Revert "resolve upstream merge conflict in distclean"
[sqlcipher.git] / src / func.c
blobc30bc414ca4b78ae5dcbe75b9d1705e7f527a970
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite. (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #ifndef SQLITE_OMIT_FLOATING_POINT
20 #include <math.h>
21 #endif
22 #include "vdbeInt.h"
25 ** Return the collating function associated with a function.
27 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
28 VdbeOp *pOp;
29 assert( context->pVdbe!=0 );
30 pOp = &context->pVdbe->aOp[context->iOp-1];
31 assert( pOp->opcode==OP_CollSeq );
32 assert( pOp->p4type==P4_COLLSEQ );
33 return pOp->p4.pColl;
37 ** Indicate that the accumulator load should be skipped on this
38 ** iteration of the aggregate loop.
40 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
41 assert( context->isError<=0 );
42 context->isError = -1;
43 context->skipFlag = 1;
47 ** Implementation of the non-aggregate min() and max() functions
49 static void minmaxFunc(
50 sqlite3_context *context,
51 int argc,
52 sqlite3_value **argv
54 int i;
55 int mask; /* 0 for min() or 0xffffffff for max() */
56 int iBest;
57 CollSeq *pColl;
59 assert( argc>1 );
60 mask = sqlite3_user_data(context)==0 ? 0 : -1;
61 pColl = sqlite3GetFuncCollSeq(context);
62 assert( pColl );
63 assert( mask==-1 || mask==0 );
64 iBest = 0;
65 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
66 for(i=1; i<argc; i++){
67 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
68 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
69 testcase( mask==0 );
70 iBest = i;
73 sqlite3_result_value(context, argv[iBest]);
77 ** Return the type of the argument.
79 static void typeofFunc(
80 sqlite3_context *context,
81 int NotUsed,
82 sqlite3_value **argv
84 static const char *azType[] = { "integer", "real", "text", "blob", "null" };
85 int i = sqlite3_value_type(argv[0]) - 1;
86 UNUSED_PARAMETER(NotUsed);
87 assert( i>=0 && i<ArraySize(azType) );
88 assert( SQLITE_INTEGER==1 );
89 assert( SQLITE_FLOAT==2 );
90 assert( SQLITE_TEXT==3 );
91 assert( SQLITE_BLOB==4 );
92 assert( SQLITE_NULL==5 );
93 /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
94 ** the datatype code for the initial datatype of the sqlite3_value object
95 ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
96 ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
97 sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
100 /* subtype(X)
102 ** Return the subtype of X
104 static void subtypeFunc(
105 sqlite3_context *context,
106 int argc,
107 sqlite3_value **argv
109 UNUSED_PARAMETER(argc);
110 sqlite3_result_int(context, sqlite3_value_subtype(argv[0]));
114 ** Implementation of the length() function
116 static void lengthFunc(
117 sqlite3_context *context,
118 int argc,
119 sqlite3_value **argv
121 assert( argc==1 );
122 UNUSED_PARAMETER(argc);
123 switch( sqlite3_value_type(argv[0]) ){
124 case SQLITE_BLOB:
125 case SQLITE_INTEGER:
126 case SQLITE_FLOAT: {
127 sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
128 break;
130 case SQLITE_TEXT: {
131 const unsigned char *z = sqlite3_value_text(argv[0]);
132 const unsigned char *z0;
133 unsigned char c;
134 if( z==0 ) return;
135 z0 = z;
136 while( (c = *z)!=0 ){
137 z++;
138 if( c>=0xc0 ){
139 while( (*z & 0xc0)==0x80 ){ z++; z0++; }
142 sqlite3_result_int(context, (int)(z-z0));
143 break;
145 default: {
146 sqlite3_result_null(context);
147 break;
153 ** Implementation of the abs() function.
155 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
156 ** the numeric argument X.
158 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
159 assert( argc==1 );
160 UNUSED_PARAMETER(argc);
161 switch( sqlite3_value_type(argv[0]) ){
162 case SQLITE_INTEGER: {
163 i64 iVal = sqlite3_value_int64(argv[0]);
164 if( iVal<0 ){
165 if( iVal==SMALLEST_INT64 ){
166 /* IMP: R-31676-45509 If X is the integer -9223372036854775808
167 ** then abs(X) throws an integer overflow error since there is no
168 ** equivalent positive 64-bit two complement value. */
169 sqlite3_result_error(context, "integer overflow", -1);
170 return;
172 iVal = -iVal;
174 sqlite3_result_int64(context, iVal);
175 break;
177 case SQLITE_NULL: {
178 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
179 sqlite3_result_null(context);
180 break;
182 default: {
183 /* Because sqlite3_value_double() returns 0.0 if the argument is not
184 ** something that can be converted into a number, we have:
185 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
186 ** that cannot be converted to a numeric value.
188 double rVal = sqlite3_value_double(argv[0]);
189 if( rVal<0 ) rVal = -rVal;
190 sqlite3_result_double(context, rVal);
191 break;
197 ** Implementation of the instr() function.
199 ** instr(haystack,needle) finds the first occurrence of needle
200 ** in haystack and returns the number of previous characters plus 1,
201 ** or 0 if needle does not occur within haystack.
203 ** If both haystack and needle are BLOBs, then the result is one more than
204 ** the number of bytes in haystack prior to the first occurrence of needle,
205 ** or 0 if needle never occurs in haystack.
207 static void instrFunc(
208 sqlite3_context *context,
209 int argc,
210 sqlite3_value **argv
212 const unsigned char *zHaystack;
213 const unsigned char *zNeedle;
214 int nHaystack;
215 int nNeedle;
216 int typeHaystack, typeNeedle;
217 int N = 1;
218 int isText;
219 unsigned char firstChar;
220 sqlite3_value *pC1 = 0;
221 sqlite3_value *pC2 = 0;
223 UNUSED_PARAMETER(argc);
224 typeHaystack = sqlite3_value_type(argv[0]);
225 typeNeedle = sqlite3_value_type(argv[1]);
226 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
227 nHaystack = sqlite3_value_bytes(argv[0]);
228 nNeedle = sqlite3_value_bytes(argv[1]);
229 if( nNeedle>0 ){
230 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
231 zHaystack = sqlite3_value_blob(argv[0]);
232 zNeedle = sqlite3_value_blob(argv[1]);
233 isText = 0;
234 }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
235 zHaystack = sqlite3_value_text(argv[0]);
236 zNeedle = sqlite3_value_text(argv[1]);
237 isText = 1;
238 }else{
239 pC1 = sqlite3_value_dup(argv[0]);
240 zHaystack = sqlite3_value_text(pC1);
241 if( zHaystack==0 ) goto endInstrOOM;
242 nHaystack = sqlite3_value_bytes(pC1);
243 pC2 = sqlite3_value_dup(argv[1]);
244 zNeedle = sqlite3_value_text(pC2);
245 if( zNeedle==0 ) goto endInstrOOM;
246 nNeedle = sqlite3_value_bytes(pC2);
247 isText = 1;
249 if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
250 firstChar = zNeedle[0];
251 while( nNeedle<=nHaystack
252 && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
254 N++;
256 nHaystack--;
257 zHaystack++;
258 }while( isText && (zHaystack[0]&0xc0)==0x80 );
260 if( nNeedle>nHaystack ) N = 0;
262 sqlite3_result_int(context, N);
263 endInstr:
264 sqlite3_value_free(pC1);
265 sqlite3_value_free(pC2);
266 return;
267 endInstrOOM:
268 sqlite3_result_error_nomem(context);
269 goto endInstr;
273 ** Implementation of the printf() (a.k.a. format()) SQL function.
275 static void printfFunc(
276 sqlite3_context *context,
277 int argc,
278 sqlite3_value **argv
280 PrintfArguments x;
281 StrAccum str;
282 const char *zFormat;
283 int n;
284 sqlite3 *db = sqlite3_context_db_handle(context);
286 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
287 x.nArg = argc-1;
288 x.nUsed = 0;
289 x.apArg = argv+1;
290 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
291 str.printfFlags = SQLITE_PRINTF_SQLFUNC;
292 sqlite3_str_appendf(&str, zFormat, &x);
293 n = str.nChar;
294 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
295 SQLITE_DYNAMIC);
300 ** Implementation of the substr() function.
302 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
303 ** p1 is 1-indexed. So substr(x,1,1) returns the first character
304 ** of x. If x is text, then we actually count UTF-8 characters.
305 ** If x is a blob, then we count bytes.
307 ** If p1 is negative, then we begin abs(p1) from the end of x[].
309 ** If p2 is negative, return the p2 characters preceding p1.
