4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite. (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
16 #include "sqliteInt.h"
19 #ifndef SQLITE_OMIT_FLOATING_POINT
25 ** Return the collating function associated with a function.
27 static CollSeq
*sqlite3GetFuncCollSeq(sqlite3_context
*context
){
29 assert( context
->pVdbe
!=0 );
30 pOp
= &context
->pVdbe
->aOp
[context
->iOp
-1];
31 assert( pOp
->opcode
==OP_CollSeq
);
32 assert( pOp
->p4type
==P4_COLLSEQ
);
37 ** Indicate that the accumulator load should be skipped on this
38 ** iteration of the aggregate loop.
40 static void sqlite3SkipAccumulatorLoad(sqlite3_context
*context
){
41 assert( context
->isError
<=0 );
42 context
->isError
= -1;
43 context
->skipFlag
= 1;
47 ** Implementation of the non-aggregate min() and max() functions
49 static void minmaxFunc(
50 sqlite3_context
*context
,
55 int mask
; /* 0 for min() or 0xffffffff for max() */
60 mask
= sqlite3_user_data(context
)==0 ? 0 : -1;
61 pColl
= sqlite3GetFuncCollSeq(context
);
63 assert( mask
==-1 || mask
==0 );
65 if( sqlite3_value_type(argv
[0])==SQLITE_NULL
) return;
66 for(i
=1; i
<argc
; i
++){
67 if( sqlite3_value_type(argv
[i
])==SQLITE_NULL
) return;
68 if( (sqlite3MemCompare(argv
[iBest
], argv
[i
], pColl
)^mask
)>=0 ){
73 sqlite3_result_value(context
, argv
[iBest
]);
77 ** Return the type of the argument.
79 static void typeofFunc(
80 sqlite3_context
*context
,
84 static const char *azType
[] = { "integer", "real", "text", "blob", "null" };
85 int i
= sqlite3_value_type(argv
[0]) - 1;
86 UNUSED_PARAMETER(NotUsed
);
87 assert( i
>=0 && i
<ArraySize(azType
) );
88 assert( SQLITE_INTEGER
==1 );
89 assert( SQLITE_FLOAT
==2 );
90 assert( SQLITE_TEXT
==3 );
91 assert( SQLITE_BLOB
==4 );
92 assert( SQLITE_NULL
==5 );
93 /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
94 ** the datatype code for the initial datatype of the sqlite3_value object
95 ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
96 ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
97 sqlite3_result_text(context
, azType
[i
], -1, SQLITE_STATIC
);
102 ** Return the subtype of X
104 static void subtypeFunc(
105 sqlite3_context
*context
,
109 UNUSED_PARAMETER(argc
);
110 sqlite3_result_int(context
, sqlite3_value_subtype(argv
[0]));
114 ** Implementation of the length() function
116 static void lengthFunc(
117 sqlite3_context
*context
,
122 UNUSED_PARAMETER(argc
);
123 switch( sqlite3_value_type(argv
[0]) ){
127 sqlite3_result_int(context
, sqlite3_value_bytes(argv
[0]));
131 const unsigned char *z
= sqlite3_value_text(argv
[0]);
132 const unsigned char *z0
;
136 while( (c
= *z
)!=0 ){
139 while( (*z
& 0xc0)==0x80 ){ z
++; z0
++; }
142 sqlite3_result_int(context
, (int)(z
-z0
));
146 sqlite3_result_null(context
);
153 ** Implementation of the abs() function.
155 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
156 ** the numeric argument X.
158 static void absFunc(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
160 UNUSED_PARAMETER(argc
);
161 switch( sqlite3_value_type(argv
[0]) ){
162 case SQLITE_INTEGER
: {
163 i64 iVal
= sqlite3_value_int64(argv
[0]);
165 if( iVal
==SMALLEST_INT64
){
166 /* IMP: R-31676-45509 If X is the integer -9223372036854775808
167 ** then abs(X) throws an integer overflow error since there is no
168 ** equivalent positive 64-bit two complement value. */
169 sqlite3_result_error(context
, "integer overflow", -1);
174 sqlite3_result_int64(context
, iVal
);
178 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
179 sqlite3_result_null(context
);
183 /* Because sqlite3_value_double() returns 0.0 if the argument is not
184 ** something that can be converted into a number, we have:
185 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
186 ** that cannot be converted to a numeric value.
188 double rVal
= sqlite3_value_double(argv
[0]);
189 if( rVal
<0 ) rVal
= -rVal
;
190 sqlite3_result_double(context
, rVal
);
197 ** Implementation of the instr() function.
199 ** instr(haystack,needle) finds the first occurrence of needle
200 ** in haystack and returns the number of previous characters plus 1,
201 ** or 0 if needle does not occur within haystack.
203 ** If both haystack and needle are BLOBs, then the result is one more than
204 ** the number of bytes in haystack prior to the first occurrence of needle,
205 ** or 0 if needle never occurs in haystack.
207 static void instrFunc(
208 sqlite3_context
*context
,
212 const unsigned char *zHaystack
;
213 const unsigned char *zNeedle
;
216 int typeHaystack
, typeNeedle
;
219 unsigned char firstChar
;
220 sqlite3_value
*pC1
= 0;
221 sqlite3_value
*pC2
= 0;
223 UNUSED_PARAMETER(argc
);
224 typeHaystack
= sqlite3_value_type(argv
[0]);
225 typeNeedle
= sqlite3_value_type(argv
[1]);
226 if( typeHaystack
==SQLITE_NULL
|| typeNeedle
==SQLITE_NULL
) return;
227 nHaystack
= sqlite3_value_bytes(argv
[0]);
228 nNeedle
= sqlite3_value_bytes(argv
[1]);
230 if( typeHaystack
==SQLITE_BLOB
&& typeNeedle
==SQLITE_BLOB
){
231 zHaystack
= sqlite3_value_blob(argv
[0]);
232 zNeedle
= sqlite3_value_blob(argv
[1]);
234 }else if( typeHaystack
!=SQLITE_BLOB
&& typeNeedle
!=SQLITE_BLOB
){
235 zHaystack
= sqlite3_value_text(argv
[0]);
236 zNeedle
= sqlite3_value_text(argv
[1]);
239 pC1
= sqlite3_value_dup(argv
[0]);
240 zHaystack
= sqlite3_value_text(pC1
);
241 if( zHaystack
==0 ) goto endInstrOOM
;
242 nHaystack
= sqlite3_value_bytes(pC1
);
243 pC2
= sqlite3_value_dup(argv
[1]);
244 zNeedle
= sqlite3_value_text(pC2
);
245 if( zNeedle
==0 ) goto endInstrOOM
;
246 nNeedle
= sqlite3_value_bytes(pC2
);
249 if( zNeedle
==0 || (nHaystack
&& zHaystack
==0) ) goto endInstrOOM
;
250 firstChar
= zNeedle
[0];
251 while( nNeedle
<=nHaystack
252 && (zHaystack
[0]!=firstChar
|| memcmp(zHaystack
, zNeedle
, nNeedle
)!=0)
258 }while( isText
&& (zHaystack
[0]&0xc0)==0x80 );
260 if( nNeedle
>nHaystack
) N
= 0;
262 sqlite3_result_int(context
, N
);
264 sqlite3_value_free(pC1
);
265 sqlite3_value_free(pC2
);
268 sqlite3_result_error_nomem(context
);
273 ** Implementation of the printf() (a.k.a. format()) SQL function.
275 static void printfFunc(
276 sqlite3_context
*context
,
284 sqlite3
*db
= sqlite3_context_db_handle(context
);
286 if( argc
>=1 && (zFormat
= (const char*)sqlite3_value_text(argv
[0]))!=0 ){
290 sqlite3StrAccumInit(&str
, db
, 0, 0, db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
291 str
.printfFlags
= SQLITE_PRINTF_SQLFUNC
;
292 sqlite3_str_appendf(&str
, zFormat
, &x
);
294 sqlite3_result_text(context
, sqlite3StrAccumFinish(&str
), n
,
300 ** Implementation of the substr() function.
302 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
303 ** p1 is 1-indexed. So substr(x,1,1) returns the first character
304 ** of x. If x is text, then we actually count UTF-8 characters.
305 ** If x is a blob, then we count bytes.
307 ** If p1 is negative, then we begin abs(p1) from the end of x[].
309 ** If p2 is negative, return the p2 characters preceding p1.
311 static void substrFunc(
312 sqlite3_context
*context
,
316 const unsigned char *z
;
317 const unsigned char *z2
;
323 assert( argc
==3 || argc
==2 );
324 if( sqlite3_value_type(argv
[1])==SQLITE_NULL
325 || (argc
==3 && sqlite3_value_type(argv
[2])==SQLITE_NULL
)
329 p0type
= sqlite3_value_type(argv
[0]);
330 p1
= sqlite3_value_int(argv
[1]);
331 if( p0type
==SQLITE_BLOB
){
332 len
= sqlite3_value_bytes(argv
[0]);
333 z
= sqlite3_value_blob(argv
[0]);
335 assert( len
==sqlite3_value_bytes(argv
[0]) );
337 z
= sqlite3_value_text(argv
[0]);
341 for(z2
=z
; *z2
; len
++){
342 SQLITE_SKIP_UTF8(z2
);
346 #ifdef SQLITE_SUBSTR_COMPATIBILITY
347 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
348 ** as substr(X,1,N) - it returns the first N characters of X. This
349 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
350 ** from 2009-02-02 for compatibility of applications that exploited the
351 ** old buggy behavior. */
352 if( p1
==0 ) p1
= 1; /* <rdar://problem/6778339> */
355 p2
= sqlite3_value_int(argv
[2]);
361 p2
= sqlite3_context_db_handle(context
)->aLimit
[SQLITE_LIMIT_LENGTH
];
382 assert( p1
>=0 && p2
>=0 );
383 if( p0type
!=SQLITE_BLOB
){
388 for(z2
=z
; *z2
&& p2
; p2
--){
389 SQLITE_SKIP_UTF8(z2
);
391 sqlite3_result_text64(context
, (char*)z
, z2
-z
, SQLITE_TRANSIENT
,
398 sqlite3_result_blob64(context
, (char*)&z
[p1
], (u64
)p2
, SQLITE_TRANSIENT
);
403 ** Implementation of the round() function
405 #ifndef SQLITE_OMIT_FLOATING_POINT
406 static void roundFunc(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
410 assert( argc
==1 || argc
==2 );
412 if( SQLITE_NULL
==sqlite3_value_type(argv
[1]) ) return;
413 n
= sqlite3_value_int(argv
[1]);
417 if( sqlite3_value_type(argv
[0])==SQLITE_NULL
) return;
418 r
= sqlite3_value_double(argv
[0]);
419 /* If Y==0 and X will fit in a 64-bit int,
420 ** handle the rounding directly,
421 ** otherwise use printf.
