Snapshot of upstream SQLite 3.41.1
[sqlcipher.git] / src / build.c
blob6e3b7b81f84d3245cfd235ff9d9cc780c648afc1
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 Pgno iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 static SQLITE_NOINLINE void lockTable(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 Pgno iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel;
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 pToplevel = sqlite3ParseToplevel(pParse);
63 for(i=0; i<pToplevel->nTableLock; i++){
64 p = &pToplevel->aTableLock[i];
65 if( p->iDb==iDb && p->iTab==iTab ){
66 p->isWriteLock = (p->isWriteLock || isWriteLock);
67 return;
71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72 pToplevel->aTableLock =
73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74 if( pToplevel->aTableLock ){
75 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76 p->iDb = iDb;
77 p->iTab = iTab;
78 p->isWriteLock = isWriteLock;
79 p->zLockName = zName;
80 }else{
81 pToplevel->nTableLock = 0;
82 sqlite3OomFault(pToplevel->db);
85 void sqlite3TableLock(
86 Parse *pParse, /* Parsing context */
87 int iDb, /* Index of the database containing the table to lock */
88 Pgno iTab, /* Root page number of the table to be locked */
89 u8 isWriteLock, /* True for a write lock */
90 const char *zName /* Name of the table to be locked */
92 if( iDb==1 ) return;
93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94 lockTable(pParse, iDb, iTab, isWriteLock, zName);
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
101 static void codeTableLocks(Parse *pParse){
102 int i;
103 Vdbe *pVdbe = pParse->pVdbe;
104 assert( pVdbe!=0 );
106 for(i=0; i<pParse->nTableLock; i++){
107 TableLock *p = &pParse->aTableLock[i];
108 int p1 = p->iDb;
109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110 p->zLockName, P4_STATIC);
113 #else
114 #define codeTableLocks(x)
115 #endif
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124 int i;
125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126 return 1;
128 #endif
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared. This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
140 void sqlite3FinishCoding(Parse *pParse){
141 sqlite3 *db;
142 Vdbe *v;
143 int iDb, i;
145 assert( pParse->pToplevel==0 );
146 db = pParse->db;
147 assert( db->pParse==pParse );
148 if( pParse->nested ) return;
149 if( pParse->nErr ){
150 if( db->mallocFailed ) pParse->rc = SQLITE_NOMEM;
151 return;
153 assert( db->mallocFailed==0 );
155 /* Begin by generating some termination code at the end of the
156 ** vdbe program
158 v = pParse->pVdbe;
159 if( v==0 ){
160 if( db->init.busy ){
161 pParse->rc = SQLITE_DONE;
162 return;
164 v = sqlite3GetVdbe(pParse);
165 if( v==0 ) pParse->rc = SQLITE_ERROR;
167 assert( !pParse->isMultiWrite
168 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
169 if( v ){
170 if( pParse->bReturning ){
171 Returning *pReturning = pParse->u1.pReturning;
172 int addrRewind;
173 int reg;
175 if( pReturning->nRetCol ){
176 sqlite3VdbeAddOp0(v, OP_FkCheck);
177 addrRewind =
178 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
179 VdbeCoverage(v);
180 reg = pReturning->iRetReg;
181 for(i=0; i<pReturning->nRetCol; i++){
182 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
184 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
185 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
186 VdbeCoverage(v);
187 sqlite3VdbeJumpHere(v, addrRewind);
190 sqlite3VdbeAddOp0(v, OP_Halt);
192 #if SQLITE_USER_AUTHENTICATION
193 if( pParse->nTableLock>0 && db->init.busy==0 ){
194 sqlite3UserAuthInit(db);
195 if( db->auth.authLevel<UAUTH_User ){
196 sqlite3ErrorMsg(pParse, "user not authenticated");
197 pParse->rc = SQLITE_AUTH_USER;
198 return;
201 #endif
203 /* The cookie mask contains one bit for each database file open.
204 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
205 ** set for each database that is used. Generate code to start a
206 ** transaction on each used database and to verify the schema cookie
207 ** on each used database.
209 assert( pParse->nErr>0 || sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
210 sqlite3VdbeJumpHere(v, 0);
211 assert( db->nDb>0 );
212 iDb = 0;
214 Schema *pSchema;
215 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
216 sqlite3VdbeUsesBtree(v, iDb);
217 pSchema = db->aDb[iDb].pSchema;
218 sqlite3VdbeAddOp4Int(v,
219 OP_Transaction, /* Opcode */
220 iDb, /* P1 */
221 DbMaskTest(pParse->writeMask,iDb), /* P2 */
222 pSchema->schema_cookie, /* P3 */
223 pSchema->iGeneration /* P4 */
225 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
226 VdbeComment((v,
227 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
228 }while( ++iDb<db->nDb );
229 #ifndef SQLITE_OMIT_VIRTUALTABLE
230 for(i=0; i<pParse->nVtabLock; i++){
231 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
232 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
234 pParse->nVtabLock = 0;
235 #endif
237 /* Once all the cookies have been verified and transactions opened,
238 ** obtain the required table-locks. This is a no-op unless the
239 ** shared-cache feature is enabled.
241 codeTableLocks(pParse);
243 /* Initialize any AUTOINCREMENT data structures required.
245 sqlite3AutoincrementBegin(pParse);
247 /* Code constant expressions that where factored out of inner loops.
249 ** The pConstExpr list might also contain expressions that we simply
250 ** want to keep around until the Parse object is deleted. Such
251 ** expressions have iConstExprReg==0. Do not generate code for
252 ** those expressions, of course.
254 if( pParse->pConstExpr ){
255 ExprList *pEL = pParse->pConstExpr;
256 pParse->okConstFactor = 0;
257 for(i=0; i<pEL->nExpr; i++){
258 int iReg = pEL->a[i].u.iConstExprReg;
259 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
263 if( pParse->bReturning ){
264 Returning *pRet = pParse->u1.pReturning;
265 if( pRet->nRetCol ){
266 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
270 /* Finally, jump back to the beginning of the executable code. */
271 sqlite3VdbeGoto(v, 1);
274 /* Get the VDBE program ready for execution
276 assert( v!=0 || pParse->nErr );
277 assert( db->mallocFailed==0 || pParse->nErr );
278 if( pParse->nErr==0 ){
279 /* A minimum of one cursor is required if autoincrement is used
280 * See ticket [a696379c1f08866] */
281 assert( pParse->pAinc==0 || pParse->nTab>0 );
282 sqlite3VdbeMakeReady(v, pParse);
283 pParse->rc = SQLITE_DONE;
284 }else{
285 pParse->rc = SQLITE_ERROR;
290 ** Run the parser and code generator recursively in order to generate
291 ** code for the SQL statement given onto the end of the pParse context
292 ** currently under construction. Notes:
294 ** * The final OP_Halt is not appended and other initialization
295 ** and finalization steps are omitted because those are handling by the
296 ** outermost parser.
298 ** * Built-in SQL functions always take precedence over application-defined
299 ** SQL functions. In other words, it is not possible to override a
300 ** built-in function.
302 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
303 va_list ap;
304 char *zSql;
305 sqlite3 *db = pParse->db;
306 u32 savedDbFlags = db->mDbFlags;
307 char saveBuf[PARSE_TAIL_SZ];
309 if( pParse->nErr ) return;
310 if( pParse->eParseMode ) return;
311 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
312 va_start(ap, zFormat);
313 zSql = sqlite3VMPrintf(db, zFormat, ap);
314 va_end(ap);
315 if( zSql==0 ){
316 /* This can result either from an OOM or because the formatted string
317 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
318 ** an error */
319 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
320 pParse->nErr++;
321 return;
323 pParse->nested++;
324 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
325 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
326 db->mDbFlags |= DBFLAG_PreferBuiltin;
327 sqlite3RunParser(pParse, zSql);
328 db->mDbFlags = savedDbFlags;
329 sqlite3DbFree(db, zSql);
330 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
331 pParse->nested--;
334 #if SQLITE_USER_AUTHENTICATION
336 ** Return TRUE if zTable is the name of the system table that stores the
337 ** list of users and their access credentials.
339 int sqlite3UserAuthTable(const char *zTable){
340 return sqlite3_stricmp(zTable, "sqlite_user")==0;
342 #endif
345 ** Locate the in-memory structure that describes a particular database
346 ** table given the name of that table and (optionally) the name of the
347 ** database containing the table. Return NULL if not found.
349 ** If zDatabase is 0, all databases are searched for the table and the
350 ** first matching table is returned. (No checking for duplicate table
351 ** names is done.) The search order is TEMP first, then MAIN, then any
352 ** auxiliary databases added using the ATTACH command.
354 ** See also sqlite3LocateTable().
356 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
357 Table *p = 0;
358 int i;
360 /* All mutexes are required for schema access. Make sure we hold them. */
361 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
362 #if SQLITE_USER_AUTHENTICATION
363 /* Only the admin user is allowed to know that the sqlite_user table
364 ** exists */
365 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
366 return 0;
368 #endif
369 if( zDatabase ){
370 for(i=0; i<db->nDb; i++){
371 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
373 if( i>=db->nDb ){
374 /* No match against the official names. But always match "main"
375 ** to schema 0 as a legacy fallback. */
376 if( sqlite3StrICmp(zDatabase,"main")==0 ){
377 i = 0;
378 }else{
379 return 0;
382 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
383 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
384 if( i==1 ){
385 if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0
386 || sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0
387 || sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0
389 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
390 LEGACY_TEMP_SCHEMA_TABLE);
392 }else{
393 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
394 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
395 LEGACY_SCHEMA_TABLE);
399 }else{
400 /* Match against TEMP first */
401 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
402 if( p ) return p;
403 /* The main database is second */
404 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
405 if( p ) return p;
406 /* Attached databases are in order of attachment */
407 for(i=2; i<db->nDb; i++){
408 assert( sqlite3SchemaMutexHeld(db, i, 0) );
409 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
410 if( p ) break;
412 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
413 if( sqlite3StrICmp(zName+7, &PREFERRED_SCHEMA_TABLE[7])==0 ){
414 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, LEGACY_SCHEMA_TABLE);
415 }else if( sqlite3StrICmp(zName+7, &PREFERRED_TEMP_SCHEMA_TABLE[7])==0 ){
416 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
417 LEGACY_TEMP_SCHEMA_TABLE);
421 return p;
425 ** Locate the in-memory structure that describes a particular database
426 ** table given the name of that table and (optionally) the name of the
427 ** database containing the table. Return NULL if not found. Also leave an
428 ** error message in pParse->zErrMsg.
430 ** The difference between this routine and sqlite3FindTable() is that this
431 ** routine leaves an error message in pParse->zErrMsg where
432 ** sqlite3FindTable() does not.
434 Table *sqlite3LocateTable(
435 Parse *pParse, /* context in which to report errors */
436 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
437 const char *zName, /* Name of the table we are looking for */
438 const char *zDbase /* Name of the database. Might be NULL */
440 Table *p;
441 sqlite3 *db = pParse->db;
443 /* Read the database schema. If an error occurs, leave an error message
444 ** and code in pParse and return NULL. */
445 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
446 && SQLITE_OK!=sqlite3ReadSchema(pParse)
448 return 0;
451 p = sqlite3FindTable(db, zName, zDbase);
452 if( p==0 ){
453 #ifndef SQLITE_OMIT_VIRTUALTABLE
454 /* If zName is the not the name of a table in the schema created using
455 ** CREATE, then check to see if it is the name of an virtual table that
456 ** can be an eponymous virtual table. */
457 if( (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)==0 && db->init.busy==0 ){
458 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
459 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
460 pMod = sqlite3PragmaVtabRegister(db, zName);
462 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
463 testcase( pMod->pEpoTab==0 );
464 return pMod->pEpoTab;
467 #endif
468 if( flags & LOCATE_NOERR ) return 0;
469 pParse->checkSchema = 1;
470 }else if( IsVirtual(p) && (pParse->prepFlags & SQLITE_PREPARE_NO_VTAB)!=0 ){
471 p = 0;
474 if( p==0 ){
475 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
476 if( zDbase ){
477 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
478 }else{
479 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
481 }else{
482 assert( HasRowid(p) || p->iPKey<0 );
485 return p;
489 ** Locate the table identified by *p.
491 ** This is a wrapper around sqlite3LocateTable(). The difference between
492 ** sqlite3LocateTable() and this function is that this function restricts
493 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
494 ** non-NULL if it is part of a view or trigger program definition. See
495 ** sqlite3FixSrcList() for details.
497 Table *sqlite3LocateTableItem(
498 Parse *pParse,
499 u32 flags,
500 SrcItem *p
502 const char *zDb;
503 assert( p->pSchema==0 || p->zDatabase==0 );
504 if( p->pSchema ){
505 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
506 zDb = pParse->db->aDb[iDb].zDbSName;
507 }else{
508 zDb = p->zDatabase;
510 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
514 ** Return the preferred table name for system tables. Translate legacy
515 ** names into the new preferred names, as appropriate.
517 const char *sqlite3PreferredTableName(const char *zName){
518 if( sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
519 if( sqlite3StrICmp(zName+7, &LEGACY_SCHEMA_TABLE[7])==0 ){
520 return PREFERRED_SCHEMA_TABLE;
522 if( sqlite3StrICmp(zName+7, &LEGACY_TEMP_SCHEMA_TABLE[7])==0 ){
523 return PREFERRED_TEMP_SCHEMA_TABLE;
526 return zName;
530 ** Locate the in-memory structure that describes
531 ** a particular index given the name of that index
532 ** and the name of the database that contains the index.
533 ** Return NULL if not found.
535 ** If zDatabase is 0, all databases are searched for the
536 ** table and the first matching index is returned. (No checking
537 ** for duplicate index names is done.) The search order is
538 ** TEMP first, then MAIN, then any auxiliary databases added
539 ** using the ATTACH command.
541 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
542 Index *p = 0;
543 int i;
544 /* All mutexes are required for schema access. Make sure we hold them. */
545 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
546 for(i=OMIT_TEMPDB; i<db->nDb; i++){
547 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
548 Schema *pSchema = db->aDb[j].pSchema;
549 assert( pSchema );
550 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
551 assert( sqlite3SchemaMutexHeld(db, j, 0) );
552 p = sqlite3HashFind(&pSchema->idxHash, zName);
553 if( p ) break;
555 return p;
559 ** Reclaim the memory used by an index
561 void sqlite3FreeIndex(sqlite3 *db, Index *p){
562 #ifndef SQLITE_OMIT_ANALYZE
563 sqlite3DeleteIndexSamples(db, p);
564 #endif
565 sqlite3ExprDelete(db, p->pPartIdxWhere);
566 sqlite3ExprListDelete(db, p->aColExpr);
567 sqlite3DbFree(db, p->zColAff);
568 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
569 #ifdef SQLITE_ENABLE_STAT4
570 sqlite3_free(p->aiRowEst);
571 #endif
572 sqlite3DbFree(db, p);
576 ** For the index called zIdxName which is found in the database iDb,
577 ** unlike that index from its Table then remove the index from
578 ** the index hash table and free all memory structures associated
579 ** with the index.
581 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
582 Index *pIndex;
583 Hash *pHash;
585 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
586 pHash = &db->aDb[iDb].pSchema->idxHash;
587 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
588 if( ALWAYS(pIndex) ){
589 if( pIndex->pTable->pIndex==pIndex ){
590 pIndex->pTable->pIndex = pIndex->pNext;
591 }else{
592 Index *p;
593 /* Justification of ALWAYS(); The index must be on the list of
594 ** indices. */
595 p = pIndex->pTable->pIndex;
596 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
597 if( ALWAYS(p && p->pNext==pIndex) ){
598 p->pNext = pIndex->pNext;
601 sqlite3FreeIndex(db, pIndex);
603 db->mDbFlags |= DBFLAG_SchemaChange;
607 ** Look through the list of open database files in db->aDb[] and if
608 ** any have been closed, remove them from the list. Reallocate the
609 ** db->aDb[] structure to a smaller size, if possible.
611 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
612 ** are never candidates for being collapsed.
614 void sqlite3CollapseDatabaseArray(sqlite3 *db){
615 int i, j;
616 for(i=j=2; i<db->nDb; i++){
617 struct Db *pDb = &db->aDb[i];
618 if( pDb->pBt==0 ){
619 sqlite3DbFree(db, pDb->zDbSName);
620 pDb->zDbSName = 0;
621 continue;
623 if( j<i ){
624 db->aDb[j] = db->aDb[i];
626 j++;
628 db->nDb = j;
629 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
630 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
631 sqlite3DbFree(db, db->aDb);
632 db->aDb = db->aDbStatic;
637 ** Reset the schema for the database at index iDb. Also reset the
638 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
639 ** Deferred resets may be run by calling with iDb<0.
641 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
642 int i;
643 assert( iDb<db->nDb );
645 if( iDb>=0 ){
646 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
647 DbSetProperty(db, iDb, DB_ResetWanted);
648 DbSetProperty(db, 1, DB_ResetWanted);
649 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
652 if( db->nSchemaLock==0 ){
653 for(i=0; i<db->nDb; i++){
654 if( DbHasProperty(db, i, DB_ResetWanted) ){
655 sqlite3SchemaClear(db->aDb[i].pSchema);
662 ** Erase all schema information from all attached databases (including
663 ** "main" and "temp") for a single database connection.
665 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
666 int i;
667 sqlite3BtreeEnterAll(db);
668 for(i=0; i<db->nDb; i++){
669 Db *pDb = &db->aDb[i];
670 if( pDb->pSchema ){
671 if( db->nSchemaLock==0 ){
672 sqlite3SchemaClear(pDb->pSchema);
673 }else{
674 DbSetProperty(db, i, DB_ResetWanted);
678 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
679 sqlite3VtabUnlockList(db);
680 sqlite3BtreeLeaveAll(db);
681 if( db->nSchemaLock==0 ){
682 sqlite3CollapseDatabaseArray(db);
687 ** This routine is called when a commit occurs.
689 void sqlite3CommitInternalChanges(sqlite3 *db){
690 db->mDbFlags &= ~DBFLAG_SchemaChange;
694 ** Set the expression associated with a column. This is usually
695 ** the DEFAULT value, but might also be the expression that computes
696 ** the value for a generated column.
698 void sqlite3ColumnSetExpr(
699 Parse *pParse, /* Parsing context */
700 Table *pTab, /* The table containing the column */
701 Column *pCol, /* The column to receive the new DEFAULT expression */
702 Expr *pExpr /* The new default expression */
704 ExprList *pList;
705 assert( IsOrdinaryTable(pTab) );
706 pList = pTab->u.tab.pDfltList;
707 if( pCol->iDflt==0
708 || NEVER(pList==0)
709 || NEVER(pList->nExpr<pCol->iDflt)
711 pCol->iDflt = pList==0 ? 1 : pList->nExpr+1;
712 pTab->u.tab.pDfltList = sqlite3ExprListAppend(pParse, pList, pExpr);
713 }else{
714 sqlite3ExprDelete(pParse->db, pList->a[pCol->iDflt-1].pExpr);
715 pList->a[pCol->iDflt-1].pExpr = pExpr;
720 ** Return the expression associated with a column. The expression might be
721 ** the DEFAULT clause or the AS clause of a generated column.
722 ** Return NULL if the column has no associated expression.
724 Expr *sqlite3ColumnExpr(Table *pTab, Column *pCol){
725 if( pCol->iDflt==0 ) return 0;
726 if( NEVER(!IsOrdinaryTable(pTab)) ) return 0;
727 if( NEVER(pTab->u.tab.pDfltList==0) ) return 0;
728 if( NEVER(pTab->u.tab.pDfltList->nExpr<pCol->iDflt) ) return 0;
729 return pTab->u.tab.pDfltList->a[pCol->iDflt-1].pExpr;
733 ** Set the collating sequence name for a column.
735 void sqlite3ColumnSetColl(
736 sqlite3 *db,
737 Column *pCol,
738 const char *zColl
740 i64 nColl;
741 i64 n;
742 char *zNew;
743 assert( zColl!=0 );
744 n = sqlite3Strlen30(pCol->zCnName) + 1;
745 if( pCol->colFlags & COLFLAG_HASTYPE ){
746 n += sqlite3Strlen30(pCol->zCnName+n) + 1;
748 nColl = sqlite3Strlen30(zColl) + 1;
749 zNew = sqlite3DbRealloc(db, pCol->zCnName, nColl+n);
750 if( zNew ){
751 pCol->zCnName = zNew;
752 memcpy(pCol->zCnName + n, zColl, nColl);
753 pCol->colFlags |= COLFLAG_HASCOLL;
758 ** Return the collating squence name for a column
760 const char *sqlite3ColumnColl(Column *pCol){
761 const char *z;
762 if( (pCol->colFlags & COLFLAG_HASCOLL)==0 ) return 0;
763 z = pCol->zCnName;
764 while( *z ){ z++; }
765 if( pCol->colFlags & COLFLAG_HASTYPE ){
766 do{ z++; }while( *z );
768 return z+1;
772 ** Delete memory allocated for the column names of a table or view (the
773 ** Table.aCol[] array).
775 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
776 int i;
777 Column *pCol;
778 assert( pTable!=0 );
779 assert( db!=0 );
780 if( (pCol = pTable->aCol)!=0 ){
781 for(i=0; i<pTable->nCol; i++, pCol++){
782 assert( pCol->zCnName==0 || pCol->hName==sqlite3StrIHash(pCol->zCnName) );
783 sqlite3DbFree(db, pCol->zCnName);
785 sqlite3DbNNFreeNN(db, pTable->aCol);
786 if( IsOrdinaryTable(pTable) ){
787 sqlite3ExprListDelete(db, pTable->u.tab.pDfltList);
789 if( db->pnBytesFreed==0 ){
790 pTable->aCol = 0;
791 pTable->nCol = 0;
792 if( IsOrdinaryTable(pTable) ){
793 pTable->u.tab.pDfltList = 0;
800 ** Remove the memory data structures associated with the given
801 ** Table. No changes are made to disk by this routine.
803 ** This routine just deletes the data structure. It does not unlink
804 ** the table data structure from the hash table. But it does destroy
805 ** memory structures of the indices and foreign keys associated with
806 ** the table.