311 static void substrFunc(
312 sqlite3_context *context,
313 int argc,
314 sqlite3_value **argv
316 const unsigned char *z;
317 const unsigned char *z2;
318 int len;
319 int p0type;
320 i64 p1, p2;
321 int negP2 = 0;
323 assert( argc==3 || argc==2 );
324 if( sqlite3_value_type(argv[1])==SQLITE_NULL
325 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
327 return;
329 p0type = sqlite3_value_type(argv[0]);
330 p1 = sqlite3_value_int(argv[1]);
331 if( p0type==SQLITE_BLOB ){
332 len = sqlite3_value_bytes(argv[0]);
333 z = sqlite3_value_blob(argv[0]);
334 if( z==0 ) return;
335 assert( len==sqlite3_value_bytes(argv[0]) );
336 }else{
337 z = sqlite3_value_text(argv[0]);
338 if( z==0 ) return;
339 len = 0;
340 if( p1<0 ){
341 for(z2=z; *z2; len++){
342 SQLITE_SKIP_UTF8(z2);
346 #ifdef SQLITE_SUBSTR_COMPATIBILITY
347 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
348 ** as substr(X,1,N) - it returns the first N characters of X. This
349 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
350 ** from 2009-02-02 for compatibility of applications that exploited the
351 ** old buggy behavior. */
352 if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
353 #endif
354 if( argc==3 ){
355 p2 = sqlite3_value_int(argv[2]);
356 if( p2<0 ){
357 p2 = -p2;
358 negP2 = 1;
360 }else{
361 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
363 if( p1<0 ){
364 p1 += len;
365 if( p1<0 ){
366 p2 += p1;
367 if( p2<0 ) p2 = 0;
368 p1 = 0;
370 }else if( p1>0 ){
371 p1--;
372 }else if( p2>0 ){
373 p2--;
375 if( negP2 ){
376 p1 -= p2;
377 if( p1<0 ){
378 p2 += p1;
379 p1 = 0;
382 assert( p1>=0 && p2>=0 );
383 if( p0type!=SQLITE_BLOB ){
384 while( *z && p1 ){
385 SQLITE_SKIP_UTF8(z);
386 p1--;
388 for(z2=z; *z2 && p2; p2--){
389 SQLITE_SKIP_UTF8(z2);
391 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
392 SQLITE_UTF8);
393 }else{
394 if( p1+p2>len ){
395 p2 = len-p1;
396 if( p2<0 ) p2 = 0;
398 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
403 ** Implementation of the round() function
405 #ifndef SQLITE_OMIT_FLOATING_POINT
406 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
407 int n = 0;
408 double r;
409 char *zBuf;
410 assert( argc==1 || argc==2 );
411 if( argc==2 ){
412 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
413 n = sqlite3_value_int(argv[1]);
414 if( n>30 ) n = 30;
415 if( n<0 ) n = 0;
417 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
418 r = sqlite3_value_double(argv[0]);
419 /* If Y==0 and X will fit in a 64-bit int,
420 ** handle the rounding directly,
421 ** otherwise use printf.
423 if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
424 /* The value has no fractional part so there is nothing to round */
425 }else if( n==0 ){
426 r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
427 }else{
428 zBuf = sqlite3_mprintf("%.*f",n,r);
429 if( zBuf==0 ){
430 sqlite3_result_error_nomem(context);
431 return;
433 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
434 sqlite3_free(zBuf);
436 sqlite3_result_double(context, r);
438 #endif
441 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
442 ** allocation fails, call sqlite3_result_error_nomem() to notify
443 ** the database handle that malloc() has failed and return NULL.
444 ** If nByte is larger than the maximum string or blob length, then
445 ** raise an SQLITE_TOOBIG exception and return NULL.
447 static void *contextMalloc(sqlite3_context *context, i64 nByte){
448 char *z;
449 sqlite3 *db = sqlite3_context_db_handle(context);
450 assert( nByte>0 );
451 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
452 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
453 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
454 sqlite3_result_error_toobig(context);
455 z = 0;
456 }else{
457 z = sqlite3Malloc(nByte);
458 if( !z ){
459 sqlite3_result_error_nomem(context);
462 return z;
466 ** Implementation of the upper() and lower() SQL functions.
468 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
469 char *z1;
470 const char *z2;
471 int i, n;
472 UNUSED_PARAMETER(argc);
473 z2 = (char*)sqlite3_value_text(argv[0]);
474 n = sqlite3_value_bytes(argv[0]);
475 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
476 assert( z2==(char*)sqlite3_value_text(argv[0]) );
477 if( z2 ){
478 z1 = contextMalloc(context, ((i64)n)+1);
479 if( z1 ){
480 for(i=0; i<n; i++){
481 z1[i] = (char)sqlite3Toupper(z2[i]);
483 sqlite3_result_text(context, z1, n, sqlite3_free);
487 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
488 char *z1;
489 const char *z2;
490 int i, n;
491 UNUSED_PARAMETER(argc);
492 z2 = (char*)sqlite3_value_text(argv[0]);
493 n = sqlite3_value_bytes(argv[0]);
494 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
495 assert( z2==(char*)sqlite3_value_text(argv[0]) );
496 if( z2 ){
497 z1 = contextMalloc(context, ((i64)n)+1);
498 if( z1 ){
499 for(i=0; i<n; i++){
500 z1[i] = sqlite3Tolower(z2[i]);
502 sqlite3_result_text(context, z1, n, sqlite3_free);
508 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
509 ** as VDBE code so that unused argument values do not have to be computed.
510 ** However, we still need some kind of function implementation for this
511 ** routines in the function table. The noopFunc macro provides this.
512 ** noopFunc will never be called so it doesn't matter what the implementation
513 ** is. We might as well use the "version()" function as a substitute.
515 #define noopFunc versionFunc /* Substitute function - never called */
518 ** Implementation of random(). Return a random integer.
520 static void randomFunc(
521 sqlite3_context *context,
522 int NotUsed,
523 sqlite3_value **NotUsed2
525 sqlite_int64 r;
526 UNUSED_PARAMETER2(NotUsed, NotUsed2);
527 sqlite3_randomness(sizeof(r), &r);
528 if( r<0 ){
529 /* We need to prevent a random number of 0x8000000000000000
530 ** (or -9223372036854775808) since when you do abs() of that
531 ** number of you get the same value back again. To do this
532 ** in a way that is testable, mask the sign bit off of negative
533 ** values, resulting in a positive value. Then take the
534 ** 2s complement of that positive value. The end result can
535 ** therefore be no less than -9223372036854775807.
537 r = -(r & LARGEST_INT64);
539 sqlite3_result_int64(context, r);
543 ** Implementation of randomblob(N). Return a random blob
544 ** that is N bytes long.
546 static void randomBlob(
547 sqlite3_context *context,
548 int argc,
549 sqlite3_value **argv
551 sqlite3_int64 n;
552 unsigned char *p;
553 assert( argc==1 );
554 UNUSED_PARAMETER(argc);
555 n = sqlite3_value_int64(argv[0]);
556 if( n<1 ){
557 n = 1;
559 p = contextMalloc(context, n);
560 if( p ){
561 sqlite3_randomness(n, p);
562 sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
567 ** Implementation of the last_insert_rowid() SQL function. The return
568 ** value is the same as the sqlite3_last_insert_rowid() API function.
570 static void last_insert_rowid(
571 sqlite3_context *context,
572 int NotUsed,
573 sqlite3_value **NotUsed2
575 sqlite3 *db = sqlite3_context_db_handle(context);
576 UNUSED_PARAMETER2(NotUsed, NotUsed2);
577 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
578 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
579 ** function. */
580 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
584 ** Implementation of the changes() SQL function.
586 ** IMP: R-32760-32347 The changes() SQL function is a wrapper
587 ** around the sqlite3_changes64() C/C++ function and hence follows the
588 ** same rules for counting changes.
590 static void changes(
591 sqlite3_context *context,
592 int NotUsed,
593 sqlite3_value **NotUsed2
595 sqlite3 *db = sqlite3_context_db_handle(context);
596 UNUSED_PARAMETER2(NotUsed, NotUsed2);
597 sqlite3_result_int64(context, sqlite3_changes64(db));
601 ** Implementation of the total_changes() SQL function. The return value is
602 ** the same as the sqlite3_total_changes64() API function.
604 static void total_changes(
605 sqlite3_context *context,
606 int NotUsed,
607 sqlite3_value **NotUsed2
609 sqlite3 *db = sqlite3_context_db_handle(context);
610 UNUSED_PARAMETER2(NotUsed, NotUsed2);
611 /* IMP: R-11217-42568 This function is a wrapper around the
612 ** sqlite3_total_changes64() C/C++ interface. */
613 sqlite3_result_int64(context, sqlite3_total_changes64(db));
617 ** A structure defining how to do GLOB-style comparisons.
619 struct compareInfo {
620 u8 matchAll; /* "*" or "%" */
621 u8 matchOne; /* "?" or "_" */
622 u8 matchSet; /* "[" or 0 */
623 u8 noCase; /* true to ignore case differences */
627 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
628 ** character is exactly one byte in size. Also, provde the Utf8Read()
629 ** macro for fast reading of the next character in the common case where
630 ** the next character is ASCII.
632 #if defined(SQLITE_EBCDIC)
633 # define sqlite3Utf8Read(A) (*((*A)++))
634 # define Utf8Read(A) (*(A++))
635 #else
636 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
637 #endif
639 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
640 /* The correct SQL-92 behavior is for the LIKE operator to ignore
641 ** case. Thus 'a' LIKE 'A' would be true. */
642 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
643 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
644 ** is case sensitive causing 'a' LIKE 'A' to be false */
645 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
648 ** Possible error returns from patternMatch()
650 #define SQLITE_MATCH 0
651 #define SQLITE_NOMATCH 1
652 #define SQLITE_NOWILDCARDMATCH 2
655 ** Compare two UTF-8 strings for equality where the first string is
656 ** a GLOB or LIKE expression. Return values:
658 ** SQLITE_MATCH: Match
659 ** SQLITE_NOMATCH: No match
660 ** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
662 ** Globbing rules:
664 ** '*' Matches any sequence of zero or more characters.
