4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo
;
32 struct HiddenIndexInfo
{
33 WhereClause
*pWC
; /* The Where clause being analyzed */
34 Parse
*pParse
; /* The parsing context */
35 int eDistinct
; /* Value to return from sqlite3_vtab_distinct() */
36 u32 mIn
; /* Mask of terms that are <col> IN (...) */
37 u32 mHandleIn
; /* Terms that vtab will handle as <col> IN (...) */
38 sqlite3_value
*aRhs
[1]; /* RHS values for constraints. MUST BE LAST
39 ** because extra space is allocated to hold up
40 ** to nTerm such values */
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3
*, WhereLoop
*, int);
47 ** Return the estimated number of output rows from a WHERE clause
49 LogEst
sqlite3WhereOutputRowCount(WhereInfo
*pWInfo
){
50 return pWInfo
->nRowOut
;
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
57 int sqlite3WhereIsDistinct(WhereInfo
*pWInfo
){
58 return pWInfo
->eDistinct
;
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause. A return of 0 means that the output must be
64 ** completely sorted. A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all. A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
69 int sqlite3WhereIsOrdered(WhereInfo
*pWInfo
){
70 return pWInfo
->nOBSat
<0 ? 0 : pWInfo
->nOBSat
;
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop. If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo
*pWInfo
){
98 if( !pWInfo
->bOrderedInnerLoop
){
99 /* The ORDER BY LIMIT optimization does not apply. Jump to the
100 ** continuation of the inner-most loop. */
101 return pWInfo
->iContinue
;
103 pInner
= &pWInfo
->a
[pWInfo
->nLevel
-1];
104 assert( pInner
->addrNxt
!=0 );
105 return pInner
->pRJ
? pWInfo
->iContinue
: pInner
->addrNxt
;
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required. If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
115 ** Any extra OP_Goto that is coded here is an optimization. The
116 ** correct answer should be obtained regardless. This OP_Goto just
117 ** makes the answer appear faster.
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe
*v
, WhereInfo
*pWInfo
){
122 if( !pWInfo
->bOrderedInnerLoop
) return;
123 if( pWInfo
->nOBSat
==0 ) return;
124 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
125 pInner
= &pWInfo
->a
[i
];
126 if( (pInner
->pWLoop
->wsFlags
& WHERE_COLUMN_IN
)!=0 ){
127 sqlite3VdbeGoto(v
, pInner
->addrNxt
);
131 sqlite3VdbeGoto(v
, pWInfo
->iBreak
);
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
138 int sqlite3WhereContinueLabel(WhereInfo
*pWInfo
){
139 assert( pWInfo
->iContinue
!=0 );
140 return pWInfo
->iContinue
;
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
147 int sqlite3WhereBreakLabel(WhereInfo
*pWInfo
){
148 return pWInfo
->iBreak
;
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause. Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
168 int sqlite3WhereOkOnePass(WhereInfo
*pWInfo
, int *aiCur
){
169 memcpy(aiCur
, pWInfo
->aiCurOnePass
, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171 if( sqlite3WhereTrace
&& pWInfo
->eOnePass
!=ONEPASS_OFF
){
172 sqlite3DebugPrintf("%s cursors: %d %d\n",
173 pWInfo
->eOnePass
==ONEPASS_SINGLE
? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
177 return pWInfo
->eOnePass
;
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
184 int sqlite3WhereUsesDeferredSeek(WhereInfo
*pWInfo
){
185 return pWInfo
->bDeferredSeek
;
189 ** Move the content of pSrc into pDest
191 static void whereOrMove(WhereOrSet
*pDest
, WhereOrSet
*pSrc
){
193 memcpy(pDest
->a
, pSrc
->a
, pDest
->n
*sizeof(pDest
->a
[0]));
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded. Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
203 static int whereOrInsert(
204 WhereOrSet
*pSet
, /* The WhereOrSet to be updated */
205 Bitmask prereq
, /* Prerequisites of the new entry */
206 LogEst rRun
, /* Run-cost of the new entry */
207 LogEst nOut
/* Number of outputs for the new entry */
211 for(i
=pSet
->n
, p
=pSet
->a
; i
>0; i
--, p
++){
212 if( rRun
<=p
->rRun
&& (prereq
& p
->prereq
)==prereq
){
213 goto whereOrInsert_done
;
215 if( p
->rRun
<=rRun
&& (p
->prereq
& prereq
)==p
->prereq
){
219 if( pSet
->n
<N_OR_COST
){
220 p
= &pSet
->a
[pSet
->n
++];
224 for(i
=1; i
<pSet
->n
; i
++){
225 if( p
->rRun
>pSet
->a
[i
].rRun
) p
= pSet
->a
+ i
;
227 if( p
->rRun
<=rRun
) return 0;
232 if( p
->nOut
>nOut
) p
->nOut
= nOut
;
237 ** Return the bitmask for the given cursor number. Return 0 if
238 ** iCursor is not in the set.
240 Bitmask
sqlite3WhereGetMask(WhereMaskSet
*pMaskSet
, int iCursor
){
242 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
243 assert( pMaskSet
->n
>0 || pMaskSet
->ix
[0]<0 );
244 assert( iCursor
>=-1 );
245 if( pMaskSet
->ix
[0]==iCursor
){
248 for(i
=1; i
<pMaskSet
->n
; i
++){
249 if( pMaskSet
->ix
[i
]==iCursor
){
256 /* Allocate memory that is automatically freed when pWInfo is freed.
258 void *sqlite3WhereMalloc(WhereInfo
*pWInfo
, u64 nByte
){
259 WhereMemBlock
*pBlock
;
260 pBlock
= sqlite3DbMallocRawNN(pWInfo
->pParse
->db
, nByte
+sizeof(*pBlock
));
262 pBlock
->pNext
= pWInfo
->pMemToFree
;
264 pWInfo
->pMemToFree
= pBlock
;
267 return (void*)pBlock
;
269 void *sqlite3WhereRealloc(WhereInfo
*pWInfo
, void *pOld
, u64 nByte
){
270 void *pNew
= sqlite3WhereMalloc(pWInfo
, nByte
);
272 WhereMemBlock
*pOldBlk
= (WhereMemBlock
*)pOld
;
274 assert( pOldBlk
->sz
<nByte
);
275 memcpy(pNew
, pOld
, pOldBlk
->sz
);
281 ** Create a new mask for cursor iCursor.
283 ** There is one cursor per table in the FROM clause. The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
286 ** array will never overflow.
288 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
289 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
290 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch. Otherwise, return NULL.
297 static Expr
*whereRightSubexprIsColumn(Expr
*p
){
298 p
= sqlite3ExprSkipCollateAndLikely(p
->pRight
);
299 if( ALWAYS(p
!=0) && p
->op
==TK_COLUMN
&& !ExprHasProperty(p
, EP_FixedCol
) ){
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
310 static WhereTerm
*whereScanNext(WhereScan
*pScan
){
311 int iCur
; /* The cursor on the LHS of the term */
312 i16 iColumn
; /* The column on the LHS of the term. -1 for IPK */
313 Expr
*pX
; /* An expression being tested */
314 WhereClause
*pWC
; /* Shorthand for pScan->pWC */
315 WhereTerm
*pTerm
; /* The term being tested */
316 int k
= pScan
->k
; /* Where to start scanning */
318 assert( pScan
->iEquiv
<=pScan
->nEquiv
);
321 iColumn
= pScan
->aiColumn
[pScan
->iEquiv
-1];
322 iCur
= pScan
->aiCur
[pScan
->iEquiv
-1];
326 for(pTerm
=pWC
->a
+k
; k
<pWC
->nTerm
; k
++, pTerm
++){
327 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 || pTerm
->leftCursor
<0 );
328 if( pTerm
->leftCursor
==iCur
329 && pTerm
->u
.x
.leftColumn
==iColumn
331 || sqlite3ExprCompareSkip(pTerm
->pExpr
->pLeft
,
332 pScan
->pIdxExpr
,iCur
)==0)
333 && (pScan
->iEquiv
<=1 || !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
))
335 if( (pTerm
->eOperator
& WO_EQUIV
)!=0
336 && pScan
->nEquiv
<ArraySize(pScan
->aiCur
)
337 && (pX
= whereRightSubexprIsColumn(pTerm
->pExpr
))!=0
340 for(j
=0; j
<pScan
->nEquiv
; j
++){
341 if( pScan
->aiCur
[j
]==pX
->iTable
342 && pScan
->aiColumn
[j
]==pX
->iColumn
){
346 if( j
==pScan
->nEquiv
){
347 pScan
->aiCur
[j
] = pX
->iTable
;
348 pScan
->aiColumn
[j
] = pX
->iColumn
;
352 if( (pTerm
->eOperator
& pScan
->opMask
)!=0 ){
353 /* Verify the affinity and collating sequence match */
354 if( pScan
->zCollName
&& (pTerm
->eOperator
& WO_ISNULL
)==0 ){
356 Parse
*pParse
= pWC
->pWInfo
->pParse
;
358 if( !sqlite3IndexAffinityOk(pX
, pScan
->idxaff
) ){
362 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
363 if( pColl
==0 ) pColl
= pParse
->db
->pDfltColl
;
364 if( sqlite3StrICmp(pColl
->zName
, pScan
->zCollName
) ){
368 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))!=0
369 && (pX
= pTerm
->pExpr
->pRight
, ALWAYS(pX
!=0))
371 && pX
->iTable
==pScan
->aiCur
[0]
372 && pX
->iColumn
==pScan
->aiColumn
[0]
374 testcase( pTerm
->eOperator
& WO_IS
);
379 #ifdef WHERETRACE_ENABLED
380 if( sqlite3WhereTrace
& 0x20000 ){
382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383 pTerm
, pScan
->nEquiv
);
384 for(ii
=0; ii
<pScan
->nEquiv
; ii
++){
385 sqlite3DebugPrintf(" {%d:%d}",
386 pScan
->aiCur
[ii
], pScan
->aiColumn
[ii
]);
388 sqlite3DebugPrintf("\n");
398 if( pScan
->iEquiv
>=pScan
->nEquiv
) break;
399 pWC
= pScan
->pOrigWC
;
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
412 static SQLITE_NOINLINE WhereTerm
*whereScanInitIndexExpr(WhereScan
*pScan
){
413 pScan
->idxaff
= sqlite3ExprAffinity(pScan
->pIdxExpr
);
414 return whereScanNext(pScan
);
418 ** Initialize a WHERE clause scanner object. Return a pointer to the
419 ** first match. Return NULL if there are no matches.
421 ** The scanner will be searching the WHERE clause pWC. It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
424 ** must be one of the indexes of table iCur.
426 ** The <op> must be one of the operators described by opMask.
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>". The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
436 static WhereTerm
*whereScanInit(
437 WhereScan
*pScan
, /* The WhereScan object being initialized */
438 WhereClause
*pWC
, /* The WHERE clause to be scanned */
439 int iCur
, /* Cursor to scan for */
440 int iColumn
, /* Column to scan for */
441 u32 opMask
, /* Operator(s) to scan for */
442 Index
*pIdx
/* Must be compatible with this index */
444 pScan
->pOrigWC
= pWC
;
448 pScan
->zCollName
= 0;
449 pScan
->opMask
= opMask
;
451 pScan
->aiCur
[0] = iCur
;
456 iColumn
= pIdx
->aiColumn
[j
];
457 if( iColumn
==pIdx
->pTable
->iPKey
){
459 }else if( iColumn
>=0 ){
460 pScan
->idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
461 pScan
->zCollName
= pIdx
->azColl
[j
];
462 }else if( iColumn
==XN_EXPR
){
463 pScan
->pIdxExpr
= pIdx
->aColExpr
->a
[j
].pExpr
;
464 pScan
->zCollName
= pIdx
->azColl
[j
];
465 pScan
->aiColumn
[0] = XN_EXPR
;
466 return whereScanInitIndexExpr(pScan
);
468 }else if( iColumn
==XN_EXPR
){
471 pScan
->aiColumn
[0] = iColumn
;
472 return whereScanNext(pScan
);
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter. Return a pointer to the term. Return 0 if not found.
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y. Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values. Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind. Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
500 WhereTerm
*sqlite3WhereFindTerm(
501 WhereClause
*pWC
, /* The WHERE clause to be searched */
502 int iCur
, /* Cursor number of LHS */
503 int iColumn
, /* Column number of LHS */
504 Bitmask notReady
, /* RHS must not overlap with this mask */
505 u32 op
, /* Mask of WO_xx values describing operator */
506 Index
*pIdx
/* Must be compatible with this index, if not NULL */
508 WhereTerm
*pResult
= 0;
512 p
= whereScanInit(&scan
, pWC
, iCur
, iColumn
, op
, pIdx
);
515 if( (p
->prereqRight
& notReady
)==0 ){
516 if( p
->prereqRight
==0 && (p
->eOperator
&op
)!=0 ){
517 testcase( p
->eOperator
& WO_IS
);
520 if( pResult
==0 ) pResult
= p
;
522 p
= whereScanNext(&scan
);
528 ** This function searches pList for an entry that matches the iCol-th column
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
534 static int findIndexCol(
535 Parse
*pParse
, /* Parse context */
536 ExprList
*pList
, /* Expression list to search */
537 int iBase
, /* Cursor for table associated with pIdx */
538 Index
*pIdx
, /* Index to match column of */
539 int iCol
/* Column of index to match */
542 const char *zColl
= pIdx
->azColl
[iCol
];
544 for(i
=0; i
<pList
->nExpr
; i
++){
545 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pList
->a
[i
].pExpr
);
547 && (p
->op
==TK_COLUMN
|| p
->op
==TK_AGG_COLUMN
)
548 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
551 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pParse
, pList
->a
[i
].pExpr
);
552 if( 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
564 static int indexColumnNotNull(Index
*pIdx
, int iCol
){
567 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
568 j
= pIdx
->aiColumn
[iCol
];
570 return pIdx
->pTable
->aCol
[j
].notNull
;
575 return 0; /* Assume an indexed expression can always yield a NULL */
581 ** Return true if the DISTINCT expression-list passed as the third argument
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
587 static int isDistinctRedundant(
588 Parse
*pParse
, /* Parsing context */
589 SrcList
*pTabList
, /* The FROM clause */
590 WhereClause
*pWC
, /* The WHERE clause */
591 ExprList
*pDistinct
/* The result set that needs to be DISTINCT */
598 /* If there is more than one table or sub-select in the FROM clause of
599 ** this query, then it will not be possible to show that the DISTINCT
600 ** clause is redundant. */
601 if( pTabList
->nSrc
!=1 ) return 0;
602 iBase
= pTabList
->a
[0].iCursor
;
603 pTab
= pTabList
->a
[0].pTab
;
605 /* If any of the expressions is an IPK column on table iBase, then return
606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607 ** current SELECT is a correlated sub-query.
609 for(i
=0; i
<pDistinct
->nExpr
; i
++){
610 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pDistinct
->a
[i
].pExpr
);
611 if( NEVER(p
==0) ) continue;
612 if( p
->op
!=TK_COLUMN
&& p
->op
!=TK_AGG_COLUMN
) continue;
613 if( p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
616 /* Loop through all indices on the table, checking each to see if it makes
617 ** the DISTINCT qualifier redundant. It does so if:
619 ** 1. The index is itself UNIQUE, and
621 ** 2. All of the columns in the index are either part of the pDistinct
622 ** list, or else the WHERE clause contains a term of the form "col=X",
623 ** where X is a constant value. The collation sequences of the
624 ** comparison and select-list expressions must match those of the index.
626 ** 3. All of those index columns for which the WHERE clause does not
627 ** contain a "col=X" term are subject to a NOT NULL constraint.
629 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
630 if( !IsUniqueIndex(pIdx
) ) continue;
631 if( pIdx
->pPartIdxWhere
) continue;
632 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
633 if( 0==sqlite3WhereFindTerm(pWC
, iBase
, i
, ~(Bitmask
)0, WO_EQ
, pIdx
) ){
634 if( findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
)<0 ) break;
635 if( indexColumnNotNull(pIdx
, i
)==0 ) break;
638 if( i
==pIdx
->nKeyCol
){
639 /* This index implies that the DISTINCT qualifier is redundant. */
649 ** Estimate the logarithm of the input value to base 2.
651 static LogEst
estLog(LogEst N
){
652 return N
<=10 ? 0 : sqlite3LogEst(N
) - 33;
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
667 static void translateColumnToCopy(
668 Parse
*pParse
, /* Parsing context */
669 int iStart
, /* Translate from this opcode to the end */
670 int iTabCur
, /* OP_Column/OP_Rowid references to this table */
671 int iRegister
, /* The first column is in this register */
672 int iAutoidxCur
/* If non-zero, cursor of autoindex being generated */
674 Vdbe
*v
= pParse
->pVdbe
;
675 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iStart
);
676 int iEnd
= sqlite3VdbeCurrentAddr(v
);
677 if( pParse
->db
->mallocFailed
) return;
678 for(; iStart
<iEnd
; iStart
++, pOp
++){
679 if( pOp
->p1
!=iTabCur
) continue;
680 if( pOp
->opcode
==OP_Column
){
681 pOp
->opcode
= OP_Copy
;
682 pOp
->p1
= pOp
->p2
+ iRegister
;
685 pOp
->p5
= 2; /* Cause the MEM_Subtype flag to be cleared */
686 }else if( pOp
->opcode
==OP_Rowid
){
687 pOp
->opcode
= OP_Sequence
;
688 pOp
->p1
= iAutoidxCur
;
689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
690 if( iAutoidxCur
==0 ){
691 pOp
->opcode
= OP_Null
;
700 ** Two routines for printing the content of an sqlite3_index_info
701 ** structure. Used for testing and debugging only. If neither
702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
706 static void whereTraceIndexInfoInputs(sqlite3_index_info
*p
){
708 if( (sqlite3WhereTrace
& 0x10)==0 ) return;
709 for(i
=0; i
<p
->nConstraint
; i
++){
711 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
713 p
->aConstraint
[i
].iColumn
,
714 p
->aConstraint
[i
].iTermOffset
,
715 p
->aConstraint
[i
].op
,
716 p
->aConstraint
[i
].usable
,
717 sqlite3_vtab_collation(p
,i
));
719 for(i
=0; i
<p
->nOrderBy
; i
++){
720 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
722 p
->aOrderBy
[i
].iColumn
,
723 p
->aOrderBy
[i
].desc
);
726 static void whereTraceIndexInfoOutputs(sqlite3_index_info
*p
){
728 if( (sqlite3WhereTrace
& 0x10)==0 ) return;
729 for(i
=0; i
<p
->nConstraint
; i
++){
730 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
732 p
->aConstraintUsage
[i
].argvIndex
,
733 p
->aConstraintUsage
[i
].omit
);
735 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
736 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
737 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
738 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
739 sqlite3DebugPrintf(" estimatedRows=%lld\n", p
->estimatedRows
);
742 #define whereTraceIndexInfoInputs(A)
743 #define whereTraceIndexInfoOutputs(A)
747 ** We know that pSrc is an operand of an outer join. Return true if
748 ** pTerm is a constraint that is compatible with that join.
750 ** pTerm must be EP_OuterON if pSrc is the right operand of an
751 ** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc
752 ** is the left operand of a RIGHT join.
754 ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
755 ** for an example of a WHERE clause constraints that may not be used on
756 ** the right table of a RIGHT JOIN because the constraint implies a
757 ** not-NULL condition on the left table of the RIGHT JOIN.
759 static int constraintCompatibleWithOuterJoin(
760 const WhereTerm
*pTerm
, /* WHERE clause term to check */
761 const SrcItem
*pSrc
/* Table we are trying to access */
763 assert( (pSrc
->fg
.jointype
&(JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0 ); /* By caller */
764 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LEFT
);
765 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LTORJ
);
766 testcase( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) )
767 testcase( ExprHasProperty(pTerm
->pExpr
, EP_InnerON
) );
768 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
|EP_InnerON
)
769 || pTerm
->pExpr
->w
.iJoin
!= pSrc
->iCursor
773 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_RIGHT
))!=0
774 && ExprHasProperty(pTerm
->pExpr
, EP_InnerON
)
783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
785 ** Return TRUE if the WHERE clause term pTerm is of a form where it
786 ** could be used with an index to access pSrc, assuming an appropriate
789 static int termCanDriveIndex(
790 const WhereTerm
*pTerm
, /* WHERE clause term to check */
791 const SrcItem
*pSrc
, /* Table we are trying to access */
792 const Bitmask notReady
/* Tables in outer loops of the join */
795 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
796 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))==0 ) return 0;
797 assert( (pSrc
->fg
.jointype
& JT_RIGHT
)==0 );
798 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
799 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
801 return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */
803 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
804 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
805 if( pTerm
->u
.x
.leftColumn
<0 ) return 0;
806 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.x
.leftColumn
].affinity
;
807 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
808 testcase( pTerm
->pExpr
->op
==TK_IS
);
814 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
816 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
818 ** Argument pIdx represents an automatic index that the current statement
819 ** will create and populate. Add an OP_Explain with text of the form:
821 ** CREATE AUTOMATIC INDEX ON <table>(<cols>) [WHERE <expr>]
823 ** This is only required if sqlite3_stmt_scanstatus() is enabled, to
824 ** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP
825 ** values with. In order to avoid breaking legacy code and test cases,
826 ** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command.
828 static void explainAutomaticIndex(
830 Index
*pIdx
, /* Automatic index to explain */
831 int bPartial
, /* True if pIdx is a partial index */
832 int *pAddrExplain
/* OUT: Address of OP_Explain */
834 if( IS_STMT_SCANSTATUS(pParse
->db
) && pParse
->explain
!=2 ){
835 Table
*pTab
= pIdx
->pTable
;
836 const char *zSep
= "";
839 sqlite3_str
*pStr
= sqlite3_str_new(pParse
->db
);
840 sqlite3_str_appendf(pStr
,"CREATE AUTOMATIC INDEX ON %s(", pTab
->zName
);
841 assert( pIdx
->nColumn
>1 );
842 assert( pIdx
->aiColumn
[pIdx
->nColumn
-1]==XN_ROWID
);
843 for(ii
=0; ii
<(pIdx
->nColumn
-1); ii
++){
844 const char *zName
= 0;
845 int iCol
= pIdx
->aiColumn
[ii
];
847 zName
= pTab
->aCol
[iCol
].zCnName
;
848 sqlite3_str_appendf(pStr
, "%s%s", zSep
, zName
);
851 zText
= sqlite3_str_finish(pStr
);
853 sqlite3OomFault(pParse
->db
);
855 *pAddrExplain
= sqlite3VdbeExplain(
856 pParse
, 0, "%s)%s", zText
, (bPartial
? " WHERE <expr>" : "")
863 # define explainAutomaticIndex(a,b,c,d)
867 ** Generate code to construct the Index object for an automatic index
868 ** and to set up the WhereLevel object pLevel so that the code generator
869 ** makes use of the automatic index.
871 static SQLITE_NOINLINE
void constructAutomaticIndex(
872 Parse
*pParse
, /* The parsing context */
873 WhereClause
*pWC
, /* The WHERE clause */
874 const Bitmask notReady
, /* Mask of cursors that are not available */
875 WhereLevel
*pLevel
/* Write new index here */
877 int nKeyCol
; /* Number of columns in the constructed index */
878 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
879 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
880 Index
*pIdx
; /* Object describing the transient index */
881 Vdbe
*v
; /* Prepared statement under construction */
882 int addrInit
; /* Address of the initialization bypass jump */
883 Table
*pTable
; /* The table being indexed */
884 int addrTop
; /* Top of the index fill loop */
885 int regRecord
; /* Register holding an index record */
886 int n
; /* Column counter */
887 int i
; /* Loop counter */
888 int mxBitCol
; /* Maximum column in pSrc->colUsed */
889 CollSeq
*pColl
; /* Collating sequence to on a column */
890 WhereLoop
*pLoop
; /* The Loop object */
891 char *zNotUsed
; /* Extra space on the end of pIdx */
892 Bitmask idxCols
; /* Bitmap of columns used for indexing */
893 Bitmask extraCols
; /* Bitmap of additional columns */
894 u8 sentWarning
= 0; /* True if a warning has been issued */
895 u8 useBloomFilter
= 0; /* True to also add a Bloom filter */
896 Expr
*pPartial
= 0; /* Partial Index Expression */
897 int iContinue
= 0; /* Jump here to skip excluded rows */
898 SrcList
*pTabList
; /* The complete FROM clause */
899 SrcItem
*pSrc
; /* The FROM clause term to get the next index */
900 int addrCounter
= 0; /* Address where integer counter is initialized */
901 int regBase
; /* Array of registers where record is assembled */
902 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
903 int addrExp
= 0; /* Address of OP_Explain */
906 /* Generate code to skip over the creation and initialization of the
907 ** transient index on 2nd and subsequent iterations of the loop. */
910 addrInit
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
912 /* Count the number of columns that will be added to the index
913 ** and used to match WHERE clause constraints */
915 pTabList
= pWC
->pWInfo
->pTabList
;
916 pSrc
= &pTabList
->a
[pLevel
->iFrom
];
918 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
919 pLoop
= pLevel
->pWLoop
;
921 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
922 Expr
*pExpr
= pTerm
->pExpr
;
923 /* Make the automatic index a partial index if there are terms in the
924 ** WHERE clause (or the ON clause of a LEFT join) that constrain which
925 ** rows of the target table (pSrc) that can be used. */
926 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
927 && sqlite3ExprIsSingleTableConstraint(pExpr
, pTabList
, pLevel
->iFrom
)
929 pPartial
= sqlite3ExprAnd(pParse
, pPartial
,
930 sqlite3ExprDup(pParse
->db
, pExpr
, 0));
932 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
935 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
936 iCol
= pTerm
->u
.x
.leftColumn
;
937 cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
938 testcase( iCol
==BMS
);
939 testcase( iCol
==BMS
-1 );
941 sqlite3_log(SQLITE_WARNING_AUTOINDEX
,
942 "automatic index on %s(%s)", pTable
->zName
,
943 pTable
->aCol
[iCol
].zCnName
);
946 if( (idxCols
& cMask
)==0 ){
947 if( whereLoopResize(pParse
->db
, pLoop
, nKeyCol
+1) ){
948 goto end_auto_index_create
;
950 pLoop
->aLTerm
[nKeyCol
++] = pTerm
;
955 assert( nKeyCol
>0 || pParse
->db
->mallocFailed
);
956 pLoop
->u
.btree
.nEq
= pLoop
->nLTerm
= nKeyCol
;
957 pLoop
->wsFlags
= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WHERE_INDEXED
960 /* Count the number of additional columns needed to create a
961 ** covering index. A "covering index" is an index that contains all
962 ** columns that are needed by the query. With a covering index, the
963 ** original table never needs to be accessed. Automatic indices must
964 ** be a covering index because the index will not be updated if the
965 ** original table changes and the index and table cannot both be used
966 ** if they go out of sync.
968 if( IsView(pTable
) ){
971 extraCols
= pSrc
->colUsed
& (~idxCols
| MASKBIT(BMS
-1));
973 mxBitCol
= MIN(BMS
-1,pTable
->nCol
);
974 testcase( pTable
->nCol
==BMS
-1 );
975 testcase( pTable
->nCol
==BMS
-2 );
976 for(i
=0; i
<mxBitCol
; i
++){
977 if( extraCols
& MASKBIT(i
) ) nKeyCol
++;
979 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
980 nKeyCol
+= pTable
->nCol
- BMS
+ 1;
983 /* Construct the Index object to describe this index */
984 pIdx
= sqlite3AllocateIndexObject(pParse
->db
, nKeyCol
+1, 0, &zNotUsed
);
985 if( pIdx
==0 ) goto end_auto_index_create
;
986 pLoop
->u
.btree
.pIndex
= pIdx
;
987 pIdx
->zName
= "auto-index";
988 pIdx
->pTable
= pTable
;
991 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
992 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
995 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
996 iCol
= pTerm
->u
.x
.leftColumn
;
997 cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
998 testcase( iCol
==BMS
-1 );
999 testcase( iCol
==BMS
);
1000 if( (idxCols
& cMask
)==0 ){
1001 Expr
*pX
= pTerm
->pExpr
;
1003 pIdx
->aiColumn
[n
] = pTerm
->u
.x
.leftColumn
;
1004 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
1005 assert( pColl
!=0 || pParse
->nErr
>0 ); /* TH3 collate01.800 */
1006 pIdx
->azColl
[n
] = pColl
? pColl
->zName
: sqlite3StrBINARY
;
1008 if( ALWAYS(pX
->pLeft
!=0)
1009 && sqlite3ExprAffinity(pX
->pLeft
)!=SQLITE_AFF_TEXT
1011 /* TUNING: only use a Bloom filter on an automatic index
1012 ** if one or more key columns has the ability to hold numeric
1013 ** values, since strings all have the same hash in the Bloom
1014 ** filter implementation and hence a Bloom filter on a text column
1015 ** is not usually helpful. */
1021 assert( (u32
)n
==pLoop
->u
.btree
.nEq
);
1023 /* Add additional columns needed to make the automatic index into
1024 ** a covering index */
1025 for(i
=0; i
<mxBitCol
; i
++){
1026 if( extraCols
& MASKBIT(i
) ){
1027 pIdx
->aiColumn
[n
] = i
;
1028 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1032 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
1033 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
1034 pIdx
->aiColumn
[n
] = i
;
1035 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1039 assert( n
==nKeyCol
);
1040 pIdx
->aiColumn
[n
] = XN_ROWID
;
1041 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1043 /* Create the automatic index */
1044 explainAutomaticIndex(pParse
, pIdx
, pPartial
!=0, &addrExp
);
1045 assert( pLevel
->iIdxCur
>=0 );
1046 pLevel
->iIdxCur
= pParse
->nTab
++;
1047 sqlite3VdbeAddOp2(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nKeyCol
+1);
1048 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
1049 VdbeComment((v
, "for %s", pTable
->zName
));
1050 if( OptimizationEnabled(pParse
->db
, SQLITE_BloomFilter
) && useBloomFilter
){
1051 sqlite3WhereExplainBloomFilter(pParse
, pWC
->pWInfo
, pLevel
);
1052 pLevel
->regFilter
= ++pParse
->nMem
;
1053 sqlite3VdbeAddOp2(v
, OP_Blob
, 10000, pLevel
->regFilter
);
1056 /* Fill the automatic index with content */
1057 assert( pSrc
== &pWC
->pWInfo
->pTabList
->a
[pLevel
->iFrom
] );
1058 if( pSrc
->fg
.viaCoroutine
){
1059 int regYield
= pSrc
->regReturn
;
1060 addrCounter
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, 0);
1061 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pSrc
->addrFillSub
);
1062 addrTop
= sqlite3VdbeAddOp1(v
, OP_Yield
, regYield
);
1064 VdbeComment((v
, "next row of %s", pSrc
->pTab
->zName
));
1066 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
); VdbeCoverage(v
);
1069 iContinue
= sqlite3VdbeMakeLabel(pParse
);
1070 sqlite3ExprIfFalse(pParse
, pPartial
, iContinue
, SQLITE_JUMPIFNULL
);
1071 pLoop
->wsFlags
|= WHERE_PARTIALIDX
;
1073 regRecord
= sqlite3GetTempReg(pParse
);
1074 regBase
= sqlite3GenerateIndexKey(
1075 pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 0, 0, 0, 0
1077 if( pLevel
->regFilter
){
1078 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0,
1079 regBase
, pLoop
->u
.btree
.nEq
);
1081 sqlite3VdbeScanStatusCounters(v
, addrExp
, addrExp
, sqlite3VdbeCurrentAddr(v
));
1082 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
1083 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1084 if( pPartial
) sqlite3VdbeResolveLabel(v
, iContinue
);
1085 if( pSrc
->fg
.viaCoroutine
){
1086 sqlite3VdbeChangeP2(v
, addrCounter
, regBase
+n
);
1087 testcase( pParse
->db
->mallocFailed
);
1088 assert( pLevel
->iIdxCur
>0 );
1089 translateColumnToCopy(pParse
, addrTop
, pLevel
->iTabCur
,
1090 pSrc
->regResult
, pLevel
->iIdxCur
);
1091 sqlite3VdbeGoto(v
, addrTop
);
1092 pSrc
->fg
.viaCoroutine
= 0;
1094 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1); VdbeCoverage(v
);
1095 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
1097 sqlite3VdbeJumpHere(v
, addrTop
);
1098 sqlite3ReleaseTempReg(pParse
, regRecord
);
1100 /* Jump here when skipping the initialization */
1101 sqlite3VdbeJumpHere(v
, addrInit
);
1102 sqlite3VdbeScanStatusRange(v
, addrExp
, addrExp
, -1);
1104 end_auto_index_create
:
1105 sqlite3ExprDelete(pParse
->db
, pPartial
);
1107 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1110 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1113 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1114 ** flag set, initialize a Bloomfilter for them as well. Except don't do
1115 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1118 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1119 ** from the loop, but the regFilter value is set to a register that implements
1120 ** the Bloom filter. When regFilter is positive, the
1121 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1122 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1123 ** no matching rows exist.