808 ** The db parameter is optional. It is needed if the Table object
809 ** contains lookaside memory. (Table objects in the schema do not use
810 ** lookaside memory, but some ephemeral Table objects do.) Or the
811 ** db parameter can be used with db->pnBytesFreed to measure the memory
812 ** used by the Table object.
814 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
815 Index *pIndex, *pNext;
817 #ifdef SQLITE_DEBUG
818 /* Record the number of outstanding lookaside allocations in schema Tables
819 ** prior to doing any free() operations. Since schema Tables do not use
820 ** lookaside, this number should not change.
822 ** If malloc has already failed, it may be that it failed while allocating
823 ** a Table object that was going to be marked ephemeral. So do not check
824 ** that no lookaside memory is used in this case either. */
825 int nLookaside = 0;
826 assert( db!=0 );
827 if( !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
828 nLookaside = sqlite3LookasideUsed(db, 0);
830 #endif
832 /* Delete all indices associated with this table. */
833 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
834 pNext = pIndex->pNext;
835 assert( pIndex->pSchema==pTable->pSchema
836 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
837 if( db->pnBytesFreed==0 && !IsVirtual(pTable) ){
838 char *zName = pIndex->zName;
839 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
840 &pIndex->pSchema->idxHash, zName, 0
842 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
843 assert( pOld==pIndex || pOld==0 );
845 sqlite3FreeIndex(db, pIndex);
848 if( IsOrdinaryTable(pTable) ){
849 sqlite3FkDelete(db, pTable);
851 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
852 else if( IsVirtual(pTable) ){
853 sqlite3VtabClear(db, pTable);
855 #endif
856 else{
857 assert( IsView(pTable) );
858 sqlite3SelectDelete(db, pTable->u.view.pSelect);
861 /* Delete the Table structure itself.
863 sqlite3DeleteColumnNames(db, pTable);
864 sqlite3DbFree(db, pTable->zName);
865 sqlite3DbFree(db, pTable->zColAff);
866 sqlite3ExprListDelete(db, pTable->pCheck);
867 sqlite3DbFree(db, pTable);
869 /* Verify that no lookaside memory was used by schema tables */
870 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
872 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
873 /* Do not delete the table until the reference count reaches zero. */
874 assert( db!=0 );
875 if( !pTable ) return;
876 if( db->pnBytesFreed==0 && (--pTable->nTabRef)>0 ) return;
877 deleteTable(db, pTable);
882 ** Unlink the given table from the hash tables and the delete the
883 ** table structure with all its indices and foreign keys.
885 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
886 Table *p;
887 Db *pDb;
889 assert( db!=0 );
890 assert( iDb>=0 && iDb<db->nDb );
891 assert( zTabName );
892 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
893 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
894 pDb = &db->aDb[iDb];
895 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
896 sqlite3DeleteTable(db, p);
897 db->mDbFlags |= DBFLAG_SchemaChange;
901 ** Given a token, return a string that consists of the text of that
902 ** token. Space to hold the returned string
903 ** is obtained from sqliteMalloc() and must be freed by the calling
904 ** function.
906 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
907 ** surround the body of the token are removed.
909 ** Tokens are often just pointers into the original SQL text and so
910 ** are not \000 terminated and are not persistent. The returned string
911 ** is \000 terminated and is persistent.
913 char *sqlite3NameFromToken(sqlite3 *db, const Token *pName){
914 char *zName;
915 if( pName ){
916 zName = sqlite3DbStrNDup(db, (const char*)pName->z, pName->n);
917 sqlite3Dequote(zName);
918 }else{
919 zName = 0;
921 return zName;
925 ** Open the sqlite_schema table stored in database number iDb for
926 ** writing. The table is opened using cursor 0.
928 void sqlite3OpenSchemaTable(Parse *p, int iDb){
929 Vdbe *v = sqlite3GetVdbe(p);
930 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, LEGACY_SCHEMA_TABLE);
931 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
932 if( p->nTab==0 ){
933 p->nTab = 1;
938 ** Parameter zName points to a nul-terminated buffer containing the name
939 ** of a database ("main", "temp" or the name of an attached db). This
940 ** function returns the index of the named database in db->aDb[], or
941 ** -1 if the named db cannot be found.
943 int sqlite3FindDbName(sqlite3 *db, const char *zName){
944 int i = -1; /* Database number */
945 if( zName ){
946 Db *pDb;
947 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
948 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
949 /* "main" is always an acceptable alias for the primary database
950 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
951 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
954 return i;
958 ** The token *pName contains the name of a database (either "main" or
959 ** "temp" or the name of an attached db). This routine returns the
960 ** index of the named database in db->aDb[], or -1 if the named db
961 ** does not exist.
963 int sqlite3FindDb(sqlite3 *db, Token *pName){
964 int i; /* Database number */
965 char *zName; /* Name we are searching for */
966 zName = sqlite3NameFromToken(db, pName);
967 i = sqlite3FindDbName(db, zName);
968 sqlite3DbFree(db, zName);
969 return i;
972 /* The table or view or trigger name is passed to this routine via tokens
973 ** pName1 and pName2. If the table name was fully qualified, for example:
975 ** CREATE TABLE xxx.yyy (...);
977 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
978 ** the table name is not fully qualified, i.e.:
980 ** CREATE TABLE yyy(...);
982 ** Then pName1 is set to "yyy" and pName2 is "".
984 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
985 ** pName2) that stores the unqualified table name. The index of the
986 ** database "xxx" is returned.
988 int sqlite3TwoPartName(
989 Parse *pParse, /* Parsing and code generating context */
990 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
991 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
992 Token **pUnqual /* Write the unqualified object name here */
994 int iDb; /* Database holding the object */
995 sqlite3 *db = pParse->db;
997 assert( pName2!=0 );
998 if( pName2->n>0 ){
999 if( db->init.busy ) {
1000 sqlite3ErrorMsg(pParse, "corrupt database");
1001 return -1;
1003 *pUnqual = pName2;
1004 iDb = sqlite3FindDb(db, pName1);
1005 if( iDb<0 ){
1006 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
1007 return -1;
1009 }else{
1010 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
1011 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
1012 iDb = db->init.iDb;
1013 *pUnqual = pName1;
1015 return iDb;
1019 ** True if PRAGMA writable_schema is ON
1021 int sqlite3WritableSchema(sqlite3 *db){
1022 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
1023 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1024 SQLITE_WriteSchema );
1025 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1026 SQLITE_Defensive );
1027 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
1028 (SQLITE_WriteSchema|SQLITE_Defensive) );
1029 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
1033 ** This routine is used to check if the UTF-8 string zName is a legal
1034 ** unqualified name for a new schema object (table, index, view or
1035 ** trigger). All names are legal except those that begin with the string
1036 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1037 ** is reserved for internal use.
1039 ** When parsing the sqlite_schema table, this routine also checks to
1040 ** make sure the "type", "name", and "tbl_name" columns are consistent
1041 ** with the SQL.
1043 int sqlite3CheckObjectName(
1044 Parse *pParse, /* Parsing context */
1045 const char *zName, /* Name of the object to check */
1046 const char *zType, /* Type of this object */
1047 const char *zTblName /* Parent table name for triggers and indexes */
1049 sqlite3 *db = pParse->db;
1050 if( sqlite3WritableSchema(db)
1051 || db->init.imposterTable
1052 || !sqlite3Config.bExtraSchemaChecks
1054 /* Skip these error checks for writable_schema=ON */
1055 return SQLITE_OK;
1057 if( db->init.busy ){
1058 if( sqlite3_stricmp(zType, db->init.azInit[0])
1059 || sqlite3_stricmp(zName, db->init.azInit[1])
1060 || sqlite3_stricmp(zTblName, db->init.azInit[2])
1062 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
1063 return SQLITE_ERROR;
1065 }else{
1066 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
1067 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
1069 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
1070 zName);
1071 return SQLITE_ERROR;
1075 return SQLITE_OK;
1079 ** Return the PRIMARY KEY index of a table
1081 Index *sqlite3PrimaryKeyIndex(Table *pTab){
1082 Index *p;
1083 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
1084 return p;
1088 ** Convert an table column number into a index column number. That is,
1089 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1090 ** find the (first) offset of that column in index pIdx. Or return -1
1091 ** if column iCol is not used in index pIdx.
1093 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
1094 int i;
1095 for(i=0; i<pIdx->nColumn; i++){
1096 if( iCol==pIdx->aiColumn[i] ) return i;
1098 return -1;
1101 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1102 /* Convert a storage column number into a table column number.
1104 ** The storage column number (0,1,2,....) is the index of the value
1105 ** as it appears in the record on disk. The true column number
1106 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1108 ** The storage column number is less than the table column number if
1109 ** and only there are VIRTUAL columns to the left.
1111 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1113 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
1114 if( pTab->tabFlags & TF_HasVirtual ){
1115 int i;
1116 for(i=0; i<=iCol; i++){
1117 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1120 return iCol;
1122 #endif
1124 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1125 /* Convert a table column number into a storage column number.
1127 ** The storage column number (0,1,2,....) is the index of the value
1128 ** as it appears in the record on disk. Or, if the input column is
1129 ** the N-th virtual column (zero-based) then the storage number is
1130 ** the number of non-virtual columns in the table plus N.
1132 ** The true column number is the index (0,1,2,...) of the column in
1133 ** the CREATE TABLE statement.
1135 ** If the input column is a VIRTUAL column, then it should not appear
1136 ** in storage. But the value sometimes is cached in registers that
1137 ** follow the range of registers used to construct storage. This
1138 ** avoids computing the same VIRTUAL column multiple times, and provides
1139 ** values for use by OP_Param opcodes in triggers. Hence, if the
1140 ** input column is a VIRTUAL table, put it after all the other columns.
1142 ** In the following, N means "normal column", S means STORED, and
1143 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
1145 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1146 ** -- 0 1 2 3 4 5 6 7 8
1148 ** Then the mapping from this function is as follows:
1150 ** INPUTS: 0 1 2 3 4 5 6 7 8
1151 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
1153 ** So, in other words, this routine shifts all the virtual columns to
1154 ** the end.
1156 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1157 ** this routine is a no-op macro. If the pTab does not have any virtual
1158 ** columns, then this routine is no-op that always return iCol. If iCol
1159 ** is negative (indicating the ROWID column) then this routine return iCol.
1161 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1162 int i;
1163 i16 n;
1164 assert( iCol<pTab->nCol );
1165 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1166 for(i=0, n=0; i<iCol; i++){
1167 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1169 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1170 /* iCol is a virtual column itself */
1171 return pTab->nNVCol + i - n;
1172 }else{
1173 /* iCol is a normal or stored column */
1174 return n;
1177 #endif
1180 ** Insert a single OP_JournalMode query opcode in order to force the
1181 ** prepared statement to return false for sqlite3_stmt_readonly(). This
1182 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1183 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1184 ** will return false for sqlite3_stmt_readonly() even if that statement
1185 ** is a read-only no-op.
1187 static void sqlite3ForceNotReadOnly(Parse *pParse){
1188 int iReg = ++pParse->nMem;
1189 Vdbe *v = sqlite3GetVdbe(pParse);
1190 if( v ){
1191 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1192 sqlite3VdbeUsesBtree(v, 0);
1197 ** Begin constructing a new table representation in memory. This is
1198 ** the first of several action routines that get called in response
1199 ** to a CREATE TABLE statement. In particular, this routine is called
1200 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1201 ** flag is true if the table should be stored in the auxiliary database
1202 ** file instead of in the main database file. This is normally the case
1203 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1204 ** CREATE and TABLE.
1206 ** The new table record is initialized and put in pParse->pNewTable.
1207 ** As more of the CREATE TABLE statement is parsed, additional action
1208 ** routines will be called to add more information to this record.
1209 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1210 ** is called to complete the construction of the new table record.
1212 void sqlite3StartTable(
1213 Parse *pParse, /* Parser context */
1214 Token *pName1, /* First part of the name of the table or view */
1215 Token *pName2, /* Second part of the name of the table or view */
1216 int isTemp, /* True if this is a TEMP table */
1217 int isView, /* True if this is a VIEW */
1218 int isVirtual, /* True if this is a VIRTUAL table */
1219 int noErr /* Do nothing if table already exists */
1221 Table *pTable;
1222 char *zName = 0; /* The name of the new table */
1223 sqlite3 *db = pParse->db;
1224 Vdbe *v;
1225 int iDb; /* Database number to create the table in */
1226 Token *pName; /* Unqualified name of the table to create */
1228 if( db->init.busy && db->init.newTnum==1 ){
1229 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1230 iDb = db->init.iDb;
1231 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1232 pName = pName1;
1233 }else{
1234 /* The common case */
1235 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1236 if( iDb<0 ) return;
1237 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1238 /* If creating a temp table, the name may not be qualified. Unless
1239 ** the database name is "temp" anyway. */
1240 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1241 return;
1243 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1244 zName = sqlite3NameFromToken(db, pName);
1245 if( IN_RENAME_OBJECT ){
1246 sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1249 pParse->sNameToken = *pName;
1250 if( zName==0 ) return;
1251 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1252 goto begin_table_error;
1254 if( db->init.iDb==1 ) isTemp = 1;
1255 #ifndef SQLITE_OMIT_AUTHORIZATION
1256 assert( isTemp==0 || isTemp==1 );
1257 assert( isView==0 || isView==1 );
1259 static const u8 aCode[] = {
1260 SQLITE_CREATE_TABLE,
1261 SQLITE_CREATE_TEMP_TABLE,
1262 SQLITE_CREATE_VIEW,
1263 SQLITE_CREATE_TEMP_VIEW
1265 char *zDb = db->aDb[iDb].zDbSName;
1266 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1267 goto begin_table_error;
1269 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1270 zName, 0, zDb) ){
1271 goto begin_table_error;
1274 #endif
1276 /* Make sure the new table name does not collide with an existing
1277 ** index or table name in the same database. Issue an error message if
1278 ** it does. The exception is if the statement being parsed was passed
1279 ** to an sqlite3_declare_vtab() call. In that case only the column names
1280 ** and types will be used, so there is no need to test for namespace
1281 ** collisions.
1283 if( !IN_SPECIAL_PARSE ){
1284 char *zDb = db->aDb[iDb].zDbSName;
1285 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1286 goto begin_table_error;
1288 pTable = sqlite3FindTable(db, zName, zDb);
1289 if( pTable ){
1290 if( !noErr ){
1291 sqlite3ErrorMsg(pParse, "%s %T already exists",
1292 (IsView(pTable)? "view" : "table"), pName);
1293 }else{
1294 assert( !db->init.busy || CORRUPT_DB );
1295 sqlite3CodeVerifySchema(pParse, iDb);
1296 sqlite3ForceNotReadOnly(pParse);
1298 goto begin_table_error;
1300 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1301 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1302 goto begin_table_error;
1306 pTable = sqlite3DbMallocZero(db, sizeof(Table));
1307 if( pTable==0 ){
1308 assert( db->mallocFailed );
1309 pParse->rc = SQLITE_NOMEM_BKPT;
1310 pParse->nErr++;
1311 goto begin_table_error;
1313 pTable->zName = zName;
1314 pTable->iPKey = -1;
1315 pTable->pSchema = db->aDb[iDb].pSchema;
1316 pTable->nTabRef = 1;
1317 #ifdef SQLITE_DEFAULT_ROWEST
1318 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1319 #else
1320 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1321 #endif
1322 assert( pParse->pNewTable==0 );
1323 pParse->pNewTable = pTable;
1325 /* Begin generating the code that will insert the table record into
1326 ** the schema table. Note in particular that we must go ahead
1327 ** and allocate the record number for the table entry now. Before any
1328 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1329 ** indices to be created and the table record must come before the
1330 ** indices. Hence, the record number for the table must be allocated
1331 ** now.
1333 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1334 int addr1;
1335 int fileFormat;
1336 int reg1, reg2, reg3;
1337 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1338 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1339 sqlite3BeginWriteOperation(pParse, 1, iDb);
1341 #ifndef SQLITE_OMIT_VIRTUALTABLE
1342 if( isVirtual ){
1343 sqlite3VdbeAddOp0(v, OP_VBegin);
1345 #endif
1347 /* If the file format and encoding in the database have not been set,
1348 ** set them now.
1350 reg1 = pParse->regRowid = ++pParse->nMem;
1351 reg2 = pParse->regRoot = ++pParse->nMem;
1352 reg3 = ++pParse->nMem;
1353 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1354 sqlite3VdbeUsesBtree(v, iDb);
1355 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1356 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1357 1 : SQLITE_MAX_FILE_FORMAT;
1358 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1359 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1360 sqlite3VdbeJumpHere(v, addr1);
1362 /* This just creates a place-holder record in the sqlite_schema table.
1363 ** The record created does not contain anything yet. It will be replaced
1364 ** by the real entry in code generated at sqlite3EndTable().
1366 ** The rowid for the new entry is left in register pParse->regRowid.
1367 ** The root page number of the new table is left in reg pParse->regRoot.
1368 ** The rowid and root page number values are needed by the code that
1369 ** sqlite3EndTable will generate.
1371 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1372 if( isView || isVirtual ){
1373 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1374 }else
1375 #endif
1377 assert( !pParse->bReturning );
1378 pParse->u1.addrCrTab =
1379 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1381 sqlite3OpenSchemaTable(pParse, iDb);
1382 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1383 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1384 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1385 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1386 sqlite3VdbeAddOp0(v, OP_Close);
1389 /* Normal (non-error) return. */
1390 return;
1392 /* If an error occurs, we jump here */
1393 begin_table_error:
1394 pParse->checkSchema = 1;
1395 sqlite3DbFree(db, zName);
1396 return;
1399 /* Set properties of a table column based on the (magical)
1400 ** name of the column.
1402 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1403 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1404 if( sqlite3_strnicmp(pCol->zCnName, "__hidden__", 10)==0 ){
1405 pCol->colFlags |= COLFLAG_HIDDEN;
1406 if( pTab ) pTab->tabFlags |= TF_HasHidden;
1407 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1408 pTab->tabFlags |= TF_OOOHidden;
1411 #endif
1414 ** Name of the special TEMP trigger used to implement RETURNING. The
1415 ** name begins with "sqlite_" so that it is guaranteed not to collide
1416 ** with any application-generated triggers.
1418 #define RETURNING_TRIGGER_NAME "sqlite_returning"
1421 ** Clean up the data structures associated with the RETURNING clause.
1423 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1424 Hash *pHash;
1425 pHash = &(db->aDb[1].pSchema->trigHash);
1426 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1427 sqlite3ExprListDelete(db, pRet->pReturnEL);
1428 sqlite3DbFree(db, pRet);
1432 ** Add the RETURNING clause to the parse currently underway.
1434 ** This routine creates a special TEMP trigger that will fire for each row
1435 ** of the DML statement. That TEMP trigger contains a single SELECT
1436 ** statement with a result set that is the argument of the RETURNING clause.
1437 ** The trigger has the Trigger.bReturning flag and an opcode of
1438 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1439 ** knows to handle it specially. The TEMP trigger is automatically
1440 ** removed at the end of the parse.
1442 ** When this routine is called, we do not yet know if the RETURNING clause
1443 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1444 ** RETURNING trigger instead. It will then be converted into the appropriate
1445 ** type on the first call to sqlite3TriggersExist().
1447 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1448 Returning *pRet;
1449 Hash *pHash;
1450 sqlite3 *db = pParse->db;
1451 if( pParse->pNewTrigger ){
1452 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1453 }else{
1454 assert( pParse->bReturning==0 );
1456 pParse->bReturning = 1;
1457 pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1458 if( pRet==0 ){
1459 sqlite3ExprListDelete(db, pList);
1460 return;
1462 pParse->u1.pReturning = pRet;
1463 pRet->pParse = pParse;
1464 pRet->pReturnEL = pList;
1465 sqlite3ParserAddCleanup(pParse,
1466 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1467 testcase( pParse->earlyCleanup );
1468 if( db->mallocFailed ) return;
1469 pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1470 pRet->retTrig.op = TK_RETURNING;
1471 pRet->retTrig.tr_tm = TRIGGER_AFTER;
1472 pRet->retTrig.bReturning = 1;
1473 pRet->retTrig.pSchema = db->aDb[1].pSchema;
1474 pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1475 pRet->retTrig.step_list = &pRet->retTStep;
1476 pRet->retTStep.op = TK_RETURNING;
1477 pRet->retTStep.pTrig = &pRet->retTrig;
1478 pRet->retTStep.pExprList = pList;
1479 pHash = &(db->aDb[1].pSchema->trigHash);
1480 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1481 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1482 ==&pRet->retTrig ){
1483 sqlite3OomFault(db);
1488 ** Add a new column to the table currently being constructed.
1490 ** The parser calls this routine once for each column declaration
1491 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1492 ** first to get things going. Then this routine is called for each
1493 ** column.