666 ** '?' Matches exactly one character.
668 ** [...] Matches one character from the enclosed list of
669 ** characters.
671 ** [^...] Matches one character not in the enclosed list.
673 ** With the [...] and [^...] matching, a ']' character can be included
674 ** in the list by making it the first character after '[' or '^'. A
675 ** range of characters can be specified using '-'. Example:
676 ** "[a-z]" matches any single lower-case letter. To match a '-', make
677 ** it the last character in the list.
679 ** Like matching rules:
681 ** '%' Matches any sequence of zero or more characters
683 *** '_' Matches any one character
685 ** Ec Where E is the "esc" character and c is any other
686 ** character, including '%', '_', and esc, match exactly c.
688 ** The comments within this routine usually assume glob matching.
690 ** This routine is usually quick, but can be N**2 in the worst case.
692 static int patternCompare(
693 const u8 *zPattern, /* The glob pattern */
694 const u8 *zString, /* The string to compare against the glob */
695 const struct compareInfo *pInfo, /* Information about how to do the compare */
696 u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
698 u32 c, c2; /* Next pattern and input string chars */
699 u32 matchOne = pInfo->matchOne; /* "?" or "_" */
700 u32 matchAll = pInfo->matchAll; /* "*" or "%" */
701 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
702 const u8 *zEscaped = 0; /* One past the last escaped input char */
704 while( (c = Utf8Read(zPattern))!=0 ){
705 if( c==matchAll ){ /* Match "*" */
706 /* Skip over multiple "*" characters in the pattern. If there
707 ** are also "?" characters, skip those as well, but consume a
708 ** single character of the input string for each "?" skipped */
709 while( (c=Utf8Read(zPattern)) == matchAll
710 || (c == matchOne && matchOne!=0) ){
711 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
712 return SQLITE_NOWILDCARDMATCH;
715 if( c==0 ){
716 return SQLITE_MATCH; /* "*" at the end of the pattern matches */
717 }else if( c==matchOther ){
718 if( pInfo->matchSet==0 ){
719 c = sqlite3Utf8Read(&zPattern);
720 if( c==0 ) return SQLITE_NOWILDCARDMATCH;
721 }else{
722 /* "[...]" immediately follows the "*". We have to do a slow
723 ** recursive search in this case, but it is an unusual case. */
724 assert( matchOther<0x80 ); /* '[' is a single-byte character */
725 while( *zString ){
726 int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
727 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
728 SQLITE_SKIP_UTF8(zString);
730 return SQLITE_NOWILDCARDMATCH;
734 /* At this point variable c contains the first character of the
735 ** pattern string past the "*". Search in the input string for the
736 ** first matching character and recursively continue the match from
737 ** that point.
739 ** For a case-insensitive search, set variable cx to be the same as
740 ** c but in the other case and search the input string for either
741 ** c or cx.
743 if( c<=0x80 ){
744 char zStop[3];
745 int bMatch;
746 if( noCase ){
747 zStop[0] = sqlite3Toupper(c);
748 zStop[1] = sqlite3Tolower(c);
749 zStop[2] = 0;
750 }else{
751 zStop[0] = c;
752 zStop[1] = 0;
754 while(1){
755 zString += strcspn((const char*)zString, zStop);
756 if( zString[0]==0 ) break;
757 zString++;
758 bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
759 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
761 }else{
762 int bMatch;
763 while( (c2 = Utf8Read(zString))!=0 ){
764 if( c2!=c ) continue;
765 bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
766 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
769 return SQLITE_NOWILDCARDMATCH;
771 if( c==matchOther ){
772 if( pInfo->matchSet==0 ){
773 c = sqlite3Utf8Read(&zPattern);
774 if( c==0 ) return SQLITE_NOMATCH;
775 zEscaped = zPattern;
776 }else{
777 u32 prior_c = 0;
778 int seen = 0;
779 int invert = 0;
780 c = sqlite3Utf8Read(&zString);
781 if( c==0 ) return SQLITE_NOMATCH;
782 c2 = sqlite3Utf8Read(&zPattern);
783 if( c2=='^' ){
784 invert = 1;
785 c2 = sqlite3Utf8Read(&zPattern);
787 if( c2==']' ){
788 if( c==']' ) seen = 1;
789 c2 = sqlite3Utf8Read(&zPattern);
791 while( c2 && c2!=']' ){
792 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
793 c2 = sqlite3Utf8Read(&zPattern);
794 if( c>=prior_c && c<=c2 ) seen = 1;
795 prior_c = 0;
796 }else{
797 if( c==c2 ){
798 seen = 1;
800 prior_c = c2;
802 c2 = sqlite3Utf8Read(&zPattern);
804 if( c2==0 || (seen ^ invert)==0 ){
805 return SQLITE_NOMATCH;
807 continue;
810 c2 = Utf8Read(zString);
811 if( c==c2 ) continue;
812 if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
813 continue;
815 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
816 return SQLITE_NOMATCH;
818 return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
822 ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
823 ** non-zero if there is no match.
825 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
826 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
830 ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
831 ** a miss - like strcmp().
833 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
834 return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
838 ** Count the number of times that the LIKE operator (or GLOB which is
839 ** just a variation of LIKE) gets called. This is used for testing
840 ** only.
842 #ifdef SQLITE_TEST
843 int sqlite3_like_count = 0;
844 #endif
848 ** Implementation of the like() SQL function. This function implements
849 ** the build-in LIKE operator. The first argument to the function is the
850 ** pattern and the second argument is the string. So, the SQL statements:
852 ** A LIKE B
854 ** is implemented as like(B,A).
856 ** This same function (with a different compareInfo structure) computes
857 ** the GLOB operator.
859 static void likeFunc(
860 sqlite3_context *context,
861 int argc,
862 sqlite3_value **argv
864 const unsigned char *zA, *zB;
865 u32 escape;
866 int nPat;
867 sqlite3 *db = sqlite3_context_db_handle(context);
868 struct compareInfo *pInfo = sqlite3_user_data(context);
869 struct compareInfo backupInfo;
871 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
872 if( sqlite3_value_type(argv[0])==SQLITE_BLOB
873 || sqlite3_value_type(argv[1])==SQLITE_BLOB
875 #ifdef SQLITE_TEST
876 sqlite3_like_count++;
877 #endif
878 sqlite3_result_int(context, 0);
879 return;
881 #endif
883 /* Limit the length of the LIKE or GLOB pattern to avoid problems
884 ** of deep recursion and N*N behavior in patternCompare().
886 nPat = sqlite3_value_bytes(argv[0]);
887 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
888 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
889 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
890 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
891 return;
893 if( argc==3 ){
894 /* The escape character string must consist of a single UTF-8 character.
895 ** Otherwise, return an error.
897 const unsigned char *zEsc = sqlite3_value_text(argv[2]);
898 if( zEsc==0 ) return;
899 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
900 sqlite3_result_error(context,
901 "ESCAPE expression must be a single character", -1);
902 return;
904 escape = sqlite3Utf8Read(&zEsc);
905 if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
906 memcpy(&backupInfo, pInfo, sizeof(backupInfo));
907 pInfo = &backupInfo;
908 if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
909 if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
911 }else{
912 escape = pInfo->matchSet;
914 zB = sqlite3_value_text(argv[0]);
915 zA = sqlite3_value_text(argv[1]);
916 if( zA && zB ){
917 #ifdef SQLITE_TEST
918 sqlite3_like_count++;
919 #endif
920 sqlite3_result_int(context,
921 patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
926 ** Implementation of the NULLIF(x,y) function. The result is the first
927 ** argument if the arguments are different. The result is NULL if the
928 ** arguments are equal to each other.
930 static void nullifFunc(
931 sqlite3_context *context,
932 int NotUsed,
933 sqlite3_value **argv
935 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
936 UNUSED_PARAMETER(NotUsed);
937 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
938 sqlite3_result_value(context, argv[0]);
943 ** Implementation of the sqlite_version() function. The result is the version
944 ** of the SQLite library that is running.
946 static void versionFunc(
947 sqlite3_context *context,
948 int NotUsed,
949 sqlite3_value **NotUsed2
951 UNUSED_PARAMETER2(NotUsed, NotUsed2);
952 /* IMP: R-48699-48617 This function is an SQL wrapper around the
953 ** sqlite3_libversion() C-interface. */
954 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
958 ** Implementation of the sqlite_source_id() function. The result is a string
959 ** that identifies the particular version of the source code used to build
960 ** SQLite.
962 static void sourceidFunc(
963 sqlite3_context *context,
964 int NotUsed,
965 sqlite3_value **NotUsed2
967 UNUSED_PARAMETER2(NotUsed, NotUsed2);
968 /* IMP: R-24470-31136 This function is an SQL wrapper around the
969 ** sqlite3_sourceid() C interface. */
970 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
974 ** Implementation of the sqlite_log() function. This is a wrapper around
975 ** sqlite3_log(). The return value is NULL. The function exists purely for
976 ** its side-effects.
