, the exact same time is returned for each invocation regardless
1079 ** of the amount of time that elapses between invocations. In other words,
1080 ** the time returned is always the time of the first call.
1082 sqlite3_int64
sqlite3StmtCurrentTime(sqlite3_context
*p
){
1084 #ifndef SQLITE_ENABLE_STAT4
1085 sqlite3_int64
*piTime
= &p
->pVdbe
->iCurrentTime
;
1086 assert( p
->pVdbe
!=0 );
1088 sqlite3_int64 iTime
= 0;
1089 sqlite3_int64
*piTime
= p
->pVdbe
!=0 ? &p
->pVdbe
->iCurrentTime
: &iTime
;
1092 rc
= sqlite3OsCurrentTimeInt64(p
->pOut
->db
->pVfs
, piTime
);
1093 if( rc
) *piTime
= 0;
1099 ** Create a new aggregate context for p and return a pointer to
1100 ** its pMem->z element.
1102 static SQLITE_NOINLINE
void *createAggContext(sqlite3_context
*p
, int nByte
){
1103 Mem
*pMem
= p
->pMem
;
1104 assert( (pMem
->flags
& MEM_Agg
)==0 );
1106 sqlite3VdbeMemSetNull(pMem
);
1109 sqlite3VdbeMemClearAndResize(pMem
, nByte
);
1110 pMem
->flags
= MEM_Agg
;
1111 pMem
->u
.pDef
= p
->pFunc
;
1113 memset(pMem
->z
, 0, nByte
);
1116 return (void*)pMem
->z
;
1120 ** Allocate or return the aggregate context for a user function. A new
1121 ** context is allocated on the first call. Subsequent calls return the
1122 ** same context that was returned on prior calls.
1124 void *sqlite3_aggregate_context(sqlite3_context
*p
, int nByte
){
1125 assert( p
&& p
->pFunc
&& p
->pFunc
->xFinalize
);
1126 assert( sqlite3_mutex_held(p
->pOut
->db
->mutex
) );
1127 testcase( nByte
<0 );
1128 if( (p
->pMem
->flags
& MEM_Agg
)==0 ){
1129 return createAggContext(p
, nByte
);
1131 return (void*)p
->pMem
->z
;
1136 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
1137 ** the user-function defined by pCtx.
1139 ** The left-most argument is 0.
1141 ** Undocumented behavior: If iArg is negative then access a cache of
1142 ** auxiliary data pointers that is available to all functions within a
1143 ** single prepared statement. The iArg values must match.
1145 void *sqlite3_get_auxdata(sqlite3_context
*pCtx
, int iArg
){
1148 #ifdef SQLITE_ENABLE_API_ARMOR
1149 if( pCtx
==0 ) return 0;
1151 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
1152 #if SQLITE_ENABLE_STAT4
1153 if( pCtx
->pVdbe
==0 ) return 0;
1155 assert( pCtx
->pVdbe
!=0 );
1157 for(pAuxData
=pCtx
->pVdbe
->pAuxData
; pAuxData
; pAuxData
=pAuxData
->pNextAux
){
1158 if( pAuxData
->iAuxArg
==iArg
&& (pAuxData
->iAuxOp
==pCtx
->iOp
|| iArg
<0) ){
1159 return pAuxData
->pAux
;
1166 ** Set the auxiliary data pointer and delete function, for the iArg'th
1167 ** argument to the user-function defined by pCtx. Any previous value is
1168 ** deleted by calling the delete function specified when it was set.
1170 ** The left-most argument is 0.
1172 ** Undocumented behavior: If iArg is negative then make the data available
1173 ** to all functions within the current prepared statement using iArg as an
1176 void sqlite3_set_auxdata(
1177 sqlite3_context
*pCtx
,
1180 void (*xDelete
)(void*)
1185 #ifdef SQLITE_ENABLE_API_ARMOR
1186 if( pCtx
==0 ) return;
1189 assert( sqlite3_mutex_held(pCtx
->pOut
->db
->mutex
) );
1190 #ifdef SQLITE_ENABLE_STAT4
1191 if( pVdbe
==0 ) goto failed
;
1196 for(pAuxData
=pVdbe
->pAuxData
; pAuxData
; pAuxData
=pAuxData
->pNextAux
){
1197 if( pAuxData
->iAuxArg
==iArg
&& (pAuxData
->iAuxOp
==pCtx
->iOp
|| iArg
<0) ){
1202 pAuxData
= sqlite3DbMallocZero(pVdbe
->db
, sizeof(AuxData
));
1203 if( !pAuxData
) goto failed
;
1204 pAuxData
->iAuxOp
= pCtx
->iOp
;
1205 pAuxData
->iAuxArg
= iArg
;
1206 pAuxData
->pNextAux
= pVdbe
->pAuxData
;
1207 pVdbe
->pAuxData
= pAuxData
;
1208 if( pCtx
->isError
==0 ) pCtx
->isError
= -1;
1209 }else if( pAuxData
->xDeleteAux
){
1210 pAuxData
->xDeleteAux(pAuxData
->pAux
);
1213 pAuxData
->pAux
= pAux
;
1214 pAuxData
->xDeleteAux
= xDelete
;
1223 #ifndef SQLITE_OMIT_DEPRECATED
1225 ** Return the number of times the Step function of an aggregate has been
1228 ** This function is deprecated. Do not use it for new code. It is
1229 ** provide only to avoid breaking legacy code. New aggregate function
1230 ** implementations should keep their own counts within their aggregate
1233 int sqlite3_aggregate_count(sqlite3_context
*p
){
1234 assert( p
&& p
->pMem
&& p
->pFunc
&& p
->pFunc
->xFinalize
);
1240 ** Return the number of columns in the result set for the statement pStmt.
1242 int sqlite3_column_count(sqlite3_stmt
*pStmt
){
1243 Vdbe
*pVm
= (Vdbe
*)pStmt
;
1244 if( pVm
==0 ) return 0;
1245 return pVm
->nResColumn
;
1249 ** Return the number of values available from the current row of the
1250 ** currently executing statement pStmt.
1252 int sqlite3_data_count(sqlite3_stmt
*pStmt
){
1253 Vdbe
*pVm
= (Vdbe
*)pStmt
;
1254 if( pVm
==0 || pVm
->pResultRow
==0 ) return 0;
1255 return pVm
->nResColumn
;
1259 ** Return a pointer to static memory containing an SQL NULL value.