423 if( r
<-4503599627370496.0 || r
>+4503599627370496.0 ){
424 /* The value has no fractional part so there is nothing to round */
426 r
= (double)((sqlite_int64
)(r
+(r
<0?-0.5:+0.5)));
428 zBuf
= sqlite3_mprintf("%.*f",n
,r
);
430 sqlite3_result_error_nomem(context
);
433 sqlite3AtoF(zBuf
, &r
, sqlite3Strlen30(zBuf
), SQLITE_UTF8
);
436 sqlite3_result_double(context
, r
);
441 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
442 ** allocation fails, call sqlite3_result_error_nomem() to notify
443 ** the database handle that malloc() has failed and return NULL.
444 ** If nByte is larger than the maximum string or blob length, then
445 ** raise an SQLITE_TOOBIG exception and return NULL.
447 static void *contextMalloc(sqlite3_context
*context
, i64 nByte
){
449 sqlite3
*db
= sqlite3_context_db_handle(context
);
451 testcase( nByte
==db
->aLimit
[SQLITE_LIMIT_LENGTH
] );
452 testcase( nByte
==db
->aLimit
[SQLITE_LIMIT_LENGTH
]+1 );
453 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
454 sqlite3_result_error_toobig(context
);
457 z
= sqlite3Malloc(nByte
);
459 sqlite3_result_error_nomem(context
);
466 ** Implementation of the upper() and lower() SQL functions.
468 static void upperFunc(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
472 UNUSED_PARAMETER(argc
);
473 z2
= (char*)sqlite3_value_text(argv
[0]);
474 n
= sqlite3_value_bytes(argv
[0]);
475 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
476 assert( z2
==(char*)sqlite3_value_text(argv
[0]) );
478 z1
= contextMalloc(context
, ((i64
)n
)+1);
481 z1
[i
] = (char)sqlite3Toupper(z2
[i
]);
483 sqlite3_result_text(context
, z1
, n
, sqlite3_free
);
487 static void lowerFunc(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
491 UNUSED_PARAMETER(argc
);
492 z2
= (char*)sqlite3_value_text(argv
[0]);
493 n
= sqlite3_value_bytes(argv
[0]);
494 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
495 assert( z2
==(char*)sqlite3_value_text(argv
[0]) );
497 z1
= contextMalloc(context
, ((i64
)n
)+1);
500 z1
[i
] = sqlite3Tolower(z2
[i
]);
502 sqlite3_result_text(context
, z1
, n
, sqlite3_free
);
508 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
509 ** as VDBE code so that unused argument values do not have to be computed.
510 ** However, we still need some kind of function implementation for this
511 ** routines in the function table. The noopFunc macro provides this.
512 ** noopFunc will never be called so it doesn't matter what the implementation
513 ** is. We might as well use the "version()" function as a substitute.
515 #define noopFunc versionFunc /* Substitute function - never called */
518 ** Implementation of random(). Return a random integer.
520 static void randomFunc(
521 sqlite3_context
*context
,
523 sqlite3_value
**NotUsed2
526 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
527 sqlite3_randomness(sizeof(r
), &r
);
529 /* We need to prevent a random number of 0x8000000000000000
530 ** (or -9223372036854775808) since when you do abs() of that
531 ** number of you get the same value back again. To do this
532 ** in a way that is testable, mask the sign bit off of negative
533 ** values, resulting in a positive value. Then take the
534 ** 2s complement of that positive value. The end result can
535 ** therefore be no less than -9223372036854775807.
537 r
= -(r
& LARGEST_INT64
);
539 sqlite3_result_int64(context
, r
);
543 ** Implementation of randomblob(N). Return a random blob
544 ** that is N bytes long.
546 static void randomBlob(
547 sqlite3_context
*context
,
554 UNUSED_PARAMETER(argc
);
555 n
= sqlite3_value_int64(argv
[0]);
559 p
= contextMalloc(context
, n
);
561 sqlite3_randomness(n
, p
);
562 sqlite3_result_blob(context
, (char*)p
, n
, sqlite3_free
);
567 ** Implementation of the last_insert_rowid() SQL function. The return
568 ** value is the same as the sqlite3_last_insert_rowid() API function.
570 static void last_insert_rowid(
571 sqlite3_context
*context
,
573 sqlite3_value
**NotUsed2
575 sqlite3
*db
= sqlite3_context_db_handle(context
);
576 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
577 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
578 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
580 sqlite3_result_int64(context
, sqlite3_last_insert_rowid(db
));
584 ** Implementation of the changes() SQL function.
586 ** IMP: R-32760-32347 The changes() SQL function is a wrapper
587 ** around the sqlite3_changes64() C/C++ function and hence follows the
588 ** same rules for counting changes.
591 sqlite3_context
*context
,
593 sqlite3_value
**NotUsed2
595 sqlite3
*db
= sqlite3_context_db_handle(context
);
596 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
597 sqlite3_result_int64(context
, sqlite3_changes64(db
));
601 ** Implementation of the total_changes() SQL function. The return value is
602 ** the same as the sqlite3_total_changes64() API function.
604 static void total_changes(
605 sqlite3_context
*context
,
607 sqlite3_value
**NotUsed2
609 sqlite3
*db
= sqlite3_context_db_handle(context
);
610 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
611 /* IMP: R-11217-42568 This function is a wrapper around the
612 ** sqlite3_total_changes64() C/C++ interface. */
613 sqlite3_result_int64(context
, sqlite3_total_changes64(db
));
617 ** A structure defining how to do GLOB-style comparisons.
620 u8 matchAll
; /* "*" or "%" */
621 u8 matchOne
; /* "?" or "_" */
622 u8 matchSet
; /* "[" or 0 */
623 u8 noCase
; /* true to ignore case differences */
627 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
628 ** character is exactly one byte in size. Also, provde the Utf8Read()
629 ** macro for fast reading of the next character in the common case where
630 ** the next character is ASCII.
632 #if defined(SQLITE_EBCDIC)
633 # define sqlite3Utf8Read(A) (*((*A)++))
634 # define Utf8Read(A) (*(A++))
636 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
639 static const struct compareInfo globInfo
= { '*', '?', '[', 0 };
640 /* The correct SQL-92 behavior is for the LIKE operator to ignore
641 ** case. Thus 'a' LIKE 'A' would be true. */
642 static const struct compareInfo likeInfoNorm
= { '%', '_', 0, 1 };
643 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
644 ** is case sensitive causing 'a' LIKE 'A' to be false */
645 static const struct compareInfo likeInfoAlt
= { '%', '_', 0, 0 };
648 ** Possible error returns from patternMatch()
650 #define SQLITE_MATCH 0
651 #define SQLITE_NOMATCH 1
652 #define SQLITE_NOWILDCARDMATCH 2
655 ** Compare two UTF-8 strings for equality where the first string is
656 ** a GLOB or LIKE expression. Return values:
658 ** SQLITE_MATCH: Match
659 ** SQLITE_NOMATCH: No match
660 ** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
664 ** '*' Matches any sequence of zero or more characters.
666 ** '?' Matches exactly one character.
668 ** [...] Matches one character from the enclosed list of
671 ** [^...] Matches one character not in the enclosed list.
673 ** With the [...] and [^...] matching, a ']' character can be included
674 ** in the list by making it the first character after '[' or '^'. A
675 ** range of characters can be specified using '-'. Example:
676 ** "[a-z]" matches any single lower-case letter. To match a '-', make
677 ** it the last character in the list.
679 ** Like matching rules:
681 ** '%' Matches any sequence of zero or more characters
683 *** '_' Matches any one character
685 ** Ec Where E is the "esc" character and c is any other
686 ** character, including '%', '_', and esc, match exactly c.
688 ** The comments within this routine usually assume glob matching.
690 ** This routine is usually quick, but can be N**2 in the worst case.
