Snapshot of upstream SQLite 3.41.1
[sqlcipher.git] / src / expr.c
blob6135da786c2dd222bd0dd68a543ae4eedd70ed10
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
17 /* Forward declarations */
18 static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int);
19 static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree);
22 ** Return the affinity character for a single column of a table.
24 char sqlite3TableColumnAffinity(const Table *pTab, int iCol){
25 if( iCol<0 || NEVER(iCol>=pTab->nCol) ) return SQLITE_AFF_INTEGER;
26 return pTab->aCol[iCol].affinity;
30 ** Return the 'affinity' of the expression pExpr if any.
32 ** If pExpr is a column, a reference to a column via an 'AS' alias,
33 ** or a sub-select with a column as the return value, then the
34 ** affinity of that column is returned. Otherwise, 0x00 is returned,
35 ** indicating no affinity for the expression.
37 ** i.e. the WHERE clause expressions in the following statements all
38 ** have an affinity:
40 ** CREATE TABLE t1(a);
41 ** SELECT * FROM t1 WHERE a;
42 ** SELECT a AS b FROM t1 WHERE b;
43 ** SELECT * FROM t1 WHERE (select a from t1);
45 char sqlite3ExprAffinity(const Expr *pExpr){
46 int op;
47 op = pExpr->op;
48 while( 1 /* exit-by-break */ ){
49 if( op==TK_COLUMN || (op==TK_AGG_COLUMN && pExpr->y.pTab!=0) ){
50 assert( ExprUseYTab(pExpr) );
51 assert( pExpr->y.pTab!=0 );
52 return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
54 if( op==TK_SELECT ){
55 assert( ExprUseXSelect(pExpr) );
56 assert( pExpr->x.pSelect!=0 );
57 assert( pExpr->x.pSelect->pEList!=0 );
58 assert( pExpr->x.pSelect->pEList->a[0].pExpr!=0 );
59 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
61 #ifndef SQLITE_OMIT_CAST
62 if( op==TK_CAST ){
63 assert( !ExprHasProperty(pExpr, EP_IntValue) );
64 return sqlite3AffinityType(pExpr->u.zToken, 0);
66 #endif
67 if( op==TK_SELECT_COLUMN ){
68 assert( pExpr->pLeft!=0 && ExprUseXSelect(pExpr->pLeft) );
69 assert( pExpr->iColumn < pExpr->iTable );
70 assert( pExpr->iTable==pExpr->pLeft->x.pSelect->pEList->nExpr );
71 return sqlite3ExprAffinity(
72 pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr
75 if( op==TK_VECTOR ){
76 assert( ExprUseXList(pExpr) );
77 return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr);
79 if( ExprHasProperty(pExpr, EP_Skip|EP_IfNullRow) ){
80 assert( pExpr->op==TK_COLLATE
81 || pExpr->op==TK_IF_NULL_ROW
82 || (pExpr->op==TK_REGISTER && pExpr->op2==TK_IF_NULL_ROW) );
83 pExpr = pExpr->pLeft;
84 op = pExpr->op;
85 continue;
87 if( op!=TK_REGISTER || (op = pExpr->op2)==TK_REGISTER ) break;
89 return pExpr->affExpr;
93 ** Make a guess at all the possible datatypes of the result that could
94 ** be returned by an expression. Return a bitmask indicating the answer:
96 ** 0x01 Numeric
97 ** 0x02 Text
98 ** 0x04 Blob
100 ** If the expression must return NULL, then 0x00 is returned.
102 int sqlite3ExprDataType(const Expr *pExpr){
103 while( pExpr ){
104 switch( pExpr->op ){
105 case TK_COLLATE:
106 case TK_IF_NULL_ROW:
107 case TK_UPLUS: {
108 pExpr = pExpr->pLeft;
109 break;
111 case TK_NULL: {
112 pExpr = 0;
113 break;
115 case TK_STRING: {
116 return 0x02;
118 case TK_BLOB: {
119 return 0x04;
121 case TK_CONCAT: {
122 return 0x06;
124 case TK_VARIABLE:
125 case TK_AGG_FUNCTION:
126 case TK_FUNCTION: {
127 return 0x07;
129 case TK_COLUMN:
130 case TK_AGG_COLUMN:
131 case TK_SELECT:
132 case TK_CAST:
133 case TK_SELECT_COLUMN:
134 case TK_VECTOR: {
135 int aff = sqlite3ExprAffinity(pExpr);
136 if( aff>=SQLITE_AFF_NUMERIC ) return 0x05;
137 if( aff==SQLITE_AFF_TEXT ) return 0x06;
138 return 0x07;
140 case TK_CASE: {
141 int res = 0;
142 int ii;
143 ExprList *pList = pExpr->x.pList;
144 assert( ExprUseXList(pExpr) && pList!=0 );
145 assert( pList->nExpr > 0);
146 for(ii=1; ii<pList->nExpr; ii+=2){
147 res |= sqlite3ExprDataType(pList->a[ii].pExpr);
149 if( pList->nExpr % 2 ){
150 res |= sqlite3ExprDataType(pList->a[pList->nExpr-1].pExpr);
152 return res;
154 default: {
155 return 0x01;
157 } /* End of switch(op) */
158 } /* End of while(pExpr) */
159 return 0x00;
163 ** Set the collating sequence for expression pExpr to be the collating
164 ** sequence named by pToken. Return a pointer to a new Expr node that
165 ** implements the COLLATE operator.
167 ** If a memory allocation error occurs, that fact is recorded in pParse->db
168 ** and the pExpr parameter is returned unchanged.
170 Expr *sqlite3ExprAddCollateToken(
171 const Parse *pParse, /* Parsing context */
172 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
173 const Token *pCollName, /* Name of collating sequence */
174 int dequote /* True to dequote pCollName */
176 if( pCollName->n>0 ){
177 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
178 if( pNew ){
179 pNew->pLeft = pExpr;
180 pNew->flags |= EP_Collate|EP_Skip;
181 pExpr = pNew;
184 return pExpr;
186 Expr *sqlite3ExprAddCollateString(
187 const Parse *pParse, /* Parsing context */
188 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
189 const char *zC /* The collating sequence name */
191 Token s;
192 assert( zC!=0 );
193 sqlite3TokenInit(&s, (char*)zC);
194 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
198 ** Skip over any TK_COLLATE operators.
200 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
201 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
202 assert( pExpr->op==TK_COLLATE );
203 pExpr = pExpr->pLeft;
205 return pExpr;
209 ** Skip over any TK_COLLATE operators and/or any unlikely()
210 ** or likelihood() or likely() functions at the root of an
211 ** expression.
213 Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){
214 while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){
215 if( ExprHasProperty(pExpr, EP_Unlikely) ){
216 assert( ExprUseXList(pExpr) );
217 assert( pExpr->x.pList->nExpr>0 );
218 assert( pExpr->op==TK_FUNCTION );
219 pExpr = pExpr->x.pList->a[0].pExpr;
220 }else{
221 assert( pExpr->op==TK_COLLATE );
222 pExpr = pExpr->pLeft;
225 return pExpr;
229 ** Return the collation sequence for the expression pExpr. If
230 ** there is no defined collating sequence, return NULL.
232 ** See also: sqlite3ExprNNCollSeq()
234 ** The sqlite3ExprNNCollSeq() works the same exact that it returns the
235 ** default collation if pExpr has no defined collation.
237 ** The collating sequence might be determined by a COLLATE operator
238 ** or by the presence of a column with a defined collating sequence.
239 ** COLLATE operators take first precedence. Left operands take
240 ** precedence over right operands.
242 CollSeq *sqlite3ExprCollSeq(Parse *pParse, const Expr *pExpr){
243 sqlite3 *db = pParse->db;
244 CollSeq *pColl = 0;
245 const Expr *p = pExpr;
246 while( p ){
247 int op = p->op;
248 if( op==TK_REGISTER ) op = p->op2;
249 if( (op==TK_AGG_COLUMN && p->y.pTab!=0)
250 || op==TK_COLUMN || op==TK_TRIGGER
252 int j;
253 assert( ExprUseYTab(p) );
254 assert( p->y.pTab!=0 );
255 if( (j = p->iColumn)>=0 ){
256 const char *zColl = sqlite3ColumnColl(&p->y.pTab->aCol[j]);
257 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
259 break;
261 if( op==TK_CAST || op==TK_UPLUS ){
262 p = p->pLeft;
263 continue;
265 if( op==TK_VECTOR ){
266 assert( ExprUseXList(p) );
267 p = p->x.pList->a[0].pExpr;
268 continue;
270 if( op==TK_COLLATE ){
271 assert( !ExprHasProperty(p, EP_IntValue) );
272 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
273 break;
275 if( p->flags & EP_Collate ){
276 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
277 p = p->pLeft;
278 }else{
279 Expr *pNext = p->pRight;
280 /* The Expr.x union is never used at the same time as Expr.pRight */
281 assert( ExprUseXList(p) );
282 assert( p->x.pList==0 || p->pRight==0 );
283 if( p->x.pList!=0 && !db->mallocFailed ){
284 int i;
285 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
286 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
287 pNext = p->x.pList->a[i].pExpr;
288 break;
292 p = pNext;
294 }else{
295 break;
298 if( sqlite3CheckCollSeq(pParse, pColl) ){
299 pColl = 0;
301 return pColl;
305 ** Return the collation sequence for the expression pExpr. If
306 ** there is no defined collating sequence, return a pointer to the
307 ** defautl collation sequence.
309 ** See also: sqlite3ExprCollSeq()
311 ** The sqlite3ExprCollSeq() routine works the same except that it
312 ** returns NULL if there is no defined collation.
314 CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, const Expr *pExpr){
315 CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr);
316 if( p==0 ) p = pParse->db->pDfltColl;
317 assert( p!=0 );
318 return p;
322 ** Return TRUE if the two expressions have equivalent collating sequences.
324 int sqlite3ExprCollSeqMatch(Parse *pParse, const Expr *pE1, const Expr *pE2){
325 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1);
326 CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2);
327 return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0;
331 ** pExpr is an operand of a comparison operator. aff2 is the
332 ** type affinity of the other operand. This routine returns the
333 ** type affinity that should be used for the comparison operator.
335 char sqlite3CompareAffinity(const Expr *pExpr, char aff2){
336 char aff1 = sqlite3ExprAffinity(pExpr);
337 if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){
338 /* Both sides of the comparison are columns. If one has numeric
339 ** affinity, use that. Otherwise use no affinity.
341 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
342 return SQLITE_AFF_NUMERIC;
343 }else{
344 return SQLITE_AFF_BLOB;
346 }else{
347 /* One side is a column, the other is not. Use the columns affinity. */
348 assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE );
349 return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE;
354 ** pExpr is a comparison operator. Return the type affinity that should
355 ** be applied to both operands prior to doing the comparison.
357 static char comparisonAffinity(const Expr *pExpr){
358 char aff;
359 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
360 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
361 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
362 assert( pExpr->pLeft );
363 aff = sqlite3ExprAffinity(pExpr->pLeft);
364 if( pExpr->pRight ){
365 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
366 }else if( ExprUseXSelect(pExpr) ){
367 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
368 }else if( aff==0 ){
369 aff = SQLITE_AFF_BLOB;
371 return aff;
375 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
376 ** idx_affinity is the affinity of an indexed column. Return true
377 ** if the index with affinity idx_affinity may be used to implement
378 ** the comparison in pExpr.
380 int sqlite3IndexAffinityOk(const Expr *pExpr, char idx_affinity){
381 char aff = comparisonAffinity(pExpr);
382 if( aff<SQLITE_AFF_TEXT ){
383 return 1;
385 if( aff==SQLITE_AFF_TEXT ){
386 return idx_affinity==SQLITE_AFF_TEXT;
388 return sqlite3IsNumericAffinity(idx_affinity);
392 ** Return the P5 value that should be used for a binary comparison
393 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
395 static u8 binaryCompareP5(
396 const Expr *pExpr1, /* Left operand */
397 const Expr *pExpr2, /* Right operand */
398 int jumpIfNull /* Extra flags added to P5 */
400 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
401 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
402 return aff;
406 ** Return a pointer to the collation sequence that should be used by
407 ** a binary comparison operator comparing pLeft and pRight.
409 ** If the left hand expression has a collating sequence type, then it is
410 ** used. Otherwise the collation sequence for the right hand expression
411 ** is used, or the default (BINARY) if neither expression has a collating
412 ** type.
414 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
415 ** it is not considered.
417 CollSeq *sqlite3BinaryCompareCollSeq(
418 Parse *pParse,
419 const Expr *pLeft,
420 const Expr *pRight
422 CollSeq *pColl;
423 assert( pLeft );
424 if( pLeft->flags & EP_Collate ){
425 pColl = sqlite3ExprCollSeq(pParse, pLeft);
426 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
427 pColl = sqlite3ExprCollSeq(pParse, pRight);
428 }else{
429 pColl = sqlite3ExprCollSeq(pParse, pLeft);
430 if( !pColl ){
431 pColl = sqlite3ExprCollSeq(pParse, pRight);
434 return pColl;
437 /* Expresssion p is a comparison operator. Return a collation sequence
438 ** appropriate for the comparison operator.
440 ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq().
441 ** However, if the OP_Commuted flag is set, then the order of the operands
442 ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the
443 ** correct collating sequence is found.
445 CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, const Expr *p){
446 if( ExprHasProperty(p, EP_Commuted) ){
447 return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft);
448 }else{
449 return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight);
454 ** Generate code for a comparison operator.
456 static int codeCompare(
457 Parse *pParse, /* The parsing (and code generating) context */
458 Expr *pLeft, /* The left operand */
459 Expr *pRight, /* The right operand */
460 int opcode, /* The comparison opcode */
461 int in1, int in2, /* Register holding operands */
462 int dest, /* Jump here if true. */
463 int jumpIfNull, /* If true, jump if either operand is NULL */
464 int isCommuted /* The comparison has been commuted */
466 int p5;
467 int addr;
468 CollSeq *p4;
470 if( pParse->nErr ) return 0;
471 if( isCommuted ){
472 p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft);
473 }else{
474 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
476 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
477 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
478 (void*)p4, P4_COLLSEQ);
479 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
480 return addr;
484 ** Return true if expression pExpr is a vector, or false otherwise.
486 ** A vector is defined as any expression that results in two or more
487 ** columns of result. Every TK_VECTOR node is an vector because the
488 ** parser will not generate a TK_VECTOR with fewer than two entries.
489 ** But a TK_SELECT might be either a vector or a scalar. It is only
490 ** considered a vector if it has two or more result columns.
492 int sqlite3ExprIsVector(const Expr *pExpr){
493 return sqlite3ExprVectorSize(pExpr)>1;
497 ** If the expression passed as the only argument is of type TK_VECTOR
498 ** return the number of expressions in the vector. Or, if the expression
499 ** is a sub-select, return the number of columns in the sub-select. For
500 ** any other type of expression, return 1.
502 int sqlite3ExprVectorSize(const Expr *pExpr){
503 u8 op = pExpr->op;
504 if( op==TK_REGISTER ) op = pExpr->op2;
505 if( op==TK_VECTOR ){
506 assert( ExprUseXList(pExpr) );
507 return pExpr->x.pList->nExpr;
508 }else if( op==TK_SELECT ){
509 assert( ExprUseXSelect(pExpr) );
510 return pExpr->x.pSelect->pEList->nExpr;
511 }else{
512 return 1;
517 ** Return a pointer to a subexpression of pVector that is the i-th
518 ** column of the vector (numbered starting with 0). The caller must
519 ** ensure that i is within range.
521 ** If pVector is really a scalar (and "scalar" here includes subqueries
522 ** that return a single column!) then return pVector unmodified.
524 ** pVector retains ownership of the returned subexpression.
526 ** If the vector is a (SELECT ...) then the expression returned is
527 ** just the expression for the i-th term of the result set, and may
528 ** not be ready for evaluation because the table cursor has not yet
529 ** been positioned.
531 Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){
532 assert( i<sqlite3ExprVectorSize(pVector) || pVector->op==TK_ERROR );
533 if( sqlite3ExprIsVector(pVector) ){
534 assert( pVector->op2==0 || pVector->op==TK_REGISTER );
535 if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){
536 assert( ExprUseXSelect(pVector) );
537 return pVector->x.pSelect->pEList->a[i].pExpr;
538 }else{
539 assert( ExprUseXList(pVector) );
540 return pVector->x.pList->a[i].pExpr;
543 return pVector;
547 ** Compute and return a new Expr object which when passed to
548 ** sqlite3ExprCode() will generate all necessary code to compute
549 ** the iField-th column of the vector expression pVector.
551 ** It is ok for pVector to be a scalar (as long as iField==0).
552 ** In that case, this routine works like sqlite3ExprDup().
554 ** The caller owns the returned Expr object and is responsible for
555 ** ensuring that the returned value eventually gets freed.
557 ** The caller retains ownership of pVector. If pVector is a TK_SELECT,
558 ** then the returned object will reference pVector and so pVector must remain
559 ** valid for the life of the returned object. If pVector is a TK_VECTOR
560 ** or a scalar expression, then it can be deleted as soon as this routine
561 ** returns.
563 ** A trick to cause a TK_SELECT pVector to be deleted together with
564 ** the returned Expr object is to attach the pVector to the pRight field
565 ** of the returned TK_SELECT_COLUMN Expr object.
567 Expr *sqlite3ExprForVectorField(
568 Parse *pParse, /* Parsing context */
569 Expr *pVector, /* The vector. List of expressions or a sub-SELECT */
570 int iField, /* Which column of the vector to return */
571 int nField /* Total number of columns in the vector */
573 Expr *pRet;
574 if( pVector->op==TK_SELECT ){
575 assert( ExprUseXSelect(pVector) );
576 /* The TK_SELECT_COLUMN Expr node:
578 ** pLeft: pVector containing TK_SELECT. Not deleted.
579 ** pRight: not used. But recursively deleted.
580 ** iColumn: Index of a column in pVector
581 ** iTable: 0 or the number of columns on the LHS of an assignment
582 ** pLeft->iTable: First in an array of register holding result, or 0
583 ** if the result is not yet computed.
585 ** sqlite3ExprDelete() specifically skips the recursive delete of
586 ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector
587 ** can be attached to pRight to cause this node to take ownership of
588 ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes
589 ** with the same pLeft pointer to the pVector, but only one of them
590 ** will own the pVector.
592 pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0);
593 if( pRet ){
594 pRet->iTable = nField;
595 pRet->iColumn = iField;
596 pRet->pLeft = pVector;
598 }else{
599 if( pVector->op==TK_VECTOR ){
600 Expr **ppVector;
601 assert( ExprUseXList(pVector) );
602 ppVector = &pVector->x.pList->a[iField].pExpr;
603 pVector = *ppVector;
604 if( IN_RENAME_OBJECT ){
605 /* This must be a vector UPDATE inside a trigger */
606 *ppVector = 0;
607 return pVector;
610 pRet = sqlite3ExprDup(pParse->db, pVector, 0);
612 return pRet;
616 ** If expression pExpr is of type TK_SELECT, generate code to evaluate
617 ** it. Return the register in which the result is stored (or, if the
618 ** sub-select returns more than one column, the first in an array
619 ** of registers in which the result is stored).
621 ** If pExpr is not a TK_SELECT expression, return 0.
623 static int exprCodeSubselect(Parse *pParse, Expr *pExpr){
624 int reg = 0;
625 #ifndef SQLITE_OMIT_SUBQUERY
626 if( pExpr->op==TK_SELECT ){
627 reg = sqlite3CodeSubselect(pParse, pExpr);
629 #endif
630 return reg;
634 ** Argument pVector points to a vector expression - either a TK_VECTOR
635 ** or TK_SELECT that returns more than one column. This function returns
636 ** the register number of a register that contains the value of
637 ** element iField of the vector.
639 ** If pVector is a TK_SELECT expression, then code for it must have
640 ** already been generated using the exprCodeSubselect() routine. In this
641 ** case parameter regSelect should be the first in an array of registers
642 ** containing the results of the sub-select.
644 ** If pVector is of type TK_VECTOR, then code for the requested field
645 ** is generated. In this case (*pRegFree) may be set to the number of
646 ** a temporary register to be freed by the caller before returning.
648 ** Before returning, output parameter (*ppExpr) is set to point to the
649 ** Expr object corresponding to element iElem of the vector.
651 static int exprVectorRegister(
652 Parse *pParse, /* Parse context */
653 Expr *pVector, /* Vector to extract element from */
654 int iField, /* Field to extract from pVector */
655 int regSelect, /* First in array of registers */
656 Expr **ppExpr, /* OUT: Expression element */
657 int *pRegFree /* OUT: Temp register to free */
659 u8 op = pVector->op;
660 assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT || op==TK_ERROR );
661 if( op==TK_REGISTER ){
662 *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField);
663 return pVector->iTable+iField;
665 if( op==TK_SELECT ){
666 assert( ExprUseXSelect(pVector) );
667 *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr;
668 return regSelect+iField;
670 if( op==TK_VECTOR ){
671 assert( ExprUseXList(pVector) );
672 *ppExpr = pVector->x.pList->a[iField].pExpr;
673 return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree);
675 return 0;
679 ** Expression pExpr is a comparison between two vector values. Compute
680 ** the result of the comparison (1, 0, or NULL) and write that
681 ** result into register dest.
683 ** The caller must satisfy the following preconditions:
685 ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ
686 ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ
687 ** otherwise: op==pExpr->op and p5==0
689 static void codeVectorCompare(
690 Parse *pParse, /* Code generator context */
691 Expr *pExpr, /* The comparison operation */
692 int dest, /* Write results into this register */
693 u8 op, /* Comparison operator */
694 u8 p5 /* SQLITE_NULLEQ or zero */
696 Vdbe *v = pParse->pVdbe;
697 Expr *pLeft = pExpr->pLeft;
698 Expr *pRight = pExpr->pRight;
699 int nLeft = sqlite3ExprVectorSize(pLeft);
700 int i;
701 int regLeft = 0;
702 int regRight = 0;
703 u8 opx = op;
704 int addrCmp = 0;
705 int addrDone = sqlite3VdbeMakeLabel(pParse);
706 int isCommuted = ExprHasProperty(pExpr,EP_Commuted);
708 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
709 if( pParse->nErr ) return;
710 if( nLeft!=sqlite3ExprVectorSize(pRight) ){
711 sqlite3ErrorMsg(pParse, "row value misused");
712 return;
714 assert( pExpr->op==TK_EQ || pExpr->op==TK_NE
715 || pExpr->op==TK_IS || pExpr->op==TK_ISNOT
716 || pExpr->op==TK_LT || pExpr->op==TK_GT
717 || pExpr->op==TK_LE || pExpr->op==TK_GE
719 assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ)
720 || (pExpr->op==TK_ISNOT && op==TK_NE) );
721 assert( p5==0 || pExpr->op!=op );
722 assert( p5==SQLITE_NULLEQ || pExpr->op==op );
724 if( op==TK_LE ) opx = TK_LT;
725 if( op==TK_GE ) opx = TK_GT;
726 if( op==TK_NE ) opx = TK_EQ;
728 regLeft = exprCodeSubselect(pParse, pLeft);
729 regRight = exprCodeSubselect(pParse, pRight);
731 sqlite3VdbeAddOp2(v, OP_Integer, 1, dest);
732 for(i=0; 1 /*Loop exits by "break"*/; i++){
733 int regFree1 = 0, regFree2 = 0;
734 Expr *pL = 0, *pR = 0;
735 int r1, r2;
736 assert( i>=0 && i<nLeft );
737 if( addrCmp ) sqlite3VdbeJumpHere(v, addrCmp);
738 r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, &regFree1);
739 r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, &regFree2);
740 addrCmp = sqlite3VdbeCurrentAddr(v);
741 codeCompare(pParse, pL, pR, opx, r1, r2, addrDone, p5, isCommuted);
742 testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
743 testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
744 testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
745 testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
746 testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
747 testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
748 sqlite3ReleaseTempReg(pParse, regFree1);
749 sqlite3ReleaseTempReg(pParse, regFree2);
750 if( (opx==TK_LT || opx==TK_GT) && i<nLeft-1 ){
751 addrCmp = sqlite3VdbeAddOp0(v, OP_ElseEq);
752 testcase(opx==TK_LT); VdbeCoverageIf(v,opx==TK_LT);
753 testcase(opx==TK_GT); VdbeCoverageIf(v,opx==TK_GT);
755 if( p5==SQLITE_NULLEQ ){
756 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest);
757 }else{
758 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, dest, r2);
760 if( i==nLeft-1 ){
761 break;
763 if( opx==TK_EQ ){
764 sqlite3VdbeAddOp2(v, OP_NotNull, dest, addrDone); VdbeCoverage(v);
765 }else{
766 assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE );
767 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
768 if( i==nLeft-2 ) opx = op;
771 sqlite3VdbeJumpHere(v, addrCmp);
772 sqlite3VdbeResolveLabel(v, addrDone);
773 if( op==TK_NE ){
774 sqlite3VdbeAddOp2(v, OP_Not, dest, dest);
778 #if SQLITE_MAX_EXPR_DEPTH>0
780 ** Check that argument nHeight is less than or equal to the maximum
781 ** expression depth allowed. If it is not, leave an error message in
782 ** pParse.
784 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
785 int rc = SQLITE_OK;
786 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
787 if( nHeight>mxHeight ){
788 sqlite3ErrorMsg(pParse,
789 "Expression tree is too large (maximum depth %d)", mxHeight
791 rc = SQLITE_ERROR;
793 return rc;
796 /* The following three functions, heightOfExpr(), heightOfExprList()
797 ** and heightOfSelect(), are used to determine the maximum height
798 ** of any expression tree referenced by the structure passed as the
799 ** first argument.
801 ** If this maximum height is greater than the current value pointed
802 ** to by pnHeight, the second parameter, then set *pnHeight to that
803 ** value.
805 static void heightOfExpr(const Expr *p, int *pnHeight){
806 if( p ){
807 if( p->nHeight>*pnHeight ){
808 *pnHeight = p->nHeight;
812 static void heightOfExprList(const ExprList *p, int *pnHeight){
813 if( p ){
814 int i;
815 for(i=0; i<p->nExpr; i++){
816 heightOfExpr(p->a[i].pExpr, pnHeight);
820 static void heightOfSelect(const Select *pSelect, int *pnHeight){
821 const Select *p;
822 for(p=pSelect; p; p=p->pPrior){
823 heightOfExpr(p->pWhere, pnHeight);
824 heightOfExpr(p->pHaving, pnHeight);
825 heightOfExpr(p->pLimit, pnHeight);
826 heightOfExprList(p->pEList, pnHeight);
827 heightOfExprList(p->pGroupBy, pnHeight);
828 heightOfExprList(p->pOrderBy, pnHeight);
833 ** Set the Expr.nHeight variable in the structure passed as an
834 ** argument. An expression with no children, Expr.pList or
835 ** Expr.pSelect member has a height of 1. Any other expression
836 ** has a height equal to the maximum height of any other
837 ** referenced Expr plus one.
839 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
840 ** if appropriate.
842 static void exprSetHeight(Expr *p){
843 int nHeight = p->pLeft ? p->pLeft->nHeight : 0;
844 if( NEVER(p->pRight) && p->pRight->nHeight>nHeight ){
845 nHeight = p->pRight->nHeight;
847 if( ExprUseXSelect(p) ){
848 heightOfSelect(p->x.pSelect, &nHeight);
849 }else if( p->x.pList ){
850 heightOfExprList(p->x.pList, &nHeight);
851 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
853 p->nHeight = nHeight + 1;
857 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
858 ** the height is greater than the maximum allowed expression depth,
859 ** leave an error in pParse.
861 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
862 ** Expr.flags.
864 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
865 if( pParse->nErr ) return;
866 exprSetHeight(p);
867 sqlite3ExprCheckHeight(pParse, p->nHeight);
871 ** Return the maximum height of any expression tree referenced
872 ** by the select statement passed as an argument.
874 int sqlite3SelectExprHeight(const Select *p){
875 int nHeight = 0;
876 heightOfSelect(p, &nHeight);
877 return nHeight;
879 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
881 ** Propagate all EP_Propagate flags from the Expr.x.pList into
882 ** Expr.flags.
884 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
885 if( pParse->nErr ) return;
886 if( p && ExprUseXList(p) && p->x.pList ){
887 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
890 #define exprSetHeight(y)
891 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
894 ** This routine is the core allocator for Expr nodes.
896 ** Construct a new expression node and return a pointer to it. Memory
897 ** for this node and for the pToken argument is a single allocation
898 ** obtained from sqlite3DbMalloc(). The calling function
899 ** is responsible for making sure the node eventually gets freed.
901 ** If dequote is true, then the token (if it exists) is dequoted.
902 ** If dequote is false, no dequoting is performed. The deQuote
903 ** parameter is ignored if pToken is NULL or if the token does not
904 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
905 ** then the EP_DblQuoted flag is set on the expression node.
907 ** Special case: If op==TK_INTEGER and pToken points to a string that
908 ** can be translated into a 32-bit integer, then the token is not
909 ** stored in u.zToken. Instead, the integer values is written
910 ** into u.iValue and the EP_IntValue flag is set. No extra storage
911 ** is allocated to hold the integer text and the dequote flag is ignored.