978 static void errlogFunc(
979 sqlite3_context *context,
980 int argc,
981 sqlite3_value **argv
983 UNUSED_PARAMETER(argc);
984 UNUSED_PARAMETER(context);
985 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
989 ** Implementation of the sqlite_compileoption_used() function.
990 ** The result is an integer that identifies if the compiler option
991 ** was used to build SQLite.
993 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
994 static void compileoptionusedFunc(
995 sqlite3_context *context,
996 int argc,
997 sqlite3_value **argv
999 const char *zOptName;
1000 assert( argc==1 );
1001 UNUSED_PARAMETER(argc);
1002 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
1003 ** function is a wrapper around the sqlite3_compileoption_used() C/C++
1004 ** function.
1006 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
1007 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
1010 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1013 ** Implementation of the sqlite_compileoption_get() function.
1014 ** The result is a string that identifies the compiler options
1015 ** used to build SQLite.
1017 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1018 static void compileoptiongetFunc(
1019 sqlite3_context *context,
1020 int argc,
1021 sqlite3_value **argv
1023 int n;
1024 assert( argc==1 );
1025 UNUSED_PARAMETER(argc);
1026 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
1027 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
1029 n = sqlite3_value_int(argv[0]);
1030 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
1032 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1034 /* Array for converting from half-bytes (nybbles) into ASCII hex
1035 ** digits. */
1036 static const char hexdigits[] = {
1037 '0', '1', '2', '3', '4', '5', '6', '7',
1038 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
1042 ** Append to pStr text that is the SQL literal representation of the
1043 ** value contained in pValue.
1045 void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){
1046 /* As currently implemented, the string must be initially empty.
1047 ** we might relax this requirement in the future, but that will
1048 ** require enhancements to the implementation. */
1049 assert( pStr!=0 && pStr->nChar==0 );
1051 switch( sqlite3_value_type(pValue) ){
1052 case SQLITE_FLOAT: {
1053 double r1, r2;
1054 const char *zVal;
1055 r1 = sqlite3_value_double(pValue);
1056 sqlite3_str_appendf(pStr, "%!.15g", r1);
1057 zVal = sqlite3_str_value(pStr);
1058 if( zVal ){
1059 sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8);
1060 if( r1!=r2 ){
1061 sqlite3_str_reset(pStr);
1062 sqlite3_str_appendf(pStr, "%!.20e", r1);
1065 break;
1067 case SQLITE_INTEGER: {
1068 sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue));
1069 break;
1071 case SQLITE_BLOB: {
1072 char const *zBlob = sqlite3_value_blob(pValue);
1073 int nBlob = sqlite3_value_bytes(pValue);
1074 assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */
1075 sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4);
1076 if( pStr->accError==0 ){
1077 char *zText = pStr->zText;
1078 int i;
1079 for(i=0; i<nBlob; i++){
1080 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
1081 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
1083 zText[(nBlob*2)+2] = '\'';
1084 zText[(nBlob*2)+3] = '\0';
1085 zText[0] = 'X';
1086 zText[1] = '\'';
1087 pStr->nChar = nBlob*2 + 3;
1089 break;
1091 case SQLITE_TEXT: {
1092 const unsigned char *zArg = sqlite3_value_text(pValue);
1093 sqlite3_str_appendf(pStr, "%Q", zArg);
1094 break;
1096 default: {
1097 assert( sqlite3_value_type(pValue)==SQLITE_NULL );
1098 sqlite3_str_append(pStr, "NULL", 4);
1099 break;
1105 ** Implementation of the QUOTE() function.
1107 ** The quote(X) function returns the text of an SQL literal which is the
1108 ** value of its argument suitable for inclusion into an SQL statement.
1109 ** Strings are surrounded by single-quotes with escapes on interior quotes
1110 ** as needed. BLOBs are encoded as hexadecimal literals. Strings with
1111 ** embedded NUL characters cannot be represented as string literals in SQL
1112 ** and hence the returned string literal is truncated prior to the first NUL.
1114 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
1115 sqlite3_str str;
1116 sqlite3 *db = sqlite3_context_db_handle(context);
1117 assert( argc==1 );
1118 UNUSED_PARAMETER(argc);
1119 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
1120 sqlite3QuoteValue(&str,argv[0]);
1121 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar,
1122 SQLITE_DYNAMIC);
1123 if( str.accError!=SQLITE_OK ){
1124 sqlite3_result_null(context);
1125 sqlite3_result_error_code(context, str.accError);
1130 ** The unicode() function. Return the integer unicode code-point value
1131 ** for the first character of the input string.
1133 static void unicodeFunc(
1134 sqlite3_context *context,
1135 int argc,
1136 sqlite3_value **argv
1138 const unsigned char *z = sqlite3_value_text(argv[0]);
1139 (void)argc;
1140 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1144 ** The char() function takes zero or more arguments, each of which is
1145 ** an integer. It constructs a string where each character of the string
1146 ** is the unicode character for the corresponding integer argument.
1148 static void charFunc(
1149 sqlite3_context *context,
1150 int argc,
1151 sqlite3_value **argv
1153 unsigned char *z, *zOut;
1154 int i;
1155 zOut = z = sqlite3_malloc64( argc*4+1 );
1156 if( z==0 ){
1157 sqlite3_result_error_nomem(context);
1158 return;
1160 for(i=0; i<argc; i++){
1161 sqlite3_int64 x;
1162 unsigned c;
1163 x = sqlite3_value_int64(argv[i]);
1164 if( x<0 || x>0x10ffff ) x = 0xfffd;
1165 c = (unsigned)(x & 0x1fffff);
1166 if( c<0x00080 ){
1167 *zOut++ = (u8)(c&0xFF);
1168 }else if( c<0x00800 ){
1169 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1170 *zOut++ = 0x80 + (u8)(c & 0x3F);
1171 }else if( c<0x10000 ){
1172 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1173 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1174 *zOut++ = 0x80 + (u8)(c & 0x3F);
1175 }else{
1176 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1177 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1178 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1179 *zOut++ = 0x80 + (u8)(c & 0x3F);
1182 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1186 ** The hex() function. Interpret the argument as a blob. Return
1187 ** a hexadecimal rendering as text.
1189 static void hexFunc(
1190 sqlite3_context *context,
1191 int argc,
1192 sqlite3_value **argv
1194 int i, n;
1195 const unsigned char *pBlob;
1196 char *zHex, *z;
1197 assert( argc==1 );
1198 UNUSED_PARAMETER(argc);
1199 pBlob = sqlite3_value_blob(argv[0]);
1200 n = sqlite3_value_bytes(argv[0]);
1201 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
1202 z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1203 if( zHex ){
1204 for(i=0; i<n; i++, pBlob++){
1205 unsigned char c = *pBlob;
1206 *(z++) = hexdigits[(c>>4)&0xf];
1207 *(z++) = hexdigits[c&0xf];
1209 *z = 0;
1210 sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1215 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1217 static void zeroblobFunc(
1218 sqlite3_context *context,
1219 int argc,
1220 sqlite3_value **argv
1222 i64 n;
1223 int rc;
1224 assert( argc==1 );
1225 UNUSED_PARAMETER(argc);
1226 n = sqlite3_value_int64(argv[0]);
1227 if( n<0 ) n = 0;
1228 rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
1229 if( rc ){
1230 sqlite3_result_error_code(context, rc);
1235 ** The replace() function. Three arguments are all strings: call
1236 ** them A, B, and C. The result is also a string which is derived
1237 ** from A by replacing every occurrence of B with C. The match
1238 ** must be exact. Collating sequences are not used.