692 static int patternCompare(
693 const u8
*zPattern
, /* The glob pattern */
694 const u8
*zString
, /* The string to compare against the glob */
695 const struct compareInfo
*pInfo
, /* Information about how to do the compare */
696 u32 matchOther
/* The escape char (LIKE) or '[' (GLOB) */
698 u32 c
, c2
; /* Next pattern and input string chars */
699 u32 matchOne
= pInfo
->matchOne
; /* "?" or "_" */
700 u32 matchAll
= pInfo
->matchAll
; /* "*" or "%" */
701 u8 noCase
= pInfo
->noCase
; /* True if uppercase==lowercase */
702 const u8
*zEscaped
= 0; /* One past the last escaped input char */
704 while( (c
= Utf8Read(zPattern
))!=0 ){
705 if( c
==matchAll
){ /* Match "*" */
706 /* Skip over multiple "*" characters in the pattern. If there
707 ** are also "?" characters, skip those as well, but consume a
708 ** single character of the input string for each "?" skipped */
709 while( (c
=Utf8Read(zPattern
)) == matchAll
710 || (c
== matchOne
&& matchOne
!=0) ){
711 if( c
==matchOne
&& sqlite3Utf8Read(&zString
)==0 ){
712 return SQLITE_NOWILDCARDMATCH
;
716 return SQLITE_MATCH
; /* "*" at the end of the pattern matches */
717 }else if( c
==matchOther
){
718 if( pInfo
->matchSet
==0 ){
719 c
= sqlite3Utf8Read(&zPattern
);
720 if( c
==0 ) return SQLITE_NOWILDCARDMATCH
;
722 /* "[...]" immediately follows the "*". We have to do a slow
723 ** recursive search in this case, but it is an unusual case. */
724 assert( matchOther
<0x80 ); /* '[' is a single-byte character */
726 int bMatch
= patternCompare(&zPattern
[-1],zString
,pInfo
,matchOther
);
727 if( bMatch
!=SQLITE_NOMATCH
) return bMatch
;
728 SQLITE_SKIP_UTF8(zString
);
730 return SQLITE_NOWILDCARDMATCH
;
734 /* At this point variable c contains the first character of the
735 ** pattern string past the "*". Search in the input string for the
736 ** first matching character and recursively continue the match from
739 ** For a case-insensitive search, set variable cx to be the same as
740 ** c but in the other case and search the input string for either
747 zStop
[0] = sqlite3Toupper(c
);
748 zStop
[1] = sqlite3Tolower(c
);
755 zString
+= strcspn((const char*)zString
, zStop
);
756 if( zString
[0]==0 ) break;
758 bMatch
= patternCompare(zPattern
,zString
,pInfo
,matchOther
);
759 if( bMatch
!=SQLITE_NOMATCH
) return bMatch
;
763 while( (c2
= Utf8Read(zString
))!=0 ){
764 if( c2
!=c
) continue;
765 bMatch
= patternCompare(zPattern
,zString
,pInfo
,matchOther
);
766 if( bMatch
!=SQLITE_NOMATCH
) return bMatch
;
769 return SQLITE_NOWILDCARDMATCH
;
772 if( pInfo
->matchSet
==0 ){
773 c
= sqlite3Utf8Read(&zPattern
);
774 if( c
==0 ) return SQLITE_NOMATCH
;
780 c
= sqlite3Utf8Read(&zString
);
781 if( c
==0 ) return SQLITE_NOMATCH
;
782 c2
= sqlite3Utf8Read(&zPattern
);
785 c2
= sqlite3Utf8Read(&zPattern
);
788 if( c
==']' ) seen
= 1;
789 c2
= sqlite3Utf8Read(&zPattern
);
791 while( c2
&& c2
!=']' ){
792 if( c2
=='-' && zPattern
[0]!=']' && zPattern
[0]!=0 && prior_c
>0 ){
793 c2
= sqlite3Utf8Read(&zPattern
);
794 if( c
>=prior_c
&& c
<=c2
) seen
= 1;
802 c2
= sqlite3Utf8Read(&zPattern
);
804 if( c2
==0 || (seen
^ invert
)==0 ){
805 return SQLITE_NOMATCH
;
810 c2
= Utf8Read(zString
);
811 if( c
==c2
) continue;
812 if( noCase
&& sqlite3Tolower(c
)==sqlite3Tolower(c2
) && c
<0x80 && c2
<0x80 ){
815 if( c
==matchOne
&& zPattern
!=zEscaped
&& c2
!=0 ) continue;
816 return SQLITE_NOMATCH
;
818 return *zString
==0 ? SQLITE_MATCH
: SQLITE_NOMATCH
;
822 ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
823 ** non-zero if there is no match.
825 int sqlite3_strglob(const char *zGlobPattern
, const char *zString
){
826 return patternCompare((u8
*)zGlobPattern
, (u8
*)zString
, &globInfo
, '[');
830 ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
831 ** a miss - like strcmp().
833 int sqlite3_strlike(const char *zPattern
, const char *zStr
, unsigned int esc
){
834 return patternCompare((u8
*)zPattern
, (u8
*)zStr
, &likeInfoNorm
, esc
);
838 ** Count the number of times that the LIKE operator (or GLOB which is
839 ** just a variation of LIKE) gets called. This is used for testing
843 int sqlite3_like_count
= 0;
848 ** Implementation of the like() SQL function. This function implements
849 ** the build-in LIKE operator. The first argument to the function is the
850 ** pattern and the second argument is the string. So, the SQL statements:
854 ** is implemented as like(B,A).
856 ** This same function (with a different compareInfo structure) computes
857 ** the GLOB operator.
859 static void likeFunc(
860 sqlite3_context
*context
,
864 const unsigned char *zA
, *zB
;
867 sqlite3
*db
= sqlite3_context_db_handle(context
);
868 struct compareInfo
*pInfo
= sqlite3_user_data(context
);
869 struct compareInfo backupInfo
;
871 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
872 if( sqlite3_value_type(argv
[0])==SQLITE_BLOB
873 || sqlite3_value_type(argv
[1])==SQLITE_BLOB
876 sqlite3_like_count
++;
878 sqlite3_result_int(context
, 0);
883 /* Limit the length of the LIKE or GLOB pattern to avoid problems
884 ** of deep recursion and N*N behavior in patternCompare().
886 nPat
= sqlite3_value_bytes(argv
[0]);
887 testcase( nPat
==db
->aLimit
[SQLITE_LIMIT_LIKE_PATTERN_LENGTH
] );
888 testcase( nPat
==db
->aLimit
[SQLITE_LIMIT_LIKE_PATTERN_LENGTH
]+1 );
889 if( nPat
> db
->aLimit
[SQLITE_LIMIT_LIKE_PATTERN_LENGTH
] ){
890 sqlite3_result_error(context
, "LIKE or GLOB pattern too complex", -1);
894 /* The escape character string must consist of a single UTF-8 character.
895 ** Otherwise, return an error.
897 const unsigned char *zEsc
= sqlite3_value_text(argv
[2]);
898 if( zEsc
==0 ) return;
899 if( sqlite3Utf8CharLen((char*)zEsc
, -1)!=1 ){
900 sqlite3_result_error(context
,
901 "ESCAPE expression must be a single character", -1);
904 escape
= sqlite3Utf8Read(&zEsc
);
905 if( escape
==pInfo
->matchAll
|| escape
==pInfo
->matchOne
){
906 memcpy(&backupInfo
, pInfo
, sizeof(backupInfo
));
908 if( escape
==pInfo
->matchAll
) pInfo
->matchAll
= 0;
909 if( escape
==pInfo
->matchOne
) pInfo
->matchOne
= 0;
912 escape
= pInfo
->matchSet
;
914 zB
= sqlite3_value_text(argv
[0]);
915 zA
= sqlite3_value_text(argv
[1]);
918 sqlite3_like_count
++;
920 sqlite3_result_int(context
,
921 patternCompare(zB
, zA
, pInfo
, escape
)==SQLITE_MATCH
);
926 ** Implementation of the NULLIF(x,y) function. The result is the first
927 ** argument if the arguments are different. The result is NULL if the
928 ** arguments are equal to each other.
930 static void nullifFunc(
931 sqlite3_context
*context
,
935 CollSeq
*pColl
= sqlite3GetFuncCollSeq(context
);
936 UNUSED_PARAMETER(NotUsed
);
937 if( sqlite3MemCompare(argv
[0], argv
[1], pColl
)!=0 ){
938 sqlite3_result_value(context
, argv
[0]);
943 ** Implementation of the sqlite_version() function. The result is the version
944 ** of the SQLite library that is running.
946 static void versionFunc(
947 sqlite3_context
*context
,
949 sqlite3_value
**NotUsed2
951 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
952 /* IMP: R-48699-48617 This function is an SQL wrapper around the
953 ** sqlite3_libversion() C-interface. */
954 sqlite3_result_text(context
, sqlite3_libversion(), -1, SQLITE_STATIC
);
958 ** Implementation of the sqlite_source_id() function. The result is a string
959 ** that identifies the particular version of the source code used to build
962 static void sourceidFunc(
963 sqlite3_context
*context
,
965 sqlite3_value
**NotUsed2
967 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
968 /* IMP: R-24470-31136 This function is an SQL wrapper around the
969 ** sqlite3_sourceid() C interface. */
970 sqlite3_result_text(context
, sqlite3_sourceid(), -1, SQLITE_STATIC
);
974 ** Implementation of the sqlite_log() function. This is a wrapper around
975 ** sqlite3_log(). The return value is NULL. The function exists purely for
978 static void errlogFunc(
979 sqlite3_context
*context
,
983 UNUSED_PARAMETER(argc
);
984 UNUSED_PARAMETER(context
);
985 sqlite3_log(sqlite3_value_int(argv
[0]), "%s", sqlite3_value_text(argv
[1]));
989 ** Implementation of the sqlite_compileoption_used() function.
990 ** The result is an integer that identifies if the compiler option
991 ** was used to build SQLite.
993 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
994 static void compileoptionusedFunc(
995 sqlite3_context
*context
,
999 const char *zOptName
;
1001 UNUSED_PARAMETER(argc
);
1002 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
1003 ** function is a wrapper around the sqlite3_compileoption_used() C/C++
1006 if( (zOptName
= (const char*)sqlite3_value_text(argv
[0]))!=0 ){
1007 sqlite3_result_int(context
, sqlite3_compileoption_used(zOptName
));
1010 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1013 ** Implementation of the sqlite_compileoption_get() function.
1014 ** The result is a string that identifies the compiler options
1015 ** used to build SQLite.
1017 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1018 static void compileoptiongetFunc(
1019 sqlite3_context
*context
,
1021 sqlite3_value
**argv
1025 UNUSED_PARAMETER(argc
);
1026 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
1027 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
1029 n
= sqlite3_value_int(argv
[0]);
1030 sqlite3_result_text(context
, sqlite3_compileoption_get(n
), -1, SQLITE_STATIC
);
1032 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1034 /* Array for converting from half-bytes (nybbles) into ASCII hex
1036 static const char hexdigits
[] = {
1037 '0', '1', '2', '3', '4', '5', '6', '7',
1038 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
1042 ** Append to pStr text that is the SQL literal representation of the
1043 ** value contained in pValue.
1045 void sqlite3QuoteValue(StrAccum
*pStr
, sqlite3_value
*pValue
){
1046 /* As currently implemented, the string must be initially empty.