913 Expr *sqlite3ExprAlloc(
914 sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */
915 int op, /* Expression opcode */
916 const Token *pToken, /* Token argument. Might be NULL */
917 int dequote /* True to dequote */
919 Expr *pNew;
920 int nExtra = 0;
921 int iValue = 0;
923 assert( db!=0 );
924 if( pToken ){
925 if( op!=TK_INTEGER || pToken->z==0
926 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
927 nExtra = pToken->n+1;
928 assert( iValue>=0 );
931 pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra);
932 if( pNew ){
933 memset(pNew, 0, sizeof(Expr));
934 pNew->op = (u8)op;
935 pNew->iAgg = -1;
936 if( pToken ){
937 if( nExtra==0 ){
938 pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse);
939 pNew->u.iValue = iValue;
940 }else{
941 pNew->u.zToken = (char*)&pNew[1];
942 assert( pToken->z!=0 || pToken->n==0 );
943 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
944 pNew->u.zToken[pToken->n] = 0;
945 if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){
946 sqlite3DequoteExpr(pNew);
950 #if SQLITE_MAX_EXPR_DEPTH>0
951 pNew->nHeight = 1;
952 #endif
954 return pNew;
958 ** Allocate a new expression node from a zero-terminated token that has
959 ** already been dequoted.
961 Expr *sqlite3Expr(
962 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
963 int op, /* Expression opcode */
964 const char *zToken /* Token argument. Might be NULL */
966 Token x;
967 x.z = zToken;
968 x.n = sqlite3Strlen30(zToken);
969 return sqlite3ExprAlloc(db, op, &x, 0);
973 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
975 ** If pRoot==NULL that means that a memory allocation error has occurred.
976 ** In that case, delete the subtrees pLeft and pRight.
978 void sqlite3ExprAttachSubtrees(
979 sqlite3 *db,
980 Expr *pRoot,
981 Expr *pLeft,
982 Expr *pRight
984 if( pRoot==0 ){
985 assert( db->mallocFailed );
986 sqlite3ExprDelete(db, pLeft);
987 sqlite3ExprDelete(db, pRight);
988 }else{
989 assert( ExprUseXList(pRoot) );
990 assert( pRoot->x.pSelect==0 );
991 if( pRight ){
992 pRoot->pRight = pRight;
993 pRoot->flags |= EP_Propagate & pRight->flags;
994 #if SQLITE_MAX_EXPR_DEPTH>0
995 pRoot->nHeight = pRight->nHeight+1;
996 }else{
997 pRoot->nHeight = 1;
998 #endif
1000 if( pLeft ){
1001 pRoot->pLeft = pLeft;
1002 pRoot->flags |= EP_Propagate & pLeft->flags;
1003 #if SQLITE_MAX_EXPR_DEPTH>0
1004 if( pLeft->nHeight>=pRoot->nHeight ){
1005 pRoot->nHeight = pLeft->nHeight+1;
1007 #endif
1013 ** Allocate an Expr node which joins as many as two subtrees.
1015 ** One or both of the subtrees can be NULL. Return a pointer to the new
1016 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
1017 ** free the subtrees and return NULL.
1019 Expr *sqlite3PExpr(
1020 Parse *pParse, /* Parsing context */
1021 int op, /* Expression opcode */
1022 Expr *pLeft, /* Left operand */
1023 Expr *pRight /* Right operand */
1025 Expr *p;
1026 p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr));
1027 if( p ){
1028 memset(p, 0, sizeof(Expr));
1029 p->op = op & 0xff;
1030 p->iAgg = -1;
1031 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
1032 sqlite3ExprCheckHeight(pParse, p->nHeight);
1033 }else{
1034 sqlite3ExprDelete(pParse->db, pLeft);
1035 sqlite3ExprDelete(pParse->db, pRight);
1037 return p;
1041 ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due
1042 ** do a memory allocation failure) then delete the pSelect object.
1044 void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){
1045 if( pExpr ){
1046 pExpr->x.pSelect = pSelect;
1047 ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery);
1048 sqlite3ExprSetHeightAndFlags(pParse, pExpr);
1049 }else{
1050 assert( pParse->db->mallocFailed );
1051 sqlite3SelectDelete(pParse->db, pSelect);
1056 ** Expression list pEList is a list of vector values. This function
1057 ** converts the contents of pEList to a VALUES(...) Select statement
1058 ** returning 1 row for each element of the list. For example, the
1059 ** expression list:
1061 ** ( (1,2), (3,4) (5,6) )
1063 ** is translated to the equivalent of:
1065 ** VALUES(1,2), (3,4), (5,6)
1067 ** Each of the vector values in pEList must contain exactly nElem terms.
1068 ** If a list element that is not a vector or does not contain nElem terms,
1069 ** an error message is left in pParse.
1071 ** This is used as part of processing IN(...) expressions with a list
1072 ** of vectors on the RHS. e.g. "... IN ((1,2), (3,4), (5,6))".
1074 Select *sqlite3ExprListToValues(Parse *pParse, int nElem, ExprList *pEList){
1075 int ii;
1076 Select *pRet = 0;
1077 assert( nElem>1 );
1078 for(ii=0; ii<pEList->nExpr; ii++){
1079 Select *pSel;
1080 Expr *pExpr = pEList->a[ii].pExpr;
1081 int nExprElem;
1082 if( pExpr->op==TK_VECTOR ){
1083 assert( ExprUseXList(pExpr) );
1084 nExprElem = pExpr->x.pList->nExpr;
1085 }else{
1086 nExprElem = 1;
1088 if( nExprElem!=nElem ){
1089 sqlite3ErrorMsg(pParse, "IN(...) element has %d term%s - expected %d",
1090 nExprElem, nExprElem>1?"s":"", nElem
1092 break;
1094 assert( ExprUseXList(pExpr) );
1095 pSel = sqlite3SelectNew(pParse, pExpr->x.pList, 0, 0, 0, 0, 0, SF_Values,0);
1096 pExpr->x.pList = 0;
1097 if( pSel ){
1098 if( pRet ){
1099 pSel->op = TK_ALL;
1100 pSel->pPrior = pRet;
1102 pRet = pSel;
1106 if( pRet && pRet->pPrior ){
1107 pRet->selFlags |= SF_MultiValue;
1109 sqlite3ExprListDelete(pParse->db, pEList);
1110 return pRet;
1114 ** Join two expressions using an AND operator. If either expression is
1115 ** NULL, then just return the other expression.
1117 ** If one side or the other of the AND is known to be false, then instead
1118 ** of returning an AND expression, just return a constant expression with
1119 ** a value of false.
1121 Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){
1122 sqlite3 *db = pParse->db;
1123 if( pLeft==0 ){
1124 return pRight;
1125 }else if( pRight==0 ){
1126 return pLeft;
1127 }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight))
1128 && !IN_RENAME_OBJECT
1130 sqlite3ExprDeferredDelete(pParse, pLeft);
1131 sqlite3ExprDeferredDelete(pParse, pRight);
1132 return sqlite3Expr(db, TK_INTEGER, "0");
1133 }else{
1134 return sqlite3PExpr(pParse, TK_AND, pLeft, pRight);
1139 ** Construct a new expression node for a function with multiple
1140 ** arguments.
1142 Expr *sqlite3ExprFunction(
1143 Parse *pParse, /* Parsing context */
1144 ExprList *pList, /* Argument list */
1145 const Token *pToken, /* Name of the function */
1146 int eDistinct /* SF_Distinct or SF_ALL or 0 */
1148 Expr *pNew;
1149 sqlite3 *db = pParse->db;
1150 assert( pToken );
1151 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
1152 if( pNew==0 ){
1153 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
1154 return 0;
1156 assert( !ExprHasProperty(pNew, EP_InnerON|EP_OuterON) );
1157 pNew->w.iOfst = (int)(pToken->z - pParse->zTail);
1158 if( pList
1159 && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG]
1160 && !pParse->nested
1162 sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken);
1164 pNew->x.pList = pList;
1165 ExprSetProperty(pNew, EP_HasFunc);
1166 assert( ExprUseXList(pNew) );
1167 sqlite3ExprSetHeightAndFlags(pParse, pNew);
1168 if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct);
1169 return pNew;
1173 ** Check to see if a function is usable according to current access
1174 ** rules:
1176 ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL
1178 ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from
1179 ** top-level SQL
1181 ** If the function is not usable, create an error.
1183 void sqlite3ExprFunctionUsable(
1184 Parse *pParse, /* Parsing and code generating context */
1185 const Expr *pExpr, /* The function invocation */
1186 const FuncDef *pDef /* The function being invoked */
1188 assert( !IN_RENAME_OBJECT );
1189 assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 );
1190 if( ExprHasProperty(pExpr, EP_FromDDL) ){
1191 if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0
1192 || (pParse->db->flags & SQLITE_TrustedSchema)==0
1194 /* Functions prohibited in triggers and views if:
1195 ** (1) tagged with SQLITE_DIRECTONLY
1196 ** (2) not tagged with SQLITE_INNOCUOUS (which means it
1197 ** is tagged with SQLITE_FUNC_UNSAFE) and
1198 ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning
1199 ** that the schema is possibly tainted).
1201 sqlite3ErrorMsg(pParse, "unsafe use of %#T()", pExpr);
1207 ** Assign a variable number to an expression that encodes a wildcard
1208 ** in the original SQL statement.
1210 ** Wildcards consisting of a single "?" are assigned the next sequential
1211 ** variable number.
1213 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
1214 ** sure "nnn" is not too big to avoid a denial of service attack when
1215 ** the SQL statement comes from an external source.
1217 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
1218 ** as the previous instance of the same wildcard. Or if this is the first
1219 ** instance of the wildcard, the next sequential variable number is
1220 ** assigned.
1222 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){
1223 sqlite3 *db = pParse->db;
1224 const char *z;
1225 ynVar x;
1227 if( pExpr==0 ) return;
1228 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
1229 z = pExpr->u.zToken;
1230 assert( z!=0 );
1231 assert( z[0]!=0 );
1232 assert( n==(u32)sqlite3Strlen30(z) );
1233 if( z[1]==0 ){
1234 /* Wildcard of the form "?". Assign the next variable number */
1235 assert( z[0]=='?' );
1236 x = (ynVar)(++pParse->nVar);
1237 }else{
1238 int doAdd = 0;
1239 if( z[0]=='?' ){
1240 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
1241 ** use it as the variable number */
1242 i64 i;
1243 int bOk;
1244 if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/
1245 i = z[1]-'0'; /* The common case of ?N for a single digit N */
1246 bOk = 1;
1247 }else{
1248 bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
1250 testcase( i==0 );
1251 testcase( i==1 );
1252 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
1253 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
1254 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1255 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
1256 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
1257 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1258 return;
1260 x = (ynVar)i;
1261 if( x>pParse->nVar ){
1262 pParse->nVar = (int)x;
1263 doAdd = 1;
1264 }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){
1265 doAdd = 1;
1267 }else{
1268 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
1269 ** number as the prior appearance of the same name, or if the name
1270 ** has never appeared before, reuse the same variable number
1272 x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n);
1273 if( x==0 ){
1274 x = (ynVar)(++pParse->nVar);
1275 doAdd = 1;
1278 if( doAdd ){
1279 pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x);
1282 pExpr->iColumn = x;
1283 if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
1284 sqlite3ErrorMsg(pParse, "too many SQL variables");
1285 sqlite3RecordErrorOffsetOfExpr(pParse->db, pExpr);
1290 ** Recursively delete an expression tree.
1292 static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){
1293 assert( p!=0 );
1294 assert( db!=0 );
1295 assert( !ExprUseUValue(p) || p->u.iValue>=0 );
1296 assert( !ExprUseYWin(p) || !ExprUseYSub(p) );
1297 assert( !ExprUseYWin(p) || p->y.pWin!=0 || db->mallocFailed );
1298 assert( p->op!=TK_FUNCTION || !ExprUseYSub(p) );
1299 #ifdef SQLITE_DEBUG
1300 if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){
1301 assert( p->pLeft==0 );
1302 assert( p->pRight==0 );
1303 assert( !ExprUseXSelect(p) || p->x.pSelect==0 );
1304 assert( !ExprUseXList(p) || p->x.pList==0 );
1306 #endif
1307 if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){
1308 /* The Expr.x union is never used at the same time as Expr.pRight */
1309 assert( (ExprUseXList(p) && p->x.pList==0) || p->pRight==0 );
1310 if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft);
1311 if( p->pRight ){
1312 assert( !ExprHasProperty(p, EP_WinFunc) );
1313 sqlite3ExprDeleteNN(db, p->pRight);
1314 }else if( ExprUseXSelect(p) ){
1315 assert( !ExprHasProperty(p, EP_WinFunc) );
1316 sqlite3SelectDelete(db, p->x.pSelect);
1317 }else{
1318 sqlite3ExprListDelete(db, p->x.pList);
1319 #ifndef SQLITE_OMIT_WINDOWFUNC
1320 if( ExprHasProperty(p, EP_WinFunc) ){
1321 sqlite3WindowDelete(db, p->y.pWin);
1323 #endif
1326 if( !ExprHasProperty(p, EP_Static) ){
1327 sqlite3DbNNFreeNN(db, p);
1330 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
1331 if( p ) sqlite3ExprDeleteNN(db, p);
1335 ** Clear both elements of an OnOrUsing object
1337 void sqlite3ClearOnOrUsing(sqlite3 *db, OnOrUsing *p){
1338 if( p==0 ){
1339 /* Nothing to clear */
1340 }else if( p->pOn ){
1341 sqlite3ExprDeleteNN(db, p->pOn);
1342 }else if( p->pUsing ){
1343 sqlite3IdListDelete(db, p->pUsing);
1348 ** Arrange to cause pExpr to be deleted when the pParse is deleted.
1349 ** This is similar to sqlite3ExprDelete() except that the delete is
1350 ** deferred untilthe pParse is deleted.
1352 ** The pExpr might be deleted immediately on an OOM error.
1354 ** The deferred delete is (currently) implemented by adding the
1355 ** pExpr to the pParse->pConstExpr list with a register number of 0.
1357 void sqlite3ExprDeferredDelete(Parse *pParse, Expr *pExpr){
1358 sqlite3ParserAddCleanup(pParse,
1359 (void(*)(sqlite3*,void*))sqlite3ExprDelete,
1360 pExpr);
1363 /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the
1364 ** expression.
1366 void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){
1367 if( p ){
1368 if( IN_RENAME_OBJECT ){
1369 sqlite3RenameExprUnmap(pParse, p);
1371 sqlite3ExprDeleteNN(pParse->db, p);
1376 ** Return the number of bytes allocated for the expression structure
1377 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
1378 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
1380 static int exprStructSize(const Expr *p){
1381 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
1382 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
1383 return EXPR_FULLSIZE;
1387 ** The dupedExpr*Size() routines each return the number of bytes required
1388 ** to store a copy of an expression or expression tree. They differ in
1389 ** how much of the tree is measured.
1391 ** dupedExprStructSize() Size of only the Expr structure
1392 ** dupedExprNodeSize() Size of Expr + space for token
1393 ** dupedExprSize() Expr + token + subtree components
1395 ***************************************************************************
1397 ** The dupedExprStructSize() function returns two values OR-ed together:
1398 ** (1) the space required for a copy of the Expr structure only and
1399 ** (2) the EP_xxx flags that indicate what the structure size should be.
1400 ** The return values is always one of:
1402 ** EXPR_FULLSIZE
1403 ** EXPR_REDUCEDSIZE | EP_Reduced
1404 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
1406 ** The size of the structure can be found by masking the return value
1407 ** of this routine with 0xfff. The flags can be found by masking the
1408 ** return value with EP_Reduced|EP_TokenOnly.
1410 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
1411 ** (unreduced) Expr objects as they or originally constructed by the parser.
1412 ** During expression analysis, extra information is computed and moved into
1413 ** later parts of the Expr object and that extra information might get chopped
1414 ** off if the expression is reduced. Note also that it does not work to
1415 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
1416 ** to reduce a pristine expression tree from the parser. The implementation
1417 ** of dupedExprStructSize() contain multiple assert() statements that attempt
1418 ** to enforce this constraint.
1420 static int dupedExprStructSize(const Expr *p, int flags){
1421 int nSize;
1422 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
1423 assert( EXPR_FULLSIZE<=0xfff );
1424 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
1425 if( 0==flags || p->op==TK_SELECT_COLUMN
1426 #ifndef SQLITE_OMIT_WINDOWFUNC
1427 || ExprHasProperty(p, EP_WinFunc)
1428 #endif
1430 nSize = EXPR_FULLSIZE;
1431 }else{
1432 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
1433 assert( !ExprHasProperty(p, EP_OuterON) );
1434 assert( !ExprHasVVAProperty(p, EP_NoReduce) );
1435 if( p->pLeft || p->x.pList ){
1436 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
1437 }else{
1438 assert( p->pRight==0 );
1439 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
1442 return nSize;
1446 ** This function returns the space in bytes required to store the copy
1447 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
1448 ** string is defined.)
1450 static int dupedExprNodeSize(const Expr *p, int flags){
1451 int nByte = dupedExprStructSize(p, flags) & 0xfff;
1452 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1453 nByte += sqlite3Strlen30NN(p->u.zToken)+1;
1455 return ROUND8(nByte);
1459 ** Return the number of bytes required to create a duplicate of the
1460 ** expression passed as the first argument. The second argument is a
1461 ** mask containing EXPRDUP_XXX flags.
1463 ** The value returned includes space to create a copy of the Expr struct
1464 ** itself and the buffer referred to by Expr.u.zToken, if any.
1466 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
1467 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
1468 ** and Expr.pRight variables (but not for any structures pointed to or
1469 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
1471 static int dupedExprSize(const Expr *p, int flags){
1472 int nByte = 0;
1473 if( p ){
1474 nByte = dupedExprNodeSize(p, flags);
1475 if( flags&EXPRDUP_REDUCE ){
1476 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
1479 return nByte;
1483 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
1484 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
1485 ** to store the copy of expression p, the copies of p->u.zToken
1486 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
1487 ** if any. Before returning, *pzBuffer is set to the first byte past the
1488 ** portion of the buffer copied into by this function.
1490 static Expr *exprDup(sqlite3 *db, const Expr *p, int dupFlags, u8 **pzBuffer){
1491 Expr *pNew; /* Value to return */
1492 u8 *zAlloc; /* Memory space from which to build Expr object */
1493 u32 staticFlag; /* EP_Static if space not obtained from malloc */
1495 assert( db!=0 );
1496 assert( p );
1497 assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE );
1498 assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE );
1500 /* Figure out where to write the new Expr structure. */
1501 if( pzBuffer ){
1502 zAlloc = *pzBuffer;
1503 staticFlag = EP_Static;
1504 assert( zAlloc!=0 );
1505 }else{
1506 zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags));
1507 staticFlag = 0;
1509 pNew = (Expr *)zAlloc;
1511 if( pNew ){
1512 /* Set nNewSize to the size allocated for the structure pointed to
1513 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
1514 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
1515 ** by the copy of the p->u.zToken string (if any).
1517 const unsigned nStructSize = dupedExprStructSize(p, dupFlags);
1518 const int nNewSize = nStructSize & 0xfff;
1519 int nToken;
1520 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
1521 nToken = sqlite3Strlen30(p->u.zToken) + 1;
1522 }else{
1523 nToken = 0;
1525 if( dupFlags ){
1526 assert( ExprHasProperty(p, EP_Reduced)==0 );
1527 memcpy(zAlloc, p, nNewSize);
1528 }else{
1529 u32 nSize = (u32)exprStructSize(p);
1530 memcpy(zAlloc, p, nSize);
1531 if( nSize<EXPR_FULLSIZE ){
1532 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
1536 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
1537 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
1538 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
1539 pNew->flags |= staticFlag;
1540 ExprClearVVAProperties(pNew);
1541 if( dupFlags ){
1542 ExprSetVVAProperty(pNew, EP_Immutable);
1545 /* Copy the p->u.zToken string, if any. */
1546 if( nToken ){
1547 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
1548 memcpy(zToken, p->u.zToken, nToken);
1551 if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){
1552 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
1553 if( ExprUseXSelect(p) ){
1554 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags);
1555 }else{
1556 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags);
1560 /* Fill in pNew->pLeft and pNew->pRight. */
1561 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){
1562 zAlloc += dupedExprNodeSize(p, dupFlags);
1563 if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){
1564 pNew->pLeft = p->pLeft ?
1565 exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0;
1566 pNew->pRight = p->pRight ?
1567 exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0;
1569 #ifndef SQLITE_OMIT_WINDOWFUNC
1570 if( ExprHasProperty(p, EP_WinFunc) ){
1571 pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin);
1572 assert( ExprHasProperty(pNew, EP_WinFunc) );
1574 #endif /* SQLITE_OMIT_WINDOWFUNC */
1575 if( pzBuffer ){
1576 *pzBuffer = zAlloc;
1578 }else{
1579 if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){
1580 if( pNew->op==TK_SELECT_COLUMN ){
1581 pNew->pLeft = p->pLeft;
1582 assert( p->pRight==0 || p->pRight==p->pLeft
1583 || ExprHasProperty(p->pLeft, EP_Subquery) );
1584 }else{
1585 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
1587 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
1591 return pNew;
1595 ** Create and return a deep copy of the object passed as the second
1596 ** argument. If an OOM condition is encountered, NULL is returned
1597 ** and the db->mallocFailed flag set.
1599 #ifndef SQLITE_OMIT_CTE
1600 With *sqlite3WithDup(sqlite3 *db, With *p){
1601 With *pRet = 0;
1602 if( p ){
1603 sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
1604 pRet = sqlite3DbMallocZero(db, nByte);
1605 if( pRet ){
1606 int i;
1607 pRet->nCte = p->nCte;
1608 for(i=0; i<p->nCte; i++){
1609 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
1610 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
1611 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
1612 pRet->a[i].eM10d = p->a[i].eM10d;
1616 return pRet;
1618 #else
1619 # define sqlite3WithDup(x,y) 0
1620 #endif
1622 #ifndef SQLITE_OMIT_WINDOWFUNC
1624 ** The gatherSelectWindows() procedure and its helper routine
1625 ** gatherSelectWindowsCallback() are used to scan all the expressions
1626 ** an a newly duplicated SELECT statement and gather all of the Window
1627 ** objects found there, assembling them onto the linked list at Select->pWin.
1629 static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){
1630 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){
1631 Select *pSelect = pWalker->u.pSelect;
1632 Window *pWin = pExpr->y.pWin;
1633 assert( pWin );
1634 assert( IsWindowFunc(pExpr) );
1635 assert( pWin->ppThis==0 );
1636 sqlite3WindowLink(pSelect, pWin);
1638 return WRC_Continue;
1640 static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){
1641 return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune;
1643 static void gatherSelectWindows(Select *p){
1644 Walker w;
1645 w.xExprCallback = gatherSelectWindowsCallback;
1646 w.xSelectCallback = gatherSelectWindowsSelectCallback;
1647 w.xSelectCallback2 = 0;
1648 w.pParse = 0;
1649 w.u.pSelect = p;
1650 sqlite3WalkSelect(&w, p);
1652 #endif
1656 ** The following group of routines make deep copies of expressions,
1657 ** expression lists, ID lists, and select statements. The copies can
1658 ** be deleted (by being passed to their respective ...Delete() routines)
1659 ** without effecting the originals.
1661 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
1662 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
1663 ** by subsequent calls to sqlite*ListAppend() routines.
1665 ** Any tables that the SrcList might point to are not duplicated.
1667 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
1668 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
1669 ** truncated version of the usual Expr structure that will be stored as
1670 ** part of the in-memory representation of the database schema.
1672 Expr *sqlite3ExprDup(sqlite3 *db, const Expr *p, int flags){
1673 assert( flags==0 || flags==EXPRDUP_REDUCE );
1674 return p ? exprDup(db, p, flags, 0) : 0;
1676 ExprList *sqlite3ExprListDup(sqlite3 *db, const ExprList *p, int flags){
1677 ExprList *pNew;
1678 struct ExprList_item *pItem;
1679 const struct ExprList_item *pOldItem;
1680 int i;
1681 Expr *pPriorSelectColOld = 0;
1682 Expr *pPriorSelectColNew = 0;
1683 assert( db!=0 );
1684 if( p==0 ) return 0;
1685 pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p));
1686 if( pNew==0 ) return 0;
1687 pNew->nExpr = p->nExpr;
1688 pNew->nAlloc = p->nAlloc;
1689 pItem = pNew->a;
1690 pOldItem = p->a;
1691 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1692 Expr *pOldExpr = pOldItem->pExpr;
1693 Expr *pNewExpr;
1694 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1695 if( pOldExpr
1696 && pOldExpr->op==TK_SELECT_COLUMN
1697 && (pNewExpr = pItem->pExpr)!=0
1699 if( pNewExpr->pRight ){
1700 pPriorSelectColOld = pOldExpr->pRight;
1701 pPriorSelectColNew = pNewExpr->pRight;
1702 pNewExpr->pLeft = pNewExpr->pRight;
1703 }else{
1704 if( pOldExpr->pLeft!=pPriorSelectColOld ){
1705 pPriorSelectColOld = pOldExpr->pLeft;
1706 pPriorSelectColNew = sqlite3ExprDup(db, pPriorSelectColOld, flags);
1707 pNewExpr->pRight = pPriorSelectColNew;
1709 pNewExpr->pLeft = pPriorSelectColNew;
1712 pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName);
1713 pItem->fg = pOldItem->fg;
1714 pItem->fg.done = 0;
1715 pItem->u = pOldItem->u;
1717 return pNew;
1721 ** If cursors, triggers, views and subqueries are all omitted from
1722 ** the build, then none of the following routines, except for
1723 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1724 ** called with a NULL argument.
1726 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1727 || !defined(SQLITE_OMIT_SUBQUERY)
1728 SrcList *sqlite3SrcListDup(sqlite3 *db, const SrcList *p, int flags){
1729 SrcList *pNew;
1730 int i;
1731 int nByte;
1732 assert( db!=0 );
1733 if( p==0 ) return 0;
1734 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1735 pNew = sqlite3DbMallocRawNN(db, nByte );
1736 if( pNew==0 ) return 0;
1737 pNew->nSrc = pNew->nAlloc = p->nSrc;
1738 for(i=0; i<p->nSrc; i++){
1739 SrcItem *pNewItem = &pNew->a[i];
1740 const SrcItem *pOldItem = &p->a[i];
1741 Table *pTab;
1742 pNewItem->pSchema = pOldItem->pSchema;
1743 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1744 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1745 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1746 pNewItem->fg = pOldItem->fg;
1747 pNewItem->iCursor = pOldItem->iCursor;
1748 pNewItem->addrFillSub = pOldItem->addrFillSub;
1749 pNewItem->regReturn = pOldItem->regReturn;
1750 if( pNewItem->fg.isIndexedBy ){
1751 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1753 pNewItem->u2 = pOldItem->u2;
1754 if( pNewItem->fg.isCte ){
1755 pNewItem->u2.pCteUse->nUse++;
1757 if( pNewItem->fg.isTabFunc ){
1758 pNewItem->u1.pFuncArg =
1759 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1761 pTab = pNewItem->pTab = pOldItem->pTab;
1762 if( pTab ){
1763 pTab->nTabRef++;
1765 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1766 if( pOldItem->fg.isUsing ){
1767 assert( pNewItem->fg.isUsing );
1768 pNewItem->u3.pUsing = sqlite3IdListDup(db, pOldItem->u3.pUsing);
1769 }else{
1770 pNewItem->u3.pOn = sqlite3ExprDup(db, pOldItem->u3.pOn, flags);
1772 pNewItem->colUsed = pOldItem->colUsed;
1774 return pNew;
1776 IdList *sqlite3IdListDup(sqlite3 *db, const IdList *p){
1777 IdList *pNew;
1778 int i;
1779 assert( db!=0 );
1780 if( p==0 ) return 0;
1781 assert( p->eU4!=EU4_EXPR );
1782 pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew)+(p->nId-1)*sizeof(p->a[0]) );
1783 if( pNew==0 ) return 0;
1784 pNew->nId = p->nId;
1785 pNew->eU4 = p->eU4;
1786 for(i=0; i<p->nId; i++){
1787 struct IdList_item *pNewItem = &pNew->a[i];
1788 const struct IdList_item *pOldItem = &p->a[i];
1789 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1790 pNewItem->u4 = pOldItem->u4;
1792 return pNew;
1794 Select *sqlite3SelectDup(sqlite3 *db, const Select *pDup, int flags){
1795 Select *pRet = 0;
1796 Select *pNext = 0;
1797 Select **pp = &pRet;
1798 const Select *p;
1800 assert( db!=0 );
1801 for(p=pDup; p; p=p->pPrior){
1802 Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) );
1803 if( pNew==0 ) break;
1804 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1805 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1806 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1807 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1808 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1809 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1810 pNew->op = p->op;
1811 pNew->pNext = pNext;
1812 pNew->pPrior = 0;
1813 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1814 pNew->iLimit = 0;
1815 pNew->iOffset = 0;
1816 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1817 pNew->addrOpenEphm[0] = -1;
1818 pNew->addrOpenEphm[1] = -1;
1819 pNew->nSelectRow = p->nSelectRow;
1820 pNew->pWith = sqlite3WithDup(db, p->pWith);
1821 #ifndef SQLITE_OMIT_WINDOWFUNC
1822 pNew->pWin = 0;
1823 pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn);
1824 if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew);
1825 #endif
1826 pNew->selId = p->selId;
1827 if( db->mallocFailed ){
1828 /* Any prior OOM might have left the Select object incomplete.
1829 ** Delete the whole thing rather than allow an incomplete Select
1830 ** to be used by the code generator. */
1831 pNew->pNext = 0;
1832 sqlite3SelectDelete(db, pNew);
1833 break;
1835 *pp = pNew;
1836 pp = &pNew->pPrior;
1837 pNext = pNew;
1840 return pRet;
1842 #else
1843 Select *sqlite3SelectDup(sqlite3 *db, const Select *p, int flags){
1844 assert( p==0 );
1845 return 0;
1847 #endif
1851 ** Add a new element to the end of an expression list. If pList is
1852 ** initially NULL, then create a new expression list.