1125 ** This routine may only be called if it has previously been determined that
1126 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1129 static SQLITE_NOINLINE
void sqlite3ConstructBloomFilter(
1130 WhereInfo
*pWInfo
, /* The WHERE clause */
1131 int iLevel
, /* Index in pWInfo->a[] that is pLevel */
1132 WhereLevel
*pLevel
, /* Make a Bloom filter for this FROM term */
1133 Bitmask notReady
/* Loops that are not ready */
1135 int addrOnce
; /* Address of opening OP_Once */
1136 int addrTop
; /* Address of OP_Rewind */
1137 int addrCont
; /* Jump here to skip a row */
1138 const WhereTerm
*pTerm
; /* For looping over WHERE clause terms */
1139 const WhereTerm
*pWCEnd
; /* Last WHERE clause term */
1140 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
1141 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
1142 WhereLoop
*pLoop
= pLevel
->pWLoop
; /* The loop being coded */
1143 int iCur
; /* Cursor for table getting the filter */
1144 IndexedExpr
*saved_pIdxEpr
; /* saved copy of Parse.pIdxEpr */
1145 IndexedExpr
*saved_pIdxPartExpr
; /* saved copy of Parse.pIdxPartExpr */
1147 saved_pIdxEpr
= pParse
->pIdxEpr
;
1148 saved_pIdxPartExpr
= pParse
->pIdxPartExpr
;
1149 pParse
->pIdxEpr
= 0;
1150 pParse
->pIdxPartExpr
= 0;
1154 assert( pLoop
->wsFlags
& WHERE_BLOOMFILTER
);
1155 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0 );
1157 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1159 const SrcList
*pTabList
;
1160 const SrcItem
*pItem
;
1164 sqlite3WhereExplainBloomFilter(pParse
, pWInfo
, pLevel
);
1165 addrCont
= sqlite3VdbeMakeLabel(pParse
);
1166 iCur
= pLevel
->iTabCur
;
1167 pLevel
->regFilter
= ++pParse
->nMem
;
1169 /* The Bloom filter is a Blob held in a register. Initialize it
1170 ** to zero-filled blob of at least 80K bits, but maybe more if the
1171 ** estimated size of the table is larger. We could actually
1172 ** measure the size of the table at run-time using OP_Count with
1173 ** P3==1 and use that value to initialize the blob. But that makes
1174 ** testing complicated. By basing the blob size on the value in the
1175 ** sqlite_stat1 table, testing is much easier.
1177 pTabList
= pWInfo
->pTabList
;
1178 iSrc
= pLevel
->iFrom
;
1179 pItem
= &pTabList
->a
[iSrc
];
1183 sz
= sqlite3LogEstToInt(pTab
->nRowLogEst
);
1186 }else if( sz
>10000000 ){
1189 sqlite3VdbeAddOp2(v
, OP_Blob
, (int)sz
, pLevel
->regFilter
);
1191 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iCur
); VdbeCoverage(v
);
1192 pWCEnd
= &pWInfo
->sWC
.a
[pWInfo
->sWC
.nTerm
];
1193 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pWCEnd
; pTerm
++){
1194 Expr
*pExpr
= pTerm
->pExpr
;
1195 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
1196 && sqlite3ExprIsSingleTableConstraint(pExpr
, pTabList
, iSrc
)
1198 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
1201 if( pLoop
->wsFlags
& WHERE_IPK
){
1202 int r1
= sqlite3GetTempReg(pParse
);
1203 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, r1
);
1204 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0, r1
, 1);
1205 sqlite3ReleaseTempReg(pParse
, r1
);
1207 Index
*pIdx
= pLoop
->u
.btree
.pIndex
;
1208 int n
= pLoop
->u
.btree
.nEq
;
1209 int r1
= sqlite3GetTempRange(pParse
, n
);
1211 for(jj
=0; jj
<n
; jj
++){
1212 assert( pIdx
->pTable
==pItem
->pTab
);
1213 sqlite3ExprCodeLoadIndexColumn(pParse
, pIdx
, iCur
, jj
, r1
+jj
);
1215 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0, r1
, n
);
1216 sqlite3ReleaseTempRange(pParse
, r1
, n
);
1218 sqlite3VdbeResolveLabel(v
, addrCont
);
1219 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1);
1221 sqlite3VdbeJumpHere(v
, addrTop
);
1222 pLoop
->wsFlags
&= ~WHERE_BLOOMFILTER
;
1223 if( OptimizationDisabled(pParse
->db
, SQLITE_BloomPulldown
) ) break;
1224 while( ++iLevel
< pWInfo
->nLevel
){
1225 const SrcItem
*pTabItem
;
1226 pLevel
= &pWInfo
->a
[iLevel
];
1227 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
1228 if( pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
) ) continue;
1229 pLoop
= pLevel
->pWLoop
;
1230 if( NEVER(pLoop
==0) ) continue;
1231 if( pLoop
->prereq
& notReady
) continue;
1232 if( (pLoop
->wsFlags
& (WHERE_BLOOMFILTER
|WHERE_COLUMN_IN
))
1235 /* This is a candidate for bloom-filter pull-down (early evaluation).
1236 ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1237 ** not able to do early evaluation of bloom filters that make use of
1238 ** the IN operator */
1242 }while( iLevel
< pWInfo
->nLevel
);
1243 sqlite3VdbeJumpHere(v
, addrOnce
);
1244 pParse
->pIdxEpr
= saved_pIdxEpr
;
1245 pParse
->pIdxPartExpr
= saved_pIdxPartExpr
;
1249 #ifndef SQLITE_OMIT_VIRTUALTABLE
1251 ** Allocate and populate an sqlite3_index_info structure. It is the
1252 ** responsibility of the caller to eventually release the structure
1253 ** by passing the pointer returned by this function to freeIndexInfo().
1255 static sqlite3_index_info
*allocateIndexInfo(
1256 WhereInfo
*pWInfo
, /* The WHERE clause */
1257 WhereClause
*pWC
, /* The WHERE clause being analyzed */
1258 Bitmask mUnusable
, /* Ignore terms with these prereqs */
1259 SrcItem
*pSrc
, /* The FROM clause term that is the vtab */
1260 u16
*pmNoOmit
/* Mask of terms not to omit */
1264 Parse
*pParse
= pWInfo
->pParse
;
1265 struct sqlite3_index_constraint
*pIdxCons
;
1266 struct sqlite3_index_orderby
*pIdxOrderBy
;
1267 struct sqlite3_index_constraint_usage
*pUsage
;
1268 struct HiddenIndexInfo
*pHidden
;
1271 sqlite3_index_info
*pIdxInfo
;
1275 ExprList
*pOrderBy
= pWInfo
->pOrderBy
;
1280 assert( IsVirtual(pTab
) );
1282 /* Find all WHERE clause constraints referring to this virtual table.
1283 ** Mark each term with the TERM_OK flag. Set nTerm to the number of
1286 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1287 pTerm
->wtFlags
&= ~TERM_OK
;
1288 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
1289 if( pTerm
->prereqRight
& mUnusable
) continue;
1290 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
1291 testcase( pTerm
->eOperator
& WO_IN
);
1292 testcase( pTerm
->eOperator
& WO_ISNULL
);
1293 testcase( pTerm
->eOperator
& WO_IS
);
1294 testcase( pTerm
->eOperator
& WO_ALL
);
1295 if( (pTerm
->eOperator
& ~(WO_EQUIV
))==0 ) continue;
1296 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
1298 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
1299 assert( pTerm
->u
.x
.leftColumn
>=XN_ROWID
);
1300 assert( pTerm
->u
.x
.leftColumn
<pTab
->nCol
);
1301 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
1302 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
1307 pTerm
->wtFlags
|= TERM_OK
;
1310 /* If the ORDER BY clause contains only columns in the current
1311 ** virtual table then allocate space for the aOrderBy part of
1312 ** the sqlite3_index_info structure.
1316 int n
= pOrderBy
->nExpr
;
1318 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1321 /* Skip over constant terms in the ORDER BY clause */
1322 if( sqlite3ExprIsConstant(pExpr
) ){
1326 /* Virtual tables are unable to deal with NULLS FIRST */
1327 if( pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) break;
1329 /* First case - a direct column references without a COLLATE operator */
1330 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==pSrc
->iCursor
){
1331 assert( pExpr
->iColumn
>=XN_ROWID
&& pExpr
->iColumn
<pTab
->nCol
);
1335 /* 2nd case - a column reference with a COLLATE operator. Only match
1336 ** of the COLLATE operator matches the collation of the column. */
1337 if( pExpr
->op
==TK_COLLATE
1338 && (pE2
= pExpr
->pLeft
)->op
==TK_COLUMN
1339 && pE2
->iTable
==pSrc
->iCursor
1341 const char *zColl
; /* The collating sequence name */
1342 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1343 assert( pExpr
->u
.zToken
!=0 );
1344 assert( pE2
->iColumn
>=XN_ROWID
&& pE2
->iColumn
<pTab
->nCol
);
1345 pExpr
->iColumn
= pE2
->iColumn
;
1346 if( pE2
->iColumn
<0 ) continue; /* Collseq does not matter for rowid */
1347 zColl
= sqlite3ColumnColl(&pTab
->aCol
[pE2
->iColumn
]);
1348 if( zColl
==0 ) zColl
= sqlite3StrBINARY
;
1349 if( sqlite3_stricmp(pExpr
->u
.zToken
, zColl
)==0 ) continue;
1352 /* No matches cause a break out of the loop */
1357 if( (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
) ){
1358 eDistinct
= 2 + ((pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)!=0);
1359 }else if( pWInfo
->wctrlFlags
& WHERE_GROUPBY
){
1365 /* Allocate the sqlite3_index_info structure
1367 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
1368 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
1369 + sizeof(*pIdxOrderBy
)*nOrderBy
+ sizeof(*pHidden
)
1370 + sizeof(sqlite3_value
*)*nTerm
);
1372 sqlite3ErrorMsg(pParse
, "out of memory");
1375 pHidden
= (struct HiddenIndexInfo
*)&pIdxInfo
[1];
1376 pIdxCons
= (struct sqlite3_index_constraint
*)&pHidden
->aRhs
[nTerm
];
1377 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
1378 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
1379 pIdxInfo
->aConstraint
= pIdxCons
;
1380 pIdxInfo
->aOrderBy
= pIdxOrderBy
;
1381 pIdxInfo
->aConstraintUsage
= pUsage
;
1383 pHidden
->pParse
= pParse
;
1384 pHidden
->eDistinct
= eDistinct
;
1386 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1388 if( (pTerm
->wtFlags
& TERM_OK
)==0 ) continue;
1389 pIdxCons
[j
].iColumn
= pTerm
->u
.x
.leftColumn
;
1390 pIdxCons
[j
].iTermOffset
= i
;
1391 op
= pTerm
->eOperator
& WO_ALL
;
1393 if( (pTerm
->wtFlags
& TERM_SLICE
)==0 ){
1394 pHidden
->mIn
|= SMASKBIT32(j
);
1399 pIdxCons
[j
].op
= pTerm
->eMatchOp
;
1400 }else if( op
& (WO_ISNULL
|WO_IS
) ){
1401 if( op
==WO_ISNULL
){
1402 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_ISNULL
;
1404 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_IS
;
1407 pIdxCons
[j
].op
= (u8
)op
;
1408 /* The direct assignment in the previous line is possible only because
1409 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1410 ** following asserts verify this fact. */
1411 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
1412 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
1413 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
1414 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
1415 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
1416 assert( pTerm
->eOperator
&(WO_IN
|WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_AUX
) );
1418 if( op
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
)
1419 && sqlite3ExprIsVector(pTerm
->pExpr
->pRight
)
1422 if( j
<16 ) mNoOmit
|= (1 << j
);
1423 if( op
==WO_LT
) pIdxCons
[j
].op
= WO_LE
;
1424 if( op
==WO_GT
) pIdxCons
[j
].op
= WO_GE
;
1431 pIdxInfo
->nConstraint
= j
;
1432 for(i
=j
=0; i
<nOrderBy
; i
++){
1433 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1434 if( sqlite3ExprIsConstant(pExpr
) ) continue;
1435 assert( pExpr
->op
==TK_COLUMN
1436 || (pExpr
->op
==TK_COLLATE
&& pExpr
->pLeft
->op
==TK_COLUMN
1437 && pExpr
->iColumn
==pExpr
->pLeft
->iColumn
) );
1438 pIdxOrderBy
[j
].iColumn
= pExpr
->iColumn
;
1439 pIdxOrderBy
[j
].desc
= pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_DESC
;
1442 pIdxInfo
->nOrderBy
= j
;
1444 *pmNoOmit
= mNoOmit
;
1449 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1450 ** and possibly modified by xBestIndex methods.
1452 static void freeIndexInfo(sqlite3
*db
, sqlite3_index_info
*pIdxInfo
){
1453 HiddenIndexInfo
*pHidden
;
1455 assert( pIdxInfo
!=0 );
1456 pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
1457 assert( pHidden
->pParse
!=0 );
1458 assert( pHidden
->pParse
->db
==db
);
1459 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++){
1460 sqlite3ValueFree(pHidden
->aRhs
[i
]); /* IMP: R-14553-25174 */
1461 pHidden
->aRhs
[i
] = 0;
1463 sqlite3DbFree(db
, pIdxInfo
);
1467 ** The table object reference passed as the second argument to this function
1468 ** must represent a virtual table. This function invokes the xBestIndex()
1469 ** method of the virtual table with the sqlite3_index_info object that
1470 ** comes in as the 3rd argument to this function.
1472 ** If an error occurs, pParse is populated with an error message and an
1473 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1474 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1475 ** the current configuration of "unusable" flags in sqlite3_index_info can
1476 ** not result in a valid plan.
1478 ** Whether or not an error is returned, it is the responsibility of the
1479 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1480 ** that this is required.
1482 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
1483 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
1486 whereTraceIndexInfoInputs(p
);
1487 pParse
->db
->nSchemaLock
++;
1488 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
1489 pParse
->db
->nSchemaLock
--;
1490 whereTraceIndexInfoOutputs(p
);
1492 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_CONSTRAINT
){
1493 if( rc
==SQLITE_NOMEM
){
1494 sqlite3OomFault(pParse
->db
);
1495 }else if( !pVtab
->zErrMsg
){
1496 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
1498 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
1501 if( pTab
->u
.vtab
.p
->bAllSchemas
){
1502 sqlite3VtabUsesAllSchemas(pParse
);
1504 sqlite3_free(pVtab
->zErrMsg
);
1508 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1510 #ifdef SQLITE_ENABLE_STAT4
1512 ** Estimate the location of a particular key among all keys in an
1513 ** index. Store the results in aStat as follows:
1515 ** aStat[0] Est. number of rows less than pRec
1516 ** aStat[1] Est. number of rows equal to pRec
1518 ** Return the index of the sample that is the smallest sample that
1519 ** is greater than or equal to pRec. Note that this index is not an index
1520 ** into the aSample[] array - it is an index into a virtual set of samples
1521 ** based on the contents of aSample[] and the number of fields in record
1524 static int whereKeyStats(
1525 Parse
*pParse
, /* Database connection */
1526 Index
*pIdx
, /* Index to consider domain of */
1527 UnpackedRecord
*pRec
, /* Vector of values to consider */
1528 int roundUp
, /* Round up if true. Round down if false */
1529 tRowcnt
*aStat
/* OUT: stats written here */
1531 IndexSample
*aSample
= pIdx
->aSample
;
1532 int iCol
; /* Index of required stats in anEq[] etc. */
1533 int i
; /* Index of first sample >= pRec */
1534 int iSample
; /* Smallest sample larger than or equal to pRec */
1535 int iMin
= 0; /* Smallest sample not yet tested */
1536 int iTest
; /* Next sample to test */
1537 int res
; /* Result of comparison operation */
1538 int nField
; /* Number of fields in pRec */
1539 tRowcnt iLower
= 0; /* anLt[] + anEq[] of largest sample pRec is > */
1541 #ifndef SQLITE_DEBUG
1542 UNUSED_PARAMETER( pParse
);
1545 assert( pIdx
->nSample
>0 );
1546 assert( pRec
->nField
>0 );
1549 /* Do a binary search to find the first sample greater than or equal
1550 ** to pRec. If pRec contains a single field, the set of samples to search
1551 ** is simply the aSample[] array. If the samples in aSample[] contain more
1552 ** than one fields, all fields following the first are ignored.
1554 ** If pRec contains N fields, where N is more than one, then as well as the
1555 ** samples in aSample[] (truncated to N fields), the search also has to
1556 ** consider prefixes of those samples. For example, if the set of samples
1559 ** aSample[0] = (a, 5)
1560 ** aSample[1] = (a, 10)
1561 ** aSample[2] = (b, 5)
1562 ** aSample[3] = (c, 100)
1563 ** aSample[4] = (c, 105)
1565 ** Then the search space should ideally be the samples above and the
1566 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1567 ** the code actually searches this set:
1580 ** For each sample in the aSample[] array, N samples are present in the
1581 ** effective sample array. In the above, samples 0 and 1 are based on
1582 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1584 ** Often, sample i of each block of N effective samples has (i+1) fields.
1585 ** Except, each sample may be extended to ensure that it is greater than or
1586 ** equal to the previous sample in the array. For example, in the above,
1587 ** sample 2 is the first sample of a block of N samples, so at first it
1588 ** appears that it should be 1 field in size. However, that would make it
1589 ** smaller than sample 1, so the binary search would not work. As a result,
1590 ** it is extended to two fields. The duplicates that this creates do not
1591 ** cause any problems.
1593 if( !HasRowid(pIdx
->pTable
) && IsPrimaryKeyIndex(pIdx
) ){
1594 nField
= pIdx
->nKeyCol
;
1596 nField
= pIdx
->nColumn
;
1598 nField
= MIN(pRec
->nField
, nField
);
1600 iSample
= pIdx
->nSample
* nField
;
1602 int iSamp
; /* Index in aSample[] of test sample */
1603 int n
; /* Number of fields in test sample */
1605 iTest
= (iMin
+iSample
)/2;
1606 iSamp
= iTest
/ nField
;
1608 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1609 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1610 ** fields that is greater than the previous effective sample. */
1611 for(n
=(iTest
% nField
) + 1; n
<nField
; n
++){
1612 if( aSample
[iSamp
-1].anLt
[n
-1]!=aSample
[iSamp
].anLt
[n
-1] ) break;
1619 res
= sqlite3VdbeRecordCompare(aSample
[iSamp
].n
, aSample
[iSamp
].p
, pRec
);
1621 iLower
= aSample
[iSamp
].anLt
[n
-1] + aSample
[iSamp
].anEq
[n
-1];
1623 }else if( res
==0 && n
<nField
){
1624 iLower
= aSample
[iSamp
].anLt
[n
-1];
1631 }while( res
&& iMin
<iSample
);
1632 i
= iSample
/ nField
;
1635 /* The following assert statements check that the binary search code
1636 ** above found the right answer. This block serves no purpose other
1637 ** than to invoke the asserts. */
1638 if( pParse
->db
->mallocFailed
==0 ){
1640 /* If (res==0) is true, then pRec must be equal to sample i. */
1641 assert( i
<pIdx
->nSample
);
1642 assert( iCol
==nField
-1 );
1643 pRec
->nField
= nField
;
1644 assert( 0==sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)
1645 || pParse
->db
->mallocFailed
1648 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1649 ** all samples in the aSample[] array, pRec must be smaller than the
1650 ** (iCol+1) field prefix of sample i. */
1651 assert( i
<=pIdx
->nSample
&& i
>=0 );
1652 pRec
->nField
= iCol
+1;
1653 assert( i
==pIdx
->nSample
1654 || sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)>0
1655 || pParse
->db
->mallocFailed
);
1657 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1658 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1659 ** be greater than or equal to the (iCol) field prefix of sample i.
1660 ** If (i>0), then pRec must also be greater than sample (i-1). */
1662 pRec
->nField
= iCol
;
1663 assert( sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)<=0
1664 || pParse
->db
->mallocFailed
|| CORRUPT_DB
);
1667 pRec
->nField
= nField
;
1668 assert( sqlite3VdbeRecordCompare(aSample
[i
-1].n
, aSample
[i
-1].p
, pRec
)<0
1669 || pParse
->db
->mallocFailed
|| CORRUPT_DB
);
1673 #endif /* ifdef SQLITE_DEBUG */
1676 /* Record pRec is equal to sample i */
1677 assert( iCol
==nField
-1 );
1678 aStat
[0] = aSample
[i
].anLt
[iCol
];
1679 aStat
[1] = aSample
[i
].anEq
[iCol
];
1681 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1682 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1683 ** is larger than all samples in the array. */
1684 tRowcnt iUpper
, iGap
;
1685 if( i
>=pIdx
->nSample
){
1686 iUpper
= pIdx
->nRowEst0
;
1688 iUpper
= aSample
[i
].anLt
[iCol
];
1691 if( iLower
>=iUpper
){
1694 iGap
= iUpper
- iLower
;
1701 aStat
[0] = iLower
+ iGap
;
1702 aStat
[1] = pIdx
->aAvgEq
[nField
-1];
1705 /* Restore the pRec->nField value before returning. */
1706 pRec
->nField
= nField
;
1709 #endif /* SQLITE_ENABLE_STAT4 */
1712 ** If it is not NULL, pTerm is a term that provides an upper or lower
1713 ** bound on a range scan. Without considering pTerm, it is estimated
1714 ** that the scan will visit nNew rows. This function returns the number
1715 ** estimated to be visited after taking pTerm into account.
1717 ** If the user explicitly specified a likelihood() value for this term,
1718 ** then the return value is the likelihood multiplied by the number of
1719 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1720 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1722 static LogEst
whereRangeAdjust(WhereTerm
*pTerm
, LogEst nNew
){
1725 if( pTerm
->truthProb
<=0 ){
1726 nRet
+= pTerm
->truthProb
;
1727 }else if( (pTerm
->wtFlags
& TERM_VNULL
)==0 ){
1728 nRet
-= 20; assert( 20==sqlite3LogEst(4) );
1735 #ifdef SQLITE_ENABLE_STAT4
1737 ** Return the affinity for a single column of an index.
1739 char sqlite3IndexColumnAffinity(sqlite3
*db
, Index
*pIdx
, int iCol
){
1740 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
1741 if( !pIdx
->zColAff
){
1742 if( sqlite3IndexAffinityStr(db
, pIdx
)==0 ) return SQLITE_AFF_BLOB
;
1744 assert( pIdx
->zColAff
[iCol
]!=0 );
1745 return pIdx
->zColAff
[iCol
];
1750 #ifdef SQLITE_ENABLE_STAT4
1752 ** This function is called to estimate the number of rows visited by a
1753 ** range-scan on a skip-scan index. For example:
1755 ** CREATE INDEX i1 ON t1(a, b, c);
1756 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1758 ** Value pLoop->nOut is currently set to the estimated number of rows
1759 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1760 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1761 ** on the stat4 data for the index. this scan will be performed multiple
1762 ** times (once for each (a,b) combination that matches a=?) is dealt with
1765 ** It does this by scanning through all stat4 samples, comparing values
1766 ** extracted from pLower and pUpper with the corresponding column in each
1767 ** sample. If L and U are the number of samples found to be less than or
1768 ** equal to the values extracted from pLower and pUpper respectively, and
1769 ** N is the total number of samples, the pLoop->nOut value is adjusted
1772 ** nOut = nOut * ( min(U - L, 1) / N )
1774 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1775 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1778 ** Normally, this function sets *pbDone to 1 before returning. However,
1779 ** if no value can be extracted from either pLower or pUpper (and so the
1780 ** estimate of the number of rows delivered remains unchanged), *pbDone
1783 ** If an error occurs, an SQLite error code is returned. Otherwise,
1786 static int whereRangeSkipScanEst(
1787 Parse
*pParse
, /* Parsing & code generating context */
1788 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1789 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1790 WhereLoop
*pLoop
, /* Update the .nOut value of this loop */
1791 int *pbDone
/* Set to true if at least one expr. value extracted */
1793 Index
*p
= pLoop
->u
.btree
.pIndex
;
1794 int nEq
= pLoop
->u
.btree
.nEq
;
1795 sqlite3
*db
= pParse
->db
;
1797 int nUpper
= p
->nSample
+1;
1799 u8 aff
= sqlite3IndexColumnAffinity(db
, p
, nEq
);
1802 sqlite3_value
*p1
= 0; /* Value extracted from pLower */
1803 sqlite3_value
*p2
= 0; /* Value extracted from pUpper */
1804 sqlite3_value
*pVal
= 0; /* Value extracted from record */
1806 pColl
= sqlite3LocateCollSeq(pParse
, p
->azColl
[nEq
]);
1808 rc
= sqlite3Stat4ValueFromExpr(pParse
, pLower
->pExpr
->pRight
, aff
, &p1
);
1811 if( pUpper
&& rc
==SQLITE_OK
){
1812 rc
= sqlite3Stat4ValueFromExpr(pParse
, pUpper
->pExpr
->pRight
, aff
, &p2
);
1813 nUpper
= p2
? 0 : p
->nSample
;
1819 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nSample
; i
++){
1820 rc
= sqlite3Stat4Column(db
, p
->aSample
[i
].p
, p
->aSample
[i
].n
, nEq
, &pVal
);
1821 if( rc
==SQLITE_OK
&& p1
){
1822 int res
= sqlite3MemCompare(p1
, pVal
, pColl
);
1823 if( res
>=0 ) nLower
++;
1825 if( rc
==SQLITE_OK
&& p2
){
1826 int res
= sqlite3MemCompare(p2
, pVal
, pColl
);
1827 if( res
>=0 ) nUpper
++;
1830 nDiff
= (nUpper
- nLower
);
1831 if( nDiff
<=0 ) nDiff
= 1;
1833 /* If there is both an upper and lower bound specified, and the
1834 ** comparisons indicate that they are close together, use the fallback
1835 ** method (assume that the scan visits 1/64 of the rows) for estimating
1836 ** the number of rows visited. Otherwise, estimate the number of rows
1837 ** using the method described in the header comment for this function. */
1838 if( nDiff
!=1 || pUpper
==0 || pLower
==0 ){
1839 int nAdjust
= (sqlite3LogEst(p
->nSample
) - sqlite3LogEst(nDiff
));
1840 pLoop
->nOut
-= nAdjust
;
1842 WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1843 nLower
, nUpper
, nAdjust
*-1, pLoop
->nOut
));
1847 assert( *pbDone
==0 );
1850 sqlite3ValueFree(p1
);
1851 sqlite3ValueFree(p2
);
1852 sqlite3ValueFree(pVal
);
1856 #endif /* SQLITE_ENABLE_STAT4 */
1859 ** This function is used to estimate the number of rows that will be visited
1860 ** by scanning an index for a range of values. The range may have an upper
1861 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1862 ** and lower bounds are represented by pLower and pUpper respectively. For
1863 ** example, assuming that index p is on t1(a):
1865 ** ... FROM t1 WHERE a > ? AND a < ? ...
1870 ** If either of the upper or lower bound is not present, then NULL is passed in
1871 ** place of the corresponding WhereTerm.
1873 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1874 ** column subject to the range constraint. Or, equivalently, the number of
1875 ** equality constraints optimized by the proposed index scan. For example,
1876 ** assuming index p is on t1(a, b), and the SQL query is:
1878 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1880 ** then nEq is set to 1 (as the range restricted column, b, is the second
1881 ** left-most column of the index). Or, if the query is:
1883 ** ... FROM t1 WHERE a > ? AND a < ? ...
1885 ** then nEq is set to 0.
1887 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1888 ** number of rows that the index scan is expected to visit without
1889 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1890 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1891 ** to account for the range constraints pLower and pUpper.
1893 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1894 ** used, a single range inequality reduces the search space by a factor of 4.
1895 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1896 ** rows visited by a factor of 64.
1898 static int whereRangeScanEst(
1899 Parse
*pParse
, /* Parsing & code generating context */
1900 WhereLoopBuilder
*pBuilder
,
1901 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1902 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1903 WhereLoop
*pLoop
/* Modify the .nOut and maybe .rRun fields */
1906 int nOut
= pLoop
->nOut
;
1909 #ifdef SQLITE_ENABLE_STAT4
1910 Index
*p
= pLoop
->u
.btree
.pIndex
;
1911 int nEq
= pLoop
->u
.btree
.nEq
;
1913 if( p
->nSample
>0 && ALWAYS(nEq
<p
->nSampleCol
)
1914 && OptimizationEnabled(pParse
->db
, SQLITE_Stat4
)
1916 if( nEq
==pBuilder
->nRecValid
){
1917 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1919 int nBtm
= pLoop
->u
.btree
.nBtm
;
1920 int nTop
= pLoop
->u
.btree
.nTop
;
1922 /* Variable iLower will be set to the estimate of the number of rows in
1923 ** the index that are less than the lower bound of the range query. The
1924 ** lower bound being the concatenation of $P and $L, where $P is the
1925 ** key-prefix formed by the nEq values matched against the nEq left-most
1926 ** columns of the index, and $L is the value in pLower.
1928 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1929 ** is not a simple variable or literal value), the lower bound of the
1930 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1931 ** if $L is available, whereKeyStats() is called for both ($P) and
1932 ** ($P:$L) and the larger of the two returned values is used.
1934 ** Similarly, iUpper is to be set to the estimate of the number of rows
1935 ** less than the upper bound of the range query. Where the upper bound
1936 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1937 ** of iUpper are requested of whereKeyStats() and the smaller used.
1939 ** The number of rows between the two bounds is then just iUpper-iLower.
1941 tRowcnt iLower
; /* Rows less than the lower bound */
1942 tRowcnt iUpper
; /* Rows less than the upper bound */
1943 int iLwrIdx
= -2; /* aSample[] for the lower bound */
1944 int iUprIdx
= -1; /* aSample[] for the upper bound */
1947 testcase( pRec
->nField
!=pBuilder
->nRecValid
);
1948 pRec
->nField
= pBuilder
->nRecValid
;
1950 /* Determine iLower and iUpper using ($P) only. */
1953 iUpper
= p
->nRowEst0
;
1955 /* Note: this call could be optimized away - since the same values must
1956 ** have been requested when testing key $P in whereEqualScanEst(). */
1957 whereKeyStats(pParse
, p
, pRec
, 0, a
);
1959 iUpper
= a
[0] + a
[1];
1962 assert( pLower
==0 || (pLower
->eOperator
& (WO_GT
|WO_GE
))!=0 );
1963 assert( pUpper
==0 || (pUpper
->eOperator
& (WO_LT
|WO_LE
))!=0 );
1964 assert( p
->aSortOrder
!=0 );
1965 if( p
->aSortOrder
[nEq
] ){
1966 /* The roles of pLower and pUpper are swapped for a DESC index */
1967 SWAP(WhereTerm
*, pLower
, pUpper
);
1968 SWAP(int, nBtm
, nTop
);
1971 /* If possible, improve on the iLower estimate using ($P:$L). */
1973 int n
; /* Values extracted from pExpr */
1974 Expr
*pExpr
= pLower
->pExpr
->pRight
;
1975 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nBtm
, nEq
, &n
);
1976 if( rc
==SQLITE_OK
&& n
){
1978 u16 mask
= WO_GT
|WO_LE
;
1979 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1980 iLwrIdx
= whereKeyStats(pParse
, p
, pRec
, 0, a
);
1981 iNew
= a
[0] + ((pLower
->eOperator
& mask
) ? a
[1] : 0);
1982 if( iNew
>iLower
) iLower
= iNew
;
1988 /* If possible, improve on the iUpper estimate using ($P:$U). */
1990 int n
; /* Values extracted from pExpr */
1991 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
1992 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nTop
, nEq
, &n
);
1993 if( rc
==SQLITE_OK
&& n
){
1995 u16 mask
= WO_GT
|WO_LE
;
1996 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1997 iUprIdx
= whereKeyStats(pParse
, p
, pRec
, 1, a
);
1998 iNew
= a
[0] + ((pUpper
->eOperator
& mask
) ? a
[1] : 0);
1999 if( iNew
<iUpper
) iUpper
= iNew
;
2005 pBuilder
->pRec
= pRec
;
2006 if( rc
==SQLITE_OK
){
2007 if( iUpper
>iLower
){
2008 nNew
= sqlite3LogEst(iUpper
- iLower
);
2009 /* TUNING: If both iUpper and iLower are derived from the same
2010 ** sample, then assume they are 4x more selective. This brings
2011 ** the estimated selectivity more in line with what it would be
2012 ** if estimated without the use of STAT4 tables. */
2013 if( iLwrIdx
==iUprIdx
) nNew
-= 20; assert( 20==sqlite3LogEst(4) );
2015 nNew
= 10; assert( 10==sqlite3LogEst(2) );
2020 WHERETRACE(0x20, ("STAT4 range scan: %u..%u est=%d\n",
2021 (u32
)iLower
, (u32
)iUpper
, nOut
));
2025 rc
= whereRangeSkipScanEst(pParse
, pLower
, pUpper
, pLoop
, &bDone
);
2026 if( bDone
) return rc
;
2030 UNUSED_PARAMETER(pParse
);
2031 UNUSED_PARAMETER(pBuilder
);
2032 assert( pLower
|| pUpper
);
2034 assert( pUpper
==0 || (pUpper
->wtFlags
& TERM_VNULL
)==0 || pParse
->nErr
>0 );
2035 nNew
= whereRangeAdjust(pLower
, nOut
);
2036 nNew
= whereRangeAdjust(pUpper
, nNew
);
2038 /* TUNING: If there is both an upper and lower limit and neither limit
2039 ** has an application-defined likelihood(), assume the range is
2040 ** reduced by an additional 75%. This means that, by default, an open-ended
2041 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
2042 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
2043 ** match 1/64 of the index. */
2044 if( pLower
&& pLower
->truthProb
>0 && pUpper
&& pUpper
->truthProb
>0 ){
2048 nOut
-= (pLower
!=0) + (pUpper
!=0);
2049 if( nNew
<10 ) nNew
= 10;
2050 if( nNew
<nOut
) nOut
= nNew
;
2051 #if defined(WHERETRACE_ENABLED)
2052 if( pLoop
->nOut
>nOut
){
2053 WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n",
2054 pLoop
->nOut
, nOut
));
2057 pLoop
->nOut
= (LogEst
)nOut
;
2061 #ifdef SQLITE_ENABLE_STAT4
2063 ** Estimate the number of rows that will be returned based on
2064 ** an equality constraint x=VALUE and where that VALUE occurs in
2065 ** the histogram data. This only works when x is the left-most
2066 ** column of an index and sqlite_stat4 histogram data is available
2067 ** for that index. When pExpr==NULL that means the constraint is
2068 ** "x IS NULL" instead of "x=VALUE".