1047 ** we might relax this requirement in the future, but that will
1048 ** require enhancements to the implementation. */
1049 assert( pStr
!=0 && pStr
->nChar
==0 );
1051 switch( sqlite3_value_type(pValue
) ){
1052 case SQLITE_FLOAT
: {
1055 r1
= sqlite3_value_double(pValue
);
1056 sqlite3_str_appendf(pStr
, "%!.15g", r1
);
1057 zVal
= sqlite3_str_value(pStr
);
1059 sqlite3AtoF(zVal
, &r2
, pStr
->nChar
, SQLITE_UTF8
);
1061 sqlite3_str_reset(pStr
);
1062 sqlite3_str_appendf(pStr
, "%!.20e", r1
);
1067 case SQLITE_INTEGER
: {
1068 sqlite3_str_appendf(pStr
, "%lld", sqlite3_value_int64(pValue
));
1072 char const *zBlob
= sqlite3_value_blob(pValue
);
1073 int nBlob
= sqlite3_value_bytes(pValue
);
1074 assert( zBlob
==sqlite3_value_blob(pValue
) ); /* No encoding change */
1075 sqlite3StrAccumEnlarge(pStr
, nBlob
*2 + 4);
1076 if( pStr
->accError
==0 ){
1077 char *zText
= pStr
->zText
;
1079 for(i
=0; i
<nBlob
; i
++){
1080 zText
[(i
*2)+2] = hexdigits
[(zBlob
[i
]>>4)&0x0F];
1081 zText
[(i
*2)+3] = hexdigits
[(zBlob
[i
])&0x0F];
1083 zText
[(nBlob
*2)+2] = '\'';
1084 zText
[(nBlob
*2)+3] = '\0';
1087 pStr
->nChar
= nBlob
*2 + 3;
1092 const unsigned char *zArg
= sqlite3_value_text(pValue
);
1093 sqlite3_str_appendf(pStr
, "%Q", zArg
);
1097 assert( sqlite3_value_type(pValue
)==SQLITE_NULL
);
1098 sqlite3_str_append(pStr
, "NULL", 4);
1105 ** Implementation of the QUOTE() function.
1107 ** The quote(X) function returns the text of an SQL literal which is the
1108 ** value of its argument suitable for inclusion into an SQL statement.
1109 ** Strings are surrounded by single-quotes with escapes on interior quotes
1110 ** as needed. BLOBs are encoded as hexadecimal literals. Strings with
1111 ** embedded NUL characters cannot be represented as string literals in SQL
1112 ** and hence the returned string literal is truncated prior to the first NUL.
1114 static void quoteFunc(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
1116 sqlite3
*db
= sqlite3_context_db_handle(context
);
1118 UNUSED_PARAMETER(argc
);
1119 sqlite3StrAccumInit(&str
, db
, 0, 0, db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
1120 sqlite3QuoteValue(&str
,argv
[0]);
1121 sqlite3_result_text(context
, sqlite3StrAccumFinish(&str
), str
.nChar
,
1123 if( str
.accError
!=SQLITE_OK
){
1124 sqlite3_result_null(context
);
1125 sqlite3_result_error_code(context
, str
.accError
);
1130 ** The unicode() function. Return the integer unicode code-point value
1131 ** for the first character of the input string.
1133 static void unicodeFunc(
1134 sqlite3_context
*context
,
1136 sqlite3_value
**argv
1138 const unsigned char *z
= sqlite3_value_text(argv
[0]);
1140 if( z
&& z
[0] ) sqlite3_result_int(context
, sqlite3Utf8Read(&z
));
1144 ** The char() function takes zero or more arguments, each of which is
1145 ** an integer. It constructs a string where each character of the string
1146 ** is the unicode character for the corresponding integer argument.
1148 static void charFunc(
1149 sqlite3_context
*context
,
1151 sqlite3_value
**argv
1153 unsigned char *z
, *zOut
;
1155 zOut
= z
= sqlite3_malloc64( argc
*4+1 );
1157 sqlite3_result_error_nomem(context
);
1160 for(i
=0; i
<argc
; i
++){
1163 x
= sqlite3_value_int64(argv
[i
]);
1164 if( x
<0 || x
>0x10ffff ) x
= 0xfffd;
1165 c
= (unsigned)(x
& 0x1fffff);
1167 *zOut
++ = (u8
)(c
&0xFF);
1168 }else if( c
<0x00800 ){
1169 *zOut
++ = 0xC0 + (u8
)((c
>>6)&0x1F);
1170 *zOut
++ = 0x80 + (u8
)(c
& 0x3F);
1171 }else if( c
<0x10000 ){
1172 *zOut
++ = 0xE0 + (u8
)((c
>>12)&0x0F);
1173 *zOut
++ = 0x80 + (u8
)((c
>>6) & 0x3F);
1174 *zOut
++ = 0x80 + (u8
)(c
& 0x3F);
1176 *zOut
++ = 0xF0 + (u8
)((c
>>18) & 0x07);
1177 *zOut
++ = 0x80 + (u8
)((c
>>12) & 0x3F);
1178 *zOut
++ = 0x80 + (u8
)((c
>>6) & 0x3F);
1179 *zOut
++ = 0x80 + (u8
)(c
& 0x3F);
1182 sqlite3_result_text64(context
, (char*)z
, zOut
-z
, sqlite3_free
, SQLITE_UTF8
);
1186 ** The hex() function. Interpret the argument as a blob. Return
1187 ** a hexadecimal rendering as text.
1189 static void hexFunc(
1190 sqlite3_context
*context
,
1192 sqlite3_value
**argv
1195 const unsigned char *pBlob
;
1198 UNUSED_PARAMETER(argc
);
1199 pBlob
= sqlite3_value_blob(argv
[0]);
1200 n
= sqlite3_value_bytes(argv
[0]);
1201 assert( pBlob
==sqlite3_value_blob(argv
[0]) ); /* No encoding change */
1202 z
= zHex
= contextMalloc(context
, ((i64
)n
)*2 + 1);
1204 for(i
=0; i
<n
; i
++, pBlob
++){
1205 unsigned char c
= *pBlob
;
1206 *(z
++) = hexdigits
[(c
>>4)&0xf];
1207 *(z
++) = hexdigits
[c
&0xf];
1210 sqlite3_result_text(context
, zHex
, n
*2, sqlite3_free
);
1215 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1217 static void zeroblobFunc(
1218 sqlite3_context
*context
,
1220 sqlite3_value
**argv
1225 UNUSED_PARAMETER(argc
);
1226 n
= sqlite3_value_int64(argv
[0]);
1228 rc
= sqlite3_result_zeroblob64(context
, n
); /* IMP: R-00293-64994 */
1230 sqlite3_result_error_code(context
, rc
);
1235 ** The replace() function. Three arguments are all strings: call
1236 ** them A, B, and C. The result is also a string which is derived
1237 ** from A by replacing every occurrence of B with C. The match
1238 ** must be exact. Collating sequences are not used.
1240 static void replaceFunc(
1241 sqlite3_context
*context
,
1243 sqlite3_value
**argv
1245 const unsigned char *zStr
; /* The input string A */
1246 const unsigned char *zPattern
; /* The pattern string B */
1247 const unsigned char *zRep
; /* The replacement string C */
1248 unsigned char *zOut
; /* The output */
1249 int nStr
; /* Size of zStr */
1250 int nPattern
; /* Size of zPattern */
1251 int nRep
; /* Size of zRep */
1252 i64 nOut
; /* Maximum size of zOut */
1253 int loopLimit
; /* Last zStr[] that might match zPattern[] */
1254 int i
, j
; /* Loop counters */
1255 unsigned cntExpand
; /* Number zOut expansions */
1256 sqlite3
*db
= sqlite3_context_db_handle(context
);
1259 UNUSED_PARAMETER(argc
);
1260 zStr
= sqlite3_value_text(argv
[0]);
1261 if( zStr
==0 ) return;
1262 nStr
= sqlite3_value_bytes(argv
[0]);
1263 assert( zStr
==sqlite3_value_text(argv
[0]) ); /* No encoding change */
1264 zPattern
= sqlite3_value_text(argv
[1]);
1266 assert( sqlite3_value_type(argv
[1])==SQLITE_NULL
1267 || sqlite3_context_db_handle(context
)->mallocFailed
);
1270 if( zPattern
[0]==0 ){
1271 assert( sqlite3_value_type(argv
[1])!=SQLITE_NULL
);
1272 sqlite3_result_value(context
, argv
[0]);
1275 nPattern
= sqlite3_value_bytes(argv
[1]);
1276 assert( zPattern
==sqlite3_value_text(argv
[1]) ); /* No encoding change */
1277 zRep
= sqlite3_value_text(argv
[2]);
1278 if( zRep
==0 ) return;
1279 nRep
= sqlite3_value_bytes(argv
[2]);
1280 assert( zRep
==sqlite3_value_text(argv
[2]) );
1282 assert( nOut
<SQLITE_MAX_LENGTH
);
1283 zOut
= contextMalloc(context
, (i64
)nOut
);
1287 loopLimit
= nStr
- nPattern
;
1289 for(i
=j
=0; i
<=loopLimit
; i
++){
1290 if( zStr
[i
]!=zPattern
[0] || memcmp(&zStr
[i
], zPattern
, nPattern
) ){
1291 zOut
[j
++] = zStr
[i
];
1293 if( nRep
>nPattern
){
1294 nOut
+= nRep
- nPattern
;
1295 testcase( nOut
-1==db
->aLimit
[SQLITE_LIMIT_LENGTH
] );
1296 testcase( nOut
-2==db
->aLimit
[SQLITE_LIMIT_LENGTH
] );
1297 if( nOut
-1>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1298 sqlite3_result_error_toobig(context
);
1303 if( (cntExpand
&(cntExpand
-1))==0 ){
1304 /* Grow the size of the output buffer only on substitutions
1305 ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
1308 zOut
= sqlite3Realloc(zOut
, (int)nOut
+ (nOut
- nStr
- 1));
1310 sqlite3_result_error_nomem(context
);
1316 memcpy(&zOut
[j
], zRep
, nRep
);
1321 assert( j
+nStr
-i
+1<=nOut
);
1322 memcpy(&zOut
[j
], &zStr
[i
], nStr
-i
);
1326 sqlite3_result_text(context
, (char*)zOut
, j
, sqlite3_free
);
1330 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1331 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1333 static void trimFunc(
1334 sqlite3_context
*context
,
1336 sqlite3_value
**argv
1338 const unsigned char *zIn
; /* Input string */
1339 const unsigned char *zCharSet
; /* Set of characters to trim */
1340 unsigned int nIn
; /* Number of bytes in input */
1341 int flags
; /* 1: trimleft 2: trimright 3: trim */
1342 int i
; /* Loop counter */
1343 unsigned int *aLen
= 0; /* Length of each character in zCharSet */
1344 unsigned char **azChar
= 0; /* Individual characters in zCharSet */
1345 int nChar
; /* Number of characters in zCharSet */
1347 if( sqlite3_value_type(argv
[0])==SQLITE_NULL
){
1350 zIn
= sqlite3_value_text(argv
[0]);
1351 if( zIn
==0 ) return;
1352 nIn
= (unsigned)sqlite3_value_bytes(argv
[0]);
1353 assert( zIn
==sqlite3_value_text(argv
[0]) );
1355 static const unsigned lenOne
[] = { 1 };
1356 static unsigned char * const azOne
[] = { (u8
*)" " };
1358 aLen
= (unsigned*)lenOne
;
1359 azChar
= (unsigned char **)azOne
;
1361 }else if( (zCharSet
= sqlite3_value_text(argv
[1]))==0 ){
1364 const unsigned char *z
;
1365 for(z
=zCharSet
, nChar
=0; *z
; nChar
++){
1366 SQLITE_SKIP_UTF8(z
);
1369 azChar
= contextMalloc(context
,
1370 ((i64
)nChar
)*(sizeof(char*)+sizeof(unsigned)));
1374 aLen
= (unsigned*)&azChar
[nChar
];
1375 for(z
=zCharSet
, nChar
=0; *z
; nChar
++){
1376 azChar
[nChar
] = (unsigned char *)z
;
1377 SQLITE_SKIP_UTF8(z
);
1378 aLen
[nChar
] = (unsigned)(z
- azChar
[nChar
]);
1383 flags
= SQLITE_PTR_TO_INT(sqlite3_user_data(context
));
1386 unsigned int len
= 0;
1387 for(i
=0; i
<nChar
; i
++){
1389 if( len
<=nIn
&& memcmp(zIn
, azChar
[i
], len
)==0 ) break;
1391 if( i
>=nChar
) break;
1398 unsigned int len
= 0;
1399 for(i
=0; i
<nChar
; i
++){
1401 if( len
<=nIn
&& memcmp(&zIn
[nIn
-len
],azChar
[i
],len
)==0 ) break;
1403 if( i
>=nChar
) break;
1408 sqlite3_free(azChar
);
1411 sqlite3_result_text(context
, (char*)zIn
, nIn
, SQLITE_TRANSIENT
);
1415 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1417 ** The "unknown" function is automatically substituted in place of
1418 ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
1419 ** when the SQLITE_ENABLE_UNKNOWN_FUNCTION compile-time option is used.