1261 static const Mem
*columnNullValue(void){
1262 /* Even though the Mem structure contains an element
1263 ** of type i64, on certain architectures (x86) with certain compiler
1264 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
1265 ** instead of an 8-byte one. This all works fine, except that when
1266 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
1267 ** that a Mem structure is located on an 8-byte boundary. To prevent
1268 ** these assert()s from failing, when building with SQLITE_DEBUG defined
1269 ** using gcc, we force nullMem to be 8-byte aligned using the magical
1270 ** __attribute__((aligned(8))) macro. */
1271 static const Mem nullMem
1272 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
1273 __attribute__((aligned(8)))
1277 /* .z = */ (char*)0,
1279 /* .flags = */ (u16
)MEM_Null
,
1281 /* .eSubtype = */ (u8
)0,
1282 /* .db = */ (sqlite3
*)0,
1283 /* .szMalloc = */ (int)0,
1284 /* .uTemp = */ (u32
)0,
1285 /* .zMalloc = */ (char*)0,
1286 /* .xDel = */ (void(*)(void*))0,
1288 /* .pScopyFrom = */ (Mem
*)0,
1289 /* .mScopyFlags= */ 0,
1296 ** Check to see if column iCol of the given statement is valid. If
1297 ** it is, return a pointer to the Mem for the value of that column.
1298 ** If iCol is not valid, return a pointer to a Mem which has a value
1301 static Mem
*columnMem(sqlite3_stmt
*pStmt
, int i
){
1305 pVm
= (Vdbe
*)pStmt
;
1306 if( pVm
==0 ) return (Mem
*)columnNullValue();
1308 sqlite3_mutex_enter(pVm
->db
->mutex
);
1309 if( pVm
->pResultRow
!=0 && i
<pVm
->nResColumn
&& i
>=0 ){
1310 pOut
= &pVm
->pResultRow
[i
];
1312 sqlite3Error(pVm
->db
, SQLITE_RANGE
);
1313 pOut
= (Mem
*)columnNullValue();
1319 ** This function is called after invoking an sqlite3_value_XXX function on a
1320 ** column value (i.e. a value returned by evaluating an SQL expression in the
1321 ** select list of a SELECT statement) that may cause a malloc() failure. If
1322 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
1323 ** code of statement pStmt set to SQLITE_NOMEM.
1325 ** Specifically, this is called from within:
1327 ** sqlite3_column_int()
1328 ** sqlite3_column_int64()
1329 ** sqlite3_column_text()
1330 ** sqlite3_column_text16()
1331 ** sqlite3_column_real()
1332 ** sqlite3_column_bytes()
1333 ** sqlite3_column_bytes16()
1334 ** sqlite3_column_blob()
1336 static void columnMallocFailure(sqlite3_stmt
*pStmt
)
1338 /* If malloc() failed during an encoding conversion within an
1339 ** sqlite3_column_XXX API, then set the return code of the statement to
1340 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
1341 ** and _finalize() will return NOMEM.
1343 Vdbe
*p
= (Vdbe
*)pStmt
;
1346 assert( sqlite3_mutex_held(p
->db
->mutex
) );
1347 p
->rc
= sqlite3ApiExit(p
->db
, p
->rc
);
1348 sqlite3_mutex_leave(p
->db
->mutex
);
1352 /**************************** sqlite3_column_ *******************************
1353 ** The following routines are used to access elements of the current row
1354 ** in the result set.
1356 const void *sqlite3_column_blob(sqlite3_stmt
*pStmt
, int i
){
1358 val
= sqlite3_value_blob( columnMem(pStmt
,i
) );
1359 /* Even though there is no encoding conversion, value_blob() might
1360 ** need to call malloc() to expand the result of a zeroblob()
1363 columnMallocFailure(pStmt
);
1366 int sqlite3_column_bytes(sqlite3_stmt
*pStmt
, int i
){
1367 int val
= sqlite3_value_bytes( columnMem(pStmt
,i
) );
1368 columnMallocFailure(pStmt
);
1371 int sqlite3_column_bytes16(sqlite3_stmt
*pStmt
, int i
){
1372 int val
= sqlite3_value_bytes16( columnMem(pStmt
,i
) );
1373 columnMallocFailure(pStmt
);
1376 double sqlite3_column_double(sqlite3_stmt
*pStmt
, int i
){
1377 double val
= sqlite3_value_double( columnMem(pStmt
,i
) );
1378 columnMallocFailure(pStmt
);
1381 int sqlite3_column_int(sqlite3_stmt
*pStmt
, int i
){
1382 int val
= sqlite3_value_int( columnMem(pStmt
,i
) );
1383 columnMallocFailure(pStmt
);
1386 sqlite_int64
sqlite3_column_int64(sqlite3_stmt
*pStmt
, int i
){
1387 sqlite_int64 val
= sqlite3_value_int64( columnMem(pStmt
,i
) );
1388 columnMallocFailure(pStmt
);
1391 const unsigned char *sqlite3_column_text(sqlite3_stmt
*pStmt
, int i
){
1392 const unsigned char *val
= sqlite3_value_text( columnMem(pStmt
,i
) );
1393 columnMallocFailure(pStmt
);
1396 sqlite3_value
*sqlite3_column_value(sqlite3_stmt
*pStmt
, int i
){
1397 Mem
*pOut
= columnMem(pStmt
, i
);
1398 if( pOut
->flags
&MEM_Static
){
1399 pOut
->flags
&= ~MEM_Static
;
1400 pOut
->flags
|= MEM_Ephem
;
1402 columnMallocFailure(pStmt
);
1403 return (sqlite3_value
*)pOut
;
1405 #ifndef SQLITE_OMIT_UTF16
1406 const void *sqlite3_column_text16(sqlite3_stmt
*pStmt
, int i
){
1407 const void *val
= sqlite3_value_text16( columnMem(pStmt
,i
) );
1408 columnMallocFailure(pStmt
);
1411 #endif /* SQLITE_OMIT_UTF16 */
1412 int sqlite3_column_type(sqlite3_stmt
*pStmt
, int i
){
1413 int iType
= sqlite3_value_type( columnMem(pStmt
,i
) );
1414 columnMallocFailure(pStmt
);
1419 ** Column names appropriate for EXPLAIN or EXPLAIN QUERY PLAN.