1240 static void replaceFunc(
1241 sqlite3_context *context,
1242 int argc,
1243 sqlite3_value **argv
1245 const unsigned char *zStr; /* The input string A */
1246 const unsigned char *zPattern; /* The pattern string B */
1247 const unsigned char *zRep; /* The replacement string C */
1248 unsigned char *zOut; /* The output */
1249 int nStr; /* Size of zStr */
1250 int nPattern; /* Size of zPattern */
1251 int nRep; /* Size of zRep */
1252 i64 nOut; /* Maximum size of zOut */
1253 int loopLimit; /* Last zStr[] that might match zPattern[] */
1254 int i, j; /* Loop counters */
1255 unsigned cntExpand; /* Number zOut expansions */
1256 sqlite3 *db = sqlite3_context_db_handle(context);
1258 assert( argc==3 );
1259 UNUSED_PARAMETER(argc);
1260 zStr = sqlite3_value_text(argv[0]);
1261 if( zStr==0 ) return;
1262 nStr = sqlite3_value_bytes(argv[0]);
1263 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
1264 zPattern = sqlite3_value_text(argv[1]);
1265 if( zPattern==0 ){
1266 assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1267 || sqlite3_context_db_handle(context)->mallocFailed );
1268 return;
1270 if( zPattern[0]==0 ){
1271 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1272 sqlite3_result_value(context, argv[0]);
1273 return;
1275 nPattern = sqlite3_value_bytes(argv[1]);
1276 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
1277 zRep = sqlite3_value_text(argv[2]);
1278 if( zRep==0 ) return;
1279 nRep = sqlite3_value_bytes(argv[2]);
1280 assert( zRep==sqlite3_value_text(argv[2]) );
1281 nOut = nStr + 1;
1282 assert( nOut<SQLITE_MAX_LENGTH );
1283 zOut = contextMalloc(context, (i64)nOut);
1284 if( zOut==0 ){
1285 return;
1287 loopLimit = nStr - nPattern;
1288 cntExpand = 0;
1289 for(i=j=0; i<=loopLimit; i++){
1290 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1291 zOut[j++] = zStr[i];
1292 }else{
1293 if( nRep>nPattern ){
1294 nOut += nRep - nPattern;
1295 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1296 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1297 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1298 sqlite3_result_error_toobig(context);
1299 sqlite3_free(zOut);
1300 return;
1302 cntExpand++;
1303 if( (cntExpand&(cntExpand-1))==0 ){
1304 /* Grow the size of the output buffer only on substitutions
1305 ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
1306 u8 *zOld;
1307 zOld = zOut;
1308 zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
1309 if( zOut==0 ){
1310 sqlite3_result_error_nomem(context);
1311 sqlite3_free(zOld);
1312 return;
1316 memcpy(&zOut[j], zRep, nRep);
1317 j += nRep;
1318 i += nPattern-1;
1321 assert( j+nStr-i+1<=nOut );
1322 memcpy(&zOut[j], &zStr[i], nStr-i);
1323 j += nStr - i;
1324 assert( j<=nOut );
1325 zOut[j] = 0;
1326 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1330 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1331 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1333 static void trimFunc(
1334 sqlite3_context *context,
1335 int argc,
1336 sqlite3_value **argv
1338 const unsigned char *zIn; /* Input string */
1339 const unsigned char *zCharSet; /* Set of characters to trim */
1340 unsigned int nIn; /* Number of bytes in input */
1341 int flags; /* 1: trimleft 2: trimright 3: trim */
1342 int i; /* Loop counter */
1343 unsigned int *aLen = 0; /* Length of each character in zCharSet */
1344 unsigned char **azChar = 0; /* Individual characters in zCharSet */
1345 int nChar; /* Number of characters in zCharSet */
1347 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1348 return;
1350 zIn = sqlite3_value_text(argv[0]);
1351 if( zIn==0 ) return;
1352 nIn = (unsigned)sqlite3_value_bytes(argv[0]);
1353 assert( zIn==sqlite3_value_text(argv[0]) );
1354 if( argc==1 ){
1355 static const unsigned lenOne[] = { 1 };
1356 static unsigned char * const azOne[] = { (u8*)" " };
1357 nChar = 1;
1358 aLen = (unsigned*)lenOne;
1359 azChar = (unsigned char **)azOne;
1360 zCharSet = 0;
1361 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1362 return;
1363 }else{
1364 const unsigned char *z;
1365 for(z=zCharSet, nChar=0; *z; nChar++){
1366 SQLITE_SKIP_UTF8(z);
1368 if( nChar>0 ){
1369 azChar = contextMalloc(context,
1370 ((i64)nChar)*(sizeof(char*)+sizeof(unsigned)));
1371 if( azChar==0 ){
1372 return;
1374 aLen = (unsigned*)&azChar[nChar];
1375 for(z=zCharSet, nChar=0; *z; nChar++){
1376 azChar[nChar] = (unsigned char *)z;
1377 SQLITE_SKIP_UTF8(z);
1378 aLen[nChar] = (unsigned)(z - azChar[nChar]);
1382 if( nChar>0 ){
1383 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1384 if( flags & 1 ){
1385 while( nIn>0 ){
1386 unsigned int len = 0;
1387 for(i=0; i<nChar; i++){
1388 len = aLen[i];
1389 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1391 if( i>=nChar ) break;
1392 zIn += len;
1393 nIn -= len;
1396 if( flags & 2 ){
1397 while( nIn>0 ){
1398 unsigned int len = 0;
1399 for(i=0; i<nChar; i++){
1400 len = aLen[i];
1401 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1403 if( i>=nChar ) break;
1404 nIn -= len;
1407 if( zCharSet ){
1408 sqlite3_free(azChar);
1411 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1415 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1417 ** The "unknown" function is automatically substituted in place of
1418 ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
1419 ** when the SQLITE_ENABLE_UNKNOWN_FUNCTION compile-time option is used.
1420 ** When the "sqlite3" command-line shell is built using this functionality,
1421 ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
1422 ** involving application-defined functions to be examined in a generic
1423 ** sqlite3 shell.
1425 static void unknownFunc(
1426 sqlite3_context *context,
1427 int argc,
1428 sqlite3_value **argv
1430 /* no-op */
1432 #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
1435 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1436 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1437 ** when SQLite is built.
1439 #ifdef SQLITE_SOUNDEX
1441 ** Compute the soundex encoding of a word.
1443 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1444 ** soundex encoding of the string X.
1446 static void soundexFunc(
1447 sqlite3_context *context,
1448 int argc,
1449 sqlite3_value **argv
1451 char zResult[8];
1452 const u8 *zIn;
1453 int i, j;
1454 static const unsigned char iCode[] = {
1455 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1456 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1457 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1458 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1459 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1460 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1461 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1462 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1464 assert( argc==1 );
1465 zIn = (u8*)sqlite3_value_text(argv[0]);
1466 if( zIn==0 ) zIn = (u8*)"";
1467 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1468 if( zIn[i] ){
1469 u8 prevcode = iCode[zIn[i]&0x7f];
1470 zResult[0] = sqlite3Toupper(zIn[i]);
1471 for(j=1; j<4 && zIn[i]; i++){
1472 int code = iCode[zIn[i]&0x7f];
1473 if( code>0 ){
1474 if( code!=prevcode ){
1475 prevcode = code;
1476 zResult[j++] = code + '0';
1478 }else{
1479 prevcode = 0;
1482 while( j<4 ){
1483 zResult[j++] = '0';
1485 zResult[j] = 0;
1486 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1487 }else{
1488 /* IMP: R-64894-50321 The string "?000" is returned if the argument
1489 ** is NULL or contains no ASCII alphabetic characters. */
1490 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1493 #endif /* SQLITE_SOUNDEX */
1495 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1497 ** A function that loads a shared-library extension then returns NULL.
1499 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1500 const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1501 const char *zProc;
1502 sqlite3 *db = sqlite3_context_db_handle(context);
1503 char *zErrMsg = 0;
1505 /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
1506 ** flag is set. See the sqlite3_enable_load_extension() API.
1508 if( (db->flags & SQLITE_LoadExtFunc)==0 ){
1509 sqlite3_result_error(context, "not authorized", -1);
1510 return;
1513 if( argc==2 ){
1514 zProc = (const char *)sqlite3_value_text(argv[1]);
1515 }else{
1516 zProc = 0;
1518 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1519 sqlite3_result_error(context, zErrMsg, -1);
1520 sqlite3_free(zErrMsg);
1523 #endif
1527 ** An instance of the following structure holds the context of a
1528 ** sum() or avg() aggregate computation.
1530 typedef struct SumCtx SumCtx;
1531 struct SumCtx {
1532 double rSum; /* Floating point sum */
1533 i64 iSum; /* Integer sum */
1534 i64 cnt; /* Number of elements summed */
1535 u8 overflow; /* True if integer overflow seen */
1536 u8 approx; /* True if non-integer value was input to the sum */
1540 ** Routines used to compute the sum, average, and total.
1542 ** The SUM() function follows the (broken) SQL standard which means
1543 ** that it returns NULL if it sums over no inputs. TOTAL returns
1544 ** 0.0 in that case. In addition, TOTAL always returns a float where
1545 ** SUM might return an integer if it never encounters a floating point
1546 ** value. TOTAL never fails, but SUM might through an exception if
1547 ** it overflows an integer.
1549 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1550 SumCtx *p;
1551 int type;
1552 assert( argc==1 );
1553 UNUSED_PARAMETER(argc);
1554 p = sqlite3_aggregate_context(context, sizeof(*p));
1555 type = sqlite3_value_numeric_type(argv[0]);
1556 if( p && type!=SQLITE_NULL ){
1557 p->cnt++;
1558 if( type==SQLITE_INTEGER ){
1559 i64 v = sqlite3_value_int64(argv[0]);
1560 p->rSum += v;
1561 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1562 p->approx = p->overflow = 1;
1564 }else{
1565 p->rSum += sqlite3_value_double(argv[0]);
1566 p->approx = 1;
1570 #ifndef SQLITE_OMIT_WINDOWFUNC
1571 static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
1572 SumCtx *p;
1573 int type;
1574 assert( argc==1 );
1575 UNUSED_PARAMETER(argc);
1576 p = sqlite3_aggregate_context(context, sizeof(*p));
1577 type = sqlite3_value_numeric_type(argv[0]);
1578 /* p is always non-NULL because sumStep() will have been called first
1579 ** to initialize it */
1580 if( ALWAYS(p) && type!=SQLITE_NULL ){
1581 assert( p->cnt>0 );
1582 p->cnt--;
1583 assert( type==SQLITE_INTEGER || p->approx );
1584 if( type==SQLITE_INTEGER && p->approx==0 ){
1585 i64 v = sqlite3_value_int64(argv[0]);
1586 p->rSum -= v;
1587 p->iSum -= v;
1588 }else{
1589 p->rSum -= sqlite3_value_double(argv[0]);
1593 #else
1594 # define sumInverse 0
1595 #endif /* SQLITE_OMIT_WINDOWFUNC */
1596 static void sumFinalize(sqlite3_context *context){
1597 SumCtx *p;
1598 p = sqlite3_aggregate_context(context, 0);
1599 if( p && p->cnt>0 ){
1600 if( p->overflow ){
1601 sqlite3_result_error(context,"integer overflow",-1);
1602 }else if( p->approx ){
1603 sqlite3_result_double(context, p->rSum);
1604 }else{
1605 sqlite3_result_int64(context, p->iSum);
1609 static void avgFinalize(sqlite3_context *context){
1610 SumCtx *p;
1611 p = sqlite3_aggregate_context(context, 0);
1612 if( p && p->cnt>0 ){
1613 sqlite3_result_double(context, p->rSum/(double)p->cnt);
1616 static void totalFinalize(sqlite3_context *context){
1617 SumCtx *p;
1618 p = sqlite3_aggregate_context(context, 0);
1619 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1620 sqlite3_result_double(context, p ? p->rSum : (double)0);
1624 ** The following structure keeps track of state information for the
1625 ** count() aggregate function.
