4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was originally part of where.c but was split out to improve
16 ** readability and editabiliity. This file contains utility routines for
17 ** analyzing Expr objects in the WHERE clause.
19 #include "sqliteInt.h"
22 /* Forward declarations */
23 static void exprAnalyze(SrcList
*, WhereClause
*, int);
26 ** Deallocate all memory associated with a WhereOrInfo object.
28 static void whereOrInfoDelete(sqlite3
*db
, WhereOrInfo
*p
){
29 sqlite3WhereClauseClear(&p
->wc
);
34 ** Deallocate all memory associated with a WhereAndInfo object.
36 static void whereAndInfoDelete(sqlite3
*db
, WhereAndInfo
*p
){
37 sqlite3WhereClauseClear(&p
->wc
);
42 ** Add a single new WhereTerm entry to the WhereClause object pWC.
43 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
44 ** The index in pWC->a[] of the new WhereTerm is returned on success.
45 ** 0 is returned if the new WhereTerm could not be added due to a memory
46 ** allocation error. The memory allocation failure will be recorded in
47 ** the db->mallocFailed flag so that higher-level functions can detect it.
49 ** This routine will increase the size of the pWC->a[] array as necessary.
51 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
52 ** for freeing the expression p is assumed by the WhereClause object pWC.
53 ** This is true even if this routine fails to allocate a new WhereTerm.
55 ** WARNING: This routine might reallocate the space used to store
56 ** WhereTerms. All pointers to WhereTerms should be invalidated after
57 ** calling this routine. Such pointers may be reinitialized by referencing
58 ** the pWC->a[] array.
60 static int whereClauseInsert(WhereClause
*pWC
, Expr
*p
, u16 wtFlags
){
63 testcase( wtFlags
& TERM_VIRTUAL
);
64 if( pWC
->nTerm
>=pWC
->nSlot
){
65 WhereTerm
*pOld
= pWC
->a
;
66 sqlite3
*db
= pWC
->pWInfo
->pParse
->db
;
67 pWC
->a
= sqlite3WhereMalloc(pWC
->pWInfo
, sizeof(pWC
->a
[0])*pWC
->nSlot
*2 );
69 if( wtFlags
& TERM_DYNAMIC
){
70 sqlite3ExprDelete(db
, p
);
75 memcpy(pWC
->a
, pOld
, sizeof(pWC
->a
[0])*pWC
->nTerm
);
76 pWC
->nSlot
= pWC
->nSlot
*2;
78 pTerm
= &pWC
->a
[idx
= pWC
->nTerm
++];
79 if( (wtFlags
& TERM_VIRTUAL
)==0 ) pWC
->nBase
= pWC
->nTerm
;
80 if( p
&& ExprHasProperty(p
, EP_Unlikely
) ){
81 pTerm
->truthProb
= sqlite3LogEst(p
->iTable
) - 270;
85 pTerm
->pExpr
= sqlite3ExprSkipCollateAndLikely(p
);
86 pTerm
->wtFlags
= wtFlags
;
89 memset(&pTerm
->eOperator
, 0,
90 sizeof(WhereTerm
) - offsetof(WhereTerm
,eOperator
));
95 ** Return TRUE if the given operator is one of the operators that is
96 ** allowed for an indexable WHERE clause term. The allowed operators are
97 ** "=", "<", ">", "<=", ">=", "IN", "IS", and "IS NULL"
99 static int allowedOp(int op
){
100 assert( TK_GT
>TK_EQ
&& TK_GT
<TK_GE
);
101 assert( TK_LT
>TK_EQ
&& TK_LT
<TK_GE
);
102 assert( TK_LE
>TK_EQ
&& TK_LE
<TK_GE
);
103 assert( TK_GE
==TK_EQ
+4 );
104 return op
==TK_IN
|| (op
>=TK_EQ
&& op
<=TK_GE
) || op
==TK_ISNULL
|| op
==TK_IS
;
108 ** Commute a comparison operator. Expressions of the form "X op Y"
109 ** are converted into "Y op X".
111 static u16
exprCommute(Parse
*pParse
, Expr
*pExpr
){
112 if( pExpr
->pLeft
->op
==TK_VECTOR
113 || pExpr
->pRight
->op
==TK_VECTOR
114 || sqlite3BinaryCompareCollSeq(pParse
, pExpr
->pLeft
, pExpr
->pRight
) !=
115 sqlite3BinaryCompareCollSeq(pParse
, pExpr
->pRight
, pExpr
->pLeft
)
117 pExpr
->flags
^= EP_Commuted
;
119 SWAP(Expr
*,pExpr
->pRight
,pExpr
->pLeft
);
120 if( pExpr
->op
>=TK_GT
){
121 assert( TK_LT
==TK_GT
+2 );
122 assert( TK_GE
==TK_LE
+2 );
123 assert( TK_GT
>TK_EQ
);
124 assert( TK_GT
<TK_LE
);
125 assert( pExpr
->op
>=TK_GT
&& pExpr
->op
<=TK_GE
);
126 pExpr
->op
= ((pExpr
->op
-TK_GT
)^2)+TK_GT
;
132 ** Translate from TK_xx operator to WO_xx bitmask.
134 static u16
operatorMask(int op
){
136 assert( allowedOp(op
) );
139 }else if( op
==TK_ISNULL
){
141 }else if( op
==TK_IS
){
144 assert( (WO_EQ
<<(op
-TK_EQ
)) < 0x7fff );
145 c
= (u16
)(WO_EQ
<<(op
-TK_EQ
));
147 assert( op
!=TK_ISNULL
|| c
==WO_ISNULL
);
148 assert( op
!=TK_IN
|| c
==WO_IN
);
149 assert( op
!=TK_EQ
|| c
==WO_EQ
);
150 assert( op
!=TK_LT
|| c
==WO_LT
);
151 assert( op
!=TK_LE
|| c
==WO_LE
);
152 assert( op
!=TK_GT
|| c
==WO_GT
);
153 assert( op
!=TK_GE
|| c
==WO_GE
);
154 assert( op
!=TK_IS
|| c
==WO_IS
);
159 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
161 ** Check to see if the given expression is a LIKE or GLOB operator that
162 ** can be optimized using inequality constraints. Return TRUE if it is
163 ** so and false if not.
165 ** In order for the operator to be optimizible, the RHS must be a string
166 ** literal that does not begin with a wildcard. The LHS must be a column
167 ** that may only be NULL, a string, or a BLOB, never a number. (This means
168 ** that virtual tables cannot participate in the LIKE optimization.) The
169 ** collating sequence for the column on the LHS must be appropriate for
172 static int isLikeOrGlob(
173 Parse
*pParse
, /* Parsing and code generating context */
174 Expr
*pExpr
, /* Test this expression */
175 Expr
**ppPrefix
, /* Pointer to TK_STRING expression with pattern prefix */
176 int *pisComplete
, /* True if the only wildcard is % in the last character */
177 int *pnoCase
/* True if uppercase is equivalent to lowercase */
179 const u8
*z
= 0; /* String on RHS of LIKE operator */
180 Expr
*pRight
, *pLeft
; /* Right and left size of LIKE operator */
181 ExprList
*pList
; /* List of operands to the LIKE operator */
182 u8 c
; /* One character in z[] */
183 int cnt
; /* Number of non-wildcard prefix characters */
184 u8 wc
[4]; /* Wildcard characters */
185 sqlite3
*db
= pParse
->db
; /* Database connection */
186 sqlite3_value
*pVal
= 0;
187 int op
; /* Opcode of pRight */
188 int rc
; /* Result code to return */
190 if( !sqlite3IsLikeFunction(db
, pExpr
, pnoCase
, (char*)wc
) ){
194 if( *pnoCase
) return 0;
196 assert( ExprUseXList(pExpr
) );
197 pList
= pExpr
->x
.pList
;
198 pLeft
= pList
->a
[1].pExpr
;
200 pRight
= sqlite3ExprSkipCollate(pList
->a
[0].pExpr
);
202 if( op
==TK_VARIABLE
&& (db
->flags
& SQLITE_EnableQPSG
)==0 ){
203 Vdbe
*pReprepare
= pParse
->pReprepare
;
204 int iCol
= pRight
->iColumn
;
205 pVal
= sqlite3VdbeGetBoundValue(pReprepare
, iCol
, SQLITE_AFF_BLOB
);
206 if( pVal
&& sqlite3_value_type(pVal
)==SQLITE_TEXT
){
207 z
= sqlite3_value_text(pVal
);
209 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iCol
);
210 assert( pRight
->op
==TK_VARIABLE
|| pRight
->op
==TK_REGISTER
);
211 }else if( op
==TK_STRING
){
212 assert( !ExprHasProperty(pRight
, EP_IntValue
) );
213 z
= (u8
*)pRight
->u
.zToken
;
217 /* Count the number of prefix characters prior to the first wildcard */
219 while( (c
=z
[cnt
])!=0 && c
!=wc
[0] && c
!=wc
[1] && c
!=wc
[2] ){
221 if( c
==wc
[3] && z
[cnt
]!=0 ) cnt
++;
224 /* The optimization is possible only if (1) the pattern does not begin
225 ** with a wildcard and if (2) the non-wildcard prefix does not end with
226 ** an (illegal 0xff) character, or (3) the pattern does not consist of
227 ** a single escape character. The second condition is necessary so
228 ** that we can increment the prefix key to find an upper bound for the
229 ** range search. The third is because the caller assumes that the pattern
230 ** consists of at least one character after all escapes have been
232 if( cnt
!=0 && 255!=(u8
)z
[cnt
-1] && (cnt
>1 || z
[0]!=wc
[3]) ){
235 /* A "complete" match if the pattern ends with "*" or "%" */
236 *pisComplete
= c
==wc
[0] && z
[cnt
+1]==0;
238 /* Get the pattern prefix. Remove all escapes from the prefix. */
239 pPrefix
= sqlite3Expr(db
, TK_STRING
, (char*)z
);
243 assert( !ExprHasProperty(pPrefix
, EP_IntValue
) );
244 zNew
= pPrefix
->u
.zToken
;
246 for(iFrom
=iTo
=0; iFrom
<cnt
; iFrom
++){
247 if( zNew
[iFrom
]==wc
[3] ) iFrom
++;
248 zNew
[iTo
++] = zNew
[iFrom
];
253 /* If the LHS is not an ordinary column with TEXT affinity, then the
254 ** pattern prefix boundaries (both the start and end boundaries) must
255 ** not look like a number. Otherwise the pattern might be treated as
256 ** a number, which will invalidate the LIKE optimization.