1420 ** When the "sqlite3" command-line shell is built using this functionality,
1421 ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
1422 ** involving application-defined functions to be examined in a generic
1425 static void unknownFunc(
1426 sqlite3_context
*context
,
1428 sqlite3_value
**argv
1432 #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
1435 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1436 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1437 ** when SQLite is built.
1439 #ifdef SQLITE_SOUNDEX
1441 ** Compute the soundex encoding of a word.
1443 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1444 ** soundex encoding of the string X.
1446 static void soundexFunc(
1447 sqlite3_context
*context
,
1449 sqlite3_value
**argv
1454 static const unsigned char iCode
[] = {
1455 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1456 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1457 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1458 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1459 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1460 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1461 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1462 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1465 zIn
= (u8
*)sqlite3_value_text(argv
[0]);
1466 if( zIn
==0 ) zIn
= (u8
*)"";
1467 for(i
=0; zIn
[i
] && !sqlite3Isalpha(zIn
[i
]); i
++){}
1469 u8 prevcode
= iCode
[zIn
[i
]&0x7f];
1470 zResult
[0] = sqlite3Toupper(zIn
[i
]);
1471 for(j
=1; j
<4 && zIn
[i
]; i
++){
1472 int code
= iCode
[zIn
[i
]&0x7f];
1474 if( code
!=prevcode
){
1476 zResult
[j
++] = code
+ '0';
1486 sqlite3_result_text(context
, zResult
, 4, SQLITE_TRANSIENT
);
1488 /* IMP: R-64894-50321 The string "?000" is returned if the argument
1489 ** is NULL or contains no ASCII alphabetic characters. */
1490 sqlite3_result_text(context
, "?000", 4, SQLITE_STATIC
);
1493 #endif /* SQLITE_SOUNDEX */
1495 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1497 ** A function that loads a shared-library extension then returns NULL.
1499 static void loadExt(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
1500 const char *zFile
= (const char *)sqlite3_value_text(argv
[0]);
1502 sqlite3
*db
= sqlite3_context_db_handle(context
);
1505 /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
1506 ** flag is set. See the sqlite3_enable_load_extension() API.
1508 if( (db
->flags
& SQLITE_LoadExtFunc
)==0 ){
1509 sqlite3_result_error(context
, "not authorized", -1);
1514 zProc
= (const char *)sqlite3_value_text(argv
[1]);
1518 if( zFile
&& sqlite3_load_extension(db
, zFile
, zProc
, &zErrMsg
) ){
1519 sqlite3_result_error(context
, zErrMsg
, -1);
1520 sqlite3_free(zErrMsg
);
1527 ** An instance of the following structure holds the context of a
1528 ** sum() or avg() aggregate computation.
1530 typedef struct SumCtx SumCtx
;
1532 double rSum
; /* Floating point sum */
1533 i64 iSum
; /* Integer sum */
1534 i64 cnt
; /* Number of elements summed */
1535 u8 overflow
; /* True if integer overflow seen */
1536 u8 approx
; /* True if non-integer value was input to the sum */
1540 ** Routines used to compute the sum, average, and total.
1542 ** The SUM() function follows the (broken) SQL standard which means
1543 ** that it returns NULL if it sums over no inputs. TOTAL returns
1544 ** 0.0 in that case. In addition, TOTAL always returns a float where
1545 ** SUM might return an integer if it never encounters a floating point
1546 ** value. TOTAL never fails, but SUM might through an exception if
1547 ** it overflows an integer.
1549 static void sumStep(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
1553 UNUSED_PARAMETER(argc
);
1554 p
= sqlite3_aggregate_context(context
, sizeof(*p
));
1555 type
= sqlite3_value_numeric_type(argv
[0]);
1556 if( p
&& type
!=SQLITE_NULL
){
1558 if( type
==SQLITE_INTEGER
){
1559 i64 v
= sqlite3_value_int64(argv
[0]);
1561 if( (p
->approx
|p
->overflow
)==0 && sqlite3AddInt64(&p
->iSum
, v
) ){
1562 p
->approx
= p
->overflow
= 1;
1565 p
->rSum
+= sqlite3_value_double(argv
[0]);
1570 #ifndef SQLITE_OMIT_WINDOWFUNC
1571 static void sumInverse(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
1575 UNUSED_PARAMETER(argc
);
1576 p
= sqlite3_aggregate_context(context
, sizeof(*p
));
1577 type
= sqlite3_value_numeric_type(argv
[0]);
1578 /* p is always non-NULL because sumStep() will have been called first
1579 ** to initialize it */
1580 if( ALWAYS(p
) && type
!=SQLITE_NULL
){
1583 assert( type
==SQLITE_INTEGER
|| p
->approx
);
1584 if( type
==SQLITE_INTEGER
&& p
->approx
==0 ){
1585 i64 v
= sqlite3_value_int64(argv
[0]);
1589 p
->rSum
-= sqlite3_value_double(argv
[0]);
1594 # define sumInverse 0
1595 #endif /* SQLITE_OMIT_WINDOWFUNC */
1596 static void sumFinalize(sqlite3_context
*context
){
1598 p
= sqlite3_aggregate_context(context
, 0);
1599 if( p
&& p
->cnt
>0 ){
1601 sqlite3_result_error(context
,"integer overflow",-1);
1602 }else if( p
->approx
){
1603 sqlite3_result_double(context
, p
->rSum
);
1605 sqlite3_result_int64(context
, p
->iSum
);
1609 static void avgFinalize(sqlite3_context
*context
){
1611 p
= sqlite3_aggregate_context(context
, 0);
1612 if( p
&& p
->cnt
>0 ){
1613 sqlite3_result_double(context
, p
->rSum
/(double)p
->cnt
);
1616 static void totalFinalize(sqlite3_context
*context
){
1618 p
= sqlite3_aggregate_context(context
, 0);
1619 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1620 sqlite3_result_double(context
, p
? p
->rSum
: (double)0);
1624 ** The following structure keeps track of state information for the
1625 ** count() aggregate function.
1627 typedef struct CountCtx CountCtx
;
1631 int bInverse
; /* True if xInverse() ever called */
1636 ** Routines to implement the count() aggregate function.
1638 static void countStep(sqlite3_context
*context
, int argc
, sqlite3_value
**argv
){
1640 p
= sqlite3_aggregate_context(context
, sizeof(*p
));
1641 if( (argc
==0 || SQLITE_NULL
!=sqlite3_value_type(argv
[0])) && p
){
1645 #ifndef SQLITE_OMIT_DEPRECATED
1646 /* The sqlite3_aggregate_count() function is deprecated. But just to make
1647 ** sure it still operates correctly, verify that its count agrees with our
1648 ** internal count when using count(*) and when the total count can be
1649 ** expressed as a 32-bit integer. */
1650 assert( argc
==1 || p
==0 || p
->n
>0x7fffffff || p
->bInverse
1651 || p
->n
==sqlite3_aggregate_count(context
) );
1654 static void countFinalize(sqlite3_context
*context
){
1656 p
= sqlite3_aggregate_context(context
, 0);
1657 sqlite3_result_int64(context
, p
? p
->n
: 0);
1659 #ifndef SQLITE_OMIT_WINDOWFUNC
1660 static void countInverse(sqlite3_context
*ctx
, int argc
, sqlite3_value
**argv
){
1662 p
= sqlite3_aggregate_context(ctx
, sizeof(*p
));
1663 /* p is always non-NULL since countStep() will have been called first */
1664 if( (argc
==0 || SQLITE_NULL
!=sqlite3_value_type(argv
[0])) && ALWAYS(p
) ){
1672 # define countInverse 0
1673 #endif /* SQLITE_OMIT_WINDOWFUNC */
1676 ** Routines to implement min() and max() aggregate functions.