1421 static const char * const azExplainColNames8
[] = {
1422 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment", /* EXPLAIN */
1423 "id", "parent", "notused", "detail" /* EQP */
1425 static const u16 azExplainColNames16data
[] = {
1426 /* 0 */ 'a', 'd', 'd', 'r', 0,
1427 /* 5 */ 'o', 'p', 'c', 'o', 'd', 'e', 0,
1428 /* 12 */ 'p', '1', 0,
1429 /* 15 */ 'p', '2', 0,
1430 /* 18 */ 'p', '3', 0,
1431 /* 21 */ 'p', '4', 0,
1432 /* 24 */ 'p', '5', 0,
1433 /* 27 */ 'c', 'o', 'm', 'm', 'e', 'n', 't', 0,
1434 /* 35 */ 'i', 'd', 0,
1435 /* 38 */ 'p', 'a', 'r', 'e', 'n', 't', 0,
1436 /* 45 */ 'n', 'o', 't', 'u', 's', 'e', 'd', 0,
1437 /* 53 */ 'd', 'e', 't', 'a', 'i', 'l', 0
1439 static const u8 iExplainColNames16
[] = {
1440 0, 5, 12, 15, 18, 21, 24, 27,
1445 ** Convert the N-th element of pStmt->pColName[] into a string using
1446 ** xFunc() then return that string. If N is out of range, return 0.
1448 ** There are up to 5 names for each column. useType determines which
1449 ** name is returned. Here are the names:
1451 ** 0 The column name as it should be displayed for output
1452 ** 1 The datatype name for the column
1453 ** 2 The name of the database that the column derives from
1454 ** 3 The name of the table that the column derives from
1455 ** 4 The name of the table column that the result column derives from
1457 ** If the result is not a simple column reference (if it is an expression
1458 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1460 static const void *columnName(
1461 sqlite3_stmt
*pStmt
, /* The statement */
1462 int N
, /* Which column to get the name for */
1463 int useUtf16
, /* True to return the name as UTF16 */
1464 int useType
/* What type of name */
1470 #ifdef SQLITE_ENABLE_API_ARMOR
1472 (void)SQLITE_MISUSE_BKPT
;
1481 sqlite3_mutex_enter(db
->mutex
);
1484 if( useType
>0 ) goto columnName_end
;
1485 n
= p
->explain
==1 ? 8 : 4;
1486 if( N
>=n
) goto columnName_end
;
1488 int i
= iExplainColNames16
[N
+ 8*p
->explain
- 8];
1489 ret
= (void*)&azExplainColNames16data
[i
];
1491 ret
= (void*)azExplainColNames8
[N
+ 8*p
->explain
- 8];
1493 goto columnName_end
;
1497 u8 prior_mallocFailed
= db
->mallocFailed
;
1499 #ifndef SQLITE_OMIT_UTF16
1501 ret
= sqlite3_value_text16((sqlite3_value
*)&p
->aColName
[N
]);
1505 ret
= sqlite3_value_text((sqlite3_value
*)&p
->aColName
[N
]);
1507 /* A malloc may have failed inside of the _text() call. If this
1508 ** is the case, clear the mallocFailed flag and return NULL.
1510 assert( db
->mallocFailed
==0 || db
->mallocFailed
==1 );
1511 if( db
->mallocFailed
> prior_mallocFailed
){
1512 sqlite3OomClear(db
);
1517 sqlite3_mutex_leave(db
->mutex
);
1522 ** Return the name of the Nth column of the result set returned by SQL
1525 const char *sqlite3_column_name(sqlite3_stmt
*pStmt
, int N
){
1526 return columnName(pStmt
, N
, 0, COLNAME_NAME
);
1528 #ifndef SQLITE_OMIT_UTF16
1529 const void *sqlite3_column_name16(sqlite3_stmt
*pStmt
, int N
){
1530 return columnName(pStmt
, N
, 1, COLNAME_NAME
);
1535 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1536 ** not define OMIT_DECLTYPE.
1538 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1539 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1540 and SQLITE_ENABLE_COLUMN_METADATA"
1543 #ifndef SQLITE_OMIT_DECLTYPE
1545 ** Return the column declaration type (if applicable) of the 'i'th column
1546 ** of the result set of SQL statement pStmt.
1548 const char *sqlite3_column_decltype(sqlite3_stmt
*pStmt
, int N
){
1549 return columnName(pStmt
, N
, 0, COLNAME_DECLTYPE
);
1551 #ifndef SQLITE_OMIT_UTF16
1552 const void *sqlite3_column_decltype16(sqlite3_stmt
*pStmt
, int N
){
1553 return columnName(pStmt
, N
, 1, COLNAME_DECLTYPE
);
1555 #endif /* SQLITE_OMIT_UTF16 */
1556 #endif /* SQLITE_OMIT_DECLTYPE */
1558 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1560 ** Return the name of the database from which a result column derives.
1561 ** NULL is returned if the result column is an expression or constant or
1562 ** anything else which is not an unambiguous reference to a database column.
1564 const char *sqlite3_column_database_name(sqlite3_stmt
*pStmt
, int N
){
1565 return columnName(pStmt
, N
, 0, COLNAME_DATABASE
);
1567 #ifndef SQLITE_OMIT_UTF16
1568 const void *sqlite3_column_database_name16(sqlite3_stmt
*pStmt
, int N
){
1569 return columnName(pStmt
, N
, 1, COLNAME_DATABASE
);
1571 #endif /* SQLITE_OMIT_UTF16 */
1574 ** Return the name of the table from which a result column derives.
1575 ** NULL is returned if the result column is an expression or constant or
1576 ** anything else which is not an unambiguous reference to a database column.
1578 const char *sqlite3_column_table_name(sqlite3_stmt
*pStmt
, int N
){
1579 return columnName(pStmt
, N
, 0, COLNAME_TABLE
);
1581 #ifndef SQLITE_OMIT_UTF16
1582 const void *sqlite3_column_table_name16(sqlite3_stmt
*pStmt
, int N
){
1583 return columnName(pStmt
, N
, 1, COLNAME_TABLE
);
1585 #endif /* SQLITE_OMIT_UTF16 */
1588 ** Return the name of the table column from which a result column derives.
1589 ** NULL is returned if the result column is an expression or constant or
1590 ** anything else which is not an unambiguous reference to a database column.
1592 const char *sqlite3_column_origin_name(sqlite3_stmt
*pStmt
, int N
){
1593 return columnName(pStmt
, N
, 0, COLNAME_COLUMN
);
1595 #ifndef SQLITE_OMIT_UTF16
1596 const void *sqlite3_column_origin_name16(sqlite3_stmt
*pStmt
, int N
){
1597 return columnName(pStmt
, N
, 1, COLNAME_COLUMN
);
1599 #endif /* SQLITE_OMIT_UTF16 */
1600 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1603 /******************************* sqlite3_bind_ ***************************
1605 ** Routines used to attach values to wildcards in a compiled SQL statement.