258 ** Getting this right has been a persistent source of bugs in the
259 ** LIKE optimization. See, for example:
260 ** 2018-09-10 https://sqlite.org/src/info/c94369cae9b561b1
261 ** 2019-05-02 https://sqlite.org/src/info/b043a54c3de54b28
262 ** 2019-06-10 https://sqlite.org/src/info/fd76310a5e843e07
263 ** 2019-06-14 https://sqlite.org/src/info/ce8717f0885af975
264 ** 2019-09-03 https://sqlite.org/src/info/0f0428096f17252a
266 if( pLeft
->op
!=TK_COLUMN
267 || sqlite3ExprAffinity(pLeft
)!=SQLITE_AFF_TEXT
268 || (ALWAYS( ExprUseYTab(pLeft
) )
270 && IsVirtual(pLeft
->y
.pTab
)) /* Might be numeric */
274 isNum
= sqlite3AtoF(zNew
, &rDummy
, iTo
, SQLITE_UTF8
);
276 if( iTo
==1 && zNew
[0]=='-' ){
280 isNum
= sqlite3AtoF(zNew
, &rDummy
, iTo
, SQLITE_UTF8
);
285 sqlite3ExprDelete(db
, pPrefix
);
286 sqlite3ValueFree(pVal
);
293 /* If the RHS pattern is a bound parameter, make arrangements to
294 ** reprepare the statement when that parameter is rebound */
295 if( op
==TK_VARIABLE
){
296 Vdbe
*v
= pParse
->pVdbe
;
297 sqlite3VdbeSetVarmask(v
, pRight
->iColumn
);
298 assert( !ExprHasProperty(pRight
, EP_IntValue
) );
299 if( *pisComplete
&& pRight
->u
.zToken
[1] ){
300 /* If the rhs of the LIKE expression is a variable, and the current
301 ** value of the variable means there is no need to invoke the LIKE
302 ** function, then no OP_Variable will be added to the program.
303 ** This causes problems for the sqlite3_bind_parameter_name()
304 ** API. To work around them, add a dummy OP_Variable here.
306 int r1
= sqlite3GetTempReg(pParse
);
307 sqlite3ExprCodeTarget(pParse
, pRight
, r1
);
308 sqlite3VdbeChangeP3(v
, sqlite3VdbeCurrentAddr(v
)-1, 0);
309 sqlite3ReleaseTempReg(pParse
, r1
);
318 sqlite3ValueFree(pVal
);
321 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
324 #ifndef SQLITE_OMIT_VIRTUALTABLE
326 ** Check to see if the pExpr expression is a form that needs to be passed
327 ** to the xBestIndex method of virtual tables. Forms of interest include:
329 ** Expression Virtual Table Operator
330 ** ----------------------- ---------------------------------
331 ** 1. column MATCH expr SQLITE_INDEX_CONSTRAINT_MATCH
332 ** 2. column GLOB expr SQLITE_INDEX_CONSTRAINT_GLOB
333 ** 3. column LIKE expr SQLITE_INDEX_CONSTRAINT_LIKE
334 ** 4. column REGEXP expr SQLITE_INDEX_CONSTRAINT_REGEXP
335 ** 5. column != expr SQLITE_INDEX_CONSTRAINT_NE
336 ** 6. expr != column SQLITE_INDEX_CONSTRAINT_NE
337 ** 7. column IS NOT expr SQLITE_INDEX_CONSTRAINT_ISNOT
338 ** 8. expr IS NOT column SQLITE_INDEX_CONSTRAINT_ISNOT
339 ** 9. column IS NOT NULL SQLITE_INDEX_CONSTRAINT_ISNOTNULL
341 ** In every case, "column" must be a column of a virtual table. If there
342 ** is a match, set *ppLeft to the "column" expression, set *ppRight to the
343 ** "expr" expression (even though in forms (6) and (8) the column is on the
344 ** right and the expression is on the left). Also set *peOp2 to the
345 ** appropriate virtual table operator. The return value is 1 or 2 if there
346 ** is a match. The usual return is 1, but if the RHS is also a column
347 ** of virtual table in forms (5) or (7) then return 2.
349 ** If the expression matches none of the patterns above, return 0.
351 static int isAuxiliaryVtabOperator(
352 sqlite3
*db
, /* Parsing context */
353 Expr
*pExpr
, /* Test this expression */
354 unsigned char *peOp2
, /* OUT: 0 for MATCH, or else an op2 value */
355 Expr
**ppLeft
, /* Column expression to left of MATCH/op2 */
356 Expr
**ppRight
/* Expression to left of MATCH/op2 */
358 if( pExpr
->op
==TK_FUNCTION
){
359 static const struct Op2
{
363 { "match", SQLITE_INDEX_CONSTRAINT_MATCH
},
364 { "glob", SQLITE_INDEX_CONSTRAINT_GLOB
},
365 { "like", SQLITE_INDEX_CONSTRAINT_LIKE
},
366 { "regexp", SQLITE_INDEX_CONSTRAINT_REGEXP
}
369 Expr
*pCol
; /* Column reference */
372 assert( ExprUseXList(pExpr
) );
373 pList
= pExpr
->x
.pList
;
374 if( pList
==0 || pList
->nExpr
!=2 ){
378 /* Built-in operators MATCH, GLOB, LIKE, and REGEXP attach to a
379 ** virtual table on their second argument, which is the same as
380 ** the left-hand side operand in their in-fix form.
382 ** vtab_column MATCH expression
383 ** MATCH(expression,vtab_column)
385 pCol
= pList
->a
[1].pExpr
;
386 assert( pCol
->op
!=TK_COLUMN
|| ExprUseYTab(pCol
) );
387 testcase( pCol
->op
==TK_COLUMN
&& pCol
->y
.pTab
==0 );
388 if( ExprIsVtab(pCol
) ){
389 for(i
=0; i
<ArraySize(aOp
); i
++){
390 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
391 if( sqlite3StrICmp(pExpr
->u
.zToken
, aOp
[i
].zOp
)==0 ){
392 *peOp2
= aOp
[i
].eOp2
;
393 *ppRight
= pList
->a
[0].pExpr
;
400 /* We can also match against the first column of overloaded
401 ** functions where xFindFunction returns a value of at least
402 ** SQLITE_INDEX_CONSTRAINT_FUNCTION.
404 ** OVERLOADED(vtab_column,expression)
406 ** Historically, xFindFunction expected to see lower-case function
407 ** names. But for this use case, xFindFunction is expected to deal
408 ** with function names in an arbitrary case.
410 pCol
= pList
->a
[0].pExpr
;
411 assert( pCol
->op
!=TK_COLUMN
|| ExprUseYTab(pCol
) );
412 testcase( pCol
->op
==TK_COLUMN
&& pCol
->y
.pTab
==0 );
413 if( ExprIsVtab(pCol
) ){
415 sqlite3_module
*pMod
;
416 void (*xNotUsed
)(sqlite3_context
*,int,sqlite3_value
**);
418 pVtab
= sqlite3GetVTable(db
, pCol
->y
.pTab
)->pVtab
;
420 assert( pVtab
->pModule
!=0 );
421 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
422 pMod
= (sqlite3_module
*)pVtab
->pModule
;
423 if( pMod
->xFindFunction
!=0 ){
424 i
= pMod
->xFindFunction(pVtab
,2, pExpr
->u
.zToken
, &xNotUsed
, &pNotUsed
);
425 if( i
>=SQLITE_INDEX_CONSTRAINT_FUNCTION
){
427 *ppRight
= pList
->a
[1].pExpr
;
433 }else if( pExpr
->op
==TK_NE
|| pExpr
->op
==TK_ISNOT
|| pExpr
->op
==TK_NOTNULL
){
435 Expr
*pLeft
= pExpr
->pLeft
;
436 Expr
*pRight
= pExpr
->pRight
;
437 assert( pLeft
->op
!=TK_COLUMN
|| ExprUseYTab(pLeft
) );
438 testcase( pLeft
->op
==TK_COLUMN
&& pLeft
->y
.pTab
==0 );
439 if( ExprIsVtab(pLeft
) ){
442 assert( pRight
==0 || pRight
->op
!=TK_COLUMN
|| ExprUseYTab(pRight
) );
443 testcase( pRight
&& pRight
->op
==TK_COLUMN
&& pRight
->y
.pTab
==0 );
444 if( pRight
&& ExprIsVtab(pRight
) ){
446 SWAP(Expr
*, pLeft
, pRight
);
450 if( pExpr
->op
==TK_NE
) *peOp2
= SQLITE_INDEX_CONSTRAINT_NE
;
451 if( pExpr
->op
==TK_ISNOT
) *peOp2
= SQLITE_INDEX_CONSTRAINT_ISNOT
;
452 if( pExpr
->op
==TK_NOTNULL
) *peOp2
= SQLITE_INDEX_CONSTRAINT_ISNOTNULL
;
457 #endif /* SQLITE_OMIT_VIRTUALTABLE */
460 ** If the pBase expression originated in the ON or USING clause of
461 ** a join, then transfer the appropriate markings over to derived.
463 static void transferJoinMarkings(Expr
*pDerived
, Expr
*pBase
){
464 if( pDerived
&& ExprHasProperty(pBase
, EP_OuterON
|EP_InnerON
) ){
465 pDerived
->flags
|= pBase
->flags
& (EP_OuterON
|EP_InnerON
);
466 pDerived
->w
.iJoin
= pBase
->w
.iJoin
;
471 ** Mark term iChild as being a child of term iParent
473 static void markTermAsChild(WhereClause
*pWC
, int iChild
, int iParent
){
474 pWC
->a
[iChild
].iParent
= iParent
;
475 pWC
->a
[iChild
].truthProb
= pWC
->a
[iParent
].truthProb
;
476 pWC
->a
[iParent
].nChild
++;
480 ** Return the N-th AND-connected subterm of pTerm. Or if pTerm is not
481 ** a conjunction, then return just pTerm when N==0. If N is exceeds
482 ** the number of available subterms, return NULL.