1678 static void minmaxStep(
1679 sqlite3_context
*context
,
1681 sqlite3_value
**argv
1683 Mem
*pArg
= (Mem
*)argv
[0];
1685 UNUSED_PARAMETER(NotUsed
);
1687 pBest
= (Mem
*)sqlite3_aggregate_context(context
, sizeof(*pBest
));
1688 if( !pBest
) return;
1690 if( sqlite3_value_type(pArg
)==SQLITE_NULL
){
1691 if( pBest
->flags
) sqlite3SkipAccumulatorLoad(context
);
1692 }else if( pBest
->flags
){
1695 CollSeq
*pColl
= sqlite3GetFuncCollSeq(context
);
1696 /* This step function is used for both the min() and max() aggregates,
1697 ** the only difference between the two being that the sense of the
1698 ** comparison is inverted. For the max() aggregate, the
1699 ** sqlite3_user_data() function returns (void *)-1. For min() it
1700 ** returns (void *)db, where db is the sqlite3* database pointer.
1701 ** Therefore the next statement sets variable 'max' to 1 for the max()
1702 ** aggregate, or 0 for min().
1704 max
= sqlite3_user_data(context
)!=0;
1705 cmp
= sqlite3MemCompare(pBest
, pArg
, pColl
);
1706 if( (max
&& cmp
<0) || (!max
&& cmp
>0) ){
1707 sqlite3VdbeMemCopy(pBest
, pArg
);
1709 sqlite3SkipAccumulatorLoad(context
);
1712 pBest
->db
= sqlite3_context_db_handle(context
);
1713 sqlite3VdbeMemCopy(pBest
, pArg
);
1716 static void minMaxValueFinalize(sqlite3_context
*context
, int bValue
){
1717 sqlite3_value
*pRes
;
1718 pRes
= (sqlite3_value
*)sqlite3_aggregate_context(context
, 0);
1721 sqlite3_result_value(context
, pRes
);
1723 if( bValue
==0 ) sqlite3VdbeMemRelease(pRes
);
1726 #ifndef SQLITE_OMIT_WINDOWFUNC
1727 static void minMaxValue(sqlite3_context
*context
){
1728 minMaxValueFinalize(context
, 1);
1731 # define minMaxValue 0
1732 #endif /* SQLITE_OMIT_WINDOWFUNC */
1733 static void minMaxFinalize(sqlite3_context
*context
){
1734 minMaxValueFinalize(context
, 0);
1738 ** group_concat(EXPR, ?SEPARATOR?)
1740 ** The SEPARATOR goes before the EXPR string. This is tragic. The
1741 ** groupConcatInverse() implementation would have been easier if the
1742 ** SEPARATOR were appended after EXPR. And the order is undocumented,
1743 ** so we could change it, in theory. But the old behavior has been
1744 ** around for so long that we dare not, for fear of breaking something.
1747 StrAccum str
; /* The accumulated concatenation */
1748 #ifndef SQLITE_OMIT_WINDOWFUNC
1749 int nAccum
; /* Number of strings presently concatenated */
1750 int nFirstSepLength
; /* Used to detect separator length change */
1751 /* If pnSepLengths!=0, refs an array of inter-string separator lengths,
1752 ** stored as actually incorporated into presently accumulated result.
1753 ** (Hence, its slots in use number nAccum-1 between method calls.)
1754 ** If pnSepLengths==0, nFirstSepLength is the length used throughout.
1760 static void groupConcatStep(
1761 sqlite3_context
*context
,
1763 sqlite3_value
**argv
1766 GroupConcatCtx
*pGCC
;
1769 assert( argc
==1 || argc
==2 );
1770 if( sqlite3_value_type(argv
[0])==SQLITE_NULL
) return;
1771 pGCC
= (GroupConcatCtx
*)sqlite3_aggregate_context(context
, sizeof(*pGCC
));
1773 sqlite3
*db
= sqlite3_context_db_handle(context
);
1774 int firstTerm
= pGCC
->str
.mxAlloc
==0;
1775 pGCC
->str
.mxAlloc
= db
->aLimit
[SQLITE_LIMIT_LENGTH
];
1778 sqlite3_str_appendchar(&pGCC
->str
, 1, ',');
1780 #ifndef SQLITE_OMIT_WINDOWFUNC
1782 pGCC
->nFirstSepLength
= 1;
1785 }else if( !firstTerm
){
1786 zSep
= (char*)sqlite3_value_text(argv
[1]);
1787 nSep
= sqlite3_value_bytes(argv
[1]);
1789 sqlite3_str_append(&pGCC
->str
, zSep
, nSep
);
1791 #ifndef SQLITE_OMIT_WINDOWFUNC
1795 if( nSep
!= pGCC
->nFirstSepLength
|| pGCC
->pnSepLengths
!= 0 ){
1796 int *pnsl
= pGCC
->pnSepLengths
;
1798 /* First separator length variation seen, start tracking them. */
1799 pnsl
= (int*)sqlite3_malloc64((pGCC
->nAccum
+1) * sizeof(int));
1801 int i
= 0, nA
= pGCC
->nAccum
-1;
1802 while( i
<nA
) pnsl
[i
++] = pGCC
->nFirstSepLength
;
1805 pnsl
= (int*)sqlite3_realloc64(pnsl
, pGCC
->nAccum
* sizeof(int));
1808 if( ALWAYS(pGCC
->nAccum
>0) ){
1809 pnsl
[pGCC
->nAccum
-1] = nSep
;
1811 pGCC
->pnSepLengths
= pnsl
;
1813 sqlite3StrAccumSetError(&pGCC
->str
, SQLITE_NOMEM
);
1818 #ifndef SQLITE_OMIT_WINDOWFUNC
1820 pGCC
->nFirstSepLength
= sqlite3_value_bytes(argv
[1]);
1824 zVal
= (char*)sqlite3_value_text(argv
[0]);
1825 nVal
= sqlite3_value_bytes(argv
[0]);
1826 if( zVal
) sqlite3_str_append(&pGCC
->str
, zVal
, nVal
);
1830 #ifndef SQLITE_OMIT_WINDOWFUNC
1831 static void groupConcatInverse(
1832 sqlite3_context
*context
,
1834 sqlite3_value
**argv
1836 GroupConcatCtx
*pGCC
;
1837 assert( argc
==1 || argc
==2 );
1838 (void)argc
; /* Suppress unused parameter warning */
1839 if( sqlite3_value_type(argv
[0])==SQLITE_NULL
) return;
1840 pGCC
= (GroupConcatCtx
*)sqlite3_aggregate_context(context
, sizeof(*pGCC
));
1841 /* pGCC is always non-NULL since groupConcatStep() will have always
1842 ** run frist to initialize it */
1845 /* Must call sqlite3_value_text() to convert the argument into text prior
1846 ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
1847 (void)sqlite3_value_text(argv
[0]);
1848 nVS
= sqlite3_value_bytes(argv
[0]);
1850 if( pGCC
->pnSepLengths
!=0 ){
1851 assert(pGCC
->nAccum
>= 0);
1852 if( pGCC
->nAccum
>0 ){
1853 nVS
+= *pGCC
->pnSepLengths
;
1854 memmove(pGCC
->pnSepLengths
, pGCC
->pnSepLengths
+1,
1855 (pGCC
->nAccum
-1)*sizeof(int));
1858 /* If removing single accumulated string, harmlessly over-do. */
1859 nVS
+= pGCC
->nFirstSepLength
;
1861 if( nVS
>=(int)pGCC
->str
.nChar
){
1862 pGCC
->str
.nChar
= 0;
1864 pGCC
->str
.nChar
-= nVS
;
1865 memmove(pGCC
->str
.zText
, &pGCC
->str
.zText
[nVS
], pGCC
->str
.nChar
);
1867 if( pGCC
->str
.nChar
==0 ){
1868 pGCC
->str
.mxAlloc
= 0;
1869 sqlite3_free(pGCC
->pnSepLengths
);
1870 pGCC
->pnSepLengths
= 0;
1875 # define groupConcatInverse 0
1876 #endif /* SQLITE_OMIT_WINDOWFUNC */
1877 static void groupConcatFinalize(sqlite3_context
*context
){
1878 GroupConcatCtx
*pGCC
1879 = (GroupConcatCtx
*)sqlite3_aggregate_context(context
, 0);
1881 sqlite3ResultStrAccum(context
, &pGCC
->str
);
1882 #ifndef SQLITE_OMIT_WINDOWFUNC
1883 sqlite3_free(pGCC
->pnSepLengths
);
1887 #ifndef SQLITE_OMIT_WINDOWFUNC
1888 static void groupConcatValue(sqlite3_context
*context
){
1889 GroupConcatCtx
*pGCC
1890 = (GroupConcatCtx
*)sqlite3_aggregate_context(context
, 0);
1892 StrAccum
*pAccum
= &pGCC
->str
;
1893 if( pAccum
->accError
==SQLITE_TOOBIG
){
1894 sqlite3_result_error_toobig(context
);
1895 }else if( pAccum
->accError
==SQLITE_NOMEM
){
1896 sqlite3_result_error_nomem(context
);
1898 const char *zText
= sqlite3_str_value(pAccum
);
1899 sqlite3_result_text(context
, zText
, pAccum
->nChar
, SQLITE_TRANSIENT
);
1904 # define groupConcatValue 0
1905 #endif /* SQLITE_OMIT_WINDOWFUNC */
1908 ** This routine does per-connection function registration. Most
1909 ** of the built-in functions above are part of the global function set.
1910 ** This routine only deals with those that are not global.
1912 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3
*db
){
1913 int rc
= sqlite3_overload_function(db
, "MATCH", 2);
1914 assert( rc
==SQLITE_NOMEM
|| rc
==SQLITE_OK
);
1915 if( rc
==SQLITE_NOMEM
){
1916 sqlite3OomFault(db
);
1918 /* BEGIN SQLCIPHER */
1919 #ifdef SQLITE_HAS_CODEC
1921 extern void sqlcipher_exportFunc(sqlite3_context
*, int, sqlite3_value
**);
1922 sqlite3CreateFunc(db
, "sqlcipher_export", -1, SQLITE_TEXT
, 0, sqlcipher_exportFunc
, 0, 0, 0, 0, 0);
1924 #ifdef SQLCIPHER_EXT
1925 #include "sqlcipher_funcs_init.h"
1932 ** Re-register the built-in LIKE functions. The caseSensitive
1933 ** parameter determines whether or not the LIKE operator is case
1936 void sqlite3RegisterLikeFunctions(sqlite3
*db
, int caseSensitive
){
1937 struct compareInfo
*pInfo
;
1939 if( caseSensitive
){
1940 pInfo
= (struct compareInfo
*)&likeInfoAlt
;
1941 flags
= SQLITE_FUNC_LIKE
| SQLITE_FUNC_CASE
;
1943 pInfo
= (struct compareInfo
*)&likeInfoNorm
;
1944 flags
= SQLITE_FUNC_LIKE
;
1946 sqlite3CreateFunc(db
, "like", 2, SQLITE_UTF8
, pInfo
, likeFunc
, 0, 0, 0, 0, 0);
1947 sqlite3CreateFunc(db
, "like", 3, SQLITE_UTF8
, pInfo
, likeFunc
, 0, 0, 0, 0, 0);
1948 sqlite3FindFunction(db
, "like", 2, SQLITE_UTF8
, 0)->funcFlags
|= flags
;
1949 sqlite3FindFunction(db
, "like", 3, SQLITE_UTF8
, 0)->funcFlags
|= flags
;
1953 ** pExpr points to an expression which implements a function. If
1954 ** it is appropriate to apply the LIKE optimization to that function
1955 ** then set aWc[0] through aWc[2] to the wildcard characters and the
1956 ** escape character and then return TRUE. If the function is not a
1957 ** LIKE-style function then return FALSE.