1495 void sqlite3AddColumn(Parse *pParse, Token sName, Token sType){
1496 Table *p;
1497 int i;
1498 char *z;
1499 char *zType;
1500 Column *pCol;
1501 sqlite3 *db = pParse->db;
1502 u8 hName;
1503 Column *aNew;
1504 u8 eType = COLTYPE_CUSTOM;
1505 u8 szEst = 1;
1506 char affinity = SQLITE_AFF_BLOB;
1508 if( (p = pParse->pNewTable)==0 ) return;
1509 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1510 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1511 return;
1513 if( !IN_RENAME_OBJECT ) sqlite3DequoteToken(&sName);
1515 /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1516 ** by the parser, we can sometimes end up with a typename that ends
1517 ** with "generated always". Check for this case and omit the surplus
1518 ** text. */
1519 if( sType.n>=16
1520 && sqlite3_strnicmp(sType.z+(sType.n-6),"always",6)==0
1522 sType.n -= 6;
1523 while( ALWAYS(sType.n>0) && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1524 if( sType.n>=9
1525 && sqlite3_strnicmp(sType.z+(sType.n-9),"generated",9)==0
1527 sType.n -= 9;
1528 while( sType.n>0 && sqlite3Isspace(sType.z[sType.n-1]) ) sType.n--;
1532 /* Check for standard typenames. For standard typenames we will
1533 ** set the Column.eType field rather than storing the typename after
1534 ** the column name, in order to save space. */
1535 if( sType.n>=3 ){
1536 sqlite3DequoteToken(&sType);
1537 for(i=0; i<SQLITE_N_STDTYPE; i++){
1538 if( sType.n==sqlite3StdTypeLen[i]
1539 && sqlite3_strnicmp(sType.z, sqlite3StdType[i], sType.n)==0
1541 sType.n = 0;
1542 eType = i+1;
1543 affinity = sqlite3StdTypeAffinity[i];
1544 if( affinity<=SQLITE_AFF_TEXT ) szEst = 5;
1545 break;
1550 z = sqlite3DbMallocRaw(db, (i64)sName.n + 1 + (i64)sType.n + (sType.n>0) );
1551 if( z==0 ) return;
1552 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, &sName);
1553 memcpy(z, sName.z, sName.n);
1554 z[sName.n] = 0;
1555 sqlite3Dequote(z);
1556 hName = sqlite3StrIHash(z);
1557 for(i=0; i<p->nCol; i++){
1558 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zCnName)==0 ){
1559 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1560 sqlite3DbFree(db, z);
1561 return;
1564 aNew = sqlite3DbRealloc(db,p->aCol,((i64)p->nCol+1)*sizeof(p->aCol[0]));
1565 if( aNew==0 ){
1566 sqlite3DbFree(db, z);
1567 return;
1569 p->aCol = aNew;
1570 pCol = &p->aCol[p->nCol];
1571 memset(pCol, 0, sizeof(p->aCol[0]));
1572 pCol->zCnName = z;
1573 pCol->hName = hName;
1574 sqlite3ColumnPropertiesFromName(p, pCol);
1576 if( sType.n==0 ){
1577 /* If there is no type specified, columns have the default affinity
1578 ** 'BLOB' with a default size of 4 bytes. */
1579 pCol->affinity = affinity;
1580 pCol->eCType = eType;
1581 pCol->szEst = szEst;
1582 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1583 if( affinity==SQLITE_AFF_BLOB ){
1584 if( 4>=sqlite3GlobalConfig.szSorterRef ){
1585 pCol->colFlags |= COLFLAG_SORTERREF;
1588 #endif
1589 }else{
1590 zType = z + sqlite3Strlen30(z) + 1;
1591 memcpy(zType, sType.z, sType.n);
1592 zType[sType.n] = 0;
1593 sqlite3Dequote(zType);
1594 pCol->affinity = sqlite3AffinityType(zType, pCol);
1595 pCol->colFlags |= COLFLAG_HASTYPE;
1597 p->nCol++;
1598 p->nNVCol++;
1599 pParse->constraintName.n = 0;
1603 ** This routine is called by the parser while in the middle of
1604 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1605 ** been seen on a column. This routine sets the notNull flag on
1606 ** the column currently under construction.
1608 void sqlite3AddNotNull(Parse *pParse, int onError){
1609 Table *p;
1610 Column *pCol;
1611 p = pParse->pNewTable;
1612 if( p==0 || NEVER(p->nCol<1) ) return;
1613 pCol = &p->aCol[p->nCol-1];
1614 pCol->notNull = (u8)onError;
1615 p->tabFlags |= TF_HasNotNull;
1617 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1618 ** on this column. */
1619 if( pCol->colFlags & COLFLAG_UNIQUE ){
1620 Index *pIdx;
1621 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1622 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1623 if( pIdx->aiColumn[0]==p->nCol-1 ){
1624 pIdx->uniqNotNull = 1;
1631 ** Scan the column type name zType (length nType) and return the
1632 ** associated affinity type.
1634 ** This routine does a case-independent search of zType for the
1635 ** substrings in the following table. If one of the substrings is
1636 ** found, the corresponding affinity is returned. If zType contains
1637 ** more than one of the substrings, entries toward the top of
1638 ** the table take priority. For example, if zType is 'BLOBINT',
1639 ** SQLITE_AFF_INTEGER is returned.
1641 ** Substring | Affinity
1642 ** --------------------------------
1643 ** 'INT' | SQLITE_AFF_INTEGER
1644 ** 'CHAR' | SQLITE_AFF_TEXT
1645 ** 'CLOB' | SQLITE_AFF_TEXT
1646 ** 'TEXT' | SQLITE_AFF_TEXT
1647 ** 'BLOB' | SQLITE_AFF_BLOB
1648 ** 'REAL' | SQLITE_AFF_REAL
1649 ** 'FLOA' | SQLITE_AFF_REAL
1650 ** 'DOUB' | SQLITE_AFF_REAL
1652 ** If none of the substrings in the above table are found,
1653 ** SQLITE_AFF_NUMERIC is returned.
1655 char sqlite3AffinityType(const char *zIn, Column *pCol){
1656 u32 h = 0;
1657 char aff = SQLITE_AFF_NUMERIC;
1658 const char *zChar = 0;
1660 assert( zIn!=0 );
1661 while( zIn[0] ){
1662 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1663 zIn++;
1664 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1665 aff = SQLITE_AFF_TEXT;
1666 zChar = zIn;
1667 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1668 aff = SQLITE_AFF_TEXT;
1669 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1670 aff = SQLITE_AFF_TEXT;
1671 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1672 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1673 aff = SQLITE_AFF_BLOB;
1674 if( zIn[0]=='(' ) zChar = zIn;
1675 #ifndef SQLITE_OMIT_FLOATING_POINT
1676 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1677 && aff==SQLITE_AFF_NUMERIC ){
1678 aff = SQLITE_AFF_REAL;
1679 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1680 && aff==SQLITE_AFF_NUMERIC ){
1681 aff = SQLITE_AFF_REAL;
1682 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1683 && aff==SQLITE_AFF_NUMERIC ){
1684 aff = SQLITE_AFF_REAL;
1685 #endif
1686 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1687 aff = SQLITE_AFF_INTEGER;
1688 break;
1692 /* If pCol is not NULL, store an estimate of the field size. The
1693 ** estimate is scaled so that the size of an integer is 1. */
1694 if( pCol ){
1695 int v = 0; /* default size is approx 4 bytes */
1696 if( aff<SQLITE_AFF_NUMERIC ){
1697 if( zChar ){
1698 while( zChar[0] ){
1699 if( sqlite3Isdigit(zChar[0]) ){
1700 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1701 sqlite3GetInt32(zChar, &v);
1702 break;
1704 zChar++;
1706 }else{
1707 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1710 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1711 if( v>=sqlite3GlobalConfig.szSorterRef ){
1712 pCol->colFlags |= COLFLAG_SORTERREF;
1714 #endif
1715 v = v/4 + 1;
1716 if( v>255 ) v = 255;
1717 pCol->szEst = v;
1719 return aff;
1723 ** The expression is the default value for the most recently added column
1724 ** of the table currently under construction.
1726 ** Default value expressions must be constant. Raise an exception if this
1727 ** is not the case.
1729 ** This routine is called by the parser while in the middle of
1730 ** parsing a CREATE TABLE statement.
1732 void sqlite3AddDefaultValue(
1733 Parse *pParse, /* Parsing context */
1734 Expr *pExpr, /* The parsed expression of the default value */
1735 const char *zStart, /* Start of the default value text */
1736 const char *zEnd /* First character past end of defaut value text */
1738 Table *p;
1739 Column *pCol;
1740 sqlite3 *db = pParse->db;
1741 p = pParse->pNewTable;
1742 if( p!=0 ){
1743 int isInit = db->init.busy && db->init.iDb!=1;
1744 pCol = &(p->aCol[p->nCol-1]);
1745 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1746 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1747 pCol->zCnName);
1748 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1749 }else if( pCol->colFlags & COLFLAG_GENERATED ){
1750 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1751 testcase( pCol->colFlags & COLFLAG_STORED );
1752 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1753 #endif
1754 }else{
1755 /* A copy of pExpr is used instead of the original, as pExpr contains
1756 ** tokens that point to volatile memory.
1758 Expr x, *pDfltExpr;
1759 memset(&x, 0, sizeof(x));
1760 x.op = TK_SPAN;
1761 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1762 x.pLeft = pExpr;
1763 x.flags = EP_Skip;
1764 pDfltExpr = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1765 sqlite3DbFree(db, x.u.zToken);
1766 sqlite3ColumnSetExpr(pParse, p, pCol, pDfltExpr);
1769 if( IN_RENAME_OBJECT ){
1770 sqlite3RenameExprUnmap(pParse, pExpr);
1772 sqlite3ExprDelete(db, pExpr);
1776 ** Backwards Compatibility Hack:
1778 ** Historical versions of SQLite accepted strings as column names in
1779 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1781 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1782 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1784 ** This is goofy. But to preserve backwards compatibility we continue to
1785 ** accept it. This routine does the necessary conversion. It converts
1786 ** the expression given in its argument from a TK_STRING into a TK_ID
1787 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1788 ** If the expression is anything other than TK_STRING, the expression is
1789 ** unchanged.
1791 static void sqlite3StringToId(Expr *p){
1792 if( p->op==TK_STRING ){
1793 p->op = TK_ID;
1794 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1795 p->pLeft->op = TK_ID;
1800 ** Tag the given column as being part of the PRIMARY KEY
1802 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1803 pCol->colFlags |= COLFLAG_PRIMKEY;
1804 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1805 if( pCol->colFlags & COLFLAG_GENERATED ){
1806 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1807 testcase( pCol->colFlags & COLFLAG_STORED );
1808 sqlite3ErrorMsg(pParse,
1809 "generated columns cannot be part of the PRIMARY KEY");
1811 #endif
1815 ** Designate the PRIMARY KEY for the table. pList is a list of names
1816 ** of columns that form the primary key. If pList is NULL, then the
1817 ** most recently added column of the table is the primary key.
1819 ** A table can have at most one primary key. If the table already has
1820 ** a primary key (and this is the second primary key) then create an
1821 ** error.
1823 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1824 ** then we will try to use that column as the rowid. Set the Table.iPKey
1825 ** field of the table under construction to be the index of the
1826 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1827 ** no INTEGER PRIMARY KEY.
1829 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1830 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1832 void sqlite3AddPrimaryKey(
1833 Parse *pParse, /* Parsing context */
1834 ExprList *pList, /* List of field names to be indexed */
1835 int onError, /* What to do with a uniqueness conflict */
1836 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1837 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1839 Table *pTab = pParse->pNewTable;
1840 Column *pCol = 0;
1841 int iCol = -1, i;
1842 int nTerm;
1843 if( pTab==0 ) goto primary_key_exit;
1844 if( pTab->tabFlags & TF_HasPrimaryKey ){
1845 sqlite3ErrorMsg(pParse,
1846 "table \"%s\" has more than one primary key", pTab->zName);
1847 goto primary_key_exit;
1849 pTab->tabFlags |= TF_HasPrimaryKey;
1850 if( pList==0 ){
1851 iCol = pTab->nCol - 1;
1852 pCol = &pTab->aCol[iCol];
1853 makeColumnPartOfPrimaryKey(pParse, pCol);
1854 nTerm = 1;
1855 }else{
1856 nTerm = pList->nExpr;
1857 for(i=0; i<nTerm; i++){
1858 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1859 assert( pCExpr!=0 );
1860 sqlite3StringToId(pCExpr);
1861 if( pCExpr->op==TK_ID ){
1862 const char *zCName;
1863 assert( !ExprHasProperty(pCExpr, EP_IntValue) );
1864 zCName = pCExpr->u.zToken;
1865 for(iCol=0; iCol<pTab->nCol; iCol++){
1866 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zCnName)==0 ){
1867 pCol = &pTab->aCol[iCol];
1868 makeColumnPartOfPrimaryKey(pParse, pCol);
1869 break;
1875 if( nTerm==1
1876 && pCol
1877 && pCol->eCType==COLTYPE_INTEGER
1878 && sortOrder!=SQLITE_SO_DESC
1880 if( IN_RENAME_OBJECT && pList ){
1881 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1882 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1884 pTab->iPKey = iCol;
1885 pTab->keyConf = (u8)onError;
1886 assert( autoInc==0 || autoInc==1 );
1887 pTab->tabFlags |= autoInc*TF_Autoincrement;
1888 if( pList ) pParse->iPkSortOrder = pList->a[0].fg.sortFlags;
1889 (void)sqlite3HasExplicitNulls(pParse, pList);
1890 }else if( autoInc ){
1891 #ifndef SQLITE_OMIT_AUTOINCREMENT
1892 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1893 "INTEGER PRIMARY KEY");
1894 #endif
1895 }else{
1896 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1897 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1898 pList = 0;
1901 primary_key_exit:
1902 sqlite3ExprListDelete(pParse->db, pList);
1903 return;
1907 ** Add a new CHECK constraint to the table currently under construction.
1909 void sqlite3AddCheckConstraint(
1910 Parse *pParse, /* Parsing context */
1911 Expr *pCheckExpr, /* The check expression */
1912 const char *zStart, /* Opening "(" */
1913 const char *zEnd /* Closing ")" */
1915 #ifndef SQLITE_OMIT_CHECK
1916 Table *pTab = pParse->pNewTable;
1917 sqlite3 *db = pParse->db;
1918 if( pTab && !IN_DECLARE_VTAB
1919 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1921 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1922 if( pParse->constraintName.n ){
1923 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1924 }else{
1925 Token t;
1926 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1927 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1928 t.z = zStart;
1929 t.n = (int)(zEnd - t.z);
1930 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1932 }else
1933 #endif
1935 sqlite3ExprDelete(pParse->db, pCheckExpr);
1940 ** Set the collation function of the most recently parsed table column
1941 ** to the CollSeq given.
1943 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1944 Table *p;
1945 int i;
1946 char *zColl; /* Dequoted name of collation sequence */
1947 sqlite3 *db;
1949 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1950 i = p->nCol-1;
1951 db = pParse->db;
1952 zColl = sqlite3NameFromToken(db, pToken);
1953 if( !zColl ) return;
1955 if( sqlite3LocateCollSeq(pParse, zColl) ){
1956 Index *pIdx;
1957 sqlite3ColumnSetColl(db, &p->aCol[i], zColl);
1959 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1960 ** then an index may have been created on this column before the
1961 ** collation type was added. Correct this if it is the case.
1963 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1964 assert( pIdx->nKeyCol==1 );
1965 if( pIdx->aiColumn[0]==i ){
1966 pIdx->azColl[0] = sqlite3ColumnColl(&p->aCol[i]);
1970 sqlite3DbFree(db, zColl);
1973 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1974 ** column.
1976 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1977 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1978 u8 eType = COLFLAG_VIRTUAL;
1979 Table *pTab = pParse->pNewTable;
1980 Column *pCol;
1981 if( pTab==0 ){
1982 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1983 goto generated_done;
1985 pCol = &(pTab->aCol[pTab->nCol-1]);
1986 if( IN_DECLARE_VTAB ){
1987 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1988 goto generated_done;
1990 if( pCol->iDflt>0 ) goto generated_error;
1991 if( pType ){
1992 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1993 /* no-op */
1994 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1995 eType = COLFLAG_STORED;
1996 }else{
1997 goto generated_error;
2000 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
2001 pCol->colFlags |= eType;
2002 assert( TF_HasVirtual==COLFLAG_VIRTUAL );
2003 assert( TF_HasStored==COLFLAG_STORED );
2004 pTab->tabFlags |= eType;
2005 if( pCol->colFlags & COLFLAG_PRIMKEY ){
2006 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
2008 if( ALWAYS(pExpr) && pExpr->op==TK_ID ){
2009 /* The value of a generated column needs to be a real expression, not
2010 ** just a reference to another column, in order for covering index
2011 ** optimizations to work correctly. So if the value is not an expression,
2012 ** turn it into one by adding a unary "+" operator. */
2013 pExpr = sqlite3PExpr(pParse, TK_UPLUS, pExpr, 0);
2015 if( pExpr && pExpr->op!=TK_RAISE ) pExpr->affExpr = pCol->affinity;
2016 sqlite3ColumnSetExpr(pParse, pTab, pCol, pExpr);
2017 pExpr = 0;
2018 goto generated_done;
2020 generated_error:
2021 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
2022 pCol->zCnName);
2023 generated_done:
2024 sqlite3ExprDelete(pParse->db, pExpr);
2025 #else
2026 /* Throw and error for the GENERATED ALWAYS AS clause if the
2027 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2028 sqlite3ErrorMsg(pParse, "generated columns not supported");
2029 sqlite3ExprDelete(pParse->db, pExpr);
2030 #endif
2034 ** Generate code that will increment the schema cookie.
2036 ** The schema cookie is used to determine when the schema for the
2037 ** database changes. After each schema change, the cookie value
2038 ** changes. When a process first reads the schema it records the
2039 ** cookie. Thereafter, whenever it goes to access the database,
2040 ** it checks the cookie to make sure the schema has not changed
2041 ** since it was last read.
2043 ** This plan is not completely bullet-proof. It is possible for
2044 ** the schema to change multiple times and for the cookie to be
2045 ** set back to prior value. But schema changes are infrequent
2046 ** and the probability of hitting the same cookie value is only
2047 ** 1 chance in 2^32. So we're safe enough.
2049 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2050 ** the schema-version whenever the schema changes.
2052 void sqlite3ChangeCookie(Parse *pParse, int iDb){
2053 sqlite3 *db = pParse->db;
2054 Vdbe *v = pParse->pVdbe;
2055 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2056 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
2057 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
2061 ** Measure the number of characters needed to output the given
2062 ** identifier. The number returned includes any quotes used
2063 ** but does not include the null terminator.
2065 ** The estimate is conservative. It might be larger that what is
2066 ** really needed.
2068 static int identLength(const char *z){
2069 int n;
2070 for(n=0; *z; n++, z++){
2071 if( *z=='"' ){ n++; }
2073 return n + 2;
2077 ** The first parameter is a pointer to an output buffer. The second
2078 ** parameter is a pointer to an integer that contains the offset at
2079 ** which to write into the output buffer. This function copies the
2080 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2081 ** to the specified offset in the buffer and updates *pIdx to refer
2082 ** to the first byte after the last byte written before returning.
2084 ** If the string zSignedIdent consists entirely of alpha-numeric
2085 ** characters, does not begin with a digit and is not an SQL keyword,
2086 ** then it is copied to the output buffer exactly as it is. Otherwise,
2087 ** it is quoted using double-quotes.
2089 static void identPut(char *z, int *pIdx, char *zSignedIdent){
2090 unsigned char *zIdent = (unsigned char*)zSignedIdent;
2091 int i, j, needQuote;
2092 i = *pIdx;
2094 for(j=0; zIdent[j]; j++){
2095 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
2097 needQuote = sqlite3Isdigit(zIdent[0])
2098 || sqlite3KeywordCode(zIdent, j)!=TK_ID
2099 || zIdent[j]!=0
2100 || j==0;
2102 if( needQuote ) z[i++] = '"';
2103 for(j=0; zIdent[j]; j++){
2104 z[i++] = zIdent[j];
2105 if( zIdent[j]=='"' ) z[i++] = '"';
2107 if( needQuote ) z[i++] = '"';
2108 z[i] = 0;
2109 *pIdx = i;
2113 ** Generate a CREATE TABLE statement appropriate for the given
2114 ** table. Memory to hold the text of the statement is obtained
2115 ** from sqliteMalloc() and must be freed by the calling function.
2117 static char *createTableStmt(sqlite3 *db, Table *p){
2118 int i, k, n;
2119 char *zStmt;
2120 char *zSep, *zSep2, *zEnd;
2121 Column *pCol;
2122 n = 0;
2123 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
2124 n += identLength(pCol->zCnName) + 5;
2126 n += identLength(p->zName);
2127 if( n<50 ){
2128 zSep = "";
2129 zSep2 = ",";
2130 zEnd = ")";
2131 }else{
2132 zSep = "\n ";
2133 zSep2 = ",\n ";
2134 zEnd = "\n)";
2136 n += 35 + 6*p->nCol;
2137 zStmt = sqlite3DbMallocRaw(0, n);
2138 if( zStmt==0 ){
2139 sqlite3OomFault(db);
2140 return 0;
2142 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
2143 k = sqlite3Strlen30(zStmt);
2144 identPut(zStmt, &k, p->zName);
2145 zStmt[k++] = '(';
2146 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
2147 static const char * const azType[] = {
2148 /* SQLITE_AFF_BLOB */ "",
2149 /* SQLITE_AFF_TEXT */ " TEXT",
2150 /* SQLITE_AFF_NUMERIC */ " NUM",
2151 /* SQLITE_AFF_INTEGER */ " INT",
2152 /* SQLITE_AFF_REAL */ " REAL",
2153 /* SQLITE_AFF_FLEXNUM */ " NUM",
2155 int len;
2156 const char *zType;
2158 sqlite3_snprintf(n-k, &zStmt[k], zSep);
2159 k += sqlite3Strlen30(&zStmt[k]);
2160 zSep = zSep2;
2161 identPut(zStmt, &k, pCol->zCnName);
2162 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
2163 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
2164 testcase( pCol->affinity==SQLITE_AFF_BLOB );
2165 testcase( pCol->affinity==SQLITE_AFF_TEXT );
2166 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
2167 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
2168 testcase( pCol->affinity==SQLITE_AFF_REAL );
2169 testcase( pCol->affinity==SQLITE_AFF_FLEXNUM );
2171 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2172 len = sqlite3Strlen30(zType);
2173 assert( pCol->affinity==SQLITE_AFF_BLOB
2174 || pCol->affinity==SQLITE_AFF_FLEXNUM
2175 || pCol->affinity==sqlite3AffinityType(zType, 0) );
2176 memcpy(&zStmt[k], zType, len);
2177 k += len;
2178 assert( k<=n );
2180 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2181 return zStmt;
2185 ** Resize an Index object to hold N columns total. Return SQLITE_OK
2186 ** on success and SQLITE_NOMEM on an OOM error.