484 static WhereTerm
*whereNthSubterm(WhereTerm
*pTerm
, int N
){
485 if( pTerm
->eOperator
!=WO_AND
){
486 return N
==0 ? pTerm
: 0;
488 if( N
<pTerm
->u
.pAndInfo
->wc
.nTerm
){
489 return &pTerm
->u
.pAndInfo
->wc
.a
[N
];
495 ** Subterms pOne and pTwo are contained within WHERE clause pWC. The
496 ** two subterms are in disjunction - they are OR-ed together.
498 ** If these two terms are both of the form: "A op B" with the same
499 ** A and B values but different operators and if the operators are
500 ** compatible (if one is = and the other is <, for example) then
501 ** add a new virtual AND term to pWC that is the combination of the
506 ** x<y OR x=y --> x<=y
507 ** x=y OR x=y --> x=y
508 ** x<=y OR x<y --> x<=y
510 ** The following is NOT generated:
512 ** x<y OR x>y --> x!=y
514 static void whereCombineDisjuncts(
515 SrcList
*pSrc
, /* the FROM clause */
516 WhereClause
*pWC
, /* The complete WHERE clause */
517 WhereTerm
*pOne
, /* First disjunct */
518 WhereTerm
*pTwo
/* Second disjunct */
520 u16 eOp
= pOne
->eOperator
| pTwo
->eOperator
;
521 sqlite3
*db
; /* Database connection (for malloc) */
522 Expr
*pNew
; /* New virtual expression */
523 int op
; /* Operator for the combined expression */
524 int idxNew
; /* Index in pWC of the next virtual term */
526 if( (pOne
->wtFlags
| pTwo
->wtFlags
) & TERM_VNULL
) return;
527 if( (pOne
->eOperator
& (WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
))==0 ) return;
528 if( (pTwo
->eOperator
& (WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
))==0 ) return;
529 if( (eOp
& (WO_EQ
|WO_LT
|WO_LE
))!=eOp
530 && (eOp
& (WO_EQ
|WO_GT
|WO_GE
))!=eOp
) return;
531 assert( pOne
->pExpr
->pLeft
!=0 && pOne
->pExpr
->pRight
!=0 );
532 assert( pTwo
->pExpr
->pLeft
!=0 && pTwo
->pExpr
->pRight
!=0 );
533 if( sqlite3ExprCompare(0,pOne
->pExpr
->pLeft
, pTwo
->pExpr
->pLeft
, -1) ) return;
534 if( sqlite3ExprCompare(0,pOne
->pExpr
->pRight
, pTwo
->pExpr
->pRight
,-1) )return;
535 /* If we reach this point, it means the two subterms can be combined */
536 if( (eOp
& (eOp
-1))!=0 ){
537 if( eOp
& (WO_LT
|WO_LE
) ){
540 assert( eOp
& (WO_GT
|WO_GE
) );
544 db
= pWC
->pWInfo
->pParse
->db
;
545 pNew
= sqlite3ExprDup(db
, pOne
->pExpr
, 0);
546 if( pNew
==0 ) return;
547 for(op
=TK_EQ
; eOp
!=(WO_EQ
<<(op
-TK_EQ
)); op
++){ assert( op
<TK_GE
); }
549 idxNew
= whereClauseInsert(pWC
, pNew
, TERM_VIRTUAL
|TERM_DYNAMIC
);
550 exprAnalyze(pSrc
, pWC
, idxNew
);
553 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
555 ** Analyze a term that consists of two or more OR-connected
558 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
559 ** ^^^^^^^^^^^^^^^^^^^^
561 ** This routine analyzes terms such as the middle term in the above example.
562 ** A WhereOrTerm object is computed and attached to the term under
563 ** analysis, regardless of the outcome of the analysis. Hence:
565 ** WhereTerm.wtFlags |= TERM_ORINFO
566 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
568 ** The term being analyzed must have two or more of OR-connected subterms.
569 ** A single subterm might be a set of AND-connected sub-subterms.
570 ** Examples of terms under analysis:
572 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
573 ** (B) x=expr1 OR expr2=x OR x=expr3
574 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
575 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
576 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
577 ** (F) x>A OR (x=A AND y>=B)
581 ** If all subterms are of the form T.C=expr for some single column of C and
582 ** a single table T (as shown in example B above) then create a new virtual
583 ** term that is an equivalent IN expression. In other words, if the term
584 ** being analyzed is:
586 ** x = expr1 OR expr2 = x OR x = expr3
588 ** then create a new virtual term like this:
590 ** x IN (expr1,expr2,expr3)
594 ** If there are exactly two disjuncts and one side has x>A and the other side
595 ** has x=A (for the same x and A) then add a new virtual conjunct term to the
596 ** WHERE clause of the form "x>=A". Example:
598 ** x>A OR (x=A AND y>B) adds: x>=A
600 ** The added conjunct can sometimes be helpful in query planning.
604 ** If all subterms are indexable by a single table T, then set
606 ** WhereTerm.eOperator = WO_OR
607 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
609 ** A subterm is "indexable" if it is of the form
610 ** "T.C <op> <expr>" where C is any column of table T and
611 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
612 ** A subterm is also indexable if it is an AND of two or more
613 ** subsubterms at least one of which is indexable. Indexable AND
614 ** subterms have their eOperator set to WO_AND and they have
615 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
617 ** From another point of view, "indexable" means that the subterm could
618 ** potentially be used with an index if an appropriate index exists.
619 ** This analysis does not consider whether or not the index exists; that
620 ** is decided elsewhere. This analysis only looks at whether subterms
621 ** appropriate for indexing exist.
623 ** All examples A through E above satisfy case 3. But if a term
624 ** also satisfies case 1 (such as B) we know that the optimizer will
625 ** always prefer case 1, so in that case we pretend that case 3 is not
628 ** It might be the case that multiple tables are indexable. For example,
629 ** (E) above is indexable on tables P, Q, and R.
631 ** Terms that satisfy case 3 are candidates for lookup by using
632 ** separate indices to find rowids for each subterm and composing
633 ** the union of all rowids using a RowSet object. This is similar
634 ** to "bitmap indices" in other database engines.
638 ** If none of cases 1, 2, or 3 apply, then leave the eOperator set to
639 ** zero. This term is not useful for search.
641 static void exprAnalyzeOrTerm(
642 SrcList
*pSrc
, /* the FROM clause */
643 WhereClause
*pWC
, /* the complete WHERE clause */
644 int idxTerm
/* Index of the OR-term to be analyzed */
646 WhereInfo
*pWInfo
= pWC
->pWInfo
; /* WHERE clause processing context */
647 Parse
*pParse
= pWInfo
->pParse
; /* Parser context */
648 sqlite3
*db
= pParse
->db
; /* Database connection */
649 WhereTerm
*pTerm
= &pWC
->a
[idxTerm
]; /* The term to be analyzed */
650 Expr
*pExpr
= pTerm
->pExpr
; /* The expression of the term */
651 int i
; /* Loop counters */
652 WhereClause
*pOrWc
; /* Breakup of pTerm into subterms */
653 WhereTerm
*pOrTerm
; /* A Sub-term within the pOrWc */
654 WhereOrInfo
*pOrInfo
; /* Additional information associated with pTerm */
655 Bitmask chngToIN
; /* Tables that might satisfy case 1 */
656 Bitmask indexable
; /* Tables that are indexable, satisfying case 2 */
659 ** Break the OR clause into its separate subterms. The subterms are
660 ** stored in a WhereClause structure containing within the WhereOrInfo
661 ** object that is attached to the original OR clause term.
663 assert( (pTerm
->wtFlags
& (TERM_DYNAMIC
|TERM_ORINFO
|TERM_ANDINFO
))==0 );
664 assert( pExpr
->op
==TK_OR
);
665 pTerm
->u
.pOrInfo
= pOrInfo
= sqlite3DbMallocZero(db
, sizeof(*pOrInfo
));
666 if( pOrInfo
==0 ) return;
667 pTerm
->wtFlags
|= TERM_ORINFO
;
668 pOrWc
= &pOrInfo
->wc
;
669 memset(pOrWc
->aStatic
, 0, sizeof(pOrWc
->aStatic
));
670 sqlite3WhereClauseInit(pOrWc
, pWInfo
);
671 sqlite3WhereSplit(pOrWc
, pExpr
, TK_OR
);
672 sqlite3WhereExprAnalyze(pSrc
, pOrWc
);
673 if( db
->mallocFailed
) return;
674 assert( pOrWc
->nTerm
>=2 );
677 ** Compute the set of tables that might satisfy cases 1 or 3.
679 indexable
= ~(Bitmask
)0;
680 chngToIN
= ~(Bitmask
)0;
681 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0 && indexable
; i
--, pOrTerm
++){
682 if( (pOrTerm
->eOperator
& WO_SINGLE
)==0 ){
683 WhereAndInfo
*pAndInfo
;
684 assert( (pOrTerm
->wtFlags
& (TERM_ANDINFO
|TERM_ORINFO
))==0 );
686 pAndInfo
= sqlite3DbMallocRawNN(db
, sizeof(*pAndInfo
));
692 pOrTerm
->u
.pAndInfo
= pAndInfo
;
693 pOrTerm
->wtFlags
|= TERM_ANDINFO
;
694 pOrTerm
->eOperator
= WO_AND
;
695 pOrTerm
->leftCursor
= -1;
696 pAndWC
= &pAndInfo
->wc
;
697 memset(pAndWC
->aStatic
, 0, sizeof(pAndWC
->aStatic
));
698 sqlite3WhereClauseInit(pAndWC
, pWC
->pWInfo
);
699 sqlite3WhereSplit(pAndWC
, pOrTerm
->pExpr
, TK_AND
);
700 sqlite3WhereExprAnalyze(pSrc
, pAndWC
);
701 pAndWC
->pOuter
= pWC
;
702 if( !db
->mallocFailed
){
703 for(j
=0, pAndTerm
=pAndWC
->a
; j
<pAndWC
->nTerm
; j
++, pAndTerm
++){
704 assert( pAndTerm
->pExpr
);
705 if( allowedOp(pAndTerm
->pExpr
->op
)
706 || pAndTerm
->eOperator
==WO_AUX
708 b
|= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pAndTerm
->leftCursor
);
714 }else if( pOrTerm
->wtFlags
& TERM_COPIED
){
715 /* Skip this term for now. We revisit it when we process the
716 ** corresponding TERM_VIRTUAL term */
719 b
= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pOrTerm
->leftCursor
);
720 if( pOrTerm
->wtFlags
& TERM_VIRTUAL
){
721 WhereTerm
*pOther
= &pOrWc
->a
[pOrTerm
->iParent
];
722 b
|= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pOther
->leftCursor
);
725 if( (pOrTerm
->eOperator
& WO_EQ
)==0 ){
734 ** Record the set of tables that satisfy case 3. The set might be
737 pOrInfo
->indexable
= indexable
;
738 pTerm
->eOperator
= WO_OR
;
739 pTerm
->leftCursor
= -1;
744 /* For a two-way OR, attempt to implementation case 2.