1854 ** The pList argument must be either NULL or a pointer to an ExprList
1855 ** obtained from a prior call to sqlite3ExprListAppend(). This routine
1856 ** may not be used with an ExprList obtained from sqlite3ExprListDup().
1857 ** Reason: This routine assumes that the number of slots in pList->a[]
1858 ** is a power of two. That is true for sqlite3ExprListAppend() returns
1859 ** but is not necessarily true from the return value of sqlite3ExprListDup().
1861 ** If a memory allocation error occurs, the entire list is freed and
1862 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1863 ** that the new entry was successfully appended.
1865 static const struct ExprList_item zeroItem = {0};
1866 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendNew(
1867 sqlite3 *db, /* Database handle. Used for memory allocation */
1868 Expr *pExpr /* Expression to be appended. Might be NULL */
1870 struct ExprList_item *pItem;
1871 ExprList *pList;
1873 pList = sqlite3DbMallocRawNN(db, sizeof(ExprList)+sizeof(pList->a[0])*4 );
1874 if( pList==0 ){
1875 sqlite3ExprDelete(db, pExpr);
1876 return 0;
1878 pList->nAlloc = 4;
1879 pList->nExpr = 1;
1880 pItem = &pList->a[0];
1881 *pItem = zeroItem;
1882 pItem->pExpr = pExpr;
1883 return pList;
1885 SQLITE_NOINLINE ExprList *sqlite3ExprListAppendGrow(
1886 sqlite3 *db, /* Database handle. Used for memory allocation */
1887 ExprList *pList, /* List to which to append. Might be NULL */
1888 Expr *pExpr /* Expression to be appended. Might be NULL */
1890 struct ExprList_item *pItem;
1891 ExprList *pNew;
1892 pList->nAlloc *= 2;
1893 pNew = sqlite3DbRealloc(db, pList,
1894 sizeof(*pList)+(pList->nAlloc-1)*sizeof(pList->a[0]));
1895 if( pNew==0 ){
1896 sqlite3ExprListDelete(db, pList);
1897 sqlite3ExprDelete(db, pExpr);
1898 return 0;
1899 }else{
1900 pList = pNew;
1902 pItem = &pList->a[pList->nExpr++];
1903 *pItem = zeroItem;
1904 pItem->pExpr = pExpr;
1905 return pList;
1907 ExprList *sqlite3ExprListAppend(
1908 Parse *pParse, /* Parsing context */
1909 ExprList *pList, /* List to which to append. Might be NULL */
1910 Expr *pExpr /* Expression to be appended. Might be NULL */
1912 struct ExprList_item *pItem;
1913 if( pList==0 ){
1914 return sqlite3ExprListAppendNew(pParse->db,pExpr);
1916 if( pList->nAlloc<pList->nExpr+1 ){
1917 return sqlite3ExprListAppendGrow(pParse->db,pList,pExpr);
1919 pItem = &pList->a[pList->nExpr++];
1920 *pItem = zeroItem;
1921 pItem->pExpr = pExpr;
1922 return pList;
1926 ** pColumns and pExpr form a vector assignment which is part of the SET
1927 ** clause of an UPDATE statement. Like this:
1929 ** (a,b,c) = (expr1,expr2,expr3)
1930 ** Or: (a,b,c) = (SELECT x,y,z FROM ....)
1932 ** For each term of the vector assignment, append new entries to the
1933 ** expression list pList. In the case of a subquery on the RHS, append
1934 ** TK_SELECT_COLUMN expressions.
1936 ExprList *sqlite3ExprListAppendVector(
1937 Parse *pParse, /* Parsing context */
1938 ExprList *pList, /* List to which to append. Might be NULL */
1939 IdList *pColumns, /* List of names of LHS of the assignment */
1940 Expr *pExpr /* Vector expression to be appended. Might be NULL */
1942 sqlite3 *db = pParse->db;
1943 int n;
1944 int i;
1945 int iFirst = pList ? pList->nExpr : 0;
1946 /* pColumns can only be NULL due to an OOM but an OOM will cause an
1947 ** exit prior to this routine being invoked */
1948 if( NEVER(pColumns==0) ) goto vector_append_error;
1949 if( pExpr==0 ) goto vector_append_error;
1951 /* If the RHS is a vector, then we can immediately check to see that
1952 ** the size of the RHS and LHS match. But if the RHS is a SELECT,
1953 ** wildcards ("*") in the result set of the SELECT must be expanded before
1954 ** we can do the size check, so defer the size check until code generation.
1956 if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){
1957 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
1958 pColumns->nId, n);
1959 goto vector_append_error;
1962 for(i=0; i<pColumns->nId; i++){
1963 Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i, pColumns->nId);
1964 assert( pSubExpr!=0 || db->mallocFailed );
1965 if( pSubExpr==0 ) continue;
1966 pList = sqlite3ExprListAppend(pParse, pList, pSubExpr);
1967 if( pList ){
1968 assert( pList->nExpr==iFirst+i+1 );
1969 pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName;
1970 pColumns->a[i].zName = 0;
1974 if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){
1975 Expr *pFirst = pList->a[iFirst].pExpr;
1976 assert( pFirst!=0 );
1977 assert( pFirst->op==TK_SELECT_COLUMN );
1979 /* Store the SELECT statement in pRight so it will be deleted when
1980 ** sqlite3ExprListDelete() is called */
1981 pFirst->pRight = pExpr;
1982 pExpr = 0;
1984 /* Remember the size of the LHS in iTable so that we can check that
1985 ** the RHS and LHS sizes match during code generation. */
1986 pFirst->iTable = pColumns->nId;
1989 vector_append_error:
1990 sqlite3ExprUnmapAndDelete(pParse, pExpr);
1991 sqlite3IdListDelete(db, pColumns);
1992 return pList;
1996 ** Set the sort order for the last element on the given ExprList.
1998 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){
1999 struct ExprList_item *pItem;
2000 if( p==0 ) return;
2001 assert( p->nExpr>0 );
2003 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 );
2004 assert( iSortOrder==SQLITE_SO_UNDEFINED
2005 || iSortOrder==SQLITE_SO_ASC
2006 || iSortOrder==SQLITE_SO_DESC
2008 assert( eNulls==SQLITE_SO_UNDEFINED
2009 || eNulls==SQLITE_SO_ASC
2010 || eNulls==SQLITE_SO_DESC
2013 pItem = &p->a[p->nExpr-1];
2014 assert( pItem->fg.bNulls==0 );
2015 if( iSortOrder==SQLITE_SO_UNDEFINED ){
2016 iSortOrder = SQLITE_SO_ASC;
2018 pItem->fg.sortFlags = (u8)iSortOrder;
2020 if( eNulls!=SQLITE_SO_UNDEFINED ){
2021 pItem->fg.bNulls = 1;
2022 if( iSortOrder!=eNulls ){
2023 pItem->fg.sortFlags |= KEYINFO_ORDER_BIGNULL;
2029 ** Set the ExprList.a[].zEName element of the most recently added item
2030 ** on the expression list.
2032 ** pList might be NULL following an OOM error. But pName should never be
2033 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2034 ** is set.
2036 void sqlite3ExprListSetName(
2037 Parse *pParse, /* Parsing context */
2038 ExprList *pList, /* List to which to add the span. */
2039 const Token *pName, /* Name to be added */
2040 int dequote /* True to cause the name to be dequoted */
2042 assert( pList!=0 || pParse->db->mallocFailed!=0 );
2043 assert( pParse->eParseMode!=PARSE_MODE_UNMAP || dequote==0 );
2044 if( pList ){
2045 struct ExprList_item *pItem;
2046 assert( pList->nExpr>0 );
2047 pItem = &pList->a[pList->nExpr-1];
2048 assert( pItem->zEName==0 );
2049 assert( pItem->fg.eEName==ENAME_NAME );
2050 pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
2051 if( dequote ){
2052 /* If dequote==0, then pName->z does not point to part of a DDL
2053 ** statement handled by the parser. And so no token need be added
2054 ** to the token-map. */
2055 sqlite3Dequote(pItem->zEName);
2056 if( IN_RENAME_OBJECT ){
2057 sqlite3RenameTokenMap(pParse, (const void*)pItem->zEName, pName);
2064 ** Set the ExprList.a[].zSpan element of the most recently added item
2065 ** on the expression list.
2067 ** pList might be NULL following an OOM error. But pSpan should never be
2068 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
2069 ** is set.
2071 void sqlite3ExprListSetSpan(
2072 Parse *pParse, /* Parsing context */
2073 ExprList *pList, /* List to which to add the span. */
2074 const char *zStart, /* Start of the span */
2075 const char *zEnd /* End of the span */
2077 sqlite3 *db = pParse->db;
2078 assert( pList!=0 || db->mallocFailed!=0 );
2079 if( pList ){
2080 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
2081 assert( pList->nExpr>0 );
2082 if( pItem->zEName==0 ){
2083 pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd);
2084 pItem->fg.eEName = ENAME_SPAN;
2090 ** If the expression list pEList contains more than iLimit elements,
2091 ** leave an error message in pParse.
2093 void sqlite3ExprListCheckLength(
2094 Parse *pParse,
2095 ExprList *pEList,
2096 const char *zObject
2098 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
2099 testcase( pEList && pEList->nExpr==mx );
2100 testcase( pEList && pEList->nExpr==mx+1 );
2101 if( pEList && pEList->nExpr>mx ){
2102 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
2107 ** Delete an entire expression list.
2109 static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){
2110 int i = pList->nExpr;
2111 struct ExprList_item *pItem = pList->a;
2112 assert( pList->nExpr>0 );
2113 assert( db!=0 );
2115 sqlite3ExprDelete(db, pItem->pExpr);
2116 if( pItem->zEName ) sqlite3DbNNFreeNN(db, pItem->zEName);
2117 pItem++;
2118 }while( --i>0 );
2119 sqlite3DbNNFreeNN(db, pList);
2121 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
2122 if( pList ) exprListDeleteNN(db, pList);
2126 ** Return the bitwise-OR of all Expr.flags fields in the given
2127 ** ExprList.
2129 u32 sqlite3ExprListFlags(const ExprList *pList){
2130 int i;
2131 u32 m = 0;
2132 assert( pList!=0 );
2133 for(i=0; i<pList->nExpr; i++){
2134 Expr *pExpr = pList->a[i].pExpr;
2135 assert( pExpr!=0 );
2136 m |= pExpr->flags;
2138 return m;
2142 ** This is a SELECT-node callback for the expression walker that
2143 ** always "fails". By "fail" in this case, we mean set
2144 ** pWalker->eCode to zero and abort.
2146 ** This callback is used by multiple expression walkers.
2148 int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){
2149 UNUSED_PARAMETER(NotUsed);
2150 pWalker->eCode = 0;
2151 return WRC_Abort;
2155 ** Check the input string to see if it is "true" or "false" (in any case).
2157 ** If the string is.... Return
2158 ** "true" EP_IsTrue
2159 ** "false" EP_IsFalse
2160 ** anything else 0
2162 u32 sqlite3IsTrueOrFalse(const char *zIn){
2163 if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue;
2164 if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse;
2165 return 0;
2170 ** If the input expression is an ID with the name "true" or "false"
2171 ** then convert it into an TK_TRUEFALSE term. Return non-zero if
2172 ** the conversion happened, and zero if the expression is unaltered.
2174 int sqlite3ExprIdToTrueFalse(Expr *pExpr){
2175 u32 v;
2176 assert( pExpr->op==TK_ID || pExpr->op==TK_STRING );
2177 if( !ExprHasProperty(pExpr, EP_Quoted|EP_IntValue)
2178 && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0
2180 pExpr->op = TK_TRUEFALSE;
2181 ExprSetProperty(pExpr, v);
2182 return 1;
2184 return 0;
2188 ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE
2189 ** and 0 if it is FALSE.
2191 int sqlite3ExprTruthValue(const Expr *pExpr){
2192 pExpr = sqlite3ExprSkipCollate((Expr*)pExpr);
2193 assert( pExpr->op==TK_TRUEFALSE );
2194 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2195 assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0
2196 || sqlite3StrICmp(pExpr->u.zToken,"false")==0 );
2197 return pExpr->u.zToken[4]==0;
2201 ** If pExpr is an AND or OR expression, try to simplify it by eliminating
2202 ** terms that are always true or false. Return the simplified expression.
2203 ** Or return the original expression if no simplification is possible.
2205 ** Examples:
2207 ** (x<10) AND true => (x<10)
2208 ** (x<10) AND false => false
2209 ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22)
2210 ** (x<10) AND (y=22 OR true) => (x<10)
2211 ** (y=22) OR true => true
2213 Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){
2214 assert( pExpr!=0 );
2215 if( pExpr->op==TK_AND || pExpr->op==TK_OR ){
2216 Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight);
2217 Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft);
2218 if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){
2219 pExpr = pExpr->op==TK_AND ? pRight : pLeft;
2220 }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){
2221 pExpr = pExpr->op==TK_AND ? pLeft : pRight;
2224 return pExpr;
2229 ** These routines are Walker callbacks used to check expressions to
2230 ** see if they are "constant" for some definition of constant. The
2231 ** Walker.eCode value determines the type of "constant" we are looking
2232 ** for.
2234 ** These callback routines are used to implement the following:
2236 ** sqlite3ExprIsConstant() pWalker->eCode==1
2237 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
2238 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
2239 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
2241 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
2242 ** is found to not be a constant.
2244 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT
2245 ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5
2246 ** when parsing an existing schema out of the sqlite_schema table and 4
2247 ** when processing a new CREATE TABLE statement. A bound parameter raises
2248 ** an error for new statements, but is silently converted
2249 ** to NULL for existing schemas. This allows sqlite_schema tables that
2250 ** contain a bound parameter because they were generated by older versions
2251 ** of SQLite to be parsed by newer versions of SQLite without raising a
2252 ** malformed schema error.
2254 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
2256 /* If pWalker->eCode is 2 then any term of the expression that comes from
2257 ** the ON or USING clauses of an outer join disqualifies the expression
2258 ** from being considered constant. */
2259 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_OuterON) ){
2260 pWalker->eCode = 0;
2261 return WRC_Abort;
2264 switch( pExpr->op ){
2265 /* Consider functions to be constant if all their arguments are constant
2266 ** and either pWalker->eCode==4 or 5 or the function has the
2267 ** SQLITE_FUNC_CONST flag. */
2268 case TK_FUNCTION:
2269 if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc))
2270 && !ExprHasProperty(pExpr, EP_WinFunc)
2272 if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL);
2273 return WRC_Continue;
2274 }else{
2275 pWalker->eCode = 0;
2276 return WRC_Abort;
2278 case TK_ID:
2279 /* Convert "true" or "false" in a DEFAULT clause into the
2280 ** appropriate TK_TRUEFALSE operator */
2281 if( sqlite3ExprIdToTrueFalse(pExpr) ){
2282 return WRC_Prune;
2284 /* no break */ deliberate_fall_through
2285 case TK_COLUMN:
2286 case TK_AGG_FUNCTION:
2287 case TK_AGG_COLUMN:
2288 testcase( pExpr->op==TK_ID );
2289 testcase( pExpr->op==TK_COLUMN );
2290 testcase( pExpr->op==TK_AGG_FUNCTION );
2291 testcase( pExpr->op==TK_AGG_COLUMN );
2292 if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){
2293 return WRC_Continue;
2295 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
2296 return WRC_Continue;
2298 /* no break */ deliberate_fall_through
2299 case TK_IF_NULL_ROW:
2300 case TK_REGISTER:
2301 case TK_DOT:
2302 testcase( pExpr->op==TK_REGISTER );
2303 testcase( pExpr->op==TK_IF_NULL_ROW );
2304 testcase( pExpr->op==TK_DOT );
2305 pWalker->eCode = 0;
2306 return WRC_Abort;
2307 case TK_VARIABLE:
2308 if( pWalker->eCode==5 ){
2309 /* Silently convert bound parameters that appear inside of CREATE
2310 ** statements into a NULL when parsing the CREATE statement text out
2311 ** of the sqlite_schema table */
2312 pExpr->op = TK_NULL;
2313 }else if( pWalker->eCode==4 ){
2314 /* A bound parameter in a CREATE statement that originates from
2315 ** sqlite3_prepare() causes an error */
2316 pWalker->eCode = 0;
2317 return WRC_Abort;
2319 /* no break */ deliberate_fall_through
2320 default:
2321 testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */
2322 testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */
2323 return WRC_Continue;
2326 static int exprIsConst(Expr *p, int initFlag, int iCur){
2327 Walker w;
2328 w.eCode = initFlag;
2329 w.xExprCallback = exprNodeIsConstant;
2330 w.xSelectCallback = sqlite3SelectWalkFail;
2331 #ifdef SQLITE_DEBUG
2332 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2333 #endif
2334 w.u.iCur = iCur;
2335 sqlite3WalkExpr(&w, p);
2336 return w.eCode;
2340 ** Walk an expression tree. Return non-zero if the expression is constant
2341 ** and 0 if it involves variables or function calls.
2343 ** For the purposes of this function, a double-quoted string (ex: "abc")
2344 ** is considered a variable but a single-quoted string (ex: 'abc') is
2345 ** a constant.
2347 int sqlite3ExprIsConstant(Expr *p){
2348 return exprIsConst(p, 1, 0);
2352 ** Walk an expression tree. Return non-zero if
2354 ** (1) the expression is constant, and
2355 ** (2) the expression does originate in the ON or USING clause
2356 ** of a LEFT JOIN, and
2357 ** (3) the expression does not contain any EP_FixedCol TK_COLUMN
2358 ** operands created by the constant propagation optimization.
2360 ** When this routine returns true, it indicates that the expression
2361 ** can be added to the pParse->pConstExpr list and evaluated once when
2362 ** the prepared statement starts up. See sqlite3ExprCodeRunJustOnce().
2364 int sqlite3ExprIsConstantNotJoin(Expr *p){
2365 return exprIsConst(p, 2, 0);
2369 ** Walk an expression tree. Return non-zero if the expression is constant
2370 ** for any single row of the table with cursor iCur. In other words, the
2371 ** expression must not refer to any non-deterministic function nor any
2372 ** table other than iCur.
2374 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
2375 return exprIsConst(p, 3, iCur);
2379 ** Check pExpr to see if it is an invariant constraint on data source pSrc.
2380 ** This is an optimization. False negatives will perhaps cause slower
2381 ** queries, but false positives will yield incorrect answers. So when in
2382 ** doubt, return 0.
2384 ** To be an invariant constraint, the following must be true:
2386 ** (1) pExpr cannot refer to any table other than pSrc->iCursor.
2388 ** (2) pExpr cannot use subqueries or non-deterministic functions.
2390 ** (3) pSrc cannot be part of the left operand for a RIGHT JOIN.
2391 ** (Is there some way to relax this constraint?)
2393 ** (4) If pSrc is the right operand of a LEFT JOIN, then...
2394 ** (4a) pExpr must come from an ON clause..
2395 (4b) and specifically the ON clause associated with the LEFT JOIN.
2397 ** (5) If pSrc is not the right operand of a LEFT JOIN or the left
2398 ** operand of a RIGHT JOIN, then pExpr must be from the WHERE
2399 ** clause, not an ON clause.
2401 int sqlite3ExprIsTableConstraint(Expr *pExpr, const SrcItem *pSrc){
2402 if( pSrc->fg.jointype & JT_LTORJ ){
2403 return 0; /* rule (3) */
2405 if( pSrc->fg.jointype & JT_LEFT ){
2406 if( !ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (4a) */
2407 if( pExpr->w.iJoin!=pSrc->iCursor ) return 0; /* rule (4b) */
2408 }else{
2409 if( ExprHasProperty(pExpr, EP_OuterON) ) return 0; /* rule (5) */
2411 return sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor); /* rules (1), (2) */
2416 ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy().
2418 static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){
2419 ExprList *pGroupBy = pWalker->u.pGroupBy;
2420 int i;
2422 /* Check if pExpr is identical to any GROUP BY term. If so, consider
2423 ** it constant. */
2424 for(i=0; i<pGroupBy->nExpr; i++){
2425 Expr *p = pGroupBy->a[i].pExpr;
2426 if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){
2427 CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p);
2428 if( sqlite3IsBinary(pColl) ){
2429 return WRC_Prune;
2434 /* Check if pExpr is a sub-select. If so, consider it variable. */
2435 if( ExprUseXSelect(pExpr) ){
2436 pWalker->eCode = 0;
2437 return WRC_Abort;
2440 return exprNodeIsConstant(pWalker, pExpr);
2444 ** Walk the expression tree passed as the first argument. Return non-zero
2445 ** if the expression consists entirely of constants or copies of terms
2446 ** in pGroupBy that sort with the BINARY collation sequence.
2448 ** This routine is used to determine if a term of the HAVING clause can
2449 ** be promoted into the WHERE clause. In order for such a promotion to work,
2450 ** the value of the HAVING clause term must be the same for all members of
2451 ** a "group". The requirement that the GROUP BY term must be BINARY
2452 ** assumes that no other collating sequence will have a finer-grained
2453 ** grouping than binary. In other words (A=B COLLATE binary) implies
2454 ** A=B in every other collating sequence. The requirement that the
2455 ** GROUP BY be BINARY is stricter than necessary. It would also work
2456 ** to promote HAVING clauses that use the same alternative collating
2457 ** sequence as the GROUP BY term, but that is much harder to check,
2458 ** alternative collating sequences are uncommon, and this is only an
2459 ** optimization, so we take the easy way out and simply require the
2460 ** GROUP BY to use the BINARY collating sequence.
2462 int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){
2463 Walker w;
2464 w.eCode = 1;
2465 w.xExprCallback = exprNodeIsConstantOrGroupBy;
2466 w.xSelectCallback = 0;
2467 w.u.pGroupBy = pGroupBy;
2468 w.pParse = pParse;
2469 sqlite3WalkExpr(&w, p);
2470 return w.eCode;
2474 ** Walk an expression tree for the DEFAULT field of a column definition
2475 ** in a CREATE TABLE statement. Return non-zero if the expression is
2476 ** acceptable for use as a DEFAULT. That is to say, return non-zero if
2477 ** the expression is constant or a function call with constant arguments.
2478 ** Return and 0 if there are any variables.
2480 ** isInit is true when parsing from sqlite_schema. isInit is false when
2481 ** processing a new CREATE TABLE statement. When isInit is true, parameters
2482 ** (such as ? or $abc) in the expression are converted into NULL. When
2483 ** isInit is false, parameters raise an error. Parameters should not be
2484 ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite
2485 ** allowed it, so we need to support it when reading sqlite_schema for
2486 ** backwards compatibility.
2488 ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node.
2490 ** For the purposes of this function, a double-quoted string (ex: "abc")
2491 ** is considered a variable but a single-quoted string (ex: 'abc') is
2492 ** a constant.
2494 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
2495 assert( isInit==0 || isInit==1 );
2496 return exprIsConst(p, 4+isInit, 0);
2499 #ifdef SQLITE_ENABLE_CURSOR_HINTS
2501 ** Walk an expression tree. Return 1 if the expression contains a
2502 ** subquery of some kind. Return 0 if there are no subqueries.
2504 int sqlite3ExprContainsSubquery(Expr *p){
2505 Walker w;
2506 w.eCode = 1;
2507 w.xExprCallback = sqlite3ExprWalkNoop;
2508 w.xSelectCallback = sqlite3SelectWalkFail;
2509 #ifdef SQLITE_DEBUG
2510 w.xSelectCallback2 = sqlite3SelectWalkAssert2;
2511 #endif
2512 sqlite3WalkExpr(&w, p);
2513 return w.eCode==0;
2515 #endif
2518 ** If the expression p codes a constant integer that is small enough
2519 ** to fit in a 32-bit integer, return 1 and put the value of the integer
2520 ** in *pValue. If the expression is not an integer or if it is too big
2521 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
2523 int sqlite3ExprIsInteger(const Expr *p, int *pValue){
2524 int rc = 0;
2525 if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */
2527 /* If an expression is an integer literal that fits in a signed 32-bit
2528 ** integer, then the EP_IntValue flag will have already been set */
2529 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
2530 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
2532 if( p->flags & EP_IntValue ){
2533 *pValue = p->u.iValue;
2534 return 1;
2536 switch( p->op ){
2537 case TK_UPLUS: {
2538 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
2539 break;
2541 case TK_UMINUS: {
2542 int v = 0;
2543 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
2544 assert( ((unsigned int)v)!=0x80000000 );
2545 *pValue = -v;
2546 rc = 1;
2548 break;
2550 default: break;
2552 return rc;
2556 ** Return FALSE if there is no chance that the expression can be NULL.
2558 ** If the expression might be NULL or if the expression is too complex
2559 ** to tell return TRUE.
2561 ** This routine is used as an optimization, to skip OP_IsNull opcodes
2562 ** when we know that a value cannot be NULL. Hence, a false positive
2563 ** (returning TRUE when in fact the expression can never be NULL) might
2564 ** be a small performance hit but is otherwise harmless. On the other
2565 ** hand, a false negative (returning FALSE when the result could be NULL)
2566 ** will likely result in an incorrect answer. So when in doubt, return
2567 ** TRUE.
2569 int sqlite3ExprCanBeNull(const Expr *p){
2570 u8 op;
2571 assert( p!=0 );
2572 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2573 p = p->pLeft;
2574 assert( p!=0 );
2576 op = p->op;
2577 if( op==TK_REGISTER ) op = p->op2;
2578 switch( op ){
2579 case TK_INTEGER:
2580 case TK_STRING:
2581 case TK_FLOAT:
2582 case TK_BLOB:
2583 return 0;
2584 case TK_COLUMN:
2585 assert( ExprUseYTab(p) );
2586 return ExprHasProperty(p, EP_CanBeNull) ||
2587 p->y.pTab==0 || /* Reference to column of index on expression */
2588 (p->iColumn>=0
2589 && p->y.pTab->aCol!=0 /* Possible due to prior error */
2590 && p->y.pTab->aCol[p->iColumn].notNull==0);
2591 default:
2592 return 1;
2597 ** Return TRUE if the given expression is a constant which would be
2598 ** unchanged by OP_Affinity with the affinity given in the second
2599 ** argument.
2601 ** This routine is used to determine if the OP_Affinity operation
2602 ** can be omitted. When in doubt return FALSE. A false negative
2603 ** is harmless. A false positive, however, can result in the wrong
2604 ** answer.
2606 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
2607 u8 op;
2608 int unaryMinus = 0;
2609 if( aff==SQLITE_AFF_BLOB ) return 1;
2610 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){
2611 if( p->op==TK_UMINUS ) unaryMinus = 1;
2612 p = p->pLeft;
2614 op = p->op;
2615 if( op==TK_REGISTER ) op = p->op2;
2616 switch( op ){
2617 case TK_INTEGER: {
2618 return aff>=SQLITE_AFF_NUMERIC;
2620 case TK_FLOAT: {
2621 return aff>=SQLITE_AFF_NUMERIC;
2623 case TK_STRING: {
2624 return !unaryMinus && aff==SQLITE_AFF_TEXT;
2626 case TK_BLOB: {
2627 return !unaryMinus;
2629 case TK_COLUMN: {
2630 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
2631 return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0;
2633 default: {
2634 return 0;
2640 ** Return TRUE if the given string is a row-id column name.
2642 int sqlite3IsRowid(const char *z){
2643 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
2644 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
2645 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
2646 return 0;
2650 ** pX is the RHS of an IN operator. If pX is a SELECT statement
2651 ** that can be simplified to a direct table access, then return
2652 ** a pointer to the SELECT statement. If pX is not a SELECT statement,
2653 ** or if the SELECT statement needs to be manifested into a transient
2654 ** table, then return NULL.
2656 #ifndef SQLITE_OMIT_SUBQUERY
2657 static Select *isCandidateForInOpt(const Expr *pX){
2658 Select *p;
2659 SrcList *pSrc;
2660 ExprList *pEList;
2661 Table *pTab;
2662 int i;
2663 if( !ExprUseXSelect(pX) ) return 0; /* Not a subquery */
2664 if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */
2665 p = pX->x.pSelect;
2666 if( p->pPrior ) return 0; /* Not a compound SELECT */
2667 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
2668 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
2669 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
2670 return 0; /* No DISTINCT keyword and no aggregate functions */
2672 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
2673 if( p->pLimit ) return 0; /* Has no LIMIT clause */
2674 if( p->pWhere ) return 0; /* Has no WHERE clause */
2675 pSrc = p->pSrc;
2676 assert( pSrc!=0 );
2677 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
2678 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
2679 pTab = pSrc->a[0].pTab;
2680 assert( pTab!=0 );
2681 assert( !IsView(pTab) ); /* FROM clause is not a view */
2682 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
2683 pEList = p->pEList;
2684 assert( pEList!=0 );
2685 /* All SELECT results must be columns. */
2686 for(i=0; i<pEList->nExpr; i++){
2687 Expr *pRes = pEList->a[i].pExpr;
2688 if( pRes->op!=TK_COLUMN ) return 0;
2689 assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */
2691 return p;
2693 #endif /* SQLITE_OMIT_SUBQUERY */
2695 #ifndef SQLITE_OMIT_SUBQUERY
2697 ** Generate code that checks the left-most column of index table iCur to see if
2698 ** it contains any NULL entries. Cause the register at regHasNull to be set
2699 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
2700 ** to be set to NULL if iCur contains one or more NULL values.