2188 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2189 char *zExtra;
2190 int nByte;
2191 if( pIdx->nColumn>=N ) return SQLITE_OK;
2192 assert( pIdx->isResized==0 );
2193 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2194 zExtra = sqlite3DbMallocZero(db, nByte);
2195 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2196 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2197 pIdx->azColl = (const char**)zExtra;
2198 zExtra += sizeof(char*)*N;
2199 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2200 pIdx->aiRowLogEst = (LogEst*)zExtra;
2201 zExtra += sizeof(LogEst)*N;
2202 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2203 pIdx->aiColumn = (i16*)zExtra;
2204 zExtra += sizeof(i16)*N;
2205 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2206 pIdx->aSortOrder = (u8*)zExtra;
2207 pIdx->nColumn = N;
2208 pIdx->isResized = 1;
2209 return SQLITE_OK;
2213 ** Estimate the total row width for a table.
2215 static void estimateTableWidth(Table *pTab){
2216 unsigned wTable = 0;
2217 const Column *pTabCol;
2218 int i;
2219 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2220 wTable += pTabCol->szEst;
2222 if( pTab->iPKey<0 ) wTable++;
2223 pTab->szTabRow = sqlite3LogEst(wTable*4);
2227 ** Estimate the average size of a row for an index.
2229 static void estimateIndexWidth(Index *pIdx){
2230 unsigned wIndex = 0;
2231 int i;
2232 const Column *aCol = pIdx->pTable->aCol;
2233 for(i=0; i<pIdx->nColumn; i++){
2234 i16 x = pIdx->aiColumn[i];
2235 assert( x<pIdx->pTable->nCol );
2236 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2238 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2241 /* Return true if column number x is any of the first nCol entries of aiCol[].
2242 ** This is used to determine if the column number x appears in any of the
2243 ** first nCol entries of an index.
2245 static int hasColumn(const i16 *aiCol, int nCol, int x){
2246 while( nCol-- > 0 ){
2247 if( x==*(aiCol++) ){
2248 return 1;
2251 return 0;
2255 ** Return true if any of the first nKey entries of index pIdx exactly
2256 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
2257 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
2258 ** or may not be the same index as pPk.
2260 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2261 ** not a rowid or expression.
2263 ** This routine differs from hasColumn() in that both the column and the
2264 ** collating sequence must match for this routine, but for hasColumn() only
2265 ** the column name must match.
2267 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2268 int i, j;
2269 assert( nKey<=pIdx->nColumn );
2270 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2271 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2272 assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2273 assert( pPk->pTable==pIdx->pTable );
2274 testcase( pPk==pIdx );
2275 j = pPk->aiColumn[iCol];
2276 assert( j!=XN_ROWID && j!=XN_EXPR );
2277 for(i=0; i<nKey; i++){
2278 assert( pIdx->aiColumn[i]>=0 || j>=0 );
2279 if( pIdx->aiColumn[i]==j
2280 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2282 return 1;
2285 return 0;
2288 /* Recompute the colNotIdxed field of the Index.
2290 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2291 ** columns that are within the first 63 columns of the table and a 1 for
2292 ** all other bits (all columns that are not in the index). The
2293 ** high-order bit of colNotIdxed is always 1. All unindexed columns
2294 ** of the table have a 1.
2296 ** 2019-10-24: For the purpose of this computation, virtual columns are
2297 ** not considered to be covered by the index, even if they are in the
2298 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2299 ** able to find all instances of a reference to the indexed table column
2300 ** and convert them into references to the index. Hence we always want
2301 ** the actual table at hand in order to recompute the virtual column, if
2302 ** necessary.
2304 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2305 ** to determine if the index is covering index.
2307 static void recomputeColumnsNotIndexed(Index *pIdx){
2308 Bitmask m = 0;
2309 int j;
2310 Table *pTab = pIdx->pTable;
2311 for(j=pIdx->nColumn-1; j>=0; j--){
2312 int x = pIdx->aiColumn[j];
2313 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2314 testcase( x==BMS-1 );
2315 testcase( x==BMS-2 );
2316 if( x<BMS-1 ) m |= MASKBIT(x);
2319 pIdx->colNotIdxed = ~m;
2320 assert( (pIdx->colNotIdxed>>63)==1 ); /* See note-20221022-a */
2324 ** This routine runs at the end of parsing a CREATE TABLE statement that
2325 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2326 ** internal schema data structures and the generated VDBE code so that they
2327 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2328 ** Changes include:
2330 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2331 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2332 ** into BTREE_BLOBKEY.
2333 ** (3) Bypass the creation of the sqlite_schema table entry
2334 ** for the PRIMARY KEY as the primary key index is now
2335 ** identified by the sqlite_schema table entry of the table itself.
2336 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2337 ** schema to the rootpage from the main table.
2338 ** (5) Add all table columns to the PRIMARY KEY Index object
2339 ** so that the PRIMARY KEY is a covering index. The surplus
2340 ** columns are part of KeyInfo.nAllField and are not used for
2341 ** sorting or lookup or uniqueness checks.
2342 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2343 ** indices with the PRIMARY KEY columns.
2345 ** For virtual tables, only (1) is performed.
2347 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2348 Index *pIdx;
2349 Index *pPk;
2350 int nPk;
2351 int nExtra;
2352 int i, j;
2353 sqlite3 *db = pParse->db;
2354 Vdbe *v = pParse->pVdbe;
2356 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2358 if( !db->init.imposterTable ){
2359 for(i=0; i<pTab->nCol; i++){
2360 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0
2361 && (pTab->aCol[i].notNull==OE_None)
2363 pTab->aCol[i].notNull = OE_Abort;
2366 pTab->tabFlags |= TF_HasNotNull;
2369 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2370 ** into BTREE_BLOBKEY.
2372 assert( !pParse->bReturning );
2373 if( pParse->u1.addrCrTab ){
2374 assert( v );
2375 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2378 /* Locate the PRIMARY KEY index. Or, if this table was originally
2379 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2381 if( pTab->iPKey>=0 ){
2382 ExprList *pList;
2383 Token ipkToken;
2384 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zCnName);
2385 pList = sqlite3ExprListAppend(pParse, 0,
2386 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2387 if( pList==0 ){
2388 pTab->tabFlags &= ~TF_WithoutRowid;
2389 return;
2391 if( IN_RENAME_OBJECT ){
2392 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2394 pList->a[0].fg.sortFlags = pParse->iPkSortOrder;
2395 assert( pParse->pNewTable==pTab );
2396 pTab->iPKey = -1;
2397 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2398 SQLITE_IDXTYPE_PRIMARYKEY);
2399 if( pParse->nErr ){
2400 pTab->tabFlags &= ~TF_WithoutRowid;
2401 return;
2403 assert( db->mallocFailed==0 );
2404 pPk = sqlite3PrimaryKeyIndex(pTab);
2405 assert( pPk->nKeyCol==1 );
2406 }else{
2407 pPk = sqlite3PrimaryKeyIndex(pTab);
2408 assert( pPk!=0 );
2411 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2412 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2413 ** code assumes the PRIMARY KEY contains no repeated columns.
2415 for(i=j=1; i<pPk->nKeyCol; i++){
2416 if( isDupColumn(pPk, j, pPk, i) ){
2417 pPk->nColumn--;
2418 }else{
2419 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2420 pPk->azColl[j] = pPk->azColl[i];
2421 pPk->aSortOrder[j] = pPk->aSortOrder[i];
2422 pPk->aiColumn[j++] = pPk->aiColumn[i];
2425 pPk->nKeyCol = j;
2427 assert( pPk!=0 );
2428 pPk->isCovering = 1;
2429 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2430 nPk = pPk->nColumn = pPk->nKeyCol;
2432 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2433 ** table entry. This is only required if currently generating VDBE
2434 ** code for a CREATE TABLE (not when parsing one as part of reading
2435 ** a database schema). */
2436 if( v && pPk->tnum>0 ){
2437 assert( db->init.busy==0 );
2438 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2441 /* The root page of the PRIMARY KEY is the table root page */
2442 pPk->tnum = pTab->tnum;
2444 /* Update the in-memory representation of all UNIQUE indices by converting
2445 ** the final rowid column into one or more columns of the PRIMARY KEY.
2447 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2448 int n;
2449 if( IsPrimaryKeyIndex(pIdx) ) continue;
2450 for(i=n=0; i<nPk; i++){
2451 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2452 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2453 n++;
2456 if( n==0 ){
2457 /* This index is a superset of the primary key */
2458 pIdx->nColumn = pIdx->nKeyCol;
2459 continue;
2461 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2462 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2463 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2464 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2465 pIdx->aiColumn[j] = pPk->aiColumn[i];
2466 pIdx->azColl[j] = pPk->azColl[i];
2467 if( pPk->aSortOrder[i] ){
2468 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2469 pIdx->bAscKeyBug = 1;
2471 j++;
2474 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2475 assert( pIdx->nColumn>=j );
2478 /* Add all table columns to the PRIMARY KEY index
2480 nExtra = 0;
2481 for(i=0; i<pTab->nCol; i++){
2482 if( !hasColumn(pPk->aiColumn, nPk, i)
2483 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2485 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2486 for(i=0, j=nPk; i<pTab->nCol; i++){
2487 if( !hasColumn(pPk->aiColumn, j, i)
2488 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2490 assert( j<pPk->nColumn );
2491 pPk->aiColumn[j] = i;
2492 pPk->azColl[j] = sqlite3StrBINARY;
2493 j++;
2496 assert( pPk->nColumn==j );
2497 assert( pTab->nNVCol<=j );
2498 recomputeColumnsNotIndexed(pPk);
2502 #ifndef SQLITE_OMIT_VIRTUALTABLE
2504 ** Return true if pTab is a virtual table and zName is a shadow table name
2505 ** for that virtual table.
2507 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2508 int nName; /* Length of zName */
2509 Module *pMod; /* Module for the virtual table */
2511 if( !IsVirtual(pTab) ) return 0;
2512 nName = sqlite3Strlen30(pTab->zName);
2513 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2514 if( zName[nName]!='_' ) return 0;
2515 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2516 if( pMod==0 ) return 0;
2517 if( pMod->pModule->iVersion<3 ) return 0;
2518 if( pMod->pModule->xShadowName==0 ) return 0;
2519 return pMod->pModule->xShadowName(zName+nName+1);
2521 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2523 #ifndef SQLITE_OMIT_VIRTUALTABLE
2525 ** Table pTab is a virtual table. If it the virtual table implementation
2526 ** exists and has an xShadowName method, then loop over all other ordinary
2527 ** tables within the same schema looking for shadow tables of pTab, and mark
2528 ** any shadow tables seen using the TF_Shadow flag.
2530 void sqlite3MarkAllShadowTablesOf(sqlite3 *db, Table *pTab){
2531 int nName; /* Length of pTab->zName */
2532 Module *pMod; /* Module for the virtual table */
2533 HashElem *k; /* For looping through the symbol table */
2535 assert( IsVirtual(pTab) );
2536 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->u.vtab.azArg[0]);
2537 if( pMod==0 ) return;
2538 if( NEVER(pMod->pModule==0) ) return;
2539 if( pMod->pModule->iVersion<3 ) return;
2540 if( pMod->pModule->xShadowName==0 ) return;
2541 assert( pTab->zName!=0 );
2542 nName = sqlite3Strlen30(pTab->zName);
2543 for(k=sqliteHashFirst(&pTab->pSchema->tblHash); k; k=sqliteHashNext(k)){
2544 Table *pOther = sqliteHashData(k);
2545 assert( pOther->zName!=0 );
2546 if( !IsOrdinaryTable(pOther) ) continue;
2547 if( pOther->tabFlags & TF_Shadow ) continue;
2548 if( sqlite3StrNICmp(pOther->zName, pTab->zName, nName)==0
2549 && pOther->zName[nName]=='_'
2550 && pMod->pModule->xShadowName(pOther->zName+nName+1)
2552 pOther->tabFlags |= TF_Shadow;
2556 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2558 #ifndef SQLITE_OMIT_VIRTUALTABLE
2560 ** Return true if zName is a shadow table name in the current database
2561 ** connection.
2563 ** zName is temporarily modified while this routine is running, but is
2564 ** restored to its original value prior to this routine returning.
2566 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2567 char *zTail; /* Pointer to the last "_" in zName */
2568 Table *pTab; /* Table that zName is a shadow of */
2569 zTail = strrchr(zName, '_');
2570 if( zTail==0 ) return 0;
2571 *zTail = 0;
2572 pTab = sqlite3FindTable(db, zName, 0);
2573 *zTail = '_';
2574 if( pTab==0 ) return 0;
2575 if( !IsVirtual(pTab) ) return 0;
2576 return sqlite3IsShadowTableOf(db, pTab, zName);
2578 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2581 #ifdef SQLITE_DEBUG
2583 ** Mark all nodes of an expression as EP_Immutable, indicating that
2584 ** they should not be changed. Expressions attached to a table or
2585 ** index definition are tagged this way to help ensure that we do
2586 ** not pass them into code generator routines by mistake.
2588 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2589 (void)pWalker;
2590 ExprSetVVAProperty(pExpr, EP_Immutable);
2591 return WRC_Continue;
2593 static void markExprListImmutable(ExprList *pList){
2594 if( pList ){
2595 Walker w;
2596 memset(&w, 0, sizeof(w));
2597 w.xExprCallback = markImmutableExprStep;
2598 w.xSelectCallback = sqlite3SelectWalkNoop;
2599 w.xSelectCallback2 = 0;
2600 sqlite3WalkExprList(&w, pList);
2603 #else
2604 #define markExprListImmutable(X) /* no-op */
2605 #endif /* SQLITE_DEBUG */
2609 ** This routine is called to report the final ")" that terminates
2610 ** a CREATE TABLE statement.
2612 ** The table structure that other action routines have been building
2613 ** is added to the internal hash tables, assuming no errors have
2614 ** occurred.
2616 ** An entry for the table is made in the schema table on disk, unless
2617 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2618 ** it means we are reading the sqlite_schema table because we just
2619 ** connected to the database or because the sqlite_schema table has
2620 ** recently changed, so the entry for this table already exists in
2621 ** the sqlite_schema table. We do not want to create it again.
2623 ** If the pSelect argument is not NULL, it means that this routine
2624 ** was called to create a table generated from a
2625 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2626 ** the new table will match the result set of the SELECT.
2628 void sqlite3EndTable(
2629 Parse *pParse, /* Parse context */
2630 Token *pCons, /* The ',' token after the last column defn. */
2631 Token *pEnd, /* The ')' before options in the CREATE TABLE */
2632 u32 tabOpts, /* Extra table options. Usually 0. */
2633 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
2635 Table *p; /* The new table */
2636 sqlite3 *db = pParse->db; /* The database connection */
2637 int iDb; /* Database in which the table lives */
2638 Index *pIdx; /* An implied index of the table */
2640 if( pEnd==0 && pSelect==0 ){
2641 return;
2643 p = pParse->pNewTable;
2644 if( p==0 ) return;
2646 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2647 p->tabFlags |= TF_Shadow;
2650 /* If the db->init.busy is 1 it means we are reading the SQL off the
2651 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2652 ** So do not write to the disk again. Extract the root page number
2653 ** for the table from the db->init.newTnum field. (The page number
2654 ** should have been put there by the sqliteOpenCb routine.)
2656 ** If the root page number is 1, that means this is the sqlite_schema
2657 ** table itself. So mark it read-only.
2659 if( db->init.busy ){
2660 if( pSelect || (!IsOrdinaryTable(p) && db->init.newTnum) ){
2661 sqlite3ErrorMsg(pParse, "");
2662 return;
2664 p->tnum = db->init.newTnum;
2665 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2668 /* Special processing for tables that include the STRICT keyword:
2670 ** * Do not allow custom column datatypes. Every column must have
2671 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2673 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2674 ** then all columns of the PRIMARY KEY must have a NOT NULL
2675 ** constraint.
2677 if( tabOpts & TF_Strict ){
2678 int ii;
2679 p->tabFlags |= TF_Strict;
2680 for(ii=0; ii<p->nCol; ii++){
2681 Column *pCol = &p->aCol[ii];
2682 if( pCol->eCType==COLTYPE_CUSTOM ){
2683 if( pCol->colFlags & COLFLAG_HASTYPE ){
2684 sqlite3ErrorMsg(pParse,
2685 "unknown datatype for %s.%s: \"%s\"",
2686 p->zName, pCol->zCnName, sqlite3ColumnType(pCol, "")
2688 }else{
2689 sqlite3ErrorMsg(pParse, "missing datatype for %s.%s",
2690 p->zName, pCol->zCnName);
2692 return;
2693 }else if( pCol->eCType==COLTYPE_ANY ){
2694 pCol->affinity = SQLITE_AFF_BLOB;
2696 if( (pCol->colFlags & COLFLAG_PRIMKEY)!=0
2697 && p->iPKey!=ii
2698 && pCol->notNull == OE_None
2700 pCol->notNull = OE_Abort;
2701 p->tabFlags |= TF_HasNotNull;
2706 assert( (p->tabFlags & TF_HasPrimaryKey)==0
2707 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2708 assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2709 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2711 /* Special processing for WITHOUT ROWID Tables */
2712 if( tabOpts & TF_WithoutRowid ){
2713 if( (p->tabFlags & TF_Autoincrement) ){
2714 sqlite3ErrorMsg(pParse,
2715 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2716 return;
2718 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2719 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2720 return;
2722 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2723 convertToWithoutRowidTable(pParse, p);
2725 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2727 #ifndef SQLITE_OMIT_CHECK
2728 /* Resolve names in all CHECK constraint expressions.
2730 if( p->pCheck ){
2731 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2732 if( pParse->nErr ){
2733 /* If errors are seen, delete the CHECK constraints now, else they might
2734 ** actually be used if PRAGMA writable_schema=ON is set. */
2735 sqlite3ExprListDelete(db, p->pCheck);
2736 p->pCheck = 0;
2737 }else{
2738 markExprListImmutable(p->pCheck);
2741 #endif /* !defined(SQLITE_OMIT_CHECK) */
2742 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2743 if( p->tabFlags & TF_HasGenerated ){
2744 int ii, nNG = 0;
2745 testcase( p->tabFlags & TF_HasVirtual );
2746 testcase( p->tabFlags & TF_HasStored );
2747 for(ii=0; ii<p->nCol; ii++){
2748 u32 colFlags = p->aCol[ii].colFlags;
2749 if( (colFlags & COLFLAG_GENERATED)!=0 ){
2750 Expr *pX = sqlite3ColumnExpr(p, &p->aCol[ii]);
2751 testcase( colFlags & COLFLAG_VIRTUAL );
2752 testcase( colFlags & COLFLAG_STORED );
2753 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2754 /* If there are errors in resolving the expression, change the
2755 ** expression to a NULL. This prevents code generators that operate
2756 ** on the expression from inserting extra parts into the expression
2757 ** tree that have been allocated from lookaside memory, which is
2758 ** illegal in a schema and will lead to errors or heap corruption
2759 ** when the database connection closes. */
2760 sqlite3ColumnSetExpr(pParse, p, &p->aCol[ii],
2761 sqlite3ExprAlloc(db, TK_NULL, 0, 0));
2763 }else{
2764 nNG++;
2767 if( nNG==0 ){
2768 sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2769 return;
2772 #endif
2774 /* Estimate the average row size for the table and for all implied indices */
2775 estimateTableWidth(p);
2776 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2777 estimateIndexWidth(pIdx);
2780 /* If not initializing, then create a record for the new table
2781 ** in the schema table of the database.
2783 ** If this is a TEMPORARY table, write the entry into the auxiliary
2784 ** file instead of into the main database file.
2786 if( !db->init.busy ){
2787 int n;
2788 Vdbe *v;
2789 char *zType; /* "view" or "table" */
2790 char *zType2; /* "VIEW" or "TABLE" */
2791 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
2793 v = sqlite3GetVdbe(pParse);
2794 if( NEVER(v==0) ) return;
2796 sqlite3VdbeAddOp1(v, OP_Close, 0);
2799 ** Initialize zType for the new view or table.
2801 if( IsOrdinaryTable(p) ){
2802 /* A regular table */
2803 zType = "table";
2804 zType2 = "TABLE";
2805 #ifndef SQLITE_OMIT_VIEW
2806 }else{
2807 /* A view */
2808 zType = "view";
2809 zType2 = "VIEW";
2810 #endif
2813 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2814 ** statement to populate the new table. The root-page number for the
2815 ** new table is in register pParse->regRoot.
2817 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2818 ** suitable state to query for the column names and types to be used
2819 ** by the new table.
2821 ** A shared-cache write-lock is not required to write to the new table,
2822 ** as a schema-lock must have already been obtained to create it. Since
2823 ** a schema-lock excludes all other database users, the write-lock would
2824 ** be redundant.
2826 if( pSelect ){
2827 SelectDest dest; /* Where the SELECT should store results */
2828 int regYield; /* Register holding co-routine entry-point */
2829 int addrTop; /* Top of the co-routine */
2830 int regRec; /* A record to be insert into the new table */
2831 int regRowid; /* Rowid of the next row to insert */
2832 int addrInsLoop; /* Top of the loop for inserting rows */
2833 Table *pSelTab; /* A table that describes the SELECT results */
2835 if( IN_SPECIAL_PARSE ){
2836 pParse->rc = SQLITE_ERROR;
2837 pParse->nErr++;
2838 return;
2840 regYield = ++pParse->nMem;
2841 regRec = ++pParse->nMem;
2842 regRowid = ++pParse->nMem;
2843 assert(pParse->nTab==1);
2844 sqlite3MayAbort(pParse);
2845 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2846 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2847 pParse->nTab = 2;
2848 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2849 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2850 if( pParse->nErr ) return;
2851 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2852 if( pSelTab==0 ) return;
2853 assert( p->aCol==0 );
2854 p->nCol = p->nNVCol = pSelTab->nCol;
2855 p->aCol = pSelTab->aCol;
2856 pSelTab->nCol = 0;
2857 pSelTab->aCol = 0;
2858 sqlite3DeleteTable(db, pSelTab);
2859 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2860 sqlite3Select(pParse, pSelect, &dest);
2861 if( pParse->nErr ) return;
2862 sqlite3VdbeEndCoroutine(v, regYield);
2863 sqlite3VdbeJumpHere(v, addrTop - 1);
2864 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2865 VdbeCoverage(v);
2866 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2867 sqlite3TableAffinity(v, p, 0);
2868 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2869 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2870 sqlite3VdbeGoto(v, addrInsLoop);
2871 sqlite3VdbeJumpHere(v, addrInsLoop);
2872 sqlite3VdbeAddOp1(v, OP_Close, 1);
2875 /* Compute the complete text of the CREATE statement */
2876 if( pSelect ){
2877 zStmt = createTableStmt(db, p);
2878 }else{
2879 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2880 n = (int)(pEnd2->z - pParse->sNameToken.z);
2881 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2882 zStmt = sqlite3MPrintf(db,
2883 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2887 /* A slot for the record has already been allocated in the
2888 ** schema table. We just need to update that slot with all
2889 ** the information we've collected.