746 if( indexable
&& pOrWc
->nTerm
==2 ){
749 while( (pOne
= whereNthSubterm(&pOrWc
->a
[0],iOne
++))!=0 ){
752 while( (pTwo
= whereNthSubterm(&pOrWc
->a
[1],iTwo
++))!=0 ){
753 whereCombineDisjuncts(pSrc
, pWC
, pOne
, pTwo
);
759 ** chngToIN holds a set of tables that *might* satisfy case 1. But
760 ** we have to do some additional checking to see if case 1 really
763 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
764 ** that there is no possibility of transforming the OR clause into an
765 ** IN operator because one or more terms in the OR clause contain
766 ** something other than == on a column in the single table. The 1-bit
767 ** case means that every term of the OR clause is of the form
768 ** "table.column=expr" for some single table. The one bit that is set
769 ** will correspond to the common table. We still need to check to make
770 ** sure the same column is used on all terms. The 2-bit case is when
771 ** the all terms are of the form "table1.column=table2.column". It
772 ** might be possible to form an IN operator with either table1.column
773 ** or table2.column as the LHS if either is common to every term of
776 ** Note that terms of the form "table.column1=table.column2" (the
777 ** same table on both sizes of the ==) cannot be optimized.
780 int okToChngToIN
= 0; /* True if the conversion to IN is valid */
781 int iColumn
= -1; /* Column index on lhs of IN operator */
782 int iCursor
= -1; /* Table cursor common to all terms */
783 int j
= 0; /* Loop counter */
785 /* Search for a table and column that appears on one side or the
786 ** other of the == operator in every subterm. That table and column
787 ** will be recorded in iCursor and iColumn. There might not be any
788 ** such table and column. Set okToChngToIN if an appropriate table
789 ** and column is found but leave okToChngToIN false if not found.
791 for(j
=0; j
<2 && !okToChngToIN
; j
++){
794 for(i
=pOrWc
->nTerm
-1; i
>=0; i
--, pOrTerm
++){
795 assert( pOrTerm
->eOperator
& WO_EQ
);
796 pOrTerm
->wtFlags
&= ~TERM_OK
;
797 if( pOrTerm
->leftCursor
==iCursor
){
798 /* This is the 2-bit case and we are on the second iteration and
799 ** current term is from the first iteration. So skip this term. */
803 if( (chngToIN
& sqlite3WhereGetMask(&pWInfo
->sMaskSet
,
804 pOrTerm
->leftCursor
))==0 ){
805 /* This term must be of the form t1.a==t2.b where t2 is in the
806 ** chngToIN set but t1 is not. This term will be either preceded
807 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
808 ** and use its inversion. */
809 testcase( pOrTerm
->wtFlags
& TERM_COPIED
);
810 testcase( pOrTerm
->wtFlags
& TERM_VIRTUAL
);
811 assert( pOrTerm
->wtFlags
& (TERM_COPIED
|TERM_VIRTUAL
) );
814 assert( (pOrTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
815 iColumn
= pOrTerm
->u
.x
.leftColumn
;
816 iCursor
= pOrTerm
->leftCursor
;
817 pLeft
= pOrTerm
->pExpr
->pLeft
;
821 /* No candidate table+column was found. This can only occur
822 ** on the second iteration */
824 assert( IsPowerOfTwo(chngToIN
) );
825 assert( chngToIN
==sqlite3WhereGetMask(&pWInfo
->sMaskSet
, iCursor
) );
830 /* We have found a candidate table and column. Check to see if that
831 ** table and column is common to every term in the OR clause */
833 for(; i
>=0 && okToChngToIN
; i
--, pOrTerm
++){
834 assert( pOrTerm
->eOperator
& WO_EQ
);
835 assert( (pOrTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
836 if( pOrTerm
->leftCursor
!=iCursor
){
837 pOrTerm
->wtFlags
&= ~TERM_OK
;
838 }else if( pOrTerm
->u
.x
.leftColumn
!=iColumn
|| (iColumn
==XN_EXPR
839 && sqlite3ExprCompare(pParse
, pOrTerm
->pExpr
->pLeft
, pLeft
, -1)
843 int affLeft
, affRight
;
844 /* If the right-hand side is also a column, then the affinities
845 ** of both right and left sides must be such that no type
846 ** conversions are required on the right. (Ticket #2249)
848 affRight
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pRight
);
849 affLeft
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pLeft
);
850 if( affRight
!=0 && affRight
!=affLeft
){
853 pOrTerm
->wtFlags
|= TERM_OK
;
859 /* At this point, okToChngToIN is true if original pTerm satisfies
860 ** case 1. In that case, construct a new virtual term that is
861 ** pTerm converted into an IN operator.
864 Expr
*pDup
; /* A transient duplicate expression */
865 ExprList
*pList
= 0; /* The RHS of the IN operator */
866 Expr
*pLeft
= 0; /* The LHS of the IN operator */
867 Expr
*pNew
; /* The complete IN operator */
869 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0; i
--, pOrTerm
++){
870 if( (pOrTerm
->wtFlags
& TERM_OK
)==0 ) continue;
871 assert( pOrTerm
->eOperator
& WO_EQ
);
872 assert( (pOrTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
873 assert( pOrTerm
->leftCursor
==iCursor
);
874 assert( pOrTerm
->u
.x
.leftColumn
==iColumn
);
875 pDup
= sqlite3ExprDup(db
, pOrTerm
->pExpr
->pRight
, 0);
876 pList
= sqlite3ExprListAppend(pWInfo
->pParse
, pList
, pDup
);
877 pLeft
= pOrTerm
->pExpr
->pLeft
;
880 pDup
= sqlite3ExprDup(db
, pLeft
, 0);
881 pNew
= sqlite3PExpr(pParse
, TK_IN
, pDup
, 0);
884 transferJoinMarkings(pNew
, pExpr
);
885 assert( ExprUseXList(pNew
) );
886 pNew
->x
.pList
= pList
;
887 idxNew
= whereClauseInsert(pWC
, pNew
, TERM_VIRTUAL
|TERM_DYNAMIC
);
888 testcase( idxNew
==0 );
889 exprAnalyze(pSrc
, pWC
, idxNew
);
890 /* pTerm = &pWC->a[idxTerm]; // would be needed if pTerm where reused */
891 markTermAsChild(pWC
, idxNew
, idxTerm
);
893 sqlite3ExprListDelete(db
, pList
);
898 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
901 ** We already know that pExpr is a binary operator where both operands are
902 ** column references. This routine checks to see if pExpr is an equivalence
904 ** 1. The SQLITE_Transitive optimization must be enabled
905 ** 2. Must be either an == or an IS operator
906 ** 3. Not originating in the ON clause of an OUTER JOIN
907 ** 4. The affinities of A and B must be compatible
908 ** 5a. Both operands use the same collating sequence OR
909 ** 5b. The overall collating sequence is BINARY
910 ** If this routine returns TRUE, that means that the RHS can be substituted
911 ** for the LHS anyplace else in the WHERE clause where the LHS column occurs.
912 ** This is an optimization. No harm comes from returning 0. But if 1 is
913 ** returned when it should not be, then incorrect answers might result.
915 static int termIsEquivalence(Parse
*pParse
, Expr
*pExpr
){
918 if( !OptimizationEnabled(pParse
->db
, SQLITE_Transitive
) ) return 0;
919 if( pExpr
->op
!=TK_EQ
&& pExpr
->op
!=TK_IS
) return 0;
920 if( ExprHasProperty(pExpr
, EP_OuterON
) ) return 0;
921 aff1
= sqlite3ExprAffinity(pExpr
->pLeft
);
922 aff2
= sqlite3ExprAffinity(pExpr
->pRight
);
924 && (!sqlite3IsNumericAffinity(aff1
) || !sqlite3IsNumericAffinity(aff2
))
928 pColl
= sqlite3ExprCompareCollSeq(pParse
, pExpr
);
929 if( sqlite3IsBinary(pColl
) ) return 1;
930 return sqlite3ExprCollSeqMatch(pParse
, pExpr
->pLeft
, pExpr
->pRight
);
934 ** Recursively walk the expressions of a SELECT statement and generate
935 ** a bitmask indicating which tables are used in that expression
938 static Bitmask
exprSelectUsage(WhereMaskSet
*pMaskSet
, Select
*pS
){
941 SrcList
*pSrc
= pS
->pSrc
;
942 mask
|= sqlite3WhereExprListUsage(pMaskSet
, pS
->pEList
);
943 mask
|= sqlite3WhereExprListUsage(pMaskSet
, pS
->pGroupBy
);
944 mask
|= sqlite3WhereExprListUsage(pMaskSet
, pS
->pOrderBy
);
945 mask
|= sqlite3WhereExprUsage(pMaskSet
, pS
->pWhere
);
946 mask
|= sqlite3WhereExprUsage(pMaskSet
, pS
->pHaving
);
947 if( ALWAYS(pSrc
!=0) ){
949 for(i
=0; i
<pSrc
->nSrc
; i
++){
950 mask
|= exprSelectUsage(pMaskSet
, pSrc
->a
[i
].pSelect
);
951 if( pSrc
->a
[i
].fg
.isUsing
==0 ){
952 mask
|= sqlite3WhereExprUsage(pMaskSet
, pSrc
->a
[i
].u3
.pOn
);
954 if( pSrc
->a
[i
].fg
.isTabFunc
){
955 mask
|= sqlite3WhereExprListUsage(pMaskSet
, pSrc
->a
[i
].u1
.pFuncArg
);
965 ** Expression pExpr is one operand of a comparison operator that might
966 ** be useful for indexing. This routine checks to see if pExpr appears
967 ** in any index. Return TRUE (1) if pExpr is an indexed term and return
968 ** FALSE (0) if not. If TRUE is returned, also set aiCurCol[0] to the cursor
969 ** number of the table that is indexed and aiCurCol[1] to the column number
970 ** of the column that is indexed, or XN_EXPR (-2) if an expression is being
973 ** If pExpr is a TK_COLUMN column reference, then this routine always returns
974 ** true even if that particular column is not indexed, because the column
975 ** might be added to an automatic index later.