2702 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
2703 int addr1;
2704 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
2705 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
2706 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
2707 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
2708 VdbeComment((v, "first_entry_in(%d)", iCur));
2709 sqlite3VdbeJumpHere(v, addr1);
2711 #endif
2714 #ifndef SQLITE_OMIT_SUBQUERY
2716 ** The argument is an IN operator with a list (not a subquery) on the
2717 ** right-hand side. Return TRUE if that list is constant.
2719 static int sqlite3InRhsIsConstant(Expr *pIn){
2720 Expr *pLHS;
2721 int res;
2722 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
2723 pLHS = pIn->pLeft;
2724 pIn->pLeft = 0;
2725 res = sqlite3ExprIsConstant(pIn);
2726 pIn->pLeft = pLHS;
2727 return res;
2729 #endif
2732 ** This function is used by the implementation of the IN (...) operator.
2733 ** The pX parameter is the expression on the RHS of the IN operator, which
2734 ** might be either a list of expressions or a subquery.
2736 ** The job of this routine is to find or create a b-tree object that can
2737 ** be used either to test for membership in the RHS set or to iterate through
2738 ** all members of the RHS set, skipping duplicates.
2740 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
2741 ** and the *piTab parameter is set to the index of that cursor.
2743 ** The returned value of this function indicates the b-tree type, as follows:
2745 ** IN_INDEX_ROWID - The cursor was opened on a database table.
2746 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
2747 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
2748 ** IN_INDEX_EPH - The cursor was opened on a specially created and
2749 ** populated epheremal table.
2750 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
2751 ** implemented as a sequence of comparisons.
2753 ** An existing b-tree might be used if the RHS expression pX is a simple
2754 ** subquery such as:
2756 ** SELECT <column1>, <column2>... FROM <table>
2758 ** If the RHS of the IN operator is a list or a more complex subquery, then
2759 ** an ephemeral table might need to be generated from the RHS and then
2760 ** pX->iTable made to point to the ephemeral table instead of an
2761 ** existing table. In this case, the creation and initialization of the
2762 ** ephmeral table might be put inside of a subroutine, the EP_Subrtn flag
2763 ** will be set on pX and the pX->y.sub fields will be set to show where
2764 ** the subroutine is coded.
2766 ** The inFlags parameter must contain, at a minimum, one of the bits
2767 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains
2768 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast
2769 ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will
2770 ** be used to loop over all values of the RHS of the IN operator.
2772 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
2773 ** through the set members) then the b-tree must not contain duplicates.
2774 ** An epheremal table will be created unless the selected columns are guaranteed
2775 ** to be unique - either because it is an INTEGER PRIMARY KEY or due to
2776 ** a UNIQUE constraint or index.
2778 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
2779 ** for fast set membership tests) then an epheremal table must
2780 ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an
2781 ** index can be found with the specified <columns> as its left-most.
2783 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
2784 ** if the RHS of the IN operator is a list (not a subquery) then this
2785 ** routine might decide that creating an ephemeral b-tree for membership
2786 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
2787 ** calling routine should implement the IN operator using a sequence
2788 ** of Eq or Ne comparison operations.
2790 ** When the b-tree is being used for membership tests, the calling function
2791 ** might need to know whether or not the RHS side of the IN operator
2792 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
2793 ** if there is any chance that the (...) might contain a NULL value at
2794 ** runtime, then a register is allocated and the register number written
2795 ** to *prRhsHasNull. If there is no chance that the (...) contains a
2796 ** NULL value, then *prRhsHasNull is left unchanged.
2798 ** If a register is allocated and its location stored in *prRhsHasNull, then
2799 ** the value in that register will be NULL if the b-tree contains one or more
2800 ** NULL values, and it will be some non-NULL value if the b-tree contains no
2801 ** NULL values.
2803 ** If the aiMap parameter is not NULL, it must point to an array containing
2804 ** one element for each column returned by the SELECT statement on the RHS
2805 ** of the IN(...) operator. The i'th entry of the array is populated with the
2806 ** offset of the index column that matches the i'th column returned by the
2807 ** SELECT. For example, if the expression and selected index are:
2809 ** (?,?,?) IN (SELECT a, b, c FROM t1)
2810 ** CREATE INDEX i1 ON t1(b, c, a);
2812 ** then aiMap[] is populated with {2, 0, 1}.
2814 #ifndef SQLITE_OMIT_SUBQUERY
2815 int sqlite3FindInIndex(
2816 Parse *pParse, /* Parsing context */
2817 Expr *pX, /* The IN expression */
2818 u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */
2819 int *prRhsHasNull, /* Register holding NULL status. See notes */
2820 int *aiMap, /* Mapping from Index fields to RHS fields */
2821 int *piTab /* OUT: index to use */
2823 Select *p; /* SELECT to the right of IN operator */
2824 int eType = 0; /* Type of RHS table. IN_INDEX_* */
2825 int iTab; /* Cursor of the RHS table */
2826 int mustBeUnique; /* True if RHS must be unique */
2827 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
2829 assert( pX->op==TK_IN );
2830 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
2831 iTab = pParse->nTab++;
2833 /* If the RHS of this IN(...) operator is a SELECT, and if it matters
2834 ** whether or not the SELECT result contains NULL values, check whether
2835 ** or not NULL is actually possible (it may not be, for example, due
2836 ** to NOT NULL constraints in the schema). If no NULL values are possible,
2837 ** set prRhsHasNull to 0 before continuing. */
2838 if( prRhsHasNull && ExprUseXSelect(pX) ){
2839 int i;
2840 ExprList *pEList = pX->x.pSelect->pEList;
2841 for(i=0; i<pEList->nExpr; i++){
2842 if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break;
2844 if( i==pEList->nExpr ){
2845 prRhsHasNull = 0;
2849 /* Check to see if an existing table or index can be used to
2850 ** satisfy the query. This is preferable to generating a new
2851 ** ephemeral table. */
2852 if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){
2853 sqlite3 *db = pParse->db; /* Database connection */
2854 Table *pTab; /* Table <table>. */
2855 int iDb; /* Database idx for pTab */
2856 ExprList *pEList = p->pEList;
2857 int nExpr = pEList->nExpr;
2859 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
2860 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
2861 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
2862 pTab = p->pSrc->a[0].pTab;
2864 /* Code an OP_Transaction and OP_TableLock for <table>. */
2865 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2866 assert( iDb>=0 && iDb<SQLITE_MAX_DB );
2867 sqlite3CodeVerifySchema(pParse, iDb);
2868 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2870 assert(v); /* sqlite3GetVdbe() has always been previously called */
2871 if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){
2872 /* The "x IN (SELECT rowid FROM table)" case */
2873 int iAddr = sqlite3VdbeAddOp0(v, OP_Once);
2874 VdbeCoverage(v);
2876 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2877 eType = IN_INDEX_ROWID;
2878 ExplainQueryPlan((pParse, 0,
2879 "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName));
2880 sqlite3VdbeJumpHere(v, iAddr);
2881 }else{
2882 Index *pIdx; /* Iterator variable */
2883 int affinity_ok = 1;
2884 int i;
2886 /* Check that the affinity that will be used to perform each
2887 ** comparison is the same as the affinity of each column in table
2888 ** on the RHS of the IN operator. If it not, it is not possible to
2889 ** use any index of the RHS table. */
2890 for(i=0; i<nExpr && affinity_ok; i++){
2891 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2892 int iCol = pEList->a[i].pExpr->iColumn;
2893 char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */
2894 char cmpaff = sqlite3CompareAffinity(pLhs, idxaff);
2895 testcase( cmpaff==SQLITE_AFF_BLOB );
2896 testcase( cmpaff==SQLITE_AFF_TEXT );
2897 switch( cmpaff ){
2898 case SQLITE_AFF_BLOB:
2899 break;
2900 case SQLITE_AFF_TEXT:
2901 /* sqlite3CompareAffinity() only returns TEXT if one side or the
2902 ** other has no affinity and the other side is TEXT. Hence,
2903 ** the only way for cmpaff to be TEXT is for idxaff to be TEXT
2904 ** and for the term on the LHS of the IN to have no affinity. */
2905 assert( idxaff==SQLITE_AFF_TEXT );
2906 break;
2907 default:
2908 affinity_ok = sqlite3IsNumericAffinity(idxaff);
2912 if( affinity_ok ){
2913 /* Search for an existing index that will work for this IN operator */
2914 for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){
2915 Bitmask colUsed; /* Columns of the index used */
2916 Bitmask mCol; /* Mask for the current column */
2917 if( pIdx->nColumn<nExpr ) continue;
2918 if( pIdx->pPartIdxWhere!=0 ) continue;
2919 /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute
2920 ** BITMASK(nExpr) without overflowing */
2921 testcase( pIdx->nColumn==BMS-2 );
2922 testcase( pIdx->nColumn==BMS-1 );
2923 if( pIdx->nColumn>=BMS-1 ) continue;
2924 if( mustBeUnique ){
2925 if( pIdx->nKeyCol>nExpr
2926 ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx))
2928 continue; /* This index is not unique over the IN RHS columns */
2932 colUsed = 0; /* Columns of index used so far */
2933 for(i=0; i<nExpr; i++){
2934 Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i);
2935 Expr *pRhs = pEList->a[i].pExpr;
2936 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2937 int j;
2939 assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr );
2940 for(j=0; j<nExpr; j++){
2941 if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue;
2942 assert( pIdx->azColl[j] );
2943 if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){
2944 continue;
2946 break;
2948 if( j==nExpr ) break;
2949 mCol = MASKBIT(j);
2950 if( mCol & colUsed ) break; /* Each column used only once */
2951 colUsed |= mCol;
2952 if( aiMap ) aiMap[i] = j;
2955 assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) );
2956 if( colUsed==(MASKBIT(nExpr)-1) ){
2957 /* If we reach this point, that means the index pIdx is usable */
2958 int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
2959 ExplainQueryPlan((pParse, 0,
2960 "USING INDEX %s FOR IN-OPERATOR",pIdx->zName));
2961 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
2962 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2963 VdbeComment((v, "%s", pIdx->zName));
2964 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
2965 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
2967 if( prRhsHasNull ){
2968 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
2969 i64 mask = (1<<nExpr)-1;
2970 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed,
2971 iTab, 0, 0, (u8*)&mask, P4_INT64);
2972 #endif
2973 *prRhsHasNull = ++pParse->nMem;
2974 if( nExpr==1 ){
2975 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
2978 sqlite3VdbeJumpHere(v, iAddr);
2980 } /* End loop over indexes */
2981 } /* End if( affinity_ok ) */
2982 } /* End if not an rowid index */
2983 } /* End attempt to optimize using an index */
2985 /* If no preexisting index is available for the IN clause
2986 ** and IN_INDEX_NOOP is an allowed reply
2987 ** and the RHS of the IN operator is a list, not a subquery
2988 ** and the RHS is not constant or has two or fewer terms,
2989 ** then it is not worth creating an ephemeral table to evaluate
2990 ** the IN operator so return IN_INDEX_NOOP.
2992 if( eType==0
2993 && (inFlags & IN_INDEX_NOOP_OK)
2994 && ExprUseXList(pX)
2995 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
2997 pParse->nTab--; /* Back out the allocation of the unused cursor */
2998 iTab = -1; /* Cursor is not allocated */
2999 eType = IN_INDEX_NOOP;
3002 if( eType==0 ){
3003 /* Could not find an existing table or index to use as the RHS b-tree.
3004 ** We will have to generate an ephemeral table to do the job.
3006 u32 savedNQueryLoop = pParse->nQueryLoop;
3007 int rMayHaveNull = 0;
3008 eType = IN_INDEX_EPH;
3009 if( inFlags & IN_INDEX_LOOP ){
3010 pParse->nQueryLoop = 0;
3011 }else if( prRhsHasNull ){
3012 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
3014 assert( pX->op==TK_IN );
3015 sqlite3CodeRhsOfIN(pParse, pX, iTab);
3016 if( rMayHaveNull ){
3017 sqlite3SetHasNullFlag(v, iTab, rMayHaveNull);
3019 pParse->nQueryLoop = savedNQueryLoop;
3022 if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){
3023 int i, n;
3024 n = sqlite3ExprVectorSize(pX->pLeft);
3025 for(i=0; i<n; i++) aiMap[i] = i;
3027 *piTab = iTab;
3028 return eType;
3030 #endif
3032 #ifndef SQLITE_OMIT_SUBQUERY
3034 ** Argument pExpr is an (?, ?...) IN(...) expression. This
3035 ** function allocates and returns a nul-terminated string containing
3036 ** the affinities to be used for each column of the comparison.
3038 ** It is the responsibility of the caller to ensure that the returned
3039 ** string is eventually freed using sqlite3DbFree().
3041 static char *exprINAffinity(Parse *pParse, const Expr *pExpr){
3042 Expr *pLeft = pExpr->pLeft;
3043 int nVal = sqlite3ExprVectorSize(pLeft);
3044 Select *pSelect = ExprUseXSelect(pExpr) ? pExpr->x.pSelect : 0;
3045 char *zRet;
3047 assert( pExpr->op==TK_IN );
3048 zRet = sqlite3DbMallocRaw(pParse->db, nVal+1);
3049 if( zRet ){
3050 int i;
3051 for(i=0; i<nVal; i++){
3052 Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i);
3053 char a = sqlite3ExprAffinity(pA);
3054 if( pSelect ){
3055 zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a);
3056 }else{
3057 zRet[i] = a;
3060 zRet[nVal] = '\0';
3062 return zRet;
3064 #endif
3066 #ifndef SQLITE_OMIT_SUBQUERY
3068 ** Load the Parse object passed as the first argument with an error
3069 ** message of the form:
3071 ** "sub-select returns N columns - expected M"
3073 void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){
3074 if( pParse->nErr==0 ){
3075 const char *zFmt = "sub-select returns %d columns - expected %d";
3076 sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect);
3079 #endif
3082 ** Expression pExpr is a vector that has been used in a context where
3083 ** it is not permitted. If pExpr is a sub-select vector, this routine
3084 ** loads the Parse object with a message of the form:
3086 ** "sub-select returns N columns - expected 1"
3088 ** Or, if it is a regular scalar vector:
3090 ** "row value misused"
3092 void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){
3093 #ifndef SQLITE_OMIT_SUBQUERY
3094 if( ExprUseXSelect(pExpr) ){
3095 sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1);
3096 }else
3097 #endif
3099 sqlite3ErrorMsg(pParse, "row value misused");
3103 #ifndef SQLITE_OMIT_SUBQUERY
3105 ** Generate code that will construct an ephemeral table containing all terms
3106 ** in the RHS of an IN operator. The IN operator can be in either of two
3107 ** forms:
3109 ** x IN (4,5,11) -- IN operator with list on right-hand side
3110 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
3112 ** The pExpr parameter is the IN operator. The cursor number for the
3113 ** constructed ephermeral table is returned. The first time the ephemeral
3114 ** table is computed, the cursor number is also stored in pExpr->iTable,
3115 ** however the cursor number returned might not be the same, as it might
3116 ** have been duplicated using OP_OpenDup.
3118 ** If the LHS expression ("x" in the examples) is a column value, or
3119 ** the SELECT statement returns a column value, then the affinity of that
3120 ** column is used to build the index keys. If both 'x' and the
3121 ** SELECT... statement are columns, then numeric affinity is used
3122 ** if either column has NUMERIC or INTEGER affinity. If neither
3123 ** 'x' nor the SELECT... statement are columns, then numeric affinity
3124 ** is used.
3126 void sqlite3CodeRhsOfIN(
3127 Parse *pParse, /* Parsing context */
3128 Expr *pExpr, /* The IN operator */
3129 int iTab /* Use this cursor number */
3131 int addrOnce = 0; /* Address of the OP_Once instruction at top */
3132 int addr; /* Address of OP_OpenEphemeral instruction */
3133 Expr *pLeft; /* the LHS of the IN operator */
3134 KeyInfo *pKeyInfo = 0; /* Key information */
3135 int nVal; /* Size of vector pLeft */
3136 Vdbe *v; /* The prepared statement under construction */
3138 v = pParse->pVdbe;
3139 assert( v!=0 );
3141 /* The evaluation of the IN must be repeated every time it
3142 ** is encountered if any of the following is true:
3144 ** * The right-hand side is a correlated subquery
3145 ** * The right-hand side is an expression list containing variables
3146 ** * We are inside a trigger
3148 ** If all of the above are false, then we can compute the RHS just once
3149 ** and reuse it many names.
3151 if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){
3152 /* Reuse of the RHS is allowed */
3153 /* If this routine has already been coded, but the previous code
3154 ** might not have been invoked yet, so invoke it now as a subroutine.
3156 if( ExprHasProperty(pExpr, EP_Subrtn) ){
3157 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3158 if( ExprUseXSelect(pExpr) ){
3159 ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d",
3160 pExpr->x.pSelect->selId));
3162 assert( ExprUseYSub(pExpr) );
3163 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3164 pExpr->y.sub.iAddr);
3165 assert( iTab!=pExpr->iTable );
3166 sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable);
3167 sqlite3VdbeJumpHere(v, addrOnce);
3168 return;
3171 /* Begin coding the subroutine */
3172 assert( !ExprUseYWin(pExpr) );
3173 ExprSetProperty(pExpr, EP_Subrtn);
3174 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3175 pExpr->y.sub.regReturn = ++pParse->nMem;
3176 pExpr->y.sub.iAddr =
3177 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3179 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3182 /* Check to see if this is a vector IN operator */
3183 pLeft = pExpr->pLeft;
3184 nVal = sqlite3ExprVectorSize(pLeft);
3186 /* Construct the ephemeral table that will contain the content of
3187 ** RHS of the IN operator.
3189 pExpr->iTable = iTab;
3190 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal);
3191 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
3192 if( ExprUseXSelect(pExpr) ){
3193 VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId));
3194 }else{
3195 VdbeComment((v, "RHS of IN operator"));
3197 #endif
3198 pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1);
3200 if( ExprUseXSelect(pExpr) ){
3201 /* Case 1: expr IN (SELECT ...)
3203 ** Generate code to write the results of the select into the temporary
3204 ** table allocated and opened above.
3206 Select *pSelect = pExpr->x.pSelect;
3207 ExprList *pEList = pSelect->pEList;
3209 ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d",
3210 addrOnce?"":"CORRELATED ", pSelect->selId
3212 /* If the LHS and RHS of the IN operator do not match, that
3213 ** error will have been caught long before we reach this point. */
3214 if( ALWAYS(pEList->nExpr==nVal) ){
3215 Select *pCopy;
3216 SelectDest dest;
3217 int i;
3218 int rc;
3219 sqlite3SelectDestInit(&dest, SRT_Set, iTab);
3220 dest.zAffSdst = exprINAffinity(pParse, pExpr);
3221 pSelect->iLimit = 0;
3222 testcase( pSelect->selFlags & SF_Distinct );
3223 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
3224 pCopy = sqlite3SelectDup(pParse->db, pSelect, 0);
3225 rc = pParse->db->mallocFailed ? 1 :sqlite3Select(pParse, pCopy, &dest);
3226 sqlite3SelectDelete(pParse->db, pCopy);
3227 sqlite3DbFree(pParse->db, dest.zAffSdst);
3228 if( rc ){
3229 sqlite3KeyInfoUnref(pKeyInfo);
3230 return;
3232 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
3233 assert( pEList!=0 );
3234 assert( pEList->nExpr>0 );
3235 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3236 for(i=0; i<nVal; i++){
3237 Expr *p = sqlite3VectorFieldSubexpr(pLeft, i);
3238 pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq(
3239 pParse, p, pEList->a[i].pExpr
3243 }else if( ALWAYS(pExpr->x.pList!=0) ){
3244 /* Case 2: expr IN (exprlist)
3246 ** For each expression, build an index key from the evaluation and
3247 ** store it in the temporary table. If <expr> is a column, then use
3248 ** that columns affinity when building index keys. If <expr> is not
3249 ** a column, use numeric affinity.
3251 char affinity; /* Affinity of the LHS of the IN */
3252 int i;
3253 ExprList *pList = pExpr->x.pList;
3254 struct ExprList_item *pItem;
3255 int r1, r2;
3256 affinity = sqlite3ExprAffinity(pLeft);
3257 if( affinity<=SQLITE_AFF_NONE ){
3258 affinity = SQLITE_AFF_BLOB;
3259 }else if( affinity==SQLITE_AFF_REAL ){
3260 affinity = SQLITE_AFF_NUMERIC;
3262 if( pKeyInfo ){
3263 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
3264 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3267 /* Loop through each expression in <exprlist>. */
3268 r1 = sqlite3GetTempReg(pParse);
3269 r2 = sqlite3GetTempReg(pParse);
3270 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
3271 Expr *pE2 = pItem->pExpr;
3273 /* If the expression is not constant then we will need to
3274 ** disable the test that was generated above that makes sure
3275 ** this code only executes once. Because for a non-constant
3276 ** expression we need to rerun this code each time.
3278 if( addrOnce && !sqlite3ExprIsConstant(pE2) ){
3279 sqlite3VdbeChangeToNoop(v, addrOnce-1);
3280 sqlite3VdbeChangeToNoop(v, addrOnce);
3281 ExprClearProperty(pExpr, EP_Subrtn);
3282 addrOnce = 0;
3285 /* Evaluate the expression and insert it into the temp table */
3286 sqlite3ExprCode(pParse, pE2, r1);
3287 sqlite3VdbeAddOp4(v, OP_MakeRecord, r1, 1, r2, &affinity, 1);
3288 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r2, r1, 1);
3290 sqlite3ReleaseTempReg(pParse, r1);
3291 sqlite3ReleaseTempReg(pParse, r2);
3293 if( pKeyInfo ){
3294 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
3296 if( addrOnce ){
3297 sqlite3VdbeAddOp1(v, OP_NullRow, iTab);
3298 sqlite3VdbeJumpHere(v, addrOnce);
3299 /* Subroutine return */
3300 assert( ExprUseYSub(pExpr) );
3301 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3302 || pParse->nErr );
3303 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3304 pExpr->y.sub.iAddr, 1);
3305 VdbeCoverage(v);
3306 sqlite3ClearTempRegCache(pParse);
3309 #endif /* SQLITE_OMIT_SUBQUERY */
3312 ** Generate code for scalar subqueries used as a subquery expression
3313 ** or EXISTS operator:
3315 ** (SELECT a FROM b) -- subquery
3316 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
3318 ** The pExpr parameter is the SELECT or EXISTS operator to be coded.
3320 ** Return the register that holds the result. For a multi-column SELECT,
3321 ** the result is stored in a contiguous array of registers and the
3322 ** return value is the register of the left-most result column.
3323 ** Return 0 if an error occurs.
3325 #ifndef SQLITE_OMIT_SUBQUERY
3326 int sqlite3CodeSubselect(Parse *pParse, Expr *pExpr){
3327 int addrOnce = 0; /* Address of OP_Once at top of subroutine */
3328 int rReg = 0; /* Register storing resulting */
3329 Select *pSel; /* SELECT statement to encode */
3330 SelectDest dest; /* How to deal with SELECT result */
3331 int nReg; /* Registers to allocate */
3332 Expr *pLimit; /* New limit expression */
3333 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3334 int addrExplain; /* Address of OP_Explain instruction */
3335 #endif
3337 Vdbe *v = pParse->pVdbe;
3338 assert( v!=0 );
3339 if( pParse->nErr ) return 0;
3340 testcase( pExpr->op==TK_EXISTS );
3341 testcase( pExpr->op==TK_SELECT );
3342 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
3343 assert( ExprUseXSelect(pExpr) );
3344 pSel = pExpr->x.pSelect;
3346 /* If this routine has already been coded, then invoke it as a
3347 ** subroutine. */
3348 if( ExprHasProperty(pExpr, EP_Subrtn) ){
3349 ExplainQueryPlan((pParse, 0, "REUSE SUBQUERY %d", pSel->selId));
3350 assert( ExprUseYSub(pExpr) );
3351 sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn,
3352 pExpr->y.sub.iAddr);
3353 return pExpr->iTable;
3356 /* Begin coding the subroutine */
3357 assert( !ExprUseYWin(pExpr) );
3358 assert( !ExprHasProperty(pExpr, EP_Reduced|EP_TokenOnly) );
3359 ExprSetProperty(pExpr, EP_Subrtn);
3360 pExpr->y.sub.regReturn = ++pParse->nMem;
3361 pExpr->y.sub.iAddr =
3362 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pExpr->y.sub.regReturn) + 1;
3364 /* The evaluation of the EXISTS/SELECT must be repeated every time it
3365 ** is encountered if any of the following is true:
3367 ** * The right-hand side is a correlated subquery
3368 ** * The right-hand side is an expression list containing variables
3369 ** * We are inside a trigger
3371 ** If all of the above are false, then we can run this code just once
3372 ** save the results, and reuse the same result on subsequent invocations.
3374 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
3375 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
3378 /* For a SELECT, generate code to put the values for all columns of
3379 ** the first row into an array of registers and return the index of
3380 ** the first register.
3382 ** If this is an EXISTS, write an integer 0 (not exists) or 1 (exists)
3383 ** into a register and return that register number.
3385 ** In both cases, the query is augmented with "LIMIT 1". Any
3386 ** preexisting limit is discarded in place of the new LIMIT 1.
3388 ExplainQueryPlan2(addrExplain, (pParse, 1, "%sSCALAR SUBQUERY %d",
3389 addrOnce?"":"CORRELATED ", pSel->selId));
3390 sqlite3VdbeScanStatusCounters(v, addrExplain, addrExplain, -1);
3391 nReg = pExpr->op==TK_SELECT ? pSel->pEList->nExpr : 1;
3392 sqlite3SelectDestInit(&dest, 0, pParse->nMem+1);
3393 pParse->nMem += nReg;
3394 if( pExpr->op==TK_SELECT ){
3395 dest.eDest = SRT_Mem;
3396 dest.iSdst = dest.iSDParm;
3397 dest.nSdst = nReg;
3398 sqlite3VdbeAddOp3(v, OP_Null, 0, dest.iSDParm, dest.iSDParm+nReg-1);
3399 VdbeComment((v, "Init subquery result"));
3400 }else{
3401 dest.eDest = SRT_Exists;
3402 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
3403 VdbeComment((v, "Init EXISTS result"));
3405 if( pSel->pLimit ){
3406 /* The subquery already has a limit. If the pre-existing limit is X
3407 ** then make the new limit X<>0 so that the new limit is either 1 or 0 */
3408 sqlite3 *db = pParse->db;
3409 pLimit = sqlite3Expr(db, TK_INTEGER, "0");
3410 if( pLimit ){
3411 pLimit->affExpr = SQLITE_AFF_NUMERIC;
3412 pLimit = sqlite3PExpr(pParse, TK_NE,
3413 sqlite3ExprDup(db, pSel->pLimit->pLeft, 0), pLimit);
3415 sqlite3ExprDeferredDelete(pParse, pSel->pLimit->pLeft);
3416 pSel->pLimit->pLeft = pLimit;
3417 }else{
3418 /* If there is no pre-existing limit add a limit of 1 */
3419 pLimit = sqlite3Expr(pParse->db, TK_INTEGER, "1");
3420 pSel->pLimit = sqlite3PExpr(pParse, TK_LIMIT, pLimit, 0);
3422 pSel->iLimit = 0;
3423 if( sqlite3Select(pParse, pSel, &dest) ){
3424 pExpr->op2 = pExpr->op;
3425 pExpr->op = TK_ERROR;
3426 return 0;
3428 pExpr->iTable = rReg = dest.iSDParm;
3429 ExprSetVVAProperty(pExpr, EP_NoReduce);
3430 if( addrOnce ){
3431 sqlite3VdbeJumpHere(v, addrOnce);
3433 sqlite3VdbeScanStatusRange(v, addrExplain, addrExplain, -1);
3435 /* Subroutine return */
3436 assert( ExprUseYSub(pExpr) );
3437 assert( sqlite3VdbeGetOp(v,pExpr->y.sub.iAddr-1)->opcode==OP_BeginSubrtn
3438 || pParse->nErr );
3439 sqlite3VdbeAddOp3(v, OP_Return, pExpr->y.sub.regReturn,
3440 pExpr->y.sub.iAddr, 1);
3441 VdbeCoverage(v);
3442 sqlite3ClearTempRegCache(pParse);
3443 return rReg;
3445 #endif /* SQLITE_OMIT_SUBQUERY */
3447 #ifndef SQLITE_OMIT_SUBQUERY
3449 ** Expr pIn is an IN(...) expression. This function checks that the
3450 ** sub-select on the RHS of the IN() operator has the same number of
3451 ** columns as the vector on the LHS. Or, if the RHS of the IN() is not
3452 ** a sub-query, that the LHS is a vector of size 1.
3454 int sqlite3ExprCheckIN(Parse *pParse, Expr *pIn){
3455 int nVector = sqlite3ExprVectorSize(pIn->pLeft);
3456 if( ExprUseXSelect(pIn) && !pParse->db->mallocFailed ){
3457 if( nVector!=pIn->x.pSelect->pEList->nExpr ){
3458 sqlite3SubselectError(pParse, pIn->x.pSelect->pEList->nExpr, nVector);
3459 return 1;
3461 }else if( nVector!=1 ){
3462 sqlite3VectorErrorMsg(pParse, pIn->pLeft);
3463 return 1;
3465 return 0;
3467 #endif
3469 #ifndef SQLITE_OMIT_SUBQUERY
3471 ** Generate code for an IN expression.
3473 ** x IN (SELECT ...)
3474 ** x IN (value, value, ...)
3476 ** The left-hand side (LHS) is a scalar or vector expression. The
3477 ** right-hand side (RHS) is an array of zero or more scalar values, or a
3478 ** subquery. If the RHS is a subquery, the number of result columns must
3479 ** match the number of columns in the vector on the LHS. If the RHS is
3480 ** a list of values, the LHS must be a scalar.