1627 typedef struct CountCtx CountCtx;
1628 struct CountCtx {
1629 i64 n;
1630 #ifdef SQLITE_DEBUG
1631 int bInverse; /* True if xInverse() ever called */
1632 #endif
1636 ** Routines to implement the count() aggregate function.
1638 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1639 CountCtx *p;
1640 p = sqlite3_aggregate_context(context, sizeof(*p));
1641 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1642 p->n++;
1645 #ifndef SQLITE_OMIT_DEPRECATED
1646 /* The sqlite3_aggregate_count() function is deprecated. But just to make
1647 ** sure it still operates correctly, verify that its count agrees with our
1648 ** internal count when using count(*) and when the total count can be
1649 ** expressed as a 32-bit integer. */
1650 assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
1651 || p->n==sqlite3_aggregate_count(context) );
1652 #endif
1654 static void countFinalize(sqlite3_context *context){
1655 CountCtx *p;
1656 p = sqlite3_aggregate_context(context, 0);
1657 sqlite3_result_int64(context, p ? p->n : 0);
1659 #ifndef SQLITE_OMIT_WINDOWFUNC
1660 static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
1661 CountCtx *p;
1662 p = sqlite3_aggregate_context(ctx, sizeof(*p));
1663 /* p is always non-NULL since countStep() will have been called first */
1664 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
1665 p->n--;
1666 #ifdef SQLITE_DEBUG
1667 p->bInverse = 1;
1668 #endif
1671 #else
1672 # define countInverse 0
1673 #endif /* SQLITE_OMIT_WINDOWFUNC */
1676 ** Routines to implement min() and max() aggregate functions.
1678 static void minmaxStep(
1679 sqlite3_context *context,
1680 int NotUsed,
1681 sqlite3_value **argv
1683 Mem *pArg = (Mem *)argv[0];
1684 Mem *pBest;
1685 UNUSED_PARAMETER(NotUsed);
1687 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1688 if( !pBest ) return;
1690 if( sqlite3_value_type(pArg)==SQLITE_NULL ){
1691 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1692 }else if( pBest->flags ){
1693 int max;
1694 int cmp;
1695 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1696 /* This step function is used for both the min() and max() aggregates,
1697 ** the only difference between the two being that the sense of the
1698 ** comparison is inverted. For the max() aggregate, the
1699 ** sqlite3_user_data() function returns (void *)-1. For min() it
1700 ** returns (void *)db, where db is the sqlite3* database pointer.
1701 ** Therefore the next statement sets variable 'max' to 1 for the max()
1702 ** aggregate, or 0 for min().
1704 max = sqlite3_user_data(context)!=0;
1705 cmp = sqlite3MemCompare(pBest, pArg, pColl);
1706 if( (max && cmp<0) || (!max && cmp>0) ){
1707 sqlite3VdbeMemCopy(pBest, pArg);
1708 }else{
1709 sqlite3SkipAccumulatorLoad(context);
1711 }else{
1712 pBest->db = sqlite3_context_db_handle(context);
1713 sqlite3VdbeMemCopy(pBest, pArg);
1716 static void minMaxValueFinalize(sqlite3_context *context, int bValue){
1717 sqlite3_value *pRes;
1718 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1719 if( pRes ){
1720 if( pRes->flags ){
1721 sqlite3_result_value(context, pRes);
1723 if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
1726 #ifndef SQLITE_OMIT_WINDOWFUNC
1727 static void minMaxValue(sqlite3_context *context){
1728 minMaxValueFinalize(context, 1);
1730 #else
1731 # define minMaxValue 0
1732 #endif /* SQLITE_OMIT_WINDOWFUNC */
1733 static void minMaxFinalize(sqlite3_context *context){
1734 minMaxValueFinalize(context, 0);
1738 ** group_concat(EXPR, ?SEPARATOR?)
1740 ** The SEPARATOR goes before the EXPR string. This is tragic. The
1741 ** groupConcatInverse() implementation would have been easier if the
1742 ** SEPARATOR were appended after EXPR. And the order is undocumented,
1743 ** so we could change it, in theory. But the old behavior has been
1744 ** around for so long that we dare not, for fear of breaking something.
1746 typedef struct {
1747 StrAccum str; /* The accumulated concatenation */
1748 #ifndef SQLITE_OMIT_WINDOWFUNC
1749 int nAccum; /* Number of strings presently concatenated */
1750 int nFirstSepLength; /* Used to detect separator length change */
1751 /* If pnSepLengths!=0, refs an array of inter-string separator lengths,
1752 ** stored as actually incorporated into presently accumulated result.
1753 ** (Hence, its slots in use number nAccum-1 between method calls.)
1754 ** If pnSepLengths==0, nFirstSepLength is the length used throughout.
1756 int *pnSepLengths;
1757 #endif
1758 } GroupConcatCtx;
1760 static void groupConcatStep(
1761 sqlite3_context *context,
1762 int argc,
1763 sqlite3_value **argv
1765 const char *zVal;
1766 GroupConcatCtx *pGCC;
1767 const char *zSep;
1768 int nVal, nSep;
1769 assert( argc==1 || argc==2 );
1770 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1771 pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
1772 if( pGCC ){
1773 sqlite3 *db = sqlite3_context_db_handle(context);
1774 int firstTerm = pGCC->str.mxAlloc==0;
1775 pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1776 if( argc==1 ){
1777 if( !firstTerm ){
1778 sqlite3_str_appendchar(&pGCC->str, 1, ',');
1780 #ifndef SQLITE_OMIT_WINDOWFUNC
1781 else{
1782 pGCC->nFirstSepLength = 1;
1784 #endif
1785 }else if( !firstTerm ){
1786 zSep = (char*)sqlite3_value_text(argv[1]);
1787 nSep = sqlite3_value_bytes(argv[1]);
1788 if( zSep ){
1789 sqlite3_str_append(&pGCC->str, zSep, nSep);
1791 #ifndef SQLITE_OMIT_WINDOWFUNC
1792 else{
1793 nSep = 0;
1795 if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){
1796 int *pnsl = pGCC->pnSepLengths;
1797 if( pnsl == 0 ){
1798 /* First separator length variation seen, start tracking them. */
1799 pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int));
1800 if( pnsl!=0 ){
1801 int i = 0, nA = pGCC->nAccum-1;
1802 while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength;
1804 }else{
1805 pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int));
1807 if( pnsl!=0 ){
1808 if( ALWAYS(pGCC->nAccum>0) ){
1809 pnsl[pGCC->nAccum-1] = nSep;
1811 pGCC->pnSepLengths = pnsl;
1812 }else{
1813 sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM);
1816 #endif
1818 #ifndef SQLITE_OMIT_WINDOWFUNC
1819 else{
1820 pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]);
1822 pGCC->nAccum += 1;
1823 #endif
1824 zVal = (char*)sqlite3_value_text(argv[0]);
1825 nVal = sqlite3_value_bytes(argv[0]);
1826 if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal);
1830 #ifndef SQLITE_OMIT_WINDOWFUNC
1831 static void groupConcatInverse(
1832 sqlite3_context *context,
1833 int argc,
1834 sqlite3_value **argv
1836 GroupConcatCtx *pGCC;
1837 assert( argc==1 || argc==2 );
1838 (void)argc; /* Suppress unused parameter warning */
1839 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1840 pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
1841 /* pGCC is always non-NULL since groupConcatStep() will have always
1842 ** run frist to initialize it */
1843 if( ALWAYS(pGCC) ){
1844 int nVS;
1845 /* Must call sqlite3_value_text() to convert the argument into text prior
1846 ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
1847 (void)sqlite3_value_text(argv[0]);
1848 nVS = sqlite3_value_bytes(argv[0]);
1849 pGCC->nAccum -= 1;
1850 if( pGCC->pnSepLengths!=0 ){
1851 assert(pGCC->nAccum >= 0);
1852 if( pGCC->nAccum>0 ){
1853 nVS += *pGCC->pnSepLengths;
1854 memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1,
1855 (pGCC->nAccum-1)*sizeof(int));
1857 }else{
1858 /* If removing single accumulated string, harmlessly over-do. */
1859 nVS += pGCC->nFirstSepLength;
1861 if( nVS>=(int)pGCC->str.nChar ){
1862 pGCC->str.nChar = 0;
1863 }else{
1864 pGCC->str.nChar -= nVS;
1865 memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar);
1867 if( pGCC->str.nChar==0 ){
1868 pGCC->str.mxAlloc = 0;
1869 sqlite3_free(pGCC->pnSepLengths);
1870 pGCC->pnSepLengths = 0;
1874 #else
1875 # define groupConcatInverse 0
1876 #endif /* SQLITE_OMIT_WINDOWFUNC */
1877 static void groupConcatFinalize(sqlite3_context *context){
1878 GroupConcatCtx *pGCC
1879 = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
1880 if( pGCC ){
1881 sqlite3ResultStrAccum(context, &pGCC->str);
1882 #ifndef SQLITE_OMIT_WINDOWFUNC
1883 sqlite3_free(pGCC->pnSepLengths);
1884 #endif
1887 #ifndef SQLITE_OMIT_WINDOWFUNC
1888 static void groupConcatValue(sqlite3_context *context){
1889 GroupConcatCtx *pGCC
1890 = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
1891 if( pGCC ){
1892 StrAccum *pAccum = &pGCC->str;
1893 if( pAccum->accError==SQLITE_TOOBIG ){
1894 sqlite3_result_error_toobig(context);
1895 }else if( pAccum->accError==SQLITE_NOMEM ){
1896 sqlite3_result_error_nomem(context);
1897 }else{
1898 const char *zText = sqlite3_str_value(pAccum);
1899 sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT);
1903 #else
1904 # define groupConcatValue 0
1905 #endif /* SQLITE_OMIT_WINDOWFUNC */
1908 ** This routine does per-connection function registration. Most
1909 ** of the built-in functions above are part of the global function set.