2070 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2071 ** If unable to make an estimate, leave *pnRow unchanged and return
2074 ** This routine can fail if it is unable to load a collating sequence
2075 ** required for string comparison, or if unable to allocate memory
2076 ** for a UTF conversion required for comparison. The error is stored
2077 ** in the pParse structure.
2079 static int whereEqualScanEst(
2080 Parse
*pParse
, /* Parsing & code generating context */
2081 WhereLoopBuilder
*pBuilder
,
2082 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
2083 tRowcnt
*pnRow
/* Write the revised row estimate here */
2085 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2086 int nEq
= pBuilder
->pNew
->u
.btree
.nEq
;
2087 UnpackedRecord
*pRec
= pBuilder
->pRec
;
2088 int rc
; /* Subfunction return code */
2089 tRowcnt a
[2]; /* Statistics */
2093 assert( nEq
<=p
->nColumn
);
2094 assert( p
->aSample
!=0 );
2095 assert( p
->nSample
>0 );
2096 assert( pBuilder
->nRecValid
<nEq
);
2098 /* If values are not available for all fields of the index to the left
2099 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
2100 if( pBuilder
->nRecValid
<(nEq
-1) ){
2101 return SQLITE_NOTFOUND
;
2104 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
2105 ** below would return the same value. */
2106 if( nEq
>=p
->nColumn
){
2111 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, 1, nEq
-1, &bOk
);
2112 pBuilder
->pRec
= pRec
;
2113 if( rc
!=SQLITE_OK
) return rc
;
2114 if( bOk
==0 ) return SQLITE_NOTFOUND
;
2115 pBuilder
->nRecValid
= nEq
;
2117 whereKeyStats(pParse
, p
, pRec
, 0, a
);
2118 WHERETRACE(0x20,("equality scan regions %s(%d): %d\n",
2119 p
->zName
, nEq
-1, (int)a
[1]));
2124 #endif /* SQLITE_ENABLE_STAT4 */
2126 #ifdef SQLITE_ENABLE_STAT4
2128 ** Estimate the number of rows that will be returned based on
2129 ** an IN constraint where the right-hand side of the IN operator
2130 ** is a list of values. Example:
2132 ** WHERE x IN (1,2,3,4)
2134 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2135 ** If unable to make an estimate, leave *pnRow unchanged and return
2138 ** This routine can fail if it is unable to load a collating sequence
2139 ** required for string comparison, or if unable to allocate memory
2140 ** for a UTF conversion required for comparison. The error is stored
2141 ** in the pParse structure.
2143 static int whereInScanEst(
2144 Parse
*pParse
, /* Parsing & code generating context */
2145 WhereLoopBuilder
*pBuilder
,
2146 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2147 tRowcnt
*pnRow
/* Write the revised row estimate here */
2149 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2150 i64 nRow0
= sqlite3LogEstToInt(p
->aiRowLogEst
[0]);
2151 int nRecValid
= pBuilder
->nRecValid
;
2152 int rc
= SQLITE_OK
; /* Subfunction return code */
2153 tRowcnt nEst
; /* Number of rows for a single term */
2154 tRowcnt nRowEst
= 0; /* New estimate of the number of rows */
2155 int i
; /* Loop counter */
2157 assert( p
->aSample
!=0 );
2158 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
2160 rc
= whereEqualScanEst(pParse
, pBuilder
, pList
->a
[i
].pExpr
, &nEst
);
2162 pBuilder
->nRecValid
= nRecValid
;
2165 if( rc
==SQLITE_OK
){
2166 if( nRowEst
> (tRowcnt
)nRow0
) nRowEst
= nRow0
;
2168 WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst
));
2170 assert( pBuilder
->nRecValid
==nRecValid
);
2173 #endif /* SQLITE_ENABLE_STAT4 */
2176 #ifdef WHERETRACE_ENABLED
2178 ** Print the content of a WhereTerm object
2180 void sqlite3WhereTermPrint(WhereTerm
*pTerm
, int iTerm
){
2182 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm
);
2186 memcpy(zType
, "....", 5);
2187 if( pTerm
->wtFlags
& TERM_VIRTUAL
) zType
[0] = 'V';
2188 if( pTerm
->eOperator
& WO_EQUIV
) zType
[1] = 'E';
2189 if( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) ) zType
[2] = 'L';
2190 if( pTerm
->wtFlags
& TERM_CODED
) zType
[3] = 'C';
2191 if( pTerm
->eOperator
& WO_SINGLE
){
2192 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
2193 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left={%d:%d}",
2194 pTerm
->leftCursor
, pTerm
->u
.x
.leftColumn
);
2195 }else if( (pTerm
->eOperator
& WO_OR
)!=0 && pTerm
->u
.pOrInfo
!=0 ){
2196 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"indexable=0x%llx",
2197 pTerm
->u
.pOrInfo
->indexable
);
2199 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left=%d", pTerm
->leftCursor
);
2202 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2203 iTerm
, pTerm
, zType
, zLeft
, pTerm
->eOperator
, pTerm
->wtFlags
);
2204 /* The 0x10000 .wheretrace flag causes extra information to be
2205 ** shown about each Term */
2206 if( sqlite3WhereTrace
& 0x10000 ){
2207 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2208 pTerm
->truthProb
, (u64
)pTerm
->prereqAll
, (u64
)pTerm
->prereqRight
);
2210 if( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 && pTerm
->u
.x
.iField
){
2211 sqlite3DebugPrintf(" iField=%d", pTerm
->u
.x
.iField
);
2213 if( pTerm
->iParent
>=0 ){
2214 sqlite3DebugPrintf(" iParent=%d", pTerm
->iParent
);
2216 sqlite3DebugPrintf("\n");
2217 sqlite3TreeViewExpr(0, pTerm
->pExpr
, 0);
2222 #ifdef WHERETRACE_ENABLED
2224 ** Show the complete content of a WhereClause
2226 void sqlite3WhereClausePrint(WhereClause
*pWC
){
2228 for(i
=0; i
<pWC
->nTerm
; i
++){
2229 sqlite3WhereTermPrint(&pWC
->a
[i
], i
);
2234 #ifdef WHERETRACE_ENABLED
2236 ** Print a WhereLoop object for debugging purposes
2238 void sqlite3WhereLoopPrint(WhereLoop
*p
, WhereClause
*pWC
){
2239 WhereInfo
*pWInfo
= pWC
->pWInfo
;
2240 int nb
= 1+(pWInfo
->pTabList
->nSrc
+3)/4;
2241 SrcItem
*pItem
= pWInfo
->pTabList
->a
+ p
->iTab
;
2242 Table
*pTab
= pItem
->pTab
;
2243 Bitmask mAll
= (((Bitmask
)1)<<(nb
*4)) - 1;
2244 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p
->cId
,
2245 p
->iTab
, nb
, p
->maskSelf
, nb
, p
->prereq
& mAll
);
2246 sqlite3DebugPrintf(" %12s",
2247 pItem
->zAlias
? pItem
->zAlias
: pTab
->zName
);
2248 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2250 if( p
->u
.btree
.pIndex
&& (zName
= p
->u
.btree
.pIndex
->zName
)!=0 ){
2251 if( strncmp(zName
, "sqlite_autoindex_", 17)==0 ){
2252 int i
= sqlite3Strlen30(zName
) - 1;
2253 while( zName
[i
]!='_' ) i
--;
2256 sqlite3DebugPrintf(".%-16s %2d", zName
, p
->u
.btree
.nEq
);
2258 sqlite3DebugPrintf("%20s","");
2262 if( p
->u
.vtab
.idxStr
){
2263 z
= sqlite3_mprintf("(%d,\"%s\",%#x)",
2264 p
->u
.vtab
.idxNum
, p
->u
.vtab
.idxStr
, p
->u
.vtab
.omitMask
);
2266 z
= sqlite3_mprintf("(%d,%x)", p
->u
.vtab
.idxNum
, p
->u
.vtab
.omitMask
);
2268 sqlite3DebugPrintf(" %-19s", z
);
2271 if( p
->wsFlags
& WHERE_SKIPSCAN
){
2272 sqlite3DebugPrintf(" f %06x %d-%d", p
->wsFlags
, p
->nLTerm
,p
->nSkip
);
2274 sqlite3DebugPrintf(" f %06x N %d", p
->wsFlags
, p
->nLTerm
);
2276 sqlite3DebugPrintf(" cost %d,%d,%d\n", p
->rSetup
, p
->rRun
, p
->nOut
);
2277 if( p
->nLTerm
&& (sqlite3WhereTrace
& 0x4000)!=0 ){
2279 for(i
=0; i
<p
->nLTerm
; i
++){
2280 sqlite3WhereTermPrint(p
->aLTerm
[i
], i
);
2287 ** Convert bulk memory into a valid WhereLoop that can be passed
2288 ** to whereLoopClear harmlessly.
2290 static void whereLoopInit(WhereLoop
*p
){
2291 p
->aLTerm
= p
->aLTermSpace
;
2293 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
2298 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
2300 static void whereLoopClearUnion(sqlite3
*db
, WhereLoop
*p
){
2301 if( p
->wsFlags
& (WHERE_VIRTUALTABLE
|WHERE_AUTO_INDEX
) ){
2302 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 && p
->u
.vtab
.needFree
){
2303 sqlite3_free(p
->u
.vtab
.idxStr
);
2304 p
->u
.vtab
.needFree
= 0;
2305 p
->u
.vtab
.idxStr
= 0;
2306 }else if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && p
->u
.btree
.pIndex
!=0 ){
2307 sqlite3DbFree(db
, p
->u
.btree
.pIndex
->zColAff
);
2308 sqlite3DbFreeNN(db
, p
->u
.btree
.pIndex
);
2309 p
->u
.btree
.pIndex
= 0;
2315 ** Deallocate internal memory used by a WhereLoop object. Leave the
2316 ** object in an initialized state, as if it had been newly allocated.
2318 static void whereLoopClear(sqlite3
*db
, WhereLoop
*p
){
2319 if( p
->aLTerm
!=p
->aLTermSpace
){
2320 sqlite3DbFreeNN(db
, p
->aLTerm
);
2321 p
->aLTerm
= p
->aLTermSpace
;
2322 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
2324 whereLoopClearUnion(db
, p
);
2330 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2332 static int whereLoopResize(sqlite3
*db
, WhereLoop
*p
, int n
){
2334 if( p
->nLSlot
>=n
) return SQLITE_OK
;
2336 paNew
= sqlite3DbMallocRawNN(db
, sizeof(p
->aLTerm
[0])*n
);
2337 if( paNew
==0 ) return SQLITE_NOMEM_BKPT
;
2338 memcpy(paNew
, p
->aLTerm
, sizeof(p
->aLTerm
[0])*p
->nLSlot
);
2339 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
2346 ** Transfer content from the second pLoop into the first.
2348 static int whereLoopXfer(sqlite3
*db
, WhereLoop
*pTo
, WhereLoop
*pFrom
){
2349 whereLoopClearUnion(db
, pTo
);
2350 if( pFrom
->nLTerm
> pTo
->nLSlot
2351 && whereLoopResize(db
, pTo
, pFrom
->nLTerm
)
2353 memset(pTo
, 0, WHERE_LOOP_XFER_SZ
);
2354 return SQLITE_NOMEM_BKPT
;
2356 memcpy(pTo
, pFrom
, WHERE_LOOP_XFER_SZ
);
2357 memcpy(pTo
->aLTerm
, pFrom
->aLTerm
, pTo
->nLTerm
*sizeof(pTo
->aLTerm
[0]));
2358 if( pFrom
->wsFlags
& WHERE_VIRTUALTABLE
){
2359 pFrom
->u
.vtab
.needFree
= 0;
2360 }else if( (pFrom
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
2361 pFrom
->u
.btree
.pIndex
= 0;
2367 ** Delete a WhereLoop object
2369 static void whereLoopDelete(sqlite3
*db
, WhereLoop
*p
){
2371 whereLoopClear(db
, p
);
2372 sqlite3DbNNFreeNN(db
, p
);
2376 ** Free a WhereInfo structure
2378 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
2379 assert( pWInfo
!=0 );
2381 sqlite3WhereClauseClear(&pWInfo
->sWC
);
2382 while( pWInfo
->pLoops
){
2383 WhereLoop
*p
= pWInfo
->pLoops
;
2384 pWInfo
->pLoops
= p
->pNextLoop
;
2385 whereLoopDelete(db
, p
);
2387 while( pWInfo
->pMemToFree
){
2388 WhereMemBlock
*pNext
= pWInfo
->pMemToFree
->pNext
;
2389 sqlite3DbNNFreeNN(db
, pWInfo
->pMemToFree
);
2390 pWInfo
->pMemToFree
= pNext
;
2392 sqlite3DbNNFreeNN(db
, pWInfo
);
2396 ** Return TRUE if all of the following are true:
2398 ** (1) X has the same or lower cost, or returns the same or fewer rows,
2400 ** (2) X uses fewer WHERE clause terms than Y
2401 ** (3) Every WHERE clause term used by X is also used by Y
2402 ** (4) X skips at least as many columns as Y
2403 ** (5) If X is a covering index, than Y is too
2405 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2406 ** If X is a proper subset of Y then Y is a better choice and ought
2407 ** to have a lower cost. This routine returns TRUE when that cost
2408 ** relationship is inverted and needs to be adjusted. Constraint (4)
2409 ** was added because if X uses skip-scan less than Y it still might
2410 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
2411 ** was added because a covering index probably deserves to have a lower cost
2412 ** than a non-covering index even if it is a proper subset.
2414 static int whereLoopCheaperProperSubset(
2415 const WhereLoop
*pX
, /* First WhereLoop to compare */
2416 const WhereLoop
*pY
/* Compare against this WhereLoop */
2419 if( pX
->nLTerm
-pX
->nSkip
>= pY
->nLTerm
-pY
->nSkip
){
2420 return 0; /* X is not a subset of Y */
2422 if( pX
->rRun
>pY
->rRun
&& pX
->nOut
>pY
->nOut
) return 0;
2423 if( pY
->nSkip
> pX
->nSkip
) return 0;
2424 for(i
=pX
->nLTerm
-1; i
>=0; i
--){
2425 if( pX
->aLTerm
[i
]==0 ) continue;
2426 for(j
=pY
->nLTerm
-1; j
>=0; j
--){
2427 if( pY
->aLTerm
[j
]==pX
->aLTerm
[i
] ) break;
2429 if( j
<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
2431 if( (pX
->wsFlags
&WHERE_IDX_ONLY
)!=0
2432 && (pY
->wsFlags
&WHERE_IDX_ONLY
)==0 ){
2433 return 0; /* Constraint (5) */
2435 return 1; /* All conditions meet */
2439 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2440 ** upwards or downwards so that:
2442 ** (1) pTemplate costs less than any other WhereLoops that are a proper
2443 ** subset of pTemplate
2445 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2446 ** is a proper subset.
2448 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2449 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2452 static void whereLoopAdjustCost(const WhereLoop
*p
, WhereLoop
*pTemplate
){
2453 if( (pTemplate
->wsFlags
& WHERE_INDEXED
)==0 ) return;
2454 for(; p
; p
=p
->pNextLoop
){
2455 if( p
->iTab
!=pTemplate
->iTab
) continue;
2456 if( (p
->wsFlags
& WHERE_INDEXED
)==0 ) continue;
2457 if( whereLoopCheaperProperSubset(p
, pTemplate
) ){
2458 /* Adjust pTemplate cost downward so that it is cheaper than its
2460 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2461 pTemplate
->rRun
, pTemplate
->nOut
,
2462 MIN(p
->rRun
, pTemplate
->rRun
),
2463 MIN(p
->nOut
- 1, pTemplate
->nOut
)));
2464 pTemplate
->rRun
= MIN(p
->rRun
, pTemplate
->rRun
);
2465 pTemplate
->nOut
= MIN(p
->nOut
- 1, pTemplate
->nOut
);
2466 }else if( whereLoopCheaperProperSubset(pTemplate
, p
) ){
2467 /* Adjust pTemplate cost upward so that it is costlier than p since
2468 ** pTemplate is a proper subset of p */
2469 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2470 pTemplate
->rRun
, pTemplate
->nOut
,
2471 MAX(p
->rRun
, pTemplate
->rRun
),
2472 MAX(p
->nOut
+ 1, pTemplate
->nOut
)));
2473 pTemplate
->rRun
= MAX(p
->rRun
, pTemplate
->rRun
);
2474 pTemplate
->nOut
= MAX(p
->nOut
+ 1, pTemplate
->nOut
);
2480 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2481 ** replaced by pTemplate.
2483 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2484 ** In other words if pTemplate ought to be dropped from further consideration.
2486 ** If pX is a WhereLoop that pTemplate can replace, then return the
2487 ** link that points to pX.
2489 ** If pTemplate cannot replace any existing element of the list but needs
2490 ** to be added to the list as a new entry, then return a pointer to the
2491 ** tail of the list.
2493 static WhereLoop
**whereLoopFindLesser(
2495 const WhereLoop
*pTemplate
2498 for(p
=(*ppPrev
); p
; ppPrev
=&p
->pNextLoop
, p
=*ppPrev
){
2499 if( p
->iTab
!=pTemplate
->iTab
|| p
->iSortIdx
!=pTemplate
->iSortIdx
){
2500 /* If either the iTab or iSortIdx values for two WhereLoop are different
2501 ** then those WhereLoops need to be considered separately. Neither is
2502 ** a candidate to replace the other. */
2505 /* In the current implementation, the rSetup value is either zero
2506 ** or the cost of building an automatic index (NlogN) and the NlogN
2507 ** is the same for compatible WhereLoops. */
2508 assert( p
->rSetup
==0 || pTemplate
->rSetup
==0
2509 || p
->rSetup
==pTemplate
->rSetup
);
2511 /* whereLoopAddBtree() always generates and inserts the automatic index
2512 ** case first. Hence compatible candidate WhereLoops never have a larger
2513 ** rSetup. Call this SETUP-INVARIANT */
2514 assert( p
->rSetup
>=pTemplate
->rSetup
);
2516 /* Any loop using an application-defined index (or PRIMARY KEY or
2517 ** UNIQUE constraint) with one or more == constraints is better
2518 ** than an automatic index. Unless it is a skip-scan. */
2519 if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0
2520 && (pTemplate
->nSkip
)==0
2521 && (pTemplate
->wsFlags
& WHERE_INDEXED
)!=0
2522 && (pTemplate
->wsFlags
& WHERE_COLUMN_EQ
)!=0
2523 && (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
2528 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2529 ** discarded. WhereLoop p is better if:
2530 ** (1) p has no more dependencies than pTemplate, and
2531 ** (2) p has an equal or lower cost than pTemplate
2533 if( (p
->prereq
& pTemplate
->prereq
)==p
->prereq
/* (1) */
2534 && p
->rSetup
<=pTemplate
->rSetup
/* (2a) */
2535 && p
->rRun
<=pTemplate
->rRun
/* (2b) */
2536 && p
->nOut
<=pTemplate
->nOut
/* (2c) */
2538 return 0; /* Discard pTemplate */
2541 /* If pTemplate is always better than p, then cause p to be overwritten
2542 ** with pTemplate. pTemplate is better than p if:
2543 ** (1) pTemplate has no more dependencies than p, and
2544 ** (2) pTemplate has an equal or lower cost than p.
2546 if( (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
/* (1) */
2547 && p
->rRun
>=pTemplate
->rRun
/* (2a) */
2548 && p
->nOut
>=pTemplate
->nOut
/* (2b) */
2550 assert( p
->rSetup
>=pTemplate
->rSetup
); /* SETUP-INVARIANT above */
2551 break; /* Cause p to be overwritten by pTemplate */
2558 ** Insert or replace a WhereLoop entry using the template supplied.
2560 ** An existing WhereLoop entry might be overwritten if the new template
2561 ** is better and has fewer dependencies. Or the template will be ignored
2562 ** and no insert will occur if an existing WhereLoop is faster and has
2563 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2564 ** added based on the template.
2566 ** If pBuilder->pOrSet is not NULL then we care about only the
2567 ** prerequisites and rRun and nOut costs of the N best loops. That
2568 ** information is gathered in the pBuilder->pOrSet object. This special
2569 ** processing mode is used only for OR clause processing.
2571 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2572 ** still might overwrite similar loops with the new template if the
2573 ** new template is better. Loops may be overwritten if the following
2574 ** conditions are met:
2576 ** (1) They have the same iTab.
2577 ** (2) They have the same iSortIdx.
2578 ** (3) The template has same or fewer dependencies than the current loop
2579 ** (4) The template has the same or lower cost than the current loop
2581 static int whereLoopInsert(WhereLoopBuilder
*pBuilder
, WhereLoop
*pTemplate
){
2582 WhereLoop
**ppPrev
, *p
;
2583 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
2584 sqlite3
*db
= pWInfo
->pParse
->db
;
2587 /* Stop the search once we hit the query planner search limit */
2588 if( pBuilder
->iPlanLimit
==0 ){
2589 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2590 if( pBuilder
->pOrSet
) pBuilder
->pOrSet
->n
= 0;
2593 pBuilder
->iPlanLimit
--;
2595 whereLoopAdjustCost(pWInfo
->pLoops
, pTemplate
);
2597 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2600 if( pBuilder
->pOrSet
!=0 ){
2601 if( pTemplate
->nLTerm
){
2602 #if WHERETRACE_ENABLED
2603 u16 n
= pBuilder
->pOrSet
->n
;
2606 whereOrInsert(pBuilder
->pOrSet
, pTemplate
->prereq
, pTemplate
->rRun
,
2608 #if WHERETRACE_ENABLED /* 0x8 */
2609 if( sqlite3WhereTrace
& 0x8 ){
2610 sqlite3DebugPrintf(x
?" or-%d: ":" or-X: ", n
);
2611 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2618 /* Look for an existing WhereLoop to replace with pTemplate
2620 ppPrev
= whereLoopFindLesser(&pWInfo
->pLoops
, pTemplate
);
2623 /* There already exists a WhereLoop on the list that is better
2624 ** than pTemplate, so just ignore pTemplate */
2625 #if WHERETRACE_ENABLED /* 0x8 */
2626 if( sqlite3WhereTrace
& 0x8 ){
2627 sqlite3DebugPrintf(" skip: ");
2628 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2636 /* If we reach this point it means that either p[] should be overwritten
2637 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2638 ** WhereLoop and insert it.
2640 #if WHERETRACE_ENABLED /* 0x8 */
2641 if( sqlite3WhereTrace
& 0x8 ){
2643 sqlite3DebugPrintf("replace: ");
2644 sqlite3WhereLoopPrint(p
, pBuilder
->pWC
);
2645 sqlite3DebugPrintf(" with: ");
2647 sqlite3DebugPrintf(" add: ");
2649 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2653 /* Allocate a new WhereLoop to add to the end of the list */
2654 *ppPrev
= p
= sqlite3DbMallocRawNN(db
, sizeof(WhereLoop
));
2655 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
2659 /* We will be overwriting WhereLoop p[]. But before we do, first
2660 ** go through the rest of the list and delete any other entries besides
2661 ** p[] that are also supplanted by pTemplate */
2662 WhereLoop
**ppTail
= &p
->pNextLoop
;
2665 ppTail
= whereLoopFindLesser(ppTail
, pTemplate
);
2666 if( ppTail
==0 ) break;
2668 if( pToDel
==0 ) break;
2669 *ppTail
= pToDel
->pNextLoop
;
2670 #if WHERETRACE_ENABLED /* 0x8 */
2671 if( sqlite3WhereTrace
& 0x8 ){
2672 sqlite3DebugPrintf(" delete: ");
2673 sqlite3WhereLoopPrint(pToDel
, pBuilder
->pWC
);
2676 whereLoopDelete(db
, pToDel
);
2679 rc
= whereLoopXfer(db
, p
, pTemplate
);
2680 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2681 Index
*pIndex
= p
->u
.btree
.pIndex
;
2682 if( pIndex
&& pIndex
->idxType
==SQLITE_IDXTYPE_IPK
){
2683 p
->u
.btree
.pIndex
= 0;
2690 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2691 ** WHERE clause that reference the loop but which are not used by an
2694 ** For every WHERE clause term that is not used by the index
2695 ** and which has a truth probability assigned by one of the likelihood(),
2696 ** likely(), or unlikely() SQL functions, reduce the estimated number
2697 ** of output rows by the probability specified.
2699 ** TUNING: For every WHERE clause term that is not used by the index
2700 ** and which does not have an assigned truth probability, heuristics
2701 ** described below are used to try to estimate the truth probability.
2702 ** TODO --> Perhaps this is something that could be improved by better
2703 ** table statistics.
2705 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2706 ** value corresponds to -1 in LogEst notation, so this means decrement
2707 ** the WhereLoop.nOut field for every such WHERE clause term.
2709 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2710 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2711 ** final output row estimate is no greater than 1/4 of the total number
2712 ** of rows in the table. In other words, assume that x==EXPR will filter
2713 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2714 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2715 ** on the "x" column and so in that case only cap the output row estimate
2716 ** at 1/2 instead of 1/4.
2718 static void whereLoopOutputAdjust(
2719 WhereClause
*pWC
, /* The WHERE clause */
2720 WhereLoop
*pLoop
, /* The loop to adjust downward */
2721 LogEst nRow
/* Number of rows in the entire table */
2723 WhereTerm
*pTerm
, *pX
;
2724 Bitmask notAllowed
= ~(pLoop
->prereq
|pLoop
->maskSelf
);
2726 LogEst iReduce
= 0; /* pLoop->nOut should not exceed nRow-iReduce */
2728 assert( (pLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
2729 for(i
=pWC
->nBase
, pTerm
=pWC
->a
; i
>0; i
--, pTerm
++){
2731 if( (pTerm
->prereqAll
& notAllowed
)!=0 ) continue;
2732 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)==0 ) continue;
2733 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)!=0 ) continue;
2734 for(j
=pLoop
->nLTerm
-1; j
>=0; j
--){
2735 pX
= pLoop
->aLTerm
[j
];
2736 if( pX
==0 ) continue;
2737 if( pX
==pTerm
) break;
2738 if( pX
->iParent
>=0 && (&pWC
->a
[pX
->iParent
])==pTerm
) break;
2741 sqlite3ProgressCheck(pWC
->pWInfo
->pParse
);
2742 if( pLoop
->maskSelf
==pTerm
->prereqAll
){
2743 /* If there are extra terms in the WHERE clause not used by an index
2744 ** that depend only on the table being scanned, and that will tend to
2745 ** cause many rows to be omitted, then mark that table as
2748 ** 2022-03-24: Self-culling only applies if either the extra terms
2749 ** are straight comparison operators that are non-true with NULL
2750 ** operand, or if the loop is not an OUTER JOIN.
2752 if( (pTerm
->eOperator
& 0x3f)!=0
2753 || (pWC
->pWInfo
->pTabList
->a
[pLoop
->iTab
].fg
.jointype
2754 & (JT_LEFT
|JT_LTORJ
))==0
2756 pLoop
->wsFlags
|= WHERE_SELFCULL
;
2759 if( pTerm
->truthProb
<=0 ){
2760 /* If a truth probability is specified using the likelihood() hints,
2761 ** then use the probability provided by the application. */
2762 pLoop
->nOut
+= pTerm
->truthProb
;
2764 /* In the absence of explicit truth probabilities, use heuristics to
2765 ** guess a reasonable truth probability. */
2767 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0
2768 && (pTerm
->wtFlags
& TERM_HIGHTRUTH
)==0 /* tag-20200224-1 */
2770 Expr
*pRight
= pTerm
->pExpr
->pRight
;
2772 testcase( pTerm
->pExpr
->op
==TK_IS
);
2773 if( sqlite3ExprIsInteger(pRight
, &k
) && k
>=(-1) && k
<=1 ){
2779 pTerm
->wtFlags
|= TERM_HEURTRUTH
;
2786 if( pLoop
->nOut
> nRow
-iReduce
){
2787 pLoop
->nOut
= nRow
- iReduce
;
2792 ** Term pTerm is a vector range comparison operation. The first comparison
2793 ** in the vector can be optimized using column nEq of the index. This
2794 ** function returns the total number of vector elements that can be used
2795 ** as part of the range comparison.
2797 ** For example, if the query is:
2799 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2803 ** CREATE INDEX ... ON (a, b, c, d, e)
2805 ** then this function would be invoked with nEq=1. The value returned in
2808 static int whereRangeVectorLen(
2809 Parse
*pParse
, /* Parsing context */
2810 int iCur
, /* Cursor open on pIdx */
2811 Index
*pIdx
, /* The index to be used for a inequality constraint */
2812 int nEq
, /* Number of prior equality constraints on same index */
2813 WhereTerm
*pTerm
/* The vector inequality constraint */
2815 int nCmp
= sqlite3ExprVectorSize(pTerm
->pExpr
->pLeft
);
2818 nCmp
= MIN(nCmp
, (pIdx
->nColumn
- nEq
));
2819 for(i
=1; i
<nCmp
; i
++){
2820 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2821 ** of the index. If not, exit the loop. */
2822 char aff
; /* Comparison affinity */
2823 char idxaff
= 0; /* Indexed columns affinity */
2824 CollSeq
*pColl
; /* Comparison collation sequence */
2827 assert( ExprUseXList(pTerm
->pExpr
->pLeft
) );
2828 pLhs
= pTerm
->pExpr
->pLeft
->x
.pList
->a
[i
].pExpr
;
2829 pRhs
= pTerm
->pExpr
->pRight
;
2830 if( ExprUseXSelect(pRhs
) ){
2831 pRhs
= pRhs
->x
.pSelect
->pEList
->a
[i
].pExpr
;
2833 pRhs
= pRhs
->x
.pList
->a
[i
].pExpr
;
2836 /* Check that the LHS of the comparison is a column reference to
2837 ** the right column of the right source table. And that the sort
2838 ** order of the index column is the same as the sort order of the
2839 ** leftmost index column. */
2840 if( pLhs
->op
!=TK_COLUMN
2841 || pLhs
->iTable
!=iCur
2842 || pLhs
->iColumn
!=pIdx
->aiColumn
[i
+nEq
]
2843 || pIdx
->aSortOrder
[i
+nEq
]!=pIdx
->aSortOrder
[nEq
]
2848 testcase( pLhs
->iColumn
==XN_ROWID
);
2849 aff
= sqlite3CompareAffinity(pRhs
, sqlite3ExprAffinity(pLhs
));
2850 idxaff
= sqlite3TableColumnAffinity(pIdx
->pTable
, pLhs
->iColumn
);
2851 if( aff
!=idxaff
) break;
2853 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2854 if( pColl
==0 ) break;
2855 if( sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[i
+nEq
]) ) break;
2861 ** Adjust the cost C by the costMult factor T. This only occurs if
2862 ** compiled with -DSQLITE_ENABLE_COSTMULT
2864 #ifdef SQLITE_ENABLE_COSTMULT
2865 # define ApplyCostMultiplier(C,T) C += T
2867 # define ApplyCostMultiplier(C,T)
2871 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2872 ** index pIndex. Try to match one more.
2874 ** When this function is called, pBuilder->pNew->nOut contains the
2875 ** number of rows expected to be visited by filtering using the nEq
2876 ** terms only. If it is modified, this value is restored before this
2877 ** function returns.
2879 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2880 ** a fake index used for the INTEGER PRIMARY KEY.