2891 sqlite3NestedParse(pParse,
2892 "UPDATE %Q." LEGACY_SCHEMA_TABLE
2893 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2894 " WHERE rowid=#%d",
2895 db->aDb[iDb].zDbSName,
2896 zType,
2897 p->zName,
2898 p->zName,
2899 pParse->regRoot,
2900 zStmt,
2901 pParse->regRowid
2903 sqlite3DbFree(db, zStmt);
2904 sqlite3ChangeCookie(pParse, iDb);
2906 #ifndef SQLITE_OMIT_AUTOINCREMENT
2907 /* Check to see if we need to create an sqlite_sequence table for
2908 ** keeping track of autoincrement keys.
2910 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2911 Db *pDb = &db->aDb[iDb];
2912 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2913 if( pDb->pSchema->pSeqTab==0 ){
2914 sqlite3NestedParse(pParse,
2915 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2916 pDb->zDbSName
2920 #endif
2922 /* Reparse everything to update our internal data structures */
2923 sqlite3VdbeAddParseSchemaOp(v, iDb,
2924 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2927 /* Add the table to the in-memory representation of the database.
2929 if( db->init.busy ){
2930 Table *pOld;
2931 Schema *pSchema = p->pSchema;
2932 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2933 assert( HasRowid(p) || p->iPKey<0 );
2934 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2935 if( pOld ){
2936 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2937 sqlite3OomFault(db);
2938 return;
2940 pParse->pNewTable = 0;
2941 db->mDbFlags |= DBFLAG_SchemaChange;
2943 /* If this is the magic sqlite_sequence table used by autoincrement,
2944 ** then record a pointer to this table in the main database structure
2945 ** so that INSERT can find the table easily. */
2946 assert( !pParse->nested );
2947 #ifndef SQLITE_OMIT_AUTOINCREMENT
2948 if( strcmp(p->zName, "sqlite_sequence")==0 ){
2949 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2950 p->pSchema->pSeqTab = p;
2952 #endif
2955 #ifndef SQLITE_OMIT_ALTERTABLE
2956 if( !pSelect && IsOrdinaryTable(p) ){
2957 assert( pCons && pEnd );
2958 if( pCons->z==0 ){
2959 pCons = pEnd;
2961 p->u.tab.addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2963 #endif
2966 #ifndef SQLITE_OMIT_VIEW
2968 ** The parser calls this routine in order to create a new VIEW
2970 void sqlite3CreateView(
2971 Parse *pParse, /* The parsing context */
2972 Token *pBegin, /* The CREATE token that begins the statement */
2973 Token *pName1, /* The token that holds the name of the view */
2974 Token *pName2, /* The token that holds the name of the view */
2975 ExprList *pCNames, /* Optional list of view column names */
2976 Select *pSelect, /* A SELECT statement that will become the new view */
2977 int isTemp, /* TRUE for a TEMPORARY view */
2978 int noErr /* Suppress error messages if VIEW already exists */
2980 Table *p;
2981 int n;
2982 const char *z;
2983 Token sEnd;
2984 DbFixer sFix;
2985 Token *pName = 0;
2986 int iDb;
2987 sqlite3 *db = pParse->db;
2989 if( pParse->nVar>0 ){
2990 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2991 goto create_view_fail;
2993 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2994 p = pParse->pNewTable;
2995 if( p==0 || pParse->nErr ) goto create_view_fail;
2997 /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2998 ** on a view, even though views do not have rowids. The following flag
2999 ** setting fixes this problem. But the fix can be disabled by compiling
3000 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
3001 ** depend upon the old buggy behavior. */
3002 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
3003 p->tabFlags |= TF_NoVisibleRowid;
3004 #endif
3006 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3007 iDb = sqlite3SchemaToIndex(db, p->pSchema);
3008 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
3009 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
3011 /* Make a copy of the entire SELECT statement that defines the view.
3012 ** This will force all the Expr.token.z values to be dynamically
3013 ** allocated rather than point to the input string - which means that
3014 ** they will persist after the current sqlite3_exec() call returns.
3016 pSelect->selFlags |= SF_View;
3017 if( IN_RENAME_OBJECT ){
3018 p->u.view.pSelect = pSelect;
3019 pSelect = 0;
3020 }else{
3021 p->u.view.pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
3023 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
3024 p->eTabType = TABTYP_VIEW;
3025 if( db->mallocFailed ) goto create_view_fail;
3027 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
3028 ** the end.
3030 sEnd = pParse->sLastToken;
3031 assert( sEnd.z[0]!=0 || sEnd.n==0 );
3032 if( sEnd.z[0]!=';' ){
3033 sEnd.z += sEnd.n;
3035 sEnd.n = 0;
3036 n = (int)(sEnd.z - pBegin->z);
3037 assert( n>0 );
3038 z = pBegin->z;
3039 while( sqlite3Isspace(z[n-1]) ){ n--; }
3040 sEnd.z = &z[n-1];
3041 sEnd.n = 1;
3043 /* Use sqlite3EndTable() to add the view to the schema table */
3044 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
3046 create_view_fail:
3047 sqlite3SelectDelete(db, pSelect);
3048 if( IN_RENAME_OBJECT ){
3049 sqlite3RenameExprlistUnmap(pParse, pCNames);
3051 sqlite3ExprListDelete(db, pCNames);
3052 return;
3054 #endif /* SQLITE_OMIT_VIEW */
3056 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3058 ** The Table structure pTable is really a VIEW. Fill in the names of
3059 ** the columns of the view in the pTable structure. Return the number
3060 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
3062 static SQLITE_NOINLINE int viewGetColumnNames(Parse *pParse, Table *pTable){
3063 Table *pSelTab; /* A fake table from which we get the result set */
3064 Select *pSel; /* Copy of the SELECT that implements the view */
3065 int nErr = 0; /* Number of errors encountered */
3066 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
3067 #ifndef SQLITE_OMIT_VIRTUALTABLE
3068 int rc;
3069 #endif
3070 #ifndef SQLITE_OMIT_AUTHORIZATION
3071 sqlite3_xauth xAuth; /* Saved xAuth pointer */
3072 #endif
3074 assert( pTable );
3076 #ifndef SQLITE_OMIT_VIRTUALTABLE
3077 if( IsVirtual(pTable) ){
3078 db->nSchemaLock++;
3079 rc = sqlite3VtabCallConnect(pParse, pTable);
3080 db->nSchemaLock--;
3081 return rc;
3083 #endif
3085 #ifndef SQLITE_OMIT_VIEW
3086 /* A positive nCol means the columns names for this view are
3087 ** already known. This routine is not called unless either the
3088 ** table is virtual or nCol is zero.
3090 assert( pTable->nCol<=0 );
3092 /* A negative nCol is a special marker meaning that we are currently
3093 ** trying to compute the column names. If we enter this routine with
3094 ** a negative nCol, it means two or more views form a loop, like this:
3096 ** CREATE VIEW one AS SELECT * FROM two;
3097 ** CREATE VIEW two AS SELECT * FROM one;
3099 ** Actually, the error above is now caught prior to reaching this point.
3100 ** But the following test is still important as it does come up
3101 ** in the following:
3103 ** CREATE TABLE main.ex1(a);
3104 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3105 ** SELECT * FROM temp.ex1;
3107 if( pTable->nCol<0 ){
3108 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
3109 return 1;
3111 assert( pTable->nCol>=0 );
3113 /* If we get this far, it means we need to compute the table names.
3114 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3115 ** "*" elements in the results set of the view and will assign cursors
3116 ** to the elements of the FROM clause. But we do not want these changes
3117 ** to be permanent. So the computation is done on a copy of the SELECT
3118 ** statement that defines the view.
3120 assert( IsView(pTable) );
3121 pSel = sqlite3SelectDup(db, pTable->u.view.pSelect, 0);
3122 if( pSel ){
3123 u8 eParseMode = pParse->eParseMode;
3124 int nTab = pParse->nTab;
3125 int nSelect = pParse->nSelect;
3126 pParse->eParseMode = PARSE_MODE_NORMAL;
3127 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
3128 pTable->nCol = -1;
3129 DisableLookaside;
3130 #ifndef SQLITE_OMIT_AUTHORIZATION
3131 xAuth = db->xAuth;
3132 db->xAuth = 0;
3133 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3134 db->xAuth = xAuth;
3135 #else
3136 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
3137 #endif
3138 pParse->nTab = nTab;
3139 pParse->nSelect = nSelect;
3140 if( pSelTab==0 ){
3141 pTable->nCol = 0;
3142 nErr++;
3143 }else if( pTable->pCheck ){
3144 /* CREATE VIEW name(arglist) AS ...
3145 ** The names of the columns in the table are taken from
3146 ** arglist which is stored in pTable->pCheck. The pCheck field
3147 ** normally holds CHECK constraints on an ordinary table, but for
3148 ** a VIEW it holds the list of column names.
3150 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
3151 &pTable->nCol, &pTable->aCol);
3152 if( pParse->nErr==0
3153 && pTable->nCol==pSel->pEList->nExpr
3155 assert( db->mallocFailed==0 );
3156 sqlite3SubqueryColumnTypes(pParse, pTable, pSel, SQLITE_AFF_NONE);
3158 }else{
3159 /* CREATE VIEW name AS... without an argument list. Construct
3160 ** the column names from the SELECT statement that defines the view.
3162 assert( pTable->aCol==0 );
3163 pTable->nCol = pSelTab->nCol;
3164 pTable->aCol = pSelTab->aCol;
3165 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
3166 pSelTab->nCol = 0;
3167 pSelTab->aCol = 0;
3168 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
3170 pTable->nNVCol = pTable->nCol;
3171 sqlite3DeleteTable(db, pSelTab);
3172 sqlite3SelectDelete(db, pSel);
3173 EnableLookaside;
3174 pParse->eParseMode = eParseMode;
3175 } else {
3176 nErr++;
3178 pTable->pSchema->schemaFlags |= DB_UnresetViews;
3179 if( db->mallocFailed ){
3180 sqlite3DeleteColumnNames(db, pTable);
3182 #endif /* SQLITE_OMIT_VIEW */
3183 return nErr;
3185 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
3186 assert( pTable!=0 );
3187 if( !IsVirtual(pTable) && pTable->nCol>0 ) return 0;
3188 return viewGetColumnNames(pParse, pTable);
3190 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3192 #ifndef SQLITE_OMIT_VIEW
3194 ** Clear the column names from every VIEW in database idx.
3196 static void sqliteViewResetAll(sqlite3 *db, int idx){
3197 HashElem *i;
3198 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
3199 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
3200 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
3201 Table *pTab = sqliteHashData(i);
3202 if( IsView(pTab) ){
3203 sqlite3DeleteColumnNames(db, pTab);
3206 DbClearProperty(db, idx, DB_UnresetViews);
3208 #else
3209 # define sqliteViewResetAll(A,B)
3210 #endif /* SQLITE_OMIT_VIEW */
3213 ** This function is called by the VDBE to adjust the internal schema
3214 ** used by SQLite when the btree layer moves a table root page. The
3215 ** root-page of a table or index in database iDb has changed from iFrom
3216 ** to iTo.
3218 ** Ticket #1728: The symbol table might still contain information
3219 ** on tables and/or indices that are the process of being deleted.
3220 ** If you are unlucky, one of those deleted indices or tables might
3221 ** have the same rootpage number as the real table or index that is
3222 ** being moved. So we cannot stop searching after the first match
3223 ** because the first match might be for one of the deleted indices
3224 ** or tables and not the table/index that is actually being moved.
3225 ** We must continue looping until all tables and indices with
3226 ** rootpage==iFrom have been converted to have a rootpage of iTo
3227 ** in order to be certain that we got the right one.
3229 #ifndef SQLITE_OMIT_AUTOVACUUM
3230 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
3231 HashElem *pElem;
3232 Hash *pHash;
3233 Db *pDb;
3235 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3236 pDb = &db->aDb[iDb];
3237 pHash = &pDb->pSchema->tblHash;
3238 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3239 Table *pTab = sqliteHashData(pElem);
3240 if( pTab->tnum==iFrom ){
3241 pTab->tnum = iTo;
3244 pHash = &pDb->pSchema->idxHash;
3245 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
3246 Index *pIdx = sqliteHashData(pElem);
3247 if( pIdx->tnum==iFrom ){
3248 pIdx->tnum = iTo;
3252 #endif
3255 ** Write code to erase the table with root-page iTable from database iDb.
3256 ** Also write code to modify the sqlite_schema table and internal schema
3257 ** if a root-page of another table is moved by the btree-layer whilst
3258 ** erasing iTable (this can happen with an auto-vacuum database).
3260 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3261 Vdbe *v = sqlite3GetVdbe(pParse);
3262 int r1 = sqlite3GetTempReg(pParse);
3263 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3264 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3265 sqlite3MayAbort(pParse);
3266 #ifndef SQLITE_OMIT_AUTOVACUUM
3267 /* OP_Destroy stores an in integer r1. If this integer
3268 ** is non-zero, then it is the root page number of a table moved to
3269 ** location iTable. The following code modifies the sqlite_schema table to
3270 ** reflect this.
3272 ** The "#NNN" in the SQL is a special constant that means whatever value
3273 ** is in register NNN. See grammar rules associated with the TK_REGISTER
3274 ** token for additional information.
3276 sqlite3NestedParse(pParse,
3277 "UPDATE %Q." LEGACY_SCHEMA_TABLE
3278 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3279 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3280 #endif
3281 sqlite3ReleaseTempReg(pParse, r1);
3285 ** Write VDBE code to erase table pTab and all associated indices on disk.
3286 ** Code to update the sqlite_schema tables and internal schema definitions
3287 ** in case a root-page belonging to another table is moved by the btree layer
3288 ** is also added (this can happen with an auto-vacuum database).
3290 static void destroyTable(Parse *pParse, Table *pTab){
3291 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3292 ** is not defined), then it is important to call OP_Destroy on the
3293 ** table and index root-pages in order, starting with the numerically
3294 ** largest root-page number. This guarantees that none of the root-pages
3295 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3296 ** following were coded:
3298 ** OP_Destroy 4 0
3299 ** ...
3300 ** OP_Destroy 5 0
3302 ** and root page 5 happened to be the largest root-page number in the
3303 ** database, then root page 5 would be moved to page 4 by the
3304 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3305 ** a free-list page.
3307 Pgno iTab = pTab->tnum;
3308 Pgno iDestroyed = 0;
3310 while( 1 ){
3311 Index *pIdx;
3312 Pgno iLargest = 0;
3314 if( iDestroyed==0 || iTab<iDestroyed ){
3315 iLargest = iTab;
3317 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3318 Pgno iIdx = pIdx->tnum;
3319 assert( pIdx->pSchema==pTab->pSchema );
3320 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3321 iLargest = iIdx;
3324 if( iLargest==0 ){
3325 return;
3326 }else{
3327 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3328 assert( iDb>=0 && iDb<pParse->db->nDb );
3329 destroyRootPage(pParse, iLargest, iDb);
3330 iDestroyed = iLargest;
3336 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3337 ** after a DROP INDEX or DROP TABLE command.
3339 static void sqlite3ClearStatTables(
3340 Parse *pParse, /* The parsing context */
3341 int iDb, /* The database number */
3342 const char *zType, /* "idx" or "tbl" */
3343 const char *zName /* Name of index or table */
3345 int i;
3346 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3347 for(i=1; i<=4; i++){
3348 char zTab[24];
3349 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3350 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3351 sqlite3NestedParse(pParse,
3352 "DELETE FROM %Q.%s WHERE %s=%Q",
3353 zDbName, zTab, zType, zName
3360 ** Generate code to drop a table.
3362 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3363 Vdbe *v;
3364 sqlite3 *db = pParse->db;
3365 Trigger *pTrigger;
3366 Db *pDb = &db->aDb[iDb];
3368 v = sqlite3GetVdbe(pParse);
3369 assert( v!=0 );
3370 sqlite3BeginWriteOperation(pParse, 1, iDb);
3372 #ifndef SQLITE_OMIT_VIRTUALTABLE
3373 if( IsVirtual(pTab) ){
3374 sqlite3VdbeAddOp0(v, OP_VBegin);
3376 #endif
3378 /* Drop all triggers associated with the table being dropped. Code
3379 ** is generated to remove entries from sqlite_schema and/or
3380 ** sqlite_temp_schema if required.
3382 pTrigger = sqlite3TriggerList(pParse, pTab);
3383 while( pTrigger ){
3384 assert( pTrigger->pSchema==pTab->pSchema ||
3385 pTrigger->pSchema==db->aDb[1].pSchema );
3386 sqlite3DropTriggerPtr(pParse, pTrigger);
3387 pTrigger = pTrigger->pNext;
3390 #ifndef SQLITE_OMIT_AUTOINCREMENT
3391 /* Remove any entries of the sqlite_sequence table associated with
3392 ** the table being dropped. This is done before the table is dropped
3393 ** at the btree level, in case the sqlite_sequence table needs to
3394 ** move as a result of the drop (can happen in auto-vacuum mode).
3396 if( pTab->tabFlags & TF_Autoincrement ){
3397 sqlite3NestedParse(pParse,
3398 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3399 pDb->zDbSName, pTab->zName
3402 #endif
3404 /* Drop all entries in the schema table that refer to the
3405 ** table. The program name loops through the schema table and deletes
3406 ** every row that refers to a table of the same name as the one being
3407 ** dropped. Triggers are handled separately because a trigger can be
3408 ** created in the temp database that refers to a table in another
3409 ** database.
3411 sqlite3NestedParse(pParse,
3412 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3413 " WHERE tbl_name=%Q and type!='trigger'",
3414 pDb->zDbSName, pTab->zName);
3415 if( !isView && !IsVirtual(pTab) ){
3416 destroyTable(pParse, pTab);
3419 /* Remove the table entry from SQLite's internal schema and modify
3420 ** the schema cookie.
3422 if( IsVirtual(pTab) ){
3423 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3424 sqlite3MayAbort(pParse);
3426 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3427 sqlite3ChangeCookie(pParse, iDb);
3428 sqliteViewResetAll(db, iDb);
3432 ** Return TRUE if shadow tables should be read-only in the current
3433 ** context.
3435 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3436 #ifndef SQLITE_OMIT_VIRTUALTABLE
3437 if( (db->flags & SQLITE_Defensive)!=0
3438 && db->pVtabCtx==0
3439 && db->nVdbeExec==0
3440 && !sqlite3VtabInSync(db)
3442 return 1;
3444 #endif
3445 return 0;
3449 ** Return true if it is not allowed to drop the given table
3451 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3452 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3453 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3454 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3455 return 1;
3457 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3458 return 1;
3460 if( pTab->tabFlags & TF_Eponymous ){
3461 return 1;
3463 return 0;
3467 ** This routine is called to do the work of a DROP TABLE statement.
3468 ** pName is the name of the table to be dropped.
3470 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3471 Table *pTab;
3472 Vdbe *v;
3473 sqlite3 *db = pParse->db;
3474 int iDb;
3476 if( db->mallocFailed ){
3477 goto exit_drop_table;
3479 assert( pParse->nErr==0 );
3480 assert( pName->nSrc==1 );
3481 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3482 if( noErr ) db->suppressErr++;
3483 assert( isView==0 || isView==LOCATE_VIEW );
3484 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3485 if( noErr ) db->suppressErr--;
3487 if( pTab==0 ){
3488 if( noErr ){
3489 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3490 sqlite3ForceNotReadOnly(pParse);
3492 goto exit_drop_table;
3494 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3495 assert( iDb>=0 && iDb<db->nDb );
3497 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3498 ** it is initialized.
3500 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3501 goto exit_drop_table;
3503 #ifndef SQLITE_OMIT_AUTHORIZATION
3505 int code;
3506 const char *zTab = SCHEMA_TABLE(iDb);
3507 const char *zDb = db->aDb[iDb].zDbSName;
3508 const char *zArg2 = 0;
3509 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3510 goto exit_drop_table;
3512 if( isView ){
3513 if( !OMIT_TEMPDB && iDb==1 ){
3514 code = SQLITE_DROP_TEMP_VIEW;
3515 }else{
3516 code = SQLITE_DROP_VIEW;
3518 #ifndef SQLITE_OMIT_VIRTUALTABLE
3519 }else if( IsVirtual(pTab) ){
3520 code = SQLITE_DROP_VTABLE;
3521 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3522 #endif
3523 }else{
3524 if( !OMIT_TEMPDB && iDb==1 ){
3525 code = SQLITE_DROP_TEMP_TABLE;
3526 }else{
3527 code = SQLITE_DROP_TABLE;
3530 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3531 goto exit_drop_table;
3533 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3534 goto exit_drop_table;
3537 #endif
3538 if( tableMayNotBeDropped(db, pTab) ){
3539 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3540 goto exit_drop_table;
3543 #ifndef SQLITE_OMIT_VIEW
3544 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3545 ** on a table.
3547 if( isView && !IsView(pTab) ){
3548 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3549 goto exit_drop_table;
3551 if( !isView && IsView(pTab) ){
3552 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3553 goto exit_drop_table;
3555 #endif
3557 /* Generate code to remove the table from the schema table
3558 ** on disk.
3560 v = sqlite3GetVdbe(pParse);
3561 if( v ){
3562 sqlite3BeginWriteOperation(pParse, 1, iDb);
3563 if( !isView ){
3564 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3565 sqlite3FkDropTable(pParse, pName, pTab);
3567 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3570 exit_drop_table:
3571 sqlite3SrcListDelete(db, pName);
3575 ** This routine is called to create a new foreign key on the table
3576 ** currently under construction. pFromCol determines which columns
3577 ** in the current table point to the foreign key. If pFromCol==0 then
3578 ** connect the key to the last column inserted. pTo is the name of
3579 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3580 ** of tables in the parent pTo table. flags contains all
3581 ** information about the conflict resolution algorithms specified
3582 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3584 ** An FKey structure is created and added to the table currently
3585 ** under construction in the pParse->pNewTable field.