1608 ** Unbind the value bound to variable i in virtual machine p. This is the
1609 ** the same as binding a NULL value to the column. If the "i" parameter is
1610 ** out of range, then SQLITE_RANGE is returned. Otherwise SQLITE_OK.
1612 ** A successful evaluation of this routine acquires the mutex on p.
1613 ** the mutex is released if any kind of error occurs.
1615 ** The error code stored in database p->db is overwritten with the return
1616 ** value in any case.
1618 static int vdbeUnbind(Vdbe
*p
, unsigned int i
){
1620 if( vdbeSafetyNotNull(p
) ){
1621 return SQLITE_MISUSE_BKPT
;
1623 sqlite3_mutex_enter(p
->db
->mutex
);
1624 if( p
->eVdbeState
!=VDBE_READY_STATE
){
1625 sqlite3Error(p
->db
, SQLITE_MISUSE_BKPT
);
1626 sqlite3_mutex_leave(p
->db
->mutex
);
1627 sqlite3_log(SQLITE_MISUSE
,
1628 "bind on a busy prepared statement: [%s]", p
->zSql
);
1629 return SQLITE_MISUSE_BKPT
;
1631 if( i
>=(unsigned int)p
->nVar
){
1632 sqlite3Error(p
->db
, SQLITE_RANGE
);
1633 sqlite3_mutex_leave(p
->db
->mutex
);
1634 return SQLITE_RANGE
;
1637 sqlite3VdbeMemRelease(pVar
);
1638 pVar
->flags
= MEM_Null
;
1639 p
->db
->errCode
= SQLITE_OK
;
1641 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1642 ** binding a new value to this variable invalidates the current query plan.
1644 ** IMPLEMENTATION-OF: R-57496-20354 If the specific value bound to a host
1645 ** parameter in the WHERE clause might influence the choice of query plan
1646 ** for a statement, then the statement will be automatically recompiled,
1647 ** as if there had been a schema change, on the first sqlite3_step() call
1648 ** following any change to the bindings of that parameter.
1650 assert( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || p
->expmask
==0 );
1651 if( p
->expmask
!=0 && (p
->expmask
& (i
>=31 ? 0x80000000 : (u32
)1<<i
))!=0 ){
1658 ** Bind a text or BLOB value.
1660 static int bindText(
1661 sqlite3_stmt
*pStmt
, /* The statement to bind against */
1662 int i
, /* Index of the parameter to bind */
1663 const void *zData
, /* Pointer to the data to be bound */
1664 i64 nData
, /* Number of bytes of data to be bound */
1665 void (*xDel
)(void*), /* Destructor for the data */
1666 u8 encoding
/* Encoding for the data */
1668 Vdbe
*p
= (Vdbe
*)pStmt
;
1672 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1673 if( rc
==SQLITE_OK
){
1675 pVar
= &p
->aVar
[i
-1];
1676 rc
= sqlite3VdbeMemSetStr(pVar
, zData
, nData
, encoding
, xDel
);
1677 if( rc
==SQLITE_OK
&& encoding
!=0 ){
1678 rc
= sqlite3VdbeChangeEncoding(pVar
, ENC(p
->db
));
1681 sqlite3Error(p
->db
, rc
);
1682 rc
= sqlite3ApiExit(p
->db
, rc
);
1685 sqlite3_mutex_leave(p
->db
->mutex
);
1686 }else if( xDel
!=SQLITE_STATIC
&& xDel
!=SQLITE_TRANSIENT
){
1694 ** Bind a blob value to an SQL statement variable.
1696 int sqlite3_bind_blob(
1697 sqlite3_stmt
*pStmt
,
1703 #ifdef SQLITE_ENABLE_API_ARMOR
1704 if( nData
<0 ) return SQLITE_MISUSE_BKPT
;
1706 return bindText(pStmt
, i
, zData
, nData
, xDel
, 0);
1708 int sqlite3_bind_blob64(
1709 sqlite3_stmt
*pStmt
,
1712 sqlite3_uint64 nData
,
1715 assert( xDel
!=SQLITE_DYNAMIC
);
1716 return bindText(pStmt
, i
, zData
, nData
, xDel
, 0);
1718 int sqlite3_bind_double(sqlite3_stmt
*pStmt
, int i
, double rValue
){
1720 Vdbe
*p
= (Vdbe
*)pStmt
;
1721 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1722 if( rc
==SQLITE_OK
){
1723 sqlite3VdbeMemSetDouble(&p
->aVar
[i
-1], rValue
);
1724 sqlite3_mutex_leave(p
->db
->mutex
);
1728 int sqlite3_bind_int(sqlite3_stmt
*p
, int i
, int iValue
){
1729 return sqlite3_bind_int64(p
, i
, (i64
)iValue
);
1731 int sqlite3_bind_int64(sqlite3_stmt
*pStmt
, int i
, sqlite_int64 iValue
){
1733 Vdbe
*p
= (Vdbe
*)pStmt
;
1734 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1735 if( rc
==SQLITE_OK
){
1736 sqlite3VdbeMemSetInt64(&p
->aVar
[i
-1], iValue
);
1737 sqlite3_mutex_leave(p
->db
->mutex
);
1741 int sqlite3_bind_null(sqlite3_stmt
*pStmt
, int i
){
1743 Vdbe
*p
= (Vdbe
*)pStmt
;
1744 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1745 if( rc
==SQLITE_OK
){
1746 sqlite3_mutex_leave(p
->db
->mutex
);
1750 int sqlite3_bind_pointer(
1751 sqlite3_stmt
*pStmt
,
1754 const char *zPTtype
,
1755 void (*xDestructor
)(void*)
1758 Vdbe
*p
= (Vdbe
*)pStmt
;
1759 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1760 if( rc
==SQLITE_OK
){
1761 sqlite3VdbeMemSetPointer(&p
->aVar
[i
-1], pPtr
, zPTtype
, xDestructor
);
1762 sqlite3_mutex_leave(p
->db
->mutex
);
1763 }else if( xDestructor
){
1768 int sqlite3_bind_text(
1769 sqlite3_stmt
*pStmt
,
1775 return bindText(pStmt
, i
, zData
, nData
, xDel
, SQLITE_UTF8
);
1777 int sqlite3_bind_text64(
1778 sqlite3_stmt
*pStmt
,
1781 sqlite3_uint64 nData
,
1782 void (*xDel
)(void*),
1785 assert( xDel
!=SQLITE_DYNAMIC
);
1786 if( enc
!=SQLITE_UTF8