2882 static int whereLoopAddBtreeIndex(
2883 WhereLoopBuilder
*pBuilder
, /* The WhereLoop factory */
2884 SrcItem
*pSrc
, /* FROM clause term being analyzed */
2885 Index
*pProbe
, /* An index on pSrc */
2886 LogEst nInMul
/* log(Number of iterations due to IN) */
2888 WhereInfo
*pWInfo
= pBuilder
->pWInfo
; /* WHERE analyze context */
2889 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
2890 sqlite3
*db
= pParse
->db
; /* Database connection malloc context */
2891 WhereLoop
*pNew
; /* Template WhereLoop under construction */
2892 WhereTerm
*pTerm
; /* A WhereTerm under consideration */
2893 int opMask
; /* Valid operators for constraints */
2894 WhereScan scan
; /* Iterator for WHERE terms */
2895 Bitmask saved_prereq
; /* Original value of pNew->prereq */
2896 u16 saved_nLTerm
; /* Original value of pNew->nLTerm */
2897 u16 saved_nEq
; /* Original value of pNew->u.btree.nEq */
2898 u16 saved_nBtm
; /* Original value of pNew->u.btree.nBtm */
2899 u16 saved_nTop
; /* Original value of pNew->u.btree.nTop */
2900 u16 saved_nSkip
; /* Original value of pNew->nSkip */
2901 u32 saved_wsFlags
; /* Original value of pNew->wsFlags */
2902 LogEst saved_nOut
; /* Original value of pNew->nOut */
2903 int rc
= SQLITE_OK
; /* Return code */
2904 LogEst rSize
; /* Number of rows in the table */
2905 LogEst rLogSize
; /* Logarithm of table size */
2906 WhereTerm
*pTop
= 0, *pBtm
= 0; /* Top and bottom range constraints */
2908 pNew
= pBuilder
->pNew
;
2909 assert( db
->mallocFailed
==0 || pParse
->nErr
>0 );
2913 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2914 pProbe
->pTable
->zName
,pProbe
->zName
,
2915 pNew
->u
.btree
.nEq
, pNew
->nSkip
, pNew
->rRun
));
2917 assert( (pNew
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2918 assert( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0 );
2919 if( pNew
->wsFlags
& WHERE_BTM_LIMIT
){
2920 opMask
= WO_LT
|WO_LE
;
2922 assert( pNew
->u
.btree
.nBtm
==0 );
2923 opMask
= WO_EQ
|WO_IN
|WO_GT
|WO_GE
|WO_LT
|WO_LE
|WO_ISNULL
|WO_IS
;
2925 if( pProbe
->bUnordered
) opMask
&= ~(WO_GT
|WO_GE
|WO_LT
|WO_LE
);
2927 assert( pNew
->u
.btree
.nEq
<pProbe
->nColumn
);
2928 assert( pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
2929 || pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
);
2931 saved_nEq
= pNew
->u
.btree
.nEq
;
2932 saved_nBtm
= pNew
->u
.btree
.nBtm
;
2933 saved_nTop
= pNew
->u
.btree
.nTop
;
2934 saved_nSkip
= pNew
->nSkip
;
2935 saved_nLTerm
= pNew
->nLTerm
;
2936 saved_wsFlags
= pNew
->wsFlags
;
2937 saved_prereq
= pNew
->prereq
;
2938 saved_nOut
= pNew
->nOut
;
2939 pTerm
= whereScanInit(&scan
, pBuilder
->pWC
, pSrc
->iCursor
, saved_nEq
,
2942 rSize
= pProbe
->aiRowLogEst
[0];
2943 rLogSize
= estLog(rSize
);
2944 for(; rc
==SQLITE_OK
&& pTerm
!=0; pTerm
= whereScanNext(&scan
)){
2945 u16 eOp
= pTerm
->eOperator
; /* Shorthand for pTerm->eOperator */
2947 LogEst nOutUnadjusted
; /* nOut before IN() and WHERE adjustments */
2949 #ifdef SQLITE_ENABLE_STAT4
2950 int nRecValid
= pBuilder
->nRecValid
;
2952 if( (eOp
==WO_ISNULL
|| (pTerm
->wtFlags
&TERM_VNULL
)!=0)
2953 && indexColumnNotNull(pProbe
, saved_nEq
)
2955 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2957 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
2959 /* Do not allow the upper bound of a LIKE optimization range constraint
2960 ** to mix with a lower range bound from some other source */
2961 if( pTerm
->wtFlags
& TERM_LIKEOPT
&& pTerm
->eOperator
==WO_LT
) continue;
2963 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
2964 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
2968 if( IsUniqueIndex(pProbe
) && saved_nEq
==pProbe
->nKeyCol
-1 ){
2969 pBuilder
->bldFlags1
|= SQLITE_BLDF1_UNIQUE
;
2971 pBuilder
->bldFlags1
|= SQLITE_BLDF1_INDEXED
;
2973 pNew
->wsFlags
= saved_wsFlags
;
2974 pNew
->u
.btree
.nEq
= saved_nEq
;
2975 pNew
->u
.btree
.nBtm
= saved_nBtm
;
2976 pNew
->u
.btree
.nTop
= saved_nTop
;
2977 pNew
->nLTerm
= saved_nLTerm
;
2978 if( pNew
->nLTerm
>=pNew
->nLSlot
2979 && whereLoopResize(db
, pNew
, pNew
->nLTerm
+1)
2981 break; /* OOM while trying to enlarge the pNew->aLTerm array */
2983 pNew
->aLTerm
[pNew
->nLTerm
++] = pTerm
;
2984 pNew
->prereq
= (saved_prereq
| pTerm
->prereqRight
) & ~pNew
->maskSelf
;
2987 || (pNew
->wsFlags
& WHERE_COLUMN_NULL
)!=0
2988 || (pNew
->wsFlags
& WHERE_COLUMN_IN
)!=0
2989 || (pNew
->wsFlags
& WHERE_SKIPSCAN
)!=0
2993 Expr
*pExpr
= pTerm
->pExpr
;
2994 if( ExprUseXSelect(pExpr
) ){
2995 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2997 nIn
= 46; assert( 46==sqlite3LogEst(25) );
2999 /* The expression may actually be of the form (x, y) IN (SELECT...).
3000 ** In this case there is a separate term for each of (x) and (y).
3001 ** However, the nIn multiplier should only be applied once, not once
3002 ** for each such term. The following loop checks that pTerm is the
3003 ** first such term in use, and sets nIn back to 0 if it is not. */
3004 for(i
=0; i
<pNew
->nLTerm
-1; i
++){
3005 if( pNew
->aLTerm
[i
] && pNew
->aLTerm
[i
]->pExpr
==pExpr
) nIn
= 0;
3007 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
3008 /* "x IN (value, value, ...)" */
3009 nIn
= sqlite3LogEst(pExpr
->x
.pList
->nExpr
);
3011 if( pProbe
->hasStat1
&& rLogSize
>=10 ){
3014 ** N = the total number of rows in the table
3015 ** K = the number of entries on the RHS of the IN operator
3016 ** M = the number of rows in the table that match terms to the
3017 ** to the left in the same index. If the IN operator is on
3018 ** the left-most index column, M==N.
3020 ** Given the definitions above, it is better to omit the IN operator
3021 ** from the index lookup and instead do a scan of the M elements,
3022 ** testing each scanned row against the IN operator separately, if:
3024 ** M*log(K) < K*log(N)
3026 ** Our estimates for M, K, and N might be inaccurate, so we build in
3027 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
3028 ** with the index, as using an index has better worst-case behavior.
3029 ** If we do not have real sqlite_stat1 data, always prefer to use
3030 ** the index. Do not bother with this optimization on very small
3031 ** tables (less than 2 rows) as it is pointless in that case.
3033 M
= pProbe
->aiRowLogEst
[saved_nEq
];
3035 /* TUNING v----- 10 to bias toward indexed IN */
3036 x
= M
+ logK
+ 10 - (nIn
+ rLogSize
);
3039 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
3040 "prefers indexed lookup\n",
3041 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
));
3042 }else if( nInMul
<2 && OptimizationEnabled(db
, SQLITE_SeekScan
) ){
3044 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
3045 " nInMul=%d) prefers skip-scan\n",
3046 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
3047 pNew
->wsFlags
|= WHERE_IN_SEEKSCAN
;
3050 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
3051 " nInMul=%d) prefers normal scan\n",
3052 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
3056 pNew
->wsFlags
|= WHERE_COLUMN_IN
;
3057 }else if( eOp
& (WO_EQ
|WO_IS
) ){
3058 int iCol
= pProbe
->aiColumn
[saved_nEq
];
3059 pNew
->wsFlags
|= WHERE_COLUMN_EQ
;
3060 assert( saved_nEq
==pNew
->u
.btree
.nEq
);
3062 || (iCol
>=0 && nInMul
==0 && saved_nEq
==pProbe
->nKeyCol
-1)
3064 if( iCol
==XN_ROWID
|| pProbe
->uniqNotNull
3065 || (pProbe
->nKeyCol
==1 && pProbe
->onError
&& eOp
==WO_EQ
)
3067 pNew
->wsFlags
|= WHERE_ONEROW
;
3069 pNew
->wsFlags
|= WHERE_UNQ_WANTED
;
3072 if( scan
.iEquiv
>1 ) pNew
->wsFlags
|= WHERE_TRANSCONS
;
3073 }else if( eOp
& WO_ISNULL
){
3074 pNew
->wsFlags
|= WHERE_COLUMN_NULL
;
3076 int nVecLen
= whereRangeVectorLen(
3077 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
3079 if( eOp
& (WO_GT
|WO_GE
) ){
3080 testcase( eOp
& WO_GT
);
3081 testcase( eOp
& WO_GE
);
3082 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_BTM_LIMIT
;
3083 pNew
->u
.btree
.nBtm
= nVecLen
;
3086 if( pTerm
->wtFlags
& TERM_LIKEOPT
){
3087 /* Range constraints that come from the LIKE optimization are
3088 ** always used in pairs. */
3090 assert( (pTop
-(pTerm
->pWC
->a
))<pTerm
->pWC
->nTerm
);
3091 assert( pTop
->wtFlags
& TERM_LIKEOPT
);
3092 assert( pTop
->eOperator
==WO_LT
);
3093 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
3094 pNew
->aLTerm
[pNew
->nLTerm
++] = pTop
;
3095 pNew
->wsFlags
|= WHERE_TOP_LIMIT
;
3096 pNew
->u
.btree
.nTop
= 1;
3099 assert( eOp
& (WO_LT
|WO_LE
) );
3100 testcase( eOp
& WO_LT
);
3101 testcase( eOp
& WO_LE
);
3102 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_TOP_LIMIT
;
3103 pNew
->u
.btree
.nTop
= nVecLen
;
3105 pBtm
= (pNew
->wsFlags
& WHERE_BTM_LIMIT
)!=0 ?
3106 pNew
->aLTerm
[pNew
->nLTerm
-2] : 0;
3110 /* At this point pNew->nOut is set to the number of rows expected to
3111 ** be visited by the index scan before considering term pTerm, or the
3112 ** values of nIn and nInMul. In other words, assuming that all
3113 ** "x IN(...)" terms are replaced with "x = ?". This block updates
3114 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
3115 assert( pNew
->nOut
==saved_nOut
);
3116 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
3117 /* Adjust nOut using stat4 data. Or, if there is no stat4
3118 ** data, using some other estimate. */
3119 whereRangeScanEst(pParse
, pBuilder
, pBtm
, pTop
, pNew
);
3121 int nEq
= ++pNew
->u
.btree
.nEq
;
3122 assert( eOp
& (WO_ISNULL
|WO_EQ
|WO_IN
|WO_IS
) );
3124 assert( pNew
->nOut
==saved_nOut
);
3125 if( pTerm
->truthProb
<=0 && pProbe
->aiColumn
[saved_nEq
]>=0 ){
3126 assert( (eOp
& WO_IN
) || nIn
==0 );
3127 testcase( eOp
& WO_IN
);
3128 pNew
->nOut
+= pTerm
->truthProb
;
3131 #ifdef SQLITE_ENABLE_STAT4
3135 && ALWAYS(pNew
->u
.btree
.nEq
<=pProbe
->nSampleCol
)
3136 && ((eOp
& WO_IN
)==0 || ExprUseXList(pTerm
->pExpr
))
3137 && OptimizationEnabled(db
, SQLITE_Stat4
)
3139 Expr
*pExpr
= pTerm
->pExpr
;
3140 if( (eOp
& (WO_EQ
|WO_ISNULL
|WO_IS
))!=0 ){
3141 testcase( eOp
& WO_EQ
);
3142 testcase( eOp
& WO_IS
);
3143 testcase( eOp
& WO_ISNULL
);
3144 rc
= whereEqualScanEst(pParse
, pBuilder
, pExpr
->pRight
, &nOut
);
3146 rc
= whereInScanEst(pParse
, pBuilder
, pExpr
->x
.pList
, &nOut
);
3148 if( rc
==SQLITE_NOTFOUND
) rc
= SQLITE_OK
;
3149 if( rc
!=SQLITE_OK
) break; /* Jump out of the pTerm loop */
3151 pNew
->nOut
= sqlite3LogEst(nOut
);
3153 /* TUNING: Mark terms as "low selectivity" if they seem likely
3154 ** to be true for half or more of the rows in the table.
3155 ** See tag-202002240-1 */
3156 && pNew
->nOut
+10 > pProbe
->aiRowLogEst
[0]
3158 #if WHERETRACE_ENABLED /* 0x01 */
3159 if( sqlite3WhereTrace
& 0x20 ){
3161 "STAT4 determines term has low selectivity:\n");
3162 sqlite3WhereTermPrint(pTerm
, 999);
3165 pTerm
->wtFlags
|= TERM_HIGHTRUTH
;
3166 if( pTerm
->wtFlags
& TERM_HEURTRUTH
){
3167 /* If the term has previously been used with an assumption of
3168 ** higher selectivity, then set the flag to rerun the
3169 ** loop computations. */
3170 pBuilder
->bldFlags2
|= SQLITE_BLDF2_2NDPASS
;
3173 if( pNew
->nOut
>saved_nOut
) pNew
->nOut
= saved_nOut
;
3180 pNew
->nOut
+= (pProbe
->aiRowLogEst
[nEq
] - pProbe
->aiRowLogEst
[nEq
-1]);
3181 if( eOp
& WO_ISNULL
){
3182 /* TUNING: If there is no likelihood() value, assume that a
3183 ** "col IS NULL" expression matches twice as many rows
3191 /* Set rCostIdx to the cost of visiting selected rows in index. Add
3192 ** it to pNew->rRun, which is currently set to the cost of the index
3193 ** seek only. Then, if this is a non-covering index, add the cost of
3194 ** visiting the rows in the main table. */
3195 assert( pSrc
->pTab
->szTabRow
>0 );
3196 if( pProbe
->idxType
==SQLITE_IDXTYPE_IPK
){
3197 /* The pProbe->szIdxRow is low for an IPK table since the interior
3198 ** pages are small. Thus szIdxRow gives a good estimate of seek cost.
3199 ** But the leaf pages are full-size, so pProbe->szIdxRow would badly
3200 ** under-estimate the scanning cost. */
3201 rCostIdx
= pNew
->nOut
+ 16;
3203 rCostIdx
= pNew
->nOut
+ 1 + (15*pProbe
->szIdxRow
)/pSrc
->pTab
->szTabRow
;
3205 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
, rCostIdx
);
3206 if( (pNew
->wsFlags
& (WHERE_IDX_ONLY
|WHERE_IPK
|WHERE_EXPRIDX
))==0 ){
3207 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, pNew
->nOut
+ 16);
3209 ApplyCostMultiplier(pNew
->rRun
, pProbe
->pTable
->costMult
);
3211 nOutUnadjusted
= pNew
->nOut
;
3212 pNew
->rRun
+= nInMul
+ nIn
;
3213 pNew
->nOut
+= nInMul
+ nIn
;
3214 whereLoopOutputAdjust(pBuilder
->pWC
, pNew
, rSize
);
3215 rc
= whereLoopInsert(pBuilder
, pNew
);
3217 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
3218 pNew
->nOut
= saved_nOut
;
3220 pNew
->nOut
= nOutUnadjusted
;
3223 if( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0
3224 && pNew
->u
.btree
.nEq
<pProbe
->nColumn
3225 && (pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
||
3226 pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
)
3228 if( pNew
->u
.btree
.nEq
>3 ){
3229 sqlite3ProgressCheck(pParse
);
3231 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nInMul
+nIn
);
3233 pNew
->nOut
= saved_nOut
;
3234 #ifdef SQLITE_ENABLE_STAT4
3235 pBuilder
->nRecValid
= nRecValid
;
3238 pNew
->prereq
= saved_prereq
;
3239 pNew
->u
.btree
.nEq
= saved_nEq
;
3240 pNew
->u
.btree
.nBtm
= saved_nBtm
;
3241 pNew
->u
.btree
.nTop
= saved_nTop
;
3242 pNew
->nSkip
= saved_nSkip
;
3243 pNew
->wsFlags
= saved_wsFlags
;
3244 pNew
->nOut
= saved_nOut
;
3245 pNew
->nLTerm
= saved_nLTerm
;
3247 /* Consider using a skip-scan if there are no WHERE clause constraints
3248 ** available for the left-most terms of the index, and if the average
3249 ** number of repeats in the left-most terms is at least 18.
3251 ** The magic number 18 is selected on the basis that scanning 17 rows
3252 ** is almost always quicker than an index seek (even though if the index
3253 ** contains fewer than 2^17 rows we assume otherwise in other parts of
3254 ** the code). And, even if it is not, it should not be too much slower.
3255 ** On the other hand, the extra seeks could end up being significantly
3256 ** more expensive. */
3257 assert( 42==sqlite3LogEst(18) );
3258 if( saved_nEq
==saved_nSkip
3259 && saved_nEq
+1<pProbe
->nKeyCol
3260 && saved_nEq
==pNew
->nLTerm
3261 && pProbe
->noSkipScan
==0
3262 && pProbe
->hasStat1
!=0
3263 && OptimizationEnabled(db
, SQLITE_SkipScan
)
3264 && pProbe
->aiRowLogEst
[saved_nEq
+1]>=42 /* TUNING: Minimum for skip-scan */
3265 && (rc
= whereLoopResize(db
, pNew
, pNew
->nLTerm
+1))==SQLITE_OK
3268 pNew
->u
.btree
.nEq
++;
3270 pNew
->aLTerm
[pNew
->nLTerm
++] = 0;
3271 pNew
->wsFlags
|= WHERE_SKIPSCAN
;
3272 nIter
= pProbe
->aiRowLogEst
[saved_nEq
] - pProbe
->aiRowLogEst
[saved_nEq
+1];
3273 pNew
->nOut
-= nIter
;
3274 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
3275 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3277 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nIter
+ nInMul
);
3278 pNew
->nOut
= saved_nOut
;
3279 pNew
->u
.btree
.nEq
= saved_nEq
;
3280 pNew
->nSkip
= saved_nSkip
;
3281 pNew
->wsFlags
= saved_wsFlags
;
3284 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3285 pProbe
->pTable
->zName
, pProbe
->zName
, saved_nEq
, rc
));
3290 ** Return True if it is possible that pIndex might be useful in
3291 ** implementing the ORDER BY clause in pBuilder.
3293 ** Return False if pBuilder does not contain an ORDER BY clause or
3294 ** if there is no way for pIndex to be useful in implementing that
3297 static int indexMightHelpWithOrderBy(
3298 WhereLoopBuilder
*pBuilder
,
3306 if( pIndex
->bUnordered
) return 0;
3307 if( (pOB
= pBuilder
->pWInfo
->pOrderBy
)==0 ) return 0;
3308 for(ii
=0; ii
<pOB
->nExpr
; ii
++){
3309 Expr
*pExpr
= sqlite3ExprSkipCollateAndLikely(pOB
->a
[ii
].pExpr
);
3310 if( NEVER(pExpr
==0) ) continue;
3311 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==iCursor
){
3312 if( pExpr
->iColumn
<0 ) return 1;
3313 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
3314 if( pExpr
->iColumn
==pIndex
->aiColumn
[jj
] ) return 1;
3316 }else if( (aColExpr
= pIndex
->aColExpr
)!=0 ){
3317 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
3318 if( pIndex
->aiColumn
[jj
]!=XN_EXPR
) continue;
3319 if( sqlite3ExprCompareSkip(pExpr
,aColExpr
->a
[jj
].pExpr
,iCursor
)==0 ){
3328 /* Check to see if a partial index with pPartIndexWhere can be used
3329 ** in the current query. Return true if it can be and false if not.
3331 static int whereUsablePartialIndex(
3332 int iTab
, /* The table for which we want an index */
3333 u8 jointype
, /* The JT_* flags on the join */
3334 WhereClause
*pWC
, /* The WHERE clause of the query */
3335 Expr
*pWhere
/* The WHERE clause from the partial index */
3341 if( jointype
& JT_LTORJ
) return 0;
3342 pParse
= pWC
->pWInfo
->pParse
;
3343 while( pWhere
->op
==TK_AND
){
3344 if( !whereUsablePartialIndex(iTab
,jointype
,pWC
,pWhere
->pLeft
) ) return 0;
3345 pWhere
= pWhere
->pRight
;
3347 if( pParse
->db
->flags
& SQLITE_EnableQPSG
) pParse
= 0;
3348 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
3350 pExpr
= pTerm
->pExpr
;
3351 if( (!ExprHasProperty(pExpr
, EP_OuterON
) || pExpr
->w
.iJoin
==iTab
)
3352 && ((jointype
& JT_OUTER
)==0 || ExprHasProperty(pExpr
, EP_OuterON
))
3353 && sqlite3ExprImpliesExpr(pParse
, pExpr
, pWhere
, iTab
)
3354 && (pTerm
->wtFlags
& TERM_VNULL
)==0
3363 ** pIdx is an index containing expressions. Check it see if any of the
3364 ** expressions in the index match the pExpr expression.
3366 static int exprIsCoveredByIndex(
3372 for(i
=0; i
<pIdx
->nColumn
; i
++){
3373 if( pIdx
->aiColumn
[i
]==XN_EXPR
3374 && sqlite3ExprCompare(0, pExpr
, pIdx
->aColExpr
->a
[i
].pExpr
, iTabCur
)==0
3383 ** Structure passed to the whereIsCoveringIndex Walker callback.
3385 typedef struct CoveringIndexCheck CoveringIndexCheck
;
3386 struct CoveringIndexCheck
{
3387 Index
*pIdx
; /* The index */
3388 int iTabCur
; /* Cursor number for the corresponding table */
3389 u8 bExpr
; /* Uses an indexed expression */
3390 u8 bUnidx
; /* Uses an unindexed column not within an indexed expr */
3394 ** Information passed in is pWalk->u.pCovIdxCk. Call it pCk.
3396 ** If the Expr node references the table with cursor pCk->iTabCur, then
3397 ** make sure that column is covered by the index pCk->pIdx. We know that
3398 ** all columns less than 63 (really BMS-1) are covered, so we don't need
3399 ** to check them. But we do need to check any column at 63 or greater.
3401 ** If the index does not cover the column, then set pWalk->eCode to
3402 ** non-zero and return WRC_Abort to stop the search.
3404 ** If this node does not disprove that the index can be a covering index,
3405 ** then just return WRC_Continue, to continue the search.
3407 ** If pCk->pIdx contains indexed expressions and one of those expressions
3408 ** matches pExpr, then prune the search.
3410 static int whereIsCoveringIndexWalkCallback(Walker
*pWalk
, Expr
*pExpr
){
3411 int i
; /* Loop counter */
3412 const Index
*pIdx
; /* The index of interest */
3413 const i16
*aiColumn
; /* Columns contained in the index */
3414 u16 nColumn
; /* Number of columns in the index */
3415 CoveringIndexCheck
*pCk
; /* Info about this search */
3417 pCk
= pWalk
->u
.pCovIdxCk
;
3419 if( (pExpr
->op
==TK_COLUMN
|| pExpr
->op
==TK_AGG_COLUMN
) ){
3420 /* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/
3421 if( pExpr
->iTable
!=pCk
->iTabCur
) return WRC_Continue
;
3422 pIdx
= pWalk
->u
.pCovIdxCk
->pIdx
;
3423 aiColumn
= pIdx
->aiColumn
;
3424 nColumn
= pIdx
->nColumn
;
3425 for(i
=0; i
<nColumn
; i
++){
3426 if( aiColumn
[i
]==pExpr
->iColumn
) return WRC_Continue
;
3430 }else if( pIdx
->bHasExpr
3431 && exprIsCoveredByIndex(pExpr
, pIdx
, pWalk
->u
.pCovIdxCk
->iTabCur
) ){
3435 return WRC_Continue
;
3440 ** pIdx is an index that covers all of the low-number columns used by
3441 ** pWInfo->pSelect (columns from 0 through 62) or an index that has
3442 ** expressions terms. Hence, we cannot determine whether or not it is
3443 ** a covering index by using the colUsed bitmasks. We have to do a search
3444 ** to see if the index is covering. This routine does that search.
3446 ** The return value is one of these:
3448 ** 0 The index is definitely not a covering index
3450 ** WHERE_IDX_ONLY The index is definitely a covering index
3452 ** WHERE_EXPRIDX The index is likely a covering index, but it is
3453 ** difficult to determine precisely because of the
3454 ** expressions that are indexed. Score it as a
3455 ** covering index, but still keep the main table open
3456 ** just in case we need it.
3458 ** This routine is an optimization. It is always safe to return zero.
3459 ** But returning one of the other two values when zero should have been
3460 ** returned can lead to incorrect bytecode and assertion faults.
3462 static SQLITE_NOINLINE u32
whereIsCoveringIndex(
3463 WhereInfo
*pWInfo
, /* The WHERE clause context */
3464 Index
*pIdx
, /* Index that is being tested */
3465 int iTabCur
/* Cursor for the table being indexed */
3468 struct CoveringIndexCheck ck
;
3470 if( pWInfo
->pSelect
==0 ){
3471 /* We don't have access to the full query, so we cannot check to see
3472 ** if pIdx is covering. Assume it is not. */
3475 if( pIdx
->bHasExpr
==0 ){
3476 for(i
=0; i
<pIdx
->nColumn
; i
++){
3477 if( pIdx
->aiColumn
[i
]>=BMS
-1 ) break;
3479 if( i
>=pIdx
->nColumn
){
3480 /* pIdx does not index any columns greater than 62, but we know from
3481 ** colMask that columns greater than 62 are used, so this is not a
3482 ** covering index */
3487 ck
.iTabCur
= iTabCur
;
3490 memset(&w
, 0, sizeof(w
));
3491 w
.xExprCallback
= whereIsCoveringIndexWalkCallback
;
3492 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
3493 w
.u
.pCovIdxCk
= &ck
;
3494 sqlite3WalkSelect(&w
, pWInfo
->pSelect
);
3497 }else if( ck
.bExpr
){
3500 rc
= WHERE_IDX_ONLY
;
3506 ** This is an sqlite3ParserAddCleanup() callback that is invoked to
3507 ** free the Parse->pIdxEpr list when the Parse object is destroyed.
3509 static void whereIndexedExprCleanup(sqlite3
*db
, void *pObject
){
3510 IndexedExpr
**pp
= (IndexedExpr
**)pObject
;
3512 IndexedExpr
*p
= *pp
;
3514 sqlite3ExprDelete(db
, p
->pExpr
);
3515 sqlite3DbFreeNN(db
, p
);
3520 ** This function is called for a partial index - one with a WHERE clause - in
3521 ** two scenarios. In both cases, it determines whether or not the WHERE
3522 ** clause on the index implies that a column of the table may be safely
3523 ** replaced by a constant expression. For example, in the following
3526 ** CREATE INDEX i1 ON t1(b, c) WHERE a=<expr>;
3527 ** SELECT a, b, c FROM t1 WHERE a=<expr> AND b=?;
3529 ** The "a" in the select-list may be replaced by <expr>, iff:
3531 ** (a) <expr> is a constant expression, and
3532 ** (b) The (a=<expr>) comparison uses the BINARY collation sequence, and
3533 ** (c) Column "a" has an affinity other than NONE or BLOB.
3535 ** If argument pItem is NULL, then pMask must not be NULL. In this case this
3536 ** function is being called as part of determining whether or not pIdx
3537 ** is a covering index. This function clears any bits in (*pMask)
3538 ** corresponding to columns that may be replaced by constants as described
3541 ** Otherwise, if pItem is not NULL, then this function is being called
3542 ** as part of coding a loop that uses index pIdx. In this case, add entries
3543 ** to the Parse.pIdxPartExpr list for each column that can be replaced
3546 static void wherePartIdxExpr(
3547 Parse
*pParse
, /* Parse context */
3548 Index
*pIdx
, /* Partial index being processed */
3549 Expr
*pPart
, /* WHERE clause being processed */
3550 Bitmask
*pMask
, /* Mask to clear bits in */
3551 int iIdxCur
, /* Cursor number for index */
3552 SrcItem
*pItem
/* The FROM clause entry for the table */
3554 assert( pItem
==0 || (pItem
->fg
.jointype
& JT_RIGHT
)==0 );
3555 assert( (pItem
==0 || pMask
==0) && (pMask
!=0 || pItem
!=0) );
3557 if( pPart
->op
==TK_AND
){
3558 wherePartIdxExpr(pParse
, pIdx
, pPart
->pRight
, pMask
, iIdxCur
, pItem
);
3559 pPart
= pPart
->pLeft
;
3562 if( (pPart
->op
==TK_EQ
|| pPart
->op
==TK_IS
) ){
3563 Expr
*pLeft
= pPart
->pLeft
;
3564 Expr
*pRight
= pPart
->pRight
;
3567 if( pLeft
->op
!=TK_COLUMN
) return;
3568 if( !sqlite3ExprIsConstant(pRight
) ) return;
3569 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pParse
, pPart
)) ) return;
3570 if( pLeft
->iColumn
<0 ) return;
3571 aff
= pIdx
->pTable
->aCol
[pLeft
->iColumn
].affinity
;
3572 if( aff
>=SQLITE_AFF_TEXT
){
3574 sqlite3
*db
= pParse
->db
;
3575 IndexedExpr
*p
= (IndexedExpr
*)sqlite3DbMallocRaw(db
, sizeof(*p
));
3577 int bNullRow
= (pItem
->fg
.jointype
&(JT_LEFT
|JT_LTORJ
))!=0;
3578 p
->pExpr
= sqlite3ExprDup(db
, pRight
, 0);
3579 p
->iDataCur
= pItem
->iCursor
;
3580 p
->iIdxCur
= iIdxCur
;
3581 p
->iIdxCol
= pLeft
->iColumn
;
3582 p
->bMaybeNullRow
= bNullRow
;
3583 p
->pIENext
= pParse
->pIdxPartExpr
;
3585 pParse
->pIdxPartExpr
= p
;
3586 if( p
->pIENext
==0 ){
3587 void *pArg
= (void*)&pParse
->pIdxPartExpr
;
3588 sqlite3ParserAddCleanup(pParse
, whereIndexedExprCleanup
, pArg
);
3591 }else if( pLeft
->iColumn
<(BMS
-1) ){
3592 *pMask
&= ~((Bitmask
)1 << pLeft
->iColumn
);
3600 ** Add all WhereLoop objects for a single table of the join where the table
3601 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
3602 ** a b-tree table, not a virtual table.
3604 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3605 ** are calculated as follows:
3607 ** For a full scan, assuming the table (or index) contains nRow rows:
3609 ** cost = nRow * 3.0 // full-table scan
3610 ** cost = nRow * K // scan of covering index
3611 ** cost = nRow * (K+3.0) // scan of non-covering index
3613 ** where K is a value between 1.1 and 3.0 set based on the relative
3614 ** estimated average size of the index and table records.
3616 ** For an index scan, where nVisit is the number of index rows visited
3617 ** by the scan, and nSeek is the number of seek operations required on
3618 ** the index b-tree:
3620 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
3621 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
3623 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3624 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3625 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3627 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3628 ** of uncertainty. For this reason, scoring is designed to pick plans that
3629 ** "do the least harm" if the estimates are inaccurate. For example, a
3630 ** log(nRow) factor is omitted from a non-covering index scan in order to
3631 ** bias the scoring in favor of using an index, since the worst-case
3632 ** performance of using an index is far better than the worst-case performance
3633 ** of a full table scan.