3587 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3588 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3590 void sqlite3CreateForeignKey(
3591 Parse *pParse, /* Parsing context */
3592 ExprList *pFromCol, /* Columns in this table that point to other table */
3593 Token *pTo, /* Name of the other table */
3594 ExprList *pToCol, /* Columns in the other table */
3595 int flags /* Conflict resolution algorithms. */
3597 sqlite3 *db = pParse->db;
3598 #ifndef SQLITE_OMIT_FOREIGN_KEY
3599 FKey *pFKey = 0;
3600 FKey *pNextTo;
3601 Table *p = pParse->pNewTable;
3602 i64 nByte;
3603 int i;
3604 int nCol;
3605 char *z;
3607 assert( pTo!=0 );
3608 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3609 if( pFromCol==0 ){
3610 int iCol = p->nCol-1;
3611 if( NEVER(iCol<0) ) goto fk_end;
3612 if( pToCol && pToCol->nExpr!=1 ){
3613 sqlite3ErrorMsg(pParse, "foreign key on %s"
3614 " should reference only one column of table %T",
3615 p->aCol[iCol].zCnName, pTo);
3616 goto fk_end;
3618 nCol = 1;
3619 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3620 sqlite3ErrorMsg(pParse,
3621 "number of columns in foreign key does not match the number of "
3622 "columns in the referenced table");
3623 goto fk_end;
3624 }else{
3625 nCol = pFromCol->nExpr;
3627 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3628 if( pToCol ){
3629 for(i=0; i<pToCol->nExpr; i++){
3630 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3633 pFKey = sqlite3DbMallocZero(db, nByte );
3634 if( pFKey==0 ){
3635 goto fk_end;
3637 pFKey->pFrom = p;
3638 assert( IsOrdinaryTable(p) );
3639 pFKey->pNextFrom = p->u.tab.pFKey;
3640 z = (char*)&pFKey->aCol[nCol];
3641 pFKey->zTo = z;
3642 if( IN_RENAME_OBJECT ){
3643 sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3645 memcpy(z, pTo->z, pTo->n);
3646 z[pTo->n] = 0;
3647 sqlite3Dequote(z);
3648 z += pTo->n+1;
3649 pFKey->nCol = nCol;
3650 if( pFromCol==0 ){
3651 pFKey->aCol[0].iFrom = p->nCol-1;
3652 }else{
3653 for(i=0; i<nCol; i++){
3654 int j;
3655 for(j=0; j<p->nCol; j++){
3656 if( sqlite3StrICmp(p->aCol[j].zCnName, pFromCol->a[i].zEName)==0 ){
3657 pFKey->aCol[i].iFrom = j;
3658 break;
3661 if( j>=p->nCol ){
3662 sqlite3ErrorMsg(pParse,
3663 "unknown column \"%s\" in foreign key definition",
3664 pFromCol->a[i].zEName);
3665 goto fk_end;
3667 if( IN_RENAME_OBJECT ){
3668 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3672 if( pToCol ){
3673 for(i=0; i<nCol; i++){
3674 int n = sqlite3Strlen30(pToCol->a[i].zEName);
3675 pFKey->aCol[i].zCol = z;
3676 if( IN_RENAME_OBJECT ){
3677 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3679 memcpy(z, pToCol->a[i].zEName, n);
3680 z[n] = 0;
3681 z += n+1;
3684 pFKey->isDeferred = 0;
3685 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
3686 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
3688 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3689 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3690 pFKey->zTo, (void *)pFKey
3692 if( pNextTo==pFKey ){
3693 sqlite3OomFault(db);
3694 goto fk_end;
3696 if( pNextTo ){
3697 assert( pNextTo->pPrevTo==0 );
3698 pFKey->pNextTo = pNextTo;
3699 pNextTo->pPrevTo = pFKey;
3702 /* Link the foreign key to the table as the last step.
3704 assert( IsOrdinaryTable(p) );
3705 p->u.tab.pFKey = pFKey;
3706 pFKey = 0;
3708 fk_end:
3709 sqlite3DbFree(db, pFKey);
3710 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3711 sqlite3ExprListDelete(db, pFromCol);
3712 sqlite3ExprListDelete(db, pToCol);
3716 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3717 ** clause is seen as part of a foreign key definition. The isDeferred
3718 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3719 ** The behavior of the most recently created foreign key is adjusted
3720 ** accordingly.
3722 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3723 #ifndef SQLITE_OMIT_FOREIGN_KEY
3724 Table *pTab;
3725 FKey *pFKey;
3726 if( (pTab = pParse->pNewTable)==0 ) return;
3727 if( NEVER(!IsOrdinaryTable(pTab)) ) return;
3728 if( (pFKey = pTab->u.tab.pFKey)==0 ) return;
3729 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3730 pFKey->isDeferred = (u8)isDeferred;
3731 #endif
3735 ** Generate code that will erase and refill index *pIdx. This is
3736 ** used to initialize a newly created index or to recompute the
3737 ** content of an index in response to a REINDEX command.
3739 ** if memRootPage is not negative, it means that the index is newly
3740 ** created. The register specified by memRootPage contains the
3741 ** root page number of the index. If memRootPage is negative, then
3742 ** the index already exists and must be cleared before being refilled and
3743 ** the root page number of the index is taken from pIndex->tnum.
3745 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3746 Table *pTab = pIndex->pTable; /* The table that is indexed */
3747 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
3748 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
3749 int iSorter; /* Cursor opened by OpenSorter (if in use) */
3750 int addr1; /* Address of top of loop */
3751 int addr2; /* Address to jump to for next iteration */
3752 Pgno tnum; /* Root page of index */
3753 int iPartIdxLabel; /* Jump to this label to skip a row */
3754 Vdbe *v; /* Generate code into this virtual machine */
3755 KeyInfo *pKey; /* KeyInfo for index */
3756 int regRecord; /* Register holding assembled index record */
3757 sqlite3 *db = pParse->db; /* The database connection */
3758 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3760 #ifndef SQLITE_OMIT_AUTHORIZATION
3761 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3762 db->aDb[iDb].zDbSName ) ){
3763 return;
3765 #endif
3767 /* Require a write-lock on the table to perform this operation */
3768 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3770 v = sqlite3GetVdbe(pParse);
3771 if( v==0 ) return;
3772 if( memRootPage>=0 ){
3773 tnum = (Pgno)memRootPage;
3774 }else{
3775 tnum = pIndex->tnum;
3777 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3778 assert( pKey!=0 || pParse->nErr );
3780 /* Open the sorter cursor if we are to use one. */
3781 iSorter = pParse->nTab++;
3782 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3783 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3785 /* Open the table. Loop through all rows of the table, inserting index
3786 ** records into the sorter. */
3787 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3788 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3789 regRecord = sqlite3GetTempReg(pParse);
3790 sqlite3MultiWrite(pParse);
3792 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3793 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3794 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3795 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3796 sqlite3VdbeJumpHere(v, addr1);
3797 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3798 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3799 (char *)pKey, P4_KEYINFO);
3800 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3802 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3803 if( IsUniqueIndex(pIndex) ){
3804 int j2 = sqlite3VdbeGoto(v, 1);
3805 addr2 = sqlite3VdbeCurrentAddr(v);
3806 sqlite3VdbeVerifyAbortable(v, OE_Abort);
3807 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3808 pIndex->nKeyCol); VdbeCoverage(v);
3809 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3810 sqlite3VdbeJumpHere(v, j2);
3811 }else{
3812 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3813 ** abort. The exception is if one of the indexed expressions contains a
3814 ** user function that throws an exception when it is evaluated. But the
3815 ** overhead of adding a statement journal to a CREATE INDEX statement is
3816 ** very small (since most of the pages written do not contain content that
3817 ** needs to be restored if the statement aborts), so we call
3818 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3819 sqlite3MayAbort(pParse);
3820 addr2 = sqlite3VdbeCurrentAddr(v);
3822 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3823 if( !pIndex->bAscKeyBug ){
3824 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3825 ** faster by avoiding unnecessary seeks. But the optimization does
3826 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3827 ** with DESC primary keys, since those indexes have there keys in
3828 ** a different order from the main table.
3829 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3831 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3833 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3834 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3835 sqlite3ReleaseTempReg(pParse, regRecord);
3836 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3837 sqlite3VdbeJumpHere(v, addr1);
3839 sqlite3VdbeAddOp1(v, OP_Close, iTab);
3840 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3841 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3845 ** Allocate heap space to hold an Index object with nCol columns.
3847 ** Increase the allocation size to provide an extra nExtra bytes
3848 ** of 8-byte aligned space after the Index object and return a
3849 ** pointer to this extra space in *ppExtra.
3851 Index *sqlite3AllocateIndexObject(
3852 sqlite3 *db, /* Database connection */
3853 i16 nCol, /* Total number of columns in the index */
3854 int nExtra, /* Number of bytes of extra space to alloc */
3855 char **ppExtra /* Pointer to the "extra" space */
3857 Index *p; /* Allocated index object */
3858 int nByte; /* Bytes of space for Index object + arrays */
3860 nByte = ROUND8(sizeof(Index)) + /* Index structure */
3861 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
3862 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
3863 sizeof(i16)*nCol + /* Index.aiColumn */
3864 sizeof(u8)*nCol); /* Index.aSortOrder */
3865 p = sqlite3DbMallocZero(db, nByte + nExtra);
3866 if( p ){
3867 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3868 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3869 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3870 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
3871 p->aSortOrder = (u8*)pExtra;
3872 p->nColumn = nCol;
3873 p->nKeyCol = nCol - 1;
3874 *ppExtra = ((char*)p) + nByte;
3876 return p;
3880 ** If expression list pList contains an expression that was parsed with
3881 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3882 ** pParse and return non-zero. Otherwise, return zero.
3884 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3885 if( pList ){
3886 int i;
3887 for(i=0; i<pList->nExpr; i++){
3888 if( pList->a[i].fg.bNulls ){
3889 u8 sf = pList->a[i].fg.sortFlags;
3890 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3891 (sf==0 || sf==3) ? "FIRST" : "LAST"
3893 return 1;
3897 return 0;
3901 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3902 ** and pTblList is the name of the table that is to be indexed. Both will
3903 ** be NULL for a primary key or an index that is created to satisfy a
3904 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3905 ** as the table to be indexed. pParse->pNewTable is a table that is
3906 ** currently being constructed by a CREATE TABLE statement.
3908 ** pList is a list of columns to be indexed. pList will be NULL if this
3909 ** is a primary key or unique-constraint on the most recent column added
3910 ** to the table currently under construction.
3912 void sqlite3CreateIndex(
3913 Parse *pParse, /* All information about this parse */
3914 Token *pName1, /* First part of index name. May be NULL */
3915 Token *pName2, /* Second part of index name. May be NULL */
3916 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3917 ExprList *pList, /* A list of columns to be indexed */
3918 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3919 Token *pStart, /* The CREATE token that begins this statement */
3920 Expr *pPIWhere, /* WHERE clause for partial indices */
3921 int sortOrder, /* Sort order of primary key when pList==NULL */
3922 int ifNotExist, /* Omit error if index already exists */
3923 u8 idxType /* The index type */
3925 Table *pTab = 0; /* Table to be indexed */
3926 Index *pIndex = 0; /* The index to be created */
3927 char *zName = 0; /* Name of the index */
3928 int nName; /* Number of characters in zName */
3929 int i, j;
3930 DbFixer sFix; /* For assigning database names to pTable */
3931 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
3932 sqlite3 *db = pParse->db;
3933 Db *pDb; /* The specific table containing the indexed database */
3934 int iDb; /* Index of the database that is being written */
3935 Token *pName = 0; /* Unqualified name of the index to create */
3936 struct ExprList_item *pListItem; /* For looping over pList */
3937 int nExtra = 0; /* Space allocated for zExtra[] */
3938 int nExtraCol; /* Number of extra columns needed */
3939 char *zExtra = 0; /* Extra space after the Index object */
3940 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3942 assert( db->pParse==pParse );
3943 if( pParse->nErr ){
3944 goto exit_create_index;
3946 assert( db->mallocFailed==0 );
3947 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3948 goto exit_create_index;
3950 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3951 goto exit_create_index;
3953 if( sqlite3HasExplicitNulls(pParse, pList) ){
3954 goto exit_create_index;
3958 ** Find the table that is to be indexed. Return early if not found.
3960 if( pTblName!=0 ){
3962 /* Use the two-part index name to determine the database
3963 ** to search for the table. 'Fix' the table name to this db
3964 ** before looking up the table.
3966 assert( pName1 && pName2 );
3967 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3968 if( iDb<0 ) goto exit_create_index;
3969 assert( pName && pName->z );
3971 #ifndef SQLITE_OMIT_TEMPDB
3972 /* If the index name was unqualified, check if the table
3973 ** is a temp table. If so, set the database to 1. Do not do this
3974 ** if initialising a database schema.
3976 if( !db->init.busy ){
3977 pTab = sqlite3SrcListLookup(pParse, pTblName);
3978 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3979 iDb = 1;
3982 #endif
3984 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3985 if( sqlite3FixSrcList(&sFix, pTblName) ){
3986 /* Because the parser constructs pTblName from a single identifier,
3987 ** sqlite3FixSrcList can never fail. */
3988 assert(0);
3990 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3991 assert( db->mallocFailed==0 || pTab==0 );
3992 if( pTab==0 ) goto exit_create_index;
3993 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3994 sqlite3ErrorMsg(pParse,
3995 "cannot create a TEMP index on non-TEMP table \"%s\"",
3996 pTab->zName);
3997 goto exit_create_index;
3999 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
4000 }else{
4001 assert( pName==0 );
4002 assert( pStart==0 );
4003 pTab = pParse->pNewTable;
4004 if( !pTab ) goto exit_create_index;
4005 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4007 pDb = &db->aDb[iDb];
4009 assert( pTab!=0 );
4010 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
4011 && db->init.busy==0
4012 && pTblName!=0
4013 #if SQLITE_USER_AUTHENTICATION
4014 && sqlite3UserAuthTable(pTab->zName)==0
4015 #endif
4017 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
4018 goto exit_create_index;
4020 #ifndef SQLITE_OMIT_VIEW
4021 if( IsView(pTab) ){
4022 sqlite3ErrorMsg(pParse, "views may not be indexed");
4023 goto exit_create_index;
4025 #endif
4026 #ifndef SQLITE_OMIT_VIRTUALTABLE
4027 if( IsVirtual(pTab) ){
4028 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
4029 goto exit_create_index;
4031 #endif
4034 ** Find the name of the index. Make sure there is not already another
4035 ** index or table with the same name.
4037 ** Exception: If we are reading the names of permanent indices from the
4038 ** sqlite_schema table (because some other process changed the schema) and
4039 ** one of the index names collides with the name of a temporary table or
4040 ** index, then we will continue to process this index.
4042 ** If pName==0 it means that we are
4043 ** dealing with a primary key or UNIQUE constraint. We have to invent our
4044 ** own name.
4046 if( pName ){
4047 zName = sqlite3NameFromToken(db, pName);
4048 if( zName==0 ) goto exit_create_index;
4049 assert( pName->z!=0 );
4050 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
4051 goto exit_create_index;
4053 if( !IN_RENAME_OBJECT ){
4054 if( !db->init.busy ){
4055 if( sqlite3FindTable(db, zName, pDb->zDbSName)!=0 ){
4056 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
4057 goto exit_create_index;
4060 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
4061 if( !ifNotExist ){
4062 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
4063 }else{
4064 assert( !db->init.busy );
4065 sqlite3CodeVerifySchema(pParse, iDb);
4066 sqlite3ForceNotReadOnly(pParse);
4068 goto exit_create_index;
4071 }else{
4072 int n;
4073 Index *pLoop;
4074 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
4075 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
4076 if( zName==0 ){
4077 goto exit_create_index;
4080 /* Automatic index names generated from within sqlite3_declare_vtab()
4081 ** must have names that are distinct from normal automatic index names.
4082 ** The following statement converts "sqlite3_autoindex..." into
4083 ** "sqlite3_butoindex..." in order to make the names distinct.
4084 ** The "vtab_err.test" test demonstrates the need of this statement. */
4085 if( IN_SPECIAL_PARSE ) zName[7]++;
4088 /* Check for authorization to create an index.
4090 #ifndef SQLITE_OMIT_AUTHORIZATION
4091 if( !IN_RENAME_OBJECT ){
4092 const char *zDb = pDb->zDbSName;
4093 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
4094 goto exit_create_index;
4096 i = SQLITE_CREATE_INDEX;
4097 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
4098 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
4099 goto exit_create_index;
4102 #endif
4104 /* If pList==0, it means this routine was called to make a primary
4105 ** key out of the last column added to the table under construction.
4106 ** So create a fake list to simulate this.
4108 if( pList==0 ){
4109 Token prevCol;
4110 Column *pCol = &pTab->aCol[pTab->nCol-1];
4111 pCol->colFlags |= COLFLAG_UNIQUE;
4112 sqlite3TokenInit(&prevCol, pCol->zCnName);
4113 pList = sqlite3ExprListAppend(pParse, 0,
4114 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
4115 if( pList==0 ) goto exit_create_index;
4116 assert( pList->nExpr==1 );
4117 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
4118 }else{
4119 sqlite3ExprListCheckLength(pParse, pList, "index");
4120 if( pParse->nErr ) goto exit_create_index;
4123 /* Figure out how many bytes of space are required to store explicitly
4124 ** specified collation sequence names.
4126 for(i=0; i<pList->nExpr; i++){
4127 Expr *pExpr = pList->a[i].pExpr;
4128 assert( pExpr!=0 );
4129 if( pExpr->op==TK_COLLATE ){
4130 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4131 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
4136 ** Allocate the index structure.
4138 nName = sqlite3Strlen30(zName);
4139 nExtraCol = pPk ? pPk->nKeyCol : 1;
4140 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
4141 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
4142 nName + nExtra + 1, &zExtra);
4143 if( db->mallocFailed ){
4144 goto exit_create_index;
4146 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
4147 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
4148 pIndex->zName = zExtra;
4149 zExtra += nName + 1;
4150 memcpy(pIndex->zName, zName, nName+1);
4151 pIndex->pTable = pTab;
4152 pIndex->onError = (u8)onError;
4153 pIndex->uniqNotNull = onError!=OE_None;
4154 pIndex->idxType = idxType;
4155 pIndex->pSchema = db->aDb[iDb].pSchema;
4156 pIndex->nKeyCol = pList->nExpr;
4157 if( pPIWhere ){
4158 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
4159 pIndex->pPartIdxWhere = pPIWhere;
4160 pPIWhere = 0;
4162 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4164 /* Check to see if we should honor DESC requests on index columns
4166 if( pDb->pSchema->file_format>=4 ){
4167 sortOrderMask = -1; /* Honor DESC */
4168 }else{
4169 sortOrderMask = 0; /* Ignore DESC */
4172 /* Analyze the list of expressions that form the terms of the index and
4173 ** report any errors. In the common case where the expression is exactly
4174 ** a table column, store that column in aiColumn[]. For general expressions,
4175 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4177 ** TODO: Issue a warning if two or more columns of the index are identical.
4178 ** TODO: Issue a warning if the table primary key is used as part of the
4179 ** index key.
4181 pListItem = pList->a;
4182 if( IN_RENAME_OBJECT ){
4183 pIndex->aColExpr = pList;
4184 pList = 0;
4186 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
4187 Expr *pCExpr; /* The i-th index expression */
4188 int requestedSortOrder; /* ASC or DESC on the i-th expression */
4189 const char *zColl; /* Collation sequence name */
4191 sqlite3StringToId(pListItem->pExpr);
4192 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
4193 if( pParse->nErr ) goto exit_create_index;
4194 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
4195 if( pCExpr->op!=TK_COLUMN ){
4196 if( pTab==pParse->pNewTable ){
4197 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
4198 "UNIQUE constraints");
4199 goto exit_create_index;
4201 if( pIndex->aColExpr==0 ){
4202 pIndex->aColExpr = pList;
4203 pList = 0;
4205 j = XN_EXPR;
4206 pIndex->aiColumn[i] = XN_EXPR;
4207 pIndex->uniqNotNull = 0;
4208 pIndex->bHasExpr = 1;
4209 }else{
4210 j = pCExpr->iColumn;
4211 assert( j<=0x7fff );
4212 if( j<0 ){
4213 j = pTab->iPKey;
4214 }else{
4215 if( pTab->aCol[j].notNull==0 ){
4216 pIndex->uniqNotNull = 0;
4218 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
4219 pIndex->bHasVCol = 1;
4220 pIndex->bHasExpr = 1;
4223 pIndex->aiColumn[i] = (i16)j;
4225 zColl = 0;
4226 if( pListItem->pExpr->op==TK_COLLATE ){
4227 int nColl;
4228 assert( !ExprHasProperty(pListItem->pExpr, EP_IntValue) );
4229 zColl = pListItem->pExpr->u.zToken;
4230 nColl = sqlite3Strlen30(zColl) + 1;
4231 assert( nExtra>=nColl );
4232 memcpy(zExtra, zColl, nColl);
4233 zColl = zExtra;
4234 zExtra += nColl;
4235 nExtra -= nColl;
4236 }else if( j>=0 ){
4237 zColl = sqlite3ColumnColl(&pTab->aCol[j]);
4239 if( !zColl ) zColl = sqlite3StrBINARY;
4240 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
4241 goto exit_create_index;
4243 pIndex->azColl[i] = zColl;
4244 requestedSortOrder = pListItem->fg.sortFlags & sortOrderMask;
4245 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
4248 /* Append the table key to the end of the index. For WITHOUT ROWID
4249 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
4250 ** normal tables (when pPk==0) this will be the rowid.