1959 ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
1960 ** operator if c is a string literal that is exactly one byte in length.
1961 ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
1962 ** no ESCAPE clause.
1964 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
1965 ** the function (default for LIKE). If the function makes the distinction
1966 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
1969 int sqlite3IsLikeFunction(sqlite3
*db
, Expr
*pExpr
, int *pIsNocase
, char *aWc
){
1973 assert( pExpr
->op
==TK_FUNCTION
);
1974 assert( ExprUseXList(pExpr
) );
1975 if( !pExpr
->x
.pList
){
1978 nExpr
= pExpr
->x
.pList
->nExpr
;
1979 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1980 pDef
= sqlite3FindFunction(db
, pExpr
->u
.zToken
, nExpr
, SQLITE_UTF8
, 0);
1981 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1982 if( pDef
==0 ) return 0;
1984 if( NEVER(pDef
==0) || (pDef
->funcFlags
& SQLITE_FUNC_LIKE
)==0 ){
1988 /* The memcpy() statement assumes that the wildcard characters are
1989 ** the first three statements in the compareInfo structure. The
1990 ** asserts() that follow verify that assumption
1992 memcpy(aWc
, pDef
->pUserData
, 3);
1993 assert( (char*)&likeInfoAlt
== (char*)&likeInfoAlt
.matchAll
);
1994 assert( &((char*)&likeInfoAlt
)[1] == (char*)&likeInfoAlt
.matchOne
);
1995 assert( &((char*)&likeInfoAlt
)[2] == (char*)&likeInfoAlt
.matchSet
);
2000 Expr
*pEscape
= pExpr
->x
.pList
->a
[2].pExpr
;
2002 if( pEscape
->op
!=TK_STRING
) return 0;
2003 assert( !ExprHasProperty(pEscape
, EP_IntValue
) );
2004 zEscape
= pEscape
->u
.zToken
;
2005 if( zEscape
[0]==0 || zEscape
[1]!=0 ) return 0;
2006 if( zEscape
[0]==aWc
[0] ) return 0;
2007 if( zEscape
[0]==aWc
[1] ) return 0;
2008 aWc
[3] = zEscape
[0];
2011 *pIsNocase
= (pDef
->funcFlags
& SQLITE_FUNC_CASE
)==0;
2015 /* Mathematical Constants */
2017 # define M_PI 3.141592653589793238462643383279502884
2020 # define M_LN10 2.302585092994045684017991454684364208
2023 # define M_LN2 0.693147180559945309417232121458176568
2027 /* Extra math functions that require linking with -lm
2029 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS
2031 ** Implementation SQL functions:
2037 ** The sqlite3_user_data() pointer is a pointer to the libm implementation
2038 ** of the underlying C function.
2040 static void ceilingFunc(
2041 sqlite3_context
*context
,
2043 sqlite3_value
**argv
2046 switch( sqlite3_value_numeric_type(argv
[0]) ){
2047 case SQLITE_INTEGER
: {
2048 sqlite3_result_int64(context
, sqlite3_value_int64(argv
[0]));
2051 case SQLITE_FLOAT
: {
2052 double (*x
)(double) = (double(*)(double))sqlite3_user_data(context
);
2053 sqlite3_result_double(context
, x(sqlite3_value_double(argv
[0])));
2063 ** On some systems, ceil() and floor() are intrinsic function. You are
2064 ** unable to take a pointer to these functions. Hence, we here wrap them
2065 ** in our own actual functions.
2067 static double xCeil(double x
){ return ceil(x
); }
2068 static double xFloor(double x
){ return floor(x
); }
2071 ** Implementation of SQL functions:
2073 ** ln(X) - natural logarithm
2074 ** log(X) - log X base 10
2075 ** log10(X) - log X base 10
2076 ** log(B,X) - log X base B
2078 static void logFunc(
2079 sqlite3_context
*context
,
2081 sqlite3_value
**argv
2084 assert( argc
==1 || argc
==2 );
2085 switch( sqlite3_value_numeric_type(argv
[0]) ){
2086 case SQLITE_INTEGER
:
2088 x
= sqlite3_value_double(argv
[0]);
2089 if( x
<=0.0 ) return;
2095 switch( sqlite3_value_numeric_type(argv
[0]) ){
2096 case SQLITE_INTEGER
:
2099 if( b
<=0.0 ) return;
2100 x
= sqlite3_value_double(argv
[1]);
2101 if( x
<=0.0 ) return;
2109 switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context
)) ){
2111 /* Convert from natural logarithm to log base 10 */
2115 /* Convert from natural logarithm to log base 2 */
2122 sqlite3_result_double(context
, ans
);
2126 ** Functions to converts degrees to radians and radians to degrees.
2128 static double degToRad(double x
){ return x
*(M_PI
/180.0); }
2129 static double radToDeg(double x
){ return x
*(180.0/M_PI
); }
2132 ** Implementation of 1-argument SQL math functions:
2134 ** exp(X) - Compute e to the X-th power
2136 static void math1Func(
2137 sqlite3_context
*context
,
2139 sqlite3_value
**argv
2143 double (*x
)(double);
2145 type0
= sqlite3_value_numeric_type(argv
[0]);
2146 if( type0
!=SQLITE_INTEGER
&& type0
!=SQLITE_FLOAT
) return;
2147 v0
= sqlite3_value_double(argv
[0]);
2148 x
= (double(*)(double))sqlite3_user_data(context
);
2150 sqlite3_result_double(context
, ans
);
2154 ** Implementation of 2-argument SQL math functions:
2156 ** power(X,Y) - Compute X to the Y-th power
2158 static void math2Func(
2159 sqlite3_context
*context
,
2161 sqlite3_value
**argv
2165 double (*x
)(double,double);
2167 type0
= sqlite3_value_numeric_type(argv
[0]);
2168 if( type0
!=SQLITE_INTEGER
&& type0
!=SQLITE_FLOAT
) return;
2169 type1
= sqlite3_value_numeric_type(argv
[1]);
2170 if( type1
!=SQLITE_INTEGER
&& type1
!=SQLITE_FLOAT
) return;
2171 v0
= sqlite3_value_double(argv
[0]);
2172 v1
= sqlite3_value_double(argv
[1]);
2173 x
= (double(*)(double,double))sqlite3_user_data(context
);
2175 sqlite3_result_double(context
, ans
);
2179 ** Implementation of 0-argument pi() function.
2182 sqlite3_context
*context
,
2184 sqlite3_value
**argv
2187 sqlite3_result_double(context
, M_PI
);
2190 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
2193 ** Implementation of sign(X) function.
2195 static void signFunc(
2196 sqlite3_context
*context
,
2198 sqlite3_value
**argv
2202 UNUSED_PARAMETER(argc
);
2204 type0
= sqlite3_value_numeric_type(argv
[0]);
2205 if( type0
!=SQLITE_INTEGER
&& type0
!=SQLITE_FLOAT
) return;
2206 x
= sqlite3_value_double(argv
[0]);
2207 sqlite3_result_int(context
, x
<0.0 ? -1 : x
>0.0 ? +1 : 0);
2211 ** All of the FuncDef structures in the aBuiltinFunc[] array above
2212 ** to the global function hash table. This occurs at start-time (as
2213 ** a consequence of calling sqlite3_initialize()).
2215 ** After this routine runs
2217 void sqlite3RegisterBuiltinFunctions(void){
2219 ** The following array holds FuncDef structures for all of the functions
2220 ** defined in this file.
2222 ** The array cannot be constant since changes are made to the
2223 ** FuncDef.pHash elements at start-time. The elements of this array
2224 ** are read-only after initialization is complete.
2226 ** For peak efficiency, put the most frequently used function last.