3635 static int whereLoopAddBtree(
3636 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
3637 Bitmask mPrereq
/* Extra prerequisites for using this table */
3639 WhereInfo
*pWInfo
; /* WHERE analysis context */
3640 Index
*pProbe
; /* An index we are evaluating */
3641 Index sPk
; /* A fake index object for the primary key */
3642 LogEst aiRowEstPk
[2]; /* The aiRowLogEst[] value for the sPk index */
3643 i16 aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
3644 SrcList
*pTabList
; /* The FROM clause */
3645 SrcItem
*pSrc
; /* The FROM clause btree term to add */
3646 WhereLoop
*pNew
; /* Template WhereLoop object */
3647 int rc
= SQLITE_OK
; /* Return code */
3648 int iSortIdx
= 1; /* Index number */
3649 int b
; /* A boolean value */
3650 LogEst rSize
; /* number of rows in the table */
3651 WhereClause
*pWC
; /* The parsed WHERE clause */
3652 Table
*pTab
; /* Table being queried */
3654 pNew
= pBuilder
->pNew
;
3655 pWInfo
= pBuilder
->pWInfo
;
3656 pTabList
= pWInfo
->pTabList
;
3657 pSrc
= pTabList
->a
+ pNew
->iTab
;
3659 pWC
= pBuilder
->pWC
;
3660 assert( !IsVirtual(pSrc
->pTab
) );
3662 if( pSrc
->fg
.isIndexedBy
){
3663 assert( pSrc
->fg
.isCte
==0 );
3664 /* An INDEXED BY clause specifies a particular index to use */
3665 pProbe
= pSrc
->u2
.pIBIndex
;
3666 }else if( !HasRowid(pTab
) ){
3667 pProbe
= pTab
->pIndex
;
3669 /* There is no INDEXED BY clause. Create a fake Index object in local
3670 ** variable sPk to represent the rowid primary key index. Make this
3671 ** fake index the first in a chain of Index objects with all of the real
3672 ** indices to follow */
3673 Index
*pFirst
; /* First of real indices on the table */
3674 memset(&sPk
, 0, sizeof(Index
));
3677 sPk
.aiColumn
= &aiColumnPk
;
3678 sPk
.aiRowLogEst
= aiRowEstPk
;
3679 sPk
.onError
= OE_Replace
;
3681 sPk
.szIdxRow
= 3; /* TUNING: Interior rows of IPK table are very small */
3682 sPk
.idxType
= SQLITE_IDXTYPE_IPK
;
3683 aiRowEstPk
[0] = pTab
->nRowLogEst
;
3685 pFirst
= pSrc
->pTab
->pIndex
;
3686 if( pSrc
->fg
.notIndexed
==0 ){
3687 /* The real indices of the table are only considered if the
3688 ** NOT INDEXED qualifier is omitted from the FROM clause */
3693 rSize
= pTab
->nRowLogEst
;
3695 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3696 /* Automatic indexes */
3697 if( !pBuilder
->pOrSet
/* Not part of an OR optimization */
3698 && (pWInfo
->wctrlFlags
& (WHERE_RIGHT_JOIN
|WHERE_OR_SUBCLAUSE
))==0
3699 && (pWInfo
->pParse
->db
->flags
& SQLITE_AutoIndex
)!=0
3700 && !pSrc
->fg
.isIndexedBy
/* Has no INDEXED BY clause */
3701 && !pSrc
->fg
.notIndexed
/* Has no NOT INDEXED clause */
3702 && HasRowid(pTab
) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3703 && !pSrc
->fg
.isCorrelated
/* Not a correlated subquery */
3704 && !pSrc
->fg
.isRecursive
/* Not a recursive common table expression. */
3705 && (pSrc
->fg
.jointype
& JT_RIGHT
)==0 /* Not the right tab of a RIGHT JOIN */
3707 /* Generate auto-index WhereLoops */
3708 LogEst rLogSize
; /* Logarithm of the number of rows in the table */
3710 WhereTerm
*pWCEnd
= pWC
->a
+ pWC
->nTerm
;
3711 rLogSize
= estLog(rSize
);
3712 for(pTerm
=pWC
->a
; rc
==SQLITE_OK
&& pTerm
<pWCEnd
; pTerm
++){
3713 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
3714 if( termCanDriveIndex(pTerm
, pSrc
, 0) ){
3715 pNew
->u
.btree
.nEq
= 1;
3717 pNew
->u
.btree
.pIndex
= 0;
3719 pNew
->aLTerm
[0] = pTerm
;
3720 /* TUNING: One-time cost for computing the automatic index is
3721 ** estimated to be X*N*log2(N) where N is the number of rows in
3722 ** the table being indexed and where X is 7 (LogEst=28) for normal
3723 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
3724 ** of X is smaller for views and subqueries so that the query planner
3725 ** will be more aggressive about generating automatic indexes for
3726 ** those objects, since there is no opportunity to add schema
3727 ** indexes on subqueries and views. */
3728 pNew
->rSetup
= rLogSize
+ rSize
;
3729 if( !IsView(pTab
) && (pTab
->tabFlags
& TF_Ephemeral
)==0 ){
3732 pNew
->rSetup
-= 25; /* Greatly reduced setup cost for auto indexes
3733 ** on ephemeral materializations of views */
3735 ApplyCostMultiplier(pNew
->rSetup
, pTab
->costMult
);
3736 if( pNew
->rSetup
<0 ) pNew
->rSetup
= 0;
3737 /* TUNING: Each index lookup yields 20 rows in the table. This
3738 ** is more than the usual guess of 10 rows, since we have no way
3739 ** of knowing how selective the index will ultimately be. It would
3740 ** not be unreasonable to make this value much larger. */
3741 pNew
->nOut
= 43; assert( 43==sqlite3LogEst(20) );
3742 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
,pNew
->nOut
);
3743 pNew
->wsFlags
= WHERE_AUTO_INDEX
;
3744 pNew
->prereq
= mPrereq
| pTerm
->prereqRight
;
3745 rc
= whereLoopInsert(pBuilder
, pNew
);
3749 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3751 /* Loop over all indices. If there was an INDEXED BY clause, then only
3752 ** consider index pProbe. */
3753 for(; rc
==SQLITE_OK
&& pProbe
;
3754 pProbe
=(pSrc
->fg
.isIndexedBy
? 0 : pProbe
->pNext
), iSortIdx
++
3756 if( pProbe
->pPartIdxWhere
!=0
3757 && !whereUsablePartialIndex(pSrc
->iCursor
, pSrc
->fg
.jointype
, pWC
,
3758 pProbe
->pPartIdxWhere
)
3760 testcase( pNew
->iTab
!=pSrc
->iCursor
); /* See ticket [98d973b8f5] */
3761 continue; /* Partial index inappropriate for this query */
3763 if( pProbe
->bNoQuery
) continue;
3764 rSize
= pProbe
->aiRowLogEst
[0];
3765 pNew
->u
.btree
.nEq
= 0;
3766 pNew
->u
.btree
.nBtm
= 0;
3767 pNew
->u
.btree
.nTop
= 0;
3772 pNew
->prereq
= mPrereq
;
3774 pNew
->u
.btree
.pIndex
= pProbe
;
3775 b
= indexMightHelpWithOrderBy(pBuilder
, pProbe
, pSrc
->iCursor
);
3777 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3778 assert( (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || b
==0 );
3779 if( pProbe
->idxType
==SQLITE_IDXTYPE_IPK
){
3780 /* Integer primary key index */
3781 pNew
->wsFlags
= WHERE_IPK
;
3783 /* Full table scan */
3784 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3785 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
3786 ** extra cost designed to discourage the use of full table scans,
3787 ** since index lookups have better worst-case performance if our
3788 ** stat guesses are wrong. Reduce the 3.0 penalty slightly
3789 ** (to 2.75) if we have valid STAT4 information for the table.
3790 ** At 2.75, a full table scan is preferred over using an index on
3791 ** a column with just two distinct values where each value has about
3792 ** an equal number of appearances. Without STAT4 data, we still want
3793 ** to use an index in that case, since the constraint might be for
3794 ** the scarcer of the two values, and in that case an index lookup is
3797 #ifdef SQLITE_ENABLE_STAT4
3798 pNew
->rRun
= rSize
+ 16 - 2*((pTab
->tabFlags
& TF_HasStat4
)!=0);
3800 pNew
->rRun
= rSize
+ 16;
3802 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3803 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3804 rc
= whereLoopInsert(pBuilder
, pNew
);
3809 if( pProbe
->isCovering
){
3811 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
3813 m
= pSrc
->colUsed
& pProbe
->colNotIdxed
;
3814 if( pProbe
->pPartIdxWhere
){
3816 pWInfo
->pParse
, pProbe
, pProbe
->pPartIdxWhere
, &m
, 0, 0
3819 pNew
->wsFlags
= WHERE_INDEXED
;
3820 if( m
==TOPBIT
|| (pProbe
->bHasExpr
&& !pProbe
->bHasVCol
&& m
!=0) ){
3821 u32 isCov
= whereIsCoveringIndex(pWInfo
, pProbe
, pSrc
->iCursor
);
3824 ("-> %s is not a covering index"
3825 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3829 pNew
->wsFlags
|= isCov
;
3830 if( isCov
& WHERE_IDX_ONLY
){
3832 ("-> %s is a covering expression index"
3833 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3835 assert( isCov
==WHERE_EXPRIDX
);
3837 ("-> %s might be a covering expression index"
3838 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3843 ("-> %s a covering index according to bitmasks\n",
3844 pProbe
->zName
, m
==0 ? "is" : "is not"));
3845 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
3849 /* Full scan via index */
3852 || pProbe
->pPartIdxWhere
!=0
3853 || pSrc
->fg
.isIndexedBy
3855 && pProbe
->bUnordered
==0
3856 && (pProbe
->szIdxRow
<pTab
->szTabRow
)
3857 && (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0
3858 && sqlite3GlobalConfig
.bUseCis
3859 && OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_CoverIdxScan
)
3862 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3864 /* The cost of visiting the index rows is N*K, where K is
3865 ** between 1.1 and 3.0, depending on the relative sizes of the
3866 ** index and table rows. */
3867 pNew
->rRun
= rSize
+ 1 + (15*pProbe
->szIdxRow
)/pTab
->szTabRow
;
3869 /* If this is a non-covering index scan, add in the cost of
3870 ** doing table lookups. The cost will be 3x the number of
3871 ** lookups. Take into account WHERE clause terms that can be
3872 ** satisfied using just the index, and that do not require a
3874 LogEst nLookup
= rSize
+ 16; /* Base cost: N*3 */
3876 int iCur
= pSrc
->iCursor
;
3877 WhereClause
*pWC2
= &pWInfo
->sWC
;
3878 for(ii
=0; ii
<pWC2
->nTerm
; ii
++){
3879 WhereTerm
*pTerm
= &pWC2
->a
[ii
];
3880 if( !sqlite3ExprCoveredByIndex(pTerm
->pExpr
, iCur
, pProbe
) ){
3883 /* pTerm can be evaluated using just the index. So reduce
3884 ** the expected number of table lookups accordingly */
3885 if( pTerm
->truthProb
<=0 ){
3886 nLookup
+= pTerm
->truthProb
;
3889 if( pTerm
->eOperator
& (WO_EQ
|WO_IS
) ) nLookup
-= 19;
3893 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, nLookup
);
3895 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3896 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3897 if( (pSrc
->fg
.jointype
& JT_RIGHT
)!=0 && pProbe
->aColExpr
){
3898 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3899 ** because the cursor used to access the index might not be
3900 ** positioned to the correct row during the right-join no-match
3903 rc
= whereLoopInsert(pBuilder
, pNew
);
3910 pBuilder
->bldFlags1
= 0;
3911 rc
= whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, 0);
3912 if( pBuilder
->bldFlags1
==SQLITE_BLDF1_INDEXED
){
3913 /* If a non-unique index is used, or if a prefix of the key for
3914 ** unique index is used (making the index functionally non-unique)
3915 ** then the sqlite_stat1 data becomes important for scoring the
3917 pTab
->tabFlags
|= TF_StatsUsed
;
3919 #ifdef SQLITE_ENABLE_STAT4
3920 sqlite3Stat4ProbeFree(pBuilder
->pRec
);
3921 pBuilder
->nRecValid
= 0;
3928 #ifndef SQLITE_OMIT_VIRTUALTABLE
3931 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3933 static int isLimitTerm(WhereTerm
*pTerm
){
3934 assert( pTerm
->eOperator
==WO_AUX
|| pTerm
->eMatchOp
==0 );
3935 return pTerm
->eMatchOp
>=SQLITE_INDEX_CONSTRAINT_LIMIT
3936 && pTerm
->eMatchOp
<=SQLITE_INDEX_CONSTRAINT_OFFSET
;
3940 ** Argument pIdxInfo is already populated with all constraints that may
3941 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3942 ** function marks a subset of those constraints usable, invokes the
3943 ** xBestIndex method and adds the returned plan to pBuilder.
3945 ** A constraint is marked usable if:
3947 ** * Argument mUsable indicates that its prerequisites are available, and
3949 ** * It is not one of the operators specified in the mExclude mask passed
3950 ** as the fourth argument (which in practice is either WO_IN or 0).
3952 ** Argument mPrereq is a mask of tables that must be scanned before the
3953 ** virtual table in question. These are added to the plans prerequisites
3954 ** before it is added to pBuilder.
3956 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3957 ** uses one or more WO_IN terms, or false otherwise.
3959 static int whereLoopAddVirtualOne(
3960 WhereLoopBuilder
*pBuilder
,
3961 Bitmask mPrereq
, /* Mask of tables that must be used. */
3962 Bitmask mUsable
, /* Mask of usable tables */
3963 u16 mExclude
, /* Exclude terms using these operators */
3964 sqlite3_index_info
*pIdxInfo
, /* Populated object for xBestIndex */
3965 u16 mNoOmit
, /* Do not omit these constraints */
3966 int *pbIn
, /* OUT: True if plan uses an IN(...) op */
3967 int *pbRetryLimit
/* OUT: Retry without LIMIT/OFFSET */
3969 WhereClause
*pWC
= pBuilder
->pWC
;
3970 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3971 struct sqlite3_index_constraint
*pIdxCons
;
3972 struct sqlite3_index_constraint_usage
*pUsage
= pIdxInfo
->aConstraintUsage
;
3976 WhereLoop
*pNew
= pBuilder
->pNew
;
3977 Parse
*pParse
= pBuilder
->pWInfo
->pParse
;
3978 SrcItem
*pSrc
= &pBuilder
->pWInfo
->pTabList
->a
[pNew
->iTab
];
3979 int nConstraint
= pIdxInfo
->nConstraint
;
3981 assert( (mUsable
& mPrereq
)==mPrereq
);
3983 pNew
->prereq
= mPrereq
;
3985 /* Set the usable flag on the subset of constraints identified by
3986 ** arguments mUsable and mExclude. */
3987 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3988 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3989 WhereTerm
*pTerm
= &pWC
->a
[pIdxCons
->iTermOffset
];
3990 pIdxCons
->usable
= 0;
3991 if( (pTerm
->prereqRight
& mUsable
)==pTerm
->prereqRight
3992 && (pTerm
->eOperator
& mExclude
)==0
3993 && (pbRetryLimit
|| !isLimitTerm(pTerm
))
3995 pIdxCons
->usable
= 1;
3999 /* Initialize the output fields of the sqlite3_index_info structure */
4000 memset(pUsage
, 0, sizeof(pUsage
[0])*nConstraint
);
4001 assert( pIdxInfo
->needToFreeIdxStr
==0 );
4002 pIdxInfo
->idxStr
= 0;
4003 pIdxInfo
->idxNum
= 0;
4004 pIdxInfo
->orderByConsumed
= 0;
4005 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ (double)2;
4006 pIdxInfo
->estimatedRows
= 25;
4007 pIdxInfo
->idxFlags
= 0;
4008 pIdxInfo
->colUsed
= (sqlite3_int64
)pSrc
->colUsed
;
4009 pHidden
->mHandleIn
= 0;
4011 /* Invoke the virtual table xBestIndex() method */
4012 rc
= vtabBestIndex(pParse
, pSrc
->pTab
, pIdxInfo
);
4014 if( rc
==SQLITE_CONSTRAINT
){
4015 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
4016 ** that the particular combination of parameters provided is unusable.
4017 ** Make no entries in the loop table.
4019 WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n"));
4026 assert( pNew
->nLSlot
>=nConstraint
);
4027 memset(pNew
->aLTerm
, 0, sizeof(pNew
->aLTerm
[0])*nConstraint
);
4028 memset(&pNew
->u
.vtab
, 0, sizeof(pNew
->u
.vtab
));
4029 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
4030 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
4032 if( (iTerm
= pUsage
[i
].argvIndex
- 1)>=0 ){
4034 int j
= pIdxCons
->iTermOffset
;
4035 if( iTerm
>=nConstraint
4038 || pNew
->aLTerm
[iTerm
]!=0
4039 || pIdxCons
->usable
==0
4041 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
4042 testcase( pIdxInfo
->needToFreeIdxStr
);
4043 return SQLITE_ERROR
;
4045 testcase( iTerm
==nConstraint
-1 );
4047 testcase( j
==pWC
->nTerm
-1 );
4049 pNew
->prereq
|= pTerm
->prereqRight
;
4050 assert( iTerm
<pNew
->nLSlot
);
4051 pNew
->aLTerm
[iTerm
] = pTerm
;
4052 if( iTerm
>mxTerm
) mxTerm
= iTerm
;
4053 testcase( iTerm
==15 );
4054 testcase( iTerm
==16 );
4055 if( pUsage
[i
].omit
){
4056 if( i
<16 && ((1<<i
)&mNoOmit
)==0 ){
4057 testcase( i
!=iTerm
);
4058 pNew
->u
.vtab
.omitMask
|= 1<<iTerm
;
4060 testcase( i
!=iTerm
);
4062 if( pTerm
->eMatchOp
==SQLITE_INDEX_CONSTRAINT_OFFSET
){
4063 pNew
->u
.vtab
.bOmitOffset
= 1;
4066 if( SMASKBIT32(i
) & pHidden
->mHandleIn
){
4067 pNew
->u
.vtab
.mHandleIn
|= MASKBIT32(iTerm
);
4068 }else if( (pTerm
->eOperator
& WO_IN
)!=0 ){
4069 /* A virtual table that is constrained by an IN clause may not
4070 ** consume the ORDER BY clause because (1) the order of IN terms
4071 ** is not necessarily related to the order of output terms and
4072 ** (2) Multiple outputs from a single IN value will not merge
4074 pIdxInfo
->orderByConsumed
= 0;
4075 pIdxInfo
->idxFlags
&= ~SQLITE_INDEX_SCAN_UNIQUE
;
4076 *pbIn
= 1; assert( (mExclude
& WO_IN
)==0 );
4079 assert( pbRetryLimit
|| !isLimitTerm(pTerm
) );
4080 if( isLimitTerm(pTerm
) && *pbIn
){
4081 /* If there is an IN(...) term handled as an == (separate call to
4082 ** xFilter for each value on the RHS of the IN) and a LIMIT or
4083 ** OFFSET term handled as well, the plan is unusable. Set output
4084 ** variable *pbRetryLimit to true to tell the caller to retry with
4085 ** LIMIT and OFFSET disabled. */
4086 if( pIdxInfo
->needToFreeIdxStr
){
4087 sqlite3_free(pIdxInfo
->idxStr
);
4088 pIdxInfo
->idxStr
= 0;
4089 pIdxInfo
->needToFreeIdxStr
= 0;
4097 pNew
->nLTerm
= mxTerm
+1;
4098 for(i
=0; i
<=mxTerm
; i
++){
4099 if( pNew
->aLTerm
[i
]==0 ){
4100 /* The non-zero argvIdx values must be contiguous. Raise an
4101 ** error if they are not */
4102 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
4103 testcase( pIdxInfo
->needToFreeIdxStr
);
4104 return SQLITE_ERROR
;
4107 assert( pNew
->nLTerm
<=pNew
->nLSlot
);
4108 pNew
->u
.vtab
.idxNum
= pIdxInfo
->idxNum
;
4109 pNew
->u
.vtab
.needFree
= pIdxInfo
->needToFreeIdxStr
;
4110 pIdxInfo
->needToFreeIdxStr
= 0;
4111 pNew
->u
.vtab
.idxStr
= pIdxInfo
->idxStr
;
4112 pNew
->u
.vtab
.isOrdered
= (i8
)(pIdxInfo
->orderByConsumed
?
4113 pIdxInfo
->nOrderBy
: 0);
4115 pNew
->rRun
= sqlite3LogEstFromDouble(pIdxInfo
->estimatedCost
);
4116 pNew
->nOut
= sqlite3LogEst(pIdxInfo
->estimatedRows
);
4118 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
4119 ** that the scan will visit at most one row. Clear it otherwise. */
4120 if( pIdxInfo
->idxFlags
& SQLITE_INDEX_SCAN_UNIQUE
){
4121 pNew
->wsFlags
|= WHERE_ONEROW
;
4123 pNew
->wsFlags
&= ~WHERE_ONEROW
;
4125 rc
= whereLoopInsert(pBuilder
, pNew
);
4126 if( pNew
->u
.vtab
.needFree
){
4127 sqlite3_free(pNew
->u
.vtab
.idxStr
);
4128 pNew
->u
.vtab
.needFree
= 0;
4130 WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
4131 *pbIn
, (sqlite3_uint64
)mPrereq
,
4132 (sqlite3_uint64
)(pNew
->prereq
& ~mPrereq
)));
4138 ** Return the collating sequence for a constraint passed into xBestIndex.
4140 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
4141 ** This routine depends on there being a HiddenIndexInfo structure immediately
4142 ** following the sqlite3_index_info structure.
4144 ** Return a pointer to the collation name:
4146 ** 1. If there is an explicit COLLATE operator on the constraint, return it.
4148 ** 2. Else, if the column has an alternative collation, return that.
4150 ** 3. Otherwise, return "BINARY".
4152 const char *sqlite3_vtab_collation(sqlite3_index_info
*pIdxInfo
, int iCons
){
4153 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4154 const char *zRet
= 0;
4155 if( iCons
>=0 && iCons
<pIdxInfo
->nConstraint
){
4157 int iTerm
= pIdxInfo
->aConstraint
[iCons
].iTermOffset
;
4158 Expr
*pX
= pHidden
->pWC
->a
[iTerm
].pExpr
;
4160 pC
= sqlite3ExprCompareCollSeq(pHidden
->pParse
, pX
);
4162 zRet
= (pC
? pC
->zName
: sqlite3StrBINARY
);
4168 ** Return true if constraint iCons is really an IN(...) constraint, or
4169 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
4170 ** or clear (if bHandle==0) the flag to handle it using an iterator.
4172 int sqlite3_vtab_in(sqlite3_index_info
*pIdxInfo
, int iCons
, int bHandle
){
4173 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4174 u32 m
= SMASKBIT32(iCons
);
4175 if( m
& pHidden
->mIn
){
4177 pHidden
->mHandleIn
&= ~m
;
4178 }else if( bHandle
>0 ){
4179 pHidden
->mHandleIn
|= m
;
4187 ** This interface is callable from within the xBestIndex callback only.
4189 ** If possible, set (*ppVal) to point to an object containing the value
4190 ** on the right-hand-side of constraint iCons.
4192 int sqlite3_vtab_rhs_value(
4193 sqlite3_index_info
*pIdxInfo
, /* Copy of first argument to xBestIndex */
4194 int iCons
, /* Constraint for which RHS is wanted */
4195 sqlite3_value
**ppVal
/* Write value extracted here */
4197 HiddenIndexInfo
*pH
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4198 sqlite3_value
*pVal
= 0;
4200 if( iCons
<0 || iCons
>=pIdxInfo
->nConstraint
){
4201 rc
= SQLITE_MISUSE_BKPT
; /* EV: R-30545-25046 */
4203 if( pH
->aRhs
[iCons
]==0 ){
4204 WhereTerm
*pTerm
= &pH
->pWC
->a
[pIdxInfo
->aConstraint
[iCons
].iTermOffset
];
4205 rc
= sqlite3ValueFromExpr(
4206 pH
->pParse
->db
, pTerm
->pExpr
->pRight
, ENC(pH
->pParse
->db
),
4207 SQLITE_AFF_BLOB
, &pH
->aRhs
[iCons
]
4209 testcase( rc
!=SQLITE_OK
);
4211 pVal
= pH
->aRhs
[iCons
];
4215 if( rc
==SQLITE_OK
&& pVal
==0 ){ /* IMP: R-19933-32160 */
4216 rc
= SQLITE_NOTFOUND
; /* IMP: R-36424-56542 */
4223 ** Return true if ORDER BY clause may be handled as DISTINCT.
4225 int sqlite3_vtab_distinct(sqlite3_index_info
*pIdxInfo
){
4226 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4227 assert( pHidden
->eDistinct
>=0 && pHidden
->eDistinct
<=3 );
4228 return pHidden
->eDistinct
;
4232 ** Cause the prepared statement that is associated with a call to
4233 ** xBestIndex to potentially use all schemas. If the statement being
4234 ** prepared is read-only, then just start read transactions on all
4235 ** schemas. But if this is a write operation, start writes on all
4238 ** This is used by the (built-in) sqlite_dbpage virtual table.
4240 void sqlite3VtabUsesAllSchemas(Parse
*pParse
){
4241 int nDb
= pParse
->db
->nDb
;
4243 for(i
=0; i
<nDb
; i
++){
4244 sqlite3CodeVerifySchema(pParse
, i
);
4246 if( DbMaskNonZero(pParse
->writeMask
) ){
4247 for(i
=0; i
<nDb
; i
++){
4248 sqlite3BeginWriteOperation(pParse
, 0, i
);
4254 ** Add all WhereLoop objects for a table of the join identified by
4255 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
4257 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
4258 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
4259 ** entries that occur before the virtual table in the FROM clause and are
4260 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
4261 ** mUnusable mask contains all FROM clause entries that occur after the
4262 ** virtual table and are separated from it by at least one LEFT or
4265 ** For example, if the query were:
4267 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
4269 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
4271 ** All the tables in mPrereq must be scanned before the current virtual
4272 ** table. So any terms for which all prerequisites are satisfied by
4273 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
4274 ** Conversely, all tables in mUnusable must be scanned after the current
4275 ** virtual table, so any terms for which the prerequisites overlap with
4276 ** mUnusable should always be configured as "not-usable" for xBestIndex.
4278 static int whereLoopAddVirtual(
4279 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
4280 Bitmask mPrereq
, /* Tables that must be scanned before this one */
4281 Bitmask mUnusable
/* Tables that must be scanned after this one */
4283 int rc
= SQLITE_OK
; /* Return code */
4284 WhereInfo
*pWInfo
; /* WHERE analysis context */
4285 Parse
*pParse
; /* The parsing context */
4286 WhereClause
*pWC
; /* The WHERE clause */
4287 SrcItem
*pSrc
; /* The FROM clause term to search */
4288 sqlite3_index_info
*p
; /* Object to pass to xBestIndex() */
4289 int nConstraint
; /* Number of constraints in p */
4290 int bIn
; /* True if plan uses IN(...) operator */
4292 Bitmask mBest
; /* Tables used by best possible plan */
4294 int bRetry
= 0; /* True to retry with LIMIT/OFFSET disabled */
4296 assert( (mPrereq
& mUnusable
)==0 );
4297 pWInfo
= pBuilder
->pWInfo
;
4298 pParse
= pWInfo
->pParse
;
4299 pWC
= pBuilder
->pWC
;
4300 pNew
= pBuilder
->pNew
;
4301 pSrc
= &pWInfo
->pTabList
->a
[pNew
->iTab
];
4302 assert( IsVirtual(pSrc
->pTab
) );
4303 p
= allocateIndexInfo(pWInfo
, pWC
, mUnusable
, pSrc
, &mNoOmit
);
4304 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
4306 pNew
->wsFlags
= WHERE_VIRTUALTABLE
;
4308 pNew
->u
.vtab
.needFree
= 0;
4309 nConstraint
= p
->nConstraint
;
4310 if( whereLoopResize(pParse
->db
, pNew
, nConstraint
) ){
4311 freeIndexInfo(pParse
->db
, p
);
4312 return SQLITE_NOMEM_BKPT
;
4315 /* First call xBestIndex() with all constraints usable. */
4316 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc
->pTab
->zName
));
4317 WHERETRACE(0x800, (" VirtualOne: all usable\n"));
4318 rc
= whereLoopAddVirtualOne(
4319 pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
, &bRetry
4322 assert( rc
==SQLITE_OK
);
4323 rc
= whereLoopAddVirtualOne(
4324 pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
, 0
4328 /* If the call to xBestIndex() with all terms enabled produced a plan
4329 ** that does not require any source tables (IOW: a plan with mBest==0)
4330 ** and does not use an IN(...) operator, then there is no point in making
4331 ** any further calls to xBestIndex() since they will all return the same
4332 ** result (if the xBestIndex() implementation is sane). */
4333 if( rc
==SQLITE_OK
&& ((mBest
= (pNew
->prereq
& ~mPrereq
))!=0 || bIn
) ){
4334 int seenZero
= 0; /* True if a plan with no prereqs seen */
4335 int seenZeroNoIN
= 0; /* Plan with no prereqs and no IN(...) seen */
4337 Bitmask mBestNoIn
= 0;
4339 /* If the plan produced by the earlier call uses an IN(...) term, call
4340 ** xBestIndex again, this time with IN(...) terms disabled. */
4342 WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n"));
4343 rc
= whereLoopAddVirtualOne(
4344 pBuilder
, mPrereq
, ALLBITS
, WO_IN
, p
, mNoOmit
, &bIn
, 0);
4346 mBestNoIn
= pNew
->prereq
& ~mPrereq
;
4353 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
4354 ** in the set of terms that apply to the current virtual table. */
4355 while( rc
==SQLITE_OK
){
4357 Bitmask mNext
= ALLBITS
;
4359 for(i
=0; i
<nConstraint
; i
++){
4361 pWC
->a
[p
->aConstraint
[i
].iTermOffset
].prereqRight
& ~mPrereq
4363 if( mThis
>mPrev
&& mThis
<mNext
) mNext
= mThis
;
4366 if( mNext
==ALLBITS
) break;
4367 if( mNext
==mBest
|| mNext
==mBestNoIn
) continue;
4368 WHERETRACE(0x800, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
4369 (sqlite3_uint64
)mPrev
, (sqlite3_uint64
)mNext
));
4370 rc
= whereLoopAddVirtualOne(
4371 pBuilder
, mPrereq
, mNext
|mPrereq
, 0, p
, mNoOmit
, &bIn
, 0);
4372 if( pNew
->prereq
==mPrereq
){
4374 if( bIn
==0 ) seenZeroNoIN
= 1;
4378 /* If the calls to xBestIndex() in the above loop did not find a plan
4379 ** that requires no source tables at all (i.e. one guaranteed to be
4380 ** usable), make a call here with all source tables disabled */
4381 if( rc
==SQLITE_OK
&& seenZero
==0 ){
4382 WHERETRACE(0x800, (" VirtualOne: all disabled\n"));
4383 rc
= whereLoopAddVirtualOne(
4384 pBuilder
, mPrereq
, mPrereq
, 0, p
, mNoOmit
, &bIn
, 0);
4385 if( bIn
==0 ) seenZeroNoIN
= 1;
4388 /* If the calls to xBestIndex() have so far failed to find a plan
4389 ** that requires no source tables at all and does not use an IN(...)
4390 ** operator, make a final call to obtain one here. */
4391 if( rc
==SQLITE_OK
&& seenZeroNoIN
==0 ){
4392 WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n"));
4393 rc
= whereLoopAddVirtualOne(
4394 pBuilder
, mPrereq
, mPrereq
, WO_IN
, p
, mNoOmit
, &bIn
, 0);
4398 if( p
->needToFreeIdxStr
) sqlite3_free(p
->idxStr
);
4399 freeIndexInfo(pParse
->db
, p
);
4400 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc
->pTab
->zName
, rc
));
4403 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4406 ** Add WhereLoop entries to handle OR terms. This works for either
4407 ** btrees or virtual tables.
4409 static int whereLoopAddOr(
4410 WhereLoopBuilder
*pBuilder
,
4414 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4417 WhereTerm
*pTerm
, *pWCEnd
;
4421 WhereLoopBuilder sSubBuild
;
4422 WhereOrSet sSum
, sCur
;
4425 pWC
= pBuilder
->pWC
;
4426 pWCEnd
= pWC
->a
+ pWC
->nTerm
;
4427 pNew
= pBuilder
->pNew
;
4428 memset(&sSum
, 0, sizeof(sSum
));
4429 pItem
= pWInfo
->pTabList
->a
+ pNew
->iTab
;
4430 iCur
= pItem
->iCursor
;
4432 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4433 if( pItem
->fg
.jointype
& JT_RIGHT
) return SQLITE_OK
;
4435 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
&& rc
==SQLITE_OK
; pTerm
++){
4436 if( (pTerm
->eOperator
& WO_OR
)!=0
4437 && (pTerm
->u
.pOrInfo
->indexable
& pNew
->maskSelf
)!=0
4439 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
4440 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
4445 sSubBuild
= *pBuilder
;
4446 sSubBuild
.pOrSet
= &sCur
;
4448 WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm
));
4449 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
4450 if( (pOrTerm
->eOperator
& WO_AND
)!=0 ){
4451 sSubBuild
.pWC
= &pOrTerm
->u
.pAndInfo
->wc
;
4452 }else if( pOrTerm
->leftCursor
==iCur
){
4453 tempWC
.pWInfo
= pWC
->pWInfo
;
4454 tempWC
.pOuter
= pWC
;
4459 sSubBuild
.pWC
= &tempWC
;
4464 #ifdef WHERETRACE_ENABLED
4465 WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n",
4466 (int)(pOrTerm
-pOrWC
->a
), pTerm
, sSubBuild
.pWC
->nTerm
));
4467 if( sqlite3WhereTrace
& 0x20000 ){
4468 sqlite3WhereClausePrint(sSubBuild
.pWC
);
4471 #ifndef SQLITE_OMIT_VIRTUALTABLE
4472 if( IsVirtual(pItem
->pTab
) ){
4473 rc
= whereLoopAddVirtual(&sSubBuild
, mPrereq
, mUnusable
);
4477 rc
= whereLoopAddBtree(&sSubBuild
, mPrereq
);
4479 if( rc
==SQLITE_OK
){
4480 rc
= whereLoopAddOr(&sSubBuild
, mPrereq
, mUnusable
);
4482 testcase( rc
==SQLITE_NOMEM
&& sCur
.n
>0 );
4483 testcase( rc
==SQLITE_DONE
);
4488 whereOrMove(&sSum
, &sCur
);
4492 whereOrMove(&sPrev
, &sSum
);
4494 for(i
=0; i
<sPrev
.n
; i
++){
4495 for(j
=0; j
<sCur
.n
; j
++){
4496 whereOrInsert(&sSum
, sPrev
.a
[i
].prereq
| sCur
.a
[j
].prereq
,
4497 sqlite3LogEstAdd(sPrev
.a
[i
].rRun
, sCur
.a
[j
].rRun
),
4498 sqlite3LogEstAdd(sPrev
.a
[i
].nOut
, sCur
.a
[j
].nOut
));
4504 pNew
->aLTerm
[0] = pTerm
;
4505 pNew
->wsFlags
= WHERE_MULTI_OR
;
4508 memset(&pNew
->u
, 0, sizeof(pNew
->u
));
4509 for(i
=0; rc
==SQLITE_OK
&& i
<sSum
.n
; i
++){
4510 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4511 ** of all sub-scans required by the OR-scan. However, due to rounding
4512 ** errors, it may be that the cost of the OR-scan is equal to its
4513 ** most expensive sub-scan. Add the smallest possible penalty
4514 ** (equivalent to multiplying the cost by 1.07) to ensure that
4515 ** this does not happen. Otherwise, for WHERE clauses such as the
4516 ** following where there is an index on "y":
4518 ** WHERE likelihood(x=?, 0.99) OR y=?