4252 if( pPk ){
4253 for(j=0; j<pPk->nKeyCol; j++){
4254 int x = pPk->aiColumn[j];
4255 assert( x>=0 );
4256 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
4257 pIndex->nColumn--;
4258 }else{
4259 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
4260 pIndex->aiColumn[i] = x;
4261 pIndex->azColl[i] = pPk->azColl[j];
4262 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
4263 i++;
4266 assert( i==pIndex->nColumn );
4267 }else{
4268 pIndex->aiColumn[i] = XN_ROWID;
4269 pIndex->azColl[i] = sqlite3StrBINARY;
4271 sqlite3DefaultRowEst(pIndex);
4272 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4274 /* If this index contains every column of its table, then mark
4275 ** it as a covering index */
4276 assert( HasRowid(pTab)
4277 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4278 recomputeColumnsNotIndexed(pIndex);
4279 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4280 pIndex->isCovering = 1;
4281 for(j=0; j<pTab->nCol; j++){
4282 if( j==pTab->iPKey ) continue;
4283 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4284 pIndex->isCovering = 0;
4285 break;
4289 if( pTab==pParse->pNewTable ){
4290 /* This routine has been called to create an automatic index as a
4291 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4292 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4293 ** i.e. one of:
4295 ** CREATE TABLE t(x PRIMARY KEY, y);
4296 ** CREATE TABLE t(x, y, UNIQUE(x, y));
4298 ** Either way, check to see if the table already has such an index. If
4299 ** so, don't bother creating this one. This only applies to
4300 ** automatically created indices. Users can do as they wish with
4301 ** explicit indices.
4303 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4304 ** (and thus suppressing the second one) even if they have different
4305 ** sort orders.
4307 ** If there are different collating sequences or if the columns of
4308 ** the constraint occur in different orders, then the constraints are
4309 ** considered distinct and both result in separate indices.
4311 Index *pIdx;
4312 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4313 int k;
4314 assert( IsUniqueIndex(pIdx) );
4315 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4316 assert( IsUniqueIndex(pIndex) );
4318 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4319 for(k=0; k<pIdx->nKeyCol; k++){
4320 const char *z1;
4321 const char *z2;
4322 assert( pIdx->aiColumn[k]>=0 );
4323 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4324 z1 = pIdx->azColl[k];
4325 z2 = pIndex->azColl[k];
4326 if( sqlite3StrICmp(z1, z2) ) break;
4328 if( k==pIdx->nKeyCol ){
4329 if( pIdx->onError!=pIndex->onError ){
4330 /* This constraint creates the same index as a previous
4331 ** constraint specified somewhere in the CREATE TABLE statement.
4332 ** However the ON CONFLICT clauses are different. If both this
4333 ** constraint and the previous equivalent constraint have explicit
4334 ** ON CONFLICT clauses this is an error. Otherwise, use the
4335 ** explicitly specified behavior for the index.
4337 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4338 sqlite3ErrorMsg(pParse,
4339 "conflicting ON CONFLICT clauses specified", 0);
4341 if( pIdx->onError==OE_Default ){
4342 pIdx->onError = pIndex->onError;
4345 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4346 if( IN_RENAME_OBJECT ){
4347 pIndex->pNext = pParse->pNewIndex;
4348 pParse->pNewIndex = pIndex;
4349 pIndex = 0;
4351 goto exit_create_index;
4356 if( !IN_RENAME_OBJECT ){
4358 /* Link the new Index structure to its table and to the other
4359 ** in-memory database structures.
4361 assert( pParse->nErr==0 );
4362 if( db->init.busy ){
4363 Index *p;
4364 assert( !IN_SPECIAL_PARSE );
4365 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4366 if( pTblName!=0 ){
4367 pIndex->tnum = db->init.newTnum;
4368 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4369 sqlite3ErrorMsg(pParse, "invalid rootpage");
4370 pParse->rc = SQLITE_CORRUPT_BKPT;
4371 goto exit_create_index;
4374 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4375 pIndex->zName, pIndex);
4376 if( p ){
4377 assert( p==pIndex ); /* Malloc must have failed */
4378 sqlite3OomFault(db);
4379 goto exit_create_index;
4381 db->mDbFlags |= DBFLAG_SchemaChange;
4384 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4385 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4386 ** emit code to allocate the index rootpage on disk and make an entry for
4387 ** the index in the sqlite_schema table and populate the index with
4388 ** content. But, do not do this if we are simply reading the sqlite_schema
4389 ** table to parse the schema, or if this index is the PRIMARY KEY index
4390 ** of a WITHOUT ROWID table.
4392 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4393 ** or UNIQUE index in a CREATE TABLE statement. Since the table
4394 ** has just been created, it contains no data and the index initialization
4395 ** step can be skipped.
4397 else if( HasRowid(pTab) || pTblName!=0 ){
4398 Vdbe *v;
4399 char *zStmt;
4400 int iMem = ++pParse->nMem;
4402 v = sqlite3GetVdbe(pParse);
4403 if( v==0 ) goto exit_create_index;
4405 sqlite3BeginWriteOperation(pParse, 1, iDb);
4407 /* Create the rootpage for the index using CreateIndex. But before
4408 ** doing so, code a Noop instruction and store its address in
4409 ** Index.tnum. This is required in case this index is actually a
4410 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4411 ** that case the convertToWithoutRowidTable() routine will replace
4412 ** the Noop with a Goto to jump over the VDBE code generated below. */
4413 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4414 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4416 /* Gather the complete text of the CREATE INDEX statement into
4417 ** the zStmt variable
4419 assert( pName!=0 || pStart==0 );
4420 if( pStart ){
4421 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4422 if( pName->z[n-1]==';' ) n--;
4423 /* A named index with an explicit CREATE INDEX statement */
4424 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4425 onError==OE_None ? "" : " UNIQUE", n, pName->z);
4426 }else{
4427 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4428 /* zStmt = sqlite3MPrintf(""); */
4429 zStmt = 0;
4432 /* Add an entry in sqlite_schema for this index
4434 sqlite3NestedParse(pParse,
4435 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4436 db->aDb[iDb].zDbSName,
4437 pIndex->zName,
4438 pTab->zName,
4439 iMem,
4440 zStmt
4442 sqlite3DbFree(db, zStmt);
4444 /* Fill the index with data and reparse the schema. Code an OP_Expire
4445 ** to invalidate all pre-compiled statements.
4447 if( pTblName ){
4448 sqlite3RefillIndex(pParse, pIndex, iMem);
4449 sqlite3ChangeCookie(pParse, iDb);
4450 sqlite3VdbeAddParseSchemaOp(v, iDb,
4451 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4452 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4455 sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4458 if( db->init.busy || pTblName==0 ){
4459 pIndex->pNext = pTab->pIndex;
4460 pTab->pIndex = pIndex;
4461 pIndex = 0;
4463 else if( IN_RENAME_OBJECT ){
4464 assert( pParse->pNewIndex==0 );
4465 pParse->pNewIndex = pIndex;
4466 pIndex = 0;
4469 /* Clean up before exiting */
4470 exit_create_index:
4471 if( pIndex ) sqlite3FreeIndex(db, pIndex);
4472 if( pTab ){
4473 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4474 ** The list was already ordered when this routine was entered, so at this
4475 ** point at most a single index (the newly added index) will be out of
4476 ** order. So we have to reorder at most one index. */
4477 Index **ppFrom;
4478 Index *pThis;
4479 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4480 Index *pNext;
4481 if( pThis->onError!=OE_Replace ) continue;
4482 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4483 *ppFrom = pNext;
4484 pThis->pNext = pNext->pNext;
4485 pNext->pNext = pThis;
4486 ppFrom = &pNext->pNext;
4488 break;
4490 #ifdef SQLITE_DEBUG
4491 /* Verify that all REPLACE indexes really are now at the end
4492 ** of the index list. In other words, no other index type ever
4493 ** comes after a REPLACE index on the list. */
4494 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4495 assert( pThis->onError!=OE_Replace
4496 || pThis->pNext==0
4497 || pThis->pNext->onError==OE_Replace );
4499 #endif
4501 sqlite3ExprDelete(db, pPIWhere);
4502 sqlite3ExprListDelete(db, pList);
4503 sqlite3SrcListDelete(db, pTblName);
4504 sqlite3DbFree(db, zName);
4508 ** Fill the Index.aiRowEst[] array with default information - information
4509 ** to be used when we have not run the ANALYZE command.
4511 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4512 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4513 ** number of rows in the table that match any particular value of the
4514 ** first column of the index. aiRowEst[2] is an estimate of the number
4515 ** of rows that match any particular combination of the first 2 columns
4516 ** of the index. And so forth. It must always be the case that
4518 ** aiRowEst[N]<=aiRowEst[N-1]
4519 ** aiRowEst[N]>=1
4521 ** Apart from that, we have little to go on besides intuition as to
4522 ** how aiRowEst[] should be initialized. The numbers generated here
4523 ** are based on typical values found in actual indices.
4525 void sqlite3DefaultRowEst(Index *pIdx){
4526 /* 10, 9, 8, 7, 6 */
4527 static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4528 LogEst *a = pIdx->aiRowLogEst;
4529 LogEst x;
4530 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4531 int i;
4533 /* Indexes with default row estimates should not have stat1 data */
4534 assert( !pIdx->hasStat1 );
4536 /* Set the first entry (number of rows in the index) to the estimated
4537 ** number of rows in the table, or half the number of rows in the table
4538 ** for a partial index.
4540 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4541 ** table but other parts we are having to guess at, then do not let the
4542 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4543 ** Failure to do this can cause the indexes for which we do not have
4544 ** stat1 data to be ignored by the query planner.
4546 x = pIdx->pTable->nRowLogEst;
4547 assert( 99==sqlite3LogEst(1000) );
4548 if( x<99 ){
4549 pIdx->pTable->nRowLogEst = x = 99;
4551 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); }
4552 a[0] = x;
4554 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4555 ** 6 and each subsequent value (if any) is 5. */
4556 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4557 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4558 a[i] = 23; assert( 23==sqlite3LogEst(5) );
4561 assert( 0==sqlite3LogEst(1) );
4562 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4566 ** This routine will drop an existing named index. This routine
4567 ** implements the DROP INDEX statement.
4569 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4570 Index *pIndex;
4571 Vdbe *v;
4572 sqlite3 *db = pParse->db;
4573 int iDb;
4575 if( db->mallocFailed ){
4576 goto exit_drop_index;
4578 assert( pParse->nErr==0 ); /* Never called with prior non-OOM errors */
4579 assert( pName->nSrc==1 );
4580 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4581 goto exit_drop_index;
4583 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4584 if( pIndex==0 ){
4585 if( !ifExists ){
4586 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4587 }else{
4588 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4589 sqlite3ForceNotReadOnly(pParse);
4591 pParse->checkSchema = 1;
4592 goto exit_drop_index;
4594 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4595 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4596 "or PRIMARY KEY constraint cannot be dropped", 0);
4597 goto exit_drop_index;
4599 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4600 #ifndef SQLITE_OMIT_AUTHORIZATION
4602 int code = SQLITE_DROP_INDEX;
4603 Table *pTab = pIndex->pTable;
4604 const char *zDb = db->aDb[iDb].zDbSName;
4605 const char *zTab = SCHEMA_TABLE(iDb);
4606 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4607 goto exit_drop_index;
4609 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4610 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4611 goto exit_drop_index;
4614 #endif
4616 /* Generate code to remove the index and from the schema table */
4617 v = sqlite3GetVdbe(pParse);
4618 if( v ){
4619 sqlite3BeginWriteOperation(pParse, 1, iDb);
4620 sqlite3NestedParse(pParse,
4621 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4622 db->aDb[iDb].zDbSName, pIndex->zName
4624 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4625 sqlite3ChangeCookie(pParse, iDb);
4626 destroyRootPage(pParse, pIndex->tnum, iDb);
4627 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4630 exit_drop_index:
4631 sqlite3SrcListDelete(db, pName);
4635 ** pArray is a pointer to an array of objects. Each object in the
4636 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4637 ** to extend the array so that there is space for a new object at the end.
4639 ** When this function is called, *pnEntry contains the current size of
4640 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4641 ** in total).
4643 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4644 ** space allocated for the new object is zeroed, *pnEntry updated to
4645 ** reflect the new size of the array and a pointer to the new allocation
4646 ** returned. *pIdx is set to the index of the new array entry in this case.
4648 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4649 ** unchanged and a copy of pArray returned.
4651 void *sqlite3ArrayAllocate(
4652 sqlite3 *db, /* Connection to notify of malloc failures */
4653 void *pArray, /* Array of objects. Might be reallocated */
4654 int szEntry, /* Size of each object in the array */
4655 int *pnEntry, /* Number of objects currently in use */
4656 int *pIdx /* Write the index of a new slot here */
4658 char *z;
4659 sqlite3_int64 n = *pIdx = *pnEntry;
4660 if( (n & (n-1))==0 ){
4661 sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4662 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4663 if( pNew==0 ){
4664 *pIdx = -1;
4665 return pArray;
4667 pArray = pNew;
4669 z = (char*)pArray;
4670 memset(&z[n * szEntry], 0, szEntry);
4671 ++*pnEntry;
4672 return pArray;
4676 ** Append a new element to the given IdList. Create a new IdList if
4677 ** need be.
4679 ** A new IdList is returned, or NULL if malloc() fails.
4681 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4682 sqlite3 *db = pParse->db;
4683 int i;
4684 if( pList==0 ){
4685 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4686 if( pList==0 ) return 0;
4687 }else{
4688 IdList *pNew;
4689 pNew = sqlite3DbRealloc(db, pList,
4690 sizeof(IdList) + pList->nId*sizeof(pList->a));
4691 if( pNew==0 ){
4692 sqlite3IdListDelete(db, pList);
4693 return 0;
4695 pList = pNew;
4697 i = pList->nId++;
4698 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4699 if( IN_RENAME_OBJECT && pList->a[i].zName ){
4700 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4702 return pList;
4706 ** Delete an IdList.
4708 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4709 int i;
4710 assert( db!=0 );
4711 if( pList==0 ) return;
4712 assert( pList->eU4!=EU4_EXPR ); /* EU4_EXPR mode is not currently used */
4713 for(i=0; i<pList->nId; i++){
4714 sqlite3DbFree(db, pList->a[i].zName);
4716 sqlite3DbNNFreeNN(db, pList);
4720 ** Return the index in pList of the identifier named zId. Return -1
4721 ** if not found.
4723 int sqlite3IdListIndex(IdList *pList, const char *zName){
4724 int i;
4725 assert( pList!=0 );
4726 for(i=0; i<pList->nId; i++){
4727 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4729 return -1;
4733 ** Maximum size of a SrcList object.
4734 ** The SrcList object is used to represent the FROM clause of a
4735 ** SELECT statement, and the query planner cannot deal with more
4736 ** than 64 tables in a join. So any value larger than 64 here
4737 ** is sufficient for most uses. Smaller values, like say 10, are
4738 ** appropriate for small and memory-limited applications.
4740 #ifndef SQLITE_MAX_SRCLIST
4741 # define SQLITE_MAX_SRCLIST 200
4742 #endif
4745 ** Expand the space allocated for the given SrcList object by
4746 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4747 ** New slots are zeroed.
4749 ** For example, suppose a SrcList initially contains two entries: A,B.
4750 ** To append 3 new entries onto the end, do this:
4752 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4754 ** After the call above it would contain: A, B, nil, nil, nil.
4755 ** If the iStart argument had been 1 instead of 2, then the result
4756 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4757 ** the iStart value would be 0. The result then would
4758 ** be: nil, nil, nil, A, B.
4760 ** If a memory allocation fails or the SrcList becomes too large, leave
4761 ** the original SrcList unchanged, return NULL, and leave an error message
4762 ** in pParse.
4764 SrcList *sqlite3SrcListEnlarge(
4765 Parse *pParse, /* Parsing context into which errors are reported */
4766 SrcList *pSrc, /* The SrcList to be enlarged */
4767 int nExtra, /* Number of new slots to add to pSrc->a[] */
4768 int iStart /* Index in pSrc->a[] of first new slot */
4770 int i;
4772 /* Sanity checking on calling parameters */
4773 assert( iStart>=0 );
4774 assert( nExtra>=1 );
4775 assert( pSrc!=0 );
4776 assert( iStart<=pSrc->nSrc );
4778 /* Allocate additional space if needed */
4779 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4780 SrcList *pNew;
4781 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4782 sqlite3 *db = pParse->db;
4784 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4785 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4786 SQLITE_MAX_SRCLIST);
4787 return 0;
4789 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4790 pNew = sqlite3DbRealloc(db, pSrc,
4791 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4792 if( pNew==0 ){
4793 assert( db->mallocFailed );
4794 return 0;
4796 pSrc = pNew;
4797 pSrc->nAlloc = nAlloc;
4800 /* Move existing slots that come after the newly inserted slots
4801 ** out of the way */
4802 for(i=pSrc->nSrc-1; i>=iStart; i--){
4803 pSrc->a[i+nExtra] = pSrc->a[i];
4805 pSrc->nSrc += nExtra;
4807 /* Zero the newly allocated slots */
4808 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4809 for(i=iStart; i<iStart+nExtra; i++){
4810 pSrc->a[i].iCursor = -1;
4813 /* Return a pointer to the enlarged SrcList */
4814 return pSrc;
4819 ** Append a new table name to the given SrcList. Create a new SrcList if
4820 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4822 ** A SrcList is returned, or NULL if there is an OOM error or if the
4823 ** SrcList grows to large. The returned
4824 ** SrcList might be the same as the SrcList that was input or it might be
4825 ** a new one. If an OOM error does occurs, then the prior value of pList
4826 ** that is input to this routine is automatically freed.
4828 ** If pDatabase is not null, it means that the table has an optional
4829 ** database name prefix. Like this: "database.table". The pDatabase
4830 ** points to the table name and the pTable points to the database name.
4831 ** The SrcList.a[].zName field is filled with the table name which might
4832 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4833 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4834 ** or with NULL if no database is specified.
4836 ** In other words, if call like this:
4838 ** sqlite3SrcListAppend(D,A,B,0);
4840 ** Then B is a table name and the database name is unspecified. If called
4841 ** like this:
4843 ** sqlite3SrcListAppend(D,A,B,C);
4845 ** Then C is the table name and B is the database name. If C is defined
4846 ** then so is B. In other words, we never have a case where:
4848 ** sqlite3SrcListAppend(D,A,0,C);
4850 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4851 ** before being added to the SrcList.
4853 SrcList *sqlite3SrcListAppend(
4854 Parse *pParse, /* Parsing context, in which errors are reported */
4855 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
4856 Token *pTable, /* Table to append */
4857 Token *pDatabase /* Database of the table */
4859 SrcItem *pItem;
4860 sqlite3 *db;
4861 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
4862 assert( pParse!=0 );
4863 assert( pParse->db!=0 );
4864 db = pParse->db;
4865 if( pList==0 ){
4866 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4867 if( pList==0 ) return 0;
4868 pList->nAlloc = 1;
4869 pList->nSrc = 1;
4870 memset(&pList->a[0], 0, sizeof(pList->a[0]));
4871 pList->a[0].iCursor = -1;
4872 }else{
4873 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4874 if( pNew==0 ){
4875 sqlite3SrcListDelete(db, pList);
4876 return 0;
4877 }else{
4878 pList = pNew;
4881 pItem = &pList->a[pList->nSrc-1];
4882 if( pDatabase && pDatabase->z==0 ){
4883 pDatabase = 0;
4885 if( pDatabase ){
4886 pItem->zName = sqlite3NameFromToken(db, pDatabase);
4887 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4888 }else{
4889 pItem->zName = sqlite3NameFromToken(db, pTable);
4890 pItem->zDatabase = 0;
4892 return pList;
4896 ** Assign VdbeCursor index numbers to all tables in a SrcList
4898 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4899 int i;
4900 SrcItem *pItem;
4901 assert( pList || pParse->db->mallocFailed );
4902 if( ALWAYS(pList) ){
4903 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4904 if( pItem->iCursor>=0 ) continue;
4905 pItem->iCursor = pParse->nTab++;
4906 if( pItem->pSelect ){
4907 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4914 ** Delete an entire SrcList including all its substructure.
4916 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4917 int i;
4918 SrcItem *pItem;
4919 assert( db!=0 );
4920 if( pList==0 ) return;
4921 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4922 if( pItem->zDatabase ) sqlite3DbNNFreeNN(db, pItem->zDatabase);
4923 if( pItem->zName ) sqlite3DbNNFreeNN(db, pItem->zName);
4924 if( pItem->zAlias ) sqlite3DbNNFreeNN(db, pItem->zAlias);
4925 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4926 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4927 sqlite3DeleteTable(db, pItem->pTab);
4928 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4929 if( pItem->fg.isUsing ){
4930 sqlite3IdListDelete(db, pItem->u3.pUsing);
4931 }else if( pItem->u3.pOn ){
4932 sqlite3ExprDelete(db, pItem->u3.pOn);
4935 sqlite3DbNNFreeNN(db, pList);
4939 ** This routine is called by the parser to add a new term to the
4940 ** end of a growing FROM clause. The "p" parameter is the part of
4941 ** the FROM clause that has already been constructed. "p" is NULL
4942 ** if this is the first term of the FROM clause. pTable and pDatabase
4943 ** are the name of the table and database named in the FROM clause term.
4944 ** pDatabase is NULL if the database name qualifier is missing - the
4945 ** usual case. If the term has an alias, then pAlias points to the
4946 ** alias token. If the term is a subquery, then pSubquery is the
4947 ** SELECT statement that the subquery encodes. The pTable and
4948 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4949 ** parameters are the content of the ON and USING clauses.
4951 ** Return a new SrcList which encodes is the FROM with the new
4952 ** term added.