3482 ** The IN operator is true if the LHS value is contained within the RHS.
3483 ** The result is false if the LHS is definitely not in the RHS. The
3484 ** result is NULL if the presence of the LHS in the RHS cannot be
3485 ** determined due to NULLs.
3487 ** This routine generates code that jumps to destIfFalse if the LHS is not
3488 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
3489 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
3490 ** within the RHS then fall through.
3492 ** See the separate in-operator.md documentation file in the canonical
3493 ** SQLite source tree for additional information.
3495 static void sqlite3ExprCodeIN(
3496 Parse *pParse, /* Parsing and code generating context */
3497 Expr *pExpr, /* The IN expression */
3498 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
3499 int destIfNull /* Jump here if the results are unknown due to NULLs */
3501 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
3502 int eType; /* Type of the RHS */
3503 int rLhs; /* Register(s) holding the LHS values */
3504 int rLhsOrig; /* LHS values prior to reordering by aiMap[] */
3505 Vdbe *v; /* Statement under construction */
3506 int *aiMap = 0; /* Map from vector field to index column */
3507 char *zAff = 0; /* Affinity string for comparisons */
3508 int nVector; /* Size of vectors for this IN operator */
3509 int iDummy; /* Dummy parameter to exprCodeVector() */
3510 Expr *pLeft; /* The LHS of the IN operator */
3511 int i; /* loop counter */
3512 int destStep2; /* Where to jump when NULLs seen in step 2 */
3513 int destStep6 = 0; /* Start of code for Step 6 */
3514 int addrTruthOp; /* Address of opcode that determines the IN is true */
3515 int destNotNull; /* Jump here if a comparison is not true in step 6 */
3516 int addrTop; /* Top of the step-6 loop */
3517 int iTab = 0; /* Index to use */
3518 u8 okConstFactor = pParse->okConstFactor;
3520 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
3521 pLeft = pExpr->pLeft;
3522 if( sqlite3ExprCheckIN(pParse, pExpr) ) return;
3523 zAff = exprINAffinity(pParse, pExpr);
3524 nVector = sqlite3ExprVectorSize(pExpr->pLeft);
3525 aiMap = (int*)sqlite3DbMallocZero(
3526 pParse->db, nVector*(sizeof(int) + sizeof(char)) + 1
3528 if( pParse->db->mallocFailed ) goto sqlite3ExprCodeIN_oom_error;
3530 /* Attempt to compute the RHS. After this step, if anything other than
3531 ** IN_INDEX_NOOP is returned, the table opened with cursor iTab
3532 ** contains the values that make up the RHS. If IN_INDEX_NOOP is returned,
3533 ** the RHS has not yet been coded. */
3534 v = pParse->pVdbe;
3535 assert( v!=0 ); /* OOM detected prior to this routine */
3536 VdbeNoopComment((v, "begin IN expr"));
3537 eType = sqlite3FindInIndex(pParse, pExpr,
3538 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
3539 destIfFalse==destIfNull ? 0 : &rRhsHasNull,
3540 aiMap, &iTab);
3542 assert( pParse->nErr || nVector==1 || eType==IN_INDEX_EPH
3543 || eType==IN_INDEX_INDEX_ASC || eType==IN_INDEX_INDEX_DESC
3545 #ifdef SQLITE_DEBUG
3546 /* Confirm that aiMap[] contains nVector integer values between 0 and
3547 ** nVector-1. */
3548 for(i=0; i<nVector; i++){
3549 int j, cnt;
3550 for(cnt=j=0; j<nVector; j++) if( aiMap[j]==i ) cnt++;
3551 assert( cnt==1 );
3553 #endif
3555 /* Code the LHS, the <expr> from "<expr> IN (...)". If the LHS is a
3556 ** vector, then it is stored in an array of nVector registers starting
3557 ** at r1.
3559 ** sqlite3FindInIndex() might have reordered the fields of the LHS vector
3560 ** so that the fields are in the same order as an existing index. The
3561 ** aiMap[] array contains a mapping from the original LHS field order to
3562 ** the field order that matches the RHS index.
3564 ** Avoid factoring the LHS of the IN(...) expression out of the loop,
3565 ** even if it is constant, as OP_Affinity may be used on the register
3566 ** by code generated below. */
3567 assert( pParse->okConstFactor==okConstFactor );
3568 pParse->okConstFactor = 0;
3569 rLhsOrig = exprCodeVector(pParse, pLeft, &iDummy);
3570 pParse->okConstFactor = okConstFactor;
3571 for(i=0; i<nVector && aiMap[i]==i; i++){} /* Are LHS fields reordered? */
3572 if( i==nVector ){
3573 /* LHS fields are not reordered */
3574 rLhs = rLhsOrig;
3575 }else{
3576 /* Need to reorder the LHS fields according to aiMap */
3577 rLhs = sqlite3GetTempRange(pParse, nVector);
3578 for(i=0; i<nVector; i++){
3579 sqlite3VdbeAddOp3(v, OP_Copy, rLhsOrig+i, rLhs+aiMap[i], 0);
3583 /* If sqlite3FindInIndex() did not find or create an index that is
3584 ** suitable for evaluating the IN operator, then evaluate using a
3585 ** sequence of comparisons.
3587 ** This is step (1) in the in-operator.md optimized algorithm.
3589 if( eType==IN_INDEX_NOOP ){
3590 ExprList *pList;
3591 CollSeq *pColl;
3592 int labelOk = sqlite3VdbeMakeLabel(pParse);
3593 int r2, regToFree;
3594 int regCkNull = 0;
3595 int ii;
3596 assert( ExprUseXList(pExpr) );
3597 pList = pExpr->x.pList;
3598 pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
3599 if( destIfNull!=destIfFalse ){
3600 regCkNull = sqlite3GetTempReg(pParse);
3601 sqlite3VdbeAddOp3(v, OP_BitAnd, rLhs, rLhs, regCkNull);
3603 for(ii=0; ii<pList->nExpr; ii++){
3604 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
3605 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
3606 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
3608 sqlite3ReleaseTempReg(pParse, regToFree);
3609 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
3610 int op = rLhs!=r2 ? OP_Eq : OP_NotNull;
3611 sqlite3VdbeAddOp4(v, op, rLhs, labelOk, r2,
3612 (void*)pColl, P4_COLLSEQ);
3613 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_Eq);
3614 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_Eq);
3615 VdbeCoverageIf(v, ii<pList->nExpr-1 && op==OP_NotNull);
3616 VdbeCoverageIf(v, ii==pList->nExpr-1 && op==OP_NotNull);
3617 sqlite3VdbeChangeP5(v, zAff[0]);
3618 }else{
3619 int op = rLhs!=r2 ? OP_Ne : OP_IsNull;
3620 assert( destIfNull==destIfFalse );
3621 sqlite3VdbeAddOp4(v, op, rLhs, destIfFalse, r2,
3622 (void*)pColl, P4_COLLSEQ);
3623 VdbeCoverageIf(v, op==OP_Ne);
3624 VdbeCoverageIf(v, op==OP_IsNull);
3625 sqlite3VdbeChangeP5(v, zAff[0] | SQLITE_JUMPIFNULL);
3628 if( regCkNull ){
3629 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
3630 sqlite3VdbeGoto(v, destIfFalse);
3632 sqlite3VdbeResolveLabel(v, labelOk);
3633 sqlite3ReleaseTempReg(pParse, regCkNull);
3634 goto sqlite3ExprCodeIN_finished;
3637 /* Step 2: Check to see if the LHS contains any NULL columns. If the
3638 ** LHS does contain NULLs then the result must be either FALSE or NULL.
3639 ** We will then skip the binary search of the RHS.
3641 if( destIfNull==destIfFalse ){
3642 destStep2 = destIfFalse;
3643 }else{
3644 destStep2 = destStep6 = sqlite3VdbeMakeLabel(pParse);
3646 for(i=0; i<nVector; i++){
3647 Expr *p = sqlite3VectorFieldSubexpr(pExpr->pLeft, i);
3648 if( pParse->nErr ) goto sqlite3ExprCodeIN_oom_error;
3649 if( sqlite3ExprCanBeNull(p) ){
3650 sqlite3VdbeAddOp2(v, OP_IsNull, rLhs+i, destStep2);
3651 VdbeCoverage(v);
3655 /* Step 3. The LHS is now known to be non-NULL. Do the binary search
3656 ** of the RHS using the LHS as a probe. If found, the result is
3657 ** true.
3659 if( eType==IN_INDEX_ROWID ){
3660 /* In this case, the RHS is the ROWID of table b-tree and so we also
3661 ** know that the RHS is non-NULL. Hence, we combine steps 3 and 4
3662 ** into a single opcode. */
3663 sqlite3VdbeAddOp3(v, OP_SeekRowid, iTab, destIfFalse, rLhs);
3664 VdbeCoverage(v);
3665 addrTruthOp = sqlite3VdbeAddOp0(v, OP_Goto); /* Return True */
3666 }else{
3667 sqlite3VdbeAddOp4(v, OP_Affinity, rLhs, nVector, 0, zAff, nVector);
3668 if( destIfFalse==destIfNull ){
3669 /* Combine Step 3 and Step 5 into a single opcode */
3670 sqlite3VdbeAddOp4Int(v, OP_NotFound, iTab, destIfFalse,
3671 rLhs, nVector); VdbeCoverage(v);
3672 goto sqlite3ExprCodeIN_finished;
3674 /* Ordinary Step 3, for the case where FALSE and NULL are distinct */
3675 addrTruthOp = sqlite3VdbeAddOp4Int(v, OP_Found, iTab, 0,
3676 rLhs, nVector); VdbeCoverage(v);
3679 /* Step 4. If the RHS is known to be non-NULL and we did not find
3680 ** an match on the search above, then the result must be FALSE.
3682 if( rRhsHasNull && nVector==1 ){
3683 sqlite3VdbeAddOp2(v, OP_NotNull, rRhsHasNull, destIfFalse);
3684 VdbeCoverage(v);
3687 /* Step 5. If we do not care about the difference between NULL and
3688 ** FALSE, then just return false.
3690 if( destIfFalse==destIfNull ) sqlite3VdbeGoto(v, destIfFalse);
3692 /* Step 6: Loop through rows of the RHS. Compare each row to the LHS.
3693 ** If any comparison is NULL, then the result is NULL. If all
3694 ** comparisons are FALSE then the final result is FALSE.
3696 ** For a scalar LHS, it is sufficient to check just the first row
3697 ** of the RHS.
3699 if( destStep6 ) sqlite3VdbeResolveLabel(v, destStep6);
3700 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, destIfFalse);
3701 VdbeCoverage(v);
3702 if( nVector>1 ){
3703 destNotNull = sqlite3VdbeMakeLabel(pParse);
3704 }else{
3705 /* For nVector==1, combine steps 6 and 7 by immediately returning
3706 ** FALSE if the first comparison is not NULL */
3707 destNotNull = destIfFalse;
3709 for(i=0; i<nVector; i++){
3710 Expr *p;
3711 CollSeq *pColl;
3712 int r3 = sqlite3GetTempReg(pParse);
3713 p = sqlite3VectorFieldSubexpr(pLeft, i);
3714 pColl = sqlite3ExprCollSeq(pParse, p);
3715 sqlite3VdbeAddOp3(v, OP_Column, iTab, i, r3);
3716 sqlite3VdbeAddOp4(v, OP_Ne, rLhs+i, destNotNull, r3,
3717 (void*)pColl, P4_COLLSEQ);
3718 VdbeCoverage(v);
3719 sqlite3ReleaseTempReg(pParse, r3);
3721 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
3722 if( nVector>1 ){
3723 sqlite3VdbeResolveLabel(v, destNotNull);
3724 sqlite3VdbeAddOp2(v, OP_Next, iTab, addrTop+1);
3725 VdbeCoverage(v);
3727 /* Step 7: If we reach this point, we know that the result must
3728 ** be false. */
3729 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
3732 /* Jumps here in order to return true. */
3733 sqlite3VdbeJumpHere(v, addrTruthOp);
3735 sqlite3ExprCodeIN_finished:
3736 if( rLhs!=rLhsOrig ) sqlite3ReleaseTempReg(pParse, rLhs);
3737 VdbeComment((v, "end IN expr"));
3738 sqlite3ExprCodeIN_oom_error:
3739 sqlite3DbFree(pParse->db, aiMap);
3740 sqlite3DbFree(pParse->db, zAff);
3742 #endif /* SQLITE_OMIT_SUBQUERY */
3744 #ifndef SQLITE_OMIT_FLOATING_POINT
3746 ** Generate an instruction that will put the floating point
3747 ** value described by z[0..n-1] into register iMem.
3749 ** The z[] string will probably not be zero-terminated. But the
3750 ** z[n] character is guaranteed to be something that does not look
3751 ** like the continuation of the number.
3753 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
3754 if( ALWAYS(z!=0) ){
3755 double value;
3756 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
3757 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
3758 if( negateFlag ) value = -value;
3759 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
3762 #endif
3766 ** Generate an instruction that will put the integer describe by
3767 ** text z[0..n-1] into register iMem.
3769 ** Expr.u.zToken is always UTF8 and zero-terminated.
3771 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
3772 Vdbe *v = pParse->pVdbe;
3773 if( pExpr->flags & EP_IntValue ){
3774 int i = pExpr->u.iValue;
3775 assert( i>=0 );
3776 if( negFlag ) i = -i;
3777 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
3778 }else{
3779 int c;
3780 i64 value;
3781 const char *z = pExpr->u.zToken;
3782 assert( z!=0 );
3783 c = sqlite3DecOrHexToI64(z, &value);
3784 if( (c==3 && !negFlag) || (c==2) || (negFlag && value==SMALLEST_INT64)){
3785 #ifdef SQLITE_OMIT_FLOATING_POINT
3786 sqlite3ErrorMsg(pParse, "oversized integer: %s%#T", negFlag?"-":"",pExpr);
3787 #else
3788 #ifndef SQLITE_OMIT_HEX_INTEGER
3789 if( sqlite3_strnicmp(z,"0x",2)==0 ){
3790 sqlite3ErrorMsg(pParse, "hex literal too big: %s%#T",
3791 negFlag?"-":"",pExpr);
3792 }else
3793 #endif
3795 codeReal(v, z, negFlag, iMem);
3797 #endif
3798 }else{
3799 if( negFlag ){ value = c==3 ? SMALLEST_INT64 : -value; }
3800 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
3806 /* Generate code that will load into register regOut a value that is
3807 ** appropriate for the iIdxCol-th column of index pIdx.
3809 void sqlite3ExprCodeLoadIndexColumn(
3810 Parse *pParse, /* The parsing context */
3811 Index *pIdx, /* The index whose column is to be loaded */
3812 int iTabCur, /* Cursor pointing to a table row */
3813 int iIdxCol, /* The column of the index to be loaded */
3814 int regOut /* Store the index column value in this register */
3816 i16 iTabCol = pIdx->aiColumn[iIdxCol];
3817 if( iTabCol==XN_EXPR ){
3818 assert( pIdx->aColExpr );
3819 assert( pIdx->aColExpr->nExpr>iIdxCol );
3820 pParse->iSelfTab = iTabCur + 1;
3821 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
3822 pParse->iSelfTab = 0;
3823 }else{
3824 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
3825 iTabCol, regOut);
3829 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3831 ** Generate code that will compute the value of generated column pCol
3832 ** and store the result in register regOut
3834 void sqlite3ExprCodeGeneratedColumn(
3835 Parse *pParse, /* Parsing context */
3836 Table *pTab, /* Table containing the generated column */
3837 Column *pCol, /* The generated column */
3838 int regOut /* Put the result in this register */
3840 int iAddr;
3841 Vdbe *v = pParse->pVdbe;
3842 assert( v!=0 );
3843 assert( pParse->iSelfTab!=0 );
3844 if( pParse->iSelfTab>0 ){
3845 iAddr = sqlite3VdbeAddOp3(v, OP_IfNullRow, pParse->iSelfTab-1, 0, regOut);
3846 }else{
3847 iAddr = 0;
3849 sqlite3ExprCodeCopy(pParse, sqlite3ColumnExpr(pTab,pCol), regOut);
3850 if( pCol->affinity>=SQLITE_AFF_TEXT ){
3851 sqlite3VdbeAddOp4(v, OP_Affinity, regOut, 1, 0, &pCol->affinity, 1);
3853 if( iAddr ) sqlite3VdbeJumpHere(v, iAddr);
3855 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
3858 ** Generate code to extract the value of the iCol-th column of a table.
3860 void sqlite3ExprCodeGetColumnOfTable(
3861 Vdbe *v, /* Parsing context */
3862 Table *pTab, /* The table containing the value */
3863 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
3864 int iCol, /* Index of the column to extract */
3865 int regOut /* Extract the value into this register */
3867 Column *pCol;
3868 assert( v!=0 );
3869 assert( pTab!=0 );
3870 if( iCol<0 || iCol==pTab->iPKey ){
3871 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
3872 VdbeComment((v, "%s.rowid", pTab->zName));
3873 }else{
3874 int op;
3875 int x;
3876 if( IsVirtual(pTab) ){
3877 op = OP_VColumn;
3878 x = iCol;
3879 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
3880 }else if( (pCol = &pTab->aCol[iCol])->colFlags & COLFLAG_VIRTUAL ){
3881 Parse *pParse = sqlite3VdbeParser(v);
3882 if( pCol->colFlags & COLFLAG_BUSY ){
3883 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
3884 pCol->zCnName);
3885 }else{
3886 int savedSelfTab = pParse->iSelfTab;
3887 pCol->colFlags |= COLFLAG_BUSY;
3888 pParse->iSelfTab = iTabCur+1;
3889 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, regOut);
3890 pParse->iSelfTab = savedSelfTab;
3891 pCol->colFlags &= ~COLFLAG_BUSY;
3893 return;
3894 #endif
3895 }else if( !HasRowid(pTab) ){
3896 testcase( iCol!=sqlite3TableColumnToStorage(pTab, iCol) );
3897 x = sqlite3TableColumnToIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
3898 op = OP_Column;
3899 }else{
3900 x = sqlite3TableColumnToStorage(pTab,iCol);
3901 testcase( x!=iCol );
3902 op = OP_Column;
3904 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
3905 sqlite3ColumnDefault(v, pTab, iCol, regOut);
3910 ** Generate code that will extract the iColumn-th column from
3911 ** table pTab and store the column value in register iReg.
3913 ** There must be an open cursor to pTab in iTable when this routine
3914 ** is called. If iColumn<0 then code is generated that extracts the rowid.
3916 int sqlite3ExprCodeGetColumn(
3917 Parse *pParse, /* Parsing and code generating context */
3918 Table *pTab, /* Description of the table we are reading from */
3919 int iColumn, /* Index of the table column */
3920 int iTable, /* The cursor pointing to the table */
3921 int iReg, /* Store results here */
3922 u8 p5 /* P5 value for OP_Column + FLAGS */
3924 assert( pParse->pVdbe!=0 );
3925 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pTab, iTable, iColumn, iReg);
3926 if( p5 ){
3927 VdbeOp *pOp = sqlite3VdbeGetLastOp(pParse->pVdbe);
3928 if( pOp->opcode==OP_Column ) pOp->p5 = p5;
3930 return iReg;
3934 ** Generate code to move content from registers iFrom...iFrom+nReg-1
3935 ** over to iTo..iTo+nReg-1.
3937 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
3938 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
3942 ** Convert a scalar expression node to a TK_REGISTER referencing
3943 ** register iReg. The caller must ensure that iReg already contains
3944 ** the correct value for the expression.
3946 static void exprToRegister(Expr *pExpr, int iReg){
3947 Expr *p = sqlite3ExprSkipCollateAndLikely(pExpr);
3948 if( NEVER(p==0) ) return;
3949 p->op2 = p->op;
3950 p->op = TK_REGISTER;
3951 p->iTable = iReg;
3952 ExprClearProperty(p, EP_Skip);
3956 ** Evaluate an expression (either a vector or a scalar expression) and store
3957 ** the result in continguous temporary registers. Return the index of
3958 ** the first register used to store the result.
3960 ** If the returned result register is a temporary scalar, then also write
3961 ** that register number into *piFreeable. If the returned result register
3962 ** is not a temporary or if the expression is a vector set *piFreeable
3963 ** to 0.
3965 static int exprCodeVector(Parse *pParse, Expr *p, int *piFreeable){
3966 int iResult;
3967 int nResult = sqlite3ExprVectorSize(p);
3968 if( nResult==1 ){
3969 iResult = sqlite3ExprCodeTemp(pParse, p, piFreeable);
3970 }else{
3971 *piFreeable = 0;
3972 if( p->op==TK_SELECT ){
3973 #if SQLITE_OMIT_SUBQUERY
3974 iResult = 0;
3975 #else
3976 iResult = sqlite3CodeSubselect(pParse, p);
3977 #endif
3978 }else{
3979 int i;
3980 iResult = pParse->nMem+1;
3981 pParse->nMem += nResult;
3982 assert( ExprUseXList(p) );
3983 for(i=0; i<nResult; i++){
3984 sqlite3ExprCodeFactorable(pParse, p->x.pList->a[i].pExpr, i+iResult);
3988 return iResult;
3992 ** If the last opcode is a OP_Copy, then set the do-not-merge flag (p5)
3993 ** so that a subsequent copy will not be merged into this one.
3995 static void setDoNotMergeFlagOnCopy(Vdbe *v){
3996 if( sqlite3VdbeGetLastOp(v)->opcode==OP_Copy ){
3997 sqlite3VdbeChangeP5(v, 1); /* Tag trailing OP_Copy as not mergable */
4002 ** Generate code to implement special SQL functions that are implemented
4003 ** in-line rather than by using the usual callbacks.
4005 static int exprCodeInlineFunction(
4006 Parse *pParse, /* Parsing context */
4007 ExprList *pFarg, /* List of function arguments */
4008 int iFuncId, /* Function ID. One of the INTFUNC_... values */
4009 int target /* Store function result in this register */
4011 int nFarg;
4012 Vdbe *v = pParse->pVdbe;
4013 assert( v!=0 );
4014 assert( pFarg!=0 );
4015 nFarg = pFarg->nExpr;
4016 assert( nFarg>0 ); /* All in-line functions have at least one argument */
4017 switch( iFuncId ){
4018 case INLINEFUNC_coalesce: {
4019 /* Attempt a direct implementation of the built-in COALESCE() and
4020 ** IFNULL() functions. This avoids unnecessary evaluation of
4021 ** arguments past the first non-NULL argument.
4023 int endCoalesce = sqlite3VdbeMakeLabel(pParse);
4024 int i;
4025 assert( nFarg>=2 );
4026 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
4027 for(i=1; i<nFarg; i++){
4028 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
4029 VdbeCoverage(v);
4030 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
4032 setDoNotMergeFlagOnCopy(v);
4033 sqlite3VdbeResolveLabel(v, endCoalesce);
4034 break;
4036 case INLINEFUNC_iif: {
4037 Expr caseExpr;
4038 memset(&caseExpr, 0, sizeof(caseExpr));
4039 caseExpr.op = TK_CASE;
4040 caseExpr.x.pList = pFarg;
4041 return sqlite3ExprCodeTarget(pParse, &caseExpr, target);
4043 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4044 case INLINEFUNC_sqlite_offset: {
4045 Expr *pArg = pFarg->a[0].pExpr;
4046 if( pArg->op==TK_COLUMN && pArg->iTable>=0 ){
4047 sqlite3VdbeAddOp3(v, OP_Offset, pArg->iTable, pArg->iColumn, target);
4048 }else{
4049 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4051 break;
4053 #endif
4054 default: {
4055 /* The UNLIKELY() function is a no-op. The result is the value
4056 ** of the first argument.
4058 assert( nFarg==1 || nFarg==2 );
4059 target = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
4060 break;
4063 /***********************************************************************
4064 ** Test-only SQL functions that are only usable if enabled
4065 ** via SQLITE_TESTCTRL_INTERNAL_FUNCTIONS
4067 #if !defined(SQLITE_UNTESTABLE)
4068 case INLINEFUNC_expr_compare: {
4069 /* Compare two expressions using sqlite3ExprCompare() */
4070 assert( nFarg==2 );
4071 sqlite3VdbeAddOp2(v, OP_Integer,
4072 sqlite3ExprCompare(0,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4073 target);
4074 break;
4077 case INLINEFUNC_expr_implies_expr: {
4078 /* Compare two expressions using sqlite3ExprImpliesExpr() */
4079 assert( nFarg==2 );
4080 sqlite3VdbeAddOp2(v, OP_Integer,
4081 sqlite3ExprImpliesExpr(pParse,pFarg->a[0].pExpr, pFarg->a[1].pExpr,-1),
4082 target);
4083 break;
4086 case INLINEFUNC_implies_nonnull_row: {
4087 /* REsult of sqlite3ExprImpliesNonNullRow() */
4088 Expr *pA1;
4089 assert( nFarg==2 );
4090 pA1 = pFarg->a[1].pExpr;
4091 if( pA1->op==TK_COLUMN ){
4092 sqlite3VdbeAddOp2(v, OP_Integer,
4093 sqlite3ExprImpliesNonNullRow(pFarg->a[0].pExpr,pA1->iTable),
4094 target);
4095 }else{
4096 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4098 break;
4101 case INLINEFUNC_affinity: {
4102 /* The AFFINITY() function evaluates to a string that describes
4103 ** the type affinity of the argument. This is used for testing of
4104 ** the SQLite type logic.
4106 const char *azAff[] = { "blob", "text", "numeric", "integer",
4107 "real", "flexnum" };
4108 char aff;
4109 assert( nFarg==1 );
4110 aff = sqlite3ExprAffinity(pFarg->a[0].pExpr);
4111 assert( aff<=SQLITE_AFF_NONE
4112 || (aff>=SQLITE_AFF_BLOB && aff<=SQLITE_AFF_FLEXNUM) );
4113 sqlite3VdbeLoadString(v, target,
4114 (aff<=SQLITE_AFF_NONE) ? "none" : azAff[aff-SQLITE_AFF_BLOB]);
4115 break;
4117 #endif /* !defined(SQLITE_UNTESTABLE) */
4119 return target;
4123 ** Check to see if pExpr is one of the indexed expressions on pParse->pIdxEpr.
4124 ** If it is, then resolve the expression by reading from the index and
4125 ** return the register into which the value has been read. If pExpr is
4126 ** not an indexed expression, then return negative.
4128 static SQLITE_NOINLINE int sqlite3IndexedExprLookup(
4129 Parse *pParse, /* The parsing context */
4130 Expr *pExpr, /* The expression to potentially bypass */
4131 int target /* Where to store the result of the expression */
4133 IndexedExpr *p;
4134 Vdbe *v;
4135 for(p=pParse->pIdxEpr; p; p=p->pIENext){
4136 u8 exprAff;
4137 int iDataCur = p->iDataCur;
4138 if( iDataCur<0 ) continue;
4139 if( pParse->iSelfTab ){
4140 if( p->iDataCur!=pParse->iSelfTab-1 ) continue;
4141 iDataCur = -1;
4143 if( sqlite3ExprCompare(0, pExpr, p->pExpr, iDataCur)!=0 ) continue;
4144 assert( p->aff>=SQLITE_AFF_BLOB && p->aff<=SQLITE_AFF_NUMERIC );
4145 exprAff = sqlite3ExprAffinity(pExpr);
4146 if( (exprAff<=SQLITE_AFF_BLOB && p->aff!=SQLITE_AFF_BLOB)
4147 || (exprAff==SQLITE_AFF_TEXT && p->aff!=SQLITE_AFF_TEXT)
4148 || (exprAff>=SQLITE_AFF_NUMERIC && p->aff!=SQLITE_AFF_NUMERIC)
4150 /* Affinity mismatch on a generated column */
4151 continue;
4154 v = pParse->pVdbe;
4155 assert( v!=0 );
4156 if( p->bMaybeNullRow ){
4157 /* If the index is on a NULL row due to an outer join, then we
4158 ** cannot extract the value from the index. The value must be
4159 ** computed using the original expression. */
4160 int addr = sqlite3VdbeCurrentAddr(v);
4161 sqlite3VdbeAddOp3(v, OP_IfNullRow, p->iIdxCur, addr+3, target);
4162 VdbeCoverage(v);
4163 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
4164 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
4165 sqlite3VdbeGoto(v, 0);
4166 p = pParse->pIdxEpr;
4167 pParse->pIdxEpr = 0;
4168 sqlite3ExprCode(pParse, pExpr, target);
4169 pParse->pIdxEpr = p;
4170 sqlite3VdbeJumpHere(v, addr+2);
4171 }else{
4172 sqlite3VdbeAddOp3(v, OP_Column, p->iIdxCur, p->iIdxCol, target);
4173 VdbeComment((v, "%s expr-column %d", p->zIdxName, p->iIdxCol));
4175 return target;
4177 return -1; /* Not found */
4182 ** Generate code into the current Vdbe to evaluate the given
4183 ** expression. Attempt to store the results in register "target".
4184 ** Return the register where results are stored.
4186 ** With this routine, there is no guarantee that results will
4187 ** be stored in target. The result might be stored in some other
4188 ** register if it is convenient to do so. The calling function
4189 ** must check the return code and move the results to the desired
4190 ** register.