4520 ** the planner may elect to "OR" together a full-table scan and an
4521 ** index lookup. And other similarly odd results. */
4522 pNew
->rRun
= sSum
.a
[i
].rRun
+ 1;
4523 pNew
->nOut
= sSum
.a
[i
].nOut
;
4524 pNew
->prereq
= sSum
.a
[i
].prereq
;
4525 rc
= whereLoopInsert(pBuilder
, pNew
);
4527 WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm
));
4534 ** Add all WhereLoop objects for all tables
4536 static int whereLoopAddAll(WhereLoopBuilder
*pBuilder
){
4537 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4538 Bitmask mPrereq
= 0;
4541 SrcList
*pTabList
= pWInfo
->pTabList
;
4543 SrcItem
*pEnd
= &pTabList
->a
[pWInfo
->nLevel
];
4544 sqlite3
*db
= pWInfo
->pParse
->db
;
4546 int bFirstPastRJ
= 0;
4547 int hasRightJoin
= 0;
4551 /* Loop over the tables in the join, from left to right */
4552 pNew
= pBuilder
->pNew
;
4554 /* Verify that pNew has already been initialized */
4555 assert( pNew
->nLTerm
==0 );
4556 assert( pNew
->wsFlags
==0 );
4557 assert( pNew
->nLSlot
>=ArraySize(pNew
->aLTermSpace
) );
4558 assert( pNew
->aLTerm
!=0 );
4560 pBuilder
->iPlanLimit
= SQLITE_QUERY_PLANNER_LIMIT
;
4561 for(iTab
=0, pItem
=pTabList
->a
; pItem
<pEnd
; iTab
++, pItem
++){
4562 Bitmask mUnusable
= 0;
4564 pBuilder
->iPlanLimit
+= SQLITE_QUERY_PLANNER_LIMIT_INCR
;
4565 pNew
->maskSelf
= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pItem
->iCursor
);
4567 || (pItem
->fg
.jointype
& (JT_OUTER
|JT_CROSS
|JT_LTORJ
))!=0
4569 /* Add prerequisites to prevent reordering of FROM clause terms
4570 ** across CROSS joins and outer joins. The bFirstPastRJ boolean
4571 ** prevents the right operand of a RIGHT JOIN from being swapped with
4572 ** other elements even further to the right.
4574 ** The JT_LTORJ case and the hasRightJoin flag work together to
4575 ** prevent FROM-clause terms from moving from the right side of
4576 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4577 ** is itself on the left side of a RIGHT JOIN.
4579 if( pItem
->fg
.jointype
& JT_LTORJ
) hasRightJoin
= 1;
4581 bFirstPastRJ
= (pItem
->fg
.jointype
& JT_RIGHT
)!=0;
4582 }else if( !hasRightJoin
){
4585 #ifndef SQLITE_OMIT_VIRTUALTABLE
4586 if( IsVirtual(pItem
->pTab
) ){
4588 for(p
=&pItem
[1]; p
<pEnd
; p
++){
4589 if( mUnusable
|| (p
->fg
.jointype
& (JT_OUTER
|JT_CROSS
)) ){
4590 mUnusable
|= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, p
->iCursor
);
4593 rc
= whereLoopAddVirtual(pBuilder
, mPrereq
, mUnusable
);
4595 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4597 rc
= whereLoopAddBtree(pBuilder
, mPrereq
);
4599 if( rc
==SQLITE_OK
&& pBuilder
->pWC
->hasOr
){
4600 rc
= whereLoopAddOr(pBuilder
, mPrereq
, mUnusable
);
4602 mPrior
|= pNew
->maskSelf
;
4603 if( rc
|| db
->mallocFailed
){
4604 if( rc
==SQLITE_DONE
){
4605 /* We hit the query planner search limit set by iPlanLimit */
4606 sqlite3_log(SQLITE_WARNING
, "abbreviated query algorithm search");
4614 whereLoopClear(db
, pNew
);
4619 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4620 ** parameters) to see if it outputs rows in the requested ORDER BY
4621 ** (or GROUP BY) without requiring a separate sort operation. Return N:
4623 ** N>0: N terms of the ORDER BY clause are satisfied
4624 ** N==0: No terms of the ORDER BY clause are satisfied
4625 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
4627 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4628 ** strict. With GROUP BY and DISTINCT the only requirement is that
4629 ** equivalent rows appear immediately adjacent to one another. GROUP BY
4630 ** and DISTINCT do not require rows to appear in any particular order as long
4631 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
4632 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
4633 ** pOrderBy terms must be matched in strict left-to-right order.
4635 static i8
wherePathSatisfiesOrderBy(
4636 WhereInfo
*pWInfo
, /* The WHERE clause */
4637 ExprList
*pOrderBy
, /* ORDER BY or GROUP BY or DISTINCT clause to check */
4638 WherePath
*pPath
, /* The WherePath to check */
4639 u16 wctrlFlags
, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4640 u16 nLoop
, /* Number of entries in pPath->aLoop[] */
4641 WhereLoop
*pLast
, /* Add this WhereLoop to the end of pPath->aLoop[] */
4642 Bitmask
*pRevMask
/* OUT: Mask of WhereLoops to run in reverse order */
4644 u8 revSet
; /* True if rev is known */
4645 u8 rev
; /* Composite sort order */
4646 u8 revIdx
; /* Index sort order */
4647 u8 isOrderDistinct
; /* All prior WhereLoops are order-distinct */
4648 u8 distinctColumns
; /* True if the loop has UNIQUE NOT NULL columns */
4649 u8 isMatch
; /* iColumn matches a term of the ORDER BY clause */
4650 u16 eqOpMask
; /* Allowed equality operators */
4651 u16 nKeyCol
; /* Number of key columns in pIndex */
4652 u16 nColumn
; /* Total number of ordered columns in the index */
4653 u16 nOrderBy
; /* Number terms in the ORDER BY clause */
4654 int iLoop
; /* Index of WhereLoop in pPath being processed */
4655 int i
, j
; /* Loop counters */
4656 int iCur
; /* Cursor number for current WhereLoop */
4657 int iColumn
; /* A column number within table iCur */
4658 WhereLoop
*pLoop
= 0; /* Current WhereLoop being processed. */
4659 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
4660 Expr
*pOBExpr
; /* An expression from the ORDER BY clause */
4661 CollSeq
*pColl
; /* COLLATE function from an ORDER BY clause term */
4662 Index
*pIndex
; /* The index associated with pLoop */
4663 sqlite3
*db
= pWInfo
->pParse
->db
; /* Database connection */
4664 Bitmask obSat
= 0; /* Mask of ORDER BY terms satisfied so far */
4665 Bitmask obDone
; /* Mask of all ORDER BY terms */
4666 Bitmask orderDistinctMask
; /* Mask of all well-ordered loops */
4667 Bitmask ready
; /* Mask of inner loops */
4670 ** We say the WhereLoop is "one-row" if it generates no more than one
4671 ** row of output. A WhereLoop is one-row if all of the following are true:
4672 ** (a) All index columns match with WHERE_COLUMN_EQ.
4673 ** (b) The index is unique
4674 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4675 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4677 ** We say the WhereLoop is "order-distinct" if the set of columns from
4678 ** that WhereLoop that are in the ORDER BY clause are different for every
4679 ** row of the WhereLoop. Every one-row WhereLoop is automatically
4680 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
4681 ** is not order-distinct. To be order-distinct is not quite the same as being
4682 ** UNIQUE since a UNIQUE column or index can have multiple rows that
4683 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4684 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4686 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4687 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4688 ** automatically order-distinct.
4691 assert( pOrderBy
!=0 );
4692 if( nLoop
&& OptimizationDisabled(db
, SQLITE_OrderByIdxJoin
) ) return 0;
4694 nOrderBy
= pOrderBy
->nExpr
;
4695 testcase( nOrderBy
==BMS
-1 );
4696 if( nOrderBy
>BMS
-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
4697 isOrderDistinct
= 1;
4698 obDone
= MASKBIT(nOrderBy
)-1;
4699 orderDistinctMask
= 0;
4701 eqOpMask
= WO_EQ
| WO_IS
| WO_ISNULL
;
4702 if( wctrlFlags
& (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MAX
|WHERE_ORDERBY_MIN
) ){
4705 for(iLoop
=0; isOrderDistinct
&& obSat
<obDone
&& iLoop
<=nLoop
; iLoop
++){
4706 if( iLoop
>0 ) ready
|= pLoop
->maskSelf
;
4708 pLoop
= pPath
->aLoop
[iLoop
];
4709 if( wctrlFlags
& WHERE_ORDERBY_LIMIT
) continue;
4713 if( pLoop
->wsFlags
& WHERE_VIRTUALTABLE
){
4714 if( pLoop
->u
.vtab
.isOrdered
4715 && ((wctrlFlags
&(WHERE_DISTINCTBY
|WHERE_SORTBYGROUP
))!=WHERE_DISTINCTBY
)
4720 }else if( wctrlFlags
& WHERE_DISTINCTBY
){
4721 pLoop
->u
.btree
.nDistinctCol
= 0;
4723 iCur
= pWInfo
->pTabList
->a
[pLoop
->iTab
].iCursor
;
4725 /* Mark off any ORDER BY term X that is a column in the table of
4726 ** the current loop for which there is term in the WHERE
4727 ** clause of the form X IS NULL or X=? that reference only outer
4730 for(i
=0; i
<nOrderBy
; i
++){
4731 if( MASKBIT(i
) & obSat
) continue;
4732 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4733 if( NEVER(pOBExpr
==0) ) continue;
4734 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4735 if( pOBExpr
->iTable
!=iCur
) continue;
4736 pTerm
= sqlite3WhereFindTerm(&pWInfo
->sWC
, iCur
, pOBExpr
->iColumn
,
4737 ~ready
, eqOpMask
, 0);
4738 if( pTerm
==0 ) continue;
4739 if( pTerm
->eOperator
==WO_IN
){
4740 /* IN terms are only valid for sorting in the ORDER BY LIMIT
4741 ** optimization, and then only if they are actually used
4742 ** by the query plan */
4743 assert( wctrlFlags
&
4744 (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
) );
4745 for(j
=0; j
<pLoop
->nLTerm
&& pTerm
!=pLoop
->aLTerm
[j
]; j
++){}
4746 if( j
>=pLoop
->nLTerm
) continue;
4748 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0 && pOBExpr
->iColumn
>=0 ){
4749 Parse
*pParse
= pWInfo
->pParse
;
4750 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pOrderBy
->a
[i
].pExpr
);
4751 CollSeq
*pColl2
= sqlite3ExprCompareCollSeq(pParse
, pTerm
->pExpr
);
4753 if( pColl2
==0 || sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
) ){
4756 testcase( pTerm
->pExpr
->op
==TK_IS
);
4758 obSat
|= MASKBIT(i
);
4761 if( (pLoop
->wsFlags
& WHERE_ONEROW
)==0 ){
4762 if( pLoop
->wsFlags
& WHERE_IPK
){
4766 }else if( (pIndex
= pLoop
->u
.btree
.pIndex
)==0 || pIndex
->bUnordered
){
4769 nKeyCol
= pIndex
->nKeyCol
;
4770 nColumn
= pIndex
->nColumn
;
4771 assert( nColumn
==nKeyCol
+1 || !HasRowid(pIndex
->pTable
) );
4772 assert( pIndex
->aiColumn
[nColumn
-1]==XN_ROWID
4773 || !HasRowid(pIndex
->pTable
));
4774 /* All relevant terms of the index must also be non-NULL in order
4775 ** for isOrderDistinct to be true. So the isOrderDistint value
4776 ** computed here might be a false positive. Corrections will be
4777 ** made at tag-20210426-1 below */
4778 isOrderDistinct
= IsUniqueIndex(pIndex
)
4779 && (pLoop
->wsFlags
& WHERE_SKIPSCAN
)==0;
4782 /* Loop through all columns of the index and deal with the ones
4783 ** that are not constrained by == or IN.
4786 distinctColumns
= 0;
4787 for(j
=0; j
<nColumn
; j
++){
4788 u8 bOnce
= 1; /* True to run the ORDER BY search loop */
4790 assert( j
>=pLoop
->u
.btree
.nEq
4791 || (pLoop
->aLTerm
[j
]==0)==(j
<pLoop
->nSkip
)
4793 if( j
<pLoop
->u
.btree
.nEq
&& j
>=pLoop
->nSkip
){
4794 u16 eOp
= pLoop
->aLTerm
[j
]->eOperator
;
4796 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
4797 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
4798 ** terms imply that the index is not UNIQUE NOT NULL in which case
4799 ** the loop need to be marked as not order-distinct because it can
4800 ** have repeated NULL rows.
4802 ** If the current term is a column of an ((?,?) IN (SELECT...))
4803 ** expression for which the SELECT returns more than one column,
4804 ** check that it is the only column used by this loop. Otherwise,
4805 ** if it is one of two or more, none of the columns can be
4806 ** considered to match an ORDER BY term.
4808 if( (eOp
& eqOpMask
)!=0 ){
4809 if( eOp
& (WO_ISNULL
|WO_IS
) ){
4810 testcase( eOp
& WO_ISNULL
);
4811 testcase( eOp
& WO_IS
);
4812 testcase( isOrderDistinct
);
4813 isOrderDistinct
= 0;
4816 }else if( ALWAYS(eOp
& WO_IN
) ){
4817 /* ALWAYS() justification: eOp is an equality operator due to the
4818 ** j<pLoop->u.btree.nEq constraint above. Any equality other
4819 ** than WO_IN is captured by the previous "if". So this one
4820 ** always has to be WO_IN. */
4821 Expr
*pX
= pLoop
->aLTerm
[j
]->pExpr
;
4822 for(i
=j
+1; i
<pLoop
->u
.btree
.nEq
; i
++){
4823 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
4824 assert( (pLoop
->aLTerm
[i
]->eOperator
& WO_IN
) );
4832 /* Get the column number in the table (iColumn) and sort order
4833 ** (revIdx) for the j-th column of the index.
4836 iColumn
= pIndex
->aiColumn
[j
];
4837 revIdx
= pIndex
->aSortOrder
[j
] & KEYINFO_ORDER_DESC
;
4838 if( iColumn
==pIndex
->pTable
->iPKey
) iColumn
= XN_ROWID
;
4844 /* An unconstrained column that might be NULL means that this
4845 ** WhereLoop is not well-ordered. tag-20210426-1
4847 if( isOrderDistinct
){
4849 && j
>=pLoop
->u
.btree
.nEq
4850 && pIndex
->pTable
->aCol
[iColumn
].notNull
==0
4852 isOrderDistinct
= 0;
4854 if( iColumn
==XN_EXPR
){
4855 isOrderDistinct
= 0;
4859 /* Find the ORDER BY term that corresponds to the j-th column
4860 ** of the index and mark that ORDER BY term off
4863 for(i
=0; bOnce
&& i
<nOrderBy
; i
++){
4864 if( MASKBIT(i
) & obSat
) continue;
4865 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4866 testcase( wctrlFlags
& WHERE_GROUPBY
);
4867 testcase( wctrlFlags
& WHERE_DISTINCTBY
);
4868 if( NEVER(pOBExpr
==0) ) continue;
4869 if( (wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
))==0 ) bOnce
= 0;
4870 if( iColumn
>=XN_ROWID
){
4871 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4872 if( pOBExpr
->iTable
!=iCur
) continue;
4873 if( pOBExpr
->iColumn
!=iColumn
) continue;
4875 Expr
*pIxExpr
= pIndex
->aColExpr
->a
[j
].pExpr
;
4876 if( sqlite3ExprCompareSkip(pOBExpr
, pIxExpr
, iCur
) ){
4880 if( iColumn
!=XN_ROWID
){
4881 pColl
= sqlite3ExprNNCollSeq(pWInfo
->pParse
, pOrderBy
->a
[i
].pExpr
);
4882 if( sqlite3StrICmp(pColl
->zName
, pIndex
->azColl
[j
])!=0 ) continue;
4884 if( wctrlFlags
& WHERE_DISTINCTBY
){
4885 pLoop
->u
.btree
.nDistinctCol
= j
+1;
4890 if( isMatch
&& (wctrlFlags
& WHERE_GROUPBY
)==0 ){
4891 /* Make sure the sort order is compatible in an ORDER BY clause.
4892 ** Sort order is irrelevant for a GROUP BY clause. */
4895 != (pOrderBy
->a
[i
].fg
.sortFlags
&KEYINFO_ORDER_DESC
)
4900 rev
= revIdx
^ (pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_DESC
);
4901 if( rev
) *pRevMask
|= MASKBIT(iLoop
);
4905 if( isMatch
&& (pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) ){
4906 if( j
==pLoop
->u
.btree
.nEq
){
4907 pLoop
->wsFlags
|= WHERE_BIGNULL_SORT
;
4913 if( iColumn
==XN_ROWID
){
4914 testcase( distinctColumns
==0 );
4915 distinctColumns
= 1;
4917 obSat
|= MASKBIT(i
);
4919 /* No match found */
4920 if( j
==0 || j
<nKeyCol
){
4921 testcase( isOrderDistinct
!=0 );
4922 isOrderDistinct
= 0;
4926 } /* end Loop over all index columns */
4927 if( distinctColumns
){
4928 testcase( isOrderDistinct
==0 );
4929 isOrderDistinct
= 1;
4931 } /* end-if not one-row */
4933 /* Mark off any other ORDER BY terms that reference pLoop */
4934 if( isOrderDistinct
){
4935 orderDistinctMask
|= pLoop
->maskSelf
;
4936 for(i
=0; i
<nOrderBy
; i
++){
4939 if( MASKBIT(i
) & obSat
) continue;
4940 p
= pOrderBy
->a
[i
].pExpr
;
4941 mTerm
= sqlite3WhereExprUsage(&pWInfo
->sMaskSet
,p
);
4942 if( mTerm
==0 && !sqlite3ExprIsConstant(p
) ) continue;
4943 if( (mTerm
&~orderDistinctMask
)==0 ){
4944 obSat
|= MASKBIT(i
);
4948 } /* End the loop over all WhereLoops from outer-most down to inner-most */
4949 if( obSat
==obDone
) return (i8
)nOrderBy
;
4950 if( !isOrderDistinct
){
4951 for(i
=nOrderBy
-1; i
>0; i
--){
4952 Bitmask m
= ALWAYS(i
<BMS
) ? MASKBIT(i
) - 1 : 0;
4953 if( (obSat
&m
)==m
) return i
;
4962 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4963 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4964 ** BY clause - and so any order that groups rows as required satisfies the
4967 ** Normally, in this case it is not possible for the caller to determine
4968 ** whether or not the rows are really being delivered in sorted order, or
4969 ** just in some other order that provides the required grouping. However,
4970 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4971 ** this function may be called on the returned WhereInfo object. It returns
4972 ** true if the rows really will be sorted in the specified order, or false
4975 ** For example, assuming:
4977 ** CREATE INDEX i1 ON t1(x, Y);
4981 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
4982 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
4984 int sqlite3WhereIsSorted(WhereInfo
*pWInfo
){
4985 assert( pWInfo
->wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
) );
4986 assert( pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
);
4987 return pWInfo
->sorted
;
4990 #ifdef WHERETRACE_ENABLED
4991 /* For debugging use only: */
4992 static const char *wherePathName(WherePath
*pPath
, int nLoop
, WhereLoop
*pLast
){
4993 static char zName
[65];
4995 for(i
=0; i
<nLoop
; i
++){ zName
[i
] = pPath
->aLoop
[i
]->cId
; }
4996 if( pLast
) zName
[i
++] = pLast
->cId
;
5003 ** Return the cost of sorting nRow rows, assuming that the keys have
5004 ** nOrderby columns and that the first nSorted columns are already in
5007 static LogEst
whereSortingCost(
5008 WhereInfo
*pWInfo
, /* Query planning context */
5009 LogEst nRow
, /* Estimated number of rows to sort */
5010 int nOrderBy
, /* Number of ORDER BY clause terms */
5011 int nSorted
/* Number of initial ORDER BY terms naturally in order */
5013 /* Estimated cost of a full external sort, where N is
5014 ** the number of rows to sort is:
5016 ** cost = (K * N * log(N)).
5018 ** Or, if the order-by clause has X terms but only the last Y
5019 ** terms are out of order, then block-sorting will reduce the
5022 ** cost = (K * N * log(N)) * (Y/X)
5024 ** The constant K is at least 2.0 but will be larger if there are a
5025 ** large number of columns to be sorted, as the sorting time is
5026 ** proportional to the amount of content to be sorted. The algorithm
5027 ** does not currently distinguish between fat columns (BLOBs and TEXTs)
5028 ** and skinny columns (INTs). It just uses the number of columns as
5029 ** an approximation for the row width.
5031 ** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort
5032 ** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert.
5034 LogEst rSortCost
, nCol
;
5035 assert( pWInfo
->pSelect
!=0 );
5036 assert( pWInfo
->pSelect
->pEList
!=0 );
5037 /* TUNING: sorting cost proportional to the number of output columns: */
5038 nCol
= sqlite3LogEst((pWInfo
->pSelect
->pEList
->nExpr
+59)/30);
5039 rSortCost
= nRow
+ nCol
;
5041 /* Scale the result by (Y/X) */
5042 rSortCost
+= sqlite3LogEst((nOrderBy
-nSorted
)*100/nOrderBy
) - 66;
5045 /* Multiple by log(M) where M is the number of output rows.
5046 ** Use the LIMIT for M if it is smaller. Or if this sort is for
5047 ** a DISTINCT operator, M will be the number of distinct output
5048 ** rows, so fudge it downwards a bit.
5050 if( (pWInfo
->wctrlFlags
& WHERE_USE_LIMIT
)!=0 ){
5051 rSortCost
+= 10; /* TUNING: Extra 2.0x if using LIMIT */
5053 rSortCost
+= 6; /* TUNING: Extra 1.5x if also using partial sort */
5055 if( pWInfo
->iLimit
<nRow
){
5056 nRow
= pWInfo
->iLimit
;
5058 }else if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
) ){
5059 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
5060 ** reduces the number of output rows by a factor of 2 */
5061 if( nRow
>10 ){ nRow
-= 10; assert( 10==sqlite3LogEst(2) ); }
5063 rSortCost
+= estLog(nRow
);
5068 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
5069 ** attempts to find the lowest cost path that visits each WhereLoop
5070 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
5072 ** Assume that the total number of output rows that will need to be sorted
5073 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
5074 ** costs if nRowEst==0.
5076 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
5079 static int wherePathSolver(WhereInfo
*pWInfo
, LogEst nRowEst
){
5080 int mxChoice
; /* Maximum number of simultaneous paths tracked */
5081 int nLoop
; /* Number of terms in the join */
5082 Parse
*pParse
; /* Parsing context */
5083 int iLoop
; /* Loop counter over the terms of the join */
5084 int ii
, jj
; /* Loop counters */
5085 int mxI
= 0; /* Index of next entry to replace */
5086 int nOrderBy
; /* Number of ORDER BY clause terms */
5087 LogEst mxCost
= 0; /* Maximum cost of a set of paths */
5088 LogEst mxUnsorted
= 0; /* Maximum unsorted cost of a set of path */
5089 int nTo
, nFrom
; /* Number of valid entries in aTo[] and aFrom[] */
5090 WherePath
*aFrom
; /* All nFrom paths at the previous level */
5091 WherePath
*aTo
; /* The nTo best paths at the current level */
5092 WherePath
*pFrom
; /* An element of aFrom[] that we are working on */
5093 WherePath
*pTo
; /* An element of aTo[] that we are working on */
5094 WhereLoop
*pWLoop
; /* One of the WhereLoop objects */
5095 WhereLoop
**pX
; /* Used to divy up the pSpace memory */
5096 LogEst
*aSortCost
= 0; /* Sorting and partial sorting costs */
5097 char *pSpace
; /* Temporary memory used by this routine */
5098 int nSpace
; /* Bytes of space allocated at pSpace */
5100 pParse
= pWInfo
->pParse
;
5101 nLoop
= pWInfo
->nLevel
;
5102 /* TUNING: For simple queries, only the best path is tracked.
5103 ** For 2-way joins, the 5 best paths are followed.
5104 ** For joins of 3 or more tables, track the 10 best paths */
5105 mxChoice
= (nLoop
<=1) ? 1 : (nLoop
==2 ? 5 : 10);
5106 assert( nLoop
<=pWInfo
->pTabList
->nSrc
);
5107 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n",
5108 nRowEst
, pParse
->nQueryLoop
));
5110 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
5111 ** case the purpose of this call is to estimate the number of rows returned
5112 ** by the overall query. Once this estimate has been obtained, the caller
5113 ** will invoke this function a second time, passing the estimate as the
5114 ** nRowEst parameter. */
5115 if( pWInfo
->pOrderBy
==0 || nRowEst
==0 ){
5118 nOrderBy
= pWInfo
->pOrderBy
->nExpr
;
5121 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
5122 nSpace
= (sizeof(WherePath
)+sizeof(WhereLoop
*)*nLoop
)*mxChoice
*2;
5123 nSpace
+= sizeof(LogEst
) * nOrderBy
;
5124 pSpace
= sqlite3StackAllocRawNN(pParse
->db
, nSpace
);
5125 if( pSpace
==0 ) return SQLITE_NOMEM_BKPT
;
5126 aTo
= (WherePath
*)pSpace
;
5127 aFrom
= aTo
+mxChoice
;
5128 memset(aFrom
, 0, sizeof(aFrom
[0]));
5129 pX
= (WhereLoop
**)(aFrom
+mxChoice
);
5130 for(ii
=mxChoice
*2, pFrom
=aTo
; ii
>0; ii
--, pFrom
++, pX
+= nLoop
){
5134 /* If there is an ORDER BY clause and it is not being ignored, set up
5135 ** space for the aSortCost[] array. Each element of the aSortCost array
5136 ** is either zero - meaning it has not yet been initialized - or the
5137 ** cost of sorting nRowEst rows of data where the first X terms of
5138 ** the ORDER BY clause are already in order, where X is the array
5140 aSortCost
= (LogEst
*)pX
;
5141 memset(aSortCost
, 0, sizeof(LogEst
) * nOrderBy
);
5143 assert( aSortCost
==0 || &pSpace
[nSpace
]==(char*)&aSortCost
[nOrderBy
] );
5144 assert( aSortCost
!=0 || &pSpace
[nSpace
]==(char*)pX
);
5146 /* Seed the search with a single WherePath containing zero WhereLoops.
5148 ** TUNING: Do not let the number of iterations go above 28. If the cost
5149 ** of computing an automatic index is not paid back within the first 28
5150 ** rows, then do not use the automatic index. */
5151 aFrom
[0].nRow
= MIN(pParse
->nQueryLoop
, 48); assert( 48==sqlite3LogEst(28) );
5153 assert( aFrom
[0].isOrdered
==0 );
5155 /* If nLoop is zero, then there are no FROM terms in the query. Since
5156 ** in this case the query may return a maximum of one row, the results
5157 ** are already in the requested order. Set isOrdered to nOrderBy to
5158 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
5159 ** -1, indicating that the result set may or may not be ordered,
5160 ** depending on the loops added to the current plan. */
5161 aFrom
[0].isOrdered
= nLoop
>0 ? -1 : nOrderBy
;
5164 /* Compute successively longer WherePaths using the previous generation
5165 ** of WherePaths as the basis for the next. Keep track of the mxChoice
5166 ** best paths at each generation */
5167 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
5169 for(ii
=0, pFrom
=aFrom
; ii
<nFrom
; ii
++, pFrom
++){
5170 for(pWLoop
=pWInfo
->pLoops
; pWLoop
; pWLoop
=pWLoop
->pNextLoop
){
5171 LogEst nOut
; /* Rows visited by (pFrom+pWLoop) */
5172 LogEst rCost
; /* Cost of path (pFrom+pWLoop) */
5173 LogEst rUnsorted
; /* Unsorted cost of (pFrom+pWLoop) */
5174 i8 isOrdered
; /* isOrdered for (pFrom+pWLoop) */
5175 Bitmask maskNew
; /* Mask of src visited by (..) */
5176 Bitmask revMask
; /* Mask of rev-order loops for (..) */
5178 if( (pWLoop
->prereq
& ~pFrom
->maskLoop
)!=0 ) continue;
5179 if( (pWLoop
->maskSelf
& pFrom
->maskLoop
)!=0 ) continue;
5180 if( (pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && pFrom
->nRow
<3 ){
5181 /* Do not use an automatic index if the this loop is expected
5182 ** to run less than 1.25 times. It is tempting to also exclude
5183 ** automatic index usage on an outer loop, but sometimes an automatic
5184 ** index is useful in the outer loop of a correlated subquery. */
5185 assert( 10==sqlite3LogEst(2) );
5189 /* At this point, pWLoop is a candidate to be the next loop.
5190 ** Compute its cost */
5191 rUnsorted
= sqlite3LogEstAdd(pWLoop
->rSetup
,pWLoop
->rRun
+ pFrom
->nRow
);
5192 rUnsorted
= sqlite3LogEstAdd(rUnsorted
, pFrom
->rUnsorted
);
5193 nOut
= pFrom
->nRow
+ pWLoop
->nOut
;
5194 maskNew
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
5195 isOrdered
= pFrom
->isOrdered
;
5198 isOrdered
= wherePathSatisfiesOrderBy(pWInfo
,
5199 pWInfo
->pOrderBy
, pFrom
, pWInfo
->wctrlFlags
,
5200 iLoop
, pWLoop
, &revMask
);
5202 revMask
= pFrom
->revLoop
;
5204 if( isOrdered
>=0 && isOrdered
<nOrderBy
){
5205 if( aSortCost
[isOrdered
]==0 ){
5206 aSortCost
[isOrdered
] = whereSortingCost(
5207 pWInfo
, nRowEst
, nOrderBy
, isOrdered
5210 /* TUNING: Add a small extra penalty (3) to sorting as an
5211 ** extra encouragement to the query planner to select a plan
5212 ** where the rows emerge in the correct order without any sorting
5214 rCost
= sqlite3LogEstAdd(rUnsorted
, aSortCost
[isOrdered
]) + 3;
5217 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
5218 aSortCost
[isOrdered
], (nOrderBy
-isOrdered
), nOrderBy
,
5222 rUnsorted
-= 2; /* TUNING: Slight bias in favor of no-sort plans */
5225 /* Check to see if pWLoop should be added to the set of
5226 ** mxChoice best-so-far paths.
5228 ** First look for an existing path among best-so-far paths
5229 ** that covers the same set of loops and has the same isOrdered
5230 ** setting as the current path candidate.
5232 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
5233 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
5234 ** of legal values for isOrdered, -1..64.