2228 static FuncDef aBuiltinFunc
[] = {
2229 /***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
2230 #if !defined(SQLITE_UNTESTABLE)
2231 TEST_FUNC(implies_nonnull_row
, 2, INLINEFUNC_implies_nonnull_row
, 0),
2232 TEST_FUNC(expr_compare
, 2, INLINEFUNC_expr_compare
, 0),
2233 TEST_FUNC(expr_implies_expr
, 2, INLINEFUNC_expr_implies_expr
, 0),
2234 TEST_FUNC(affinity
, 1, INLINEFUNC_affinity
, 0),
2235 #endif /* !defined(SQLITE_UNTESTABLE) */
2236 /***** Regular functions *****/
2237 #ifdef SQLITE_SOUNDEX
2238 FUNCTION(soundex
, 1, 0, 0, soundexFunc
),
2240 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2241 SFUNCTION(load_extension
, 1, 0, 0, loadExt
),
2242 SFUNCTION(load_extension
, 2, 0, 0, loadExt
),
2244 #if SQLITE_USER_AUTHENTICATION
2245 FUNCTION(sqlite_crypt
, 2, 0, 0, sqlite3CryptFunc
),
2247 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
2248 DFUNCTION(sqlite_compileoption_used
,1, 0, 0, compileoptionusedFunc
),
2249 DFUNCTION(sqlite_compileoption_get
, 1, 0, 0, compileoptiongetFunc
),
2250 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
2251 INLINE_FUNC(unlikely
, 1, INLINEFUNC_unlikely
, SQLITE_FUNC_UNLIKELY
),
2252 INLINE_FUNC(likelihood
, 2, INLINEFUNC_unlikely
, SQLITE_FUNC_UNLIKELY
),
2253 INLINE_FUNC(likely
, 1, INLINEFUNC_unlikely
, SQLITE_FUNC_UNLIKELY
),
2254 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2255 INLINE_FUNC(sqlite_offset
, 1, INLINEFUNC_sqlite_offset
, 0 ),
2257 FUNCTION(ltrim
, 1, 1, 0, trimFunc
),
2258 FUNCTION(ltrim
, 2, 1, 0, trimFunc
),
2259 FUNCTION(rtrim
, 1, 2, 0, trimFunc
),
2260 FUNCTION(rtrim
, 2, 2, 0, trimFunc
),
2261 FUNCTION(trim
, 1, 3, 0, trimFunc
),
2262 FUNCTION(trim
, 2, 3, 0, trimFunc
),
2263 FUNCTION(min
, -1, 0, 1, minmaxFunc
),
2264 FUNCTION(min
, 0, 0, 1, 0 ),
2265 WAGGREGATE(min
, 1, 0, 1, minmaxStep
, minMaxFinalize
, minMaxValue
, 0,
2266 SQLITE_FUNC_MINMAX
|SQLITE_FUNC_ANYORDER
),
2267 FUNCTION(max
, -1, 1, 1, minmaxFunc
),
2268 FUNCTION(max
, 0, 1, 1, 0 ),
2269 WAGGREGATE(max
, 1, 1, 1, minmaxStep
, minMaxFinalize
, minMaxValue
, 0,
2270 SQLITE_FUNC_MINMAX
|SQLITE_FUNC_ANYORDER
),
2271 FUNCTION2(typeof, 1, 0, 0, typeofFunc
, SQLITE_FUNC_TYPEOF
),
2272 FUNCTION2(subtype
, 1, 0, 0, subtypeFunc
, SQLITE_FUNC_TYPEOF
),
2273 FUNCTION2(length
, 1, 0, 0, lengthFunc
, SQLITE_FUNC_LENGTH
),
2274 FUNCTION(instr
, 2, 0, 0, instrFunc
),
2275 FUNCTION(printf
, -1, 0, 0, printfFunc
),
2276 FUNCTION(format
, -1, 0, 0, printfFunc
),
2277 FUNCTION(unicode
, 1, 0, 0, unicodeFunc
),
2278 FUNCTION(char, -1, 0, 0, charFunc
),
2279 FUNCTION(abs
, 1, 0, 0, absFunc
),
2280 #ifndef SQLITE_OMIT_FLOATING_POINT
2281 FUNCTION(round
, 1, 0, 0, roundFunc
),
2282 FUNCTION(round
, 2, 0, 0, roundFunc
),
2284 FUNCTION(upper
, 1, 0, 0, upperFunc
),
2285 FUNCTION(lower
, 1, 0, 0, lowerFunc
),
2286 FUNCTION(hex
, 1, 0, 0, hexFunc
),
2287 INLINE_FUNC(ifnull
, 2, INLINEFUNC_coalesce
, 0 ),
2288 VFUNCTION(random
, 0, 0, 0, randomFunc
),
2289 VFUNCTION(randomblob
, 1, 0, 0, randomBlob
),
2290 FUNCTION(nullif
, 2, 0, 1, nullifFunc
),
2291 DFUNCTION(sqlite_version
, 0, 0, 0, versionFunc
),
2292 DFUNCTION(sqlite_source_id
, 0, 0, 0, sourceidFunc
),
2293 FUNCTION(sqlite_log
, 2, 0, 0, errlogFunc
),
2294 FUNCTION(quote
, 1, 0, 0, quoteFunc
),
2295 VFUNCTION(last_insert_rowid
, 0, 0, 0, last_insert_rowid
),
2296 VFUNCTION(changes
, 0, 0, 0, changes
),
2297 VFUNCTION(total_changes
, 0, 0, 0, total_changes
),
2298 FUNCTION(replace
, 3, 0, 0, replaceFunc
),
2299 FUNCTION(zeroblob
, 1, 0, 0, zeroblobFunc
),
2300 FUNCTION(substr
, 2, 0, 0, substrFunc
),
2301 FUNCTION(substr
, 3, 0, 0, substrFunc
),
2302 FUNCTION(substring
, 2, 0, 0, substrFunc
),
2303 FUNCTION(substring
, 3, 0, 0, substrFunc
),
2304 WAGGREGATE(sum
, 1,0,0, sumStep
, sumFinalize
, sumFinalize
, sumInverse
, 0),
2305 WAGGREGATE(total
, 1,0,0, sumStep
,totalFinalize
,totalFinalize
,sumInverse
, 0),
2306 WAGGREGATE(avg
, 1,0,0, sumStep
, avgFinalize
, avgFinalize
, sumInverse
, 0),
2307 WAGGREGATE(count
, 0,0,0, countStep
,
2308 countFinalize
, countFinalize
, countInverse
,
2309 SQLITE_FUNC_COUNT
|SQLITE_FUNC_ANYORDER
),
2310 WAGGREGATE(count
, 1,0,0, countStep
,
2311 countFinalize
, countFinalize
, countInverse
, SQLITE_FUNC_ANYORDER
),
2312 WAGGREGATE(group_concat
, 1, 0, 0, groupConcatStep
,
2313 groupConcatFinalize
, groupConcatValue
, groupConcatInverse
, 0),
2314 WAGGREGATE(group_concat
, 2, 0, 0, groupConcatStep
,
2315 groupConcatFinalize
, groupConcatValue
, groupConcatInverse
, 0),
2317 LIKEFUNC(glob
, 2, &globInfo
, SQLITE_FUNC_LIKE
|SQLITE_FUNC_CASE
),
2318 #ifdef SQLITE_CASE_SENSITIVE_LIKE
2319 LIKEFUNC(like
, 2, &likeInfoAlt
, SQLITE_FUNC_LIKE
|SQLITE_FUNC_CASE
),
2320 LIKEFUNC(like
, 3, &likeInfoAlt
, SQLITE_FUNC_LIKE
|SQLITE_FUNC_CASE
),
2322 LIKEFUNC(like
, 2, &likeInfoNorm
, SQLITE_FUNC_LIKE
),
2323 LIKEFUNC(like
, 3, &likeInfoNorm
, SQLITE_FUNC_LIKE
),
2325 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
2326 FUNCTION(unknown
, -1, 0, 0, unknownFunc
),
2328 FUNCTION(coalesce
, 1, 0, 0, 0 ),
2329 FUNCTION(coalesce
, 0, 0, 0, 0 ),
2330 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS
2331 MFUNCTION(ceil
, 1, xCeil
, ceilingFunc
),
2332 MFUNCTION(ceiling
, 1, xCeil
, ceilingFunc
),
2333 MFUNCTION(floor
, 1, xFloor
, ceilingFunc
),
2334 #if SQLITE_HAVE_C99_MATH_FUNCS
2335 MFUNCTION(trunc
, 1, trunc
, ceilingFunc
),
2337 FUNCTION(ln
, 1, 0, 0, logFunc
),
2338 FUNCTION(log
, 1, 1, 0, logFunc
),
2339 FUNCTION(log10
, 1, 1, 0, logFunc
),
2340 FUNCTION(log2
, 1, 2, 0, logFunc
),
2341 FUNCTION(log
, 2, 0, 0, logFunc
),
2342 MFUNCTION(exp
, 1, exp
, math1Func
),
2343 MFUNCTION(pow
, 2, pow
, math2Func
),
2344 MFUNCTION(power
, 2, pow
, math2Func
),
2345 MFUNCTION(mod
, 2, fmod
, math2Func
),
2346 MFUNCTION(acos
, 1, acos
, math1Func
),
2347 MFUNCTION(asin
, 1, asin
, math1Func
),
2348 MFUNCTION(atan
, 1, atan
, math1Func
),
2349 MFUNCTION(atan2
, 2, atan2
, math2Func
),
2350 MFUNCTION(cos
, 1, cos
, math1Func
),
2351 MFUNCTION(sin
, 1, sin
, math1Func
),
2352 MFUNCTION(tan
, 1, tan
, math1Func
),
2353 MFUNCTION(cosh
, 1, cosh
, math1Func
),
2354 MFUNCTION(sinh
, 1, sinh
, math1Func
),
2355 MFUNCTION(tanh
, 1, tanh
, math1Func
),
2356 #if SQLITE_HAVE_C99_MATH_FUNCS
2357 MFUNCTION(acosh
, 1, acosh
, math1Func
),
2358 MFUNCTION(asinh
, 1, asinh
, math1Func
),
2359 MFUNCTION(atanh
, 1, atanh
, math1Func
),
2361 MFUNCTION(sqrt
, 1, sqrt
, math1Func
),
2362 MFUNCTION(radians
, 1, degToRad
, math1Func
),
2363 MFUNCTION(degrees
, 1, radToDeg
, math1Func
),
2364 FUNCTION(pi
, 0, 0, 0, piFunc
),
2365 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
2366 FUNCTION(sign
, 1, 0, 0, signFunc
),
2367 INLINE_FUNC(coalesce
, -1, INLINEFUNC_coalesce
, 0 ),
2368 INLINE_FUNC(iif
, 3, INLINEFUNC_iif
, 0 ),
2370 #ifndef SQLITE_OMIT_ALTERTABLE
2371 sqlite3AlterFunctions();
2373 sqlite3WindowFunctions();
2374 sqlite3RegisterDateTimeFunctions();
2375 sqlite3RegisterJsonFunctions();
2376 sqlite3InsertBuiltinFuncs(aBuiltinFunc
, ArraySize(aBuiltinFunc
));
2378 #if 0 /* Enable to print out how the built-in functions are hashed */
2382 for(i
=0; i
<SQLITE_FUNC_HASH_SZ
; i
++){
2383 printf("FUNC-HASH %02d:", i
);
2384 for(p
=sqlite3BuiltinFunctions
.a
[i
]; p
; p
=p
->u
.pHash
){
2385 int n
= sqlite3Strlen30(p
->zName
);
2386 int h
= p
->zName
[0] + n
;
2387 assert( p
->funcFlags
& SQLITE_FUNC_BUILTIN
);
2388 printf(" %s(%d)", p
->zName
, h
);