4954 SrcList *sqlite3SrcListAppendFromTerm(
4955 Parse *pParse, /* Parsing context */
4956 SrcList *p, /* The left part of the FROM clause already seen */
4957 Token *pTable, /* Name of the table to add to the FROM clause */
4958 Token *pDatabase, /* Name of the database containing pTable */
4959 Token *pAlias, /* The right-hand side of the AS subexpression */
4960 Select *pSubquery, /* A subquery used in place of a table name */
4961 OnOrUsing *pOnUsing /* Either the ON clause or the USING clause */
4963 SrcItem *pItem;
4964 sqlite3 *db = pParse->db;
4965 if( !p && pOnUsing!=0 && (pOnUsing->pOn || pOnUsing->pUsing) ){
4966 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4967 (pOnUsing->pOn ? "ON" : "USING")
4969 goto append_from_error;
4971 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4972 if( p==0 ){
4973 goto append_from_error;
4975 assert( p->nSrc>0 );
4976 pItem = &p->a[p->nSrc-1];
4977 assert( (pTable==0)==(pDatabase==0) );
4978 assert( pItem->zName==0 || pDatabase!=0 );
4979 if( IN_RENAME_OBJECT && pItem->zName ){
4980 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4981 sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4983 assert( pAlias!=0 );
4984 if( pAlias->n ){
4985 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4987 if( pSubquery ){
4988 pItem->pSelect = pSubquery;
4989 if( pSubquery->selFlags & SF_NestedFrom ){
4990 pItem->fg.isNestedFrom = 1;
4993 assert( pOnUsing==0 || pOnUsing->pOn==0 || pOnUsing->pUsing==0 );
4994 assert( pItem->fg.isUsing==0 );
4995 if( pOnUsing==0 ){
4996 pItem->u3.pOn = 0;
4997 }else if( pOnUsing->pUsing ){
4998 pItem->fg.isUsing = 1;
4999 pItem->u3.pUsing = pOnUsing->pUsing;
5000 }else{
5001 pItem->u3.pOn = pOnUsing->pOn;
5003 return p;
5005 append_from_error:
5006 assert( p==0 );
5007 sqlite3ClearOnOrUsing(db, pOnUsing);
5008 sqlite3SelectDelete(db, pSubquery);
5009 return 0;
5013 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
5014 ** element of the source-list passed as the second argument.
5016 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
5017 assert( pIndexedBy!=0 );
5018 if( p && pIndexedBy->n>0 ){
5019 SrcItem *pItem;
5020 assert( p->nSrc>0 );
5021 pItem = &p->a[p->nSrc-1];
5022 assert( pItem->fg.notIndexed==0 );
5023 assert( pItem->fg.isIndexedBy==0 );
5024 assert( pItem->fg.isTabFunc==0 );
5025 if( pIndexedBy->n==1 && !pIndexedBy->z ){
5026 /* A "NOT INDEXED" clause was supplied. See parse.y
5027 ** construct "indexed_opt" for details. */
5028 pItem->fg.notIndexed = 1;
5029 }else{
5030 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
5031 pItem->fg.isIndexedBy = 1;
5032 assert( pItem->fg.isCte==0 ); /* No collision on union u2 */
5038 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5039 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5040 ** are deleted by this function.
5042 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
5043 assert( p1 && p1->nSrc==1 );
5044 if( p2 ){
5045 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
5046 if( pNew==0 ){
5047 sqlite3SrcListDelete(pParse->db, p2);
5048 }else{
5049 p1 = pNew;
5050 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
5051 sqlite3DbFree(pParse->db, p2);
5052 p1->a[0].fg.jointype |= (JT_LTORJ & p1->a[1].fg.jointype);
5055 return p1;
5059 ** Add the list of function arguments to the SrcList entry for a
5060 ** table-valued-function.
5062 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
5063 if( p ){
5064 SrcItem *pItem = &p->a[p->nSrc-1];
5065 assert( pItem->fg.notIndexed==0 );
5066 assert( pItem->fg.isIndexedBy==0 );
5067 assert( pItem->fg.isTabFunc==0 );
5068 pItem->u1.pFuncArg = pList;
5069 pItem->fg.isTabFunc = 1;
5070 }else{
5071 sqlite3ExprListDelete(pParse->db, pList);
5076 ** When building up a FROM clause in the parser, the join operator
5077 ** is initially attached to the left operand. But the code generator
5078 ** expects the join operator to be on the right operand. This routine
5079 ** Shifts all join operators from left to right for an entire FROM
5080 ** clause.
5082 ** Example: Suppose the join is like this:
5084 ** A natural cross join B
5086 ** The operator is "natural cross join". The A and B operands are stored
5087 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
5088 ** operator with A. This routine shifts that operator over to B.
5090 ** Additional changes:
5092 ** * All tables to the left of the right-most RIGHT JOIN are tagged with
5093 ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
5094 ** code generator can easily tell that the table is part of
5095 ** the left operand of at least one RIGHT JOIN.
5097 void sqlite3SrcListShiftJoinType(Parse *pParse, SrcList *p){
5098 (void)pParse;
5099 if( p && p->nSrc>1 ){
5100 int i = p->nSrc-1;
5101 u8 allFlags = 0;
5103 allFlags |= p->a[i].fg.jointype = p->a[i-1].fg.jointype;
5104 }while( (--i)>0 );
5105 p->a[0].fg.jointype = 0;
5107 /* All terms to the left of a RIGHT JOIN should be tagged with the
5108 ** JT_LTORJ flags */
5109 if( allFlags & JT_RIGHT ){
5110 for(i=p->nSrc-1; ALWAYS(i>0) && (p->a[i].fg.jointype&JT_RIGHT)==0; i--){}
5111 i--;
5112 assert( i>=0 );
5114 p->a[i].fg.jointype |= JT_LTORJ;
5115 }while( (--i)>=0 );
5121 ** Generate VDBE code for a BEGIN statement.
5123 void sqlite3BeginTransaction(Parse *pParse, int type){
5124 sqlite3 *db;
5125 Vdbe *v;
5126 int i;
5128 assert( pParse!=0 );
5129 db = pParse->db;
5130 assert( db!=0 );
5131 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
5132 return;
5134 v = sqlite3GetVdbe(pParse);
5135 if( !v ) return;
5136 if( type!=TK_DEFERRED ){
5137 for(i=0; i<db->nDb; i++){
5138 int eTxnType;
5139 Btree *pBt = db->aDb[i].pBt;
5140 if( pBt && sqlite3BtreeIsReadonly(pBt) ){
5141 eTxnType = 0; /* Read txn */
5142 }else if( type==TK_EXCLUSIVE ){
5143 eTxnType = 2; /* Exclusive txn */
5144 }else{
5145 eTxnType = 1; /* Write txn */
5147 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
5148 sqlite3VdbeUsesBtree(v, i);
5151 sqlite3VdbeAddOp0(v, OP_AutoCommit);
5155 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5156 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
5157 ** code is generated for a COMMIT.
5159 void sqlite3EndTransaction(Parse *pParse, int eType){
5160 Vdbe *v;
5161 int isRollback;
5163 assert( pParse!=0 );
5164 assert( pParse->db!=0 );
5165 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
5166 isRollback = eType==TK_ROLLBACK;
5167 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
5168 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
5169 return;
5171 v = sqlite3GetVdbe(pParse);
5172 if( v ){
5173 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
5178 ** This function is called by the parser when it parses a command to create,
5179 ** release or rollback an SQL savepoint.
5181 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
5182 char *zName = sqlite3NameFromToken(pParse->db, pName);
5183 if( zName ){
5184 Vdbe *v = sqlite3GetVdbe(pParse);
5185 #ifndef SQLITE_OMIT_AUTHORIZATION
5186 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5187 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
5188 #endif
5189 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
5190 sqlite3DbFree(pParse->db, zName);
5191 return;
5193 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
5198 ** Make sure the TEMP database is open and available for use. Return
5199 ** the number of errors. Leave any error messages in the pParse structure.
5201 int sqlite3OpenTempDatabase(Parse *pParse){
5202 sqlite3 *db = pParse->db;
5203 if( db->aDb[1].pBt==0 && !pParse->explain ){
5204 int rc;
5205 Btree *pBt;
5206 static const int flags =
5207 SQLITE_OPEN_READWRITE |
5208 SQLITE_OPEN_CREATE |
5209 SQLITE_OPEN_EXCLUSIVE |
5210 SQLITE_OPEN_DELETEONCLOSE |
5211 SQLITE_OPEN_TEMP_DB;
5213 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
5214 if( rc!=SQLITE_OK ){
5215 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
5216 "file for storing temporary tables");
5217 pParse->rc = rc;
5218 return 1;
5220 db->aDb[1].pBt = pBt;
5221 assert( db->aDb[1].pSchema );
5222 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
5223 sqlite3OomFault(db);
5224 return 1;
5227 return 0;
5231 ** Record the fact that the schema cookie will need to be verified
5232 ** for database iDb. The code to actually verify the schema cookie
5233 ** will occur at the end of the top-level VDBE and will be generated
5234 ** later, by sqlite3FinishCoding().
5236 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
5237 assert( iDb>=0 && iDb<pToplevel->db->nDb );
5238 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
5239 assert( iDb<SQLITE_MAX_DB );
5240 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
5241 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
5242 DbMaskSet(pToplevel->cookieMask, iDb);
5243 if( !OMIT_TEMPDB && iDb==1 ){
5244 sqlite3OpenTempDatabase(pToplevel);
5248 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
5249 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
5254 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5255 ** attached database. Otherwise, invoke it for the database named zDb only.
5257 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
5258 sqlite3 *db = pParse->db;
5259 int i;
5260 for(i=0; i<db->nDb; i++){
5261 Db *pDb = &db->aDb[i];
5262 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
5263 sqlite3CodeVerifySchema(pParse, i);
5269 ** Generate VDBE code that prepares for doing an operation that
5270 ** might change the database.
5272 ** This routine starts a new transaction if we are not already within
5273 ** a transaction. If we are already within a transaction, then a checkpoint
5274 ** is set if the setStatement parameter is true. A checkpoint should
5275 ** be set for operations that might fail (due to a constraint) part of
5276 ** the way through and which will need to undo some writes without having to
5277 ** rollback the whole transaction. For operations where all constraints
5278 ** can be checked before any changes are made to the database, it is never
5279 ** necessary to undo a write and the checkpoint should not be set.
5281 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
5282 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5283 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
5284 DbMaskSet(pToplevel->writeMask, iDb);
5285 pToplevel->isMultiWrite |= setStatement;
5289 ** Indicate that the statement currently under construction might write
5290 ** more than one entry (example: deleting one row then inserting another,
5291 ** inserting multiple rows in a table, or inserting a row and index entries.)
5292 ** If an abort occurs after some of these writes have completed, then it will
5293 ** be necessary to undo the completed writes.
5295 void sqlite3MultiWrite(Parse *pParse){
5296 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5297 pToplevel->isMultiWrite = 1;
5301 ** The code generator calls this routine if is discovers that it is
5302 ** possible to abort a statement prior to completion. In order to
5303 ** perform this abort without corrupting the database, we need to make
5304 ** sure that the statement is protected by a statement transaction.
5306 ** Technically, we only need to set the mayAbort flag if the
5307 ** isMultiWrite flag was previously set. There is a time dependency
5308 ** such that the abort must occur after the multiwrite. This makes
5309 ** some statements involving the REPLACE conflict resolution algorithm
5310 ** go a little faster. But taking advantage of this time dependency
5311 ** makes it more difficult to prove that the code is correct (in
5312 ** particular, it prevents us from writing an effective
5313 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5314 ** to take the safe route and skip the optimization.
5316 void sqlite3MayAbort(Parse *pParse){
5317 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5318 pToplevel->mayAbort = 1;
5322 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5323 ** error. The onError parameter determines which (if any) of the statement
5324 ** and/or current transaction is rolled back.
5326 void sqlite3HaltConstraint(
5327 Parse *pParse, /* Parsing context */
5328 int errCode, /* extended error code */
5329 int onError, /* Constraint type */
5330 char *p4, /* Error message */
5331 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
5332 u8 p5Errmsg /* P5_ErrMsg type */
5334 Vdbe *v;
5335 assert( pParse->pVdbe!=0 );
5336 v = sqlite3GetVdbe(pParse);
5337 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5338 if( onError==OE_Abort ){
5339 sqlite3MayAbort(pParse);
5341 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5342 sqlite3VdbeChangeP5(v, p5Errmsg);
5346 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5348 void sqlite3UniqueConstraint(
5349 Parse *pParse, /* Parsing context */
5350 int onError, /* Constraint type */
5351 Index *pIdx /* The index that triggers the constraint */
5353 char *zErr;
5354 int j;
5355 StrAccum errMsg;
5356 Table *pTab = pIdx->pTable;
5358 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5359 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5360 if( pIdx->aColExpr ){
5361 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5362 }else{
5363 for(j=0; j<pIdx->nKeyCol; j++){
5364 char *zCol;
5365 assert( pIdx->aiColumn[j]>=0 );
5366 zCol = pTab->aCol[pIdx->aiColumn[j]].zCnName;
5367 if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5368 sqlite3_str_appendall(&errMsg, pTab->zName);
5369 sqlite3_str_append(&errMsg, ".", 1);
5370 sqlite3_str_appendall(&errMsg, zCol);
5373 zErr = sqlite3StrAccumFinish(&errMsg);
5374 sqlite3HaltConstraint(pParse,
5375 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5376 : SQLITE_CONSTRAINT_UNIQUE,
5377 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5382 ** Code an OP_Halt due to non-unique rowid.
5384 void sqlite3RowidConstraint(
5385 Parse *pParse, /* Parsing context */
5386 int onError, /* Conflict resolution algorithm */
5387 Table *pTab /* The table with the non-unique rowid */
5389 char *zMsg;
5390 int rc;
5391 if( pTab->iPKey>=0 ){
5392 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5393 pTab->aCol[pTab->iPKey].zCnName);
5394 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5395 }else{
5396 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5397 rc = SQLITE_CONSTRAINT_ROWID;
5399 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5400 P5_ConstraintUnique);
5404 ** Check to see if pIndex uses the collating sequence pColl. Return
5405 ** true if it does and false if it does not.
5407 #ifndef SQLITE_OMIT_REINDEX
5408 static int collationMatch(const char *zColl, Index *pIndex){
5409 int i;
5410 assert( zColl!=0 );
5411 for(i=0; i<pIndex->nColumn; i++){
5412 const char *z = pIndex->azColl[i];
5413 assert( z!=0 || pIndex->aiColumn[i]<0 );
5414 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5415 return 1;
5418 return 0;
5420 #endif
5423 ** Recompute all indices of pTab that use the collating sequence pColl.
5424 ** If pColl==0 then recompute all indices of pTab.
5426 #ifndef SQLITE_OMIT_REINDEX
5427 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5428 if( !IsVirtual(pTab) ){
5429 Index *pIndex; /* An index associated with pTab */
5431 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5432 if( zColl==0 || collationMatch(zColl, pIndex) ){
5433 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5434 sqlite3BeginWriteOperation(pParse, 0, iDb);
5435 sqlite3RefillIndex(pParse, pIndex, -1);
5440 #endif
5443 ** Recompute all indices of all tables in all databases where the
5444 ** indices use the collating sequence pColl. If pColl==0 then recompute
5445 ** all indices everywhere.
5447 #ifndef SQLITE_OMIT_REINDEX
5448 static void reindexDatabases(Parse *pParse, char const *zColl){
5449 Db *pDb; /* A single database */
5450 int iDb; /* The database index number */
5451 sqlite3 *db = pParse->db; /* The database connection */
5452 HashElem *k; /* For looping over tables in pDb */
5453 Table *pTab; /* A table in the database */
5455 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
5456 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5457 assert( pDb!=0 );
5458 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
5459 pTab = (Table*)sqliteHashData(k);
5460 reindexTable(pParse, pTab, zColl);
5464 #endif
5467 ** Generate code for the REINDEX command.
5469 ** REINDEX -- 1
5470 ** REINDEX <collation> -- 2
5471 ** REINDEX ?<database>.?<tablename> -- 3
5472 ** REINDEX ?<database>.?<indexname> -- 4
5474 ** Form 1 causes all indices in all attached databases to be rebuilt.
5475 ** Form 2 rebuilds all indices in all databases that use the named
5476 ** collating function. Forms 3 and 4 rebuild the named index or all
5477 ** indices associated with the named table.
5479 #ifndef SQLITE_OMIT_REINDEX
5480 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5481 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
5482 char *z; /* Name of a table or index */
5483 const char *zDb; /* Name of the database */
5484 Table *pTab; /* A table in the database */
5485 Index *pIndex; /* An index associated with pTab */
5486 int iDb; /* The database index number */
5487 sqlite3 *db = pParse->db; /* The database connection */
5488 Token *pObjName; /* Name of the table or index to be reindexed */
5490 /* Read the database schema. If an error occurs, leave an error message
5491 ** and code in pParse and return NULL. */
5492 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5493 return;
5496 if( pName1==0 ){
5497 reindexDatabases(pParse, 0);
5498 return;
5499 }else if( NEVER(pName2==0) || pName2->z==0 ){
5500 char *zColl;
5501 assert( pName1->z );
5502 zColl = sqlite3NameFromToken(pParse->db, pName1);
5503 if( !zColl ) return;
5504 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5505 if( pColl ){
5506 reindexDatabases(pParse, zColl);
5507 sqlite3DbFree(db, zColl);
5508 return;
5510 sqlite3DbFree(db, zColl);
5512 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5513 if( iDb<0 ) return;
5514 z = sqlite3NameFromToken(db, pObjName);
5515 if( z==0 ) return;
5516 zDb = db->aDb[iDb].zDbSName;
5517 pTab = sqlite3FindTable(db, z, zDb);
5518 if( pTab ){
5519 reindexTable(pParse, pTab, 0);
5520 sqlite3DbFree(db, z);
5521 return;
5523 pIndex = sqlite3FindIndex(db, z, zDb);
5524 sqlite3DbFree(db, z);
5525 if( pIndex ){
5526 sqlite3BeginWriteOperation(pParse, 0, iDb);
5527 sqlite3RefillIndex(pParse, pIndex, -1);
5528 return;
5530 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5532 #endif
5535 ** Return a KeyInfo structure that is appropriate for the given Index.
5537 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5538 ** when it has finished using it.
5540 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5541 int i;
5542 int nCol = pIdx->nColumn;
5543 int nKey = pIdx->nKeyCol;
5544 KeyInfo *pKey;
5545 if( pParse->nErr ) return 0;
5546 if( pIdx->uniqNotNull ){
5547 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5548 }else{
5549 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5551 if( pKey ){
5552 assert( sqlite3KeyInfoIsWriteable(pKey) );
5553 for(i=0; i<nCol; i++){
5554 const char *zColl = pIdx->azColl[i];
5555 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5556 sqlite3LocateCollSeq(pParse, zColl);
5557 pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5558 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5560 if( pParse->nErr ){
5561 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5562 if( pIdx->bNoQuery==0 ){
5563 /* Deactivate the index because it contains an unknown collating
5564 ** sequence. The only way to reactive the index is to reload the
5565 ** schema. Adding the missing collating sequence later does not
5566 ** reactive the index. The application had the chance to register
5567 ** the missing index using the collation-needed callback. For
5568 ** simplicity, SQLite will not give the application a second chance.
5570 pIdx->bNoQuery = 1;
5571 pParse->rc = SQLITE_ERROR_RETRY;
5573 sqlite3KeyInfoUnref(pKey);
5574 pKey = 0;
5577 return pKey;
5580 #ifndef SQLITE_OMIT_CTE
5582 ** Create a new CTE object
5584 Cte *sqlite3CteNew(
5585 Parse *pParse, /* Parsing context */
5586 Token *pName, /* Name of the common-table */
5587 ExprList *pArglist, /* Optional column name list for the table */
5588 Select *pQuery, /* Query used to initialize the table */
5589 u8 eM10d /* The MATERIALIZED flag */
5591 Cte *pNew;
5592 sqlite3 *db = pParse->db;
5594 pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5595 assert( pNew!=0 || db->mallocFailed );
5597 if( db->mallocFailed ){
5598 sqlite3ExprListDelete(db, pArglist);
5599 sqlite3SelectDelete(db, pQuery);
5600 }else{
5601 pNew->pSelect = pQuery;
5602 pNew->pCols = pArglist;
5603 pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5604 pNew->eM10d = eM10d;
5606 return pNew;
5610 ** Clear information from a Cte object, but do not deallocate storage
5611 ** for the object itself.
5613 static void cteClear(sqlite3 *db, Cte *pCte){
5614 assert( pCte!=0 );
5615 sqlite3ExprListDelete(db, pCte->pCols);
5616 sqlite3SelectDelete(db, pCte->pSelect);
5617 sqlite3DbFree(db, pCte->zName);
5621 ** Free the contents of the CTE object passed as the second argument.
5623 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5624 assert( pCte!=0 );
5625 cteClear(db, pCte);
5626 sqlite3DbFree(db, pCte);
5630 ** This routine is invoked once per CTE by the parser while parsing a
5631 ** WITH clause. The CTE described by teh third argument is added to
5632 ** the WITH clause of the second argument. If the second argument is
5633 ** NULL, then a new WITH argument is created.
5635 With *sqlite3WithAdd(
5636 Parse *pParse, /* Parsing context */
5637 With *pWith, /* Existing WITH clause, or NULL */
5638 Cte *pCte /* CTE to add to the WITH clause */
5640 sqlite3 *db = pParse->db;
5641 With *pNew;
5642 char *zName;
5644 if( pCte==0 ){
5645 return pWith;
5648 /* Check that the CTE name is unique within this WITH clause. If
5649 ** not, store an error in the Parse structure. */
5650 zName = pCte->zName;
5651 if( zName && pWith ){
5652 int i;
5653 for(i=0; i<pWith->nCte; i++){
5654 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5655 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5660 if( pWith ){
5661 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5662 pNew = sqlite3DbRealloc(db, pWith, nByte);
5663 }else{
5664 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5666 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5668 if( db->mallocFailed ){
5669 sqlite3CteDelete(db, pCte);
5670 pNew = pWith;
5671 }else{
5672 pNew->a[pNew->nCte++] = *pCte;
5673 sqlite3DbFree(db, pCte);
5676 return pNew;
5680 ** Free the contents of the With object passed as the second argument.
5682 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5683 if( pWith ){
5684 int i;
5685 for(i=0; i<pWith->nCte; i++){
5686 cteClear(db, &pWith->a[i]);
5688 sqlite3DbFree(db, pWith);
5691 #endif /* !defined(SQLITE_OMIT_CTE) */