5236 for(jj
=0, pTo
=aTo
; jj
<nTo
; jj
++, pTo
++){
5237 if( pTo
->maskLoop
==maskNew
5238 && ((pTo
->isOrdered
^isOrdered
)&0x80)==0
5240 testcase( jj
==nTo
-1 );
5245 /* None of the existing best-so-far paths match the candidate. */
5247 && (rCost
>mxCost
|| (rCost
==mxCost
&& rUnsorted
>=mxUnsorted
))
5249 /* The current candidate is no better than any of the mxChoice
5250 ** paths currently in the best-so-far buffer. So discard
5251 ** this candidate as not viable. */
5252 #ifdef WHERETRACE_ENABLED /* 0x4 */
5253 if( sqlite3WhereTrace
&0x4 ){
5254 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
5255 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5256 isOrdered
>=0 ? isOrdered
+'0' : '?');
5261 /* If we reach this points it means that the new candidate path
5262 ** needs to be added to the set of best-so-far paths. */
5264 /* Increase the size of the aTo set by one */
5267 /* New path replaces the prior worst to keep count below mxChoice */
5271 #ifdef WHERETRACE_ENABLED /* 0x4 */
5272 if( sqlite3WhereTrace
&0x4 ){
5273 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
5274 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5275 isOrdered
>=0 ? isOrdered
+'0' : '?');
5279 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
5280 ** same set of loops and has the same isOrdered setting as the
5281 ** candidate path. Check to see if the candidate should replace
5282 ** pTo or if the candidate should be skipped.
5284 ** The conditional is an expanded vector comparison equivalent to:
5285 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
5287 if( pTo
->rCost
<rCost
5288 || (pTo
->rCost
==rCost
5290 || (pTo
->nRow
==nOut
&& pTo
->rUnsorted
<=rUnsorted
)
5294 #ifdef WHERETRACE_ENABLED /* 0x4 */
5295 if( sqlite3WhereTrace
&0x4 ){
5297 "Skip %s cost=%-3d,%3d,%3d order=%c",
5298 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5299 isOrdered
>=0 ? isOrdered
+'0' : '?');
5300 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
5301 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5302 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
5305 /* Discard the candidate path from further consideration */
5306 testcase( pTo
->rCost
==rCost
);
5309 testcase( pTo
->rCost
==rCost
+1 );
5310 /* Control reaches here if the candidate path is better than the
5311 ** pTo path. Replace pTo with the candidate. */
5312 #ifdef WHERETRACE_ENABLED /* 0x4 */
5313 if( sqlite3WhereTrace
&0x4 ){
5315 "Update %s cost=%-3d,%3d,%3d order=%c",
5316 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5317 isOrdered
>=0 ? isOrdered
+'0' : '?');
5318 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
5319 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5320 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
5324 /* pWLoop is a winner. Add it to the set of best so far */
5325 pTo
->maskLoop
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
5326 pTo
->revLoop
= revMask
;
5329 pTo
->rUnsorted
= rUnsorted
;
5330 pTo
->isOrdered
= isOrdered
;
5331 memcpy(pTo
->aLoop
, pFrom
->aLoop
, sizeof(WhereLoop
*)*iLoop
);
5332 pTo
->aLoop
[iLoop
] = pWLoop
;
5333 if( nTo
>=mxChoice
){
5335 mxCost
= aTo
[0].rCost
;
5336 mxUnsorted
= aTo
[0].nRow
;
5337 for(jj
=1, pTo
=&aTo
[1]; jj
<mxChoice
; jj
++, pTo
++){
5338 if( pTo
->rCost
>mxCost
5339 || (pTo
->rCost
==mxCost
&& pTo
->rUnsorted
>mxUnsorted
)
5341 mxCost
= pTo
->rCost
;
5342 mxUnsorted
= pTo
->rUnsorted
;
5350 #ifdef WHERETRACE_ENABLED /* >=2 */
5351 if( sqlite3WhereTrace
& 0x02 ){
5352 sqlite3DebugPrintf("---- after round %d ----\n", iLoop
);
5353 for(ii
=0, pTo
=aTo
; ii
<nTo
; ii
++, pTo
++){
5354 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
5355 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5356 pTo
->isOrdered
>=0 ? (pTo
->isOrdered
+'0') : '?');
5357 if( pTo
->isOrdered
>0 ){
5358 sqlite3DebugPrintf(" rev=0x%llx\n", pTo
->revLoop
);
5360 sqlite3DebugPrintf("\n");
5366 /* Swap the roles of aFrom and aTo for the next generation */
5374 sqlite3ErrorMsg(pParse
, "no query solution");
5375 sqlite3StackFreeNN(pParse
->db
, pSpace
);
5376 return SQLITE_ERROR
;
5379 /* Find the lowest cost path. pFrom will be left pointing to that path */
5381 for(ii
=1; ii
<nFrom
; ii
++){
5382 if( pFrom
->rCost
>aFrom
[ii
].rCost
) pFrom
= &aFrom
[ii
];
5384 assert( pWInfo
->nLevel
==nLoop
);
5385 /* Load the lowest cost path into pWInfo */
5386 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
5387 WhereLevel
*pLevel
= pWInfo
->a
+ iLoop
;
5388 pLevel
->pWLoop
= pWLoop
= pFrom
->aLoop
[iLoop
];
5389 pLevel
->iFrom
= pWLoop
->iTab
;
5390 pLevel
->iTabCur
= pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
;
5392 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
5393 && (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
)==0
5394 && pWInfo
->eDistinct
==WHERE_DISTINCT_NOOP
5398 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pResultSet
, pFrom
,
5399 WHERE_DISTINCTBY
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], ¬Used
);
5400 if( rc
==pWInfo
->pResultSet
->nExpr
){
5401 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5404 pWInfo
->bOrderedInnerLoop
= 0;
5405 if( pWInfo
->pOrderBy
){
5406 pWInfo
->nOBSat
= pFrom
->isOrdered
;
5407 if( pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
){
5408 if( pFrom
->isOrdered
==pWInfo
->pOrderBy
->nExpr
){
5409 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5411 if( pWInfo
->pSelect
->pOrderBy
5412 && pWInfo
->nOBSat
> pWInfo
->pSelect
->pOrderBy
->nExpr
){
5413 pWInfo
->nOBSat
= pWInfo
->pSelect
->pOrderBy
->nExpr
;
5416 pWInfo
->revMask
= pFrom
->revLoop
;
5417 if( pWInfo
->nOBSat
<=0 ){
5420 u32 wsFlags
= pFrom
->aLoop
[nLoop
-1]->wsFlags
;
5421 if( (wsFlags
& WHERE_ONEROW
)==0
5422 && (wsFlags
&(WHERE_IPK
|WHERE_COLUMN_IN
))!=(WHERE_IPK
|WHERE_COLUMN_IN
)
5425 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
, pFrom
,
5426 WHERE_ORDERBY_LIMIT
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &m
);
5427 testcase( wsFlags
& WHERE_IPK
);
5428 testcase( wsFlags
& WHERE_COLUMN_IN
);
5429 if( rc
==pWInfo
->pOrderBy
->nExpr
){
5430 pWInfo
->bOrderedInnerLoop
= 1;
5431 pWInfo
->revMask
= m
;
5436 && pWInfo
->nOBSat
==1
5437 && (pWInfo
->wctrlFlags
& (WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
))!=0
5439 pWInfo
->bOrderedInnerLoop
= 1;
5442 if( (pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)
5443 && pWInfo
->nOBSat
==pWInfo
->pOrderBy
->nExpr
&& nLoop
>0
5445 Bitmask revMask
= 0;
5446 int nOrder
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
,
5447 pFrom
, 0, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &revMask
5449 assert( pWInfo
->sorted
==0 );
5450 if( nOrder
==pWInfo
->pOrderBy
->nExpr
){
5452 pWInfo
->revMask
= revMask
;
5458 pWInfo
->nRowOut
= pFrom
->nRow
;
5460 /* Free temporary memory and return success */
5461 sqlite3StackFreeNN(pParse
->db
, pSpace
);
5466 ** Most queries use only a single table (they are not joins) and have
5467 ** simple == constraints against indexed fields. This routine attempts
5468 ** to plan those simple cases using much less ceremony than the
5469 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5470 ** times for the common case.
5472 ** Return non-zero on success, if this query can be handled by this
5473 ** no-frills query planner. Return zero if this query needs the
5474 ** general-purpose query planner.
5476 static int whereShortCut(WhereLoopBuilder
*pBuilder
){
5488 pWInfo
= pBuilder
->pWInfo
;
5489 if( pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
) return 0;
5490 assert( pWInfo
->pTabList
->nSrc
>=1 );
5491 pItem
= pWInfo
->pTabList
->a
;
5493 if( IsVirtual(pTab
) ) return 0;
5494 if( pItem
->fg
.isIndexedBy
|| pItem
->fg
.notIndexed
){
5495 testcase( pItem
->fg
.isIndexedBy
);
5496 testcase( pItem
->fg
.notIndexed
);
5499 iCur
= pItem
->iCursor
;
5501 pLoop
= pBuilder
->pNew
;
5504 pTerm
= whereScanInit(&scan
, pWC
, iCur
, -1, WO_EQ
|WO_IS
, 0);
5505 while( pTerm
&& pTerm
->prereqRight
) pTerm
= whereScanNext(&scan
);
5507 testcase( pTerm
->eOperator
& WO_IS
);
5508 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_IPK
|WHERE_ONEROW
;
5509 pLoop
->aLTerm
[0] = pTerm
;
5511 pLoop
->u
.btree
.nEq
= 1;
5512 /* TUNING: Cost of a rowid lookup is 10 */
5513 pLoop
->rRun
= 33; /* 33==sqlite3LogEst(10) */
5515 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5517 assert( pLoop
->aLTermSpace
==pLoop
->aLTerm
);
5518 if( !IsUniqueIndex(pIdx
)
5519 || pIdx
->pPartIdxWhere
!=0
5520 || pIdx
->nKeyCol
>ArraySize(pLoop
->aLTermSpace
)
5522 opMask
= pIdx
->uniqNotNull
? (WO_EQ
|WO_IS
) : WO_EQ
;
5523 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5524 pTerm
= whereScanInit(&scan
, pWC
, iCur
, j
, opMask
, pIdx
);
5525 while( pTerm
&& pTerm
->prereqRight
) pTerm
= whereScanNext(&scan
);
5526 if( pTerm
==0 ) break;
5527 testcase( pTerm
->eOperator
& WO_IS
);
5528 pLoop
->aLTerm
[j
] = pTerm
;
5530 if( j
!=pIdx
->nKeyCol
) continue;
5531 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_ONEROW
|WHERE_INDEXED
;
5532 if( pIdx
->isCovering
|| (pItem
->colUsed
& pIdx
->colNotIdxed
)==0 ){
5533 pLoop
->wsFlags
|= WHERE_IDX_ONLY
;
5536 pLoop
->u
.btree
.nEq
= j
;
5537 pLoop
->u
.btree
.pIndex
= pIdx
;
5538 /* TUNING: Cost of a unique index lookup is 15 */
5539 pLoop
->rRun
= 39; /* 39==sqlite3LogEst(15) */
5543 if( pLoop
->wsFlags
){
5544 pLoop
->nOut
= (LogEst
)1;
5545 pWInfo
->a
[0].pWLoop
= pLoop
;
5546 assert( pWInfo
->sMaskSet
.n
==1 && iCur
==pWInfo
->sMaskSet
.ix
[0] );
5547 pLoop
->maskSelf
= 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5548 pWInfo
->a
[0].iTabCur
= iCur
;
5549 pWInfo
->nRowOut
= 1;
5550 if( pWInfo
->pOrderBy
) pWInfo
->nOBSat
= pWInfo
->pOrderBy
->nExpr
;
5551 if( pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
){
5552 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5554 if( scan
.iEquiv
>1 ) pLoop
->wsFlags
|= WHERE_TRANSCONS
;
5558 #ifdef WHERETRACE_ENABLED
5559 if( sqlite3WhereTrace
& 0x02 ){
5560 sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5569 ** Helper function for exprIsDeterministic().
5571 static int exprNodeIsDeterministic(Walker
*pWalker
, Expr
*pExpr
){
5572 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_ConstFunc
)==0 ){
5576 return WRC_Continue
;
5580 ** Return true if the expression contains no non-deterministic SQL
5581 ** functions. Do not consider non-deterministic SQL functions that are
5582 ** part of sub-select statements.
5584 static int exprIsDeterministic(Expr
*p
){
5586 memset(&w
, 0, sizeof(w
));
5588 w
.xExprCallback
= exprNodeIsDeterministic
;
5589 w
.xSelectCallback
= sqlite3SelectWalkFail
;
5590 sqlite3WalkExpr(&w
, p
);
5595 #ifdef WHERETRACE_ENABLED
5597 ** Display all WhereLoops in pWInfo
5599 static void showAllWhereLoops(WhereInfo
*pWInfo
, WhereClause
*pWC
){
5600 if( sqlite3WhereTrace
){ /* Display all of the WhereLoop objects */
5603 static const char zLabel
[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5604 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5605 for(p
=pWInfo
->pLoops
, i
=0; p
; p
=p
->pNextLoop
, i
++){
5606 p
->cId
= zLabel
[i
%(sizeof(zLabel
)-1)];
5607 sqlite3WhereLoopPrint(p
, pWC
);
5611 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5613 # define WHERETRACE_ALL_LOOPS(W,C)
5616 /* Attempt to omit tables from a join that do not affect the result.
5617 ** For a table to not affect the result, the following must be true:
5619 ** 1) The query must not be an aggregate.
5620 ** 2) The table must be the RHS of a LEFT JOIN.
5621 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
5622 ** must contain a constraint that limits the scan of the table to
5623 ** at most a single row.
5624 ** 4) The table must not be referenced by any part of the query apart
5625 ** from its own USING or ON clause.
5626 ** 5) The table must not have an inner-join ON or USING clause if there is
5627 ** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause
5628 ** might move from the right side to the left side of the RIGHT JOIN.
5629 ** Note: Due to (2), this condition can only arise if the table is
5630 ** the right-most table of a subquery that was flattened into the
5631 ** main query and that subquery was the right-hand operand of an
5632 ** inner join that held an ON or USING clause.
5634 ** For example, given:
5636 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5637 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5638 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5640 ** then table t2 can be omitted from the following:
5642 ** SELECT v1, v3 FROM t1
5643 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5644 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5648 ** SELECT DISTINCT v1, v3 FROM t1
5650 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5652 static SQLITE_NOINLINE Bitmask
whereOmitNoopJoin(
5660 /* Preconditions checked by the caller */
5661 assert( pWInfo
->nLevel
>=2 );
5662 assert( OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_OmitNoopJoin
) );
5664 /* These two preconditions checked by the caller combine to guarantee
5665 ** condition (1) of the header comment */
5666 assert( pWInfo
->pResultSet
!=0 );
5667 assert( 0==(pWInfo
->wctrlFlags
& WHERE_AGG_DISTINCT
) );
5669 tabUsed
= sqlite3WhereExprListUsage(&pWInfo
->sMaskSet
, pWInfo
->pResultSet
);
5670 if( pWInfo
->pOrderBy
){
5671 tabUsed
|= sqlite3WhereExprListUsage(&pWInfo
->sMaskSet
, pWInfo
->pOrderBy
);
5673 hasRightJoin
= (pWInfo
->pTabList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0;
5674 for(i
=pWInfo
->nLevel
-1; i
>=1; i
--){
5675 WhereTerm
*pTerm
, *pEnd
;
5678 pLoop
= pWInfo
->a
[i
].pWLoop
;
5679 pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5680 if( (pItem
->fg
.jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
) continue;
5681 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)==0
5682 && (pLoop
->wsFlags
& WHERE_ONEROW
)==0
5686 if( (tabUsed
& pLoop
->maskSelf
)!=0 ) continue;
5687 pEnd
= pWInfo
->sWC
.a
+ pWInfo
->sWC
.nTerm
;
5688 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pEnd
; pTerm
++){
5689 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5690 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
)
5691 || pTerm
->pExpr
->w
.iJoin
!=pItem
->iCursor
5697 && ExprHasProperty(pTerm
->pExpr
, EP_InnerON
)
5698 && pTerm
->pExpr
->w
.iJoin
==pItem
->iCursor
5700 break; /* restriction (5) */
5703 if( pTerm
<pEnd
) continue;
5704 WHERETRACE(0xffffffff, ("-> drop loop %c not used\n", pLoop
->cId
));
5705 notReady
&= ~pLoop
->maskSelf
;
5706 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pEnd
; pTerm
++){
5707 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5708 pTerm
->wtFlags
|= TERM_CODED
;
5711 if( i
!=pWInfo
->nLevel
-1 ){
5712 int nByte
= (pWInfo
->nLevel
-1-i
) * sizeof(WhereLevel
);
5713 memmove(&pWInfo
->a
[i
], &pWInfo
->a
[i
+1], nByte
);
5716 assert( pWInfo
->nLevel
>0 );
5722 ** Check to see if there are any SEARCH loops that might benefit from
5723 ** using a Bloom filter. Consider a Bloom filter if:
5725 ** (1) The SEARCH happens more than N times where N is the number
5726 ** of rows in the table that is being considered for the Bloom
5728 ** (2) Some searches are expected to find zero rows. (This is determined
5729 ** by the WHERE_SELFCULL flag on the term.)
5730 ** (3) Bloom-filter processing is not disabled. (Checked by the
5732 ** (4) The size of the table being searched is known by ANALYZE.
5734 ** This block of code merely checks to see if a Bloom filter would be
5735 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5736 ** WhereLoop. The implementation of the Bloom filter comes further
5737 ** down where the code for each WhereLoop is generated.
5739 static SQLITE_NOINLINE
void whereCheckIfBloomFilterIsUseful(
5740 const WhereInfo
*pWInfo
5745 assert( pWInfo
->nLevel
>=2 );
5746 assert( OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_BloomFilter
) );
5747 for(i
=0; i
<pWInfo
->nLevel
; i
++){
5748 WhereLoop
*pLoop
= pWInfo
->a
[i
].pWLoop
;
5749 const unsigned int reqFlags
= (WHERE_SELFCULL
|WHERE_COLUMN_EQ
);
5750 SrcItem
*pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5751 Table
*pTab
= pItem
->pTab
;
5752 if( (pTab
->tabFlags
& TF_HasStat1
)==0 ) break;
5753 pTab
->tabFlags
|= TF_StatsUsed
;
5755 && (pLoop
->wsFlags
& reqFlags
)==reqFlags
5756 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5757 && ALWAYS((pLoop
->wsFlags
& (WHERE_IPK
|WHERE_INDEXED
))!=0)
5759 if( nSearch
> pTab
->nRowLogEst
){
5760 testcase( pItem
->fg
.jointype
& JT_LEFT
);
5761 pLoop
->wsFlags
|= WHERE_BLOOMFILTER
;
5762 pLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
5763 WHERETRACE(0xffffffff, (
5764 "-> use Bloom-filter on loop %c because there are ~%.1e "
5765 "lookups into %s which has only ~%.1e rows\n",
5766 pLoop
->cId
, (double)sqlite3LogEstToInt(nSearch
), pTab
->zName
,
5767 (double)sqlite3LogEstToInt(pTab
->nRowLogEst
)));
5770 nSearch
+= pLoop
->nOut
;
5775 ** The index pIdx is used by a query and contains one or more expressions.
5776 ** In other words pIdx is an index on an expression. iIdxCur is the cursor
5777 ** number for the index and iDataCur is the cursor number for the corresponding
5780 ** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for
5781 ** each of the expressions in the index so that the expression code generator
5782 ** will know to replace occurrences of the indexed expression with
5783 ** references to the corresponding column of the index.
5785 static SQLITE_NOINLINE
void whereAddIndexedExpr(
5786 Parse
*pParse
, /* Add IndexedExpr entries to pParse->pIdxEpr */
5787 Index
*pIdx
, /* The index-on-expression that contains the expressions */
5788 int iIdxCur
, /* Cursor number for pIdx */
5789 SrcItem
*pTabItem
/* The FROM clause entry for the table */
5794 assert( pIdx
->bHasExpr
);
5795 pTab
= pIdx
->pTable
;
5796 for(i
=0; i
<pIdx
->nColumn
; i
++){
5798 int j
= pIdx
->aiColumn
[i
];
5801 pExpr
= pIdx
->aColExpr
->a
[i
].pExpr
;
5802 testcase( pTabItem
->fg
.jointype
& JT_LEFT
);
5803 testcase( pTabItem
->fg
.jointype
& JT_RIGHT
);
5804 testcase( pTabItem
->fg
.jointype
& JT_LTORJ
);
5805 bMaybeNullRow
= (pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0;
5806 }else if( j
>=0 && (pTab
->aCol
[j
].colFlags
& COLFLAG_VIRTUAL
)!=0 ){
5807 pExpr
= sqlite3ColumnExpr(pTab
, &pTab
->aCol
[j
]);
5812 if( sqlite3ExprIsConstant(pExpr
) ) continue;
5813 if( pExpr
->op
==TK_FUNCTION
){
5814 /* Functions that might set a subtype should not be replaced by the
5815 ** value taken from an expression index since the index omits the
5816 ** subtype. https://sqlite.org/forum/forumpost/68d284c86b082c3e */
5819 sqlite3
*db
= pParse
->db
;
5820 assert( ExprUseXList(pExpr
) );
5821 n
= pExpr
->x
.pList
? pExpr
->x
.pList
->nExpr
: 0;
5822 pDef
= sqlite3FindFunction(db
, pExpr
->u
.zToken
, n
, ENC(db
), 0);
5823 if( pDef
==0 || (pDef
->funcFlags
& SQLITE_RESULT_SUBTYPE
)!=0 ){
5827 p
= sqlite3DbMallocRaw(pParse
->db
, sizeof(IndexedExpr
));
5829 p
->pIENext
= pParse
->pIdxEpr
;
5830 #ifdef WHERETRACE_ENABLED
5831 if( sqlite3WhereTrace
& 0x200 ){
5832 sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur
, i
);
5833 if( sqlite3WhereTrace
& 0x5000 ) sqlite3ShowExpr(pExpr
);
5836 p
->pExpr
= sqlite3ExprDup(pParse
->db
, pExpr
, 0);
5837 p
->iDataCur
= pTabItem
->iCursor
;
5838 p
->iIdxCur
= iIdxCur
;
5840 p
->bMaybeNullRow
= bMaybeNullRow
;
5841 if( sqlite3IndexAffinityStr(pParse
->db
, pIdx
) ){
5842 p
->aff
= pIdx
->zColAff
[i
];
5844 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
5845 p
->zIdxName
= pIdx
->zName
;
5847 pParse
->pIdxEpr
= p
;
5848 if( p
->pIENext
==0 ){
5849 void *pArg
= (void*)&pParse
->pIdxEpr
;
5850 sqlite3ParserAddCleanup(pParse
, whereIndexedExprCleanup
, pArg
);
5856 ** Set the reverse-scan order mask to one for all tables in the query
5857 ** with the exception of MATERIALIZED common table expressions that have
5858 ** their own internal ORDER BY clauses.
5860 ** This implements the PRAGMA reverse_unordered_selects=ON setting.
5861 ** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER).
5863 static SQLITE_NOINLINE
void whereReverseScanOrder(WhereInfo
*pWInfo
){
5865 for(ii
=0; ii
<pWInfo
->pTabList
->nSrc
; ii
++){
5866 SrcItem
*pItem
= &pWInfo
->pTabList
->a
[ii
];
5867 if( !pItem
->fg
.isCte
5868 || pItem
->u2
.pCteUse
->eM10d
!=M10d_Yes
5869 || NEVER(pItem
->pSelect
==0)
5870 || pItem
->pSelect
->pOrderBy
==0
5872 pWInfo
->revMask
|= MASKBIT(ii
);
5878 ** Generate the beginning of the loop used for WHERE clause processing.
5879 ** The return value is a pointer to an opaque structure that contains
5880 ** information needed to terminate the loop. Later, the calling routine
5881 ** should invoke sqlite3WhereEnd() with the return value of this function
5882 ** in order to complete the WHERE clause processing.
5884 ** If an error occurs, this routine returns NULL.
5886 ** The basic idea is to do a nested loop, one loop for each table in
5887 ** the FROM clause of a select. (INSERT and UPDATE statements are the
5888 ** same as a SELECT with only a single table in the FROM clause.) For
5889 ** example, if the SQL is this:
5891 ** SELECT * FROM t1, t2, t3 WHERE ...;
5893 ** Then the code generated is conceptually like the following:
5895 ** foreach row1 in t1 do \ Code generated
5896 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
5897 ** foreach row3 in t3 do /
5899 ** end \ Code generated
5900 ** end |-- by sqlite3WhereEnd()
5903 ** Note that the loops might not be nested in the order in which they
5904 ** appear in the FROM clause if a different order is better able to make
5905 ** use of indices. Note also that when the IN operator appears in
5906 ** the WHERE clause, it might result in additional nested loops for
5907 ** scanning through all values on the right-hand side of the IN.
5909 ** There are Btree cursors associated with each table. t1 uses cursor
5910 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
5911 ** And so forth. This routine generates code to open those VDBE cursors
5912 ** and sqlite3WhereEnd() generates the code to close them.
5914 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5915 ** in pTabList pointing at their appropriate entries. The [...] code
5916 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5917 ** data from the various tables of the loop.
5919 ** If the WHERE clause is empty, the foreach loops must each scan their
5920 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
5921 ** the tables have indices and there are terms in the WHERE clause that
5922 ** refer to those indices, a complete table scan can be avoided and the
5923 ** code will run much faster. Most of the work of this routine is checking
5924 ** to see if there are indices that can be used to speed up the loop.
5926 ** Terms of the WHERE clause are also used to limit which rows actually
5927 ** make it to the "..." in the middle of the loop. After each "foreach",
5928 ** terms of the WHERE clause that use only terms in that loop and outer
5929 ** loops are evaluated and if false a jump is made around all subsequent
5930 ** inner loops (or around the "..." if the test occurs within the inner-
5935 ** An outer join of tables t1 and t2 is conceptually coded as follows:
5937 ** foreach row1 in t1 do
5939 ** foreach row2 in t2 do
5945 ** move the row2 cursor to a null row
5950 ** ORDER BY CLAUSE PROCESSING
5952 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5953 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5954 ** if there is one. If there is no ORDER BY clause or if this routine
5955 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5957 ** The iIdxCur parameter is the cursor number of an index. If
5958 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5959 ** to use for OR clause processing. The WHERE clause should use this
5960 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5961 ** the first cursor in an array of cursors for all indices. iIdxCur should
5962 ** be used to compute the appropriate cursor depending on which index is
5965 WhereInfo
*sqlite3WhereBegin(
5966 Parse
*pParse
, /* The parser context */
5967 SrcList
*pTabList
, /* FROM clause: A list of all tables to be scanned */
5968 Expr
*pWhere
, /* The WHERE clause */
5969 ExprList
*pOrderBy
, /* An ORDER BY (or GROUP BY) clause, or NULL */
5970 ExprList
*pResultSet
, /* Query result set. Req'd for DISTINCT */
5971 Select
*pSelect
, /* The entire SELECT statement */
5972 u16 wctrlFlags
, /* The WHERE_* flags defined in sqliteInt.h */
5973 int iAuxArg
/* If WHERE_OR_SUBCLAUSE is set, index cursor number
5974 ** If WHERE_USE_LIMIT, then the limit amount */
5976 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
5977 int nTabList
; /* Number of elements in pTabList */
5978 WhereInfo
*pWInfo
; /* Will become the return value of this function */
5979 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
5980 Bitmask notReady
; /* Cursors that are not yet positioned */
5981 WhereLoopBuilder sWLB
; /* The WhereLoop builder */
5982 WhereMaskSet
*pMaskSet
; /* The expression mask set */
5983 WhereLevel
*pLevel
; /* A single level in pWInfo->a[] */
5984 WhereLoop
*pLoop
; /* Pointer to a single WhereLoop object */
5985 int ii
; /* Loop counter */
5986 sqlite3
*db
; /* Database connection */
5987 int rc
; /* Return code */
5988 u8 bFordelete
= 0; /* OPFLAG_FORDELETE or zero, as appropriate */
5990 assert( (wctrlFlags
& WHERE_ONEPASS_MULTIROW
)==0 || (
5991 (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0
5992 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
5995 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5996 assert( (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
5997 || (wctrlFlags
& WHERE_USE_LIMIT
)==0 );
5999 /* Variable initialization */
6001 memset(&sWLB
, 0, sizeof(sWLB
));
6003 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
6004 testcase( pOrderBy
&& pOrderBy
->nExpr
==BMS
-1 );
6005 if( pOrderBy
&& pOrderBy
->nExpr
>=BMS
) pOrderBy
= 0;
6007 /* The number of tables in the FROM clause is limited by the number of
6008 ** bits in a Bitmask
6010 testcase( pTabList
->nSrc
==BMS
);
6011 if( pTabList
->nSrc
>BMS
){
6012 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
6016 /* This function normally generates a nested loop for all tables in
6017 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
6018 ** only generate code for the first table in pTabList and assume that
6019 ** any cursors associated with subsequent tables are uninitialized.
6021 nTabList
= (wctrlFlags
& WHERE_OR_SUBCLAUSE
) ? 1 : pTabList
->nSrc
;
6023 /* Allocate and initialize the WhereInfo structure that will become the
6024 ** return value. A single allocation is used to store the WhereInfo
6025 ** struct, the contents of WhereInfo.a[], the WhereClause structure
6026 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
6027 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
6028 ** some architectures. Hence the ROUND8() below.
6030 nByteWInfo
= ROUND8P(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
6031 pWInfo
= sqlite3DbMallocRawNN(db
, nByteWInfo
+ sizeof(WhereLoop
));
6032 if( db
->mallocFailed
){
6033 sqlite3DbFree(db
, pWInfo
);
6035 goto whereBeginError
;
6037 pWInfo
->pParse
= pParse
;
6038 pWInfo
->pTabList
= pTabList
;
6039 pWInfo
->pOrderBy
= pOrderBy
;
6040 #if WHERETRACE_ENABLED
6041 pWInfo
->pWhere
= pWhere
;
6043 pWInfo
->pResultSet
= pResultSet
;
6044 pWInfo
->aiCurOnePass
[0] = pWInfo
->aiCurOnePass
[1] = -1;
6045 pWInfo
->nLevel
= nTabList
;
6046 pWInfo
->iBreak
= pWInfo
->iContinue
= sqlite3VdbeMakeLabel(pParse
);
6047 pWInfo
->wctrlFlags
= wctrlFlags
;
6048 pWInfo
->iLimit
= iAuxArg
;
6049 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
6050 pWInfo
->pSelect
= pSelect
;
6051 memset(&pWInfo
->nOBSat
, 0,
6052 offsetof(WhereInfo
,sWC
) - offsetof(WhereInfo
,nOBSat
));
6053 memset(&pWInfo
->a
[0], 0, sizeof(WhereLoop
)+nTabList
*sizeof(WhereLevel
));
6054 assert( pWInfo
->eOnePass
==ONEPASS_OFF
); /* ONEPASS defaults to OFF */
6055 pMaskSet
= &pWInfo
->sMaskSet
;
6057 pMaskSet
->ix
[0] = -99; /* Initialize ix[0] to a value that can never be
6058 ** a valid cursor number, to avoid an initial
6059 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
6060 sWLB
.pWInfo
= pWInfo
;
6061 sWLB
.pWC
= &pWInfo
->sWC
;
6062 sWLB
.pNew
= (WhereLoop
*)(((char*)pWInfo
)+nByteWInfo
);
6063 assert( EIGHT_BYTE_ALIGNMENT(sWLB
.pNew
) );
6064 whereLoopInit(sWLB
.pNew
);
6066 sWLB
.pNew
->cId
= '*';
6069 /* Split the WHERE clause into separate subexpressions where each
6070 ** subexpression is separated by an AND operator.
6072 sqlite3WhereClauseInit(&pWInfo
->sWC
, pWInfo
);
6073 sqlite3WhereSplit(&pWInfo
->sWC
, pWhere
, TK_AND
);
6075 /* Special case: No FROM clause
6078 if( pOrderBy
) pWInfo
->nOBSat
= pOrderBy
->nExpr
;
6079 if( (wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
6080 && OptimizationEnabled(db
, SQLITE_DistinctOpt
)
6082 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
6084 ExplainQueryPlan((pParse
, 0, "SCAN CONSTANT ROW"));
6086 /* Assign a bit from the bitmask to every term in the FROM clause.
6088 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
6090 ** The rule of the previous sentence ensures that if X is the bitmask for
6091 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
6092 ** Knowing the bitmask for all tables to the left of a left join is
6093 ** important. Ticket #3015.
6095 ** Note that bitmasks are created for all pTabList->nSrc tables in
6096 ** pTabList, not just the first nTabList tables. nTabList is normally
6097 ** equal to pTabList->nSrc but might be shortened to 1 if the
6098 ** WHERE_OR_SUBCLAUSE flag is set.
6102 createMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
6103 sqlite3WhereTabFuncArgs(pParse
, &pTabList
->a
[ii
], &pWInfo
->sWC
);
6104 }while( (++ii
)<pTabList
->nSrc
);
6108 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
6109 Bitmask m
= sqlite3WhereGetMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
6117 /* Analyze all of the subexpressions. */
6118 sqlite3WhereExprAnalyze(pTabList
, &pWInfo
->sWC
);
6119 if( pSelect
&& pSelect
->pLimit
){
6120 sqlite3WhereAddLimit(&pWInfo
->sWC
, pSelect
);
6122 if( pParse
->nErr
) goto whereBeginError
;
6124 /* The False-WHERE-Term-Bypass optimization:
6126 ** If there are WHERE terms that are false, then no rows will be output,
6127 ** so skip over all of the code generated here.