1910 ** This routine only deals with those that are not global.
1912 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
1913 int rc = sqlite3_overload_function(db, "MATCH", 2);
1914 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1915 if( rc==SQLITE_NOMEM ){
1916 sqlite3OomFault(db);
1918 /* BEGIN SQLCIPHER */
1919 #ifdef SQLITE_HAS_CODEC
1921 extern void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **);
1922 sqlite3CreateFunc(db, "sqlcipher_export", -1, SQLITE_TEXT, 0, sqlcipher_exportFunc, 0, 0, 0, 0, 0);
1924 #ifdef SQLCIPHER_EXT
1925 #include "sqlcipher_funcs_init.h"
1926 #endif
1927 #endif
1928 /* END SQLCIPHER */
1932 ** Re-register the built-in LIKE functions. The caseSensitive
1933 ** parameter determines whether or not the LIKE operator is case
1934 ** sensitive.
1936 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1937 struct compareInfo *pInfo;
1938 int flags;
1939 if( caseSensitive ){
1940 pInfo = (struct compareInfo*)&likeInfoAlt;
1941 flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
1942 }else{
1943 pInfo = (struct compareInfo*)&likeInfoNorm;
1944 flags = SQLITE_FUNC_LIKE;
1946 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
1947 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
1948 sqlite3FindFunction(db, "like", 2, SQLITE_UTF8, 0)->funcFlags |= flags;
1949 sqlite3FindFunction(db, "like", 3, SQLITE_UTF8, 0)->funcFlags |= flags;
1953 ** pExpr points to an expression which implements a function. If
1954 ** it is appropriate to apply the LIKE optimization to that function
1955 ** then set aWc[0] through aWc[2] to the wildcard characters and the
1956 ** escape character and then return TRUE. If the function is not a
1957 ** LIKE-style function then return FALSE.
1959 ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
1960 ** operator if c is a string literal that is exactly one byte in length.
1961 ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
1962 ** no ESCAPE clause.
1964 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1965 ** the function (default for LIKE). If the function makes the distinction
1966 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1967 ** false.
1969 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1970 FuncDef *pDef;
1971 int nExpr;
1972 assert( pExpr!=0 );
1973 assert( pExpr->op==TK_FUNCTION );
1974 assert( ExprUseXList(pExpr) );
1975 if( !pExpr->x.pList ){
1976 return 0;
1978 nExpr = pExpr->x.pList->nExpr;
1979 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1980 pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
1981 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1982 if( pDef==0 ) return 0;
1983 #endif
1984 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
1985 return 0;
1988 /* The memcpy() statement assumes that the wildcard characters are
1989 ** the first three statements in the compareInfo structure. The
1990 ** asserts() that follow verify that assumption
1992 memcpy(aWc, pDef->pUserData, 3);
1993 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1994 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1995 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1997 if( nExpr<3 ){
1998 aWc[3] = 0;
1999 }else{
2000 Expr *pEscape = pExpr->x.pList->a[2].pExpr;
2001 char *zEscape;
2002 if( pEscape->op!=TK_STRING ) return 0;
2003 assert( !ExprHasProperty(pEscape, EP_IntValue) );
2004 zEscape = pEscape->u.zToken;
2005 if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
2006 if( zEscape[0]==aWc[0] ) return 0;
2007 if( zEscape[0]==aWc[1] ) return 0;
2008 aWc[3] = zEscape[0];
2011 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
2012 return 1;
2015 /* Mathematical Constants */
2016 #ifndef M_PI
2017 # define M_PI 3.141592653589793238462643383279502884
2018 #endif
2019 #ifndef M_LN10
2020 # define M_LN10 2.302585092994045684017991454684364208
2021 #endif
2022 #ifndef M_LN2
2023 # define M_LN2 0.693147180559945309417232121458176568
2024 #endif
2027 /* Extra math functions that require linking with -lm
2029 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS
2031 ** Implementation SQL functions:
2033 ** ceil(X)
2034 ** ceiling(X)
2035 ** floor(X)
2037 ** The sqlite3_user_data() pointer is a pointer to the libm implementation
2038 ** of the underlying C function.
2040 static void ceilingFunc(
2041 sqlite3_context *context,
2042 int argc,
2043 sqlite3_value **argv
2045 assert( argc==1 );
2046 switch( sqlite3_value_numeric_type(argv[0]) ){
2047 case SQLITE_INTEGER: {
2048 sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
2049 break;
2051 case SQLITE_FLOAT: {
2052 double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
2053 sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
2054 break;
2056 default: {
2057 break;
2063 ** On some systems, ceil() and floor() are intrinsic function. You are
2064 ** unable to take a pointer to these functions. Hence, we here wrap them
2065 ** in our own actual functions.
2067 static double xCeil(double x){ return ceil(x); }
2068 static double xFloor(double x){ return floor(x); }
2071 ** Implementation of SQL functions:
2073 ** ln(X) - natural logarithm
2074 ** log(X) - log X base 10
2075 ** log10(X) - log X base 10
2076 ** log(B,X) - log X base B
2078 static void logFunc(
2079 sqlite3_context *context,
2080 int argc,
2081 sqlite3_value **argv
2083 double x, b, ans;
2084 assert( argc==1 || argc==2 );
2085 switch( sqlite3_value_numeric_type(argv[0]) ){
2086 case SQLITE_INTEGER:
2087 case SQLITE_FLOAT:
2088 x = sqlite3_value_double(argv[0]);
2089 if( x<=0.0 ) return;
2090 break;
2091 default:
2092 return;
2094 if( argc==2 ){
2095 switch( sqlite3_value_numeric_type(argv[0]) ){
2096 case SQLITE_INTEGER:
2097 case SQLITE_FLOAT:
2098 b = log(x);
2099 if( b<=0.0 ) return;
2100 x = sqlite3_value_double(argv[1]);
2101 if( x<=0.0 ) return;
2102 break;
2103 default:
2104 return;
2106 ans = log(x)/b;
2107 }else{
2108 ans = log(x);
2109 switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
2110 case 1:
2111 /* Convert from natural logarithm to log base 10 */
2112 ans /= M_LN10;
2113 break;
2114 case 2:
2115 /* Convert from natural logarithm to log base 2 */
2116 ans /= M_LN2;
2117 break;
2118 default:
2119 break;
2122 sqlite3_result_double(context, ans);
2126 ** Functions to converts degrees to radians and radians to degrees.
2128 static double degToRad(double x){ return x*(M_PI/180.0); }
2129 static double radToDeg(double x){ return x*(180.0/M_PI); }
2132 ** Implementation of 1-argument SQL math functions:
2134 ** exp(X) - Compute e to the X-th power
2136 static void math1Func(
2137 sqlite3_context *context,
2138 int argc,
2139 sqlite3_value **argv
2141 int type0;
2142 double v0, ans;
2143 double (*x)(double);
2144 assert( argc==1 );
2145 type0 = sqlite3_value_numeric_type(argv[0]);
2146 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
2147 v0 = sqlite3_value_double(argv[0]);
2148 x = (double(*)(double))sqlite3_user_data(context);
2149 ans = x(v0);
2150 sqlite3_result_double(context, ans);
2154 ** Implementation of 2-argument SQL math functions:
2156 ** power(X,Y) - Compute X to the Y-th power
2158 static void math2Func(
2159 sqlite3_context *context,
2160 int argc,
2161 sqlite3_value **argv
2163 int type0, type1;
2164 double v0, v1, ans;
2165 double (*x)(double,double);
2166 assert( argc==2 );
2167 type0 = sqlite3_value_numeric_type(argv[0]);
2168 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
2169 type1 = sqlite3_value_numeric_type(argv[1]);
2170 if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
2171 v0 = sqlite3_value_double(argv[0]);
2172 v1 = sqlite3_value_double(argv[1]);
2173 x = (double(*)(double,double))sqlite3_user_data(context);
2174 ans = x(v0, v1);
2175 sqlite3_result_double(context, ans);
2179 ** Implementation of 0-argument pi() function.