977 static SQLITE_NOINLINE
int exprMightBeIndexed2(
978 SrcList
*pFrom
, /* The FROM clause */
979 Bitmask mPrereq
, /* Bitmask of FROM clause terms referenced by pExpr */
980 int *aiCurCol
, /* Write the referenced table cursor and column here */
981 Expr
*pExpr
/* An operand of a comparison operator */
986 for(i
=0; mPrereq
>1; i
++, mPrereq
>>=1){}
987 iCur
= pFrom
->a
[i
].iCursor
;
988 for(pIdx
=pFrom
->a
[i
].pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
989 if( pIdx
->aColExpr
==0 ) continue;
990 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
991 if( pIdx
->aiColumn
[i
]!=XN_EXPR
) continue;
992 if( sqlite3ExprCompareSkip(pExpr
, pIdx
->aColExpr
->a
[i
].pExpr
, iCur
)==0 ){
994 aiCurCol
[1] = XN_EXPR
;
1001 static int exprMightBeIndexed(
1002 SrcList
*pFrom
, /* The FROM clause */
1003 Bitmask mPrereq
, /* Bitmask of FROM clause terms referenced by pExpr */
1004 int *aiCurCol
, /* Write the referenced table cursor & column here */
1005 Expr
*pExpr
, /* An operand of a comparison operator */
1006 int op
/* The specific comparison operator */
1008 /* If this expression is a vector to the left or right of a
1009 ** inequality constraint (>, <, >= or <=), perform the processing
1010 ** on the first element of the vector. */
1011 assert( TK_GT
+1==TK_LE
&& TK_GT
+2==TK_LT
&& TK_GT
+3==TK_GE
);
1012 assert( TK_IS
<TK_GE
&& TK_ISNULL
<TK_GE
&& TK_IN
<TK_GE
);
1013 assert( op
<=TK_GE
);
1014 if( pExpr
->op
==TK_VECTOR
&& (op
>=TK_GT
&& ALWAYS(op
<=TK_GE
)) ){
1015 assert( ExprUseXList(pExpr
) );
1016 pExpr
= pExpr
->x
.pList
->a
[0].pExpr
;
1020 if( pExpr
->op
==TK_COLUMN
){
1021 aiCurCol
[0] = pExpr
->iTable
;
1022 aiCurCol
[1] = pExpr
->iColumn
;
1025 if( mPrereq
==0 ) return 0; /* No table references */
1026 if( (mPrereq
&(mPrereq
-1))!=0 ) return 0; /* Refs more than one table */
1027 return exprMightBeIndexed2(pFrom
,mPrereq
,aiCurCol
,pExpr
);
1032 ** The input to this routine is an WhereTerm structure with only the
1033 ** "pExpr" field filled in. The job of this routine is to analyze the
1034 ** subexpression and populate all the other fields of the WhereTerm
1037 ** If the expression is of the form "<expr> <op> X" it gets commuted
1038 ** to the standard form of "X <op> <expr>".
1040 ** If the expression is of the form "X <op> Y" where both X and Y are
1041 ** columns, then the original expression is unchanged and a new virtual
1042 ** term of the form "Y <op> X" is added to the WHERE clause and
1043 ** analyzed separately. The original term is marked with TERM_COPIED
1044 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1045 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1046 ** is a commuted copy of a prior term.) The original term has nChild=1
1047 ** and the copy has idxParent set to the index of the original term.
1049 static void exprAnalyze(
1050 SrcList
*pSrc
, /* the FROM clause */
1051 WhereClause
*pWC
, /* the WHERE clause */
1052 int idxTerm
/* Index of the term to be analyzed */
1054 WhereInfo
*pWInfo
= pWC
->pWInfo
; /* WHERE clause processing context */
1055 WhereTerm
*pTerm
; /* The term to be analyzed */
1056 WhereMaskSet
*pMaskSet
; /* Set of table index masks */
1057 Expr
*pExpr
; /* The expression to be analyzed */
1058 Bitmask prereqLeft
; /* Prerequesites of the pExpr->pLeft */
1059 Bitmask prereqAll
; /* Prerequesites of pExpr */
1060 Bitmask extraRight
= 0; /* Extra dependencies on LEFT JOIN */
1061 Expr
*pStr1
= 0; /* RHS of LIKE/GLOB operator */
1062 int isComplete
= 0; /* RHS of LIKE/GLOB ends with wildcard */
1063 int noCase
= 0; /* uppercase equivalent to lowercase */
1064 int op
; /* Top-level operator. pExpr->op */
1065 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
1066 sqlite3
*db
= pParse
->db
; /* Database connection */
1067 unsigned char eOp2
= 0; /* op2 value for LIKE/REGEXP/GLOB */
1068 int nLeft
; /* Number of elements on left side vector */
1070 if( db
->mallocFailed
){
1073 assert( pWC
->nTerm
> idxTerm
);
1074 pTerm
= &pWC
->a
[idxTerm
];
1075 pMaskSet
= &pWInfo
->sMaskSet
;
1076 pExpr
= pTerm
->pExpr
;
1077 assert( pExpr
!=0 ); /* Because malloc() has not failed */
1078 assert( pExpr
->op
!=TK_AS
&& pExpr
->op
!=TK_COLLATE
);
1079 pMaskSet
->bVarSelect
= 0;
1080 prereqLeft
= sqlite3WhereExprUsage(pMaskSet
, pExpr
->pLeft
);
1083 assert( pExpr
->pRight
==0 );
1084 if( sqlite3ExprCheckIN(pParse
, pExpr
) ) return;
1085 if( ExprUseXSelect(pExpr
) ){
1086 pTerm
->prereqRight
= exprSelectUsage(pMaskSet
, pExpr
->x
.pSelect
);
1088 pTerm
->prereqRight
= sqlite3WhereExprListUsage(pMaskSet
, pExpr
->x
.pList
);
1090 prereqAll
= prereqLeft
| pTerm
->prereqRight
;
1092 pTerm
->prereqRight
= sqlite3WhereExprUsage(pMaskSet
, pExpr
->pRight
);
1094 || ExprHasProperty(pExpr
, EP_xIsSelect
|EP_IfNullRow
)
1095 || pExpr
->x
.pList
!=0
1097 prereqAll
= sqlite3WhereExprUsageNN(pMaskSet
, pExpr
);
1099 prereqAll
= prereqLeft
| pTerm
->prereqRight
;
1102 if( pMaskSet
->bVarSelect
) pTerm
->wtFlags
|= TERM_VARSELECT
;
1105 if( prereqAll
!=sqlite3WhereExprUsageNN(pMaskSet
, pExpr
) ){
1106 printf("\n*** Incorrect prereqAll computed for:\n");
1107 sqlite3TreeViewExpr(0,pExpr
,0);
1112 if( ExprHasProperty(pExpr
, EP_OuterON
|EP_InnerON
) ){
1113 Bitmask x
= sqlite3WhereGetMask(pMaskSet
, pExpr
->w
.iJoin
);
1114 if( ExprHasProperty(pExpr
, EP_OuterON
) ){
1116 extraRight
= x
-1; /* ON clause terms may not be used with an index
1117 ** on left table of a LEFT JOIN. Ticket #3015 */
1118 if( (prereqAll
>>1)>=x
){
1119 sqlite3ErrorMsg(pParse
, "ON clause references tables to its right");
1122 }else if( (prereqAll
>>1)>=x
){
1123 /* The ON clause of an INNER JOIN references a table to its right.