4192 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
4193 Vdbe *v = pParse->pVdbe; /* The VM under construction */
4194 int op; /* The opcode being coded */
4195 int inReg = target; /* Results stored in register inReg */
4196 int regFree1 = 0; /* If non-zero free this temporary register */
4197 int regFree2 = 0; /* If non-zero free this temporary register */
4198 int r1, r2; /* Various register numbers */
4199 Expr tempX; /* Temporary expression node */
4200 int p5 = 0;
4202 assert( target>0 && target<=pParse->nMem );
4203 assert( v!=0 );
4205 expr_code_doover:
4206 if( pExpr==0 ){
4207 op = TK_NULL;
4208 }else if( pParse->pIdxEpr!=0
4209 && !ExprHasProperty(pExpr, EP_Leaf)
4210 && (r1 = sqlite3IndexedExprLookup(pParse, pExpr, target))>=0
4212 return r1;
4213 }else{
4214 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
4215 op = pExpr->op;
4217 switch( op ){
4218 case TK_AGG_COLUMN: {
4219 AggInfo *pAggInfo = pExpr->pAggInfo;
4220 struct AggInfo_col *pCol;
4221 assert( pAggInfo!=0 );
4222 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4223 pCol = &pAggInfo->aCol[pExpr->iAgg];
4224 if( !pAggInfo->directMode ){
4225 return AggInfoColumnReg(pAggInfo, pExpr->iAgg);
4226 }else if( pAggInfo->useSortingIdx ){
4227 Table *pTab = pCol->pTab;
4228 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4229 pCol->iSorterColumn, target);
4230 if( pTab==0 ){
4231 /* No comment added */
4232 }else if( pCol->iColumn<0 ){
4233 VdbeComment((v,"%s.rowid",pTab->zName));
4234 }else{
4235 VdbeComment((v,"%s.%s",
4236 pTab->zName, pTab->aCol[pCol->iColumn].zCnName));
4237 if( pTab->aCol[pCol->iColumn].affinity==SQLITE_AFF_REAL ){
4238 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4241 return target;
4242 }else if( pExpr->y.pTab==0 ){
4243 /* This case happens when the argument to an aggregate function
4244 ** is rewritten by aggregateConvertIndexedExprRefToColumn() */
4245 sqlite3VdbeAddOp3(v, OP_Column, pExpr->iTable, pExpr->iColumn, target);
4246 return target;
4248 /* Otherwise, fall thru into the TK_COLUMN case */
4249 /* no break */ deliberate_fall_through
4251 case TK_COLUMN: {
4252 int iTab = pExpr->iTable;
4253 int iReg;
4254 if( ExprHasProperty(pExpr, EP_FixedCol) ){
4255 /* This COLUMN expression is really a constant due to WHERE clause
4256 ** constraints, and that constant is coded by the pExpr->pLeft
4257 ** expresssion. However, make sure the constant has the correct
4258 ** datatype by applying the Affinity of the table column to the
4259 ** constant.
4261 int aff;
4262 iReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft,target);
4263 assert( ExprUseYTab(pExpr) );
4264 assert( pExpr->y.pTab!=0 );
4265 aff = sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn);
4266 if( aff>SQLITE_AFF_BLOB ){
4267 static const char zAff[] = "B\000C\000D\000E\000F";
4268 assert( SQLITE_AFF_BLOB=='A' );
4269 assert( SQLITE_AFF_TEXT=='B' );
4270 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, 1, 0,
4271 &zAff[(aff-'B')*2], P4_STATIC);
4273 return iReg;
4275 if( iTab<0 ){
4276 if( pParse->iSelfTab<0 ){
4277 /* Other columns in the same row for CHECK constraints or
4278 ** generated columns or for inserting into partial index.
4279 ** The row is unpacked into registers beginning at
4280 ** 0-(pParse->iSelfTab). The rowid (if any) is in a register
4281 ** immediately prior to the first column.
4283 Column *pCol;
4284 Table *pTab;
4285 int iSrc;
4286 int iCol = pExpr->iColumn;
4287 assert( ExprUseYTab(pExpr) );
4288 pTab = pExpr->y.pTab;
4289 assert( pTab!=0 );
4290 assert( iCol>=XN_ROWID );
4291 assert( iCol<pTab->nCol );
4292 if( iCol<0 ){
4293 return -1-pParse->iSelfTab;
4295 pCol = pTab->aCol + iCol;
4296 testcase( iCol!=sqlite3TableColumnToStorage(pTab,iCol) );
4297 iSrc = sqlite3TableColumnToStorage(pTab, iCol) - pParse->iSelfTab;
4298 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
4299 if( pCol->colFlags & COLFLAG_GENERATED ){
4300 if( pCol->colFlags & COLFLAG_BUSY ){
4301 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"",
4302 pCol->zCnName);
4303 return 0;
4305 pCol->colFlags |= COLFLAG_BUSY;
4306 if( pCol->colFlags & COLFLAG_NOTAVAIL ){
4307 sqlite3ExprCodeGeneratedColumn(pParse, pTab, pCol, iSrc);
4309 pCol->colFlags &= ~(COLFLAG_BUSY|COLFLAG_NOTAVAIL);
4310 return iSrc;
4311 }else
4312 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
4313 if( pCol->affinity==SQLITE_AFF_REAL ){
4314 sqlite3VdbeAddOp2(v, OP_SCopy, iSrc, target);
4315 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4316 return target;
4317 }else{
4318 return iSrc;
4320 }else{
4321 /* Coding an expression that is part of an index where column names
4322 ** in the index refer to the table to which the index belongs */
4323 iTab = pParse->iSelfTab - 1;
4326 assert( ExprUseYTab(pExpr) );
4327 assert( pExpr->y.pTab!=0 );
4328 iReg = sqlite3ExprCodeGetColumn(pParse, pExpr->y.pTab,
4329 pExpr->iColumn, iTab, target,
4330 pExpr->op2);
4331 return iReg;
4333 case TK_INTEGER: {
4334 codeInteger(pParse, pExpr, 0, target);
4335 return target;
4337 case TK_TRUEFALSE: {
4338 sqlite3VdbeAddOp2(v, OP_Integer, sqlite3ExprTruthValue(pExpr), target);
4339 return target;
4341 #ifndef SQLITE_OMIT_FLOATING_POINT
4342 case TK_FLOAT: {
4343 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4344 codeReal(v, pExpr->u.zToken, 0, target);
4345 return target;
4347 #endif
4348 case TK_STRING: {
4349 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4350 sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
4351 return target;
4353 default: {
4354 /* Make NULL the default case so that if a bug causes an illegal
4355 ** Expr node to be passed into this function, it will be handled
4356 ** sanely and not crash. But keep the assert() to bring the problem
4357 ** to the attention of the developers. */
4358 assert( op==TK_NULL || op==TK_ERROR || pParse->db->mallocFailed );
4359 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4360 return target;
4362 #ifndef SQLITE_OMIT_BLOB_LITERAL
4363 case TK_BLOB: {
4364 int n;
4365 const char *z;
4366 char *zBlob;
4367 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4368 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
4369 assert( pExpr->u.zToken[1]=='\'' );
4370 z = &pExpr->u.zToken[2];
4371 n = sqlite3Strlen30(z) - 1;
4372 assert( z[n]=='\'' );
4373 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
4374 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
4375 return target;
4377 #endif
4378 case TK_VARIABLE: {
4379 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4380 assert( pExpr->u.zToken!=0 );
4381 assert( pExpr->u.zToken[0]!=0 );
4382 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
4383 if( pExpr->u.zToken[1]!=0 ){
4384 const char *z = sqlite3VListNumToName(pParse->pVList, pExpr->iColumn);
4385 assert( pExpr->u.zToken[0]=='?' || (z && !strcmp(pExpr->u.zToken, z)) );
4386 pParse->pVList[0] = 0; /* Indicate VList may no longer be enlarged */
4387 sqlite3VdbeAppendP4(v, (char*)z, P4_STATIC);
4389 return target;
4391 case TK_REGISTER: {
4392 return pExpr->iTable;
4394 #ifndef SQLITE_OMIT_CAST
4395 case TK_CAST: {
4396 /* Expressions of the form: CAST(pLeft AS token) */
4397 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4398 if( inReg!=target ){
4399 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4400 inReg = target;
4402 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4403 sqlite3VdbeAddOp2(v, OP_Cast, target,
4404 sqlite3AffinityType(pExpr->u.zToken, 0));
4405 return inReg;
4407 #endif /* SQLITE_OMIT_CAST */
4408 case TK_IS:
4409 case TK_ISNOT:
4410 op = (op==TK_IS) ? TK_EQ : TK_NE;
4411 p5 = SQLITE_NULLEQ;
4412 /* fall-through */
4413 case TK_LT:
4414 case TK_LE:
4415 case TK_GT:
4416 case TK_GE:
4417 case TK_NE:
4418 case TK_EQ: {
4419 Expr *pLeft = pExpr->pLeft;
4420 if( sqlite3ExprIsVector(pLeft) ){
4421 codeVectorCompare(pParse, pExpr, target, op, p5);
4422 }else{
4423 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
4424 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4425 sqlite3VdbeAddOp2(v, OP_Integer, 1, inReg);
4426 codeCompare(pParse, pLeft, pExpr->pRight, op, r1, r2,
4427 sqlite3VdbeCurrentAddr(v)+2, p5,
4428 ExprHasProperty(pExpr,EP_Commuted));
4429 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
4430 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
4431 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
4432 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
4433 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
4434 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
4435 if( p5==SQLITE_NULLEQ ){
4436 sqlite3VdbeAddOp2(v, OP_Integer, 0, inReg);
4437 }else{
4438 sqlite3VdbeAddOp3(v, OP_ZeroOrNull, r1, inReg, r2);
4440 testcase( regFree1==0 );
4441 testcase( regFree2==0 );
4443 break;
4445 case TK_AND:
4446 case TK_OR:
4447 case TK_PLUS:
4448 case TK_STAR:
4449 case TK_MINUS:
4450 case TK_REM:
4451 case TK_BITAND:
4452 case TK_BITOR:
4453 case TK_SLASH:
4454 case TK_LSHIFT:
4455 case TK_RSHIFT:
4456 case TK_CONCAT: {
4457 assert( TK_AND==OP_And ); testcase( op==TK_AND );
4458 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
4459 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
4460 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
4461 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
4462 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
4463 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
4464 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
4465 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
4466 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
4467 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
4468 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4469 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
4470 sqlite3VdbeAddOp3(v, op, r2, r1, target);
4471 testcase( regFree1==0 );
4472 testcase( regFree2==0 );
4473 break;
4475 case TK_UMINUS: {
4476 Expr *pLeft = pExpr->pLeft;
4477 assert( pLeft );
4478 if( pLeft->op==TK_INTEGER ){
4479 codeInteger(pParse, pLeft, 1, target);
4480 return target;
4481 #ifndef SQLITE_OMIT_FLOATING_POINT
4482 }else if( pLeft->op==TK_FLOAT ){
4483 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4484 codeReal(v, pLeft->u.zToken, 1, target);
4485 return target;
4486 #endif
4487 }else{
4488 tempX.op = TK_INTEGER;
4489 tempX.flags = EP_IntValue|EP_TokenOnly;
4490 tempX.u.iValue = 0;
4491 ExprClearVVAProperties(&tempX);
4492 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
4493 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
4494 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
4495 testcase( regFree2==0 );
4497 break;
4499 case TK_BITNOT:
4500 case TK_NOT: {
4501 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
4502 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
4503 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4504 testcase( regFree1==0 );
4505 sqlite3VdbeAddOp2(v, op, r1, inReg);
4506 break;
4508 case TK_TRUTH: {
4509 int isTrue; /* IS TRUE or IS NOT TRUE */
4510 int bNormal; /* IS TRUE or IS FALSE */
4511 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4512 testcase( regFree1==0 );
4513 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
4514 bNormal = pExpr->op2==TK_IS;
4515 testcase( isTrue && bNormal);
4516 testcase( !isTrue && bNormal);
4517 sqlite3VdbeAddOp4Int(v, OP_IsTrue, r1, inReg, !isTrue, isTrue ^ bNormal);
4518 break;
4520 case TK_ISNULL:
4521 case TK_NOTNULL: {
4522 int addr;
4523 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
4524 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
4525 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4526 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
4527 testcase( regFree1==0 );
4528 addr = sqlite3VdbeAddOp1(v, op, r1);
4529 VdbeCoverageIf(v, op==TK_ISNULL);
4530 VdbeCoverageIf(v, op==TK_NOTNULL);
4531 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
4532 sqlite3VdbeJumpHere(v, addr);
4533 break;
4535 case TK_AGG_FUNCTION: {
4536 AggInfo *pInfo = pExpr->pAggInfo;
4537 if( pInfo==0
4538 || NEVER(pExpr->iAgg<0)
4539 || NEVER(pExpr->iAgg>=pInfo->nFunc)
4541 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4542 sqlite3ErrorMsg(pParse, "misuse of aggregate: %#T()", pExpr);
4543 }else{
4544 return AggInfoFuncReg(pInfo, pExpr->iAgg);
4546 break;
4548 case TK_FUNCTION: {
4549 ExprList *pFarg; /* List of function arguments */
4550 int nFarg; /* Number of function arguments */
4551 FuncDef *pDef; /* The function definition object */
4552 const char *zId; /* The function name */
4553 u32 constMask = 0; /* Mask of function arguments that are constant */
4554 int i; /* Loop counter */
4555 sqlite3 *db = pParse->db; /* The database connection */
4556 u8 enc = ENC(db); /* The text encoding used by this database */
4557 CollSeq *pColl = 0; /* A collating sequence */
4559 #ifndef SQLITE_OMIT_WINDOWFUNC
4560 if( ExprHasProperty(pExpr, EP_WinFunc) ){
4561 return pExpr->y.pWin->regResult;
4563 #endif
4565 if( ConstFactorOk(pParse) && sqlite3ExprIsConstantNotJoin(pExpr) ){
4566 /* SQL functions can be expensive. So try to avoid running them
4567 ** multiple times if we know they always give the same result */
4568 return sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
4570 assert( !ExprHasProperty(pExpr, EP_TokenOnly) );
4571 assert( ExprUseXList(pExpr) );
4572 pFarg = pExpr->x.pList;
4573 nFarg = pFarg ? pFarg->nExpr : 0;
4574 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4575 zId = pExpr->u.zToken;
4576 pDef = sqlite3FindFunction(db, zId, nFarg, enc, 0);
4577 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
4578 if( pDef==0 && pParse->explain ){
4579 pDef = sqlite3FindFunction(db, "unknown", nFarg, enc, 0);
4581 #endif
4582 if( pDef==0 || pDef->xFinalize!=0 ){
4583 sqlite3ErrorMsg(pParse, "unknown function: %#T()", pExpr);
4584 break;
4586 if( pDef->funcFlags & SQLITE_FUNC_INLINE ){
4587 assert( (pDef->funcFlags & SQLITE_FUNC_UNSAFE)==0 );
4588 assert( (pDef->funcFlags & SQLITE_FUNC_DIRECT)==0 );
4589 return exprCodeInlineFunction(pParse, pFarg,
4590 SQLITE_PTR_TO_INT(pDef->pUserData), target);
4591 }else if( pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE) ){
4592 sqlite3ExprFunctionUsable(pParse, pExpr, pDef);
4595 for(i=0; i<nFarg; i++){
4596 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
4597 testcase( i==31 );
4598 constMask |= MASKBIT32(i);
4600 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
4601 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
4604 if( pFarg ){
4605 if( constMask ){
4606 r1 = pParse->nMem+1;
4607 pParse->nMem += nFarg;
4608 }else{
4609 r1 = sqlite3GetTempRange(pParse, nFarg);
4612 /* For length() and typeof() functions with a column argument,
4613 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
4614 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
4615 ** loading.
4617 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
4618 u8 exprOp;
4619 assert( nFarg==1 );
4620 assert( pFarg->a[0].pExpr!=0 );
4621 exprOp = pFarg->a[0].pExpr->op;
4622 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
4623 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
4624 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
4625 testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
4626 pFarg->a[0].pExpr->op2 =
4627 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
4631 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
4632 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
4633 }else{
4634 r1 = 0;
4636 #ifndef SQLITE_OMIT_VIRTUALTABLE
4637 /* Possibly overload the function if the first argument is
4638 ** a virtual table column.
4640 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
4641 ** second argument, not the first, as the argument to test to
4642 ** see if it is a column in a virtual table. This is done because
4643 ** the left operand of infix functions (the operand we want to
4644 ** control overloading) ends up as the second argument to the
4645 ** function. The expression "A glob B" is equivalent to
4646 ** "glob(B,A). We want to use the A in "A glob B" to test
4647 ** for function overloading. But we use the B term in "glob(B,A)".
4649 if( nFarg>=2 && ExprHasProperty(pExpr, EP_InfixFunc) ){
4650 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
4651 }else if( nFarg>0 ){
4652 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
4654 #endif
4655 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
4656 if( !pColl ) pColl = db->pDfltColl;
4657 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
4659 sqlite3VdbeAddFunctionCall(pParse, constMask, r1, target, nFarg,
4660 pDef, pExpr->op2);
4661 if( nFarg ){
4662 if( constMask==0 ){
4663 sqlite3ReleaseTempRange(pParse, r1, nFarg);
4664 }else{
4665 sqlite3VdbeReleaseRegisters(pParse, r1, nFarg, constMask, 1);
4668 return target;
4670 #ifndef SQLITE_OMIT_SUBQUERY
4671 case TK_EXISTS:
4672 case TK_SELECT: {
4673 int nCol;
4674 testcase( op==TK_EXISTS );
4675 testcase( op==TK_SELECT );
4676 if( pParse->db->mallocFailed ){
4677 return 0;
4678 }else if( op==TK_SELECT
4679 && ALWAYS( ExprUseXSelect(pExpr) )
4680 && (nCol = pExpr->x.pSelect->pEList->nExpr)!=1
4682 sqlite3SubselectError(pParse, nCol, 1);
4683 }else{
4684 return sqlite3CodeSubselect(pParse, pExpr);
4686 break;
4688 case TK_SELECT_COLUMN: {
4689 int n;
4690 Expr *pLeft = pExpr->pLeft;
4691 if( pLeft->iTable==0 || pParse->withinRJSubrtn > pLeft->op2 ){
4692 pLeft->iTable = sqlite3CodeSubselect(pParse, pLeft);
4693 pLeft->op2 = pParse->withinRJSubrtn;
4695 assert( pLeft->op==TK_SELECT || pLeft->op==TK_ERROR );
4696 n = sqlite3ExprVectorSize(pLeft);
4697 if( pExpr->iTable!=n ){
4698 sqlite3ErrorMsg(pParse, "%d columns assigned %d values",
4699 pExpr->iTable, n);
4701 return pLeft->iTable + pExpr->iColumn;
4703 case TK_IN: {
4704 int destIfFalse = sqlite3VdbeMakeLabel(pParse);
4705 int destIfNull = sqlite3VdbeMakeLabel(pParse);
4706 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4707 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
4708 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
4709 sqlite3VdbeResolveLabel(v, destIfFalse);
4710 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
4711 sqlite3VdbeResolveLabel(v, destIfNull);
4712 return target;
4714 #endif /* SQLITE_OMIT_SUBQUERY */
4718 ** x BETWEEN y AND z
4720 ** This is equivalent to
4722 ** x>=y AND x<=z
4724 ** X is stored in pExpr->pLeft.
4725 ** Y is stored in pExpr->pList->a[0].pExpr.
4726 ** Z is stored in pExpr->pList->a[1].pExpr.
4728 case TK_BETWEEN: {
4729 exprCodeBetween(pParse, pExpr, target, 0, 0);
4730 return target;
4732 case TK_COLLATE: {
4733 if( !ExprHasProperty(pExpr, EP_Collate) ){
4734 /* A TK_COLLATE Expr node without the EP_Collate tag is a so-called
4735 ** "SOFT-COLLATE" that is added to constraints that are pushed down
4736 ** from outer queries into sub-queries by the push-down optimization.
4737 ** Clear subtypes as subtypes may not cross a subquery boundary.
4739 assert( pExpr->pLeft );
4740 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4741 if( inReg!=target ){
4742 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4743 inReg = target;
4745 sqlite3VdbeAddOp1(v, OP_ClrSubtype, inReg);
4746 return inReg;
4747 }else{
4748 pExpr = pExpr->pLeft;
4749 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. */
4752 case TK_SPAN:
4753 case TK_UPLUS: {
4754 pExpr = pExpr->pLeft;
4755 goto expr_code_doover; /* 2018-04-28: Prevent deep recursion. OSSFuzz. */
4758 case TK_TRIGGER: {
4759 /* If the opcode is TK_TRIGGER, then the expression is a reference
4760 ** to a column in the new.* or old.* pseudo-tables available to
4761 ** trigger programs. In this case Expr.iTable is set to 1 for the
4762 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
4763 ** is set to the column of the pseudo-table to read, or to -1 to
4764 ** read the rowid field.
4766 ** The expression is implemented using an OP_Param opcode. The p1
4767 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
4768 ** to reference another column of the old.* pseudo-table, where
4769 ** i is the index of the column. For a new.rowid reference, p1 is
4770 ** set to (n+1), where n is the number of columns in each pseudo-table.
4771 ** For a reference to any other column in the new.* pseudo-table, p1
4772 ** is set to (n+2+i), where n and i are as defined previously. For
4773 ** example, if the table on which triggers are being fired is
4774 ** declared as:
4776 ** CREATE TABLE t1(a, b);
4778 ** Then p1 is interpreted as follows:
4780 ** p1==0 -> old.rowid p1==3 -> new.rowid
4781 ** p1==1 -> old.a p1==4 -> new.a
4782 ** p1==2 -> old.b p1==5 -> new.b
4784 Table *pTab;
4785 int iCol;
4786 int p1;
4788 assert( ExprUseYTab(pExpr) );
4789 pTab = pExpr->y.pTab;
4790 iCol = pExpr->iColumn;
4791 p1 = pExpr->iTable * (pTab->nCol+1) + 1
4792 + sqlite3TableColumnToStorage(pTab, iCol);
4794 assert( pExpr->iTable==0 || pExpr->iTable==1 );
4795 assert( iCol>=-1 && iCol<pTab->nCol );
4796 assert( pTab->iPKey<0 || iCol!=pTab->iPKey );
4797 assert( p1>=0 && p1<(pTab->nCol*2+2) );
4799 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
4800 VdbeComment((v, "r[%d]=%s.%s", target,
4801 (pExpr->iTable ? "new" : "old"),
4802 (pExpr->iColumn<0 ? "rowid" : pExpr->y.pTab->aCol[iCol].zCnName)
4805 #ifndef SQLITE_OMIT_FLOATING_POINT
4806 /* If the column has REAL affinity, it may currently be stored as an
4807 ** integer. Use OP_RealAffinity to make sure it is really real.
4809 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
4810 ** floating point when extracting it from the record. */
4811 if( iCol>=0 && pTab->aCol[iCol].affinity==SQLITE_AFF_REAL ){
4812 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
4814 #endif
4815 break;
4818 case TK_VECTOR: {
4819 sqlite3ErrorMsg(pParse, "row value misused");
4820 break;
4823 /* TK_IF_NULL_ROW Expr nodes are inserted ahead of expressions
4824 ** that derive from the right-hand table of a LEFT JOIN. The
4825 ** Expr.iTable value is the table number for the right-hand table.
4826 ** The expression is only evaluated if that table is not currently
4827 ** on a LEFT JOIN NULL row.
4829 case TK_IF_NULL_ROW: {
4830 int addrINR;
4831 u8 okConstFactor = pParse->okConstFactor;
4832 AggInfo *pAggInfo = pExpr->pAggInfo;
4833 if( pAggInfo ){
4834 assert( pExpr->iAgg>=0 && pExpr->iAgg<pAggInfo->nColumn );
4835 if( !pAggInfo->directMode ){
4836 inReg = AggInfoColumnReg(pAggInfo, pExpr->iAgg);
4837 break;
4839 if( pExpr->pAggInfo->useSortingIdx ){
4840 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
4841 pAggInfo->aCol[pExpr->iAgg].iSorterColumn,
4842 target);
4843 inReg = target;
4844 break;
4847 addrINR = sqlite3VdbeAddOp3(v, OP_IfNullRow, pExpr->iTable, 0, target);
4848 /* The OP_IfNullRow opcode above can overwrite the result register with
4849 ** NULL. So we have to ensure that the result register is not a value
4850 ** that is suppose to be a constant. Two defenses are needed:
4851 ** (1) Temporarily disable factoring of constant expressions
4852 ** (2) Make sure the computed value really is stored in register
4853 ** "target" and not someplace else.
4855 pParse->okConstFactor = 0; /* note (1) above */
4856 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
4857 pParse->okConstFactor = okConstFactor;
4858 if( inReg!=target ){ /* note (2) above */
4859 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
4860 inReg = target;
4862 sqlite3VdbeJumpHere(v, addrINR);
4863 break;
4867 ** Form A:
4868 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4870 ** Form B:
4871 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
4873 ** Form A is can be transformed into the equivalent form B as follows:
4874 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
4875 ** WHEN x=eN THEN rN ELSE y END
4877 ** X (if it exists) is in pExpr->pLeft.
4878 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
4879 ** odd. The Y is also optional. If the number of elements in x.pList
4880 ** is even, then Y is omitted and the "otherwise" result is NULL.
4881 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
4883 ** The result of the expression is the Ri for the first matching Ei,
4884 ** or if there is no matching Ei, the ELSE term Y, or if there is
4885 ** no ELSE term, NULL.
4887 case TK_CASE: {
4888 int endLabel; /* GOTO label for end of CASE stmt */
4889 int nextCase; /* GOTO label for next WHEN clause */
4890 int nExpr; /* 2x number of WHEN terms */
4891 int i; /* Loop counter */
4892 ExprList *pEList; /* List of WHEN terms */
4893 struct ExprList_item *aListelem; /* Array of WHEN terms */
4894 Expr opCompare; /* The X==Ei expression */
4895 Expr *pX; /* The X expression */
4896 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
4897 Expr *pDel = 0;
4898 sqlite3 *db = pParse->db;
4900 assert( ExprUseXList(pExpr) && pExpr->x.pList!=0 );
4901 assert(pExpr->x.pList->nExpr > 0);
4902 pEList = pExpr->x.pList;
4903 aListelem = pEList->a;
4904 nExpr = pEList->nExpr;
4905 endLabel = sqlite3VdbeMakeLabel(pParse);
4906 if( (pX = pExpr->pLeft)!=0 ){
4907 pDel = sqlite3ExprDup(db, pX, 0);
4908 if( db->mallocFailed ){
4909 sqlite3ExprDelete(db, pDel);
4910 break;
4912 testcase( pX->op==TK_COLUMN );
4913 exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
4914 testcase( regFree1==0 );
4915 memset(&opCompare, 0, sizeof(opCompare));
4916 opCompare.op = TK_EQ;
4917 opCompare.pLeft = pDel;
4918 pTest = &opCompare;
4919 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
4920 ** The value in regFree1 might get SCopy-ed into the file result.
4921 ** So make sure that the regFree1 register is not reused for other
4922 ** purposes and possibly overwritten. */
4923 regFree1 = 0;
4925 for(i=0; i<nExpr-1; i=i+2){
4926 if( pX ){
4927 assert( pTest!=0 );
4928 opCompare.pRight = aListelem[i].pExpr;
4929 }else{
4930 pTest = aListelem[i].pExpr;
4932 nextCase = sqlite3VdbeMakeLabel(pParse);
4933 testcase( pTest->op==TK_COLUMN );
4934 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
4935 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
4936 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
4937 sqlite3VdbeGoto(v, endLabel);
4938 sqlite3VdbeResolveLabel(v, nextCase);
4940 if( (nExpr&1)!=0 ){
4941 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
4942 }else{
4943 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
4945 sqlite3ExprDelete(db, pDel);
4946 setDoNotMergeFlagOnCopy(v);
4947 sqlite3VdbeResolveLabel(v, endLabel);
4948 break;
4950 #ifndef SQLITE_OMIT_TRIGGER
4951 case TK_RAISE: {
4952 assert( pExpr->affExpr==OE_Rollback
4953 || pExpr->affExpr==OE_Abort
4954 || pExpr->affExpr==OE_Fail
4955 || pExpr->affExpr==OE_Ignore
4957 if( !pParse->pTriggerTab && !pParse->nested ){
4958 sqlite3ErrorMsg(pParse,
4959 "RAISE() may only be used within a trigger-program");
4960 return 0;
4962 if( pExpr->affExpr==OE_Abort ){
4963 sqlite3MayAbort(pParse);
4965 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4966 if( pExpr->affExpr==OE_Ignore ){
4967 sqlite3VdbeAddOp4(
4968 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
4969 VdbeCoverage(v);
4970 }else{
4971 sqlite3HaltConstraint(pParse,
4972 pParse->pTriggerTab ? SQLITE_CONSTRAINT_TRIGGER : SQLITE_ERROR,
4973 pExpr->affExpr, pExpr->u.zToken, 0, 0);
4976 break;
4978 #endif
4980 sqlite3ReleaseTempReg(pParse, regFree1);
4981 sqlite3ReleaseTempReg(pParse, regFree2);
4982 return inReg;
4986 ** Generate code that will evaluate expression pExpr just one time
4987 ** per prepared statement execution.
4989 ** If the expression uses functions (that might throw an exception) then
4990 ** guard them with an OP_Once opcode to ensure that the code is only executed
4991 ** once. If no functions are involved, then factor the code out and put it at
4992 ** the end of the prepared statement in the initialization section.
4994 ** If regDest>=0 then the result is always stored in that register and the
4995 ** result is not reusable. If regDest<0 then this routine is free to
4996 ** store the value whereever it wants. The register where the expression
4997 ** is stored is returned. When regDest<0, two identical expressions might
4998 ** code to the same register, if they do not contain function calls and hence
4999 ** are factored out into the initialization section at the end of the
5000 ** prepared statement.