){
1787 if( enc
==SQLITE_UTF16
) enc
= SQLITE_UTF16NATIVE
;
1790 return bindText(pStmt
, i
, zData
, nData
, xDel
, enc
);
1792 #ifndef SQLITE_OMIT_UTF16
1793 int sqlite3_bind_text16(
1794 sqlite3_stmt
*pStmt
,
1800 return bindText(pStmt
, i
, zData
, n
& ~(u64
)1, xDel
, SQLITE_UTF16NATIVE
);
1802 #endif /* SQLITE_OMIT_UTF16 */
1803 int sqlite3_bind_value(sqlite3_stmt
*pStmt
, int i
, const sqlite3_value
*pValue
){
1805 switch( sqlite3_value_type((sqlite3_value
*)pValue
) ){
1806 case SQLITE_INTEGER
: {
1807 rc
= sqlite3_bind_int64(pStmt
, i
, pValue
->u
.i
);
1810 case SQLITE_FLOAT
: {
1811 assert( pValue
->flags
& (MEM_Real
|MEM_IntReal
) );
1812 rc
= sqlite3_bind_double(pStmt
, i
,
1813 (pValue
->flags
& MEM_Real
) ? pValue
->u
.r
: (double)pValue
->u
.i
1818 if( pValue
->flags
& MEM_Zero
){
1819 rc
= sqlite3_bind_zeroblob(pStmt
, i
, pValue
->u
.nZero
);
1821 rc
= sqlite3_bind_blob(pStmt
, i
, pValue
->z
, pValue
->n
,SQLITE_TRANSIENT
);
1826 rc
= bindText(pStmt
,i
, pValue
->z
, pValue
->n
, SQLITE_TRANSIENT
,
1831 rc
= sqlite3_bind_null(pStmt
, i
);
1837 int sqlite3_bind_zeroblob(sqlite3_stmt
*pStmt
, int i
, int n
){
1839 Vdbe
*p
= (Vdbe
*)pStmt
;
1840 rc
= vdbeUnbind(p
, (u32
)(i
-1));
1841 if( rc
==SQLITE_OK
){
1842 #ifndef SQLITE_OMIT_INCRBLOB
1843 sqlite3VdbeMemSetZeroBlob(&p
->aVar
[i
-1], n
);
1845 rc
= sqlite3VdbeMemSetZeroBlob(&p
->aVar
[i
-1], n
);
1847 sqlite3_mutex_leave(p
->db
->mutex
);
1851 int sqlite3_bind_zeroblob64(sqlite3_stmt
*pStmt
, int i
, sqlite3_uint64 n
){
1853 Vdbe
*p
= (Vdbe
*)pStmt
;
1854 #ifdef SQLITE_ENABLE_API_ARMOR
1855 if( p
==0 ) return SQLITE_MISUSE_BKPT
;
1857 sqlite3_mutex_enter(p
->db
->mutex
);
1858 if( n
>(u64
)p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1861 assert( (n
& 0x7FFFFFFF)==n
);
1862 rc
= sqlite3_bind_zeroblob(pStmt
, i
, n
);
1864 rc
= sqlite3ApiExit(p
->db
, rc
);
1865 sqlite3_mutex_leave(p
->db
->mutex
);
1870 ** Return the number of wildcards that can be potentially bound to.
1871 ** This routine is added to support DBD::SQLite.
1873 int sqlite3_bind_parameter_count(sqlite3_stmt
*pStmt
){
1874 Vdbe
*p
= (Vdbe
*)pStmt
;
1875 return p
? p
->nVar
: 0;
1879 ** Return the name of a wildcard parameter. Return NULL if the index
1880 ** is out of range or if the wildcard is unnamed.
1882 ** The result is always UTF-8.
1884 const char *sqlite3_bind_parameter_name(sqlite3_stmt
*pStmt
, int i
){
1885 Vdbe
*p
= (Vdbe
*)pStmt
;
1886 if( p
==0 ) return 0;
1887 return sqlite3VListNumToName(p
->pVList
, i
);
1891 ** Given a wildcard parameter name, return the index of the variable
1892 ** with that name. If there is no variable with the given name,
1895 int sqlite3VdbeParameterIndex(Vdbe
*p
, const char *zName
, int nName
){
1896 if( p
==0 || zName
==0 ) return 0;
1897 return sqlite3VListNameToNum(p
->pVList
, zName
, nName
);
1899 int sqlite3_bind_parameter_index(sqlite3_stmt
*pStmt
, const char *zName
){
1900 return sqlite3VdbeParameterIndex((Vdbe
*)pStmt
, zName
, sqlite3Strlen30(zName
));
1904 ** Transfer all bindings from the first statement over to the second.
1906 int sqlite3TransferBindings(sqlite3_stmt
*pFromStmt
, sqlite3_stmt
*pToStmt
){
1907 Vdbe
*pFrom
= (Vdbe
*)pFromStmt
;
1908 Vdbe
*pTo
= (Vdbe
*)pToStmt
;
1910 assert( pTo
->db
==pFrom
->db
);
1911 assert( pTo
->nVar
==pFrom
->nVar
);
1912 sqlite3_mutex_enter(pTo
->db
->mutex
);
1913 for(i
=0; i
<pFrom
->nVar
; i
++){
1914 sqlite3VdbeMemMove(&pTo
->aVar
[i
], &pFrom
->aVar
[i
]);
1916 sqlite3_mutex_leave(pTo
->db
->mutex
);
1920 #ifndef SQLITE_OMIT_DEPRECATED
1922 ** Deprecated external interface. Internal/core SQLite code
1923 ** should call sqlite3TransferBindings.
1925 ** It is misuse to call this routine with statements from different
1926 ** database connections. But as this is a deprecated interface, we
1927 ** will not bother to check for that condition.
1929 ** If the two statements contain a different number of bindings, then
1930 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1931 ** SQLITE_OK is returned.
1933 int sqlite3_transfer_bindings(sqlite3_stmt
*pFromStmt
, sqlite3_stmt
*pToStmt
){
1934 Vdbe
*pFrom
= (Vdbe
*)pFromStmt
;
1935 Vdbe
*pTo
= (Vdbe
*)pToStmt
;
1936 if( pFrom
->nVar
!=pTo
->nVar
){
1937 return SQLITE_ERROR
;
1939 assert( (pTo
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || pTo
->expmask
==0 );
1943 assert( (pFrom
->prepFlags
& SQLITE_PREPARE_SAVESQL
)!=0 || pFrom
->expmask
==0 );
1944 if( pFrom
->expmask
){
1947 return sqlite3TransferBindings(pFromStmt
, pToStmt
);
1952 ** Return the sqlite3* database handle to which the prepared statement given
1953 ** in the argument belongs. This is the same database handle that was
1954 ** the first argument to the sqlite3_prepare() that was used to create
1955 ** the statement in the first place.