2181 static void piFunc(
2182 sqlite3_context *context,
2183 int argc,
2184 sqlite3_value **argv
2186 assert( argc==0 );
2187 sqlite3_result_double(context, M_PI);
2190 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
2193 ** Implementation of sign(X) function.
2195 static void signFunc(
2196 sqlite3_context *context,
2197 int argc,
2198 sqlite3_value **argv
2200 int type0;
2201 double x;
2202 UNUSED_PARAMETER(argc);
2203 assert( argc==1 );
2204 type0 = sqlite3_value_numeric_type(argv[0]);
2205 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
2206 x = sqlite3_value_double(argv[0]);
2207 sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
2211 ** All of the FuncDef structures in the aBuiltinFunc[] array above
2212 ** to the global function hash table. This occurs at start-time (as
2213 ** a consequence of calling sqlite3_initialize()).
2215 ** After this routine runs
2217 void sqlite3RegisterBuiltinFunctions(void){
2219 ** The following array holds FuncDef structures for all of the functions
2220 ** defined in this file.
2222 ** The array cannot be constant since changes are made to the
2223 ** FuncDef.pHash elements at start-time. The elements of this array
2224 ** are read-only after initialization is complete.
2226 ** For peak efficiency, put the most frequently used function last.
2228 static FuncDef aBuiltinFunc[] = {
2229 /***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
2230 #if !defined(SQLITE_UNTESTABLE)
2231 TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
2232 TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
2233 TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
2234 TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
2235 #endif /* !defined(SQLITE_UNTESTABLE) */
2236 /***** Regular functions *****/
2237 #ifdef SQLITE_SOUNDEX
2238 FUNCTION(soundex, 1, 0, 0, soundexFunc ),
2239 #endif
2240 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2241 SFUNCTION(load_extension, 1, 0, 0, loadExt ),
2242 SFUNCTION(load_extension, 2, 0, 0, loadExt ),
2243 #endif
2244 #if SQLITE_USER_AUTHENTICATION
2245 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
2246 #endif
2247 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
2248 DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
2249 DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
2250 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
2251 INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
2252 INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
2253 INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
2254 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2255 INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ),
2256 #endif
2257 FUNCTION(ltrim, 1, 1, 0, trimFunc ),
2258 FUNCTION(ltrim, 2, 1, 0, trimFunc ),
2259 FUNCTION(rtrim, 1, 2, 0, trimFunc ),
2260 FUNCTION(rtrim, 2, 2, 0, trimFunc ),
2261 FUNCTION(trim, 1, 3, 0, trimFunc ),
2262 FUNCTION(trim, 2, 3, 0, trimFunc ),
2263 FUNCTION(min, -1, 0, 1, minmaxFunc ),
2264 FUNCTION(min, 0, 0, 1, 0 ),
2265 WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
2266 SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
2267 FUNCTION(max, -1, 1, 1, minmaxFunc ),
2268 FUNCTION(max, 0, 1, 1, 0 ),
2269 WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
2270 SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
2271 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
2272 FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF),
2273 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
2274 FUNCTION(instr, 2, 0, 0, instrFunc ),
2275 FUNCTION(printf, -1, 0, 0, printfFunc ),
2276 FUNCTION(format, -1, 0, 0, printfFunc ),
2277 FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
2278 FUNCTION(char, -1, 0, 0, charFunc ),
2279 FUNCTION(abs, 1, 0, 0, absFunc ),
2280 #ifndef SQLITE_OMIT_FLOATING_POINT
2281 FUNCTION(round, 1, 0, 0, roundFunc ),
2282 FUNCTION(round, 2, 0, 0, roundFunc ),
2283 #endif
2284 FUNCTION(upper, 1, 0, 0, upperFunc ),
2285 FUNCTION(lower, 1, 0, 0, lowerFunc ),
2286 FUNCTION(hex, 1, 0, 0, hexFunc ),
2287 INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
2288 VFUNCTION(random, 0, 0, 0, randomFunc ),
2289 VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
2290 FUNCTION(nullif, 2, 0, 1, nullifFunc ),
2291 DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
2292 DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
2293 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
2294 FUNCTION(quote, 1, 0, 0, quoteFunc ),
2295 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
2296 VFUNCTION(changes, 0, 0, 0, changes ),
2297 VFUNCTION(total_changes, 0, 0, 0, total_changes ),
2298 FUNCTION(replace, 3, 0, 0, replaceFunc ),
2299 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
2300 FUNCTION(substr, 2, 0, 0, substrFunc ),
2301 FUNCTION(substr, 3, 0, 0, substrFunc ),
2302 FUNCTION(substring, 2, 0, 0, substrFunc ),
2303 FUNCTION(substring, 3, 0, 0, substrFunc ),
2304 WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
2305 WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
2306 WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
2307 WAGGREGATE(count, 0,0,0, countStep,
2308 countFinalize, countFinalize, countInverse,
2309 SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ),
2310 WAGGREGATE(count, 1,0,0, countStep,
2311 countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ),
2312 WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
2313 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
2314 WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
2315 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
2317 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2318 #ifdef SQLITE_CASE_SENSITIVE_LIKE
2319 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2320 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2321 #else
2322 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
2323 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
2324 #endif
2325 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
2326 FUNCTION(unknown, -1, 0, 0, unknownFunc ),
2327 #endif
2328 FUNCTION(coalesce, 1, 0, 0, 0 ),
2329 FUNCTION(coalesce, 0, 0, 0, 0 ),
2330 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS
2331 MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
2332 MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
2333 MFUNCTION(floor, 1, xFloor, ceilingFunc ),
2334 #if SQLITE_HAVE_C99_MATH_FUNCS
2335 MFUNCTION(trunc, 1, trunc, ceilingFunc ),
2336 #endif
2337 FUNCTION(ln, 1, 0, 0, logFunc ),
2338 FUNCTION(log, 1, 1, 0, logFunc ),
2339 FUNCTION(log10, 1, 1, 0, logFunc ),
2340 FUNCTION(log2, 1, 2, 0, logFunc ),
2341 FUNCTION(log, 2, 0, 0, logFunc ),
2342 MFUNCTION(exp, 1, exp, math1Func ),
2343 MFUNCTION(pow, 2, pow, math2Func ),
2344 MFUNCTION(power, 2, pow, math2Func ),
2345 MFUNCTION(mod, 2, fmod, math2Func ),
2346 MFUNCTION(acos, 1, acos, math1Func ),
2347 MFUNCTION(asin, 1, asin, math1Func ),
2348 MFUNCTION(atan, 1, atan, math1Func ),
2349 MFUNCTION(atan2, 2, atan2, math2Func ),
2350 MFUNCTION(cos, 1, cos, math1Func ),
2351 MFUNCTION(sin, 1, sin, math1Func ),
2352 MFUNCTION(tan, 1, tan, math1Func ),
2353 MFUNCTION(cosh, 1, cosh, math1Func ),
2354 MFUNCTION(sinh, 1, sinh, math1Func ),
2355 MFUNCTION(tanh, 1, tanh, math1Func ),
2356 #if SQLITE_HAVE_C99_MATH_FUNCS
2357 MFUNCTION(acosh, 1, acosh, math1Func ),
2358 MFUNCTION(asinh, 1, asinh, math1Func ),
2359 MFUNCTION(atanh, 1, atanh, math1Func ),
2360 #endif
2361 MFUNCTION(sqrt, 1, sqrt, math1Func ),
2362 MFUNCTION(radians, 1, degToRad, math1Func ),
2363 MFUNCTION(degrees, 1, radToDeg, math1Func ),
2364 FUNCTION(pi, 0, 0, 0, piFunc ),
2365 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
2366 FUNCTION(sign, 1, 0, 0, signFunc ),
2367 INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ),
2368 INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ),
2370 #ifndef SQLITE_OMIT_ALTERTABLE
2371 sqlite3AlterFunctions();
2372 #endif
2373 sqlite3WindowFunctions();
2374 sqlite3RegisterDateTimeFunctions();
2375 sqlite3RegisterJsonFunctions();
2376 sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
2378 #if 0 /* Enable to print out how the built-in functions are hashed */
2380 int i;
2381 FuncDef *p;
2382 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
2383 printf("FUNC-HASH %02d:", i);
2384 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
2385 int n = sqlite3Strlen30(p->zName);
2386 int h = p->zName[0] + n;
2387 assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
2388 printf(" %s(%d)", p->zName, h);
2390 printf("\n");
2393 #endif