5002 int sqlite3ExprCodeRunJustOnce(
5003 Parse *pParse, /* Parsing context */
5004 Expr *pExpr, /* The expression to code when the VDBE initializes */
5005 int regDest /* Store the value in this register */
5007 ExprList *p;
5008 assert( ConstFactorOk(pParse) );
5009 p = pParse->pConstExpr;
5010 if( regDest<0 && p ){
5011 struct ExprList_item *pItem;
5012 int i;
5013 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
5014 if( pItem->fg.reusable
5015 && sqlite3ExprCompare(0,pItem->pExpr,pExpr,-1)==0
5017 return pItem->u.iConstExprReg;
5021 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
5022 if( pExpr!=0 && ExprHasProperty(pExpr, EP_HasFunc) ){
5023 Vdbe *v = pParse->pVdbe;
5024 int addr;
5025 assert( v );
5026 addr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5027 pParse->okConstFactor = 0;
5028 if( !pParse->db->mallocFailed ){
5029 if( regDest<0 ) regDest = ++pParse->nMem;
5030 sqlite3ExprCode(pParse, pExpr, regDest);
5032 pParse->okConstFactor = 1;
5033 sqlite3ExprDelete(pParse->db, pExpr);
5034 sqlite3VdbeJumpHere(v, addr);
5035 }else{
5036 p = sqlite3ExprListAppend(pParse, p, pExpr);
5037 if( p ){
5038 struct ExprList_item *pItem = &p->a[p->nExpr-1];
5039 pItem->fg.reusable = regDest<0;
5040 if( regDest<0 ) regDest = ++pParse->nMem;
5041 pItem->u.iConstExprReg = regDest;
5043 pParse->pConstExpr = p;
5045 return regDest;
5049 ** Generate code to evaluate an expression and store the results
5050 ** into a register. Return the register number where the results
5051 ** are stored.
5053 ** If the register is a temporary register that can be deallocated,
5054 ** then write its number into *pReg. If the result register is not
5055 ** a temporary, then set *pReg to zero.
5057 ** If pExpr is a constant, then this routine might generate this
5058 ** code to fill the register in the initialization section of the
5059 ** VDBE program, in order to factor it out of the evaluation loop.
5061 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
5062 int r2;
5063 pExpr = sqlite3ExprSkipCollateAndLikely(pExpr);
5064 if( ConstFactorOk(pParse)
5065 && ALWAYS(pExpr!=0)
5066 && pExpr->op!=TK_REGISTER
5067 && sqlite3ExprIsConstantNotJoin(pExpr)
5069 *pReg = 0;
5070 r2 = sqlite3ExprCodeRunJustOnce(pParse, pExpr, -1);
5071 }else{
5072 int r1 = sqlite3GetTempReg(pParse);
5073 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
5074 if( r2==r1 ){
5075 *pReg = r1;
5076 }else{
5077 sqlite3ReleaseTempReg(pParse, r1);
5078 *pReg = 0;
5081 return r2;
5085 ** Generate code that will evaluate expression pExpr and store the
5086 ** results in register target. The results are guaranteed to appear
5087 ** in register target.
5089 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
5090 int inReg;
5092 assert( pExpr==0 || !ExprHasVVAProperty(pExpr,EP_Immutable) );
5093 assert( target>0 && target<=pParse->nMem );
5094 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
5095 if( pParse->pVdbe==0 ) return;
5096 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
5097 if( inReg!=target ){
5098 u8 op;
5099 if( ALWAYS(pExpr) && ExprHasProperty(pExpr,EP_Subquery) ){
5100 op = OP_Copy;
5101 }else{
5102 op = OP_SCopy;
5104 sqlite3VdbeAddOp2(pParse->pVdbe, op, inReg, target);
5109 ** Make a transient copy of expression pExpr and then code it using
5110 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
5111 ** except that the input expression is guaranteed to be unchanged.
5113 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
5114 sqlite3 *db = pParse->db;
5115 pExpr = sqlite3ExprDup(db, pExpr, 0);
5116 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
5117 sqlite3ExprDelete(db, pExpr);
5121 ** Generate code that will evaluate expression pExpr and store the
5122 ** results in register target. The results are guaranteed to appear
5123 ** in register target. If the expression is constant, then this routine
5124 ** might choose to code the expression at initialization time.
5126 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
5127 if( pParse->okConstFactor && sqlite3ExprIsConstantNotJoin(pExpr) ){
5128 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target);
5129 }else{
5130 sqlite3ExprCodeCopy(pParse, pExpr, target);
5135 ** Generate code that pushes the value of every element of the given
5136 ** expression list into a sequence of registers beginning at target.
5138 ** Return the number of elements evaluated. The number returned will
5139 ** usually be pList->nExpr but might be reduced if SQLITE_ECEL_OMITREF
5140 ** is defined.
5142 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
5143 ** filled using OP_SCopy. OP_Copy must be used instead.
5145 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
5146 ** factored out into initialization code.
5148 ** The SQLITE_ECEL_REF flag means that expressions in the list with
5149 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
5150 ** in registers at srcReg, and so the value can be copied from there.
5151 ** If SQLITE_ECEL_OMITREF is also set, then the values with u.x.iOrderByCol>0
5152 ** are simply omitted rather than being copied from srcReg.
5154 int sqlite3ExprCodeExprList(
5155 Parse *pParse, /* Parsing context */
5156 ExprList *pList, /* The expression list to be coded */
5157 int target, /* Where to write results */
5158 int srcReg, /* Source registers if SQLITE_ECEL_REF */
5159 u8 flags /* SQLITE_ECEL_* flags */
5161 struct ExprList_item *pItem;
5162 int i, j, n;
5163 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
5164 Vdbe *v = pParse->pVdbe;
5165 assert( pList!=0 );
5166 assert( target>0 );
5167 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
5168 n = pList->nExpr;
5169 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
5170 for(pItem=pList->a, i=0; i<n; i++, pItem++){
5171 Expr *pExpr = pItem->pExpr;
5172 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
5173 if( pItem->fg.bSorterRef ){
5174 i--;
5175 n--;
5176 }else
5177 #endif
5178 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pItem->u.x.iOrderByCol)>0 ){
5179 if( flags & SQLITE_ECEL_OMITREF ){
5180 i--;
5181 n--;
5182 }else{
5183 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
5185 }else if( (flags & SQLITE_ECEL_FACTOR)!=0
5186 && sqlite3ExprIsConstantNotJoin(pExpr)
5188 sqlite3ExprCodeRunJustOnce(pParse, pExpr, target+i);
5189 }else{
5190 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
5191 if( inReg!=target+i ){
5192 VdbeOp *pOp;
5193 if( copyOp==OP_Copy
5194 && (pOp=sqlite3VdbeGetLastOp(v))->opcode==OP_Copy
5195 && pOp->p1+pOp->p3+1==inReg
5196 && pOp->p2+pOp->p3+1==target+i
5197 && pOp->p5==0 /* The do-not-merge flag must be clear */
5199 pOp->p3++;
5200 }else{
5201 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
5206 return n;
5210 ** Generate code for a BETWEEN operator.
5212 ** x BETWEEN y AND z
5214 ** The above is equivalent to
5216 ** x>=y AND x<=z
5218 ** Code it as such, taking care to do the common subexpression
5219 ** elimination of x.
5221 ** The xJumpIf parameter determines details:
5223 ** NULL: Store the boolean result in reg[dest]
5224 ** sqlite3ExprIfTrue: Jump to dest if true
5225 ** sqlite3ExprIfFalse: Jump to dest if false
5227 ** The jumpIfNull parameter is ignored if xJumpIf is NULL.
5229 static void exprCodeBetween(
5230 Parse *pParse, /* Parsing and code generating context */
5231 Expr *pExpr, /* The BETWEEN expression */
5232 int dest, /* Jump destination or storage location */
5233 void (*xJump)(Parse*,Expr*,int,int), /* Action to take */
5234 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
5236 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
5237 Expr compLeft; /* The x>=y term */
5238 Expr compRight; /* The x<=z term */
5239 int regFree1 = 0; /* Temporary use register */
5240 Expr *pDel = 0;
5241 sqlite3 *db = pParse->db;
5243 memset(&compLeft, 0, sizeof(Expr));
5244 memset(&compRight, 0, sizeof(Expr));
5245 memset(&exprAnd, 0, sizeof(Expr));
5247 assert( ExprUseXList(pExpr) );
5248 pDel = sqlite3ExprDup(db, pExpr->pLeft, 0);
5249 if( db->mallocFailed==0 ){
5250 exprAnd.op = TK_AND;
5251 exprAnd.pLeft = &compLeft;
5252 exprAnd.pRight = &compRight;
5253 compLeft.op = TK_GE;
5254 compLeft.pLeft = pDel;
5255 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
5256 compRight.op = TK_LE;
5257 compRight.pLeft = pDel;
5258 compRight.pRight = pExpr->x.pList->a[1].pExpr;
5259 exprToRegister(pDel, exprCodeVector(pParse, pDel, &regFree1));
5260 if( xJump ){
5261 xJump(pParse, &exprAnd, dest, jumpIfNull);
5262 }else{
5263 /* Mark the expression is being from the ON or USING clause of a join
5264 ** so that the sqlite3ExprCodeTarget() routine will not attempt to move
5265 ** it into the Parse.pConstExpr list. We should use a new bit for this,
5266 ** for clarity, but we are out of bits in the Expr.flags field so we
5267 ** have to reuse the EP_OuterON bit. Bummer. */
5268 pDel->flags |= EP_OuterON;
5269 sqlite3ExprCodeTarget(pParse, &exprAnd, dest);
5271 sqlite3ReleaseTempReg(pParse, regFree1);
5273 sqlite3ExprDelete(db, pDel);
5275 /* Ensure adequate test coverage */
5276 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1==0 );
5277 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull==0 && regFree1!=0 );
5278 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1==0 );
5279 testcase( xJump==sqlite3ExprIfTrue && jumpIfNull!=0 && regFree1!=0 );
5280 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1==0 );
5281 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull==0 && regFree1!=0 );
5282 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1==0 );
5283 testcase( xJump==sqlite3ExprIfFalse && jumpIfNull!=0 && regFree1!=0 );
5284 testcase( xJump==0 );
5288 ** Generate code for a boolean expression such that a jump is made
5289 ** to the label "dest" if the expression is true but execution
5290 ** continues straight thru if the expression is false.
5292 ** If the expression evaluates to NULL (neither true nor false), then
5293 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
5295 ** This code depends on the fact that certain token values (ex: TK_EQ)
5296 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
5297 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
5298 ** the make process cause these values to align. Assert()s in the code
5299 ** below verify that the numbers are aligned correctly.
5301 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5302 Vdbe *v = pParse->pVdbe;
5303 int op = 0;
5304 int regFree1 = 0;
5305 int regFree2 = 0;
5306 int r1, r2;
5308 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5309 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5310 if( NEVER(pExpr==0) ) return; /* No way this can happen */
5311 assert( !ExprHasVVAProperty(pExpr, EP_Immutable) );
5312 op = pExpr->op;
5313 switch( op ){
5314 case TK_AND:
5315 case TK_OR: {
5316 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5317 if( pAlt!=pExpr ){
5318 sqlite3ExprIfTrue(pParse, pAlt, dest, jumpIfNull);
5319 }else if( op==TK_AND ){
5320 int d2 = sqlite3VdbeMakeLabel(pParse);
5321 testcase( jumpIfNull==0 );
5322 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,
5323 jumpIfNull^SQLITE_JUMPIFNULL);
5324 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5325 sqlite3VdbeResolveLabel(v, d2);
5326 }else{
5327 testcase( jumpIfNull==0 );
5328 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5329 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
5331 break;
5333 case TK_NOT: {
5334 testcase( jumpIfNull==0 );
5335 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5336 break;
5338 case TK_TRUTH: {
5339 int isNot; /* IS NOT TRUE or IS NOT FALSE */
5340 int isTrue; /* IS TRUE or IS NOT TRUE */
5341 testcase( jumpIfNull==0 );
5342 isNot = pExpr->op2==TK_ISNOT;
5343 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5344 testcase( isTrue && isNot );
5345 testcase( !isTrue && isNot );
5346 if( isTrue ^ isNot ){
5347 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5348 isNot ? SQLITE_JUMPIFNULL : 0);
5349 }else{
5350 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5351 isNot ? SQLITE_JUMPIFNULL : 0);
5353 break;
5355 case TK_IS:
5356 case TK_ISNOT:
5357 testcase( op==TK_IS );
5358 testcase( op==TK_ISNOT );
5359 op = (op==TK_IS) ? TK_EQ : TK_NE;
5360 jumpIfNull = SQLITE_NULLEQ;
5361 /* no break */ deliberate_fall_through
5362 case TK_LT:
5363 case TK_LE:
5364 case TK_GT:
5365 case TK_GE:
5366 case TK_NE:
5367 case TK_EQ: {
5368 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5369 testcase( jumpIfNull==0 );
5370 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5371 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5372 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5373 r1, r2, dest, jumpIfNull, ExprHasProperty(pExpr,EP_Commuted));
5374 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5375 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5376 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5377 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5378 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5379 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5380 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5381 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5382 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5383 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5384 testcase( regFree1==0 );
5385 testcase( regFree2==0 );
5386 break;
5388 case TK_ISNULL:
5389 case TK_NOTNULL: {
5390 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
5391 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
5392 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5393 sqlite3VdbeTypeofColumn(v, r1);
5394 sqlite3VdbeAddOp2(v, op, r1, dest);
5395 VdbeCoverageIf(v, op==TK_ISNULL);
5396 VdbeCoverageIf(v, op==TK_NOTNULL);
5397 testcase( regFree1==0 );
5398 break;
5400 case TK_BETWEEN: {
5401 testcase( jumpIfNull==0 );
5402 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfTrue, jumpIfNull);
5403 break;
5405 #ifndef SQLITE_OMIT_SUBQUERY
5406 case TK_IN: {
5407 int destIfFalse = sqlite3VdbeMakeLabel(pParse);
5408 int destIfNull = jumpIfNull ? dest : destIfFalse;
5409 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
5410 sqlite3VdbeGoto(v, dest);
5411 sqlite3VdbeResolveLabel(v, destIfFalse);
5412 break;
5414 #endif
5415 default: {
5416 default_expr:
5417 if( ExprAlwaysTrue(pExpr) ){
5418 sqlite3VdbeGoto(v, dest);
5419 }else if( ExprAlwaysFalse(pExpr) ){
5420 /* No-op */
5421 }else{
5422 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5423 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
5424 VdbeCoverage(v);
5425 testcase( regFree1==0 );
5426 testcase( jumpIfNull==0 );
5428 break;
5431 sqlite3ReleaseTempReg(pParse, regFree1);
5432 sqlite3ReleaseTempReg(pParse, regFree2);
5436 ** Generate code for a boolean expression such that a jump is made
5437 ** to the label "dest" if the expression is false but execution
5438 ** continues straight thru if the expression is true.
5440 ** If the expression evaluates to NULL (neither true nor false) then
5441 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
5442 ** is 0.
5444 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
5445 Vdbe *v = pParse->pVdbe;
5446 int op = 0;
5447 int regFree1 = 0;
5448 int regFree2 = 0;
5449 int r1, r2;
5451 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
5452 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
5453 if( pExpr==0 ) return;
5454 assert( !ExprHasVVAProperty(pExpr,EP_Immutable) );
5456 /* The value of pExpr->op and op are related as follows:
5458 ** pExpr->op op
5459 ** --------- ----------
5460 ** TK_ISNULL OP_NotNull
5461 ** TK_NOTNULL OP_IsNull
5462 ** TK_NE OP_Eq
5463 ** TK_EQ OP_Ne
5464 ** TK_GT OP_Le
5465 ** TK_LE OP_Gt
5466 ** TK_GE OP_Lt
5467 ** TK_LT OP_Ge
5469 ** For other values of pExpr->op, op is undefined and unused.
5470 ** The value of TK_ and OP_ constants are arranged such that we
5471 ** can compute the mapping above using the following expression.
5472 ** Assert()s verify that the computation is correct.
5474 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
5476 /* Verify correct alignment of TK_ and OP_ constants
5478 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
5479 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
5480 assert( pExpr->op!=TK_NE || op==OP_Eq );
5481 assert( pExpr->op!=TK_EQ || op==OP_Ne );
5482 assert( pExpr->op!=TK_LT || op==OP_Ge );
5483 assert( pExpr->op!=TK_LE || op==OP_Gt );
5484 assert( pExpr->op!=TK_GT || op==OP_Le );
5485 assert( pExpr->op!=TK_GE || op==OP_Lt );
5487 switch( pExpr->op ){
5488 case TK_AND:
5489 case TK_OR: {
5490 Expr *pAlt = sqlite3ExprSimplifiedAndOr(pExpr);
5491 if( pAlt!=pExpr ){
5492 sqlite3ExprIfFalse(pParse, pAlt, dest, jumpIfNull);
5493 }else if( pExpr->op==TK_AND ){
5494 testcase( jumpIfNull==0 );
5495 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
5496 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5497 }else{
5498 int d2 = sqlite3VdbeMakeLabel(pParse);
5499 testcase( jumpIfNull==0 );
5500 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2,
5501 jumpIfNull^SQLITE_JUMPIFNULL);
5502 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
5503 sqlite3VdbeResolveLabel(v, d2);
5505 break;
5507 case TK_NOT: {
5508 testcase( jumpIfNull==0 );
5509 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
5510 break;
5512 case TK_TRUTH: {
5513 int isNot; /* IS NOT TRUE or IS NOT FALSE */
5514 int isTrue; /* IS TRUE or IS NOT TRUE */
5515 testcase( jumpIfNull==0 );
5516 isNot = pExpr->op2==TK_ISNOT;
5517 isTrue = sqlite3ExprTruthValue(pExpr->pRight);
5518 testcase( isTrue && isNot );
5519 testcase( !isTrue && isNot );
5520 if( isTrue ^ isNot ){
5521 /* IS TRUE and IS NOT FALSE */
5522 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest,
5523 isNot ? 0 : SQLITE_JUMPIFNULL);
5525 }else{
5526 /* IS FALSE and IS NOT TRUE */
5527 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest,
5528 isNot ? 0 : SQLITE_JUMPIFNULL);
5530 break;
5532 case TK_IS:
5533 case TK_ISNOT:
5534 testcase( pExpr->op==TK_IS );
5535 testcase( pExpr->op==TK_ISNOT );
5536 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
5537 jumpIfNull = SQLITE_NULLEQ;
5538 /* no break */ deliberate_fall_through
5539 case TK_LT:
5540 case TK_LE:
5541 case TK_GT:
5542 case TK_GE:
5543 case TK_NE:
5544 case TK_EQ: {
5545 if( sqlite3ExprIsVector(pExpr->pLeft) ) goto default_expr;
5546 testcase( jumpIfNull==0 );
5547 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5548 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
5549 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
5550 r1, r2, dest, jumpIfNull,ExprHasProperty(pExpr,EP_Commuted));
5551 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
5552 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
5553 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
5554 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
5555 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq);
5556 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull!=SQLITE_NULLEQ);
5557 VdbeCoverageIf(v, op==OP_Eq && jumpIfNull==SQLITE_NULLEQ);
5558 assert(TK_NE==OP_Ne); testcase(op==OP_Ne);
5559 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull!=SQLITE_NULLEQ);
5560 VdbeCoverageIf(v, op==OP_Ne && jumpIfNull==SQLITE_NULLEQ);
5561 testcase( regFree1==0 );
5562 testcase( regFree2==0 );
5563 break;
5565 case TK_ISNULL:
5566 case TK_NOTNULL: {
5567 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
5568 sqlite3VdbeTypeofColumn(v, r1);
5569 sqlite3VdbeAddOp2(v, op, r1, dest);
5570 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
5571 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
5572 testcase( regFree1==0 );
5573 break;
5575 case TK_BETWEEN: {
5576 testcase( jumpIfNull==0 );
5577 exprCodeBetween(pParse, pExpr, dest, sqlite3ExprIfFalse, jumpIfNull);
5578 break;
5580 #ifndef SQLITE_OMIT_SUBQUERY
5581 case TK_IN: {
5582 if( jumpIfNull ){
5583 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
5584 }else{
5585 int destIfNull = sqlite3VdbeMakeLabel(pParse);
5586 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
5587 sqlite3VdbeResolveLabel(v, destIfNull);
5589 break;
5591 #endif
5592 default: {
5593 default_expr:
5594 if( ExprAlwaysFalse(pExpr) ){
5595 sqlite3VdbeGoto(v, dest);
5596 }else if( ExprAlwaysTrue(pExpr) ){
5597 /* no-op */
5598 }else{
5599 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
5600 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
5601 VdbeCoverage(v);
5602 testcase( regFree1==0 );
5603 testcase( jumpIfNull==0 );
5605 break;
5608 sqlite3ReleaseTempReg(pParse, regFree1);
5609 sqlite3ReleaseTempReg(pParse, regFree2);
5613 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
5614 ** code generation, and that copy is deleted after code generation. This
5615 ** ensures that the original pExpr is unchanged.
5617 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
5618 sqlite3 *db = pParse->db;
5619 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
5620 if( db->mallocFailed==0 ){
5621 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
5623 sqlite3ExprDelete(db, pCopy);
5627 ** Expression pVar is guaranteed to be an SQL variable. pExpr may be any
5628 ** type of expression.
5630 ** If pExpr is a simple SQL value - an integer, real, string, blob
5631 ** or NULL value - then the VDBE currently being prepared is configured
5632 ** to re-prepare each time a new value is bound to variable pVar.
5634 ** Additionally, if pExpr is a simple SQL value and the value is the
5635 ** same as that currently bound to variable pVar, non-zero is returned.
5636 ** Otherwise, if the values are not the same or if pExpr is not a simple
5637 ** SQL value, zero is returned.
5639 static int exprCompareVariable(
5640 const Parse *pParse,
5641 const Expr *pVar,
5642 const Expr *pExpr
5644 int res = 0;
5645 int iVar;
5646 sqlite3_value *pL, *pR = 0;
5648 sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, SQLITE_AFF_BLOB, &pR);
5649 if( pR ){
5650 iVar = pVar->iColumn;
5651 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar);
5652 pL = sqlite3VdbeGetBoundValue(pParse->pReprepare, iVar, SQLITE_AFF_BLOB);
5653 if( pL ){
5654 if( sqlite3_value_type(pL)==SQLITE_TEXT ){
5655 sqlite3_value_text(pL); /* Make sure the encoding is UTF-8 */
5657 res = 0==sqlite3MemCompare(pL, pR, 0);
5659 sqlite3ValueFree(pR);
5660 sqlite3ValueFree(pL);
5663 return res;
5667 ** Do a deep comparison of two expression trees. Return 0 if the two
5668 ** expressions are completely identical. Return 1 if they differ only
5669 ** by a COLLATE operator at the top level. Return 2 if there are differences
5670 ** other than the top-level COLLATE operator.
5672 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5673 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5675 ** The pA side might be using TK_REGISTER. If that is the case and pB is
5676 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
5678 ** Sometimes this routine will return 2 even if the two expressions
5679 ** really are equivalent. If we cannot prove that the expressions are
5680 ** identical, we return 2 just to be safe. So if this routine
5681 ** returns 2, then you do not really know for certain if the two
5682 ** expressions are the same. But if you get a 0 or 1 return, then you
5683 ** can be sure the expressions are the same. In the places where
5684 ** this routine is used, it does not hurt to get an extra 2 - that
5685 ** just might result in some slightly slower code. But returning
5686 ** an incorrect 0 or 1 could lead to a malfunction.
5688 ** If pParse is not NULL then TK_VARIABLE terms in pA with bindings in
5689 ** pParse->pReprepare can be matched against literals in pB. The
5690 ** pParse->pVdbe->expmask bitmask is updated for each variable referenced.
5691 ** If pParse is NULL (the normal case) then any TK_VARIABLE term in
5692 ** Argument pParse should normally be NULL. If it is not NULL and pA or
5693 ** pB causes a return value of 2.
5695 int sqlite3ExprCompare(
5696 const Parse *pParse,
5697 const Expr *pA,
5698 const Expr *pB,
5699 int iTab
5701 u32 combinedFlags;
5702 if( pA==0 || pB==0 ){
5703 return pB==pA ? 0 : 2;
5705 if( pParse && pA->op==TK_VARIABLE && exprCompareVariable(pParse, pA, pB) ){
5706 return 0;
5708 combinedFlags = pA->flags | pB->flags;
5709 if( combinedFlags & EP_IntValue ){
5710 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
5711 return 0;
5713 return 2;
5715 if( pA->op!=pB->op || pA->op==TK_RAISE ){
5716 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA->pLeft,pB,iTab)<2 ){
5717 return 1;
5719 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pParse, pA,pB->pLeft,iTab)<2 ){
5720 return 1;
5722 if( pA->op==TK_AGG_COLUMN && pB->op==TK_COLUMN
5723 && pB->iTable<0 && pA->iTable==iTab
5725 /* fall through */
5726 }else{
5727 return 2;
5730 assert( !ExprHasProperty(pA, EP_IntValue) );
5731 assert( !ExprHasProperty(pB, EP_IntValue) );
5732 if( pA->u.zToken ){
5733 if( pA->op==TK_FUNCTION || pA->op==TK_AGG_FUNCTION ){
5734 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5735 #ifndef SQLITE_OMIT_WINDOWFUNC
5736 assert( pA->op==pB->op );
5737 if( ExprHasProperty(pA,EP_WinFunc)!=ExprHasProperty(pB,EP_WinFunc) ){
5738 return 2;
5740 if( ExprHasProperty(pA,EP_WinFunc) ){
5741 if( sqlite3WindowCompare(pParse, pA->y.pWin, pB->y.pWin, 1)!=0 ){
5742 return 2;
5745 #endif
5746 }else if( pA->op==TK_NULL ){
5747 return 0;
5748 }else if( pA->op==TK_COLLATE ){
5749 if( sqlite3_stricmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
5750 }else
5751 if( pB->u.zToken!=0
5752 && pA->op!=TK_COLUMN
5753 && pA->op!=TK_AGG_COLUMN
5754 && strcmp(pA->u.zToken,pB->u.zToken)!=0
5756 return 2;
5759 if( (pA->flags & (EP_Distinct|EP_Commuted))
5760 != (pB->flags & (EP_Distinct|EP_Commuted)) ) return 2;
5761 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
5762 if( combinedFlags & EP_xIsSelect ) return 2;
5763 if( (combinedFlags & EP_FixedCol)==0
5764 && sqlite3ExprCompare(pParse, pA->pLeft, pB->pLeft, iTab) ) return 2;
5765 if( sqlite3ExprCompare(pParse, pA->pRight, pB->pRight, iTab) ) return 2;
5766 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
5767 if( pA->op!=TK_STRING
5768 && pA->op!=TK_TRUEFALSE
5769 && ALWAYS((combinedFlags & EP_Reduced)==0)
5771 if( pA->iColumn!=pB->iColumn ) return 2;
5772 if( pA->op2!=pB->op2 && pA->op==TK_TRUTH ) return 2;
5773 if( pA->op!=TK_IN && pA->iTable!=pB->iTable && pA->iTable!=iTab ){
5774 return 2;
5778 return 0;
5782 ** Compare two ExprList objects. Return 0 if they are identical, 1
5783 ** if they are certainly different, or 2 if it is not possible to
5784 ** determine if they are identical or not.
5786 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
5787 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
5789 ** This routine might return non-zero for equivalent ExprLists. The
5790 ** only consequence will be disabled optimizations. But this routine
5791 ** must never return 0 if the two ExprList objects are different, or
5792 ** a malfunction will result.
5794 ** Two NULL pointers are considered to be the same. But a NULL pointer
5795 ** always differs from a non-NULL pointer.
5797 int sqlite3ExprListCompare(const ExprList *pA, const ExprList *pB, int iTab){
5798 int i;
5799 if( pA==0 && pB==0 ) return 0;
5800 if( pA==0 || pB==0 ) return 1;
5801 if( pA->nExpr!=pB->nExpr ) return 1;
5802 for(i=0; i<pA->nExpr; i++){
5803 int res;
5804 Expr *pExprA = pA->a[i].pExpr;
5805 Expr *pExprB = pB->a[i].pExpr;
5806 if( pA->a[i].fg.sortFlags!=pB->a[i].fg.sortFlags ) return 1;
5807 if( (res = sqlite3ExprCompare(0, pExprA, pExprB, iTab)) ) return res;
5809 return 0;
5813 ** Like sqlite3ExprCompare() except COLLATE operators at the top-level
5814 ** are ignored.
5816 int sqlite3ExprCompareSkip(Expr *pA,Expr *pB, int iTab){
5817 return sqlite3ExprCompare(0,
5818 sqlite3ExprSkipCollateAndLikely(pA),
5819 sqlite3ExprSkipCollateAndLikely(pB),
5820 iTab);
5824 ** Return non-zero if Expr p can only be true if pNN is not NULL.