1957 sqlite3
*sqlite3_db_handle(sqlite3_stmt
*pStmt
){
1958 return pStmt
? ((Vdbe
*)pStmt
)->db
: 0;
1962 ** Return true if the prepared statement is guaranteed to not modify the
1965 int sqlite3_stmt_readonly(sqlite3_stmt
*pStmt
){
1966 return pStmt
? ((Vdbe
*)pStmt
)->readOnly
: 1;
1970 ** Return 1 if the statement is an EXPLAIN and return 2 if the
1971 ** statement is an EXPLAIN QUERY PLAN
1973 int sqlite3_stmt_isexplain(sqlite3_stmt
*pStmt
){
1974 return pStmt
? ((Vdbe
*)pStmt
)->explain
: 0;
1978 ** Set the explain mode for a statement.
1980 int sqlite3_stmt_explain(sqlite3_stmt
*pStmt
, int eMode
){
1981 Vdbe
*v
= (Vdbe
*)pStmt
;
1983 #ifdef SQLITE_ENABLE_API_ARMOR
1984 if( pStmt
==0 ) return SQLITE_MISUSE_BKPT
;
1986 sqlite3_mutex_enter(v
->db
->mutex
);
1987 if( ((int)v
->explain
)==eMode
){
1989 }else if( eMode
<0 || eMode
>2 ){
1991 }else if( (v
->prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ){
1993 }else if( v
->eVdbeState
!=VDBE_READY_STATE
){
1995 }else if( v
->nMem
>=10 && (eMode
!=2 || v
->haveEqpOps
) ){
1996 /* No reprepare necessary */
2001 rc
= sqlite3Reprepare(v
);
2002 v
->haveEqpOps
= eMode
==2;
2005 v
->nResColumn
= 12 - 4*v
->explain
;
2007 v
->nResColumn
= v
->nResAlloc
;
2009 sqlite3_mutex_leave(v
->db
->mutex
);
2014 ** Return true if the prepared statement is in need of being reset.
2016 int sqlite3_stmt_busy(sqlite3_stmt
*pStmt
){
2017 Vdbe
*v
= (Vdbe
*)pStmt
;
2018 return v
!=0 && v
->eVdbeState
==VDBE_RUN_STATE
;
2022 ** Return a pointer to the next prepared statement after pStmt associated
2023 ** with database connection pDb. If pStmt is NULL, return the first
2024 ** prepared statement for the database connection. Return NULL if there
2027 sqlite3_stmt
*sqlite3_next_stmt(sqlite3
*pDb
, sqlite3_stmt
*pStmt
){
2028 sqlite3_stmt
*pNext
;
2029 #ifdef SQLITE_ENABLE_API_ARMOR
2030 if( !sqlite3SafetyCheckOk(pDb
) ){
2031 (void)SQLITE_MISUSE_BKPT
;
2035 sqlite3_mutex_enter(pDb
->mutex
);
2037 pNext
= (sqlite3_stmt
*)pDb
->pVdbe
;
2039 pNext
= (sqlite3_stmt
*)((Vdbe
*)pStmt
)->pVNext
;
2041 sqlite3_mutex_leave(pDb
->mutex
);
2046 ** Return the value of a status counter for a prepared statement
2048 int sqlite3_stmt_status(sqlite3_stmt
*pStmt
, int op
, int resetFlag
){
2049 Vdbe
*pVdbe
= (Vdbe
*)pStmt
;
2051 #ifdef SQLITE_ENABLE_API_ARMOR
2053 || (op
!=SQLITE_STMTSTATUS_MEMUSED
&& (op
<0||op
>=ArraySize(pVdbe
->aCounter
)))
2055 (void)SQLITE_MISUSE_BKPT
;
2059 if( op
==SQLITE_STMTSTATUS_MEMUSED
){
2060 sqlite3
*db
= pVdbe
->db
;
2061 sqlite3_mutex_enter(db
->mutex
);
2063 db
->pnBytesFreed
= (int*)&v
;
2064 assert( db
->lookaside
.pEnd
==db
->lookaside
.pTrueEnd
);
2065 db
->lookaside
.pEnd
= db
->lookaside
.pStart
;
2066 sqlite3VdbeDelete(pVdbe
);
2067 db
->pnBytesFreed
= 0;
2068 db
->lookaside
.pEnd
= db
->lookaside
.pTrueEnd
;
2069 sqlite3_mutex_leave(db
->mutex
);
2071 v
= pVdbe
->aCounter
[op
];
2072 if( resetFlag
) pVdbe
->aCounter
[op
] = 0;
2078 ** Return the SQL associated with a prepared statement
2080 const char *sqlite3_sql(sqlite3_stmt
*pStmt
){
2081 Vdbe
*p
= (Vdbe
*)pStmt
;
2082 return p
? p
->zSql
: 0;
2086 ** Return the SQL associated with a prepared statement with
2087 ** bound parameters expanded. Space to hold the returned string is
2088 ** obtained from sqlite3_malloc(). The caller is responsible for
2089 ** freeing the returned string by passing it to sqlite3_free().
2091 ** The SQLITE_TRACE_SIZE_LIMIT puts an upper bound on the size of
2092 ** expanded bound parameters.
2094 char *sqlite3_expanded_sql(sqlite3_stmt
*pStmt
){
2095 #ifdef SQLITE_OMIT_TRACE
2099 const char *zSql
= sqlite3_sql(pStmt
);
2101 Vdbe
*p
= (Vdbe
*)pStmt
;
2102 sqlite3_mutex_enter(p
->db
->mutex
);
2103 z
= sqlite3VdbeExpandSql(p
, zSql
);
2104 sqlite3_mutex_leave(p
->db
->mutex
);
2110 #ifdef SQLITE_ENABLE_NORMALIZE
2112 ** Return the normalized SQL associated with a prepared statement.
2114 const char *sqlite3_normalized_sql(sqlite3_stmt
*pStmt
){
2115 Vdbe
*p
= (Vdbe
*)pStmt
;
2116 if( p
==0 ) return 0;
2117 if( p
->zNormSql
==0 && ALWAYS(p
->zSql
!=0) ){
2118 sqlite3_mutex_enter(p
->db
->mutex
);
2119 p
->zNormSql
= sqlite3Normalize(p
, p
->zSql
);
2120 sqlite3_mutex_leave(p
->db
->mutex
);
2124 #endif /* SQLITE_ENABLE_NORMALIZE */
2126 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2128 ** Allocate and populate an UnpackedRecord structure based on the serialized
2129 ** record in nKey/pKey. Return a pointer to the new UnpackedRecord structure
2130 ** if successful, or a NULL pointer if an OOM error is encountered.