6131 ** (1) The WHERE term must not refer to any tables in the join.
6132 ** (2) The term must not come from an ON clause on the
6133 ** right-hand side of a LEFT or FULL JOIN.
6134 ** (3) The term must not come from an ON clause, or there must be
6135 ** no RIGHT or FULL OUTER joins in pTabList.
6136 ** (4) If the expression contains non-deterministic functions
6137 ** that are not within a sub-select. This is not required
6138 ** for correctness but rather to preserves SQLite's legacy
6139 ** behaviour in the following two cases:
6141 ** WHERE random()>0; -- eval random() once per row
6142 ** WHERE (SELECT random())>0; -- eval random() just once overall
6144 ** Note that the Where term need not be a constant in order for this
6145 ** optimization to apply, though it does need to be constant relative to
6146 ** the current subquery (condition 1). The term might include variables
6147 ** from outer queries so that the value of the term changes from one
6148 ** invocation of the current subquery to the next.
6150 for(ii
=0; ii
<sWLB
.pWC
->nBase
; ii
++){
6151 WhereTerm
*pT
= &sWLB
.pWC
->a
[ii
]; /* A term of the WHERE clause */
6152 Expr
*pX
; /* The expression of pT */
6153 if( pT
->wtFlags
& TERM_VIRTUAL
) continue;
6156 assert( pT
->prereqAll
!=0 || !ExprHasProperty(pX
, EP_OuterON
) );
6157 if( pT
->prereqAll
==0 /* Conditions (1) and (2) */
6158 && (nTabList
==0 || exprIsDeterministic(pX
)) /* Condition (4) */
6159 && !(ExprHasProperty(pX
, EP_InnerON
) /* Condition (3) */
6160 && (pTabList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 )
6162 sqlite3ExprIfFalse(pParse
, pX
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
6163 pT
->wtFlags
|= TERM_CODED
;
6167 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
6168 if( OptimizationDisabled(db
, SQLITE_DistinctOpt
) ){
6169 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
6170 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
6171 wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
6172 pWInfo
->wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
6173 }else if( isDistinctRedundant(pParse
, pTabList
, &pWInfo
->sWC
, pResultSet
) ){
6174 /* The DISTINCT marking is pointless. Ignore it. */
6175 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
6176 }else if( pOrderBy
==0 ){
6177 /* Try to ORDER BY the result set to make distinct processing easier */
6178 pWInfo
->wctrlFlags
|= WHERE_DISTINCTBY
;
6179 pWInfo
->pOrderBy
= pResultSet
;
6183 /* Construct the WhereLoop objects */
6184 #if defined(WHERETRACE_ENABLED)
6185 if( sqlite3WhereTrace
& 0xffffffff ){
6186 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags
);
6187 if( wctrlFlags
& WHERE_USE_LIMIT
){
6188 sqlite3DebugPrintf(", limit: %d", iAuxArg
);
6190 sqlite3DebugPrintf(")\n");
6191 if( sqlite3WhereTrace
& 0x8000 ){
6193 memset(&sSelect
, 0, sizeof(sSelect
));
6194 sSelect
.selFlags
= SF_WhereBegin
;
6195 sSelect
.pSrc
= pTabList
;
6196 sSelect
.pWhere
= pWhere
;
6197 sSelect
.pOrderBy
= pOrderBy
;
6198 sSelect
.pEList
= pResultSet
;
6199 sqlite3TreeViewSelect(0, &sSelect
, 0);
6201 if( sqlite3WhereTrace
& 0x4000 ){ /* Display all WHERE clause terms */
6202 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
6203 sqlite3WhereClausePrint(sWLB
.pWC
);
6208 if( nTabList
!=1 || whereShortCut(&sWLB
)==0 ){
6209 rc
= whereLoopAddAll(&sWLB
);
6210 if( rc
) goto whereBeginError
;
6212 #ifdef SQLITE_ENABLE_STAT4
6213 /* If one or more WhereTerm.truthProb values were used in estimating
6214 ** loop parameters, but then those truthProb values were subsequently
6215 ** changed based on STAT4 information while computing subsequent loops,
6216 ** then we need to rerun the whole loop building process so that all
6217 ** loops will be built using the revised truthProb values. */
6218 if( sWLB
.bldFlags2
& SQLITE_BLDF2_2NDPASS
){
6219 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
6220 WHERETRACE(0xffffffff,
6221 ("**** Redo all loop computations due to"
6222 " TERM_HIGHTRUTH changes ****\n"));
6223 while( pWInfo
->pLoops
){
6224 WhereLoop
*p
= pWInfo
->pLoops
;
6225 pWInfo
->pLoops
= p
->pNextLoop
;
6226 whereLoopDelete(db
, p
);
6228 rc
= whereLoopAddAll(&sWLB
);
6229 if( rc
) goto whereBeginError
;
6232 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
6234 wherePathSolver(pWInfo
, 0);
6235 if( db
->mallocFailed
) goto whereBeginError
;
6236 if( pWInfo
->pOrderBy
){
6237 wherePathSolver(pWInfo
, pWInfo
->nRowOut
+1);
6238 if( db
->mallocFailed
) goto whereBeginError
;
6241 /* TUNING: Assume that a DISTINCT clause on a subquery reduces
6242 ** the output size by a factor of 8 (LogEst -30).
6244 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0 ){
6245 WHERETRACE(0x0080,("nRowOut reduced from %d to %d due to DISTINCT\n",
6246 pWInfo
->nRowOut
, pWInfo
->nRowOut
-30));
6247 pWInfo
->nRowOut
-= 30;
6251 assert( pWInfo
->pTabList
!=0 );
6252 if( pWInfo
->pOrderBy
==0 && (db
->flags
& SQLITE_ReverseOrder
)!=0 ){
6253 whereReverseScanOrder(pWInfo
);
6256 goto whereBeginError
;
6258 assert( db
->mallocFailed
==0 );
6259 #ifdef WHERETRACE_ENABLED
6260 if( sqlite3WhereTrace
){
6261 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo
->nRowOut
);
6262 if( pWInfo
->nOBSat
>0 ){
6263 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo
->nOBSat
, pWInfo
->revMask
);
6265 switch( pWInfo
->eDistinct
){
6266 case WHERE_DISTINCT_UNIQUE
: {
6267 sqlite3DebugPrintf(" DISTINCT=unique");
6270 case WHERE_DISTINCT_ORDERED
: {
6271 sqlite3DebugPrintf(" DISTINCT=ordered");
6274 case WHERE_DISTINCT_UNORDERED
: {
6275 sqlite3DebugPrintf(" DISTINCT=unordered");
6279 sqlite3DebugPrintf("\n");
6280 for(ii
=0; ii
<pWInfo
->nLevel
; ii
++){
6281 sqlite3WhereLoopPrint(pWInfo
->a
[ii
].pWLoop
, sWLB
.pWC
);
6286 /* Attempt to omit tables from a join that do not affect the result.
6287 ** See the comment on whereOmitNoopJoin() for further information.
6289 ** This query optimization is factored out into a separate "no-inline"
6290 ** procedure to keep the sqlite3WhereBegin() procedure from becoming
6291 ** too large. If sqlite3WhereBegin() becomes too large, that prevents
6292 ** some C-compiler optimizers from in-lining the
6293 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
6294 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
6296 notReady
= ~(Bitmask
)0;
6297 if( pWInfo
->nLevel
>=2
6298 && pResultSet
!=0 /* these two combine to guarantee */
6299 && 0==(wctrlFlags
& WHERE_AGG_DISTINCT
) /* condition (1) above */
6300 && OptimizationEnabled(db
, SQLITE_OmitNoopJoin
)
6302 notReady
= whereOmitNoopJoin(pWInfo
, notReady
);
6303 nTabList
= pWInfo
->nLevel
;
6304 assert( nTabList
>0 );
6307 /* Check to see if there are any SEARCH loops that might benefit from
6308 ** using a Bloom filter.
6310 if( pWInfo
->nLevel
>=2
6311 && OptimizationEnabled(db
, SQLITE_BloomFilter
)
6313 whereCheckIfBloomFilterIsUseful(pWInfo
);
6316 #if defined(WHERETRACE_ENABLED)
6317 if( sqlite3WhereTrace
& 0x4000 ){ /* Display all terms of the WHERE clause */
6318 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
6319 sqlite3WhereClausePrint(sWLB
.pWC
);
6321 WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n"));
6323 pWInfo
->pParse
->nQueryLoop
+= pWInfo
->nRowOut
;
6325 /* If the caller is an UPDATE or DELETE statement that is requesting
6326 ** to use a one-pass algorithm, determine if this is appropriate.
6328 ** A one-pass approach can be used if the caller has requested one
6329 ** and either (a) the scan visits at most one row or (b) each
6330 ** of the following are true:
6332 ** * the caller has indicated that a one-pass approach can be used
6333 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
6334 ** * the table is not a virtual table, and
6335 ** * either the scan does not use the OR optimization or the caller
6336 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
6339 ** The last qualification is because an UPDATE statement uses
6340 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
6341 ** use a one-pass approach, and this is not set accurately for scans
6342 ** that use the OR optimization.
6344 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
6345 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 ){
6346 int wsFlags
= pWInfo
->a
[0].pWLoop
->wsFlags
;
6347 int bOnerow
= (wsFlags
& WHERE_ONEROW
)!=0;
6348 assert( !(wsFlags
& WHERE_VIRTUALTABLE
) || IsVirtual(pTabList
->a
[0].pTab
) );
6350 0!=(wctrlFlags
& WHERE_ONEPASS_MULTIROW
)
6351 && !IsVirtual(pTabList
->a
[0].pTab
)
6352 && (0==(wsFlags
& WHERE_MULTI_OR
) || (wctrlFlags
& WHERE_DUPLICATES_OK
))
6353 && OptimizationEnabled(db
, SQLITE_OnePass
)
6355 pWInfo
->eOnePass
= bOnerow
? ONEPASS_SINGLE
: ONEPASS_MULTI
;
6356 if( HasRowid(pTabList
->a
[0].pTab
) && (wsFlags
& WHERE_IDX_ONLY
) ){
6357 if( wctrlFlags
& WHERE_ONEPASS_MULTIROW
){
6358 bFordelete
= OPFLAG_FORDELETE
;
6360 pWInfo
->a
[0].pWLoop
->wsFlags
= (wsFlags
& ~WHERE_IDX_ONLY
);
6365 /* Open all tables in the pTabList and any indices selected for
6366 ** searching those tables.
6368 for(ii
=0, pLevel
=pWInfo
->a
; ii
<nTabList
; ii
++, pLevel
++){
6369 Table
*pTab
; /* Table to open */
6370 int iDb
; /* Index of database containing table/index */
6373 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6374 pTab
= pTabItem
->pTab
;
6375 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
6376 pLoop
= pLevel
->pWLoop
;
6377 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || IsView(pTab
) ){
6380 #ifndef SQLITE_OMIT_VIRTUALTABLE
6381 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
6382 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
6383 int iCur
= pTabItem
->iCursor
;
6384 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
6385 }else if( IsVirtual(pTab
) ){
6389 if( ((pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6390 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0)
6391 || (pTabItem
->fg
.jointype
& (JT_LTORJ
|JT_RIGHT
))!=0
6393 int op
= OP_OpenRead
;
6394 if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
6396 pWInfo
->aiCurOnePass
[0] = pTabItem
->iCursor
;
6398 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
6399 assert( pTabItem
->iCursor
==pLevel
->iTabCur
);
6400 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
-1 );
6401 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
);
6402 if( pWInfo
->eOnePass
==ONEPASS_OFF
6404 && (pTab
->tabFlags
& (TF_HasGenerated
|TF_WithoutRowid
))==0
6405 && (pLoop
->wsFlags
& (WHERE_AUTO_INDEX
|WHERE_BLOOMFILTER
))==0
6407 /* If we know that only a prefix of the record will be used,
6408 ** it is advantageous to reduce the "column count" field in
6409 ** the P4 operand of the OP_OpenRead/Write opcode. */
6410 Bitmask b
= pTabItem
->colUsed
;
6412 for(; b
; b
=b
>>1, n
++){}
6413 sqlite3VdbeChangeP4(v
, -1, SQLITE_INT_TO_PTR(n
), P4_INT32
);
6414 assert( n
<=pTab
->nCol
);
6416 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6417 if( pLoop
->u
.btree
.pIndex
!=0 && (pTab
->tabFlags
& TF_WithoutRowid
)==0 ){
6418 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
|bFordelete
);
6422 sqlite3VdbeChangeP5(v
, bFordelete
);
6424 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
6425 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, pTabItem
->iCursor
, 0, 0,
6426 (const u8
*)&pTabItem
->colUsed
, P4_INT64
);
6429 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
6431 if( pLoop
->wsFlags
& WHERE_INDEXED
){
6432 Index
*pIx
= pLoop
->u
.btree
.pIndex
;
6434 int op
= OP_OpenRead
;
6435 /* iAuxArg is always set to a positive value if ONEPASS is possible */
6436 assert( iAuxArg
!=0 || (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 );
6437 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIx
)
6438 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0
6440 /* This is one term of an OR-optimization using the PRIMARY KEY of a
6441 ** WITHOUT ROWID table. No need for a separate index */
6442 iIndexCur
= pLevel
->iTabCur
;
6444 }else if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
6445 Index
*pJ
= pTabItem
->pTab
->pIndex
;
6446 iIndexCur
= iAuxArg
;
6447 assert( wctrlFlags
& WHERE_ONEPASS_DESIRED
);
6448 while( ALWAYS(pJ
) && pJ
!=pIx
){
6453 pWInfo
->aiCurOnePass
[1] = iIndexCur
;
6454 }else if( iAuxArg
&& (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0 ){
6455 iIndexCur
= iAuxArg
;
6458 iIndexCur
= pParse
->nTab
++;
6459 if( pIx
->bHasExpr
&& OptimizationEnabled(db
, SQLITE_IndexedExpr
) ){
6460 whereAddIndexedExpr(pParse
, pIx
, iIndexCur
, pTabItem
);
6462 if( pIx
->pPartIdxWhere
&& (pTabItem
->fg
.jointype
& JT_RIGHT
)==0 ){
6464 pParse
, pIx
, pIx
->pPartIdxWhere
, 0, iIndexCur
, pTabItem
6468 pLevel
->iIdxCur
= iIndexCur
;
6470 assert( pIx
->pSchema
==pTab
->pSchema
);
6471 assert( iIndexCur
>=0 );
6473 sqlite3VdbeAddOp3(v
, op
, iIndexCur
, pIx
->tnum
, iDb
);
6474 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
6475 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)!=0
6476 && (pLoop
->wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_SKIPSCAN
))==0
6477 && (pLoop
->wsFlags
& WHERE_BIGNULL_SORT
)==0
6478 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0
6479 && (pWInfo
->wctrlFlags
&WHERE_ORDERBY_MIN
)==0
6480 && pWInfo
->eDistinct
!=WHERE_DISTINCT_ORDERED
6482 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
);
6484 VdbeComment((v
, "%s", pIx
->zName
));
6485 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
6489 for(ii
=0; ii
<pIx
->nColumn
; ii
++){
6490 jj
= pIx
->aiColumn
[ii
];
6491 if( jj
<0 ) continue;
6492 if( jj
>63 ) jj
= 63;
6493 if( (pTabItem
->colUsed
& MASKBIT(jj
))==0 ) continue;
6494 colUsed
|= ((u64
)1)<<(ii
<63 ? ii
: 63);
6496 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, iIndexCur
, 0, 0,
6497 (u8
*)&colUsed
, P4_INT64
);
6499 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
6502 if( iDb
>=0 ) sqlite3CodeVerifySchema(pParse
, iDb
);
6503 if( (pTabItem
->fg
.jointype
& JT_RIGHT
)!=0
6504 && (pLevel
->pRJ
= sqlite3WhereMalloc(pWInfo
, sizeof(WhereRightJoin
)))!=0
6506 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
6507 pRJ
->iMatch
= pParse
->nTab
++;
6508 pRJ
->regBloom
= ++pParse
->nMem
;
6509 sqlite3VdbeAddOp2(v
, OP_Blob
, 65536, pRJ
->regBloom
);
6510 pRJ
->regReturn
= ++pParse
->nMem
;
6511 sqlite3VdbeAddOp2(v
, OP_Null
, 0, pRJ
->regReturn
);
6512 assert( pTab
==pTabItem
->pTab
);
6513 if( HasRowid(pTab
) ){
6515 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRJ
->iMatch
, 1);
6516 pInfo
= sqlite3KeyInfoAlloc(pParse
->db
, 1, 0);
6518 pInfo
->aColl
[0] = 0;
6519 pInfo
->aSortFlags
[0] = 0;
6520 sqlite3VdbeAppendP4(v
, pInfo
, P4_KEYINFO
);
6523 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
6524 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRJ
->iMatch
, pPk
->nKeyCol
);
6525 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
6527 pLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
6528 /* The nature of RIGHT JOIN processing is such that it messes up
6529 ** the output order. So omit any ORDER BY/GROUP BY elimination
6530 ** optimizations. We need to do an actual sort for RIGHT JOIN. */
6532 pWInfo
->eDistinct
= WHERE_DISTINCT_UNORDERED
;
6535 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
6536 if( db
->mallocFailed
) goto whereBeginError
;
6538 /* Generate the code to do the search. Each iteration of the for
6539 ** loop below generates code for a single nested loop of the VM
6542 for(ii
=0; ii
<nTabList
; ii
++){
6546 if( pParse
->nErr
) goto whereBeginError
;
6547 pLevel
= &pWInfo
->a
[ii
];
6548 wsFlags
= pLevel
->pWLoop
->wsFlags
;
6549 pSrc
= &pTabList
->a
[pLevel
->iFrom
];
6550 if( pSrc
->fg
.isMaterialized
){
6551 if( pSrc
->fg
.isCorrelated
){
6552 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSrc
->regReturn
, pSrc
->addrFillSub
);
6554 int iOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
6555 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSrc
->regReturn
, pSrc
->addrFillSub
);
6556 sqlite3VdbeJumpHere(v
, iOnce
);
6559 assert( pTabList
== pWInfo
->pTabList
);
6560 if( (wsFlags
& (WHERE_AUTO_INDEX
|WHERE_BLOOMFILTER
))!=0 ){
6561 if( (wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
6562 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6563 constructAutomaticIndex(pParse
, &pWInfo
->sWC
, notReady
, pLevel
);
6566 sqlite3ConstructBloomFilter(pWInfo
, ii
, pLevel
, notReady
);
6568 if( db
->mallocFailed
) goto whereBeginError
;
6570 addrExplain
= sqlite3WhereExplainOneScan(
6571 pParse
, pTabList
, pLevel
, wctrlFlags
6573 pLevel
->addrBody
= sqlite3VdbeCurrentAddr(v
);
6574 notReady
= sqlite3WhereCodeOneLoopStart(pParse
,v
,pWInfo
,ii
,pLevel
,notReady
);
6575 pWInfo
->iContinue
= pLevel
->addrCont
;
6576 if( (wsFlags
&WHERE_MULTI_OR
)==0 && (wctrlFlags
&WHERE_OR_SUBCLAUSE
)==0 ){
6577 sqlite3WhereAddScanStatus(v
, pTabList
, pLevel
, addrExplain
);
6582 VdbeModuleComment((v
, "Begin WHERE-core"));
6583 pWInfo
->iEndWhere
= sqlite3VdbeCurrentAddr(v
);
6586 /* Jump here if malloc fails */
6589 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6590 whereInfoFree(db
, pWInfo
);
6596 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6597 ** index rather than the main table. In SQLITE_DEBUG mode, we want
6598 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
6601 #ifndef SQLITE_DEBUG
6602 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6604 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6605 static void sqlite3WhereOpcodeRewriteTrace(
6610 if( (db
->flags
& SQLITE_VdbeAddopTrace
)==0 ) return;
6611 sqlite3VdbePrintOp(0, pc
, pOp
);
6617 ** Return true if cursor iCur is opened by instruction k of the
6618 ** bytecode. Used inside of assert() only.
6620 static int cursorIsOpen(Vdbe
*v
, int iCur
, int k
){
6622 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
,k
--);
6623 if( pOp
->p1
!=iCur
) continue;
6624 if( pOp
->opcode
==OP_Close
) return 0;
6625 if( pOp
->opcode
==OP_OpenRead
) return 1;
6626 if( pOp
->opcode
==OP_OpenWrite
) return 1;
6627 if( pOp
->opcode
==OP_OpenDup
) return 1;
6628 if( pOp
->opcode
==OP_OpenAutoindex
) return 1;
6629 if( pOp
->opcode
==OP_OpenEphemeral
) return 1;
6633 #endif /* SQLITE_DEBUG */
6636 ** Generate the end of the WHERE loop. See comments on
6637 ** sqlite3WhereBegin() for additional information.
6639 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
6640 Parse
*pParse
= pWInfo
->pParse
;
6641 Vdbe
*v
= pParse
->pVdbe
;
6645 SrcList
*pTabList
= pWInfo
->pTabList
;
6646 sqlite3
*db
= pParse
->db
;
6647 int iEnd
= sqlite3VdbeCurrentAddr(v
);
6650 /* Generate loop termination code.
6652 VdbeModuleComment((v
, "End WHERE-core"));
6653 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
6655 pLevel
= &pWInfo
->a
[i
];
6657 /* Terminate the subroutine that forms the interior of the loop of
6658 ** the RIGHT JOIN table */
6659 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
6660 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6661 pLevel
->addrCont
= 0;
6662 pRJ
->endSubrtn
= sqlite3VdbeCurrentAddr(v
);
6663 sqlite3VdbeAddOp3(v
, OP_Return
, pRJ
->regReturn
, pRJ
->addrSubrtn
, 1);
6667 pLoop
= pLevel
->pWLoop
;
6668 if( pLevel
->op
!=OP_Noop
){
6669 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6673 if( pWInfo
->eDistinct
==WHERE_DISTINCT_ORDERED
6674 && i
==pWInfo
->nLevel
-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
6675 && (pLoop
->wsFlags
& WHERE_INDEXED
)!=0
6676 && (pIdx
= pLoop
->u
.btree
.pIndex
)->hasStat1
6677 && (n
= pLoop
->u
.btree
.nDistinctCol
)>0
6678 && pIdx
->aiRowLogEst
[n
]>=36
6680 int r1
= pParse
->nMem
+1;
6683 sqlite3VdbeAddOp3(v
, OP_Column
, pLevel
->iIdxCur
, j
, r1
+j
);
6685 pParse
->nMem
+= n
+1;
6686 op
= pLevel
->op
==OP_Prev
? OP_SeekLT
: OP_SeekGT
;
6687 addrSeek
= sqlite3VdbeAddOp4Int(v
, op
, pLevel
->iIdxCur
, 0, r1
, n
);
6688 VdbeCoverageIf(v
, op
==OP_SeekLT
);
6689 VdbeCoverageIf(v
, op
==OP_SeekGT
);
6690 sqlite3VdbeAddOp2(v
, OP_Goto
, 1, pLevel
->p2
);
6692 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6693 /* The common case: Advance to the next row */
6694 if( pLevel
->addrCont
) sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6695 sqlite3VdbeAddOp3(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
, pLevel
->p3
);
6696 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
6698 VdbeCoverageIf(v
, pLevel
->op
==OP_Next
);
6699 VdbeCoverageIf(v
, pLevel
->op
==OP_Prev
);
6700 VdbeCoverageIf(v
, pLevel
->op
==OP_VNext
);
6701 if( pLevel
->regBignull
){
6702 sqlite3VdbeResolveLabel(v
, pLevel
->addrBignull
);
6703 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, pLevel
->regBignull
, pLevel
->p2
-1);
6706 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6707 if( addrSeek
) sqlite3VdbeJumpHere(v
, addrSeek
);
6709 }else if( pLevel
->addrCont
){
6710 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6712 if( (pLoop
->wsFlags
& WHERE_IN_ABLE
)!=0 && pLevel
->u
.in
.nIn
>0 ){
6715 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
6716 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
6717 assert( sqlite3VdbeGetOp(v
, pIn
->addrInTop
+1)->opcode
==OP_IsNull
6718 || pParse
->db
->mallocFailed
);
6719 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6720 if( pIn
->eEndLoopOp
!=OP_Noop
){
6723 (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0
6724 && (pLoop
->wsFlags
& WHERE_IN_EARLYOUT
)!=0;
6725 if( pLevel
->iLeftJoin
){
6726 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6727 ** opened yet. This occurs for WHERE clauses such as
6728 ** "a = ? AND b IN (...)", where the index is on (a, b). If
6729 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6730 ** never have been coded, but the body of the loop run to
6731 ** return the null-row. So, if the cursor is not open yet,
6732 ** jump over the OP_Next or OP_Prev instruction about to
6734 sqlite3VdbeAddOp2(v
, OP_IfNotOpen
, pIn
->iCur
,
6735 sqlite3VdbeCurrentAddr(v
) + 2 + bEarlyOut
);
6739 sqlite3VdbeAddOp4Int(v
, OP_IfNoHope
, pLevel
->iIdxCur
,
6740 sqlite3VdbeCurrentAddr(v
)+2,
6741 pIn
->iBase
, pIn
->nPrefix
);
6743 /* Retarget the OP_IsNull against the left operand of IN so
6744 ** it jumps past the OP_IfNoHope. This is because the
6745 ** OP_IsNull also bypasses the OP_Affinity opcode that is
6746 ** required by OP_IfNoHope. */
6747 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6750 sqlite3VdbeAddOp2(v
, pIn
->eEndLoopOp
, pIn
->iCur
, pIn
->addrInTop
);
6752 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Prev
);
6753 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Next
);
6755 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
6758 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
6760 sqlite3VdbeAddOp3(v
, OP_Return
, pLevel
->pRJ
->regReturn
, 0, 1);
6763 if( pLevel
->addrSkip
){
6764 sqlite3VdbeGoto(v
, pLevel
->addrSkip
);
6765 VdbeComment((v
, "next skip-scan on %s", pLoop
->u
.btree
.pIndex
->zName
));
6766 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
);
6767 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
-2);
6769 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6770 if( pLevel
->addrLikeRep
){
6771 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, (int)(pLevel
->iLikeRepCntr
>>1),
6772 pLevel
->addrLikeRep
);
6776 if( pLevel
->iLeftJoin
){
6777 int ws
= pLoop
->wsFlags
;
6778 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
); VdbeCoverage(v
);
6779 assert( (ws
& WHERE_IDX_ONLY
)==0 || (ws
& WHERE_INDEXED
)!=0 );
6780 if( (ws
& WHERE_IDX_ONLY
)==0 ){
6781 assert( pLevel
->iTabCur
==pTabList
->a
[pLevel
->iFrom
].iCursor
);
6782 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iTabCur
);
6784 if( (ws
& WHERE_INDEXED
)
6785 || ((ws
& WHERE_MULTI_OR
) && pLevel
->u
.pCoveringIdx
)
6787 if( ws
& WHERE_MULTI_OR
){
6788 Index
*pIx
= pLevel
->u
.pCoveringIdx
;
6789 int iDb
= sqlite3SchemaToIndex(db
, pIx
->pSchema
);
6790 sqlite3VdbeAddOp3(v
, OP_ReopenIdx
, pLevel
->iIdxCur
, pIx
->tnum
, iDb
);
6791 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
6793 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
6795 if( pLevel
->op
==OP_Return
){
6796 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
6798 sqlite3VdbeGoto(v
, pLevel
->addrFirst
);
6800 sqlite3VdbeJumpHere(v
, addr
);
6802 VdbeModuleComment((v
, "End WHERE-loop%d: %s", i
,
6803 pWInfo
->pTabList
->a
[pLevel
->iFrom
].pTab
->zName
));
6806 assert( pWInfo
->nLevel
<=pTabList
->nSrc
);
6807 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
6809 VdbeOp
*pOp
, *pLastOp
;
6811 SrcItem
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6812 Table
*pTab
= pTabItem
->pTab
;
6814 pLoop
= pLevel
->pWLoop
;
6816 /* Do RIGHT JOIN processing. Generate code that will output the
6817 ** unmatched rows of the right operand of the RIGHT JOIN with
6818 ** all of the columns of the left operand set to NULL.
6821 sqlite3WhereRightJoinLoop(pWInfo
, i
, pLevel
);
6825 /* For a co-routine, change all OP_Column references to the table of
6826 ** the co-routine into OP_Copy of result contained in a register.
6827 ** OP_Rowid becomes OP_Null.
6829 if( pTabItem
->fg
.viaCoroutine
){
6830 testcase( pParse
->db
->mallocFailed
);
6831 translateColumnToCopy(pParse
, pLevel
->addrBody
, pLevel
->iTabCur
,
6832 pTabItem
->regResult
, 0);
6836 /* If this scan uses an index, make VDBE code substitutions to read data
6837 ** from the index instead of from the table where possible. In some cases
6838 ** this optimization prevents the table from ever being read, which can
6839 ** yield a significant performance boost.
6841 ** Calls to the code generator in between sqlite3WhereBegin and
6842 ** sqlite3WhereEnd will have created code that references the table
6843 ** directly. This loop scans all that code looking for opcodes
6844 ** that reference the table and converts them into opcodes that
6845 ** reference the index.
6847 if( pLoop
->wsFlags
& (WHERE_INDEXED
|WHERE_IDX_ONLY
) ){
6848 pIdx
= pLoop
->u
.btree
.pIndex
;
6849 }else if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
6850 pIdx
= pLevel
->u
.pCoveringIdx
;
6853 && !db
->mallocFailed
6855 if( pWInfo
->eOnePass
==ONEPASS_OFF
|| !HasRowid(pIdx
->pTable
) ){
6858 last
= pWInfo
->iEndWhere
;
6860 if( pIdx
->bHasExpr
){
6861 IndexedExpr
*p
= pParse
->pIdxEpr
;
6863 if( p
->iIdxCur
==pLevel
->iIdxCur
){
6864 #ifdef WHERETRACE_ENABLED
6865 if( sqlite3WhereTrace
& 0x200 ){
6866 sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n",
6867 p
->iIdxCur
, p
->iIdxCol
);
6868 if( sqlite3WhereTrace
& 0x5000 ) sqlite3ShowExpr(p
->pExpr
);
6877 k
= pLevel
->addrBody
+ 1;
6879 if( db
->flags
& SQLITE_VdbeAddopTrace
){
6880 printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n",
6881 pLevel
->iTabCur
, pLevel
->iIdxCur
, k
, last
-1);
6883 /* Proof that the "+1" on the k value above is safe */
6884 pOp
= sqlite3VdbeGetOp(v
, k
- 1);
6885 assert( pOp
->opcode
!=OP_Column
|| pOp
->p1
!=pLevel
->iTabCur
);
6886 assert( pOp
->opcode
!=OP_Rowid
|| pOp
->p1
!=pLevel
->iTabCur
);
6887 assert( pOp
->opcode
!=OP_IfNullRow
|| pOp
->p1
!=pLevel
->iTabCur
);
6889 pOp
= sqlite3VdbeGetOp(v
, k
);
6890 pLastOp
= pOp
+ (last
- k
);
6891 assert( pOp
<=pLastOp
);
6893 if( pOp
->p1
!=pLevel
->iTabCur
){
6895 }else if( pOp
->opcode
==OP_Column
6896 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6897 || pOp
->opcode
==OP_Offset
6901 assert( pIdx
->pTable
==pTab
);
6902 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6903 if( pOp
->opcode
==OP_Offset
){
6904 /* Do not need to translate the column number */
6907 if( !HasRowid(pTab
) ){
6908 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
6909 x
= pPk
->aiColumn
[x
];
6912 testcase( x
!=sqlite3StorageColumnToTable(pTab
,x
) );
6913 x
= sqlite3StorageColumnToTable(pTab
,x
);
6915 x
= sqlite3TableColumnToIndex(pIdx
, x
);
6918 pOp
->p1
= pLevel
->iIdxCur
;
6919 OpcodeRewriteTrace(db
, k
, pOp
);
6921 /* Unable to translate the table reference into an index
6922 ** reference. Verify that this is harmless - that the
6923 ** table being referenced really is open.
6925 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6926 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6927 || cursorIsOpen(v
,pOp
->p1
,k
)
6928 || pOp
->opcode
==OP_Offset
6931 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6932 || cursorIsOpen(v
,pOp
->p1
,k
)
6936 }else if( pOp
->opcode
==OP_Rowid
){
6937 pOp
->p1
= pLevel
->iIdxCur
;
6938 pOp
->opcode
= OP_IdxRowid
;
6939 OpcodeRewriteTrace(db
, k
, pOp
);
6940 }else if( pOp
->opcode
==OP_IfNullRow
){
6941 pOp
->p1
= pLevel
->iIdxCur
;
6942 OpcodeRewriteTrace(db
, k
, pOp
);
6947 }while( (++pOp
)<pLastOp
);
6949 if( db
->flags
& SQLITE_VdbeAddopTrace
) printf("TRANSLATE complete\n");
6954 /* The "break" point is here, just past the end of the outer loop.
6957 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
6961 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6962 whereInfoFree(db
, pWInfo
);
6963 pParse
->withinRJSubrtn
-= nRJ
;