1124 ** Most other SQL database engines raise an error. But SQLite versions
1125 ** 3.0 through 3.38 just put the ON clause constraint into the WHERE
1126 ** clause and carried on. Beginning with 3.39, raise an error only
1127 ** if there is a RIGHT or FULL JOIN in the query. This makes SQLite
1128 ** more like other systems, and also preserves legacy. */
1129 if( ALWAYS(pSrc
->nSrc
>0) && (pSrc
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 ){
1130 sqlite3ErrorMsg(pParse
, "ON clause references tables to its right");
1133 ExprClearProperty(pExpr
, EP_InnerON
);
1136 pTerm
->prereqAll
= prereqAll
;
1137 pTerm
->leftCursor
= -1;
1138 pTerm
->iParent
= -1;
1139 pTerm
->eOperator
= 0;
1140 if( allowedOp(op
) ){
1142 Expr
*pLeft
= sqlite3ExprSkipCollate(pExpr
->pLeft
);
1143 Expr
*pRight
= sqlite3ExprSkipCollate(pExpr
->pRight
);
1144 u16 opMask
= (pTerm
->prereqRight
& prereqLeft
)==0 ? WO_ALL
: WO_EQUIV
;
1146 if( pTerm
->u
.x
.iField
>0 ){
1147 assert( op
==TK_IN
);
1148 assert( pLeft
->op
==TK_VECTOR
);
1149 assert( ExprUseXList(pLeft
) );
1150 pLeft
= pLeft
->x
.pList
->a
[pTerm
->u
.x
.iField
-1].pExpr
;
1153 if( exprMightBeIndexed(pSrc
, prereqLeft
, aiCurCol
, pLeft
, op
) ){
1154 pTerm
->leftCursor
= aiCurCol
[0];
1155 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
1156 pTerm
->u
.x
.leftColumn
= aiCurCol
[1];
1157 pTerm
->eOperator
= operatorMask(op
) & opMask
;
1159 if( op
==TK_IS
) pTerm
->wtFlags
|= TERM_IS
;
1161 && exprMightBeIndexed(pSrc
, pTerm
->prereqRight
, aiCurCol
, pRight
, op
)
1162 && !ExprHasProperty(pRight
, EP_FixedCol
)
1166 u16 eExtraOp
= 0; /* Extra bits for pNew->eOperator */
1167 assert( pTerm
->u
.x
.iField
==0 );
1168 if( pTerm
->leftCursor
>=0 ){
1170 pDup
= sqlite3ExprDup(db
, pExpr
, 0);
1171 if( db
->mallocFailed
){
1172 sqlite3ExprDelete(db
, pDup
);
1175 idxNew
= whereClauseInsert(pWC
, pDup
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1176 if( idxNew
==0 ) return;
1177 pNew
= &pWC
->a
[idxNew
];
1178 markTermAsChild(pWC
, idxNew
, idxTerm
);
1179 if( op
==TK_IS
) pNew
->wtFlags
|= TERM_IS
;
1180 pTerm
= &pWC
->a
[idxTerm
];
1181 pTerm
->wtFlags
|= TERM_COPIED
;
1183 if( termIsEquivalence(pParse
, pDup
) ){
1184 pTerm
->eOperator
|= WO_EQUIV
;
1185 eExtraOp
= WO_EQUIV
;
1191 pNew
->wtFlags
|= exprCommute(pParse
, pDup
);
1192 pNew
->leftCursor
= aiCurCol
[0];
1193 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
1194 pNew
->u
.x
.leftColumn
= aiCurCol
[1];
1195 testcase( (prereqLeft
| extraRight
) != prereqLeft
);
1196 pNew
->prereqRight
= prereqLeft
| extraRight
;
1197 pNew
->prereqAll
= prereqAll
;
1198 pNew
->eOperator
= (operatorMask(pDup
->op
) + eExtraOp
) & opMask
;
1201 && !ExprHasProperty(pExpr
,EP_OuterON
)
1202 && 0==sqlite3ExprCanBeNull(pLeft
)
1204 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1205 pExpr
->op
= TK_TRUEFALSE
;
1206 pExpr
->u
.zToken
= "false";
1207 ExprSetProperty(pExpr
, EP_IsFalse
);
1208 pTerm
->prereqAll
= 0;
1209 pTerm
->eOperator
= 0;
1213 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1214 /* If a term is the BETWEEN operator, create two new virtual terms
1215 ** that define the range that the BETWEEN implements. For example:
1217 ** a BETWEEN b AND c
1219 ** is converted into:
1221 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1223 ** The two new terms are added onto the end of the WhereClause object.
1224 ** The new terms are "dynamic" and are children of the original BETWEEN
1225 ** term. That means that if the BETWEEN term is coded, the children are
1226 ** skipped. Or, if the children are satisfied by an index, the original
1227 ** BETWEEN term is skipped.
1229 else if( pExpr
->op
==TK_BETWEEN
&& pWC
->op
==TK_AND
){
1232 static const u8 ops
[] = {TK_GE
, TK_LE
};
1233 assert( ExprUseXList(pExpr
) );
1234 pList
= pExpr
->x
.pList
;
1236 assert( pList
->nExpr
==2 );
1240 pNewExpr
= sqlite3PExpr(pParse
, ops
[i
],
1241 sqlite3ExprDup(db
, pExpr
->pLeft
, 0),
1242 sqlite3ExprDup(db
, pList
->a
[i
].pExpr
, 0));
1243 transferJoinMarkings(pNewExpr
, pExpr
);
1244 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1245 testcase( idxNew
==0 );
1246 exprAnalyze(pSrc
, pWC
, idxNew
);
1247 pTerm
= &pWC
->a
[idxTerm
];
1248 markTermAsChild(pWC
, idxNew
, idxTerm
);
1251 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1253 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1254 /* Analyze a term that is composed of two or more subterms connected by
1257 else if( pExpr
->op
==TK_OR
){
1258 assert( pWC
->op
==TK_AND
);
1259 exprAnalyzeOrTerm(pSrc
, pWC
, idxTerm
);
1260 pTerm
= &pWC
->a
[idxTerm
];
1262 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1263 /* The form "x IS NOT NULL" can sometimes be evaluated more efficiently
1264 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1265 ** virtual term of that form.
1267 ** The virtual term must be tagged with TERM_VNULL.
1269 else if( pExpr
->op
==TK_NOTNULL
){
1270 if( pExpr
->pLeft
->op
==TK_COLUMN
1271 && pExpr
->pLeft
->iColumn
>=0
1272 && !ExprHasProperty(pExpr
, EP_OuterON
)
1275 Expr
*pLeft
= pExpr
->pLeft
;
1277 WhereTerm
*pNewTerm
;
1279 pNewExpr
= sqlite3PExpr(pParse
, TK_GT
,
1280 sqlite3ExprDup(db
, pLeft
, 0),
1281 sqlite3ExprAlloc(db
, TK_NULL
, 0, 0));
1283 idxNew
= whereClauseInsert(pWC
, pNewExpr
,
1284 TERM_VIRTUAL
|TERM_DYNAMIC
|TERM_VNULL
);
1286 pNewTerm
= &pWC
->a
[idxNew
];
1287 pNewTerm
->prereqRight
= 0;
1288 pNewTerm
->leftCursor
= pLeft
->iTable
;
1289 pNewTerm
->u
.x
.leftColumn
= pLeft
->iColumn
;
1290 pNewTerm
->eOperator
= WO_GT
;
1291 markTermAsChild(pWC
, idxNew
, idxTerm
);
1292 pTerm
= &pWC
->a
[idxTerm
];
1293 pTerm
->wtFlags
|= TERM_COPIED
;
1294 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1300 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1301 /* Add constraints to reduce the search space on a LIKE or GLOB
1304 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints
1306 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%'
1308 ** The last character of the prefix "abc" is incremented to form the
1309 ** termination condition "abd". If case is not significant (the default
1310 ** for LIKE) then the lower-bound is made all uppercase and the upper-
1311 ** bound is made all lowercase so that the bounds also work when comparing
1314 else if( pExpr
->op
==TK_FUNCTION
1316 && isLikeOrGlob(pParse
, pExpr
, &pStr1
, &isComplete
, &noCase
)
1318 Expr
*pLeft
; /* LHS of LIKE/GLOB operator */
1319 Expr
*pStr2
; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1324 const char *zCollSeqName
; /* Name of collating sequence */
1325 const u16 wtFlags
= TERM_LIKEOPT
| TERM_VIRTUAL
| TERM_DYNAMIC
;
1327 assert( ExprUseXList(pExpr
) );
1328 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1329 pStr2
= sqlite3ExprDup(db
, pStr1
, 0);
1330 assert( pStr1
==0 || !ExprHasProperty(pStr1
, EP_IntValue
) );
1331 assert( pStr2
==0 || !ExprHasProperty(pStr2
, EP_IntValue
) );
1334 /* Convert the lower bound to upper-case and the upper bound to
1335 ** lower-case (upper-case is less than lower-case in ASCII) so that
1336 ** the range constraints also work for BLOBs
1338 if( noCase
&& !pParse
->db
->mallocFailed
){
1341 pTerm
->wtFlags
|= TERM_LIKE
;
1342 for(i
=0; (c
= pStr1
->u
.zToken
[i
])!=0; i
++){
1343 pStr1
->u
.zToken
[i
] = sqlite3Toupper(c
);
1344 pStr2
->u
.zToken
[i
] = sqlite3Tolower(c
);
1348 if( !db
->mallocFailed
){
1349 u8 c
, *pC
; /* Last character before the first wildcard */
1350 pC
= (u8
*)&pStr2
->u
.zToken
[sqlite3Strlen30(pStr2
->u
.zToken
)-1];
1353 /* The point is to increment the last character before the first
1354 ** wildcard. But if we increment '@', that will push it into the
1355 ** alphabetic range where case conversions will mess up the
1356 ** inequality. To avoid this, make sure to also run the full
1357 ** LIKE on all candidate expressions by clearing the isComplete flag
1359 if( c
=='A'-1 ) isComplete
= 0;
1360 c
= sqlite3UpperToLower
[c
];
1364 zCollSeqName
= noCase
? "NOCASE" : sqlite3StrBINARY
;
1365 pNewExpr1
= sqlite3ExprDup(db
, pLeft
, 0);
1366 pNewExpr1
= sqlite3PExpr(pParse
, TK_GE
,
1367 sqlite3ExprAddCollateString(pParse
,pNewExpr1
,zCollSeqName
),
1369 transferJoinMarkings(pNewExpr1
, pExpr
);
1370 idxNew1
= whereClauseInsert(pWC
, pNewExpr1
, wtFlags
);
1371 testcase( idxNew1
==0 );
1372 exprAnalyze(pSrc
, pWC
, idxNew1
);
1373 pNewExpr2
= sqlite3ExprDup(db
, pLeft
, 0);
1374 pNewExpr2
= sqlite3PExpr(pParse
, TK_LT
,
1375 sqlite3ExprAddCollateString(pParse
,pNewExpr2
,zCollSeqName
),
1377 transferJoinMarkings(pNewExpr2
, pExpr
);
1378 idxNew2
= whereClauseInsert(pWC
, pNewExpr2
, wtFlags
);
1379 testcase( idxNew2
==0 );
1380 exprAnalyze(pSrc
, pWC
, idxNew2
);
1381 pTerm
= &pWC
->a
[idxTerm
];
1383 markTermAsChild(pWC
, idxNew1
, idxTerm
);
1384 markTermAsChild(pWC
, idxNew2
, idxTerm
);
1387 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1389 /* If there is a vector == or IS term - e.g. "(a, b) == (?, ?)" - create
1390 ** new terms for each component comparison - "a = ?" and "b = ?". The
1391 ** new terms completely replace the original vector comparison, which is
1394 ** This is only required if at least one side of the comparison operation
1395 ** is not a sub-select.