2132 static UnpackedRecord
*vdbeUnpackRecord(
2137 UnpackedRecord
*pRet
; /* Return value */
2139 pRet
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
2141 memset(pRet
->aMem
, 0, sizeof(Mem
)*(pKeyInfo
->nKeyField
+1));
2142 sqlite3VdbeRecordUnpack(pKeyInfo
, nKey
, pKey
, pRet
);
2148 ** This function is called from within a pre-update callback to retrieve
2149 ** a field of the row currently being updated or deleted.
2151 int sqlite3_preupdate_old(sqlite3
*db
, int iIdx
, sqlite3_value
**ppValue
){
2156 #ifdef SQLITE_ENABLE_API_ARMOR
2157 if( db
==0 || ppValue
==0 ){
2158 return SQLITE_MISUSE_BKPT
;
2162 /* Test that this call is being made from within an SQLITE_DELETE or
2163 ** SQLITE_UPDATE pre-update callback, and that iIdx is within range. */
2164 if( !p
|| p
->op
==SQLITE_INSERT
){
2165 rc
= SQLITE_MISUSE_BKPT
;
2166 goto preupdate_old_out
;
2169 iIdx
= sqlite3TableColumnToIndex(p
->pPk
, iIdx
);
2171 if( iIdx
>=p
->pCsr
->nField
|| iIdx
<0 ){
2173 goto preupdate_old_out
;
2176 /* If the old.* record has not yet been loaded into memory, do so now. */
2177 if( p
->pUnpacked
==0 ){
2181 assert( p
->pCsr
->eCurType
==CURTYPE_BTREE
);
2182 nRec
= sqlite3BtreePayloadSize(p
->pCsr
->uc
.pCursor
);
2183 aRec
= sqlite3DbMallocRaw(db
, nRec
);
2184 if( !aRec
) goto preupdate_old_out
;
2185 rc
= sqlite3BtreePayload(p
->pCsr
->uc
.pCursor
, 0, nRec
, aRec
);
2186 if( rc
==SQLITE_OK
){
2187 p
->pUnpacked
= vdbeUnpackRecord(&p
->keyinfo
, nRec
, aRec
);
2188 if( !p
->pUnpacked
) rc
= SQLITE_NOMEM
;
2190 if( rc
!=SQLITE_OK
){
2191 sqlite3DbFree(db
, aRec
);
2192 goto preupdate_old_out
;
2197 pMem
= *ppValue
= &p
->pUnpacked
->aMem
[iIdx
];
2198 if( iIdx
==p
->pTab
->iPKey
){
2199 sqlite3VdbeMemSetInt64(pMem
, p
->iKey1
);
2200 }else if( iIdx
>=p
->pUnpacked
->nField
){
2201 *ppValue
= (sqlite3_value
*)columnNullValue();
2202 }else if( p
->pTab
->aCol
[iIdx
].affinity
==SQLITE_AFF_REAL
){
2203 if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
2204 testcase( pMem
->flags
& MEM_Int
);
2205 testcase( pMem
->flags
& MEM_IntReal
);
2206 sqlite3VdbeMemRealify(pMem
);
2211 sqlite3Error(db
, rc
);
2212 return sqlite3ApiExit(db
, rc
);
2214 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2216 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2218 ** This function is called from within a pre-update callback to retrieve
2219 ** the number of columns in the row being updated, deleted or inserted.
2221 int sqlite3_preupdate_count(sqlite3
*db
){
2223 #ifdef SQLITE_ENABLE_API_ARMOR
2224 p
= db
!=0 ? db
->pPreUpdate
: 0;
2228 return (p
? p
->keyinfo
.nKeyField
: 0);
2230 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2234 ** This function is designed to be called from within a pre-update callback
2235 ** only. It returns zero if the change that caused the callback was made
2236 ** immediately by a user SQL statement. Or, if the change was made by a
2237 ** trigger program, it returns the number of trigger programs currently
2238 ** on the stack (1 for a top-level trigger, 2 for a trigger fired by a
2239 ** top-level trigger etc.).
2241 ** For the purposes of the previous paragraph, a foreign key CASCADE, SET NULL
2242 ** or SET DEFAULT action is considered a trigger.
2244 int sqlite3_preupdate_depth(sqlite3
*db
){
2246 #ifdef SQLITE_ENABLE_API_ARMOR
2247 p
= db
!=0 ? db
->pPreUpdate
: 0;
2251 return (p
? p
->v
->nFrame
: 0);
2253 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2255 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2257 ** This function is designed to be called from within a pre-update callback
2260 int sqlite3_preupdate_blobwrite(sqlite3
*db
){
2262 #ifdef SQLITE_ENABLE_API_ARMOR
2263 p
= db
!=0 ? db
->pPreUpdate
: 0;
2267 return (p
? p
->iBlobWrite
: -1);
2271 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2273 ** This function is called from within a pre-update callback to retrieve
2274 ** a field of the row currently being updated or inserted.
2276 int sqlite3_preupdate_new(sqlite3
*db
, int iIdx
, sqlite3_value
**ppValue
){
2281 #ifdef SQLITE_ENABLE_API_ARMOR
2282 if( db
==0 || ppValue
==0 ){
2283 return SQLITE_MISUSE_BKPT
;
2287 if( !p
|| p
->op
==SQLITE_DELETE
){
2288 rc
= SQLITE_MISUSE_BKPT
;
2289 goto preupdate_new_out
;
2291 if( p
->pPk
&& p
->op
!=SQLITE_UPDATE
){
2292 iIdx
= sqlite3TableColumnToIndex(p
->pPk
, iIdx
);
2294 if( iIdx
>=p
->pCsr
->nField
|| iIdx
<0 ){
2296 goto preupdate_new_out
;
2299 if( p
->op
==SQLITE_INSERT
){
2300 /* For an INSERT, memory cell p->iNewReg contains the serialized record
2301 ** that is being inserted. Deserialize it. */
2302 UnpackedRecord
*pUnpack
= p
->pNewUnpacked
;
2304 Mem
*pData
= &p
->v
->aMem
[p
->iNewReg
];
2305 rc
= ExpandBlob(pData
);
2306 if( rc
!=SQLITE_OK
) goto preupdate_new_out
;
2307 pUnpack
= vdbeUnpackRecord(&p
->keyinfo
, pData
->n
, pData
->z
);
2310 goto preupdate_new_out
;
2312 p
->pNewUnpacked
= pUnpack
;
2314 pMem
= &pUnpack
->aMem
[iIdx
];
2315 if( iIdx
==p
->pTab
->iPKey
){
2316 sqlite3VdbeMemSetInt64(pMem
, p
->iKey2
);
2317 }else if( iIdx
>=pUnpack
->nField
){
2318 pMem
= (sqlite3_value
*)columnNullValue();
2321 /* For an UPDATE, memory cell (p->iNewReg+1+iIdx) contains the required
2322 ** value. Make a copy of the cell contents and return a pointer to it.