5826 ** Or if seenNot is true, return non-zero if Expr p can only be
5827 ** non-NULL if pNN is not NULL
5829 static int exprImpliesNotNull(
5830 const Parse *pParse,/* Parsing context */
5831 const Expr *p, /* The expression to be checked */
5832 const Expr *pNN, /* The expression that is NOT NULL */
5833 int iTab, /* Table being evaluated */
5834 int seenNot /* Return true only if p can be any non-NULL value */
5836 assert( p );
5837 assert( pNN );
5838 if( sqlite3ExprCompare(pParse, p, pNN, iTab)==0 ){
5839 return pNN->op!=TK_NULL;
5841 switch( p->op ){
5842 case TK_IN: {
5843 if( seenNot && ExprHasProperty(p, EP_xIsSelect) ) return 0;
5844 assert( ExprUseXSelect(p) || (p->x.pList!=0 && p->x.pList->nExpr>0) );
5845 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5847 case TK_BETWEEN: {
5848 ExprList *pList;
5849 assert( ExprUseXList(p) );
5850 pList = p->x.pList;
5851 assert( pList!=0 );
5852 assert( pList->nExpr==2 );
5853 if( seenNot ) return 0;
5854 if( exprImpliesNotNull(pParse, pList->a[0].pExpr, pNN, iTab, 1)
5855 || exprImpliesNotNull(pParse, pList->a[1].pExpr, pNN, iTab, 1)
5857 return 1;
5859 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5861 case TK_EQ:
5862 case TK_NE:
5863 case TK_LT:
5864 case TK_LE:
5865 case TK_GT:
5866 case TK_GE:
5867 case TK_PLUS:
5868 case TK_MINUS:
5869 case TK_BITOR:
5870 case TK_LSHIFT:
5871 case TK_RSHIFT:
5872 case TK_CONCAT:
5873 seenNot = 1;
5874 /* no break */ deliberate_fall_through
5875 case TK_STAR:
5876 case TK_REM:
5877 case TK_BITAND:
5878 case TK_SLASH: {
5879 if( exprImpliesNotNull(pParse, p->pRight, pNN, iTab, seenNot) ) return 1;
5880 /* no break */ deliberate_fall_through
5882 case TK_SPAN:
5883 case TK_COLLATE:
5884 case TK_UPLUS:
5885 case TK_UMINUS: {
5886 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, seenNot);
5888 case TK_TRUTH: {
5889 if( seenNot ) return 0;
5890 if( p->op2!=TK_IS ) return 0;
5891 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5893 case TK_BITNOT:
5894 case TK_NOT: {
5895 return exprImpliesNotNull(pParse, p->pLeft, pNN, iTab, 1);
5898 return 0;
5902 ** Return true if we can prove the pE2 will always be true if pE1 is
5903 ** true. Return false if we cannot complete the proof or if pE2 might
5904 ** be false. Examples:
5906 ** pE1: x==5 pE2: x==5 Result: true
5907 ** pE1: x>0 pE2: x==5 Result: false
5908 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
5909 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
5910 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
5911 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
5912 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
5914 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
5915 ** Expr.iTable<0 then assume a table number given by iTab.
5917 ** If pParse is not NULL, then the values of bound variables in pE1 are
5918 ** compared against literal values in pE2 and pParse->pVdbe->expmask is
5919 ** modified to record which bound variables are referenced. If pParse
5920 ** is NULL, then false will be returned if pE1 contains any bound variables.
5922 ** When in doubt, return false. Returning true might give a performance
5923 ** improvement. Returning false might cause a performance reduction, but
5924 ** it will always give the correct answer and is hence always safe.
5926 int sqlite3ExprImpliesExpr(
5927 const Parse *pParse,
5928 const Expr *pE1,
5929 const Expr *pE2,
5930 int iTab
5932 if( sqlite3ExprCompare(pParse, pE1, pE2, iTab)==0 ){
5933 return 1;
5935 if( pE2->op==TK_OR
5936 && (sqlite3ExprImpliesExpr(pParse, pE1, pE2->pLeft, iTab)
5937 || sqlite3ExprImpliesExpr(pParse, pE1, pE2->pRight, iTab) )
5939 return 1;
5941 if( pE2->op==TK_NOTNULL
5942 && exprImpliesNotNull(pParse, pE1, pE2->pLeft, iTab, 0)
5944 return 1;
5946 return 0;
5950 ** This is the Expr node callback for sqlite3ExprImpliesNonNullRow().
5951 ** If the expression node requires that the table at pWalker->iCur
5952 ** have one or more non-NULL column, then set pWalker->eCode to 1 and abort.
5954 ** This routine controls an optimization. False positives (setting
5955 ** pWalker->eCode to 1 when it should not be) are deadly, but false-negatives
5956 ** (never setting pWalker->eCode) is a harmless missed optimization.
5958 static int impliesNotNullRow(Walker *pWalker, Expr *pExpr){
5959 testcase( pExpr->op==TK_AGG_COLUMN );
5960 testcase( pExpr->op==TK_AGG_FUNCTION );
5961 if( ExprHasProperty(pExpr, EP_OuterON) ) return WRC_Prune;
5962 switch( pExpr->op ){
5963 case TK_ISNOT:
5964 case TK_ISNULL:
5965 case TK_NOTNULL:
5966 case TK_IS:
5967 case TK_OR:
5968 case TK_VECTOR:
5969 case TK_CASE:
5970 case TK_IN:
5971 case TK_FUNCTION:
5972 case TK_TRUTH:
5973 testcase( pExpr->op==TK_ISNOT );
5974 testcase( pExpr->op==TK_ISNULL );
5975 testcase( pExpr->op==TK_NOTNULL );
5976 testcase( pExpr->op==TK_IS );
5977 testcase( pExpr->op==TK_OR );
5978 testcase( pExpr->op==TK_VECTOR );
5979 testcase( pExpr->op==TK_CASE );
5980 testcase( pExpr->op==TK_IN );
5981 testcase( pExpr->op==TK_FUNCTION );
5982 testcase( pExpr->op==TK_TRUTH );
5983 return WRC_Prune;
5984 case TK_COLUMN:
5985 if( pWalker->u.iCur==pExpr->iTable ){
5986 pWalker->eCode = 1;
5987 return WRC_Abort;
5989 return WRC_Prune;
5991 case TK_AND:
5992 if( pWalker->eCode==0 ){
5993 sqlite3WalkExpr(pWalker, pExpr->pLeft);
5994 if( pWalker->eCode ){
5995 pWalker->eCode = 0;
5996 sqlite3WalkExpr(pWalker, pExpr->pRight);
5999 return WRC_Prune;
6001 case TK_BETWEEN:
6002 if( sqlite3WalkExpr(pWalker, pExpr->pLeft)==WRC_Abort ){
6003 assert( pWalker->eCode );
6004 return WRC_Abort;
6006 return WRC_Prune;
6008 /* Virtual tables are allowed to use constraints like x=NULL. So
6009 ** a term of the form x=y does not prove that y is not null if x
6010 ** is the column of a virtual table */
6011 case TK_EQ:
6012 case TK_NE:
6013 case TK_LT:
6014 case TK_LE:
6015 case TK_GT:
6016 case TK_GE: {
6017 Expr *pLeft = pExpr->pLeft;
6018 Expr *pRight = pExpr->pRight;
6019 testcase( pExpr->op==TK_EQ );
6020 testcase( pExpr->op==TK_NE );
6021 testcase( pExpr->op==TK_LT );
6022 testcase( pExpr->op==TK_LE );
6023 testcase( pExpr->op==TK_GT );
6024 testcase( pExpr->op==TK_GE );
6025 /* The y.pTab=0 assignment in wherecode.c always happens after the
6026 ** impliesNotNullRow() test */
6027 assert( pLeft->op!=TK_COLUMN || ExprUseYTab(pLeft) );
6028 assert( pRight->op!=TK_COLUMN || ExprUseYTab(pRight) );
6029 if( (pLeft->op==TK_COLUMN
6030 && ALWAYS(pLeft->y.pTab!=0)
6031 && IsVirtual(pLeft->y.pTab))
6032 || (pRight->op==TK_COLUMN
6033 && ALWAYS(pRight->y.pTab!=0)
6034 && IsVirtual(pRight->y.pTab))
6036 return WRC_Prune;
6038 /* no break */ deliberate_fall_through
6040 default:
6041 return WRC_Continue;
6046 ** Return true (non-zero) if expression p can only be true if at least
6047 ** one column of table iTab is non-null. In other words, return true
6048 ** if expression p will always be NULL or false if every column of iTab
6049 ** is NULL.
6051 ** False negatives are acceptable. In other words, it is ok to return
6052 ** zero even if expression p will never be true of every column of iTab
6053 ** is NULL. A false negative is merely a missed optimization opportunity.
6055 ** False positives are not allowed, however. A false positive may result
6056 ** in an incorrect answer.
6058 ** Terms of p that are marked with EP_OuterON (and hence that come from
6059 ** the ON or USING clauses of OUTER JOINS) are excluded from the analysis.
6061 ** This routine is used to check if a LEFT JOIN can be converted into
6062 ** an ordinary JOIN. The p argument is the WHERE clause. If the WHERE
6063 ** clause requires that some column of the right table of the LEFT JOIN
6064 ** be non-NULL, then the LEFT JOIN can be safely converted into an
6065 ** ordinary join.
6067 int sqlite3ExprImpliesNonNullRow(Expr *p, int iTab){
6068 Walker w;
6069 p = sqlite3ExprSkipCollateAndLikely(p);
6070 if( p==0 ) return 0;
6071 if( p->op==TK_NOTNULL ){
6072 p = p->pLeft;
6073 }else{
6074 while( p->op==TK_AND ){
6075 if( sqlite3ExprImpliesNonNullRow(p->pLeft, iTab) ) return 1;
6076 p = p->pRight;
6079 w.xExprCallback = impliesNotNullRow;
6080 w.xSelectCallback = 0;
6081 w.xSelectCallback2 = 0;
6082 w.eCode = 0;
6083 w.u.iCur = iTab;
6084 sqlite3WalkExpr(&w, p);
6085 return w.eCode;
6089 ** An instance of the following structure is used by the tree walker
6090 ** to determine if an expression can be evaluated by reference to the
6091 ** index only, without having to do a search for the corresponding
6092 ** table entry. The IdxCover.pIdx field is the index. IdxCover.iCur
6093 ** is the cursor for the table.
6095 struct IdxCover {
6096 Index *pIdx; /* The index to be tested for coverage */
6097 int iCur; /* Cursor number for the table corresponding to the index */
6101 ** Check to see if there are references to columns in table
6102 ** pWalker->u.pIdxCover->iCur can be satisfied using the index
6103 ** pWalker->u.pIdxCover->pIdx.
6105 static int exprIdxCover(Walker *pWalker, Expr *pExpr){
6106 if( pExpr->op==TK_COLUMN
6107 && pExpr->iTable==pWalker->u.pIdxCover->iCur
6108 && sqlite3TableColumnToIndex(pWalker->u.pIdxCover->pIdx, pExpr->iColumn)<0
6110 pWalker->eCode = 1;
6111 return WRC_Abort;
6113 return WRC_Continue;
6117 ** Determine if an index pIdx on table with cursor iCur contains will
6118 ** the expression pExpr. Return true if the index does cover the
6119 ** expression and false if the pExpr expression references table columns
6120 ** that are not found in the index pIdx.
6122 ** An index covering an expression means that the expression can be
6123 ** evaluated using only the index and without having to lookup the
6124 ** corresponding table entry.
6126 int sqlite3ExprCoveredByIndex(
6127 Expr *pExpr, /* The index to be tested */
6128 int iCur, /* The cursor number for the corresponding table */
6129 Index *pIdx /* The index that might be used for coverage */
6131 Walker w;
6132 struct IdxCover xcov;
6133 memset(&w, 0, sizeof(w));
6134 xcov.iCur = iCur;
6135 xcov.pIdx = pIdx;
6136 w.xExprCallback = exprIdxCover;
6137 w.u.pIdxCover = &xcov;
6138 sqlite3WalkExpr(&w, pExpr);
6139 return !w.eCode;
6143 /* Structure used to pass information throught the Walker in order to
6144 ** implement sqlite3ReferencesSrcList().
6146 struct RefSrcList {
6147 sqlite3 *db; /* Database connection used for sqlite3DbRealloc() */
6148 SrcList *pRef; /* Looking for references to these tables */
6149 i64 nExclude; /* Number of tables to exclude from the search */
6150 int *aiExclude; /* Cursor IDs for tables to exclude from the search */
6154 ** Walker SELECT callbacks for sqlite3ReferencesSrcList().
6156 ** When entering a new subquery on the pExpr argument, add all FROM clause
6157 ** entries for that subquery to the exclude list.
6159 ** When leaving the subquery, remove those entries from the exclude list.
6161 static int selectRefEnter(Walker *pWalker, Select *pSelect){
6162 struct RefSrcList *p = pWalker->u.pRefSrcList;
6163 SrcList *pSrc = pSelect->pSrc;
6164 i64 i, j;
6165 int *piNew;
6166 if( pSrc->nSrc==0 ) return WRC_Continue;
6167 j = p->nExclude;
6168 p->nExclude += pSrc->nSrc;
6169 piNew = sqlite3DbRealloc(p->db, p->aiExclude, p->nExclude*sizeof(int));
6170 if( piNew==0 ){
6171 p->nExclude = 0;
6172 return WRC_Abort;
6173 }else{
6174 p->aiExclude = piNew;
6176 for(i=0; i<pSrc->nSrc; i++, j++){
6177 p->aiExclude[j] = pSrc->a[i].iCursor;
6179 return WRC_Continue;
6181 static void selectRefLeave(Walker *pWalker, Select *pSelect){
6182 struct RefSrcList *p = pWalker->u.pRefSrcList;
6183 SrcList *pSrc = pSelect->pSrc;
6184 if( p->nExclude ){
6185 assert( p->nExclude>=pSrc->nSrc );
6186 p->nExclude -= pSrc->nSrc;
6190 /* This is the Walker EXPR callback for sqlite3ReferencesSrcList().
6192 ** Set the 0x01 bit of pWalker->eCode if there is a reference to any
6193 ** of the tables shown in RefSrcList.pRef.
6195 ** Set the 0x02 bit of pWalker->eCode if there is a reference to a
6196 ** table is in neither RefSrcList.pRef nor RefSrcList.aiExclude.
6198 static int exprRefToSrcList(Walker *pWalker, Expr *pExpr){
6199 if( pExpr->op==TK_COLUMN
6200 || pExpr->op==TK_AGG_COLUMN
6202 int i;
6203 struct RefSrcList *p = pWalker->u.pRefSrcList;
6204 SrcList *pSrc = p->pRef;
6205 int nSrc = pSrc ? pSrc->nSrc : 0;
6206 for(i=0; i<nSrc; i++){
6207 if( pExpr->iTable==pSrc->a[i].iCursor ){
6208 pWalker->eCode |= 1;
6209 return WRC_Continue;
6212 for(i=0; i<p->nExclude && p->aiExclude[i]!=pExpr->iTable; i++){}
6213 if( i>=p->nExclude ){
6214 pWalker->eCode |= 2;
6217 return WRC_Continue;
6221 ** Check to see if pExpr references any tables in pSrcList.
6222 ** Possible return values:
6224 ** 1 pExpr does references a table in pSrcList.
6226 ** 0 pExpr references some table that is not defined in either
6227 ** pSrcList or in subqueries of pExpr itself.
6229 ** -1 pExpr only references no tables at all, or it only
6230 ** references tables defined in subqueries of pExpr itself.
6232 ** As currently used, pExpr is always an aggregate function call. That
6233 ** fact is exploited for efficiency.
6235 int sqlite3ReferencesSrcList(Parse *pParse, Expr *pExpr, SrcList *pSrcList){
6236 Walker w;
6237 struct RefSrcList x;
6238 assert( pParse->db!=0 );
6239 memset(&w, 0, sizeof(w));
6240 memset(&x, 0, sizeof(x));
6241 w.xExprCallback = exprRefToSrcList;
6242 w.xSelectCallback = selectRefEnter;
6243 w.xSelectCallback2 = selectRefLeave;
6244 w.u.pRefSrcList = &x;
6245 x.db = pParse->db;
6246 x.pRef = pSrcList;
6247 assert( pExpr->op==TK_AGG_FUNCTION );
6248 assert( ExprUseXList(pExpr) );
6249 sqlite3WalkExprList(&w, pExpr->x.pList);
6250 #ifndef SQLITE_OMIT_WINDOWFUNC
6251 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6252 sqlite3WalkExpr(&w, pExpr->y.pWin->pFilter);
6254 #endif
6255 if( x.aiExclude ) sqlite3DbNNFreeNN(pParse->db, x.aiExclude);
6256 if( w.eCode & 0x01 ){
6257 return 1;
6258 }else if( w.eCode ){
6259 return 0;
6260 }else{
6261 return -1;
6266 ** This is a Walker expression node callback.
6268 ** For Expr nodes that contain pAggInfo pointers, make sure the AggInfo
6269 ** object that is referenced does not refer directly to the Expr. If
6270 ** it does, make a copy. This is done because the pExpr argument is
6271 ** subject to change.
6273 ** The copy is scheduled for deletion using the sqlite3ExprDeferredDelete()
6274 ** which builds on the sqlite3ParserAddCleanup() mechanism.
6276 static int agginfoPersistExprCb(Walker *pWalker, Expr *pExpr){
6277 if( ALWAYS(!ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced))
6278 && pExpr->pAggInfo!=0
6280 AggInfo *pAggInfo = pExpr->pAggInfo;
6281 int iAgg = pExpr->iAgg;
6282 Parse *pParse = pWalker->pParse;
6283 sqlite3 *db = pParse->db;
6284 if( pExpr->op!=TK_AGG_FUNCTION ){
6285 assert( iAgg>=0 && iAgg<pAggInfo->nColumn );
6286 if( pAggInfo->aCol[iAgg].pCExpr==pExpr ){
6287 pExpr = sqlite3ExprDup(db, pExpr, 0);
6288 if( pExpr ){
6289 pAggInfo->aCol[iAgg].pCExpr = pExpr;
6290 sqlite3ExprDeferredDelete(pParse, pExpr);
6293 }else{
6294 assert( pExpr->op==TK_AGG_FUNCTION );
6295 assert( iAgg>=0 && iAgg<pAggInfo->nFunc );
6296 if( pAggInfo->aFunc[iAgg].pFExpr==pExpr ){
6297 pExpr = sqlite3ExprDup(db, pExpr, 0);
6298 if( pExpr ){
6299 pAggInfo->aFunc[iAgg].pFExpr = pExpr;
6300 sqlite3ExprDeferredDelete(pParse, pExpr);
6305 return WRC_Continue;
6309 ** Initialize a Walker object so that will persist AggInfo entries referenced
6310 ** by the tree that is walked.
6312 void sqlite3AggInfoPersistWalkerInit(Walker *pWalker, Parse *pParse){
6313 memset(pWalker, 0, sizeof(*pWalker));
6314 pWalker->pParse = pParse;
6315 pWalker->xExprCallback = agginfoPersistExprCb;
6316 pWalker->xSelectCallback = sqlite3SelectWalkNoop;
6320 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
6321 ** the new element. Return a negative number if malloc fails.
6323 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
6324 int i;
6325 pInfo->aCol = sqlite3ArrayAllocate(
6327 pInfo->aCol,
6328 sizeof(pInfo->aCol[0]),
6329 &pInfo->nColumn,
6332 return i;
6336 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
6337 ** the new element. Return a negative number if malloc fails.
6339 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
6340 int i;
6341 pInfo->aFunc = sqlite3ArrayAllocate(
6342 db,
6343 pInfo->aFunc,
6344 sizeof(pInfo->aFunc[0]),
6345 &pInfo->nFunc,
6348 return i;
6352 ** Search the AggInfo object for an aCol[] entry that has iTable and iColumn.
6353 ** Return the index in aCol[] of the entry that describes that column.
6355 ** If no prior entry is found, create a new one and return -1. The
6356 ** new column will have an idex of pAggInfo->nColumn-1.
6358 static void findOrCreateAggInfoColumn(
6359 Parse *pParse, /* Parsing context */
6360 AggInfo *pAggInfo, /* The AggInfo object to search and/or modify */
6361 Expr *pExpr /* Expr describing the column to find or insert */
6363 struct AggInfo_col *pCol;
6364 int k;
6366 assert( pAggInfo->iFirstReg==0 );
6367 pCol = pAggInfo->aCol;
6368 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
6369 if( pCol->iTable==pExpr->iTable
6370 && pCol->iColumn==pExpr->iColumn
6371 && pExpr->op!=TK_IF_NULL_ROW
6373 goto fix_up_expr;
6376 k = addAggInfoColumn(pParse->db, pAggInfo);
6377 if( k<0 ){
6378 /* OOM on resize */
6379 assert( pParse->db->mallocFailed );
6380 return;
6382 pCol = &pAggInfo->aCol[k];
6383 assert( ExprUseYTab(pExpr) );
6384 pCol->pTab = pExpr->y.pTab;
6385 pCol->iTable = pExpr->iTable;
6386 pCol->iColumn = pExpr->iColumn;
6387 pCol->iSorterColumn = -1;
6388 pCol->pCExpr = pExpr;
6389 if( pAggInfo->pGroupBy && pExpr->op!=TK_IF_NULL_ROW ){
6390 int j, n;
6391 ExprList *pGB = pAggInfo->pGroupBy;
6392 struct ExprList_item *pTerm = pGB->a;
6393 n = pGB->nExpr;
6394 for(j=0; j<n; j++, pTerm++){
6395 Expr *pE = pTerm->pExpr;
6396 if( pE->op==TK_COLUMN
6397 && pE->iTable==pExpr->iTable
6398 && pE->iColumn==pExpr->iColumn
6400 pCol->iSorterColumn = j;
6401 break;
6405 if( pCol->iSorterColumn<0 ){
6406 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
6408 fix_up_expr:
6409 ExprSetVVAProperty(pExpr, EP_NoReduce);
6410 assert( pExpr->pAggInfo==0 || pExpr->pAggInfo==pAggInfo );
6411 pExpr->pAggInfo = pAggInfo;
6412 if( pExpr->op==TK_COLUMN ){
6413 pExpr->op = TK_AGG_COLUMN;
6415 pExpr->iAgg = (i16)k;
6419 ** This is the xExprCallback for a tree walker. It is used to
6420 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
6421 ** for additional information.
6423 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
6424 int i;
6425 NameContext *pNC = pWalker->u.pNC;
6426 Parse *pParse = pNC->pParse;
6427 SrcList *pSrcList = pNC->pSrcList;
6428 AggInfo *pAggInfo = pNC->uNC.pAggInfo;
6430 assert( pNC->ncFlags & NC_UAggInfo );
6431 assert( pAggInfo->iFirstReg==0 );
6432 switch( pExpr->op ){
6433 default: {
6434 IndexedExpr *pIEpr;
6435 Expr tmp;
6436 assert( pParse->iSelfTab==0 );
6437 if( (pNC->ncFlags & NC_InAggFunc)==0 ) break;
6438 if( pParse->pIdxEpr==0 ) break;
6439 for(pIEpr=pParse->pIdxEpr; pIEpr; pIEpr=pIEpr->pIENext){
6440 int iDataCur = pIEpr->iDataCur;
6441 if( iDataCur<0 ) continue;
6442 if( sqlite3ExprCompare(0, pExpr, pIEpr->pExpr, iDataCur)==0 ) break;
6444 if( pIEpr==0 ) break;
6445 if( NEVER(!ExprUseYTab(pExpr)) ) break;
6446 if( pExpr->pAggInfo!=0 ) break; /* Already resolved by outer context */
6448 /* If we reach this point, it means that expression pExpr can be
6449 ** translated into a reference to an index column as described by
6450 ** pIEpr.
6452 memset(&tmp, 0, sizeof(tmp));
6453 tmp.op = TK_AGG_COLUMN;
6454 tmp.iTable = pIEpr->iIdxCur;
6455 tmp.iColumn = pIEpr->iIdxCol;
6456 findOrCreateAggInfoColumn(pParse, pAggInfo, &tmp);
6457 pAggInfo->aCol[tmp.iAgg].pCExpr = pExpr;
6458 pExpr->pAggInfo = pAggInfo;
6459 pExpr->iAgg = tmp.iAgg;
6460 return WRC_Prune;
6462 case TK_IF_NULL_ROW:
6463 case TK_AGG_COLUMN:
6464 case TK_COLUMN: {
6465 testcase( pExpr->op==TK_AGG_COLUMN );
6466 testcase( pExpr->op==TK_COLUMN );
6467 testcase( pExpr->op==TK_IF_NULL_ROW );
6468 /* Check to see if the column is in one of the tables in the FROM
6469 ** clause of the aggregate query */
6470 if( ALWAYS(pSrcList!=0) ){
6471 SrcItem *pItem = pSrcList->a;
6472 for(i=0; i<pSrcList->nSrc; i++, pItem++){
6473 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6474 if( pExpr->iTable==pItem->iCursor ){
6475 findOrCreateAggInfoColumn(pParse, pAggInfo, pExpr);
6476 break;
6477 } /* endif pExpr->iTable==pItem->iCursor */
6478 } /* end loop over pSrcList */
6480 return WRC_Prune;
6482 case TK_AGG_FUNCTION: {
6483 if( (pNC->ncFlags & NC_InAggFunc)==0
6484 && pWalker->walkerDepth==pExpr->op2
6486 /* Check to see if pExpr is a duplicate of another aggregate
6487 ** function that is already in the pAggInfo structure
6489 struct AggInfo_func *pItem = pAggInfo->aFunc;
6490 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
6491 if( pItem->pFExpr==pExpr ) break;
6492 if( sqlite3ExprCompare(0, pItem->pFExpr, pExpr, -1)==0 ){
6493 break;
6496 if( i>=pAggInfo->nFunc ){
6497 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
6499 u8 enc = ENC(pParse->db);
6500 i = addAggInfoFunc(pParse->db, pAggInfo);
6501 if( i>=0 ){
6502 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6503 pItem = &pAggInfo->aFunc[i];
6504 pItem->pFExpr = pExpr;
6505 assert( ExprUseUToken(pExpr) );
6506 pItem->pFunc = sqlite3FindFunction(pParse->db,
6507 pExpr->u.zToken,
6508 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
6509 if( pExpr->flags & EP_Distinct ){
6510 pItem->iDistinct = pParse->nTab++;
6511 }else{
6512 pItem->iDistinct = -1;
6516 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
6518 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
6519 ExprSetVVAProperty(pExpr, EP_NoReduce);
6520 pExpr->iAgg = (i16)i;
6521 pExpr->pAggInfo = pAggInfo;
6522 return WRC_Prune;
6523 }else{
6524 return WRC_Continue;
6528 return WRC_Continue;
6532 ** Analyze the pExpr expression looking for aggregate functions and
6533 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
6534 ** points to. Additional entries are made on the AggInfo object as
6535 ** necessary.
6537 ** This routine should only be called after the expression has been
6538 ** analyzed by sqlite3ResolveExprNames().
6540 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
6541 Walker w;
6542 w.xExprCallback = analyzeAggregate;
6543 w.xSelectCallback = sqlite3WalkerDepthIncrease;
6544 w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
6545 w.walkerDepth = 0;
6546 w.u.pNC = pNC;
6547 w.pParse = 0;
6548 assert( pNC->pSrcList!=0 );
6549 sqlite3WalkExpr(&w, pExpr);
6553 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
6554 ** expression list. Return the number of errors.
6556 ** If an error is found, the analysis is cut short.
6558 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
6559 struct ExprList_item *pItem;
6560 int i;
6561 if( pList ){
6562 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
6563 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
6569 ** Allocate a single new register for use to hold some intermediate result.
6571 int sqlite3GetTempReg(Parse *pParse){
6572 if( pParse->nTempReg==0 ){
6573 return ++pParse->nMem;
6575 return pParse->aTempReg[--pParse->nTempReg];
6579 ** Deallocate a register, making available for reuse for some other
6580 ** purpose.
6582 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
6583 if( iReg ){
6584 sqlite3VdbeReleaseRegisters(pParse, iReg, 1, 0, 0);
6585 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
6586 pParse->aTempReg[pParse->nTempReg++] = iReg;
6592 ** Allocate or deallocate a block of nReg consecutive registers.
6594 int sqlite3GetTempRange(Parse *pParse, int nReg){
6595 int i, n;
6596 if( nReg==1 ) return sqlite3GetTempReg(pParse);
6597 i = pParse->iRangeReg;
6598 n = pParse->nRangeReg;
6599 if( nReg<=n ){
6600 pParse->iRangeReg += nReg;
6601 pParse->nRangeReg -= nReg;
6602 }else{
6603 i = pParse->nMem+1;
6604 pParse->nMem += nReg;
6606 return i;
6608 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
6609 if( nReg==1 ){
6610 sqlite3ReleaseTempReg(pParse, iReg);
6611 return;
6613 sqlite3VdbeReleaseRegisters(pParse, iReg, nReg, 0, 0);
6614 if( nReg>pParse->nRangeReg ){
6615 pParse->nRangeReg = nReg;
6616 pParse->iRangeReg = iReg;
6621 ** Mark all temporary registers as being unavailable for reuse.
6623 ** Always invoke this procedure after coding a subroutine or co-routine
6624 ** that might be invoked from other parts of the code, to ensure that
6625 ** the sub/co-routine does not use registers in common with the code that
6626 ** invokes the sub/co-routine.
6628 void sqlite3ClearTempRegCache(Parse *pParse){
6629 pParse->nTempReg = 0;
6630 pParse->nRangeReg = 0;
6634 ** Validate that no temporary register falls within the range of
6635 ** iFirst..iLast, inclusive. This routine is only call from within assert()
6636 ** statements.
6638 #ifdef SQLITE_DEBUG
6639 int sqlite3NoTempsInRange(Parse *pParse, int iFirst, int iLast){
6640 int i;
6641 if( pParse->nRangeReg>0
6642 && pParse->iRangeReg+pParse->nRangeReg > iFirst
6643 && pParse->iRangeReg <= iLast
6645 return 0;
6647 for(i=0; i<pParse->nTempReg; i++){
6648 if( pParse->aTempReg[i]>=iFirst && pParse->aTempReg[i]<=iLast ){
6649 return 0;
6652 return 1;
6654 #endif /* SQLITE_DEBUG */