1399 if( (pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_IS
)
1400 && (nLeft
= sqlite3ExprVectorSize(pExpr
->pLeft
))>1
1401 && sqlite3ExprVectorSize(pExpr
->pRight
)==nLeft
1402 && ( (pExpr
->pLeft
->flags
& EP_xIsSelect
)==0
1403 || (pExpr
->pRight
->flags
& EP_xIsSelect
)==0)
1407 for(i
=0; i
<nLeft
; i
++){
1410 Expr
*pLeft
= sqlite3ExprForVectorField(pParse
, pExpr
->pLeft
, i
, nLeft
);
1411 Expr
*pRight
= sqlite3ExprForVectorField(pParse
, pExpr
->pRight
, i
, nLeft
);
1413 pNew
= sqlite3PExpr(pParse
, pExpr
->op
, pLeft
, pRight
);
1414 transferJoinMarkings(pNew
, pExpr
);
1415 idxNew
= whereClauseInsert(pWC
, pNew
, TERM_DYNAMIC
|TERM_SLICE
);
1416 exprAnalyze(pSrc
, pWC
, idxNew
);
1418 pTerm
= &pWC
->a
[idxTerm
];
1419 pTerm
->wtFlags
|= TERM_CODED
|TERM_VIRTUAL
; /* Disable the original */
1420 pTerm
->eOperator
= WO_ROWVAL
;
1423 /* If there is a vector IN term - e.g. "(a, b) IN (SELECT ...)" - create
1424 ** a virtual term for each vector component. The expression object
1425 ** used by each such virtual term is pExpr (the full vector IN(...)
1426 ** expression). The WhereTerm.u.x.iField variable identifies the index within
1427 ** the vector on the LHS that the virtual term represents.
1429 ** This only works if the RHS is a simple SELECT (not a compound) that does
1430 ** not use window functions.
1432 else if( pExpr
->op
==TK_IN
1433 && pTerm
->u
.x
.iField
==0
1434 && pExpr
->pLeft
->op
==TK_VECTOR
1435 && ALWAYS( ExprUseXSelect(pExpr
) )
1436 && pExpr
->x
.pSelect
->pPrior
==0
1437 #ifndef SQLITE_OMIT_WINDOWFUNC
1438 && pExpr
->x
.pSelect
->pWin
==0
1443 for(i
=0; i
<sqlite3ExprVectorSize(pExpr
->pLeft
); i
++){
1445 idxNew
= whereClauseInsert(pWC
, pExpr
, TERM_VIRTUAL
|TERM_SLICE
);
1446 pWC
->a
[idxNew
].u
.x
.iField
= i
+1;
1447 exprAnalyze(pSrc
, pWC
, idxNew
);
1448 markTermAsChild(pWC
, idxNew
, idxTerm
);
1452 #ifndef SQLITE_OMIT_VIRTUALTABLE
1453 /* Add a WO_AUX auxiliary term to the constraint set if the
1454 ** current expression is of the form "column OP expr" where OP
1455 ** is an operator that gets passed into virtual tables but which is
1456 ** not normally optimized for ordinary tables. In other words, OP
1457 ** is one of MATCH, LIKE, GLOB, REGEXP, !=, IS, IS NOT, or NOT NULL.
1458 ** This information is used by the xBestIndex methods of
1459 ** virtual tables. The native query optimizer does not attempt
1460 ** to do anything with MATCH functions.
1462 else if( pWC
->op
==TK_AND
){
1463 Expr
*pRight
= 0, *pLeft
= 0;
1464 int res
= isAuxiliaryVtabOperator(db
, pExpr
, &eOp2
, &pLeft
, &pRight
);
1467 WhereTerm
*pNewTerm
;
1468 Bitmask prereqColumn
, prereqExpr
;
1470 prereqExpr
= sqlite3WhereExprUsage(pMaskSet
, pRight
);
1471 prereqColumn
= sqlite3WhereExprUsage(pMaskSet
, pLeft
);
1472 if( (prereqExpr
& prereqColumn
)==0 ){
1474 pNewExpr
= sqlite3PExpr(pParse
, TK_MATCH
,
1475 0, sqlite3ExprDup(db
, pRight
, 0));
1476 if( ExprHasProperty(pExpr
, EP_OuterON
) && pNewExpr
){
1477 ExprSetProperty(pNewExpr
, EP_OuterON
);
1478 pNewExpr
->w
.iJoin
= pExpr
->w
.iJoin
;
1480 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1481 testcase( idxNew
==0 );
1482 pNewTerm
= &pWC
->a
[idxNew
];
1483 pNewTerm
->prereqRight
= prereqExpr
;
1484 pNewTerm
->leftCursor
= pLeft
->iTable
;
1485 pNewTerm
->u
.x
.leftColumn
= pLeft
->iColumn
;
1486 pNewTerm
->eOperator
= WO_AUX
;
1487 pNewTerm
->eMatchOp
= eOp2
;
1488 markTermAsChild(pWC
, idxNew
, idxTerm
);
1489 pTerm
= &pWC
->a
[idxTerm
];
1490 pTerm
->wtFlags
|= TERM_COPIED
;
1491 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1493 SWAP(Expr
*, pLeft
, pRight
);
1496 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1498 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1499 ** an index for tables to the left of the join.
1501 testcase( pTerm
!=&pWC
->a
[idxTerm
] );
1502 pTerm
= &pWC
->a
[idxTerm
];
1503 pTerm
->prereqRight
|= extraRight
;
1506 /***************************************************************************
1507 ** Routines with file scope above. Interface to the rest of the where.c
1508 ** subsystem follows.
1509 ***************************************************************************/
1512 ** This routine identifies subexpressions in the WHERE clause where
1513 ** each subexpression is separated by the AND operator or some other
1514 ** operator specified in the op parameter. The WhereClause structure
1515 ** is filled with pointers to subexpressions. For example:
1517 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
1518 ** \________/ \_______________/ \________________/
1519 ** slot[0] slot[1] slot[2]
1521 ** The original WHERE clause in pExpr is unaltered. All this routine
1522 ** does is make slot[] entries point to substructure within pExpr.
1524 ** In the previous sentence and in the diagram, "slot[]" refers to
1525 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
1526 ** all terms of the WHERE clause.
1528 void sqlite3WhereSplit(WhereClause
*pWC
, Expr
*pExpr
, u8 op
){
1529 Expr
*pE2
= sqlite3ExprSkipCollateAndLikely(pExpr
);
1531 assert( pE2
!=0 || pExpr
==0 );
1532 if( pE2
==0 ) return;
1534 whereClauseInsert(pWC
, pExpr
, 0);
1536 sqlite3WhereSplit(pWC
, pE2
->pLeft
, op
);
1537 sqlite3WhereSplit(pWC
, pE2
->pRight
, op
);
1542 ** Add either a LIMIT (if eMatchOp==SQLITE_INDEX_CONSTRAINT_LIMIT) or
1543 ** OFFSET (if eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET) term to the
1544 ** where-clause passed as the first argument. The value for the term
1545 ** is found in register iReg.
1547 ** In the common case where the value is a simple integer
1548 ** (example: "LIMIT 5 OFFSET 10") then the expression codes as a
1549 ** TK_INTEGER so that it will be available to sqlite3_vtab_rhs_value().
1550 ** If not, then it codes as a TK_REGISTER expression.
1552 static void whereAddLimitExpr(
1553 WhereClause
*pWC
, /* Add the constraint to this WHERE clause */
1554 int iReg
, /* Register that will hold value of the limit/offset */
1555 Expr
*pExpr
, /* Expression that defines the limit/offset */
1556 int iCsr
, /* Cursor to which the constraint applies */
1557 int eMatchOp
/* SQLITE_INDEX_CONSTRAINT_LIMIT or _OFFSET */
1559 Parse
*pParse
= pWC
->pWInfo
->pParse
;
1560 sqlite3
*db
= pParse
->db
;
1564 if( sqlite3ExprIsInteger(pExpr
, &iVal
) && iVal
>=0 ){
1565 Expr
*pVal
= sqlite3Expr(db
, TK_INTEGER
, 0);
1566 if( pVal
==0 ) return;
1567 ExprSetProperty(pVal
, EP_IntValue
);
1568 pVal
->u
.iValue
= iVal
;
1569 pNew
= sqlite3PExpr(pParse
, TK_MATCH
, 0, pVal
);
1571 Expr
*pVal
= sqlite3Expr(db
, TK_REGISTER
, 0);
1572 if( pVal
==0 ) return;
1573 pVal
->iTable
= iReg
;
1574 pNew
= sqlite3PExpr(pParse
, TK_MATCH
, 0, pVal
);
1579 idx
= whereClauseInsert(pWC
, pNew
, TERM_DYNAMIC
|TERM_VIRTUAL
);
1580 pTerm
= &pWC
->a
[idx
];
1581 pTerm
->leftCursor
= iCsr
;
1582 pTerm
->eOperator
= WO_AUX
;
1583 pTerm
->eMatchOp
= eMatchOp
;
1588 ** Possibly add terms corresponding to the LIMIT and OFFSET clauses of the
1589 ** SELECT statement passed as the second argument. These terms are only
1592 ** 1. The SELECT statement has a LIMIT clause, and
1593 ** 2. The SELECT statement is not an aggregate or DISTINCT query, and
1594 ** 3. The SELECT statement has exactly one object in its from clause, and
1595 ** that object is a virtual table, and
1596 ** 4. There are no terms in the WHERE clause that will not be passed
1597 ** to the virtual table xBestIndex method.
1598 ** 5. The ORDER BY clause, if any, will be made available to the xBestIndex
1601 ** LIMIT and OFFSET terms are ignored by most of the planner code. They
1602 ** exist only so that they may be passed to the xBestIndex method of the
1603 ** single virtual table in the FROM clause of the SELECT.
1605 void sqlite3WhereAddLimit(WhereClause
*pWC
, Select
*p
){
1606 assert( p
==0 || (p
->pGroupBy
==0 && (p
->selFlags
& SF_Aggregate
)==0) );
1607 if( (p
&& p
->pLimit
) /* 1 */
1608 && (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==0 /* 2 */
1609 && (p
->pSrc
->nSrc
==1 && IsVirtual(p
->pSrc
->a
[0].pTab
)) /* 3 */
1611 ExprList
*pOrderBy
= p
->pOrderBy
;
1612 int iCsr
= p
->pSrc
->a
[0].iCursor
;
1615 /* Check condition (4). Return early if it is not met. */
1616 for(ii
=0; ii
<pWC
->nTerm
; ii
++){
1617 if( pWC
->a
[ii
].wtFlags
& TERM_CODED
){
1618 /* This term is a vector operation that has been decomposed into
1619 ** other, subsequent terms. It can be ignored. See tag-20220128a */
1620 assert( pWC
->a
[ii
].wtFlags
& TERM_VIRTUAL
);
1621 assert( pWC
->a
[ii
].eOperator
==WO_ROWVAL
);
1624 if( pWC
->a
[ii
].leftCursor
!=iCsr
) return;
1627 /* Check condition (5). Return early if it is not met. */
1629 for(ii
=0; ii
<pOrderBy
->nExpr
; ii
++){
1630 Expr
*pExpr
= pOrderBy
->a
[ii
].pExpr
;
1631 if( pExpr
->op
!=TK_COLUMN
) return;
1632 if( pExpr
->iTable
!=iCsr
) return;
1633 if( pOrderBy
->a
[ii
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) return;
1637 /* All conditions are met. Add the terms to the where-clause object. */
1638 assert( p
->pLimit
->op
==TK_LIMIT
);
1639 whereAddLimitExpr(pWC
, p
->iLimit
, p
->pLimit
->pLeft
,
1640 iCsr
, SQLITE_INDEX_CONSTRAINT_LIMIT
);
1642 whereAddLimitExpr(pWC
, p
->iOffset
, p
->pLimit
->pRight
,
1643 iCsr
, SQLITE_INDEX_CONSTRAINT_OFFSET
);
1649 ** Initialize a preallocated WhereClause structure.
1651 void sqlite3WhereClauseInit(
1652 WhereClause
*pWC
, /* The WhereClause to be initialized */
1653 WhereInfo
*pWInfo
/* The WHERE processing context */
1655 pWC
->pWInfo
= pWInfo
;
1660 pWC
->nSlot
= ArraySize(pWC
->aStatic
);
1661 pWC
->a
= pWC
->aStatic
;
1665 ** Deallocate a WhereClause structure. The WhereClause structure
1666 ** itself is not freed. This routine is the inverse of
1667 ** sqlite3WhereClauseInit().
1669 void sqlite3WhereClauseClear(WhereClause
*pWC
){
1670 sqlite3
*db
= pWC
->pWInfo
->pParse
->db
;
1671 assert( pWC
->nTerm
>=pWC
->nBase
);
1673 WhereTerm
*a
= pWC
->a
;
1674 WhereTerm
*aLast
= &pWC
->a
[pWC
->nTerm
-1];
1677 /* Verify that every term past pWC->nBase is virtual */
1678 for(i
=pWC
->nBase
; i
<pWC
->nTerm
; i
++){
1679 assert( (pWC
->a
[i
].wtFlags
& TERM_VIRTUAL
)!=0 );
1683 assert( a
->eMatchOp
==0 || a
->eOperator
==WO_AUX
);
1684 if( a
->wtFlags
& TERM_DYNAMIC
){
1685 sqlite3ExprDelete(db
, a
->pExpr
);
1687 if( a
->wtFlags
& (TERM_ORINFO
|TERM_ANDINFO
) ){
1688 if( a
->wtFlags
& TERM_ORINFO
){
1689 assert( (a
->wtFlags
& TERM_ANDINFO
)==0 );
1690 whereOrInfoDelete(db
, a
->u
.pOrInfo
);
1692 assert( (a
->wtFlags
& TERM_ANDINFO
)!=0 );
1693 whereAndInfoDelete(db
, a
->u
.pAndInfo
);
1696 if( a
==aLast
) break;
1704 ** These routines walk (recursively) an expression tree and generate
1705 ** a bitmask indicating which tables are used in that expression
1708 ** sqlite3WhereExprUsage(MaskSet, Expr) ->
1710 ** Return a Bitmask of all tables referenced by Expr. Expr can be
1711 ** be NULL, in which case 0 is returned.
1713 ** sqlite3WhereExprUsageNN(MaskSet, Expr) ->
1715 ** Same as sqlite3WhereExprUsage() except that Expr must not be
1716 ** NULL. The "NN" suffix on the name stands for "Not Null".
1718 ** sqlite3WhereExprListUsage(MaskSet, ExprList) ->
1720 ** Return a Bitmask of all tables referenced by every expression
1721 ** in the expression list ExprList. ExprList can be NULL, in which
1722 ** case 0 is returned.
1724 ** sqlite3WhereExprUsageFull(MaskSet, ExprList) ->
1726 ** Internal use only. Called only by sqlite3WhereExprUsageNN() for
1727 ** complex expressions that require pushing register values onto
1728 ** the stack. Many calls to sqlite3WhereExprUsageNN() do not need
1729 ** the more complex analysis done by this routine. Hence, the
1730 ** computations done by this routine are broken out into a separate
1731 ** "no-inline" function to avoid the stack push overhead in the
1732 ** common case where it is not needed.
1734 static SQLITE_NOINLINE Bitmask
sqlite3WhereExprUsageFull(
1735 WhereMaskSet
*pMaskSet
,
1739 mask
= (p
->op
==TK_IF_NULL_ROW
) ? sqlite3WhereGetMask(pMaskSet
, p
->iTable
) : 0;
1740 if( p
->pLeft
) mask
|= sqlite3WhereExprUsageNN(pMaskSet
, p
->pLeft
);
1742 mask
|= sqlite3WhereExprUsageNN(pMaskSet
, p
->pRight
);
1743 assert( p
->x
.pList
==0 );
1744 }else if( ExprUseXSelect(p
) ){
1745 if( ExprHasProperty(p
, EP_VarSelect
) ) pMaskSet
->bVarSelect
= 1;
1746 mask
|= exprSelectUsage(pMaskSet
, p
->x
.pSelect
);
1747 }else if( p
->x
.pList
){
1748 mask
|= sqlite3WhereExprListUsage(pMaskSet
, p
->x
.pList
);
1750 #ifndef SQLITE_OMIT_WINDOWFUNC
1751 if( (p
->op
==TK_FUNCTION
|| p
->op
==TK_AGG_FUNCTION
) && ExprUseYWin(p
) ){
1752 assert( p
->y
.pWin
!=0 );
1753 mask
|= sqlite3WhereExprListUsage(pMaskSet
, p
->y
.pWin
->pPartition
);
1754 mask
|= sqlite3WhereExprListUsage(pMaskSet
, p
->y
.pWin
->pOrderBy
);
1755 mask
|= sqlite3WhereExprUsage(pMaskSet
, p
->y
.pWin
->pFilter
);
1760 Bitmask
sqlite3WhereExprUsageNN(WhereMaskSet
*pMaskSet
, Expr
*p
){
1761 if( p
->op
==TK_COLUMN
&& !ExprHasProperty(p
, EP_FixedCol
) ){
1762 return sqlite3WhereGetMask(pMaskSet
, p
->iTable
);
1763 }else if( ExprHasProperty(p
, EP_TokenOnly
|EP_Leaf
) ){
1764 assert( p
->op
!=TK_IF_NULL_ROW
);
1767 return sqlite3WhereExprUsageFull(pMaskSet
, p
);
1769 Bitmask
sqlite3WhereExprUsage(WhereMaskSet
*pMaskSet
, Expr
*p
){
1770 return p
? sqlite3WhereExprUsageNN(pMaskSet
,p
) : 0;
1772 Bitmask
sqlite3WhereExprListUsage(WhereMaskSet
*pMaskSet
, ExprList
*pList
){
1776 for(i
=0; i
<pList
->nExpr
; i
++){
1777 mask
|= sqlite3WhereExprUsage(pMaskSet
, pList
->a
[i
].pExpr
);
1785 ** Call exprAnalyze on all terms in a WHERE clause.
1787 ** Note that exprAnalyze() might add new virtual terms onto the
1788 ** end of the WHERE clause. We do not want to analyze these new
1789 ** virtual terms, so start analyzing at the end and work forward
1790 ** so that the added virtual terms are never processed.
1792 void sqlite3WhereExprAnalyze(
1793 SrcList
*pTabList
, /* the FROM clause */
1794 WhereClause
*pWC
/* the WHERE clause to be analyzed */
1797 for(i
=pWC
->nTerm
-1; i
>=0; i
--){
1798 exprAnalyze(pTabList
, pWC
, i
);
1803 ** For table-valued-functions, transform the function arguments into
1804 ** new WHERE clause terms.
1806 ** Each function argument translates into an equality constraint against
1807 ** a HIDDEN column in the table.
1809 void sqlite3WhereTabFuncArgs(
1810 Parse
*pParse
, /* Parsing context */
1811 SrcItem
*pItem
, /* The FROM clause term to process */
1812 WhereClause
*pWC
/* Xfer function arguments to here */
1819 if( pItem
->fg
.isTabFunc
==0 ) return;
1822 pArgs
= pItem
->u1
.pFuncArg
;
1823 if( pArgs
==0 ) return;
1824 for(j
=k
=0; j
<pArgs
->nExpr
; j
++){
1827 while( k
<pTab
->nCol
&& (pTab
->aCol
[k
].colFlags
& COLFLAG_HIDDEN
)==0 ){k
++;}
1828 if( k
>=pTab
->nCol
){
1829 sqlite3ErrorMsg(pParse
, "too many arguments on %s() - max %d",
1833 pColRef
= sqlite3ExprAlloc(pParse
->db
, TK_COLUMN
, 0, 0);
1834 if( pColRef
==0 ) return;
1835 pColRef
->iTable
= pItem
->iCursor
;
1836 pColRef
->iColumn
= k
++;
1837 assert( ExprUseYTab(pColRef
) );
1838 pColRef
->y
.pTab
= pTab
;
1839 pItem
->colUsed
|= sqlite3ExprColUsed(pColRef
);
1840 pRhs
= sqlite3PExpr(pParse
, TK_UPLUS
,
1841 sqlite3ExprDup(pParse
->db
, pArgs
->a
[j
].pExpr
, 0), 0);
1842 pTerm
= sqlite3PExpr(pParse
, TK_EQ
, pColRef
, pRhs
);
1843 if( pItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
) ){
1844 joinType
= EP_OuterON
;
1846 joinType
= EP_InnerON
;
1848 sqlite3SetJoinExpr(pTerm
, pItem
->iCursor
, joinType
);
1849 whereClauseInsert(pWC
, pTerm
, TERM_DYNAMIC
);