2323 ** It is not safe to return a pointer to the memory cell itself as the
2324 ** caller may modify the value text encoding.
2326 assert( p
->op
==SQLITE_UPDATE
);
2328 p
->aNew
= (Mem
*)sqlite3DbMallocZero(db
, sizeof(Mem
) * p
->pCsr
->nField
);
2331 goto preupdate_new_out
;
2334 assert( iIdx
>=0 && iIdx
<p
->pCsr
->nField
);
2335 pMem
= &p
->aNew
[iIdx
];
2336 if( pMem
->flags
==0 ){
2337 if( iIdx
==p
->pTab
->iPKey
){
2338 sqlite3VdbeMemSetInt64(pMem
, p
->iKey2
);
2340 rc
= sqlite3VdbeMemCopy(pMem
, &p
->v
->aMem
[p
->iNewReg
+1+iIdx
]);
2341 if( rc
!=SQLITE_OK
) goto preupdate_new_out
;
2348 sqlite3Error(db
, rc
);
2349 return sqlite3ApiExit(db
, rc
);
2351 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
2353 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2355 ** Return status data for a single loop within query pStmt.
2357 int sqlite3_stmt_scanstatus_v2(
2358 sqlite3_stmt
*pStmt
, /* Prepared statement being queried */
2359 int iScan
, /* Index of loop to report on */
2360 int iScanStatusOp
, /* Which metric to return */
2362 void *pOut
/* OUT: Write the answer here */
2364 Vdbe
*p
= (Vdbe
*)pStmt
;
2367 ScanStatus
*pScan
= 0;
2370 #ifdef SQLITE_ENABLE_API_ARMOR
2372 || iScanStatusOp
<SQLITE_SCANSTAT_NLOOP
2373 || iScanStatusOp
>SQLITE_SCANSTAT_NCYCLE
){
2381 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
2388 if( iScanStatusOp
==SQLITE_SCANSTAT_NCYCLE
){
2390 for(ii
=0; ii
<nOp
; ii
++){
2391 res
+= aOp
[ii
].nCycle
;
2398 if( flags
& SQLITE_SCANSTAT_COMPLEX
){
2400 pScan
= &p
->aScan
[idx
];
2402 /* If the COMPLEX flag is clear, then this function must ignore any
2403 ** ScanStatus structures with ScanStatus.addrLoop set to 0. */
2404 for(idx
=0; idx
<p
->nScan
; idx
++){
2405 pScan
= &p
->aScan
[idx
];
2408 if( iScan
<0 ) break;
2412 if( idx
>=p
->nScan
) return 1;
2414 switch( iScanStatusOp
){
2415 case SQLITE_SCANSTAT_NLOOP
: {
2416 if( pScan
->addrLoop
>0 ){
2417 *(sqlite3_int64
*)pOut
= aOp
[pScan
->addrLoop
].nExec
;
2419 *(sqlite3_int64
*)pOut
= -1;
2423 case SQLITE_SCANSTAT_NVISIT
: {
2424 if( pScan
->addrVisit
>0 ){
2425 *(sqlite3_int64
*)pOut
= aOp
[pScan
->addrVisit
].nExec
;
2427 *(sqlite3_int64
*)pOut
= -1;
2431 case SQLITE_SCANSTAT_EST
: {
2433 LogEst x
= pScan
->nEst
;
2438 *(double*)pOut
= r
*sqlite3LogEstToInt(x
);
2441 case SQLITE_SCANSTAT_NAME
: {
2442 *(const char**)pOut
= pScan
->zName
;
2445 case SQLITE_SCANSTAT_EXPLAIN
: {
2446 if( pScan
->addrExplain
){
2447 *(const char**)pOut
= aOp
[ pScan
->addrExplain
].p4
.z
;
2449 *(const char**)pOut
= 0;
2453 case SQLITE_SCANSTAT_SELECTID
: {
2454 if( pScan
->addrExplain
){
2455 *(int*)pOut
= aOp
[ pScan
->addrExplain
].p1
;
2461 case SQLITE_SCANSTAT_PARENTID
: {
2462 if( pScan
->addrExplain
){
2463 *(int*)pOut
= aOp
[ pScan
->addrExplain
].p2
;
2469 case SQLITE_SCANSTAT_NCYCLE
: {
2471 if( pScan
->aAddrRange
[0]==0 ){
2475 for(ii
=0; ii
<ArraySize(pScan
->aAddrRange
); ii
+=2){
2476 int iIns
= pScan
->aAddrRange
[ii
];
2477 int iEnd
= pScan
->aAddrRange
[ii
+1];
2478 if( iIns
==0 ) break;
2480 while( iIns
<=iEnd
){
2481 res
+= aOp
[iIns
].nCycle
;
2486 for(iOp
=0; iOp
<nOp
; iOp
++){
2487 Op
*pOp
= &aOp
[iOp
];
2488 if( pOp
->p1
!=iEnd
) continue;
2489 if( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_NCYCLE
)==0 ){
2492 res
+= aOp
[iOp
].nCycle
;
2508 ** Return status data for a single loop within query pStmt.
2510 int sqlite3_stmt_scanstatus(
2511 sqlite3_stmt
*pStmt
, /* Prepared statement being queried */
2512 int iScan
, /* Index of loop to report on */
2513 int iScanStatusOp
, /* Which metric to return */
2514 void *pOut
/* OUT: Write the answer here */
2516 return sqlite3_stmt_scanstatus_v2(pStmt
, iScan
, iScanStatusOp
, 0, pOut
);
2520 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
2522 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt
*pStmt
){
2523 Vdbe
*p
= (Vdbe
*)pStmt
;
2525 for(ii
=0; p
!=0 && ii
<p
->nOp
; ii
++){
2526 Op
*pOp
= &p
->aOp
[ii
];
2531 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */