5 ** The author disclaims copyright to this source code. In place of
6 ** a legal notice, here is a blessing:
8 ** May you do good and not evil.
9 ** May you find forgiveness for yourself and forgive others.
10 ** May you share freely, never taking more than you give.
12 *************************************************************************
13 ** This file implements an external (disk-based) database using BTrees.
14 ** See the header comment on "btreeInt.h" for additional information.
15 ** Including a description of file format and an overview of operation.
20 ** The header string that appears at the beginning of every
23 static const char zMagicHeader
[] = SQLITE_FILE_HEADER
;
26 ** Set this global variable to 1 to enable tracing using the TRACE
30 int sqlite3BtreeTrace
=1; /* True to enable tracing */
31 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
37 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
38 ** But if the value is zero, make it 65536.
40 ** This routine is used to extract the "offset to cell content area" value
41 ** from the header of a btree page. If the page size is 65536 and the page
42 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
43 ** This routine makes the necessary adjustment to 65536.
45 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
48 ** Values passed as the 5th argument to allocateBtreePage()
50 #define BTALLOC_ANY 0 /* Allocate any page */
51 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
52 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
55 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
56 ** defined, or 0 if it is. For example:
58 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
60 #ifndef SQLITE_OMIT_AUTOVACUUM
61 #define IfNotOmitAV(expr) (expr)
63 #define IfNotOmitAV(expr) 0
66 #ifndef SQLITE_OMIT_SHARED_CACHE
68 ** A list of BtShared objects that are eligible for participation
69 ** in shared cache. This variable has file scope during normal builds,
70 ** but the test harness needs to access it so we make it global for
73 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
76 BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
78 static BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
80 #endif /* SQLITE_OMIT_SHARED_CACHE */
82 #ifndef SQLITE_OMIT_SHARED_CACHE
84 ** Enable or disable the shared pager and schema features.
86 ** This routine has no effect on existing database connections.
87 ** The shared cache setting effects only future calls to
88 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
90 int sqlite3_enable_shared_cache(int enable
){
91 sqlite3GlobalConfig
.sharedCacheEnabled
= enable
;
98 #ifdef SQLITE_OMIT_SHARED_CACHE
100 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
101 ** and clearAllSharedCacheTableLocks()
102 ** manipulate entries in the BtShared.pLock linked list used to store
103 ** shared-cache table level locks. If the library is compiled with the
104 ** shared-cache feature disabled, then there is only ever one user
105 ** of each BtShared structure and so this locking is not necessary.
106 ** So define the lock related functions as no-ops.
108 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
109 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
110 #define clearAllSharedCacheTableLocks(a)
111 #define downgradeAllSharedCacheTableLocks(a)
112 #define hasSharedCacheTableLock(a,b,c,d) 1
113 #define hasReadConflicts(a, b) 0
118 ** Return and reset the seek counter for a Btree object.
120 sqlite3_uint64
sqlite3BtreeSeekCount(Btree
*pBt
){
128 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
129 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
131 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
132 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
133 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
134 ** with the page number and filename associated with the (MemPage*).
137 int corruptPageError(int lineno
, MemPage
*p
){
139 sqlite3BeginBenignMalloc();
140 zMsg
= sqlite3_mprintf("database corruption page %u of %s",
141 p
->pgno
, sqlite3PagerFilename(p
->pBt
->pPager
, 0)
143 sqlite3EndBenignMalloc();
145 sqlite3ReportError(SQLITE_CORRUPT
, lineno
, zMsg
);
148 return SQLITE_CORRUPT_BKPT
;
150 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
152 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
155 #ifndef SQLITE_OMIT_SHARED_CACHE
159 **** This function is only used as part of an assert() statement. ***
161 ** Check to see if pBtree holds the required locks to read or write to the
162 ** table with root page iRoot. Return 1 if it does and 0 if not.
164 ** For example, when writing to a table with root-page iRoot via
165 ** Btree connection pBtree:
167 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
169 ** When writing to an index that resides in a sharable database, the
170 ** caller should have first obtained a lock specifying the root page of
171 ** the corresponding table. This makes things a bit more complicated,
172 ** as this module treats each table as a separate structure. To determine
173 ** the table corresponding to the index being written, this
174 ** function has to search through the database schema.
176 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
177 ** hold a write-lock on the schema table (root page 1). This is also
180 static int hasSharedCacheTableLock(
181 Btree
*pBtree
, /* Handle that must hold lock */
182 Pgno iRoot
, /* Root page of b-tree */
183 int isIndex
, /* True if iRoot is the root of an index b-tree */
184 int eLockType
/* Required lock type (READ_LOCK or WRITE_LOCK) */
186 Schema
*pSchema
= (Schema
*)pBtree
->pBt
->pSchema
;
190 /* If this database is not shareable, or if the client is reading
191 ** and has the read-uncommitted flag set, then no lock is required.
192 ** Return true immediately.
194 if( (pBtree
->sharable
==0)
195 || (eLockType
==READ_LOCK
&& (pBtree
->db
->flags
& SQLITE_ReadUncommit
))
200 /* If the client is reading or writing an index and the schema is
201 ** not loaded, then it is too difficult to actually check to see if
202 ** the correct locks are held. So do not bother - just return true.
203 ** This case does not come up very often anyhow.
205 if( isIndex
&& (!pSchema
|| (pSchema
->schemaFlags
&DB_SchemaLoaded
)==0) ){
209 /* Figure out the root-page that the lock should be held on. For table
210 ** b-trees, this is just the root page of the b-tree being read or
211 ** written. For index b-trees, it is the root page of the associated
216 for(p
=sqliteHashFirst(&pSchema
->idxHash
); p
; p
=sqliteHashNext(p
)){
217 Index
*pIdx
= (Index
*)sqliteHashData(p
);
218 if( pIdx
->tnum
==iRoot
){
220 /* Two or more indexes share the same root page. There must
221 ** be imposter tables. So just return true. The assert is not
222 ** useful in that case. */
225 iTab
= pIdx
->pTable
->tnum
;
233 /* Search for the required lock. Either a write-lock on root-page iTab, a
234 ** write-lock on the schema table, or (if the client is reading) a
235 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
236 for(pLock
=pBtree
->pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
237 if( pLock
->pBtree
==pBtree
238 && (pLock
->iTable
==iTab
|| (pLock
->eLock
==WRITE_LOCK
&& pLock
->iTable
==1))
239 && pLock
->eLock
>=eLockType
245 /* Failed to find the required lock. */
248 #endif /* SQLITE_DEBUG */
252 **** This function may be used as part of assert() statements only. ****
254 ** Return true if it would be illegal for pBtree to write into the
255 ** table or index rooted at iRoot because other shared connections are
256 ** simultaneously reading that same table or index.
258 ** It is illegal for pBtree to write if some other Btree object that
259 ** shares the same BtShared object is currently reading or writing
260 ** the iRoot table. Except, if the other Btree object has the
261 ** read-uncommitted flag set, then it is OK for the other object to
262 ** have a read cursor.
264 ** For example, before writing to any part of the table or index
265 ** rooted at page iRoot, one should call:
267 ** assert( !hasReadConflicts(pBtree, iRoot) );
269 static int hasReadConflicts(Btree
*pBtree
, Pgno iRoot
){
271 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
272 if( p
->pgnoRoot
==iRoot
274 && 0==(p
->pBtree
->db
->flags
& SQLITE_ReadUncommit
)
281 #endif /* #ifdef SQLITE_DEBUG */
284 ** Query to see if Btree handle p may obtain a lock of type eLock
285 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
286 ** SQLITE_OK if the lock may be obtained (by calling
287 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
289 static int querySharedCacheTableLock(Btree
*p
, Pgno iTab
, u8 eLock
){
290 BtShared
*pBt
= p
->pBt
;
293 assert( sqlite3BtreeHoldsMutex(p
) );
294 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
296 assert( !(p
->db
->flags
&SQLITE_ReadUncommit
)||eLock
==WRITE_LOCK
||iTab
==1 );
298 /* If requesting a write-lock, then the Btree must have an open write
299 ** transaction on this file. And, obviously, for this to be so there
300 ** must be an open write transaction on the file itself.
302 assert( eLock
==READ_LOCK
|| (p
==pBt
->pWriter
&& p
->inTrans
==TRANS_WRITE
) );
303 assert( eLock
==READ_LOCK
|| pBt
->inTransaction
==TRANS_WRITE
);
305 /* This routine is a no-op if the shared-cache is not enabled */
310 /* If some other connection is holding an exclusive lock, the
311 ** requested lock may not be obtained.
313 if( pBt
->pWriter
!=p
&& (pBt
->btsFlags
& BTS_EXCLUSIVE
)!=0 ){
314 sqlite3ConnectionBlocked(p
->db
, pBt
->pWriter
->db
);
315 return SQLITE_LOCKED_SHAREDCACHE
;
318 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
319 /* The condition (pIter->eLock!=eLock) in the following if(...)
320 ** statement is a simplification of:
322 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
324 ** since we know that if eLock==WRITE_LOCK, then no other connection
325 ** may hold a WRITE_LOCK on any table in this file (since there can
326 ** only be a single writer).
328 assert( pIter
->eLock
==READ_LOCK
|| pIter
->eLock
==WRITE_LOCK
);
329 assert( eLock
==READ_LOCK
|| pIter
->pBtree
==p
|| pIter
->eLock
==READ_LOCK
);
330 if( pIter
->pBtree
!=p
&& pIter
->iTable
==iTab
&& pIter
->eLock
!=eLock
){
331 sqlite3ConnectionBlocked(p
->db
, pIter
->pBtree
->db
);
332 if( eLock
==WRITE_LOCK
){
333 assert( p
==pBt
->pWriter
);
334 pBt
->btsFlags
|= BTS_PENDING
;
336 return SQLITE_LOCKED_SHAREDCACHE
;
341 #endif /* !SQLITE_OMIT_SHARED_CACHE */
343 #ifndef SQLITE_OMIT_SHARED_CACHE
345 ** Add a lock on the table with root-page iTable to the shared-btree used
346 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
349 ** This function assumes the following:
351 ** (a) The specified Btree object p is connected to a sharable
352 ** database (one with the BtShared.sharable flag set), and
354 ** (b) No other Btree objects hold a lock that conflicts
355 ** with the requested lock (i.e. querySharedCacheTableLock() has
356 ** already been called and returned SQLITE_OK).
358 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
359 ** is returned if a malloc attempt fails.
361 static int setSharedCacheTableLock(Btree
*p
, Pgno iTable
, u8 eLock
){
362 BtShared
*pBt
= p
->pBt
;
366 assert( sqlite3BtreeHoldsMutex(p
) );
367 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
370 /* A connection with the read-uncommitted flag set will never try to
371 ** obtain a read-lock using this function. The only read-lock obtained
372 ** by a connection in read-uncommitted mode is on the sqlite_schema
373 ** table, and that lock is obtained in BtreeBeginTrans(). */
374 assert( 0==(p
->db
->flags
&SQLITE_ReadUncommit
) || eLock
==WRITE_LOCK
);
376 /* This function should only be called on a sharable b-tree after it
377 ** has been determined that no other b-tree holds a conflicting lock. */
378 assert( p
->sharable
);
379 assert( SQLITE_OK
==querySharedCacheTableLock(p
, iTable
, eLock
) );
381 /* First search the list for an existing lock on this table. */
382 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
383 if( pIter
->iTable
==iTable
&& pIter
->pBtree
==p
){
389 /* If the above search did not find a BtLock struct associating Btree p
390 ** with table iTable, allocate one and link it into the list.
393 pLock
= (BtLock
*)sqlite3MallocZero(sizeof(BtLock
));
395 return SQLITE_NOMEM_BKPT
;
397 pLock
->iTable
= iTable
;
399 pLock
->pNext
= pBt
->pLock
;
403 /* Set the BtLock.eLock variable to the maximum of the current lock
404 ** and the requested lock. This means if a write-lock was already held
405 ** and a read-lock requested, we don't incorrectly downgrade the lock.
407 assert( WRITE_LOCK
>READ_LOCK
);
408 if( eLock
>pLock
->eLock
){
409 pLock
->eLock
= eLock
;
414 #endif /* !SQLITE_OMIT_SHARED_CACHE */
416 #ifndef SQLITE_OMIT_SHARED_CACHE
418 ** Release all the table locks (locks obtained via calls to
419 ** the setSharedCacheTableLock() procedure) held by Btree object p.
421 ** This function assumes that Btree p has an open read or write
422 ** transaction. If it does not, then the BTS_PENDING flag
423 ** may be incorrectly cleared.
425 static void clearAllSharedCacheTableLocks(Btree
*p
){
426 BtShared
*pBt
= p
->pBt
;
427 BtLock
**ppIter
= &pBt
->pLock
;
429 assert( sqlite3BtreeHoldsMutex(p
) );
430 assert( p
->sharable
|| 0==*ppIter
);
431 assert( p
->inTrans
>0 );
434 BtLock
*pLock
= *ppIter
;
435 assert( (pBt
->btsFlags
& BTS_EXCLUSIVE
)==0 || pBt
->pWriter
==pLock
->pBtree
);
436 assert( pLock
->pBtree
->inTrans
>=pLock
->eLock
);
437 if( pLock
->pBtree
==p
){
438 *ppIter
= pLock
->pNext
;
439 assert( pLock
->iTable
!=1 || pLock
==&p
->lock
);
440 if( pLock
->iTable
!=1 ){
444 ppIter
= &pLock
->pNext
;
448 assert( (pBt
->btsFlags
& BTS_PENDING
)==0 || pBt
->pWriter
);
449 if( pBt
->pWriter
==p
){
451 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
452 }else if( pBt
->nTransaction
==2 ){
453 /* This function is called when Btree p is concluding its
454 ** transaction. If there currently exists a writer, and p is not
455 ** that writer, then the number of locks held by connections other
456 ** than the writer must be about to drop to zero. In this case
457 ** set the BTS_PENDING flag to 0.
459 ** If there is not currently a writer, then BTS_PENDING must
460 ** be zero already. So this next line is harmless in that case.
462 pBt
->btsFlags
&= ~BTS_PENDING
;
467 ** This function changes all write-locks held by Btree p into read-locks.
469 static void downgradeAllSharedCacheTableLocks(Btree
*p
){
470 BtShared
*pBt
= p
->pBt
;
471 if( pBt
->pWriter
==p
){
474 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
475 for(pLock
=pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
476 assert( pLock
->eLock
==READ_LOCK
|| pLock
->pBtree
==p
);
477 pLock
->eLock
= READ_LOCK
;
482 #endif /* SQLITE_OMIT_SHARED_CACHE */
484 static void releasePage(MemPage
*pPage
); /* Forward reference */
485 static void releasePageOne(MemPage
*pPage
); /* Forward reference */
486 static void releasePageNotNull(MemPage
*pPage
); /* Forward reference */
489 ***** This routine is used inside of assert() only ****
491 ** Verify that the cursor holds the mutex on its BtShared
494 static int cursorHoldsMutex(BtCursor
*p
){
495 return sqlite3_mutex_held(p
->pBt
->mutex
);
498 /* Verify that the cursor and the BtShared agree about what is the current
499 ** database connetion. This is important in shared-cache mode. If the database
500 ** connection pointers get out-of-sync, it is possible for routines like
501 ** btreeInitPage() to reference an stale connection pointer that references a
502 ** a connection that has already closed. This routine is used inside assert()
503 ** statements only and for the purpose of double-checking that the btree code
504 ** does keep the database connection pointers up-to-date.
506 static int cursorOwnsBtShared(BtCursor
*p
){
507 assert( cursorHoldsMutex(p
) );
508 return (p
->pBtree
->db
==p
->pBt
->db
);
513 ** Invalidate the overflow cache of the cursor passed as the first argument.
514 ** on the shared btree structure pBt.
516 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
519 ** Invalidate the overflow page-list cache for all cursors opened
520 ** on the shared btree structure pBt.
522 static void invalidateAllOverflowCache(BtShared
*pBt
){
524 assert( sqlite3_mutex_held(pBt
->mutex
) );
525 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
526 invalidateOverflowCache(p
);
530 #ifndef SQLITE_OMIT_INCRBLOB
532 ** This function is called before modifying the contents of a table
533 ** to invalidate any incrblob cursors that are open on the
534 ** row or one of the rows being modified.
536 ** If argument isClearTable is true, then the entire contents of the
537 ** table is about to be deleted. In this case invalidate all incrblob
538 ** cursors open on any row within the table with root-page pgnoRoot.
540 ** Otherwise, if argument isClearTable is false, then the row with
541 ** rowid iRow is being replaced or deleted. In this case invalidate
542 ** only those incrblob cursors open on that specific row.
544 static void invalidateIncrblobCursors(
545 Btree
*pBtree
, /* The database file to check */
546 Pgno pgnoRoot
, /* The table that might be changing */
547 i64 iRow
, /* The rowid that might be changing */
548 int isClearTable
/* True if all rows are being deleted */
551 assert( pBtree
->hasIncrblobCur
);
552 assert( sqlite3BtreeHoldsMutex(pBtree
) );
553 pBtree
->hasIncrblobCur
= 0;
554 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
555 if( (p
->curFlags
& BTCF_Incrblob
)!=0 ){
556 pBtree
->hasIncrblobCur
= 1;
557 if( p
->pgnoRoot
==pgnoRoot
&& (isClearTable
|| p
->info
.nKey
==iRow
) ){
558 p
->eState
= CURSOR_INVALID
;
565 /* Stub function when INCRBLOB is omitted */
566 #define invalidateIncrblobCursors(w,x,y,z)
567 #endif /* SQLITE_OMIT_INCRBLOB */
570 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
571 ** when a page that previously contained data becomes a free-list leaf
574 ** The BtShared.pHasContent bitvec exists to work around an obscure
575 ** bug caused by the interaction of two useful IO optimizations surrounding
576 ** free-list leaf pages:
578 ** 1) When all data is deleted from a page and the page becomes
579 ** a free-list leaf page, the page is not written to the database
580 ** (as free-list leaf pages contain no meaningful data). Sometimes
581 ** such a page is not even journalled (as it will not be modified,
582 ** why bother journalling it?).
584 ** 2) When a free-list leaf page is reused, its content is not read
585 ** from the database or written to the journal file (why should it
586 ** be, if it is not at all meaningful?).
588 ** By themselves, these optimizations work fine and provide a handy
589 ** performance boost to bulk delete or insert operations. However, if
590 ** a page is moved to the free-list and then reused within the same
591 ** transaction, a problem comes up. If the page is not journalled when
592 ** it is moved to the free-list and it is also not journalled when it
593 ** is extracted from the free-list and reused, then the original data
594 ** may be lost. In the event of a rollback, it may not be possible
595 ** to restore the database to its original configuration.
597 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
598 ** moved to become a free-list leaf page, the corresponding bit is
599 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
600 ** optimization 2 above is omitted if the corresponding bit is already
601 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
602 ** at the end of every transaction.
604 static int btreeSetHasContent(BtShared
*pBt
, Pgno pgno
){
606 if( !pBt
->pHasContent
){
607 assert( pgno
<=pBt
->nPage
);
608 pBt
->pHasContent
= sqlite3BitvecCreate(pBt
->nPage
);
609 if( !pBt
->pHasContent
){
610 rc
= SQLITE_NOMEM_BKPT
;
613 if( rc
==SQLITE_OK
&& pgno
<=sqlite3BitvecSize(pBt
->pHasContent
) ){
614 rc
= sqlite3BitvecSet(pBt
->pHasContent
, pgno
);
620 ** Query the BtShared.pHasContent vector.
622 ** This function is called when a free-list leaf page is removed from the
623 ** free-list for reuse. It returns false if it is safe to retrieve the
624 ** page from the pager layer with the 'no-content' flag set. True otherwise.
626 static int btreeGetHasContent(BtShared
*pBt
, Pgno pgno
){
627 Bitvec
*p
= pBt
->pHasContent
;
628 return p
&& (pgno
>sqlite3BitvecSize(p
) || sqlite3BitvecTestNotNull(p
, pgno
));
632 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
633 ** invoked at the conclusion of each write-transaction.
635 static void btreeClearHasContent(BtShared
*pBt
){
636 sqlite3BitvecDestroy(pBt
->pHasContent
);
637 pBt
->pHasContent
= 0;
641 ** Release all of the apPage[] pages for a cursor.
643 static void btreeReleaseAllCursorPages(BtCursor
*pCur
){
645 if( pCur
->iPage
>=0 ){
646 for(i
=0; i
<pCur
->iPage
; i
++){
647 releasePageNotNull(pCur
->apPage
[i
]);
649 releasePageNotNull(pCur
->pPage
);
655 ** The cursor passed as the only argument must point to a valid entry
656 ** when this function is called (i.e. have eState==CURSOR_VALID). This
657 ** function saves the current cursor key in variables pCur->nKey and
658 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
661 ** If the cursor is open on an intkey table, then the integer key
662 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
663 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
664 ** set to point to a malloced buffer pCur->nKey bytes in size containing
667 static int saveCursorKey(BtCursor
*pCur
){
669 assert( CURSOR_VALID
==pCur
->eState
);
670 assert( 0==pCur
->pKey
);
671 assert( cursorHoldsMutex(pCur
) );
673 if( pCur
->curIntKey
){
674 /* Only the rowid is required for a table btree */
675 pCur
->nKey
= sqlite3BtreeIntegerKey(pCur
);
677 /* For an index btree, save the complete key content. It is possible
678 ** that the current key is corrupt. In that case, it is possible that
679 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
680 ** up to the size of 1 varint plus 1 8-byte value when the cursor
681 ** position is restored. Hence the 17 bytes of padding allocated
684 pCur
->nKey
= sqlite3BtreePayloadSize(pCur
);
685 pKey
= sqlite3Malloc( pCur
->nKey
+ 9 + 8 );
687 rc
= sqlite3BtreePayload(pCur
, 0, (int)pCur
->nKey
, pKey
);
689 memset(((u8
*)pKey
)+pCur
->nKey
, 0, 9+8);
695 rc
= SQLITE_NOMEM_BKPT
;
698 assert( !pCur
->curIntKey
|| !pCur
->pKey
);
703 ** Save the current cursor position in the variables BtCursor.nKey
704 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
706 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
707 ** prior to calling this routine.
709 static int saveCursorPosition(BtCursor
*pCur
){
712 assert( CURSOR_VALID
==pCur
->eState
|| CURSOR_SKIPNEXT
==pCur
->eState
);
713 assert( 0==pCur
->pKey
);
714 assert( cursorHoldsMutex(pCur
) );
716 if( pCur
->curFlags
& BTCF_Pinned
){
717 return SQLITE_CONSTRAINT_PINNED
;
719 if( pCur
->eState
==CURSOR_SKIPNEXT
){
720 pCur
->eState
= CURSOR_VALID
;
725 rc
= saveCursorKey(pCur
);
727 btreeReleaseAllCursorPages(pCur
);
728 pCur
->eState
= CURSOR_REQUIRESEEK
;
731 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
|BTCF_AtLast
);
735 /* Forward reference */
736 static int SQLITE_NOINLINE
saveCursorsOnList(BtCursor
*,Pgno
,BtCursor
*);
739 ** Save the positions of all cursors (except pExcept) that are open on
740 ** the table with root-page iRoot. "Saving the cursor position" means that
741 ** the location in the btree is remembered in such a way that it can be
742 ** moved back to the same spot after the btree has been modified. This
743 ** routine is called just before cursor pExcept is used to modify the
744 ** table, for example in BtreeDelete() or BtreeInsert().
746 ** If there are two or more cursors on the same btree, then all such
747 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
748 ** routine enforces that rule. This routine only needs to be called in
749 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
751 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
752 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
753 ** pointless call to this routine.
755 ** Implementation note: This routine merely checks to see if any cursors
756 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
757 ** event that cursors are in need to being saved.
759 static int saveAllCursors(BtShared
*pBt
, Pgno iRoot
, BtCursor
*pExcept
){
761 assert( sqlite3_mutex_held(pBt
->mutex
) );
762 assert( pExcept
==0 || pExcept
->pBt
==pBt
);
763 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
764 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ) break;
766 if( p
) return saveCursorsOnList(p
, iRoot
, pExcept
);
767 if( pExcept
) pExcept
->curFlags
&= ~BTCF_Multiple
;
771 /* This helper routine to saveAllCursors does the actual work of saving
772 ** the cursors if and when a cursor is found that actually requires saving.
773 ** The common case is that no cursors need to be saved, so this routine is
774 ** broken out from its caller to avoid unnecessary stack pointer movement.
776 static int SQLITE_NOINLINE
saveCursorsOnList(
777 BtCursor
*p
, /* The first cursor that needs saving */
778 Pgno iRoot
, /* Only save cursor with this iRoot. Save all if zero */
779 BtCursor
*pExcept
/* Do not save this cursor */
782 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ){
783 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
784 int rc
= saveCursorPosition(p
);
789 testcase( p
->iPage
>=0 );
790 btreeReleaseAllCursorPages(p
);
799 ** Clear the current cursor position.
801 void sqlite3BtreeClearCursor(BtCursor
*pCur
){
802 assert( cursorHoldsMutex(pCur
) );
803 sqlite3_free(pCur
->pKey
);
805 pCur
->eState
= CURSOR_INVALID
;
809 ** In this version of BtreeMoveto, pKey is a packed index record
810 ** such as is generated by the OP_MakeRecord opcode. Unpack the
811 ** record and then call sqlite3BtreeIndexMoveto() to do the work.
813 static int btreeMoveto(
814 BtCursor
*pCur
, /* Cursor open on the btree to be searched */
815 const void *pKey
, /* Packed key if the btree is an index */
816 i64 nKey
, /* Integer key for tables. Size of pKey for indices */
817 int bias
, /* Bias search to the high end */
818 int *pRes
/* Write search results here */
820 int rc
; /* Status code */
821 UnpackedRecord
*pIdxKey
; /* Unpacked index key */
824 KeyInfo
*pKeyInfo
= pCur
->pKeyInfo
;
825 assert( nKey
==(i64
)(int)nKey
);
826 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
827 if( pIdxKey
==0 ) return SQLITE_NOMEM_BKPT
;
828 sqlite3VdbeRecordUnpack(pKeyInfo
, (int)nKey
, pKey
, pIdxKey
);
829 if( pIdxKey
->nField
==0 || pIdxKey
->nField
>pKeyInfo
->nAllField
){
830 rc
= SQLITE_CORRUPT_BKPT
;
832 rc
= sqlite3BtreeIndexMoveto(pCur
, pIdxKey
, pRes
);
834 sqlite3DbFree(pCur
->pKeyInfo
->db
, pIdxKey
);
837 rc
= sqlite3BtreeTableMoveto(pCur
, nKey
, bias
, pRes
);
843 ** Restore the cursor to the position it was in (or as close to as possible)
844 ** when saveCursorPosition() was called. Note that this call deletes the
845 ** saved position info stored by saveCursorPosition(), so there can be
846 ** at most one effective restoreCursorPosition() call after each
847 ** saveCursorPosition().
849 static int btreeRestoreCursorPosition(BtCursor
*pCur
){
852 assert( cursorOwnsBtShared(pCur
) );
853 assert( pCur
->eState
>=CURSOR_REQUIRESEEK
);
854 if( pCur
->eState
==CURSOR_FAULT
){
855 return pCur
->skipNext
;
857 pCur
->eState
= CURSOR_INVALID
;
858 if( sqlite3FaultSim(410) ){
861 rc
= btreeMoveto(pCur
, pCur
->pKey
, pCur
->nKey
, 0, &skipNext
);
864 sqlite3_free(pCur
->pKey
);
866 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_INVALID
);
867 if( skipNext
) pCur
->skipNext
= skipNext
;
868 if( pCur
->skipNext
&& pCur
->eState
==CURSOR_VALID
){
869 pCur
->eState
= CURSOR_SKIPNEXT
;
875 #define restoreCursorPosition(p) \
876 (p->eState>=CURSOR_REQUIRESEEK ? \
877 btreeRestoreCursorPosition(p) : \
881 ** Determine whether or not a cursor has moved from the position where
882 ** it was last placed, or has been invalidated for any other reason.
883 ** Cursors can move when the row they are pointing at is deleted out
884 ** from under them, for example. Cursor might also move if a btree
887 ** Calling this routine with a NULL cursor pointer returns false.
889 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
890 ** back to where it ought to be if this routine returns true.
892 int sqlite3BtreeCursorHasMoved(BtCursor
*pCur
){
893 assert( EIGHT_BYTE_ALIGNMENT(pCur
)
894 || pCur
==sqlite3BtreeFakeValidCursor() );
895 assert( offsetof(BtCursor
, eState
)==0 );
896 assert( sizeof(pCur
->eState
)==1 );
897 return CURSOR_VALID
!= *(u8
*)pCur
;
901 ** Return a pointer to a fake BtCursor object that will always answer
902 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
903 ** cursor returned must not be used with any other Btree interface.
905 BtCursor
*sqlite3BtreeFakeValidCursor(void){
906 static u8 fakeCursor
= CURSOR_VALID
;
907 assert( offsetof(BtCursor
, eState
)==0 );
908 return (BtCursor
*)&fakeCursor
;
912 ** This routine restores a cursor back to its original position after it
913 ** has been moved by some outside activity (such as a btree rebalance or
914 ** a row having been deleted out from under the cursor).
916 ** On success, the *pDifferentRow parameter is false if the cursor is left
917 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
918 ** was pointing to has been deleted, forcing the cursor to point to some
921 ** This routine should only be called for a cursor that just returned
922 ** TRUE from sqlite3BtreeCursorHasMoved().
924 int sqlite3BtreeCursorRestore(BtCursor
*pCur
, int *pDifferentRow
){
928 assert( pCur
->eState
!=CURSOR_VALID
);
929 rc
= restoreCursorPosition(pCur
);
934 if( pCur
->eState
!=CURSOR_VALID
){
942 #ifdef SQLITE_ENABLE_CURSOR_HINTS
944 ** Provide hints to the cursor. The particular hint given (and the type
945 ** and number of the varargs parameters) is determined by the eHintType
946 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
948 void sqlite3BtreeCursorHint(BtCursor
*pCur
, int eHintType
, ...){
949 /* Used only by system that substitute their own storage engine */
951 if( ALWAYS(eHintType
==BTREE_HINT_RANGE
) ){
955 memset(&w
, 0, sizeof(w
));
956 w
.xExprCallback
= sqlite3CursorRangeHintExprCheck
;
957 va_start(ap
, eHintType
);
958 pExpr
= va_arg(ap
, Expr
*);
959 w
.u
.aMem
= va_arg(ap
, Mem
*);
962 assert( w
.u
.aMem
!=0 );
963 sqlite3WalkExpr(&w
, pExpr
);
965 #endif /* SQLITE_DEBUG */
967 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
971 ** Provide flag hints to the cursor.
973 void sqlite3BtreeCursorHintFlags(BtCursor
*pCur
, unsigned x
){
974 assert( x
==BTREE_SEEK_EQ
|| x
==BTREE_BULKLOAD
|| x
==0 );
979 #ifndef SQLITE_OMIT_AUTOVACUUM
981 ** Given a page number of a regular database page, return the page
982 ** number for the pointer-map page that contains the entry for the
983 ** input page number.
985 ** Return 0 (not a valid page) for pgno==1 since there is
986 ** no pointer map associated with page 1. The integrity_check logic
987 ** requires that ptrmapPageno(*,1)!=1.
989 static Pgno
ptrmapPageno(BtShared
*pBt
, Pgno pgno
){
990 int nPagesPerMapPage
;
992 assert( sqlite3_mutex_held(pBt
->mutex
) );
993 if( pgno
<2 ) return 0;
994 nPagesPerMapPage
= (pBt
->usableSize
/5)+1;
995 iPtrMap
= (pgno
-2)/nPagesPerMapPage
;
996 ret
= (iPtrMap
*nPagesPerMapPage
) + 2;
997 if( ret
==PENDING_BYTE_PAGE(pBt
) ){
1004 ** Write an entry into the pointer map.
1006 ** This routine updates the pointer map entry for page number 'key'
1007 ** so that it maps to type 'eType' and parent page number 'pgno'.
1009 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
1010 ** a no-op. If an error occurs, the appropriate error code is written
1013 static void ptrmapPut(BtShared
*pBt
, Pgno key
, u8 eType
, Pgno parent
, int *pRC
){
1014 DbPage
*pDbPage
; /* The pointer map page */
1015 u8
*pPtrmap
; /* The pointer map data */
1016 Pgno iPtrmap
; /* The pointer map page number */
1017 int offset
; /* Offset in pointer map page */
1018 int rc
; /* Return code from subfunctions */
1022 assert( sqlite3_mutex_held(pBt
->mutex
) );
1023 /* The super-journal page number must never be used as a pointer map page */
1024 assert( 0==PTRMAP_ISPAGE(pBt
, PENDING_BYTE_PAGE(pBt
)) );
1026 assert( pBt
->autoVacuum
);
1028 *pRC
= SQLITE_CORRUPT_BKPT
;
1031 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1032 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1033 if( rc
!=SQLITE_OK
){
1037 if( ((char*)sqlite3PagerGetExtra(pDbPage
))[0]!=0 ){
1038 /* The first byte of the extra data is the MemPage.isInit byte.
1039 ** If that byte is set, it means this page is also being used
1040 ** as a btree page. */
1041 *pRC
= SQLITE_CORRUPT_BKPT
;
1044 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1046 *pRC
= SQLITE_CORRUPT_BKPT
;
1049 assert( offset
<= (int)pBt
->usableSize
-5 );
1050 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1052 if( eType
!=pPtrmap
[offset
] || get4byte(&pPtrmap
[offset
+1])!=parent
){
1053 TRACE(("PTRMAP_UPDATE: %u->(%u,%u)\n", key
, eType
, parent
));
1054 *pRC
= rc
= sqlite3PagerWrite(pDbPage
);
1055 if( rc
==SQLITE_OK
){
1056 pPtrmap
[offset
] = eType
;
1057 put4byte(&pPtrmap
[offset
+1], parent
);
1062 sqlite3PagerUnref(pDbPage
);
1066 ** Read an entry from the pointer map.
1068 ** This routine retrieves the pointer map entry for page 'key', writing
1069 ** the type and parent page number to *pEType and *pPgno respectively.
1070 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1072 static int ptrmapGet(BtShared
*pBt
, Pgno key
, u8
*pEType
, Pgno
*pPgno
){
1073 DbPage
*pDbPage
; /* The pointer map page */
1074 int iPtrmap
; /* Pointer map page index */
1075 u8
*pPtrmap
; /* Pointer map page data */
1076 int offset
; /* Offset of entry in pointer map */
1079 assert( sqlite3_mutex_held(pBt
->mutex
) );
1081 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1082 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1086 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1088 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1090 sqlite3PagerUnref(pDbPage
);
1091 return SQLITE_CORRUPT_BKPT
;
1093 assert( offset
<= (int)pBt
->usableSize
-5 );
1094 assert( pEType
!=0 );
1095 *pEType
= pPtrmap
[offset
];
1096 if( pPgno
) *pPgno
= get4byte(&pPtrmap
[offset
+1]);
1098 sqlite3PagerUnref(pDbPage
);
1099 if( *pEType
<1 || *pEType
>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap
);
1103 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1104 #define ptrmapPut(w,x,y,z,rc)
1105 #define ptrmapGet(w,x,y,z) SQLITE_OK
1106 #define ptrmapPutOvflPtr(x, y, z, rc)
1110 ** Given a btree page and a cell index (0 means the first cell on
1111 ** the page, 1 means the second cell, and so forth) return a pointer
1112 ** to the cell content.
1114 ** findCellPastPtr() does the same except it skips past the initial
1115 ** 4-byte child pointer found on interior pages, if there is one.
1117 ** This routine works only for pages that do not contain overflow cells.
1119 #define findCell(P,I) \
1120 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1121 #define findCellPastPtr(P,I) \
1122 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1126 ** This is common tail processing for btreeParseCellPtr() and
1127 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1128 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1131 static SQLITE_NOINLINE
void btreeParseCellAdjustSizeForOverflow(
1132 MemPage
*pPage
, /* Page containing the cell */
1133 u8
*pCell
, /* Pointer to the cell text. */
1134 CellInfo
*pInfo
/* Fill in this structure */
1136 /* If the payload will not fit completely on the local page, we have
1137 ** to decide how much to store locally and how much to spill onto
1138 ** overflow pages. The strategy is to minimize the amount of unused
1139 ** space on overflow pages while keeping the amount of local storage
1140 ** in between minLocal and maxLocal.
1142 ** Warning: changing the way overflow payload is distributed in any
1143 ** way will result in an incompatible file format.
1145 int minLocal
; /* Minimum amount of payload held locally */
1146 int maxLocal
; /* Maximum amount of payload held locally */
1147 int surplus
; /* Overflow payload available for local storage */
1149 minLocal
= pPage
->minLocal
;
1150 maxLocal
= pPage
->maxLocal
;
1151 surplus
= minLocal
+ (pInfo
->nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1152 testcase( surplus
==maxLocal
);
1153 testcase( surplus
==maxLocal
+1 );
1154 if( surplus
<= maxLocal
){
1155 pInfo
->nLocal
= (u16
)surplus
;
1157 pInfo
->nLocal
= (u16
)minLocal
;
1159 pInfo
->nSize
= (u16
)(&pInfo
->pPayload
[pInfo
->nLocal
] - pCell
) + 4;
1163 ** Given a record with nPayload bytes of payload stored within btree
1164 ** page pPage, return the number of bytes of payload stored locally.
1166 static int btreePayloadToLocal(MemPage
*pPage
, i64 nPayload
){
1167 int maxLocal
; /* Maximum amount of payload held locally */
1168 maxLocal
= pPage
->maxLocal
;
1169 if( nPayload
<=maxLocal
){
1172 int minLocal
; /* Minimum amount of payload held locally */
1173 int surplus
; /* Overflow payload available for local storage */
1174 minLocal
= pPage
->minLocal
;
1175 surplus
= minLocal
+ (nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1176 return ( surplus
<= maxLocal
) ? surplus
: minLocal
;
1181 ** The following routines are implementations of the MemPage.xParseCell()
1184 ** Parse a cell content block and fill in the CellInfo structure.
1186 ** btreeParseCellPtr() => table btree leaf nodes
1187 ** btreeParseCellNoPayload() => table btree internal nodes
1188 ** btreeParseCellPtrIndex() => index btree nodes
1190 ** There is also a wrapper function btreeParseCell() that works for
1191 ** all MemPage types and that references the cell by index rather than
1194 static void btreeParseCellPtrNoPayload(
1195 MemPage
*pPage
, /* Page containing the cell */
1196 u8
*pCell
, /* Pointer to the cell text. */
1197 CellInfo
*pInfo
/* Fill in this structure */
1199 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1200 assert( pPage
->leaf
==0 );
1201 assert( pPage
->childPtrSize
==4 );
1202 #ifndef SQLITE_DEBUG
1203 UNUSED_PARAMETER(pPage
);
1205 pInfo
->nSize
= 4 + getVarint(&pCell
[4], (u64
*)&pInfo
->nKey
);
1206 pInfo
->nPayload
= 0;
1208 pInfo
->pPayload
= 0;
1211 static void btreeParseCellPtr(
1212 MemPage
*pPage
, /* Page containing the cell */
1213 u8
*pCell
, /* Pointer to the cell text. */
1214 CellInfo
*pInfo
/* Fill in this structure */
1216 u8
*pIter
; /* For scanning through pCell */
1217 u32 nPayload
; /* Number of bytes of cell payload */
1218 u64 iKey
; /* Extracted Key value */
1220 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1221 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1222 assert( pPage
->intKeyLeaf
);
1223 assert( pPage
->childPtrSize
==0 );
1226 /* The next block of code is equivalent to:
1228 ** pIter += getVarint32(pIter, nPayload);
1230 ** The code is inlined to avoid a function call.
1233 if( nPayload
>=0x80 ){
1234 u8
*pEnd
= &pIter
[8];
1237 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1238 }while( (*pIter
)>=0x80 && pIter
<pEnd
);
1242 /* The next block of code is equivalent to:
1244 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1246 ** The code is inlined and the loop is unrolled for performance.
1247 ** This routine is a high-runner.
1252 iKey
= (iKey
<<7) ^ (x
= *++pIter
);
1254 iKey
= (iKey
<<7) ^ (x
= *++pIter
);
1256 iKey
= (iKey
<<7) ^ 0x10204000 ^ (x
= *++pIter
);
1258 iKey
= (iKey
<<7) ^ 0x4000 ^ (x
= *++pIter
);
1260 iKey
= (iKey
<<7) ^ 0x4000 ^ (x
= *++pIter
);
1262 iKey
= (iKey
<<7) ^ 0x4000 ^ (x
= *++pIter
);
1264 iKey
= (iKey
<<7) ^ 0x4000 ^ (x
= *++pIter
);
1266 iKey
= (iKey
<<8) ^ 0x8000 ^ (*++pIter
);
1281 pInfo
->nKey
= *(i64
*)&iKey
;
1282 pInfo
->nPayload
= nPayload
;
1283 pInfo
->pPayload
= pIter
;
1284 testcase( nPayload
==pPage
->maxLocal
);
1285 testcase( nPayload
==(u32
)pPage
->maxLocal
+1 );
1286 if( nPayload
<=pPage
->maxLocal
){
1287 /* This is the (easy) common case where the entire payload fits
1288 ** on the local page. No overflow is required.
1290 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1291 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1292 pInfo
->nLocal
= (u16
)nPayload
;
1294 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1297 static void btreeParseCellPtrIndex(
1298 MemPage
*pPage
, /* Page containing the cell */
1299 u8
*pCell
, /* Pointer to the cell text. */
1300 CellInfo
*pInfo
/* Fill in this structure */
1302 u8
*pIter
; /* For scanning through pCell */
1303 u32 nPayload
; /* Number of bytes of cell payload */
1305 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1306 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1307 assert( pPage
->intKeyLeaf
==0 );
1308 pIter
= pCell
+ pPage
->childPtrSize
;
1310 if( nPayload
>=0x80 ){
1311 u8
*pEnd
= &pIter
[8];
1314 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1315 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1318 pInfo
->nKey
= nPayload
;
1319 pInfo
->nPayload
= nPayload
;
1320 pInfo
->pPayload
= pIter
;
1321 testcase( nPayload
==pPage
->maxLocal
);
1322 testcase( nPayload
==(u32
)pPage
->maxLocal
+1 );
1323 if( nPayload
<=pPage
->maxLocal
){
1324 /* This is the (easy) common case where the entire payload fits
1325 ** on the local page. No overflow is required.
1327 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1328 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1329 pInfo
->nLocal
= (u16
)nPayload
;
1331 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1334 static void btreeParseCell(
1335 MemPage
*pPage
, /* Page containing the cell */
1336 int iCell
, /* The cell index. First cell is 0 */
1337 CellInfo
*pInfo
/* Fill in this structure */
1339 pPage
->xParseCell(pPage
, findCell(pPage
, iCell
), pInfo
);
1343 ** The following routines are implementations of the MemPage.xCellSize
1346 ** Compute the total number of bytes that a Cell needs in the cell
1347 ** data area of the btree-page. The return number includes the cell
1348 ** data header and the local payload, but not any overflow page or
1349 ** the space used by the cell pointer.
1351 ** cellSizePtrNoPayload() => table internal nodes
1352 ** cellSizePtrTableLeaf() => table leaf nodes
1353 ** cellSizePtr() => index internal nodes
1354 ** cellSizeIdxLeaf() => index leaf nodes
1356 static u16
cellSizePtr(MemPage
*pPage
, u8
*pCell
){
1357 u8
*pIter
= pCell
+ 4; /* For looping over bytes of pCell */
1358 u8
*pEnd
; /* End mark for a varint */
1359 u32 nSize
; /* Size value to return */
1362 /* The value returned by this function should always be the same as
1363 ** the (CellInfo.nSize) value found by doing a full parse of the
1364 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1365 ** this function verifies that this invariant is not violated. */
1367 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1370 assert( pPage
->childPtrSize
==4 );
1376 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1377 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1380 testcase( nSize
==pPage
->maxLocal
);
1381 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1382 if( nSize
<=pPage
->maxLocal
){
1383 nSize
+= (u32
)(pIter
- pCell
);
1386 int minLocal
= pPage
->minLocal
;
1387 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1388 testcase( nSize
==pPage
->maxLocal
);
1389 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1390 if( nSize
>pPage
->maxLocal
){
1393 nSize
+= 4 + (u16
)(pIter
- pCell
);
1395 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1398 static u16
cellSizePtrIdxLeaf(MemPage
*pPage
, u8
*pCell
){
1399 u8
*pIter
= pCell
; /* For looping over bytes of pCell */
1400 u8
*pEnd
; /* End mark for a varint */
1401 u32 nSize
; /* Size value to return */
1404 /* The value returned by this function should always be the same as
1405 ** the (CellInfo.nSize) value found by doing a full parse of the
1406 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1407 ** this function verifies that this invariant is not violated. */
1409 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1412 assert( pPage
->childPtrSize
==0 );
1418 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1419 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1422 testcase( nSize
==pPage
->maxLocal
);
1423 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1424 if( nSize
<=pPage
->maxLocal
){
1425 nSize
+= (u32
)(pIter
- pCell
);
1426 if( nSize
<4 ) nSize
= 4;
1428 int minLocal
= pPage
->minLocal
;
1429 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1430 testcase( nSize
==pPage
->maxLocal
);
1431 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1432 if( nSize
>pPage
->maxLocal
){
1435 nSize
+= 4 + (u16
)(pIter
- pCell
);
1437 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1440 static u16
cellSizePtrNoPayload(MemPage
*pPage
, u8
*pCell
){
1441 u8
*pIter
= pCell
+ 4; /* For looping over bytes of pCell */
1442 u8
*pEnd
; /* End mark for a varint */
1445 /* The value returned by this function should always be the same as
1446 ** the (CellInfo.nSize) value found by doing a full parse of the
1447 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1448 ** this function verifies that this invariant is not violated. */
1450 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1452 UNUSED_PARAMETER(pPage
);
1455 assert( pPage
->childPtrSize
==4 );
1457 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1458 assert( debuginfo
.nSize
==(u16
)(pIter
- pCell
) || CORRUPT_DB
);
1459 return (u16
)(pIter
- pCell
);
1461 static u16
cellSizePtrTableLeaf(MemPage
*pPage
, u8
*pCell
){
1462 u8
*pIter
= pCell
; /* For looping over bytes of pCell */
1463 u8
*pEnd
; /* End mark for a varint */
1464 u32 nSize
; /* Size value to return */
1467 /* The value returned by this function should always be the same as
1468 ** the (CellInfo.nSize) value found by doing a full parse of the
1469 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1470 ** this function verifies that this invariant is not violated. */
1472 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1480 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1481 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1484 /* pIter now points at the 64-bit integer key value, a variable length
1485 ** integer. The following block moves pIter to point at the first byte
1486 ** past the end of the key value. */
1494 && (*pIter
++)&0x80 ){ pIter
++; }
1495 testcase( nSize
==pPage
->maxLocal
);
1496 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1497 if( nSize
<=pPage
->maxLocal
){
1498 nSize
+= (u32
)(pIter
- pCell
);
1499 if( nSize
<4 ) nSize
= 4;
1501 int minLocal
= pPage
->minLocal
;
1502 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1503 testcase( nSize
==pPage
->maxLocal
);
1504 testcase( nSize
==(u32
)pPage
->maxLocal
+1 );
1505 if( nSize
>pPage
->maxLocal
){
1508 nSize
+= 4 + (u16
)(pIter
- pCell
);
1510 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1516 /* This variation on cellSizePtr() is used inside of assert() statements
1518 static u16
cellSize(MemPage
*pPage
, int iCell
){
1519 return pPage
->xCellSize(pPage
, findCell(pPage
, iCell
));
1523 #ifndef SQLITE_OMIT_AUTOVACUUM
1525 ** The cell pCell is currently part of page pSrc but will ultimately be part
1526 ** of pPage. (pSrc and pPage are often the same.) If pCell contains a
1527 ** pointer to an overflow page, insert an entry into the pointer-map for
1528 ** the overflow page that will be valid after pCell has been moved to pPage.
1530 static void ptrmapPutOvflPtr(MemPage
*pPage
, MemPage
*pSrc
, u8
*pCell
,int *pRC
){
1534 pPage
->xParseCell(pPage
, pCell
, &info
);
1535 if( info
.nLocal
<info
.nPayload
){
1537 if( SQLITE_OVERFLOW(pSrc
->aDataEnd
, pCell
, pCell
+info
.nLocal
) ){
1538 testcase( pSrc
!=pPage
);
1539 *pRC
= SQLITE_CORRUPT_BKPT
;
1542 ovfl
= get4byte(&pCell
[info
.nSize
-4]);
1543 ptrmapPut(pPage
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, pRC
);
1550 ** Defragment the page given. This routine reorganizes cells within the
1551 ** page so that there are no free-blocks on the free-block list.
1553 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1554 ** present in the page after this routine returns.
1556 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1557 ** b-tree page so that there are no freeblocks or fragment bytes, all
1558 ** unused bytes are contained in the unallocated space region, and all
1559 ** cells are packed tightly at the end of the page.
1561 static int defragmentPage(MemPage
*pPage
, int nMaxFrag
){
1562 int i
; /* Loop counter */
1563 int pc
; /* Address of the i-th cell */
1564 int hdr
; /* Offset to the page header */
1565 int size
; /* Size of a cell */
1566 int usableSize
; /* Number of usable bytes on a page */
1567 int cellOffset
; /* Offset to the cell pointer array */
1568 int cbrk
; /* Offset to the cell content area */
1569 int nCell
; /* Number of cells on the page */
1570 unsigned char *data
; /* The page data */
1571 unsigned char *temp
; /* Temp area for cell content */
1572 unsigned char *src
; /* Source of content */
1573 int iCellFirst
; /* First allowable cell index */
1574 int iCellLast
; /* Last possible cell index */
1575 int iCellStart
; /* First cell offset in input */
1577 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1578 assert( pPage
->pBt
!=0 );
1579 assert( pPage
->pBt
->usableSize
<= SQLITE_MAX_PAGE_SIZE
);
1580 assert( pPage
->nOverflow
==0 );
1581 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1582 data
= pPage
->aData
;
1583 hdr
= pPage
->hdrOffset
;
1584 cellOffset
= pPage
->cellOffset
;
1585 nCell
= pPage
->nCell
;
1586 assert( nCell
==get2byte(&data
[hdr
+3]) || CORRUPT_DB
);
1587 iCellFirst
= cellOffset
+ 2*nCell
;
1588 usableSize
= pPage
->pBt
->usableSize
;
1590 /* This block handles pages with two or fewer free blocks and nMaxFrag
1591 ** or fewer fragmented bytes. In this case it is faster to move the
1592 ** two (or one) blocks of cells using memmove() and add the required
1593 ** offsets to each pointer in the cell-pointer array than it is to
1594 ** reconstruct the entire page. */
1595 if( (int)data
[hdr
+7]<=nMaxFrag
){
1596 int iFree
= get2byte(&data
[hdr
+1]);
1597 if( iFree
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1599 int iFree2
= get2byte(&data
[iFree
]);
1600 if( iFree2
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1601 if( 0==iFree2
|| (data
[iFree2
]==0 && data
[iFree2
+1]==0) ){
1602 u8
*pEnd
= &data
[cellOffset
+ nCell
*2];
1605 int sz
= get2byte(&data
[iFree
+2]);
1606 int top
= get2byte(&data
[hdr
+5]);
1608 return SQLITE_CORRUPT_PAGE(pPage
);
1611 if( iFree
+sz
>iFree2
) return SQLITE_CORRUPT_PAGE(pPage
);
1612 sz2
= get2byte(&data
[iFree2
+2]);
1613 if( iFree2
+sz2
> usableSize
) return SQLITE_CORRUPT_PAGE(pPage
);
1614 memmove(&data
[iFree
+sz
+sz2
], &data
[iFree
+sz
], iFree2
-(iFree
+sz
));
1616 }else if( iFree
+sz
>usableSize
){
1617 return SQLITE_CORRUPT_PAGE(pPage
);
1621 assert( cbrk
+(iFree
-top
) <= usableSize
);
1622 memmove(&data
[cbrk
], &data
[top
], iFree
-top
);
1623 for(pAddr
=&data
[cellOffset
]; pAddr
<pEnd
; pAddr
+=2){
1624 pc
= get2byte(pAddr
);
1625 if( pc
<iFree
){ put2byte(pAddr
, pc
+sz
); }
1626 else if( pc
<iFree2
){ put2byte(pAddr
, pc
+sz2
); }
1628 goto defragment_out
;
1634 iCellLast
= usableSize
- 4;
1635 iCellStart
= get2byte(&data
[hdr
+5]);
1637 temp
= sqlite3PagerTempSpace(pPage
->pBt
->pPager
);
1638 memcpy(temp
, data
, usableSize
);
1640 for(i
=0; i
<nCell
; i
++){
1641 u8
*pAddr
; /* The i-th cell pointer */
1642 pAddr
= &data
[cellOffset
+ i
*2];
1643 pc
= get2byte(pAddr
);
1644 testcase( pc
==iCellFirst
);
1645 testcase( pc
==iCellLast
);
1646 /* These conditions have already been verified in btreeInitPage()
1647 ** if PRAGMA cell_size_check=ON.
1650 return SQLITE_CORRUPT_PAGE(pPage
);
1652 assert( pc
>=0 && pc
<=iCellLast
);
1653 size
= pPage
->xCellSize(pPage
, &src
[pc
]);
1655 if( cbrk
<iCellStart
|| pc
+size
>usableSize
){
1656 return SQLITE_CORRUPT_PAGE(pPage
);
1658 assert( cbrk
+size
<=usableSize
&& cbrk
>=iCellStart
);
1659 testcase( cbrk
+size
==usableSize
);
1660 testcase( pc
+size
==usableSize
);
1661 put2byte(pAddr
, cbrk
);
1662 memcpy(&data
[cbrk
], &src
[pc
], size
);
1668 assert( pPage
->nFree
>=0 );
1669 if( data
[hdr
+7]+cbrk
-iCellFirst
!=pPage
->nFree
){
1670 return SQLITE_CORRUPT_PAGE(pPage
);
1672 assert( cbrk
>=iCellFirst
);
1673 put2byte(&data
[hdr
+5], cbrk
);
1676 memset(&data
[iCellFirst
], 0, cbrk
-iCellFirst
);
1677 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1682 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1683 ** size. If one can be found, return a pointer to the space and remove it
1684 ** from the free-list.
1686 ** If no suitable space can be found on the free-list, return NULL.
1688 ** This function may detect corruption within pPg. If corruption is
1689 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1691 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1692 ** will be ignored if adding the extra space to the fragmentation count
1693 ** causes the fragmentation count to exceed 60.
1695 static u8
*pageFindSlot(MemPage
*pPg
, int nByte
, int *pRc
){
1696 const int hdr
= pPg
->hdrOffset
; /* Offset to page header */
1697 u8
* const aData
= pPg
->aData
; /* Page data */
1698 int iAddr
= hdr
+ 1; /* Address of ptr to pc */
1699 u8
*pTmp
= &aData
[iAddr
]; /* Temporary ptr into aData[] */
1700 int pc
= get2byte(pTmp
); /* Address of a free slot */
1701 int x
; /* Excess size of the slot */
1702 int maxPC
= pPg
->pBt
->usableSize
- nByte
; /* Max address for a usable slot */
1703 int size
; /* Size of the free slot */
1707 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1708 ** freeblock form a big-endian integer which is the size of the freeblock
1709 ** in bytes, including the 4-byte header. */
1710 pTmp
= &aData
[pc
+2];
1711 size
= get2byte(pTmp
);
1712 if( (x
= size
- nByte
)>=0 ){
1716 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1717 ** number of bytes in fragments may not exceed 60. */
1718 if( aData
[hdr
+7]>57 ) return 0;
1720 /* Remove the slot from the free-list. Update the number of
1721 ** fragmented bytes within the page. */
1722 memcpy(&aData
[iAddr
], &aData
[pc
], 2);
1723 aData
[hdr
+7] += (u8
)x
;
1725 }else if( x
+pc
> maxPC
){
1726 /* This slot extends off the end of the usable part of the page */
1727 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1730 /* The slot remains on the free-list. Reduce its size to account
1731 ** for the portion used by the new allocation. */
1732 put2byte(&aData
[pc
+2], x
);
1734 return &aData
[pc
+ x
];
1738 pc
= get2byte(pTmp
);
1741 /* The next slot in the chain comes before the current slot */
1742 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1747 if( pc
>maxPC
+nByte
-4 ){
1748 /* The free slot chain extends off the end of the page */
1749 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1755 ** Allocate nByte bytes of space from within the B-Tree page passed
1756 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1757 ** of the first byte of allocated space. Return either SQLITE_OK or
1758 ** an error code (usually SQLITE_CORRUPT).
1760 ** The caller guarantees that there is sufficient space to make the
1761 ** allocation. This routine might need to defragment in order to bring
1762 ** all the space together, however. This routine will avoid using
1763 ** the first two bytes past the cell pointer area since presumably this
1764 ** allocation is being made in order to insert a new cell, so we will
1765 ** also end up needing a new cell pointer.
1767 static SQLITE_INLINE
int allocateSpace(MemPage
*pPage
, int nByte
, int *pIdx
){
1768 const int hdr
= pPage
->hdrOffset
; /* Local cache of pPage->hdrOffset */
1769 u8
* const data
= pPage
->aData
; /* Local cache of pPage->aData */
1770 int top
; /* First byte of cell content area */
1771 int rc
= SQLITE_OK
; /* Integer return code */
1772 u8
*pTmp
; /* Temp ptr into data[] */
1773 int gap
; /* First byte of gap between cell pointers and cell content */
1775 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1776 assert( pPage
->pBt
);
1777 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1778 assert( nByte
>=0 ); /* Minimum cell size is 4 */
1779 assert( pPage
->nFree
>=nByte
);
1780 assert( pPage
->nOverflow
==0 );
1781 assert( nByte
< (int)(pPage
->pBt
->usableSize
-8) );
1783 assert( pPage
->cellOffset
== hdr
+ 12 - 4*pPage
->leaf
);
1784 gap
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1785 assert( gap
<=65536 );
1786 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1787 ** and the reserved space is zero (the usual value for reserved space)
1788 ** then the cell content offset of an empty page wants to be 65536.
1789 ** However, that integer is too large to be stored in a 2-byte unsigned
1790 ** integer, so a value of 0 is used in its place. */
1791 pTmp
= &data
[hdr
+5];
1792 top
= get2byte(pTmp
);
1794 if( top
==0 && pPage
->pBt
->usableSize
==65536 ){
1797 return SQLITE_CORRUPT_PAGE(pPage
);
1799 }else if( top
>(int)pPage
->pBt
->usableSize
){
1800 return SQLITE_CORRUPT_PAGE(pPage
);
1803 /* If there is enough space between gap and top for one more cell pointer,
1804 ** and if the freelist is not empty, then search the
1805 ** freelist looking for a slot big enough to satisfy the request.
1807 testcase( gap
+2==top
);
1808 testcase( gap
+1==top
);
1809 testcase( gap
==top
);
1810 if( (data
[hdr
+2] || data
[hdr
+1]) && gap
+2<=top
){
1811 u8
*pSpace
= pageFindSlot(pPage
, nByte
, &rc
);
1814 assert( pSpace
+nByte
<=data
+pPage
->pBt
->usableSize
);
1815 *pIdx
= g2
= (int)(pSpace
-data
);
1817 return SQLITE_CORRUPT_PAGE(pPage
);
1826 /* The request could not be fulfilled using a freelist slot. Check
1827 ** to see if defragmentation is necessary.
1829 testcase( gap
+2+nByte
==top
);
1830 if( gap
+2+nByte
>top
){
1831 assert( pPage
->nCell
>0 || CORRUPT_DB
);
1832 assert( pPage
->nFree
>=0 );
1833 rc
= defragmentPage(pPage
, MIN(4, pPage
->nFree
- (2+nByte
)));
1835 top
= get2byteNotZero(&data
[hdr
+5]);
1836 assert( gap
+2+nByte
<=top
);
1840 /* Allocate memory from the gap in between the cell pointer array
1841 ** and the cell content area. The btreeComputeFreeSpace() call has already
1842 ** validated the freelist. Given that the freelist is valid, there
1843 ** is no way that the allocation can extend off the end of the page.
1844 ** The assert() below verifies the previous sentence.
1847 put2byte(&data
[hdr
+5], top
);
1848 assert( top
+nByte
<= (int)pPage
->pBt
->usableSize
);
1854 ** Return a section of the pPage->aData to the freelist.
1855 ** The first byte of the new free block is pPage->aData[iStart]
1856 ** and the size of the block is iSize bytes.
1858 ** Adjacent freeblocks are coalesced.
1860 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1861 ** that routine will not detect overlap between cells or freeblocks. Nor
1862 ** does it detect cells or freeblocks that encroach into the reserved bytes
1863 ** at the end of the page. So do additional corruption checks inside this
1864 ** routine and return SQLITE_CORRUPT if any problems are found.
1866 static int freeSpace(MemPage
*pPage
, u16 iStart
, u16 iSize
){
1867 u16 iPtr
; /* Address of ptr to next freeblock */
1868 u16 iFreeBlk
; /* Address of the next freeblock */
1869 u8 hdr
; /* Page header size. 0 or 100 */
1870 u8 nFrag
= 0; /* Reduction in fragmentation */
1871 u16 iOrigSize
= iSize
; /* Original value of iSize */
1872 u16 x
; /* Offset to cell content area */
1873 u32 iEnd
= iStart
+ iSize
; /* First byte past the iStart buffer */
1874 unsigned char *data
= pPage
->aData
; /* Page content */
1875 u8
*pTmp
; /* Temporary ptr into data[] */
1877 assert( pPage
->pBt
!=0 );
1878 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1879 assert( CORRUPT_DB
|| iStart
>=pPage
->hdrOffset
+6+pPage
->childPtrSize
);
1880 assert( CORRUPT_DB
|| iEnd
<= pPage
->pBt
->usableSize
);
1881 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1882 assert( iSize
>=4 ); /* Minimum cell size is 4 */
1883 assert( CORRUPT_DB
|| iStart
<=pPage
->pBt
->usableSize
-4 );
1885 /* The list of freeblocks must be in ascending order. Find the
1886 ** spot on the list where iStart should be inserted.
1888 hdr
= pPage
->hdrOffset
;
1890 if( data
[iPtr
+1]==0 && data
[iPtr
]==0 ){
1891 iFreeBlk
= 0; /* Shortcut for the case when the freelist is empty */
1893 while( (iFreeBlk
= get2byte(&data
[iPtr
]))<iStart
){
1894 if( iFreeBlk
<=iPtr
){
1895 if( iFreeBlk
==0 ) break; /* TH3: corrupt082.100 */
1896 return SQLITE_CORRUPT_PAGE(pPage
);
1900 if( iFreeBlk
>pPage
->pBt
->usableSize
-4 ){ /* TH3: corrupt081.100 */
1901 return SQLITE_CORRUPT_PAGE(pPage
);
1903 assert( iFreeBlk
>iPtr
|| iFreeBlk
==0 || CORRUPT_DB
);
1906 ** iFreeBlk: First freeblock after iStart, or zero if none
1907 ** iPtr: The address of a pointer to iFreeBlk
1909 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1911 if( iFreeBlk
&& iEnd
+3>=iFreeBlk
){
1912 nFrag
= iFreeBlk
- iEnd
;
1913 if( iEnd
>iFreeBlk
) return SQLITE_CORRUPT_PAGE(pPage
);
1914 iEnd
= iFreeBlk
+ get2byte(&data
[iFreeBlk
+2]);
1915 if( iEnd
> pPage
->pBt
->usableSize
){
1916 return SQLITE_CORRUPT_PAGE(pPage
);
1918 iSize
= iEnd
- iStart
;
1919 iFreeBlk
= get2byte(&data
[iFreeBlk
]);
1922 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1923 ** pointer in the page header) then check to see if iStart should be
1924 ** coalesced onto the end of iPtr.
1927 int iPtrEnd
= iPtr
+ get2byte(&data
[iPtr
+2]);
1928 if( iPtrEnd
+3>=iStart
){
1929 if( iPtrEnd
>iStart
) return SQLITE_CORRUPT_PAGE(pPage
);
1930 nFrag
+= iStart
- iPtrEnd
;
1931 iSize
= iEnd
- iPtr
;
1935 if( nFrag
>data
[hdr
+7] ) return SQLITE_CORRUPT_PAGE(pPage
);
1936 data
[hdr
+7] -= nFrag
;
1938 pTmp
= &data
[hdr
+5];
1940 if( pPage
->pBt
->btsFlags
& BTS_FAST_SECURE
){
1941 /* Overwrite deleted information with zeros when the secure_delete
1942 ** option is enabled */
1943 memset(&data
[iStart
], 0, iSize
);
1946 /* The new freeblock is at the beginning of the cell content area,
1947 ** so just extend the cell content area rather than create another
1948 ** freelist entry */
1949 if( iStart
<x
) return SQLITE_CORRUPT_PAGE(pPage
);
1950 if( iPtr
!=hdr
+1 ) return SQLITE_CORRUPT_PAGE(pPage
);
1951 put2byte(&data
[hdr
+1], iFreeBlk
);
1952 put2byte(&data
[hdr
+5], iEnd
);
1954 /* Insert the new freeblock into the freelist */
1955 put2byte(&data
[iPtr
], iStart
);
1956 put2byte(&data
[iStart
], iFreeBlk
);
1957 put2byte(&data
[iStart
+2], iSize
);
1959 pPage
->nFree
+= iOrigSize
;
1964 ** Decode the flags byte (the first byte of the header) for a page
1965 ** and initialize fields of the MemPage structure accordingly.
1967 ** Only the following combinations are supported. Anything different
1968 ** indicates a corrupt database files:
1970 ** PTF_ZERODATA (0x02, 2)
1971 ** PTF_LEAFDATA | PTF_INTKEY (0x05, 5)
1972 ** PTF_ZERODATA | PTF_LEAF (0x0a, 10)
1973 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF (0x0d, 13)
1975 static int decodeFlags(MemPage
*pPage
, int flagByte
){
1976 BtShared
*pBt
; /* A copy of pPage->pBt */
1978 assert( pPage
->hdrOffset
==(pPage
->pgno
==1 ? 100 : 0) );
1979 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1981 pPage
->max1bytePayload
= pBt
->max1bytePayload
;
1982 if( flagByte
>=(PTF_ZERODATA
| PTF_LEAF
) ){
1983 pPage
->childPtrSize
= 0;
1985 if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
| PTF_LEAF
) ){
1986 pPage
->intKeyLeaf
= 1;
1987 pPage
->xCellSize
= cellSizePtrTableLeaf
;
1988 pPage
->xParseCell
= btreeParseCellPtr
;
1990 pPage
->maxLocal
= pBt
->maxLeaf
;
1991 pPage
->minLocal
= pBt
->minLeaf
;
1992 }else if( flagByte
==(PTF_ZERODATA
| PTF_LEAF
) ){
1994 pPage
->intKeyLeaf
= 0;
1995 pPage
->xCellSize
= cellSizePtrIdxLeaf
;
1996 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1997 pPage
->maxLocal
= pBt
->maxLocal
;
1998 pPage
->minLocal
= pBt
->minLocal
;
2001 pPage
->intKeyLeaf
= 0;
2002 pPage
->xCellSize
= cellSizePtrIdxLeaf
;
2003 pPage
->xParseCell
= btreeParseCellPtrIndex
;
2004 return SQLITE_CORRUPT_PAGE(pPage
);
2007 pPage
->childPtrSize
= 4;
2009 if( flagByte
==(PTF_ZERODATA
) ){
2011 pPage
->intKeyLeaf
= 0;
2012 pPage
->xCellSize
= cellSizePtr
;
2013 pPage
->xParseCell
= btreeParseCellPtrIndex
;
2014 pPage
->maxLocal
= pBt
->maxLocal
;
2015 pPage
->minLocal
= pBt
->minLocal
;
2016 }else if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
) ){
2017 pPage
->intKeyLeaf
= 0;
2018 pPage
->xCellSize
= cellSizePtrNoPayload
;
2019 pPage
->xParseCell
= btreeParseCellPtrNoPayload
;
2021 pPage
->maxLocal
= pBt
->maxLeaf
;
2022 pPage
->minLocal
= pBt
->minLeaf
;
2025 pPage
->intKeyLeaf
= 0;
2026 pPage
->xCellSize
= cellSizePtr
;
2027 pPage
->xParseCell
= btreeParseCellPtrIndex
;
2028 return SQLITE_CORRUPT_PAGE(pPage
);
2035 ** Compute the amount of freespace on the page. In other words, fill
2036 ** in the pPage->nFree field.
2038 static int btreeComputeFreeSpace(MemPage
*pPage
){
2039 int pc
; /* Address of a freeblock within pPage->aData[] */
2040 u8 hdr
; /* Offset to beginning of page header */
2041 u8
*data
; /* Equal to pPage->aData */
2042 int usableSize
; /* Amount of usable space on each page */
2043 int nFree
; /* Number of unused bytes on the page */
2044 int top
; /* First byte of the cell content area */
2045 int iCellFirst
; /* First allowable cell or freeblock offset */
2046 int iCellLast
; /* Last possible cell or freeblock offset */
2048 assert( pPage
->pBt
!=0 );
2049 assert( pPage
->pBt
->db
!=0 );
2050 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2051 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
2052 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
2053 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
2054 assert( pPage
->isInit
==1 );
2055 assert( pPage
->nFree
<0 );
2057 usableSize
= pPage
->pBt
->usableSize
;
2058 hdr
= pPage
->hdrOffset
;
2059 data
= pPage
->aData
;
2060 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
2061 ** the start of the cell content area. A zero value for this integer is
2062 ** interpreted as 65536. */
2063 top
= get2byteNotZero(&data
[hdr
+5]);
2064 iCellFirst
= hdr
+ 8 + pPage
->childPtrSize
+ 2*pPage
->nCell
;
2065 iCellLast
= usableSize
- 4;
2067 /* Compute the total free space on the page
2068 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
2069 ** start of the first freeblock on the page, or is zero if there are no
2071 pc
= get2byte(&data
[hdr
+1]);
2072 nFree
= data
[hdr
+7] + top
; /* Init nFree to non-freeblock free space */
2076 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
2077 ** always be at least one cell before the first freeblock.
2079 return SQLITE_CORRUPT_PAGE(pPage
);
2083 /* Freeblock off the end of the page */
2084 return SQLITE_CORRUPT_PAGE(pPage
);
2086 next
= get2byte(&data
[pc
]);
2087 size
= get2byte(&data
[pc
+2]);
2088 nFree
= nFree
+ size
;
2089 if( next
<=pc
+size
+3 ) break;
2093 /* Freeblock not in ascending order */
2094 return SQLITE_CORRUPT_PAGE(pPage
);
2096 if( pc
+size
>(unsigned int)usableSize
){
2097 /* Last freeblock extends past page end */
2098 return SQLITE_CORRUPT_PAGE(pPage
);
2102 /* At this point, nFree contains the sum of the offset to the start
2103 ** of the cell-content area plus the number of free bytes within
2104 ** the cell-content area. If this is greater than the usable-size
2105 ** of the page, then the page must be corrupted. This check also
2106 ** serves to verify that the offset to the start of the cell-content
2107 ** area, according to the page header, lies within the page.
2109 if( nFree
>usableSize
|| nFree
<iCellFirst
){
2110 return SQLITE_CORRUPT_PAGE(pPage
);
2112 pPage
->nFree
= (u16
)(nFree
- iCellFirst
);
2117 ** Do additional sanity check after btreeInitPage() if
2118 ** PRAGMA cell_size_check=ON
2120 static SQLITE_NOINLINE
int btreeCellSizeCheck(MemPage
*pPage
){
2121 int iCellFirst
; /* First allowable cell or freeblock offset */
2122 int iCellLast
; /* Last possible cell or freeblock offset */
2123 int i
; /* Index into the cell pointer array */
2124 int sz
; /* Size of a cell */
2125 int pc
; /* Address of a freeblock within pPage->aData[] */
2126 u8
*data
; /* Equal to pPage->aData */
2127 int usableSize
; /* Maximum usable space on the page */
2128 int cellOffset
; /* Start of cell content area */
2130 iCellFirst
= pPage
->cellOffset
+ 2*pPage
->nCell
;
2131 usableSize
= pPage
->pBt
->usableSize
;
2132 iCellLast
= usableSize
- 4;
2133 data
= pPage
->aData
;
2134 cellOffset
= pPage
->cellOffset
;
2135 if( !pPage
->leaf
) iCellLast
--;
2136 for(i
=0; i
<pPage
->nCell
; i
++){
2137 pc
= get2byteAligned(&data
[cellOffset
+i
*2]);
2138 testcase( pc
==iCellFirst
);
2139 testcase( pc
==iCellLast
);
2140 if( pc
<iCellFirst
|| pc
>iCellLast
){
2141 return SQLITE_CORRUPT_PAGE(pPage
);
2143 sz
= pPage
->xCellSize(pPage
, &data
[pc
]);
2144 testcase( pc
+sz
==usableSize
);
2145 if( pc
+sz
>usableSize
){
2146 return SQLITE_CORRUPT_PAGE(pPage
);
2153 ** Initialize the auxiliary information for a disk block.
2155 ** Return SQLITE_OK on success. If we see that the page does
2156 ** not contain a well-formed database page, then return
2157 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2158 ** guarantee that the page is well-formed. It only shows that
2159 ** we failed to detect any corruption.
2161 static int btreeInitPage(MemPage
*pPage
){
2162 u8
*data
; /* Equal to pPage->aData */
2163 BtShared
*pBt
; /* The main btree structure */
2165 assert( pPage
->pBt
!=0 );
2166 assert( pPage
->pBt
->db
!=0 );
2167 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2168 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
2169 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
2170 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
2171 assert( pPage
->isInit
==0 );
2174 data
= pPage
->aData
+ pPage
->hdrOffset
;
2175 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2176 ** the b-tree page type. */
2177 if( decodeFlags(pPage
, data
[0]) ){
2178 return SQLITE_CORRUPT_PAGE(pPage
);
2180 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2181 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2182 pPage
->nOverflow
= 0;
2183 pPage
->cellOffset
= pPage
->hdrOffset
+ 8 + pPage
->childPtrSize
;
2184 pPage
->aCellIdx
= data
+ pPage
->childPtrSize
+ 8;
2185 pPage
->aDataEnd
= pPage
->aData
+ pBt
->pageSize
;
2186 pPage
->aDataOfst
= pPage
->aData
+ pPage
->childPtrSize
;
2187 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2188 ** number of cells on the page. */
2189 pPage
->nCell
= get2byte(&data
[3]);
2190 if( pPage
->nCell
>MX_CELL(pBt
) ){
2191 /* To many cells for a single page. The page must be corrupt */
2192 return SQLITE_CORRUPT_PAGE(pPage
);
2194 testcase( pPage
->nCell
==MX_CELL(pBt
) );
2195 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2196 ** possible for a root page of a table that contains no rows) then the
2197 ** offset to the cell content area will equal the page size minus the
2198 ** bytes of reserved space. */
2199 assert( pPage
->nCell
>0
2200 || get2byteNotZero(&data
[5])==(int)pBt
->usableSize
2202 pPage
->nFree
= -1; /* Indicate that this value is yet uncomputed */
2204 if( pBt
->db
->flags
& SQLITE_CellSizeCk
){
2205 return btreeCellSizeCheck(pPage
);
2211 ** Set up a raw page so that it looks like a database page holding
2214 static void zeroPage(MemPage
*pPage
, int flags
){
2215 unsigned char *data
= pPage
->aData
;
2216 BtShared
*pBt
= pPage
->pBt
;
2217 u8 hdr
= pPage
->hdrOffset
;
2220 assert( sqlite3PagerPagenumber(pPage
->pDbPage
)==pPage
->pgno
|| CORRUPT_DB
);
2221 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2222 assert( sqlite3PagerGetData(pPage
->pDbPage
) == data
);
2223 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
2224 assert( sqlite3_mutex_held(pBt
->mutex
) );
2225 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
2226 memset(&data
[hdr
], 0, pBt
->usableSize
- hdr
);
2228 data
[hdr
] = (char)flags
;
2229 first
= hdr
+ ((flags
&PTF_LEAF
)==0 ? 12 : 8);
2230 memset(&data
[hdr
+1], 0, 4);
2232 put2byte(&data
[hdr
+5], pBt
->usableSize
);
2233 pPage
->nFree
= (u16
)(pBt
->usableSize
- first
);
2234 decodeFlags(pPage
, flags
);
2235 pPage
->cellOffset
= first
;
2236 pPage
->aDataEnd
= &data
[pBt
->pageSize
];
2237 pPage
->aCellIdx
= &data
[first
];
2238 pPage
->aDataOfst
= &data
[pPage
->childPtrSize
];
2239 pPage
->nOverflow
= 0;
2240 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2241 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2248 ** Convert a DbPage obtained from the pager into a MemPage used by
2251 static MemPage
*btreePageFromDbPage(DbPage
*pDbPage
, Pgno pgno
, BtShared
*pBt
){
2252 MemPage
*pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2253 if( pgno
!=pPage
->pgno
){
2254 pPage
->aData
= sqlite3PagerGetData(pDbPage
);
2255 pPage
->pDbPage
= pDbPage
;
2258 pPage
->hdrOffset
= pgno
==1 ? 100 : 0;
2260 assert( pPage
->aData
==sqlite3PagerGetData(pDbPage
) );
2265 ** Get a page from the pager. Initialize the MemPage.pBt and
2266 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2268 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2269 ** about the content of the page at this time. So do not go to the disk
2270 ** to fetch the content. Just fill in the content with zeros for now.
2271 ** If in the future we call sqlite3PagerWrite() on this page, that
2272 ** means we have started to be concerned about content and the disk
2273 ** read should occur at that point.
2275 static int btreeGetPage(
2276 BtShared
*pBt
, /* The btree */
2277 Pgno pgno
, /* Number of the page to fetch */
2278 MemPage
**ppPage
, /* Return the page in this parameter */
2279 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2284 assert( flags
==0 || flags
==PAGER_GET_NOCONTENT
|| flags
==PAGER_GET_READONLY
);
2285 assert( sqlite3_mutex_held(pBt
->mutex
) );
2286 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, flags
);
2288 *ppPage
= btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2293 ** Retrieve a page from the pager cache. If the requested page is not
2294 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2295 ** MemPage.aData elements if needed.
2297 static MemPage
*btreePageLookup(BtShared
*pBt
, Pgno pgno
){
2299 assert( sqlite3_mutex_held(pBt
->mutex
) );
2300 pDbPage
= sqlite3PagerLookup(pBt
->pPager
, pgno
);
2302 return btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2308 ** Return the size of the database file in pages. If there is any kind of
2309 ** error, return ((unsigned int)-1).
2311 static Pgno
btreePagecount(BtShared
*pBt
){
2314 Pgno
sqlite3BtreeLastPage(Btree
*p
){
2315 assert( sqlite3BtreeHoldsMutex(p
) );
2316 return btreePagecount(p
->pBt
);
2320 ** Get a page from the pager and initialize it.
2322 static int getAndInitPage(
2323 BtShared
*pBt
, /* The database file */
2324 Pgno pgno
, /* Number of the page to get */
2325 MemPage
**ppPage
, /* Write the page pointer here */
2326 int bReadOnly
/* True for a read-only page */
2331 assert( sqlite3_mutex_held(pBt
->mutex
) );
2333 if( pgno
>btreePagecount(pBt
) ){
2335 return SQLITE_CORRUPT_BKPT
;
2337 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, bReadOnly
);
2342 pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2343 if( pPage
->isInit
==0 ){
2344 btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2345 rc
= btreeInitPage(pPage
);
2346 if( rc
!=SQLITE_OK
){
2352 assert( pPage
->pgno
==pgno
|| CORRUPT_DB
);
2353 assert( pPage
->aData
==sqlite3PagerGetData(pDbPage
) );
2359 ** Release a MemPage. This should be called once for each prior
2360 ** call to btreeGetPage.
2362 ** Page1 is a special case and must be released using releasePageOne().
2364 static void releasePageNotNull(MemPage
*pPage
){
2365 assert( pPage
->aData
);
2366 assert( pPage
->pBt
);
2367 assert( pPage
->pDbPage
!=0 );
2368 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2369 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2370 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2371 sqlite3PagerUnrefNotNull(pPage
->pDbPage
);
2373 static void releasePage(MemPage
*pPage
){
2374 if( pPage
) releasePageNotNull(pPage
);
2376 static void releasePageOne(MemPage
*pPage
){
2378 assert( pPage
->aData
);
2379 assert( pPage
->pBt
);
2380 assert( pPage
->pDbPage
!=0 );
2381 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2382 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2383 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2384 sqlite3PagerUnrefPageOne(pPage
->pDbPage
);
2388 ** Get an unused page.
2390 ** This works just like btreeGetPage() with the addition:
2392 ** * If the page is already in use for some other purpose, immediately
2393 ** release it and return an SQLITE_CURRUPT error.
2394 ** * Make sure the isInit flag is clear
2396 static int btreeGetUnusedPage(
2397 BtShared
*pBt
, /* The btree */
2398 Pgno pgno
, /* Number of the page to fetch */
2399 MemPage
**ppPage
, /* Return the page in this parameter */
2400 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2402 int rc
= btreeGetPage(pBt
, pgno
, ppPage
, flags
);
2403 if( rc
==SQLITE_OK
){
2404 if( sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)>1 ){
2405 releasePage(*ppPage
);
2407 return SQLITE_CORRUPT_BKPT
;
2409 (*ppPage
)->isInit
= 0;
2418 ** During a rollback, when the pager reloads information into the cache
2419 ** so that the cache is restored to its original state at the start of
2420 ** the transaction, for each page restored this routine is called.
2422 ** This routine needs to reset the extra data section at the end of the
2423 ** page to agree with the restored data.
2425 static void pageReinit(DbPage
*pData
){
2427 pPage
= (MemPage
*)sqlite3PagerGetExtra(pData
);
2428 assert( sqlite3PagerPageRefcount(pData
)>0 );
2429 if( pPage
->isInit
){
2430 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2432 if( sqlite3PagerPageRefcount(pData
)>1 ){
2433 /* pPage might not be a btree page; it might be an overflow page
2434 ** or ptrmap page or a free page. In those cases, the following
2435 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2436 ** But no harm is done by this. And it is very important that
2437 ** btreeInitPage() be called on every btree page so we make
2438 ** the call for every page that comes in for re-initializing. */
2439 btreeInitPage(pPage
);
2445 ** Invoke the busy handler for a btree.
2447 static int btreeInvokeBusyHandler(void *pArg
){
2448 BtShared
*pBt
= (BtShared
*)pArg
;
2450 assert( sqlite3_mutex_held(pBt
->db
->mutex
) );
2451 return sqlite3InvokeBusyHandler(&pBt
->db
->busyHandler
);
2455 ** Open a database file.
2457 ** zFilename is the name of the database file. If zFilename is NULL
2458 ** then an ephemeral database is created. The ephemeral database might
2459 ** be exclusively in memory, or it might use a disk-based memory cache.
2460 ** Either way, the ephemeral database will be automatically deleted
2461 ** when sqlite3BtreeClose() is called.
2463 ** If zFilename is ":memory:" then an in-memory database is created
2464 ** that is automatically destroyed when it is closed.
2466 ** The "flags" parameter is a bitmask that might contain bits like
2467 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2469 ** If the database is already opened in the same database connection
2470 ** and we are in shared cache mode, then the open will fail with an
2471 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2472 ** objects in the same database connection since doing so will lead
2473 ** to problems with locking.
2475 int sqlite3BtreeOpen(
2476 sqlite3_vfs
*pVfs
, /* VFS to use for this b-tree */
2477 const char *zFilename
, /* Name of the file containing the BTree database */
2478 sqlite3
*db
, /* Associated database handle */
2479 Btree
**ppBtree
, /* Pointer to new Btree object written here */
2480 int flags
, /* Options */
2481 int vfsFlags
/* Flags passed through to sqlite3_vfs.xOpen() */
2483 BtShared
*pBt
= 0; /* Shared part of btree structure */
2484 Btree
*p
; /* Handle to return */
2485 sqlite3_mutex
*mutexOpen
= 0; /* Prevents a race condition. Ticket #3537 */
2486 int rc
= SQLITE_OK
; /* Result code from this function */
2487 u8 nReserve
; /* Byte of unused space on each page */
2488 unsigned char zDbHeader
[100]; /* Database header content */
2490 /* True if opening an ephemeral, temporary database */
2491 const int isTempDb
= zFilename
==0 || zFilename
[0]==0;
2493 /* Set the variable isMemdb to true for an in-memory database, or
2494 ** false for a file-based database.
2496 #ifdef SQLITE_OMIT_MEMORYDB
2497 const int isMemdb
= 0;
2499 const int isMemdb
= (zFilename
&& strcmp(zFilename
, ":memory:")==0)
2500 || (isTempDb
&& sqlite3TempInMemory(db
))
2501 || (vfsFlags
& SQLITE_OPEN_MEMORY
)!=0;
2506 assert( sqlite3_mutex_held(db
->mutex
) );
2507 assert( (flags
&0xff)==flags
); /* flags fit in 8 bits */
2509 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2510 assert( (flags
& BTREE_UNORDERED
)==0 || (flags
& BTREE_SINGLE
)!=0 );
2512 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2513 assert( (flags
& BTREE_SINGLE
)==0 || isTempDb
);
2516 flags
|= BTREE_MEMORY
;
2518 if( (vfsFlags
& SQLITE_OPEN_MAIN_DB
)!=0 && (isMemdb
|| isTempDb
) ){
2519 vfsFlags
= (vfsFlags
& ~SQLITE_OPEN_MAIN_DB
) | SQLITE_OPEN_TEMP_DB
;
2521 p
= sqlite3MallocZero(sizeof(Btree
));
2523 return SQLITE_NOMEM_BKPT
;
2525 p
->inTrans
= TRANS_NONE
;
2527 #ifndef SQLITE_OMIT_SHARED_CACHE
2532 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2534 ** If this Btree is a candidate for shared cache, try to find an
2535 ** existing BtShared object that we can share with
2537 if( isTempDb
==0 && (isMemdb
==0 || (vfsFlags
&SQLITE_OPEN_URI
)!=0) ){
2538 if( vfsFlags
& SQLITE_OPEN_SHAREDCACHE
){
2539 int nFilename
= sqlite3Strlen30(zFilename
)+1;
2540 int nFullPathname
= pVfs
->mxPathname
+1;
2541 char *zFullPathname
= sqlite3Malloc(MAX(nFullPathname
,nFilename
));
2542 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2545 if( !zFullPathname
){
2547 return SQLITE_NOMEM_BKPT
;
2550 memcpy(zFullPathname
, zFilename
, nFilename
);
2552 rc
= sqlite3OsFullPathname(pVfs
, zFilename
,
2553 nFullPathname
, zFullPathname
);
2555 if( rc
==SQLITE_OK_SYMLINK
){
2558 sqlite3_free(zFullPathname
);
2564 #if SQLITE_THREADSAFE
2565 mutexOpen
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN
);
2566 sqlite3_mutex_enter(mutexOpen
);
2567 mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);
2568 sqlite3_mutex_enter(mutexShared
);
2570 for(pBt
=GLOBAL(BtShared
*,sqlite3SharedCacheList
); pBt
; pBt
=pBt
->pNext
){
2571 assert( pBt
->nRef
>0 );
2572 if( 0==strcmp(zFullPathname
, sqlite3PagerFilename(pBt
->pPager
, 0))
2573 && sqlite3PagerVfs(pBt
->pPager
)==pVfs
){
2575 for(iDb
=db
->nDb
-1; iDb
>=0; iDb
--){
2576 Btree
*pExisting
= db
->aDb
[iDb
].pBt
;
2577 if( pExisting
&& pExisting
->pBt
==pBt
){
2578 sqlite3_mutex_leave(mutexShared
);
2579 sqlite3_mutex_leave(mutexOpen
);
2580 sqlite3_free(zFullPathname
);
2582 return SQLITE_CONSTRAINT
;
2590 sqlite3_mutex_leave(mutexShared
);
2591 sqlite3_free(zFullPathname
);
2595 /* In debug mode, we mark all persistent databases as sharable
2596 ** even when they are not. This exercises the locking code and
2597 ** gives more opportunity for asserts(sqlite3_mutex_held())
2598 ** statements to find locking problems.
2607 ** The following asserts make sure that structures used by the btree are
2608 ** the right size. This is to guard against size changes that result
2609 ** when compiling on a different architecture.
2611 assert( sizeof(i64
)==8 );
2612 assert( sizeof(u64
)==8 );
2613 assert( sizeof(u32
)==4 );
2614 assert( sizeof(u16
)==2 );
2615 assert( sizeof(Pgno
)==4 );
2617 /* Suppress false-positive compiler warning from PVS-Studio */
2618 memset(&zDbHeader
[16], 0, 8);
2620 pBt
= sqlite3MallocZero( sizeof(*pBt
) );
2622 rc
= SQLITE_NOMEM_BKPT
;
2623 goto btree_open_out
;
2625 rc
= sqlite3PagerOpen(pVfs
, &pBt
->pPager
, zFilename
,
2626 sizeof(MemPage
), flags
, vfsFlags
, pageReinit
);
2627 if( rc
==SQLITE_OK
){
2628 sqlite3PagerSetMmapLimit(pBt
->pPager
, db
->szMmap
);
2629 rc
= sqlite3PagerReadFileheader(pBt
->pPager
,sizeof(zDbHeader
),zDbHeader
);
2631 if( rc
!=SQLITE_OK
){
2632 goto btree_open_out
;
2634 pBt
->openFlags
= (u8
)flags
;
2636 sqlite3PagerSetBusyHandler(pBt
->pPager
, btreeInvokeBusyHandler
, pBt
);
2641 if( sqlite3PagerIsreadonly(pBt
->pPager
) ) pBt
->btsFlags
|= BTS_READ_ONLY
;
2642 #if defined(SQLITE_SECURE_DELETE)
2643 pBt
->btsFlags
|= BTS_SECURE_DELETE
;
2644 #elif defined(SQLITE_FAST_SECURE_DELETE)
2645 pBt
->btsFlags
|= BTS_OVERWRITE
;
2647 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2648 ** determined by the 2-byte integer located at an offset of 16 bytes from
2649 ** the beginning of the database file. */
2650 pBt
->pageSize
= (zDbHeader
[16]<<8) | (zDbHeader
[17]<<16);
2651 if( pBt
->pageSize
<512 || pBt
->pageSize
>SQLITE_MAX_PAGE_SIZE
2652 || ((pBt
->pageSize
-1)&pBt
->pageSize
)!=0 ){
2654 #ifndef SQLITE_OMIT_AUTOVACUUM
2655 /* If the magic name ":memory:" will create an in-memory database, then
2656 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2657 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2658 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2659 ** regular file-name. In this case the auto-vacuum applies as per normal.
2661 if( zFilename
&& !isMemdb
){
2662 pBt
->autoVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
? 1 : 0);
2663 pBt
->incrVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
==2 ? 1 : 0);
2668 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2669 ** determined by the one-byte unsigned integer found at an offset of 20
2670 ** into the database file header. */
2671 nReserve
= zDbHeader
[20];
2672 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2673 #ifndef SQLITE_OMIT_AUTOVACUUM
2674 pBt
->autoVacuum
= (get4byte(&zDbHeader
[36 + 4*4])?1:0);
2675 pBt
->incrVacuum
= (get4byte(&zDbHeader
[36 + 7*4])?1:0);
2678 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2679 if( rc
) goto btree_open_out
;
2680 pBt
->usableSize
= pBt
->pageSize
- nReserve
;
2681 assert( (pBt
->pageSize
& 7)==0 ); /* 8-byte alignment of pageSize */
2683 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2684 /* Add the new BtShared object to the linked list sharable BtShareds.
2688 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2689 MUTEX_LOGIC( mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);)
2690 if( SQLITE_THREADSAFE
&& sqlite3GlobalConfig
.bCoreMutex
){
2691 pBt
->mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_FAST
);
2692 if( pBt
->mutex
==0 ){
2693 rc
= SQLITE_NOMEM_BKPT
;
2694 goto btree_open_out
;
2697 sqlite3_mutex_enter(mutexShared
);
2698 pBt
->pNext
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2699 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
;
2700 sqlite3_mutex_leave(mutexShared
);
2705 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2706 /* If the new Btree uses a sharable pBtShared, then link the new
2707 ** Btree into the list of all sharable Btrees for the same connection.
2708 ** The list is kept in ascending order by pBt address.
2713 for(i
=0; i
<db
->nDb
; i
++){
2714 if( (pSib
= db
->aDb
[i
].pBt
)!=0 && pSib
->sharable
){
2715 while( pSib
->pPrev
){ pSib
= pSib
->pPrev
; }
2716 if( (uptr
)p
->pBt
<(uptr
)pSib
->pBt
){
2721 while( pSib
->pNext
&& (uptr
)pSib
->pNext
->pBt
<(uptr
)p
->pBt
){
2724 p
->pNext
= pSib
->pNext
;
2727 p
->pNext
->pPrev
= p
;
2739 if( rc
!=SQLITE_OK
){
2740 if( pBt
&& pBt
->pPager
){
2741 sqlite3PagerClose(pBt
->pPager
, 0);
2747 sqlite3_file
*pFile
;
2749 /* If the B-Tree was successfully opened, set the pager-cache size to the
2750 ** default value. Except, when opening on an existing shared pager-cache,
2751 ** do not change the pager-cache size.
2753 if( sqlite3BtreeSchema(p
, 0, 0)==0 ){
2754 sqlite3BtreeSetCacheSize(p
, SQLITE_DEFAULT_CACHE_SIZE
);
2757 pFile
= sqlite3PagerFile(pBt
->pPager
);
2758 if( pFile
->pMethods
){
2759 sqlite3OsFileControlHint(pFile
, SQLITE_FCNTL_PDB
, (void*)&pBt
->db
);
2763 assert( sqlite3_mutex_held(mutexOpen
) );
2764 sqlite3_mutex_leave(mutexOpen
);
2766 assert( rc
!=SQLITE_OK
|| sqlite3BtreeConnectionCount(*ppBtree
)>0 );
2771 ** Decrement the BtShared.nRef counter. When it reaches zero,
2772 ** remove the BtShared structure from the sharing list. Return
2773 ** true if the BtShared.nRef counter reaches zero and return
2774 ** false if it is still positive.
2776 static int removeFromSharingList(BtShared
*pBt
){
2777 #ifndef SQLITE_OMIT_SHARED_CACHE
2778 MUTEX_LOGIC( sqlite3_mutex
*pMainMtx
; )
2782 assert( sqlite3_mutex_notheld(pBt
->mutex
) );
2783 MUTEX_LOGIC( pMainMtx
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
); )
2784 sqlite3_mutex_enter(pMainMtx
);
2787 if( GLOBAL(BtShared
*,sqlite3SharedCacheList
)==pBt
){
2788 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
->pNext
;
2790 pList
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2791 while( ALWAYS(pList
) && pList
->pNext
!=pBt
){
2794 if( ALWAYS(pList
) ){
2795 pList
->pNext
= pBt
->pNext
;
2798 if( SQLITE_THREADSAFE
){
2799 sqlite3_mutex_free(pBt
->mutex
);
2803 sqlite3_mutex_leave(pMainMtx
);
2811 ** Make sure pBt->pTmpSpace points to an allocation of
2812 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2815 static SQLITE_NOINLINE
int allocateTempSpace(BtShared
*pBt
){
2817 assert( pBt
->pTmpSpace
==0 );
2818 /* This routine is called only by btreeCursor() when allocating the
2819 ** first write cursor for the BtShared object */
2820 assert( pBt
->pCursor
!=0 && (pBt
->pCursor
->curFlags
& BTCF_WriteFlag
)!=0 );
2821 pBt
->pTmpSpace
= sqlite3PageMalloc( pBt
->pageSize
);
2822 if( pBt
->pTmpSpace
==0 ){
2823 BtCursor
*pCur
= pBt
->pCursor
;
2824 pBt
->pCursor
= pCur
->pNext
; /* Unlink the cursor */
2825 memset(pCur
, 0, sizeof(*pCur
));
2826 return SQLITE_NOMEM_BKPT
;
2829 /* One of the uses of pBt->pTmpSpace is to format cells before
2830 ** inserting them into a leaf page (function fillInCell()). If
2831 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2832 ** by the various routines that manipulate binary cells. Which
2833 ** can mean that fillInCell() only initializes the first 2 or 3
2834 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2835 ** it into a database page. This is not actually a problem, but it
2836 ** does cause a valgrind error when the 1 or 2 bytes of uninitialized
2837 ** data is passed to system call write(). So to avoid this error,
2838 ** zero the first 4 bytes of temp space here.
2840 ** Also: Provide four bytes of initialized space before the
2841 ** beginning of pTmpSpace as an area available to prepend the
2842 ** left-child pointer to the beginning of a cell.
2844 memset(pBt
->pTmpSpace
, 0, 8);
2845 pBt
->pTmpSpace
+= 4;
2850 ** Free the pBt->pTmpSpace allocation
2852 static void freeTempSpace(BtShared
*pBt
){
2853 if( pBt
->pTmpSpace
){
2854 pBt
->pTmpSpace
-= 4;
2855 sqlite3PageFree(pBt
->pTmpSpace
);
2861 ** Close an open database and invalidate all cursors.
2863 int sqlite3BtreeClose(Btree
*p
){
2864 BtShared
*pBt
= p
->pBt
;
2866 /* Close all cursors opened via this handle. */
2867 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2868 sqlite3BtreeEnter(p
);
2870 /* Verify that no other cursors have this Btree open */
2873 BtCursor
*pCur
= pBt
->pCursor
;
2875 BtCursor
*pTmp
= pCur
;
2877 assert( pTmp
->pBtree
!=p
);
2883 /* Rollback any active transaction and free the handle structure.
2884 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2887 sqlite3BtreeRollback(p
, SQLITE_OK
, 0);
2888 sqlite3BtreeLeave(p
);
2890 /* If there are still other outstanding references to the shared-btree
2891 ** structure, return now. The remainder of this procedure cleans
2892 ** up the shared-btree.
2894 assert( p
->wantToLock
==0 && p
->locked
==0 );
2895 if( !p
->sharable
|| removeFromSharingList(pBt
) ){
2896 /* The pBt is no longer on the sharing list, so we can access
2897 ** it without having to hold the mutex.
2899 ** Clean out and delete the BtShared object.
2901 assert( !pBt
->pCursor
);
2902 sqlite3PagerClose(pBt
->pPager
, p
->db
);
2903 if( pBt
->xFreeSchema
&& pBt
->pSchema
){
2904 pBt
->xFreeSchema(pBt
->pSchema
);
2906 sqlite3DbFree(0, pBt
->pSchema
);
2911 #ifndef SQLITE_OMIT_SHARED_CACHE
2912 assert( p
->wantToLock
==0 );
2913 assert( p
->locked
==0 );
2914 if( p
->pPrev
) p
->pPrev
->pNext
= p
->pNext
;
2915 if( p
->pNext
) p
->pNext
->pPrev
= p
->pPrev
;
2923 ** Change the "soft" limit on the number of pages in the cache.
2924 ** Unused and unmodified pages will be recycled when the number of
2925 ** pages in the cache exceeds this soft limit. But the size of the
2926 ** cache is allowed to grow larger than this limit if it contains
2927 ** dirty pages or pages still in active use.
2929 int sqlite3BtreeSetCacheSize(Btree
*p
, int mxPage
){
2930 BtShared
*pBt
= p
->pBt
;
2931 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2932 sqlite3BtreeEnter(p
);
2933 sqlite3PagerSetCachesize(pBt
->pPager
, mxPage
);
2934 sqlite3BtreeLeave(p
);
2939 ** Change the "spill" limit on the number of pages in the cache.
2940 ** If the number of pages exceeds this limit during a write transaction,
2941 ** the pager might attempt to "spill" pages to the journal early in
2942 ** order to free up memory.
2944 ** The value returned is the current spill size. If zero is passed
2945 ** as an argument, no changes are made to the spill size setting, so
2946 ** using mxPage of 0 is a way to query the current spill size.
2948 int sqlite3BtreeSetSpillSize(Btree
*p
, int mxPage
){
2949 BtShared
*pBt
= p
->pBt
;
2951 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2952 sqlite3BtreeEnter(p
);
2953 res
= sqlite3PagerSetSpillsize(pBt
->pPager
, mxPage
);
2954 sqlite3BtreeLeave(p
);
2958 #if SQLITE_MAX_MMAP_SIZE>0
2960 ** Change the limit on the amount of the database file that may be
2963 int sqlite3BtreeSetMmapLimit(Btree
*p
, sqlite3_int64 szMmap
){
2964 BtShared
*pBt
= p
->pBt
;
2965 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2966 sqlite3BtreeEnter(p
);
2967 sqlite3PagerSetMmapLimit(pBt
->pPager
, szMmap
);
2968 sqlite3BtreeLeave(p
);
2971 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2974 ** Change the way data is synced to disk in order to increase or decrease
2975 ** how well the database resists damage due to OS crashes and power
2976 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2977 ** there is a high probability of damage) Level 2 is the default. There
2978 ** is a very low but non-zero probability of damage. Level 3 reduces the
2979 ** probability of damage to near zero but with a write performance reduction.
2981 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2982 int sqlite3BtreeSetPagerFlags(
2983 Btree
*p
, /* The btree to set the safety level on */
2984 unsigned pgFlags
/* Various PAGER_* flags */
2986 BtShared
*pBt
= p
->pBt
;
2987 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2988 sqlite3BtreeEnter(p
);
2989 sqlite3PagerSetFlags(pBt
->pPager
, pgFlags
);
2990 sqlite3BtreeLeave(p
);
2996 ** Change the default pages size and the number of reserved bytes per page.
2997 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2998 ** without changing anything.
3000 ** The page size must be a power of 2 between 512 and 65536. If the page
3001 ** size supplied does not meet this constraint then the page size is not
3004 ** Page sizes are constrained to be a power of two so that the region
3005 ** of the database file used for locking (beginning at PENDING_BYTE,
3006 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
3007 ** at the beginning of a page.
3009 ** If parameter nReserve is less than zero, then the number of reserved
3010 ** bytes per page is left unchanged.
3012 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
3013 ** and autovacuum mode can no longer be changed.
3015 int sqlite3BtreeSetPageSize(Btree
*p
, int pageSize
, int nReserve
, int iFix
){
3018 BtShared
*pBt
= p
->pBt
;
3019 assert( nReserve
>=0 && nReserve
<=255 );
3020 sqlite3BtreeEnter(p
);
3021 pBt
->nReserveWanted
= nReserve
;
3022 x
= pBt
->pageSize
- pBt
->usableSize
;
3023 if( nReserve
<x
) nReserve
= x
;
3024 if( pBt
->btsFlags
& BTS_PAGESIZE_FIXED
){
3025 sqlite3BtreeLeave(p
);
3026 return SQLITE_READONLY
;
3028 assert( nReserve
>=0 && nReserve
<=255 );
3029 if( pageSize
>=512 && pageSize
<=SQLITE_MAX_PAGE_SIZE
&&
3030 ((pageSize
-1)&pageSize
)==0 ){
3031 assert( (pageSize
& 7)==0 );
3032 assert( !pBt
->pCursor
);
3033 if( nReserve
>32 && pageSize
==512 ) pageSize
= 1024;
3034 pBt
->pageSize
= (u32
)pageSize
;
3037 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
3038 pBt
->usableSize
= pBt
->pageSize
- (u16
)nReserve
;
3039 if( iFix
) pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3040 sqlite3BtreeLeave(p
);
3045 ** Return the currently defined page size
3047 int sqlite3BtreeGetPageSize(Btree
*p
){
3048 return p
->pBt
->pageSize
;
3052 ** This function is similar to sqlite3BtreeGetReserve(), except that it
3053 ** may only be called if it is guaranteed that the b-tree mutex is already
3056 ** This is useful in one special case in the backup API code where it is
3057 ** known that the shared b-tree mutex is held, but the mutex on the
3058 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
3059 ** were to be called, it might collide with some other operation on the
3060 ** database handle that owns *p, causing undefined behavior.
3062 int sqlite3BtreeGetReserveNoMutex(Btree
*p
){
3064 assert( sqlite3_mutex_held(p
->pBt
->mutex
) );
3065 n
= p
->pBt
->pageSize
- p
->pBt
->usableSize
;
3070 ** Return the number of bytes of space at the end of every page that
3071 ** are intentionally left unused. This is the "reserved" space that is
3072 ** sometimes used by extensions.
3074 ** The value returned is the larger of the current reserve size and
3075 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
3076 ** The amount of reserve can only grow - never shrink.
3078 int sqlite3BtreeGetRequestedReserve(Btree
*p
){
3080 sqlite3BtreeEnter(p
);
3081 n1
= (int)p
->pBt
->nReserveWanted
;
3082 n2
= sqlite3BtreeGetReserveNoMutex(p
);
3083 sqlite3BtreeLeave(p
);
3084 return n1
>n2
? n1
: n2
;
3089 ** Set the maximum page count for a database if mxPage is positive.
3090 ** No changes are made if mxPage is 0 or negative.
3091 ** Regardless of the value of mxPage, return the maximum page count.
3093 Pgno
sqlite3BtreeMaxPageCount(Btree
*p
, Pgno mxPage
){
3095 sqlite3BtreeEnter(p
);
3096 n
= sqlite3PagerMaxPageCount(p
->pBt
->pPager
, mxPage
);
3097 sqlite3BtreeLeave(p
);
3102 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
3104 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
3105 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
3106 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
3107 ** newFlag==(-1) No changes
3109 ** This routine acts as a query if newFlag is less than zero
3111 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
3112 ** freelist leaf pages are not written back to the database. Thus in-page
3113 ** deleted content is cleared, but freelist deleted content is not.
3115 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
3116 ** that freelist leaf pages are written back into the database, increasing
3117 ** the amount of disk I/O.
3119 int sqlite3BtreeSecureDelete(Btree
*p
, int newFlag
){
3121 if( p
==0 ) return 0;
3122 sqlite3BtreeEnter(p
);
3123 assert( BTS_OVERWRITE
==BTS_SECURE_DELETE
*2 );
3124 assert( BTS_FAST_SECURE
==(BTS_OVERWRITE
|BTS_SECURE_DELETE
) );
3126 p
->pBt
->btsFlags
&= ~BTS_FAST_SECURE
;
3127 p
->pBt
->btsFlags
|= BTS_SECURE_DELETE
*newFlag
;
3129 b
= (p
->pBt
->btsFlags
& BTS_FAST_SECURE
)/BTS_SECURE_DELETE
;
3130 sqlite3BtreeLeave(p
);
3135 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3136 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3137 ** is disabled. The default value for the auto-vacuum property is
3138 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3140 int sqlite3BtreeSetAutoVacuum(Btree
*p
, int autoVacuum
){
3141 #ifdef SQLITE_OMIT_AUTOVACUUM
3142 return SQLITE_READONLY
;
3144 BtShared
*pBt
= p
->pBt
;
3146 u8 av
= (u8
)autoVacuum
;
3148 sqlite3BtreeEnter(p
);
3149 if( (pBt
->btsFlags
& BTS_PAGESIZE_FIXED
)!=0 && (av
?1:0)!=pBt
->autoVacuum
){
3150 rc
= SQLITE_READONLY
;
3152 pBt
->autoVacuum
= av
?1:0;
3153 pBt
->incrVacuum
= av
==2 ?1:0;
3155 sqlite3BtreeLeave(p
);
3161 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3162 ** enabled 1 is returned. Otherwise 0.
3164 int sqlite3BtreeGetAutoVacuum(Btree
*p
){
3165 #ifdef SQLITE_OMIT_AUTOVACUUM
3166 return BTREE_AUTOVACUUM_NONE
;
3169 sqlite3BtreeEnter(p
);
3171 (!p
->pBt
->autoVacuum
)?BTREE_AUTOVACUUM_NONE
:
3172 (!p
->pBt
->incrVacuum
)?BTREE_AUTOVACUUM_FULL
:
3173 BTREE_AUTOVACUUM_INCR
3175 sqlite3BtreeLeave(p
);
3181 ** If the user has not set the safety-level for this database connection
3182 ** using "PRAGMA synchronous", and if the safety-level is not already
3183 ** set to the value passed to this function as the second parameter,
3186 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3187 && !defined(SQLITE_OMIT_WAL)
3188 static void setDefaultSyncFlag(BtShared
*pBt
, u8 safety_level
){
3191 if( (db
=pBt
->db
)!=0 && (pDb
=db
->aDb
)!=0 ){
3192 while( pDb
->pBt
==0 || pDb
->pBt
->pBt
!=pBt
){ pDb
++; }
3193 if( pDb
->bSyncSet
==0
3194 && pDb
->safety_level
!=safety_level
3197 pDb
->safety_level
= safety_level
;
3198 sqlite3PagerSetFlags(pBt
->pPager
,
3199 pDb
->safety_level
| (db
->flags
& PAGER_FLAGS_MASK
));
3204 # define setDefaultSyncFlag(pBt,safety_level)
3207 /* Forward declaration */
3208 static int newDatabase(BtShared
*);
3212 ** Get a reference to pPage1 of the database file. This will
3213 ** also acquire a readlock on that file.
3215 ** SQLITE_OK is returned on success. If the file is not a
3216 ** well-formed database file, then SQLITE_CORRUPT is returned.
3217 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
3218 ** is returned if we run out of memory.
3220 static int lockBtree(BtShared
*pBt
){
3221 int rc
; /* Result code from subfunctions */
3222 MemPage
*pPage1
; /* Page 1 of the database file */
3223 u32 nPage
; /* Number of pages in the database */
3224 u32 nPageFile
= 0; /* Number of pages in the database file */
3226 assert( sqlite3_mutex_held(pBt
->mutex
) );
3227 assert( pBt
->pPage1
==0 );
3228 rc
= sqlite3PagerSharedLock(pBt
->pPager
);
3229 if( rc
!=SQLITE_OK
) return rc
;
3230 rc
= btreeGetPage(pBt
, 1, &pPage1
, 0);
3231 if( rc
!=SQLITE_OK
) return rc
;
3233 /* Do some checking to help insure the file we opened really is
3234 ** a valid database file.
3236 nPage
= get4byte(28+(u8
*)pPage1
->aData
);
3237 sqlite3PagerPagecount(pBt
->pPager
, (int*)&nPageFile
);
3238 if( nPage
==0 || memcmp(24+(u8
*)pPage1
->aData
, 92+(u8
*)pPage1
->aData
,4)!=0 ){
3241 if( (pBt
->db
->flags
& SQLITE_ResetDatabase
)!=0 ){
3247 u8
*page1
= pPage1
->aData
;
3249 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3250 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3251 ** 61 74 20 33 00. */
3252 if( memcmp(page1
, zMagicHeader
, 16)!=0 ){
3253 goto page1_init_failed
;
3256 #ifdef SQLITE_OMIT_WAL
3258 pBt
->btsFlags
|= BTS_READ_ONLY
;
3261 goto page1_init_failed
;
3265 pBt
->btsFlags
|= BTS_READ_ONLY
;
3268 goto page1_init_failed
;
3271 /* If the read version is set to 2, this database should be accessed
3272 ** in WAL mode. If the log is not already open, open it now. Then
3273 ** return SQLITE_OK and return without populating BtShared.pPage1.
3274 ** The caller detects this and calls this function again. This is
3275 ** required as the version of page 1 currently in the page1 buffer
3276 ** may not be the latest version - there may be a newer one in the log
3279 if( page1
[19]==2 && (pBt
->btsFlags
& BTS_NO_WAL
)==0 ){
3281 rc
= sqlite3PagerOpenWal(pBt
->pPager
, &isOpen
);
3282 if( rc
!=SQLITE_OK
){
3283 goto page1_init_failed
;
3285 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_WAL_SYNCHRONOUS
+1);
3287 releasePageOne(pPage1
);
3293 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_SYNCHRONOUS
+1);
3297 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3298 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3300 ** The original design allowed these amounts to vary, but as of
3301 ** version 3.6.0, we require them to be fixed.
3303 if( memcmp(&page1
[21], "\100\040\040",3)!=0 ){
3304 goto page1_init_failed
;
3306 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3307 ** determined by the 2-byte integer located at an offset of 16 bytes from
3308 ** the beginning of the database file. */
3309 pageSize
= (page1
[16]<<8) | (page1
[17]<<16);
3310 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3311 ** between 512 and 65536 inclusive. */
3312 if( ((pageSize
-1)&pageSize
)!=0
3313 || pageSize
>SQLITE_MAX_PAGE_SIZE
3316 goto page1_init_failed
;
3318 assert( (pageSize
& 7)==0 );
3319 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3320 ** integer at offset 20 is the number of bytes of space at the end of
3321 ** each page to reserve for extensions.
3323 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3324 ** determined by the one-byte unsigned integer found at an offset of 20
3325 ** into the database file header. */
3326 usableSize
= pageSize
- page1
[20];
3327 if( (u32
)pageSize
!=pBt
->pageSize
){
3328 /* After reading the first page of the database assuming a page size
3329 ** of BtShared.pageSize, we have discovered that the page-size is
3330 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3331 ** zero and return SQLITE_OK. The caller will call this function
3332 ** again with the correct page-size.
3334 releasePageOne(pPage1
);
3335 pBt
->usableSize
= usableSize
;
3336 pBt
->pageSize
= pageSize
;
3337 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3339 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
,
3340 pageSize
-usableSize
);
3343 if( nPage
>nPageFile
){
3344 if( sqlite3WritableSchema(pBt
->db
)==0 ){
3345 rc
= SQLITE_CORRUPT_BKPT
;
3346 goto page1_init_failed
;
3351 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3352 ** be less than 480. In other words, if the page size is 512, then the
3353 ** reserved space size cannot exceed 32. */
3354 if( usableSize
<480 ){
3355 goto page1_init_failed
;
3357 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3358 pBt
->pageSize
= pageSize
;
3359 pBt
->usableSize
= usableSize
;
3360 #ifndef SQLITE_OMIT_AUTOVACUUM
3361 pBt
->autoVacuum
= (get4byte(&page1
[36 + 4*4])?1:0);
3362 pBt
->incrVacuum
= (get4byte(&page1
[36 + 7*4])?1:0);
3366 /* maxLocal is the maximum amount of payload to store locally for
3367 ** a cell. Make sure it is small enough so that at least minFanout
3368 ** cells can will fit on one page. We assume a 10-byte page header.
3369 ** Besides the payload, the cell must store:
3370 ** 2-byte pointer to the cell
3371 ** 4-byte child pointer
3372 ** 9-byte nKey value
3373 ** 4-byte nData value
3374 ** 4-byte overflow page pointer
3375 ** So a cell consists of a 2-byte pointer, a header which is as much as
3376 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3379 pBt
->maxLocal
= (u16
)((pBt
->usableSize
-12)*64/255 - 23);
3380 pBt
->minLocal
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3381 pBt
->maxLeaf
= (u16
)(pBt
->usableSize
- 35);
3382 pBt
->minLeaf
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3383 if( pBt
->maxLocal
>127 ){
3384 pBt
->max1bytePayload
= 127;
3386 pBt
->max1bytePayload
= (u8
)pBt
->maxLocal
;
3388 assert( pBt
->maxLeaf
+ 23 <= MX_CELL_SIZE(pBt
) );
3389 pBt
->pPage1
= pPage1
;
3394 releasePageOne(pPage1
);
3401 ** Return the number of cursors open on pBt. This is for use
3402 ** in assert() expressions, so it is only compiled if NDEBUG is not
3405 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3406 ** false then all cursors are counted.
3408 ** For the purposes of this routine, a cursor is any cursor that
3409 ** is capable of reading or writing to the database. Cursors that
3410 ** have been tripped into the CURSOR_FAULT state are not counted.
3412 static int countValidCursors(BtShared
*pBt
, int wrOnly
){
3415 for(pCur
=pBt
->pCursor
; pCur
; pCur
=pCur
->pNext
){
3416 if( (wrOnly
==0 || (pCur
->curFlags
& BTCF_WriteFlag
)!=0)
3417 && pCur
->eState
!=CURSOR_FAULT
) r
++;
3424 ** If there are no outstanding cursors and we are not in the middle
3425 ** of a transaction but there is a read lock on the database, then
3426 ** this routine unrefs the first page of the database file which
3427 ** has the effect of releasing the read lock.
3429 ** If there is a transaction in progress, this routine is a no-op.
3431 static void unlockBtreeIfUnused(BtShared
*pBt
){
3432 assert( sqlite3_mutex_held(pBt
->mutex
) );
3433 assert( countValidCursors(pBt
,0)==0 || pBt
->inTransaction
>TRANS_NONE
);
3434 if( pBt
->inTransaction
==TRANS_NONE
&& pBt
->pPage1
!=0 ){
3435 MemPage
*pPage1
= pBt
->pPage1
;
3436 assert( pPage1
->aData
);
3437 assert( sqlite3PagerRefcount(pBt
->pPager
)==1 );
3439 releasePageOne(pPage1
);
3444 ** If pBt points to an empty file then convert that empty file
3445 ** into a new empty database by initializing the first page of
3448 static int newDatabase(BtShared
*pBt
){
3450 unsigned char *data
;
3453 assert( sqlite3_mutex_held(pBt
->mutex
) );
3460 rc
= sqlite3PagerWrite(pP1
->pDbPage
);
3462 memcpy(data
, zMagicHeader
, sizeof(zMagicHeader
));
3463 assert( sizeof(zMagicHeader
)==16 );
3464 data
[16] = (u8
)((pBt
->pageSize
>>8)&0xff);
3465 data
[17] = (u8
)((pBt
->pageSize
>>16)&0xff);
3468 assert( pBt
->usableSize
<=pBt
->pageSize
&& pBt
->usableSize
+255>=pBt
->pageSize
);
3469 data
[20] = (u8
)(pBt
->pageSize
- pBt
->usableSize
);
3473 memset(&data
[24], 0, 100-24);
3474 zeroPage(pP1
, PTF_INTKEY
|PTF_LEAF
|PTF_LEAFDATA
);
3475 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3476 #ifndef SQLITE_OMIT_AUTOVACUUM
3477 assert( pBt
->autoVacuum
==1 || pBt
->autoVacuum
==0 );
3478 assert( pBt
->incrVacuum
==1 || pBt
->incrVacuum
==0 );
3479 put4byte(&data
[36 + 4*4], pBt
->autoVacuum
);
3480 put4byte(&data
[36 + 7*4], pBt
->incrVacuum
);
3488 ** Initialize the first page of the database file (creating a database
3489 ** consisting of a single page and no schema objects). Return SQLITE_OK
3490 ** if successful, or an SQLite error code otherwise.
3492 int sqlite3BtreeNewDb(Btree
*p
){
3494 sqlite3BtreeEnter(p
);
3496 rc
= newDatabase(p
->pBt
);
3497 sqlite3BtreeLeave(p
);
3502 ** Attempt to start a new transaction. A write-transaction
3503 ** is started if the second argument is nonzero, otherwise a read-
3504 ** transaction. If the second argument is 2 or more and exclusive
3505 ** transaction is started, meaning that no other process is allowed
3506 ** to access the database. A preexisting transaction may not be
3507 ** upgraded to exclusive by calling this routine a second time - the
3508 ** exclusivity flag only works for a new transaction.
3510 ** A write-transaction must be started before attempting any
3511 ** changes to the database. None of the following routines
3512 ** will work unless a transaction is started first:
3514 ** sqlite3BtreeCreateTable()
3515 ** sqlite3BtreeCreateIndex()
3516 ** sqlite3BtreeClearTable()
3517 ** sqlite3BtreeDropTable()
3518 ** sqlite3BtreeInsert()
3519 ** sqlite3BtreeDelete()
3520 ** sqlite3BtreeUpdateMeta()
3522 ** If an initial attempt to acquire the lock fails because of lock contention
3523 ** and the database was previously unlocked, then invoke the busy handler
3524 ** if there is one. But if there was previously a read-lock, do not
3525 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3526 ** returned when there is already a read-lock in order to avoid a deadlock.
3528 ** Suppose there are two processes A and B. A has a read lock and B has
3529 ** a reserved lock. B tries to promote to exclusive but is blocked because
3530 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3531 ** One or the other of the two processes must give way or there can be
3532 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3533 ** when A already has a read lock, we encourage A to give up and let B
3536 static SQLITE_NOINLINE
int btreeBeginTrans(
3537 Btree
*p
, /* The btree in which to start the transaction */
3538 int wrflag
, /* True to start a write transaction */
3539 int *pSchemaVersion
/* Put schema version number here, if not NULL */
3541 BtShared
*pBt
= p
->pBt
;
3542 Pager
*pPager
= pBt
->pPager
;
3545 sqlite3BtreeEnter(p
);
3548 /* If the btree is already in a write-transaction, or it
3549 ** is already in a read-transaction and a read-transaction
3550 ** is requested, this is a no-op.
3552 if( p
->inTrans
==TRANS_WRITE
|| (p
->inTrans
==TRANS_READ
&& !wrflag
) ){
3555 assert( pBt
->inTransaction
==TRANS_WRITE
|| IfNotOmitAV(pBt
->bDoTruncate
)==0 );
3557 if( (p
->db
->flags
& SQLITE_ResetDatabase
)
3558 && sqlite3PagerIsreadonly(pPager
)==0
3560 pBt
->btsFlags
&= ~BTS_READ_ONLY
;
3563 /* Write transactions are not possible on a read-only database */
3564 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 && wrflag
){
3565 rc
= SQLITE_READONLY
;
3569 #ifndef SQLITE_OMIT_SHARED_CACHE
3571 sqlite3
*pBlock
= 0;
3572 /* If another database handle has already opened a write transaction
3573 ** on this shared-btree structure and a second write transaction is
3574 ** requested, return SQLITE_LOCKED.
3576 if( (wrflag
&& pBt
->inTransaction
==TRANS_WRITE
)
3577 || (pBt
->btsFlags
& BTS_PENDING
)!=0
3579 pBlock
= pBt
->pWriter
->db
;
3580 }else if( wrflag
>1 ){
3582 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
3583 if( pIter
->pBtree
!=p
){
3584 pBlock
= pIter
->pBtree
->db
;
3590 sqlite3ConnectionBlocked(p
->db
, pBlock
);
3591 rc
= SQLITE_LOCKED_SHAREDCACHE
;
3597 /* Any read-only or read-write transaction implies a read-lock on
3598 ** page 1. So if some other shared-cache client already has a write-lock
3599 ** on page 1, the transaction cannot be opened. */
3600 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
3601 if( SQLITE_OK
!=rc
) goto trans_begun
;
3603 pBt
->btsFlags
&= ~BTS_INITIALLY_EMPTY
;
3604 if( pBt
->nPage
==0 ) pBt
->btsFlags
|= BTS_INITIALLY_EMPTY
;
3606 sqlite3PagerWalDb(pPager
, p
->db
);
3608 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3609 /* If transitioning from no transaction directly to a write transaction,
3610 ** block for the WRITER lock first if possible. */
3611 if( pBt
->pPage1
==0 && wrflag
){
3612 assert( pBt
->inTransaction
==TRANS_NONE
);
3613 rc
= sqlite3PagerWalWriteLock(pPager
, 1);
3614 if( rc
!=SQLITE_BUSY
&& rc
!=SQLITE_OK
) break;
3618 /* Call lockBtree() until either pBt->pPage1 is populated or
3619 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3620 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3621 ** reading page 1 it discovers that the page-size of the database
3622 ** file is not pBt->pageSize. In this case lockBtree() will update
3623 ** pBt->pageSize to the page-size of the file on disk.
3625 while( pBt
->pPage1
==0 && SQLITE_OK
==(rc
= lockBtree(pBt
)) );
3627 if( rc
==SQLITE_OK
&& wrflag
){
3628 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 ){
3629 rc
= SQLITE_READONLY
;
3631 rc
= sqlite3PagerBegin(pPager
, wrflag
>1, sqlite3TempInMemory(p
->db
));
3632 if( rc
==SQLITE_OK
){
3633 rc
= newDatabase(pBt
);
3634 }else if( rc
==SQLITE_BUSY_SNAPSHOT
&& pBt
->inTransaction
==TRANS_NONE
){
3635 /* if there was no transaction opened when this function was
3636 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3637 ** code to SQLITE_BUSY. */
3643 if( rc
!=SQLITE_OK
){
3644 (void)sqlite3PagerWalWriteLock(pPager
, 0);
3645 unlockBtreeIfUnused(pBt
);
3647 }while( (rc
&0xFF)==SQLITE_BUSY
&& pBt
->inTransaction
==TRANS_NONE
&&
3648 btreeInvokeBusyHandler(pBt
) );
3649 sqlite3PagerWalDb(pPager
, 0);
3650 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3651 if( rc
==SQLITE_BUSY_TIMEOUT
) rc
= SQLITE_BUSY
;
3654 if( rc
==SQLITE_OK
){
3655 if( p
->inTrans
==TRANS_NONE
){
3656 pBt
->nTransaction
++;
3657 #ifndef SQLITE_OMIT_SHARED_CACHE
3659 assert( p
->lock
.pBtree
==p
&& p
->lock
.iTable
==1 );
3660 p
->lock
.eLock
= READ_LOCK
;
3661 p
->lock
.pNext
= pBt
->pLock
;
3662 pBt
->pLock
= &p
->lock
;
3666 p
->inTrans
= (wrflag
?TRANS_WRITE
:TRANS_READ
);
3667 if( p
->inTrans
>pBt
->inTransaction
){
3668 pBt
->inTransaction
= p
->inTrans
;
3671 MemPage
*pPage1
= pBt
->pPage1
;
3672 #ifndef SQLITE_OMIT_SHARED_CACHE
3673 assert( !pBt
->pWriter
);
3675 pBt
->btsFlags
&= ~BTS_EXCLUSIVE
;
3676 if( wrflag
>1 ) pBt
->btsFlags
|= BTS_EXCLUSIVE
;
3679 /* If the db-size header field is incorrect (as it may be if an old
3680 ** client has been writing the database file), update it now. Doing
3681 ** this sooner rather than later means the database size can safely
3682 ** re-read the database size from page 1 if a savepoint or transaction
3683 ** rollback occurs within the transaction.
3685 if( pBt
->nPage
!=get4byte(&pPage1
->aData
[28]) ){
3686 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
3687 if( rc
==SQLITE_OK
){
3688 put4byte(&pPage1
->aData
[28], pBt
->nPage
);
3695 if( rc
==SQLITE_OK
){
3696 if( pSchemaVersion
){
3697 *pSchemaVersion
= get4byte(&pBt
->pPage1
->aData
[40]);
3700 /* This call makes sure that the pager has the correct number of
3701 ** open savepoints. If the second parameter is greater than 0 and
3702 ** the sub-journal is not already open, then it will be opened here.
3704 rc
= sqlite3PagerOpenSavepoint(pPager
, p
->db
->nSavepoint
);
3709 sqlite3BtreeLeave(p
);
3712 int sqlite3BtreeBeginTrans(Btree
*p
, int wrflag
, int *pSchemaVersion
){
3715 || p
->inTrans
==TRANS_NONE
3716 || (p
->inTrans
==TRANS_READ
&& wrflag
!=0)
3718 return btreeBeginTrans(p
,wrflag
,pSchemaVersion
);
3721 if( pSchemaVersion
){
3722 *pSchemaVersion
= get4byte(&pBt
->pPage1
->aData
[40]);
3725 /* This call makes sure that the pager has the correct number of
3726 ** open savepoints. If the second parameter is greater than 0 and
3727 ** the sub-journal is not already open, then it will be opened here.
3729 return sqlite3PagerOpenSavepoint(pBt
->pPager
, p
->db
->nSavepoint
);
3735 #ifndef SQLITE_OMIT_AUTOVACUUM
3738 ** Set the pointer-map entries for all children of page pPage. Also, if
3739 ** pPage contains cells that point to overflow pages, set the pointer
3740 ** map entries for the overflow pages as well.
3742 static int setChildPtrmaps(MemPage
*pPage
){
3743 int i
; /* Counter variable */
3744 int nCell
; /* Number of cells in page pPage */
3745 int rc
; /* Return code */
3746 BtShared
*pBt
= pPage
->pBt
;
3747 Pgno pgno
= pPage
->pgno
;
3749 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3750 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3751 if( rc
!=SQLITE_OK
) return rc
;
3752 nCell
= pPage
->nCell
;
3754 for(i
=0; i
<nCell
; i
++){
3755 u8
*pCell
= findCell(pPage
, i
);
3757 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc
);
3760 Pgno childPgno
= get4byte(pCell
);
3761 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3766 Pgno childPgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
3767 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3774 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3775 ** that it points to iTo. Parameter eType describes the type of pointer to
3776 ** be modified, as follows:
3778 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3781 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3782 ** page pointed to by one of the cells on pPage.
3784 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3785 ** overflow page in the list.
3787 static int modifyPagePointer(MemPage
*pPage
, Pgno iFrom
, Pgno iTo
, u8 eType
){
3788 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3789 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
3790 if( eType
==PTRMAP_OVERFLOW2
){
3791 /* The pointer is always the first 4 bytes of the page in this case. */
3792 if( get4byte(pPage
->aData
)!=iFrom
){
3793 return SQLITE_CORRUPT_PAGE(pPage
);
3795 put4byte(pPage
->aData
, iTo
);
3801 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3803 nCell
= pPage
->nCell
;
3805 for(i
=0; i
<nCell
; i
++){
3806 u8
*pCell
= findCell(pPage
, i
);
3807 if( eType
==PTRMAP_OVERFLOW1
){
3809 pPage
->xParseCell(pPage
, pCell
, &info
);
3810 if( info
.nLocal
<info
.nPayload
){
3811 if( pCell
+info
.nSize
> pPage
->aData
+pPage
->pBt
->usableSize
){
3812 return SQLITE_CORRUPT_PAGE(pPage
);
3814 if( iFrom
==get4byte(pCell
+info
.nSize
-4) ){
3815 put4byte(pCell
+info
.nSize
-4, iTo
);
3820 if( pCell
+4 > pPage
->aData
+pPage
->pBt
->usableSize
){
3821 return SQLITE_CORRUPT_PAGE(pPage
);
3823 if( get4byte(pCell
)==iFrom
){
3824 put4byte(pCell
, iTo
);
3831 if( eType
!=PTRMAP_BTREE
||
3832 get4byte(&pPage
->aData
[pPage
->hdrOffset
+8])!=iFrom
){
3833 return SQLITE_CORRUPT_PAGE(pPage
);
3835 put4byte(&pPage
->aData
[pPage
->hdrOffset
+8], iTo
);
3843 ** Move the open database page pDbPage to location iFreePage in the
3844 ** database. The pDbPage reference remains valid.
3846 ** The isCommit flag indicates that there is no need to remember that
3847 ** the journal needs to be sync()ed before database page pDbPage->pgno
3848 ** can be written to. The caller has already promised not to write to that
3851 static int relocatePage(
3852 BtShared
*pBt
, /* Btree */
3853 MemPage
*pDbPage
, /* Open page to move */
3854 u8 eType
, /* Pointer map 'type' entry for pDbPage */
3855 Pgno iPtrPage
, /* Pointer map 'page-no' entry for pDbPage */
3856 Pgno iFreePage
, /* The location to move pDbPage to */
3857 int isCommit
/* isCommit flag passed to sqlite3PagerMovepage */
3859 MemPage
*pPtrPage
; /* The page that contains a pointer to pDbPage */
3860 Pgno iDbPage
= pDbPage
->pgno
;
3861 Pager
*pPager
= pBt
->pPager
;
3864 assert( eType
==PTRMAP_OVERFLOW2
|| eType
==PTRMAP_OVERFLOW1
||
3865 eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
);
3866 assert( sqlite3_mutex_held(pBt
->mutex
) );
3867 assert( pDbPage
->pBt
==pBt
);
3868 if( iDbPage
<3 ) return SQLITE_CORRUPT_BKPT
;
3870 /* Move page iDbPage from its current location to page number iFreePage */
3871 TRACE(("AUTOVACUUM: Moving %u to free page %u (ptr page %u type %u)\n",
3872 iDbPage
, iFreePage
, iPtrPage
, eType
));
3873 rc
= sqlite3PagerMovepage(pPager
, pDbPage
->pDbPage
, iFreePage
, isCommit
);
3874 if( rc
!=SQLITE_OK
){
3877 pDbPage
->pgno
= iFreePage
;
3879 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3880 ** that point to overflow pages. The pointer map entries for all these
3881 ** pages need to be changed.
3883 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3884 ** pointer to a subsequent overflow page. If this is the case, then
3885 ** the pointer map needs to be updated for the subsequent overflow page.
3887 if( eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
){
3888 rc
= setChildPtrmaps(pDbPage
);
3889 if( rc
!=SQLITE_OK
){
3893 Pgno nextOvfl
= get4byte(pDbPage
->aData
);
3895 ptrmapPut(pBt
, nextOvfl
, PTRMAP_OVERFLOW2
, iFreePage
, &rc
);
3896 if( rc
!=SQLITE_OK
){
3902 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3903 ** that it points at iFreePage. Also fix the pointer map entry for
3906 if( eType
!=PTRMAP_ROOTPAGE
){
3907 rc
= btreeGetPage(pBt
, iPtrPage
, &pPtrPage
, 0);
3908 if( rc
!=SQLITE_OK
){
3911 rc
= sqlite3PagerWrite(pPtrPage
->pDbPage
);
3912 if( rc
!=SQLITE_OK
){
3913 releasePage(pPtrPage
);
3916 rc
= modifyPagePointer(pPtrPage
, iDbPage
, iFreePage
, eType
);
3917 releasePage(pPtrPage
);
3918 if( rc
==SQLITE_OK
){
3919 ptrmapPut(pBt
, iFreePage
, eType
, iPtrPage
, &rc
);
3925 /* Forward declaration required by incrVacuumStep(). */
3926 static int allocateBtreePage(BtShared
*, MemPage
**, Pgno
*, Pgno
, u8
);
3929 ** Perform a single step of an incremental-vacuum. If successful, return
3930 ** SQLITE_OK. If there is no work to do (and therefore no point in
3931 ** calling this function again), return SQLITE_DONE. Or, if an error
3932 ** occurs, return some other error code.
3934 ** More specifically, this function attempts to re-organize the database so
3935 ** that the last page of the file currently in use is no longer in use.
3937 ** Parameter nFin is the number of pages that this database would contain
3938 ** were this function called until it returns SQLITE_DONE.
3940 ** If the bCommit parameter is non-zero, this function assumes that the
3941 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3942 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3943 ** operation, or false for an incremental vacuum.
3945 static int incrVacuumStep(BtShared
*pBt
, Pgno nFin
, Pgno iLastPg
, int bCommit
){
3946 Pgno nFreeList
; /* Number of pages still on the free-list */
3949 assert( sqlite3_mutex_held(pBt
->mutex
) );
3950 assert( iLastPg
>nFin
);
3952 if( !PTRMAP_ISPAGE(pBt
, iLastPg
) && iLastPg
!=PENDING_BYTE_PAGE(pBt
) ){
3956 nFreeList
= get4byte(&pBt
->pPage1
->aData
[36]);
3961 rc
= ptrmapGet(pBt
, iLastPg
, &eType
, &iPtrPage
);
3962 if( rc
!=SQLITE_OK
){
3965 if( eType
==PTRMAP_ROOTPAGE
){
3966 return SQLITE_CORRUPT_BKPT
;
3969 if( eType
==PTRMAP_FREEPAGE
){
3971 /* Remove the page from the files free-list. This is not required
3972 ** if bCommit is non-zero. In that case, the free-list will be
3973 ** truncated to zero after this function returns, so it doesn't
3974 ** matter if it still contains some garbage entries.
3978 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iLastPg
, BTALLOC_EXACT
);
3979 if( rc
!=SQLITE_OK
){
3982 assert( iFreePg
==iLastPg
);
3983 releasePage(pFreePg
);
3986 Pgno iFreePg
; /* Index of free page to move pLastPg to */
3988 u8 eMode
= BTALLOC_ANY
; /* Mode parameter for allocateBtreePage() */
3989 Pgno iNear
= 0; /* nearby parameter for allocateBtreePage() */
3991 rc
= btreeGetPage(pBt
, iLastPg
, &pLastPg
, 0);
3992 if( rc
!=SQLITE_OK
){
3996 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3997 ** is swapped with the first free page pulled off the free list.
3999 ** On the other hand, if bCommit is greater than zero, then keep
4000 ** looping until a free-page located within the first nFin pages
4001 ** of the file is found.
4009 Pgno dbSize
= btreePagecount(pBt
);
4010 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iNear
, eMode
);
4011 if( rc
!=SQLITE_OK
){
4012 releasePage(pLastPg
);
4015 releasePage(pFreePg
);
4016 if( iFreePg
>dbSize
){
4017 releasePage(pLastPg
);
4018 return SQLITE_CORRUPT_BKPT
;
4020 }while( bCommit
&& iFreePg
>nFin
);
4021 assert( iFreePg
<iLastPg
);
4023 rc
= relocatePage(pBt
, pLastPg
, eType
, iPtrPage
, iFreePg
, bCommit
);
4024 releasePage(pLastPg
);
4025 if( rc
!=SQLITE_OK
){
4034 }while( iLastPg
==PENDING_BYTE_PAGE(pBt
) || PTRMAP_ISPAGE(pBt
, iLastPg
) );
4035 pBt
->bDoTruncate
= 1;
4036 pBt
->nPage
= iLastPg
;
4042 ** The database opened by the first argument is an auto-vacuum database
4043 ** nOrig pages in size containing nFree free pages. Return the expected
4044 ** size of the database in pages following an auto-vacuum operation.
4046 static Pgno
finalDbSize(BtShared
*pBt
, Pgno nOrig
, Pgno nFree
){
4047 int nEntry
; /* Number of entries on one ptrmap page */
4048 Pgno nPtrmap
; /* Number of PtrMap pages to be freed */
4049 Pgno nFin
; /* Return value */
4051 nEntry
= pBt
->usableSize
/5;
4052 nPtrmap
= (nFree
-nOrig
+PTRMAP_PAGENO(pBt
, nOrig
)+nEntry
)/nEntry
;
4053 nFin
= nOrig
- nFree
- nPtrmap
;
4054 if( nOrig
>PENDING_BYTE_PAGE(pBt
) && nFin
<PENDING_BYTE_PAGE(pBt
) ){
4057 while( PTRMAP_ISPAGE(pBt
, nFin
) || nFin
==PENDING_BYTE_PAGE(pBt
) ){
4065 ** A write-transaction must be opened before calling this function.
4066 ** It performs a single unit of work towards an incremental vacuum.
4068 ** If the incremental vacuum is finished after this function has run,
4069 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
4070 ** SQLITE_OK is returned. Otherwise an SQLite error code.
4072 int sqlite3BtreeIncrVacuum(Btree
*p
){
4074 BtShared
*pBt
= p
->pBt
;
4076 sqlite3BtreeEnter(p
);
4077 assert( pBt
->inTransaction
==TRANS_WRITE
&& p
->inTrans
==TRANS_WRITE
);
4078 if( !pBt
->autoVacuum
){
4081 Pgno nOrig
= btreePagecount(pBt
);
4082 Pgno nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
4083 Pgno nFin
= finalDbSize(pBt
, nOrig
, nFree
);
4085 if( nOrig
<nFin
|| nFree
>=nOrig
){
4086 rc
= SQLITE_CORRUPT_BKPT
;
4087 }else if( nFree
>0 ){
4088 rc
= saveAllCursors(pBt
, 0, 0);
4089 if( rc
==SQLITE_OK
){
4090 invalidateAllOverflowCache(pBt
);
4091 rc
= incrVacuumStep(pBt
, nFin
, nOrig
, 0);
4093 if( rc
==SQLITE_OK
){
4094 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
4095 put4byte(&pBt
->pPage1
->aData
[28], pBt
->nPage
);
4101 sqlite3BtreeLeave(p
);
4106 ** This routine is called prior to sqlite3PagerCommit when a transaction
4107 ** is committed for an auto-vacuum database.
4109 static int autoVacuumCommit(Btree
*p
){
4114 VVA_ONLY( int nRef
);
4118 pPager
= pBt
->pPager
;
4119 VVA_ONLY( nRef
= sqlite3PagerRefcount(pPager
); )
4121 assert( sqlite3_mutex_held(pBt
->mutex
) );
4122 invalidateAllOverflowCache(pBt
);
4123 assert(pBt
->autoVacuum
);
4124 if( !pBt
->incrVacuum
){
4125 Pgno nFin
; /* Number of pages in database after autovacuuming */
4126 Pgno nFree
; /* Number of pages on the freelist initially */
4127 Pgno nVac
; /* Number of pages to vacuum */
4128 Pgno iFree
; /* The next page to be freed */
4129 Pgno nOrig
; /* Database size before freeing */
4131 nOrig
= btreePagecount(pBt
);
4132 if( PTRMAP_ISPAGE(pBt
, nOrig
) || nOrig
==PENDING_BYTE_PAGE(pBt
) ){
4133 /* It is not possible to create a database for which the final page
4134 ** is either a pointer-map page or the pending-byte page. If one
4135 ** is encountered, this indicates corruption.
4137 return SQLITE_CORRUPT_BKPT
;
4140 nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
4142 if( db
->xAutovacPages
){
4144 for(iDb
=0; ALWAYS(iDb
<db
->nDb
); iDb
++){
4145 if( db
->aDb
[iDb
].pBt
==p
) break;
4147 nVac
= db
->xAutovacPages(
4148 db
->pAutovacPagesArg
,
4149 db
->aDb
[iDb
].zDbSName
,
4163 nFin
= finalDbSize(pBt
, nOrig
, nVac
);
4164 if( nFin
>nOrig
) return SQLITE_CORRUPT_BKPT
;
4166 rc
= saveAllCursors(pBt
, 0, 0);
4168 for(iFree
=nOrig
; iFree
>nFin
&& rc
==SQLITE_OK
; iFree
--){
4169 rc
= incrVacuumStep(pBt
, nFin
, iFree
, nVac
==nFree
);
4171 if( (rc
==SQLITE_DONE
|| rc
==SQLITE_OK
) && nFree
>0 ){
4172 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
4174 put4byte(&pBt
->pPage1
->aData
[32], 0);
4175 put4byte(&pBt
->pPage1
->aData
[36], 0);
4177 put4byte(&pBt
->pPage1
->aData
[28], nFin
);
4178 pBt
->bDoTruncate
= 1;
4181 if( rc
!=SQLITE_OK
){
4182 sqlite3PagerRollback(pPager
);
4186 assert( nRef
>=sqlite3PagerRefcount(pPager
) );
4190 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4191 # define setChildPtrmaps(x) SQLITE_OK
4195 ** This routine does the first phase of a two-phase commit. This routine
4196 ** causes a rollback journal to be created (if it does not already exist)
4197 ** and populated with enough information so that if a power loss occurs
4198 ** the database can be restored to its original state by playing back
4199 ** the journal. Then the contents of the journal are flushed out to
4200 ** the disk. After the journal is safely on oxide, the changes to the
4201 ** database are written into the database file and flushed to oxide.
4202 ** At the end of this call, the rollback journal still exists on the
4203 ** disk and we are still holding all locks, so the transaction has not
4204 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4207 ** This call is a no-op if no write-transaction is currently active on pBt.
4209 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4210 ** the name of a super-journal file that should be written into the
4211 ** individual journal file, or is NULL, indicating no super-journal file
4212 ** (single database transaction).
4214 ** When this is called, the super-journal should already have been
4215 ** created, populated with this journal pointer and synced to disk.
4217 ** Once this is routine has returned, the only thing required to commit
4218 ** the write-transaction for this database file is to delete the journal.
4220 int sqlite3BtreeCommitPhaseOne(Btree
*p
, const char *zSuperJrnl
){
4222 if( p
->inTrans
==TRANS_WRITE
){
4223 BtShared
*pBt
= p
->pBt
;
4224 sqlite3BtreeEnter(p
);
4225 #ifndef SQLITE_OMIT_AUTOVACUUM
4226 if( pBt
->autoVacuum
){
4227 rc
= autoVacuumCommit(p
);
4228 if( rc
!=SQLITE_OK
){
4229 sqlite3BtreeLeave(p
);
4233 if( pBt
->bDoTruncate
){
4234 sqlite3PagerTruncateImage(pBt
->pPager
, pBt
->nPage
);
4237 rc
= sqlite3PagerCommitPhaseOne(pBt
->pPager
, zSuperJrnl
, 0);
4238 sqlite3BtreeLeave(p
);
4244 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4245 ** at the conclusion of a transaction.
4247 static void btreeEndTransaction(Btree
*p
){
4248 BtShared
*pBt
= p
->pBt
;
4249 sqlite3
*db
= p
->db
;
4250 assert( sqlite3BtreeHoldsMutex(p
) );
4252 #ifndef SQLITE_OMIT_AUTOVACUUM
4253 pBt
->bDoTruncate
= 0;
4255 if( p
->inTrans
>TRANS_NONE
&& db
->nVdbeRead
>1 ){
4256 /* If there are other active statements that belong to this database
4257 ** handle, downgrade to a read-only transaction. The other statements
4258 ** may still be reading from the database. */
4259 downgradeAllSharedCacheTableLocks(p
);
4260 p
->inTrans
= TRANS_READ
;
4262 /* If the handle had any kind of transaction open, decrement the
4263 ** transaction count of the shared btree. If the transaction count
4264 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4265 ** call below will unlock the pager. */
4266 if( p
->inTrans
!=TRANS_NONE
){
4267 clearAllSharedCacheTableLocks(p
);
4268 pBt
->nTransaction
--;
4269 if( 0==pBt
->nTransaction
){
4270 pBt
->inTransaction
= TRANS_NONE
;
4274 /* Set the current transaction state to TRANS_NONE and unlock the
4275 ** pager if this call closed the only read or write transaction. */
4276 p
->inTrans
= TRANS_NONE
;
4277 unlockBtreeIfUnused(pBt
);
4284 ** Commit the transaction currently in progress.
4286 ** This routine implements the second phase of a 2-phase commit. The
4287 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4288 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4289 ** routine did all the work of writing information out to disk and flushing the
4290 ** contents so that they are written onto the disk platter. All this
4291 ** routine has to do is delete or truncate or zero the header in the
4292 ** the rollback journal (which causes the transaction to commit) and
4295 ** Normally, if an error occurs while the pager layer is attempting to
4296 ** finalize the underlying journal file, this function returns an error and
4297 ** the upper layer will attempt a rollback. However, if the second argument
4298 ** is non-zero then this b-tree transaction is part of a multi-file
4299 ** transaction. In this case, the transaction has already been committed
4300 ** (by deleting a super-journal file) and the caller will ignore this
4301 ** functions return code. So, even if an error occurs in the pager layer,
4302 ** reset the b-tree objects internal state to indicate that the write
4303 ** transaction has been closed. This is quite safe, as the pager will have
4304 ** transitioned to the error state.
4306 ** This will release the write lock on the database file. If there
4307 ** are no active cursors, it also releases the read lock.
4309 int sqlite3BtreeCommitPhaseTwo(Btree
*p
, int bCleanup
){
4311 if( p
->inTrans
==TRANS_NONE
) return SQLITE_OK
;
4312 sqlite3BtreeEnter(p
);
4315 /* If the handle has a write-transaction open, commit the shared-btrees
4316 ** transaction and set the shared state to TRANS_READ.
4318 if( p
->inTrans
==TRANS_WRITE
){
4320 BtShared
*pBt
= p
->pBt
;
4321 assert( pBt
->inTransaction
==TRANS_WRITE
);
4322 assert( pBt
->nTransaction
>0 );
4323 rc
= sqlite3PagerCommitPhaseTwo(pBt
->pPager
);
4324 if( rc
!=SQLITE_OK
&& bCleanup
==0 ){
4325 sqlite3BtreeLeave(p
);
4328 p
->iBDataVersion
--; /* Compensate for pPager->iDataVersion++; */
4329 pBt
->inTransaction
= TRANS_READ
;
4330 btreeClearHasContent(pBt
);
4333 btreeEndTransaction(p
);
4334 sqlite3BtreeLeave(p
);
4339 ** Do both phases of a commit.
4341 int sqlite3BtreeCommit(Btree
*p
){
4343 sqlite3BtreeEnter(p
);
4344 rc
= sqlite3BtreeCommitPhaseOne(p
, 0);
4345 if( rc
==SQLITE_OK
){
4346 rc
= sqlite3BtreeCommitPhaseTwo(p
, 0);
4348 sqlite3BtreeLeave(p
);
4353 ** This routine sets the state to CURSOR_FAULT and the error
4354 ** code to errCode for every cursor on any BtShared that pBtree
4355 ** references. Or if the writeOnly flag is set to 1, then only
4356 ** trip write cursors and leave read cursors unchanged.
4358 ** Every cursor is a candidate to be tripped, including cursors
4359 ** that belong to other database connections that happen to be
4360 ** sharing the cache with pBtree.
4362 ** This routine gets called when a rollback occurs. If the writeOnly
4363 ** flag is true, then only write-cursors need be tripped - read-only
4364 ** cursors save their current positions so that they may continue
4365 ** following the rollback. Or, if writeOnly is false, all cursors are
4366 ** tripped. In general, writeOnly is false if the transaction being
4367 ** rolled back modified the database schema. In this case b-tree root
4368 ** pages may be moved or deleted from the database altogether, making
4369 ** it unsafe for read cursors to continue.
4371 ** If the writeOnly flag is true and an error is encountered while
4372 ** saving the current position of a read-only cursor, all cursors,
4373 ** including all read-cursors are tripped.
4375 ** SQLITE_OK is returned if successful, or if an error occurs while
4376 ** saving a cursor position, an SQLite error code.
4378 int sqlite3BtreeTripAllCursors(Btree
*pBtree
, int errCode
, int writeOnly
){
4382 assert( (writeOnly
==0 || writeOnly
==1) && BTCF_WriteFlag
==1 );
4384 sqlite3BtreeEnter(pBtree
);
4385 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
4386 if( writeOnly
&& (p
->curFlags
& BTCF_WriteFlag
)==0 ){
4387 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
4388 rc
= saveCursorPosition(p
);
4389 if( rc
!=SQLITE_OK
){
4390 (void)sqlite3BtreeTripAllCursors(pBtree
, rc
, 0);
4395 sqlite3BtreeClearCursor(p
);
4396 p
->eState
= CURSOR_FAULT
;
4397 p
->skipNext
= errCode
;
4399 btreeReleaseAllCursorPages(p
);
4401 sqlite3BtreeLeave(pBtree
);
4407 ** Set the pBt->nPage field correctly, according to the current
4408 ** state of the database. Assume pBt->pPage1 is valid.
4410 static void btreeSetNPage(BtShared
*pBt
, MemPage
*pPage1
){
4411 int nPage
= get4byte(&pPage1
->aData
[28]);
4412 testcase( nPage
==0 );
4413 if( nPage
==0 ) sqlite3PagerPagecount(pBt
->pPager
, &nPage
);
4414 testcase( pBt
->nPage
!=(u32
)nPage
);
4419 ** Rollback the transaction in progress.
4421 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4422 ** Only write cursors are tripped if writeOnly is true but all cursors are
4423 ** tripped if writeOnly is false. Any attempt to use
4424 ** a tripped cursor will result in an error.
4426 ** This will release the write lock on the database file. If there
4427 ** are no active cursors, it also releases the read lock.
4429 int sqlite3BtreeRollback(Btree
*p
, int tripCode
, int writeOnly
){
4431 BtShared
*pBt
= p
->pBt
;
4434 assert( writeOnly
==1 || writeOnly
==0 );
4435 assert( tripCode
==SQLITE_ABORT_ROLLBACK
|| tripCode
==SQLITE_OK
);
4436 sqlite3BtreeEnter(p
);
4437 if( tripCode
==SQLITE_OK
){
4438 rc
= tripCode
= saveAllCursors(pBt
, 0, 0);
4439 if( rc
) writeOnly
= 0;
4444 int rc2
= sqlite3BtreeTripAllCursors(p
, tripCode
, writeOnly
);
4445 assert( rc
==SQLITE_OK
|| (writeOnly
==0 && rc2
==SQLITE_OK
) );
4446 if( rc2
!=SQLITE_OK
) rc
= rc2
;
4450 if( p
->inTrans
==TRANS_WRITE
){
4453 assert( TRANS_WRITE
==pBt
->inTransaction
);
4454 rc2
= sqlite3PagerRollback(pBt
->pPager
);
4455 if( rc2
!=SQLITE_OK
){
4459 /* The rollback may have destroyed the pPage1->aData value. So
4460 ** call btreeGetPage() on page 1 again to make
4461 ** sure pPage1->aData is set correctly. */
4462 if( btreeGetPage(pBt
, 1, &pPage1
, 0)==SQLITE_OK
){
4463 btreeSetNPage(pBt
, pPage1
);
4464 releasePageOne(pPage1
);
4466 assert( countValidCursors(pBt
, 1)==0 );
4467 pBt
->inTransaction
= TRANS_READ
;
4468 btreeClearHasContent(pBt
);
4471 btreeEndTransaction(p
);
4472 sqlite3BtreeLeave(p
);
4477 ** Start a statement subtransaction. The subtransaction can be rolled
4478 ** back independently of the main transaction. You must start a transaction
4479 ** before starting a subtransaction. The subtransaction is ended automatically
4480 ** if the main transaction commits or rolls back.
4482 ** Statement subtransactions are used around individual SQL statements
4483 ** that are contained within a BEGIN...COMMIT block. If a constraint
4484 ** error occurs within the statement, the effect of that one statement
4485 ** can be rolled back without having to rollback the entire transaction.
4487 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4488 ** value passed as the second parameter is the total number of savepoints,
4489 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4490 ** are no active savepoints and no other statement-transactions open,
4491 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4492 ** using the sqlite3BtreeSavepoint() function.
4494 int sqlite3BtreeBeginStmt(Btree
*p
, int iStatement
){
4496 BtShared
*pBt
= p
->pBt
;
4497 sqlite3BtreeEnter(p
);
4498 assert( p
->inTrans
==TRANS_WRITE
);
4499 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4500 assert( iStatement
>0 );
4501 assert( iStatement
>p
->db
->nSavepoint
);
4502 assert( pBt
->inTransaction
==TRANS_WRITE
);
4503 /* At the pager level, a statement transaction is a savepoint with
4504 ** an index greater than all savepoints created explicitly using
4505 ** SQL statements. It is illegal to open, release or rollback any
4506 ** such savepoints while the statement transaction savepoint is active.
4508 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, iStatement
);
4509 sqlite3BtreeLeave(p
);
4514 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4515 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4516 ** savepoint identified by parameter iSavepoint, depending on the value
4519 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4520 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4521 ** contents of the entire transaction are rolled back. This is different
4522 ** from a normal transaction rollback, as no locks are released and the
4523 ** transaction remains open.
4525 int sqlite3BtreeSavepoint(Btree
*p
, int op
, int iSavepoint
){
4527 if( p
&& p
->inTrans
==TRANS_WRITE
){
4528 BtShared
*pBt
= p
->pBt
;
4529 assert( op
==SAVEPOINT_RELEASE
|| op
==SAVEPOINT_ROLLBACK
);
4530 assert( iSavepoint
>=0 || (iSavepoint
==-1 && op
==SAVEPOINT_ROLLBACK
) );
4531 sqlite3BtreeEnter(p
);
4532 if( op
==SAVEPOINT_ROLLBACK
){
4533 rc
= saveAllCursors(pBt
, 0, 0);
4535 if( rc
==SQLITE_OK
){
4536 rc
= sqlite3PagerSavepoint(pBt
->pPager
, op
, iSavepoint
);
4538 if( rc
==SQLITE_OK
){
4539 if( iSavepoint
<0 && (pBt
->btsFlags
& BTS_INITIALLY_EMPTY
)!=0 ){
4542 rc
= newDatabase(pBt
);
4543 btreeSetNPage(pBt
, pBt
->pPage1
);
4545 /* pBt->nPage might be zero if the database was corrupt when
4546 ** the transaction was started. Otherwise, it must be at least 1. */
4547 assert( CORRUPT_DB
|| pBt
->nPage
>0 );
4549 sqlite3BtreeLeave(p
);
4555 ** Create a new cursor for the BTree whose root is on the page
4556 ** iTable. If a read-only cursor is requested, it is assumed that
4557 ** the caller already has at least a read-only transaction open
4558 ** on the database already. If a write-cursor is requested, then
4559 ** the caller is assumed to have an open write transaction.
4561 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4562 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4563 ** can be used for reading or for writing if other conditions for writing
4564 ** are also met. These are the conditions that must be met in order
4565 ** for writing to be allowed:
4567 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4569 ** 2: Other database connections that share the same pager cache
4570 ** but which are not in the READ_UNCOMMITTED state may not have
4571 ** cursors open with wrFlag==0 on the same table. Otherwise
4572 ** the changes made by this write cursor would be visible to
4573 ** the read cursors in the other database connection.
4575 ** 3: The database must be writable (not on read-only media)
4577 ** 4: There must be an active transaction.
4579 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4580 ** is set. If FORDELETE is set, that is a hint to the implementation that
4581 ** this cursor will only be used to seek to and delete entries of an index
4582 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4583 ** this implementation. But in a hypothetical alternative storage engine
4584 ** in which index entries are automatically deleted when corresponding table
4585 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4586 ** operations on this cursor can be no-ops and all READ operations can
4587 ** return a null row (2-bytes: 0x01 0x00).
4589 ** No checking is done to make sure that page iTable really is the
4590 ** root page of a b-tree. If it is not, then the cursor acquired
4591 ** will not work correctly.
4593 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4594 ** on pCur to initialize the memory space prior to invoking this routine.
4596 static int btreeCursor(
4597 Btree
*p
, /* The btree */
4598 Pgno iTable
, /* Root page of table to open */
4599 int wrFlag
, /* 1 to write. 0 read-only */
4600 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4601 BtCursor
*pCur
/* Space for new cursor */
4603 BtShared
*pBt
= p
->pBt
; /* Shared b-tree handle */
4604 BtCursor
*pX
; /* Looping over other all cursors */
4606 assert( sqlite3BtreeHoldsMutex(p
) );
4608 || wrFlag
==BTREE_WRCSR
4609 || wrFlag
==(BTREE_WRCSR
|BTREE_FORDELETE
)
4612 /* The following assert statements verify that if this is a sharable
4613 ** b-tree database, the connection is holding the required table locks,
4614 ** and that no other connection has any open cursor that conflicts with
4615 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4616 assert( hasSharedCacheTableLock(p
, iTable
, pKeyInfo
!=0, (wrFlag
?2:1))
4618 assert( wrFlag
==0 || !hasReadConflicts(p
, iTable
) );
4620 /* Assert that the caller has opened the required transaction. */
4621 assert( p
->inTrans
>TRANS_NONE
);
4622 assert( wrFlag
==0 || p
->inTrans
==TRANS_WRITE
);
4623 assert( pBt
->pPage1
&& pBt
->pPage1
->aData
);
4624 assert( wrFlag
==0 || (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4628 return SQLITE_CORRUPT_BKPT
;
4629 }else if( btreePagecount(pBt
)==0 ){
4630 assert( wrFlag
==0 );
4635 /* Now that no other errors can occur, finish filling in the BtCursor
4636 ** variables and link the cursor into the BtShared list. */
4637 pCur
->pgnoRoot
= iTable
;
4639 pCur
->pKeyInfo
= pKeyInfo
;
4643 /* If there are two or more cursors on the same btree, then all such
4644 ** cursors *must* have the BTCF_Multiple flag set. */
4645 for(pX
=pBt
->pCursor
; pX
; pX
=pX
->pNext
){
4646 if( pX
->pgnoRoot
==iTable
){
4647 pX
->curFlags
|= BTCF_Multiple
;
4648 pCur
->curFlags
= BTCF_Multiple
;
4651 pCur
->eState
= CURSOR_INVALID
;
4652 pCur
->pNext
= pBt
->pCursor
;
4653 pBt
->pCursor
= pCur
;
4655 pCur
->curFlags
|= BTCF_WriteFlag
;
4656 pCur
->curPagerFlags
= 0;
4657 if( pBt
->pTmpSpace
==0 ) return allocateTempSpace(pBt
);
4659 pCur
->curPagerFlags
= PAGER_GET_READONLY
;
4663 static int btreeCursorWithLock(
4664 Btree
*p
, /* The btree */
4665 Pgno iTable
, /* Root page of table to open */
4666 int wrFlag
, /* 1 to write. 0 read-only */
4667 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4668 BtCursor
*pCur
/* Space for new cursor */
4671 sqlite3BtreeEnter(p
);
4672 rc
= btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4673 sqlite3BtreeLeave(p
);
4676 int sqlite3BtreeCursor(
4677 Btree
*p
, /* The btree */
4678 Pgno iTable
, /* Root page of table to open */
4679 int wrFlag
, /* 1 to write. 0 read-only */
4680 struct KeyInfo
*pKeyInfo
, /* First arg to xCompare() */
4681 BtCursor
*pCur
/* Write new cursor here */
4684 return btreeCursorWithLock(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4686 return btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4691 ** Return the size of a BtCursor object in bytes.
4693 ** This interfaces is needed so that users of cursors can preallocate
4694 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4695 ** to users so they cannot do the sizeof() themselves - they must call
4698 int sqlite3BtreeCursorSize(void){
4699 return ROUND8(sizeof(BtCursor
));
4703 ** Initialize memory that will be converted into a BtCursor object.
4705 ** The simple approach here would be to memset() the entire object
4706 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4707 ** do not need to be zeroed and they are large, so we can save a lot
4708 ** of run-time by skipping the initialization of those elements.
4710 void sqlite3BtreeCursorZero(BtCursor
*p
){
4711 memset(p
, 0, offsetof(BtCursor
, BTCURSOR_FIRST_UNINIT
));
4715 ** Close a cursor. The read lock on the database file is released
4716 ** when the last cursor is closed.
4718 int sqlite3BtreeCloseCursor(BtCursor
*pCur
){
4719 Btree
*pBtree
= pCur
->pBtree
;
4721 BtShared
*pBt
= pCur
->pBt
;
4722 sqlite3BtreeEnter(pBtree
);
4723 assert( pBt
->pCursor
!=0 );
4724 if( pBt
->pCursor
==pCur
){
4725 pBt
->pCursor
= pCur
->pNext
;
4727 BtCursor
*pPrev
= pBt
->pCursor
;
4729 if( pPrev
->pNext
==pCur
){
4730 pPrev
->pNext
= pCur
->pNext
;
4733 pPrev
= pPrev
->pNext
;
4734 }while( ALWAYS(pPrev
) );
4736 btreeReleaseAllCursorPages(pCur
);
4737 unlockBtreeIfUnused(pBt
);
4738 sqlite3_free(pCur
->aOverflow
);
4739 sqlite3_free(pCur
->pKey
);
4740 if( (pBt
->openFlags
& BTREE_SINGLE
) && pBt
->pCursor
==0 ){
4741 /* Since the BtShared is not sharable, there is no need to
4742 ** worry about the missing sqlite3BtreeLeave() call here. */
4743 assert( pBtree
->sharable
==0 );
4744 sqlite3BtreeClose(pBtree
);
4746 sqlite3BtreeLeave(pBtree
);
4754 ** Make sure the BtCursor* given in the argument has a valid
4755 ** BtCursor.info structure. If it is not already valid, call
4756 ** btreeParseCell() to fill it in.
4758 ** BtCursor.info is a cache of the information in the current cell.
4759 ** Using this cache reduces the number of calls to btreeParseCell().
4762 static int cellInfoEqual(CellInfo
*a
, CellInfo
*b
){
4763 if( a
->nKey
!=b
->nKey
) return 0;
4764 if( a
->pPayload
!=b
->pPayload
) return 0;
4765 if( a
->nPayload
!=b
->nPayload
) return 0;
4766 if( a
->nLocal
!=b
->nLocal
) return 0;
4767 if( a
->nSize
!=b
->nSize
) return 0;
4770 static void assertCellInfo(BtCursor
*pCur
){
4772 memset(&info
, 0, sizeof(info
));
4773 btreeParseCell(pCur
->pPage
, pCur
->ix
, &info
);
4774 assert( CORRUPT_DB
|| cellInfoEqual(&info
, &pCur
->info
) );
4777 #define assertCellInfo(x)
4779 static SQLITE_NOINLINE
void getCellInfo(BtCursor
*pCur
){
4780 if( pCur
->info
.nSize
==0 ){
4781 pCur
->curFlags
|= BTCF_ValidNKey
;
4782 btreeParseCell(pCur
->pPage
,pCur
->ix
,&pCur
->info
);
4784 assertCellInfo(pCur
);
4788 #ifndef NDEBUG /* The next routine used only within assert() statements */
4790 ** Return true if the given BtCursor is valid. A valid cursor is one
4791 ** that is currently pointing to a row in a (non-empty) table.
4792 ** This is a verification routine is used only within assert() statements.
4794 int sqlite3BtreeCursorIsValid(BtCursor
*pCur
){
4795 return pCur
&& pCur
->eState
==CURSOR_VALID
;
4798 int sqlite3BtreeCursorIsValidNN(BtCursor
*pCur
){
4800 return pCur
->eState
==CURSOR_VALID
;
4804 ** Return the value of the integer key or "rowid" for a table btree.
4805 ** This routine is only valid for a cursor that is pointing into a
4806 ** ordinary table btree. If the cursor points to an index btree or
4807 ** is invalid, the result of this routine is undefined.
4809 i64
sqlite3BtreeIntegerKey(BtCursor
*pCur
){
4810 assert( cursorHoldsMutex(pCur
) );
4811 assert( pCur
->eState
==CURSOR_VALID
);
4812 assert( pCur
->curIntKey
);
4814 return pCur
->info
.nKey
;
4818 ** Pin or unpin a cursor.
4820 void sqlite3BtreeCursorPin(BtCursor
*pCur
){
4821 assert( (pCur
->curFlags
& BTCF_Pinned
)==0 );
4822 pCur
->curFlags
|= BTCF_Pinned
;
4824 void sqlite3BtreeCursorUnpin(BtCursor
*pCur
){
4825 assert( (pCur
->curFlags
& BTCF_Pinned
)!=0 );
4826 pCur
->curFlags
&= ~BTCF_Pinned
;
4830 ** Return the offset into the database file for the start of the
4831 ** payload to which the cursor is pointing.
4833 i64
sqlite3BtreeOffset(BtCursor
*pCur
){
4834 assert( cursorHoldsMutex(pCur
) );
4835 assert( pCur
->eState
==CURSOR_VALID
);
4837 return (i64
)pCur
->pBt
->pageSize
*((i64
)pCur
->pPage
->pgno
- 1) +
4838 (i64
)(pCur
->info
.pPayload
- pCur
->pPage
->aData
);
4842 ** Return the number of bytes of payload for the entry that pCur is
4843 ** currently pointing to. For table btrees, this will be the amount
4844 ** of data. For index btrees, this will be the size of the key.
4846 ** The caller must guarantee that the cursor is pointing to a non-NULL
4847 ** valid entry. In other words, the calling procedure must guarantee
4848 ** that the cursor has Cursor.eState==CURSOR_VALID.
4850 u32
sqlite3BtreePayloadSize(BtCursor
*pCur
){
4851 assert( cursorHoldsMutex(pCur
) );
4852 assert( pCur
->eState
==CURSOR_VALID
);
4854 return pCur
->info
.nPayload
;
4858 ** Return an upper bound on the size of any record for the table
4859 ** that the cursor is pointing into.
4861 ** This is an optimization. Everything will still work if this
4862 ** routine always returns 2147483647 (which is the largest record
4863 ** that SQLite can handle) or more. But returning a smaller value might
4864 ** prevent large memory allocations when trying to interpret a
4865 ** corrupt database.
4867 ** The current implementation merely returns the size of the underlying
4870 sqlite3_int64
sqlite3BtreeMaxRecordSize(BtCursor
*pCur
){
4871 assert( cursorHoldsMutex(pCur
) );
4872 assert( pCur
->eState
==CURSOR_VALID
);
4873 return pCur
->pBt
->pageSize
* (sqlite3_int64
)pCur
->pBt
->nPage
;
4877 ** Given the page number of an overflow page in the database (parameter
4878 ** ovfl), this function finds the page number of the next page in the
4879 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4880 ** pointer-map data instead of reading the content of page ovfl to do so.
4882 ** If an error occurs an SQLite error code is returned. Otherwise:
4884 ** The page number of the next overflow page in the linked list is
4885 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4886 ** list, *pPgnoNext is set to zero.
4888 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4889 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4890 ** reference. It is the responsibility of the caller to call releasePage()
4891 ** on *ppPage to free the reference. In no reference was obtained (because
4892 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4893 ** *ppPage is set to zero.
4895 static int getOverflowPage(
4896 BtShared
*pBt
, /* The database file */
4897 Pgno ovfl
, /* Current overflow page number */
4898 MemPage
**ppPage
, /* OUT: MemPage handle (may be NULL) */
4899 Pgno
*pPgnoNext
/* OUT: Next overflow page number */
4905 assert( sqlite3_mutex_held(pBt
->mutex
) );
4908 #ifndef SQLITE_OMIT_AUTOVACUUM
4909 /* Try to find the next page in the overflow list using the
4910 ** autovacuum pointer-map pages. Guess that the next page in
4911 ** the overflow list is page number (ovfl+1). If that guess turns
4912 ** out to be wrong, fall back to loading the data of page
4913 ** number ovfl to determine the next page number.
4915 if( pBt
->autoVacuum
){
4917 Pgno iGuess
= ovfl
+1;
4920 while( PTRMAP_ISPAGE(pBt
, iGuess
) || iGuess
==PENDING_BYTE_PAGE(pBt
) ){
4924 if( iGuess
<=btreePagecount(pBt
) ){
4925 rc
= ptrmapGet(pBt
, iGuess
, &eType
, &pgno
);
4926 if( rc
==SQLITE_OK
&& eType
==PTRMAP_OVERFLOW2
&& pgno
==ovfl
){
4934 assert( next
==0 || rc
==SQLITE_DONE
);
4935 if( rc
==SQLITE_OK
){
4936 rc
= btreeGetPage(pBt
, ovfl
, &pPage
, (ppPage
==0) ? PAGER_GET_READONLY
: 0);
4937 assert( rc
==SQLITE_OK
|| pPage
==0 );
4938 if( rc
==SQLITE_OK
){
4939 next
= get4byte(pPage
->aData
);
4949 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
4953 ** Copy data from a buffer to a page, or from a page to a buffer.
4955 ** pPayload is a pointer to data stored on database page pDbPage.
4956 ** If argument eOp is false, then nByte bytes of data are copied
4957 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4958 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4959 ** of data are copied from the buffer pBuf to pPayload.
4961 ** SQLITE_OK is returned on success, otherwise an error code.
4963 static int copyPayload(
4964 void *pPayload
, /* Pointer to page data */
4965 void *pBuf
, /* Pointer to buffer */
4966 int nByte
, /* Number of bytes to copy */
4967 int eOp
, /* 0 -> copy from page, 1 -> copy to page */
4968 DbPage
*pDbPage
/* Page containing pPayload */
4971 /* Copy data from buffer to page (a write operation) */
4972 int rc
= sqlite3PagerWrite(pDbPage
);
4973 if( rc
!=SQLITE_OK
){
4976 memcpy(pPayload
, pBuf
, nByte
);
4978 /* Copy data from page to buffer (a read operation) */
4979 memcpy(pBuf
, pPayload
, nByte
);
4985 ** This function is used to read or overwrite payload information
4986 ** for the entry that the pCur cursor is pointing to. The eOp
4987 ** argument is interpreted as follows:
4989 ** 0: The operation is a read. Populate the overflow cache.
4990 ** 1: The operation is a write. Populate the overflow cache.
4992 ** A total of "amt" bytes are read or written beginning at "offset".
4993 ** Data is read to or from the buffer pBuf.
4995 ** The content being read or written might appear on the main page
4996 ** or be scattered out on multiple overflow pages.
4998 ** If the current cursor entry uses one or more overflow pages
4999 ** this function may allocate space for and lazily populate
5000 ** the overflow page-list cache array (BtCursor.aOverflow).
5001 ** Subsequent calls use this cache to make seeking to the supplied offset
5004 ** Once an overflow page-list cache has been allocated, it must be
5005 ** invalidated if some other cursor writes to the same table, or if
5006 ** the cursor is moved to a different row. Additionally, in auto-vacuum
5007 ** mode, the following events may invalidate an overflow page-list cache.
5009 ** * An incremental vacuum,
5010 ** * A commit in auto_vacuum="full" mode,
5011 ** * Creating a table (may require moving an overflow page).
5013 static int accessPayload(
5014 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
5015 u32 offset
, /* Begin reading this far into payload */
5016 u32 amt
, /* Read this many bytes */
5017 unsigned char *pBuf
, /* Write the bytes into this buffer */
5018 int eOp
/* zero to read. non-zero to write. */
5020 unsigned char *aPayload
;
5023 MemPage
*pPage
= pCur
->pPage
; /* Btree page of current entry */
5024 BtShared
*pBt
= pCur
->pBt
; /* Btree this cursor belongs to */
5025 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5026 unsigned char * const pBufStart
= pBuf
; /* Start of original out buffer */
5030 assert( eOp
==0 || eOp
==1 );
5031 assert( pCur
->eState
==CURSOR_VALID
);
5032 if( pCur
->ix
>=pPage
->nCell
){
5033 return SQLITE_CORRUPT_PAGE(pPage
);
5035 assert( cursorHoldsMutex(pCur
) );
5038 aPayload
= pCur
->info
.pPayload
;
5039 assert( offset
+amt
<= pCur
->info
.nPayload
);
5041 assert( aPayload
> pPage
->aData
);
5042 if( (uptr
)(aPayload
- pPage
->aData
) > (pBt
->usableSize
- pCur
->info
.nLocal
) ){
5043 /* Trying to read or write past the end of the data is an error. The
5044 ** conditional above is really:
5045 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
5046 ** but is recast into its current form to avoid integer overflow problems
5048 return SQLITE_CORRUPT_PAGE(pPage
);
5051 /* Check if data must be read/written to/from the btree page itself. */
5052 if( offset
<pCur
->info
.nLocal
){
5054 if( a
+offset
>pCur
->info
.nLocal
){
5055 a
= pCur
->info
.nLocal
- offset
;
5057 rc
= copyPayload(&aPayload
[offset
], pBuf
, a
, eOp
, pPage
->pDbPage
);
5062 offset
-= pCur
->info
.nLocal
;
5066 if( rc
==SQLITE_OK
&& amt
>0 ){
5067 const u32 ovflSize
= pBt
->usableSize
- 4; /* Bytes content per ovfl page */
5070 nextPage
= get4byte(&aPayload
[pCur
->info
.nLocal
]);
5072 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
5074 ** The aOverflow[] array is sized at one entry for each overflow page
5075 ** in the overflow chain. The page number of the first overflow page is
5076 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
5077 ** means "not yet known" (the cache is lazily populated).
5079 if( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 ){
5080 int nOvfl
= (pCur
->info
.nPayload
-pCur
->info
.nLocal
+ovflSize
-1)/ovflSize
;
5081 if( pCur
->aOverflow
==0
5082 || nOvfl
*(int)sizeof(Pgno
) > sqlite3MallocSize(pCur
->aOverflow
)
5084 Pgno
*aNew
= (Pgno
*)sqlite3Realloc(
5085 pCur
->aOverflow
, nOvfl
*2*sizeof(Pgno
)
5088 return SQLITE_NOMEM_BKPT
;
5090 pCur
->aOverflow
= aNew
;
5093 memset(pCur
->aOverflow
, 0, nOvfl
*sizeof(Pgno
));
5094 pCur
->curFlags
|= BTCF_ValidOvfl
;
5096 /* If the overflow page-list cache has been allocated and the
5097 ** entry for the first required overflow page is valid, skip
5100 if( pCur
->aOverflow
[offset
/ovflSize
] ){
5101 iIdx
= (offset
/ovflSize
);
5102 nextPage
= pCur
->aOverflow
[iIdx
];
5103 offset
= (offset
%ovflSize
);
5107 assert( rc
==SQLITE_OK
&& amt
>0 );
5109 /* If required, populate the overflow page-list cache. */
5110 if( nextPage
> pBt
->nPage
) return SQLITE_CORRUPT_BKPT
;
5111 assert( pCur
->aOverflow
[iIdx
]==0
5112 || pCur
->aOverflow
[iIdx
]==nextPage
5114 pCur
->aOverflow
[iIdx
] = nextPage
;
5116 if( offset
>=ovflSize
){
5117 /* The only reason to read this page is to obtain the page
5118 ** number for the next page in the overflow chain. The page
5119 ** data is not required. So first try to lookup the overflow
5120 ** page-list cache, if any, then fall back to the getOverflowPage()
5123 assert( pCur
->curFlags
& BTCF_ValidOvfl
);
5124 assert( pCur
->pBtree
->db
==pBt
->db
);
5125 if( pCur
->aOverflow
[iIdx
+1] ){
5126 nextPage
= pCur
->aOverflow
[iIdx
+1];
5128 rc
= getOverflowPage(pBt
, nextPage
, 0, &nextPage
);
5132 /* Need to read this page properly. It contains some of the
5133 ** range of data that is being read (eOp==0) or written (eOp!=0).
5136 if( a
+ offset
> ovflSize
){
5137 a
= ovflSize
- offset
;
5140 #ifdef SQLITE_DIRECT_OVERFLOW_READ
5141 /* If all the following are true:
5143 ** 1) this is a read operation, and
5144 ** 2) data is required from the start of this overflow page, and
5145 ** 3) there are no dirty pages in the page-cache
5146 ** 4) the database is file-backed, and
5147 ** 5) the page is not in the WAL file
5148 ** 6) at least 4 bytes have already been read into the output buffer
5150 ** then data can be read directly from the database file into the
5151 ** output buffer, bypassing the page-cache altogether. This speeds
5152 ** up loading large records that span many overflow pages.
5154 if( eOp
==0 /* (1) */
5155 && offset
==0 /* (2) */
5156 && sqlite3PagerDirectReadOk(pBt
->pPager
, nextPage
) /* (3,4,5) */
5157 && &pBuf
[-4]>=pBufStart
/* (6) */
5159 sqlite3_file
*fd
= sqlite3PagerFile(pBt
->pPager
);
5161 u8
*aWrite
= &pBuf
[-4];
5162 assert( aWrite
>=pBufStart
); /* due to (6) */
5163 memcpy(aSave
, aWrite
, 4);
5164 rc
= sqlite3OsRead(fd
, aWrite
, a
+4, (i64
)pBt
->pageSize
*(nextPage
-1));
5165 if( rc
&& nextPage
>pBt
->nPage
) rc
= SQLITE_CORRUPT_BKPT
;
5166 nextPage
= get4byte(aWrite
);
5167 memcpy(aWrite
, aSave
, 4);
5173 rc
= sqlite3PagerGet(pBt
->pPager
, nextPage
, &pDbPage
,
5174 (eOp
==0 ? PAGER_GET_READONLY
: 0)
5176 if( rc
==SQLITE_OK
){
5177 aPayload
= sqlite3PagerGetData(pDbPage
);
5178 nextPage
= get4byte(aPayload
);
5179 rc
= copyPayload(&aPayload
[offset
+4], pBuf
, a
, eOp
, pDbPage
);
5180 sqlite3PagerUnref(pDbPage
);
5185 if( amt
==0 ) return rc
;
5193 if( rc
==SQLITE_OK
&& amt
>0 ){
5194 /* Overflow chain ends prematurely */
5195 return SQLITE_CORRUPT_PAGE(pPage
);
5201 ** Read part of the payload for the row at which that cursor pCur is currently
5202 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
5203 ** begins at "offset".
5205 ** pCur can be pointing to either a table or an index b-tree.
5206 ** If pointing to a table btree, then the content section is read. If
5207 ** pCur is pointing to an index b-tree then the key section is read.
5209 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5210 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5211 ** cursor might be invalid or might need to be restored before being read.
5213 ** Return SQLITE_OK on success or an error code if anything goes
5214 ** wrong. An error is returned if "offset+amt" is larger than
5215 ** the available payload.
5217 int sqlite3BtreePayload(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5218 assert( cursorHoldsMutex(pCur
) );
5219 assert( pCur
->eState
==CURSOR_VALID
);
5220 assert( pCur
->iPage
>=0 && pCur
->pPage
);
5221 return accessPayload(pCur
, offset
, amt
, (unsigned char*)pBuf
, 0);
5225 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5226 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5229 #ifndef SQLITE_OMIT_INCRBLOB
5230 static SQLITE_NOINLINE
int accessPayloadChecked(
5237 if ( pCur
->eState
==CURSOR_INVALID
){
5238 return SQLITE_ABORT
;
5240 assert( cursorOwnsBtShared(pCur
) );
5241 rc
= btreeRestoreCursorPosition(pCur
);
5242 return rc
? rc
: accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5244 int sqlite3BtreePayloadChecked(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5245 if( pCur
->eState
==CURSOR_VALID
){
5246 assert( cursorOwnsBtShared(pCur
) );
5247 return accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5249 return accessPayloadChecked(pCur
, offset
, amt
, pBuf
);
5252 #endif /* SQLITE_OMIT_INCRBLOB */
5255 ** Return a pointer to payload information from the entry that the
5256 ** pCur cursor is pointing to. The pointer is to the beginning of
5257 ** the key if index btrees (pPage->intKey==0) and is the data for
5258 ** table btrees (pPage->intKey==1). The number of bytes of available
5259 ** key/data is written into *pAmt. If *pAmt==0, then the value
5260 ** returned will not be a valid pointer.
5262 ** This routine is an optimization. It is common for the entire key
5263 ** and data to fit on the local page and for there to be no overflow
5264 ** pages. When that is so, this routine can be used to access the
5265 ** key and data without making a copy. If the key and/or data spills
5266 ** onto overflow pages, then accessPayload() must be used to reassemble
5267 ** the key/data and copy it into a preallocated buffer.
5269 ** The pointer returned by this routine looks directly into the cached
5270 ** page of the database. The data might change or move the next time
5271 ** any btree routine is called.
5273 static const void *fetchPayload(
5274 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
5275 u32
*pAmt
/* Write the number of available bytes here */
5278 assert( pCur
!=0 && pCur
->iPage
>=0 && pCur
->pPage
);
5279 assert( pCur
->eState
==CURSOR_VALID
);
5280 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5281 assert( cursorOwnsBtShared(pCur
) );
5282 assert( pCur
->ix
<pCur
->pPage
->nCell
|| CORRUPT_DB
);
5283 assert( pCur
->info
.nSize
>0 );
5284 assert( pCur
->info
.pPayload
>pCur
->pPage
->aData
|| CORRUPT_DB
);
5285 assert( pCur
->info
.pPayload
<pCur
->pPage
->aDataEnd
||CORRUPT_DB
);
5286 amt
= pCur
->info
.nLocal
;
5287 if( amt
>(int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
) ){
5288 /* There is too little space on the page for the expected amount
5289 ** of local content. Database must be corrupt. */
5290 assert( CORRUPT_DB
);
5291 amt
= MAX(0, (int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
));
5294 return (void*)pCur
->info
.pPayload
;
5299 ** For the entry that cursor pCur is point to, return as
5300 ** many bytes of the key or data as are available on the local
5301 ** b-tree page. Write the number of available bytes into *pAmt.
5303 ** The pointer returned is ephemeral. The key/data may move
5304 ** or be destroyed on the next call to any Btree routine,
5305 ** including calls from other threads against the same cache.
5306 ** Hence, a mutex on the BtShared should be held prior to calling
5309 ** These routines is used to get quick access to key and data
5310 ** in the common case where no overflow pages are used.
5312 const void *sqlite3BtreePayloadFetch(BtCursor
*pCur
, u32
*pAmt
){
5313 return fetchPayload(pCur
, pAmt
);
5318 ** Move the cursor down to a new child page. The newPgno argument is the
5319 ** page number of the child page to move to.
5321 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5322 ** the new child page does not match the flags field of the parent (i.e.
5323 ** if an intkey page appears to be the parent of a non-intkey page, or
5326 static int moveToChild(BtCursor
*pCur
, u32 newPgno
){
5328 assert( cursorOwnsBtShared(pCur
) );
5329 assert( pCur
->eState
==CURSOR_VALID
);
5330 assert( pCur
->iPage
<BTCURSOR_MAX_DEPTH
);
5331 assert( pCur
->iPage
>=0 );
5332 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
5333 return SQLITE_CORRUPT_BKPT
;
5335 pCur
->info
.nSize
= 0;
5336 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5337 pCur
->aiIdx
[pCur
->iPage
] = pCur
->ix
;
5338 pCur
->apPage
[pCur
->iPage
] = pCur
->pPage
;
5341 rc
= getAndInitPage(pCur
->pBt
, newPgno
, &pCur
->pPage
, pCur
->curPagerFlags
);
5342 assert( pCur
->pPage
!=0 || rc
!=SQLITE_OK
);
5344 && (pCur
->pPage
->nCell
<1 || pCur
->pPage
->intKey
!=pCur
->curIntKey
)
5346 releasePage(pCur
->pPage
);
5347 rc
= SQLITE_CORRUPT_PGNO(newPgno
);
5350 pCur
->pPage
= pCur
->apPage
[--pCur
->iPage
];
5357 ** Page pParent is an internal (non-leaf) tree page. This function
5358 ** asserts that page number iChild is the left-child if the iIdx'th
5359 ** cell in page pParent. Or, if iIdx is equal to the total number of
5360 ** cells in pParent, that page number iChild is the right-child of
5363 static void assertParentIndex(MemPage
*pParent
, int iIdx
, Pgno iChild
){
5364 if( CORRUPT_DB
) return; /* The conditions tested below might not be true
5365 ** in a corrupt database */
5366 assert( iIdx
<=pParent
->nCell
);
5367 if( iIdx
==pParent
->nCell
){
5368 assert( get4byte(&pParent
->aData
[pParent
->hdrOffset
+8])==iChild
);
5370 assert( get4byte(findCell(pParent
, iIdx
))==iChild
);
5374 # define assertParentIndex(x,y,z)
5378 ** Move the cursor up to the parent page.
5380 ** pCur->idx is set to the cell index that contains the pointer
5381 ** to the page we are coming from. If we are coming from the
5382 ** right-most child page then pCur->idx is set to one more than
5383 ** the largest cell index.
5385 static void moveToParent(BtCursor
*pCur
){
5387 assert( cursorOwnsBtShared(pCur
) );
5388 assert( pCur
->eState
==CURSOR_VALID
);
5389 assert( pCur
->iPage
>0 );
5390 assert( pCur
->pPage
);
5392 pCur
->apPage
[pCur
->iPage
-1],
5393 pCur
->aiIdx
[pCur
->iPage
-1],
5396 testcase( pCur
->aiIdx
[pCur
->iPage
-1] > pCur
->apPage
[pCur
->iPage
-1]->nCell
);
5397 pCur
->info
.nSize
= 0;
5398 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5399 pCur
->ix
= pCur
->aiIdx
[pCur
->iPage
-1];
5400 pLeaf
= pCur
->pPage
;
5401 pCur
->pPage
= pCur
->apPage
[--pCur
->iPage
];
5402 releasePageNotNull(pLeaf
);
5406 ** Move the cursor to point to the root page of its b-tree structure.
5408 ** If the table has a virtual root page, then the cursor is moved to point
5409 ** to the virtual root page instead of the actual root page. A table has a
5410 ** virtual root page when the actual root page contains no cells and a
5411 ** single child page. This can only happen with the table rooted at page 1.
5413 ** If the b-tree structure is empty, the cursor state is set to
5414 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5415 ** the cursor is set to point to the first cell located on the root
5416 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5418 ** If this function returns successfully, it may be assumed that the
5419 ** page-header flags indicate that the [virtual] root-page is the expected
5420 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5421 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5422 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5423 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5426 static int moveToRoot(BtCursor
*pCur
){
5430 assert( cursorOwnsBtShared(pCur
) );
5431 assert( CURSOR_INVALID
< CURSOR_REQUIRESEEK
);
5432 assert( CURSOR_VALID
< CURSOR_REQUIRESEEK
);
5433 assert( CURSOR_FAULT
> CURSOR_REQUIRESEEK
);
5434 assert( pCur
->eState
< CURSOR_REQUIRESEEK
|| pCur
->iPage
<0 );
5435 assert( pCur
->pgnoRoot
>0 || pCur
->iPage
<0 );
5437 if( pCur
->iPage
>=0 ){
5439 releasePageNotNull(pCur
->pPage
);
5440 while( --pCur
->iPage
){
5441 releasePageNotNull(pCur
->apPage
[pCur
->iPage
]);
5443 pRoot
= pCur
->pPage
= pCur
->apPage
[0];
5446 }else if( pCur
->pgnoRoot
==0 ){
5447 pCur
->eState
= CURSOR_INVALID
;
5448 return SQLITE_EMPTY
;
5450 assert( pCur
->iPage
==(-1) );
5451 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
5452 if( pCur
->eState
==CURSOR_FAULT
){
5453 assert( pCur
->skipNext
!=SQLITE_OK
);
5454 return pCur
->skipNext
;
5456 sqlite3BtreeClearCursor(pCur
);
5458 rc
= getAndInitPage(pCur
->pBt
, pCur
->pgnoRoot
, &pCur
->pPage
,
5459 pCur
->curPagerFlags
);
5460 if( rc
!=SQLITE_OK
){
5461 pCur
->eState
= CURSOR_INVALID
;
5465 pCur
->curIntKey
= pCur
->pPage
->intKey
;
5467 pRoot
= pCur
->pPage
;
5468 assert( pRoot
->pgno
==pCur
->pgnoRoot
|| CORRUPT_DB
);
5470 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5471 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5472 ** NULL, the caller expects a table b-tree. If this is not the case,
5473 ** return an SQLITE_CORRUPT error.
5475 ** Earlier versions of SQLite assumed that this test could not fail
5476 ** if the root page was already loaded when this function was called (i.e.
5477 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5478 ** in such a way that page pRoot is linked into a second b-tree table
5479 ** (or the freelist). */
5480 assert( pRoot
->intKey
==1 || pRoot
->intKey
==0 );
5481 if( pRoot
->isInit
==0 || (pCur
->pKeyInfo
==0)!=pRoot
->intKey
){
5482 return SQLITE_CORRUPT_PAGE(pCur
->pPage
);
5487 pCur
->info
.nSize
= 0;
5488 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidNKey
|BTCF_ValidOvfl
);
5490 if( pRoot
->nCell
>0 ){
5491 pCur
->eState
= CURSOR_VALID
;
5492 }else if( !pRoot
->leaf
){
5494 if( pRoot
->pgno
!=1 ) return SQLITE_CORRUPT_BKPT
;
5495 subpage
= get4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8]);
5496 pCur
->eState
= CURSOR_VALID
;
5497 rc
= moveToChild(pCur
, subpage
);
5499 pCur
->eState
= CURSOR_INVALID
;
5506 ** Move the cursor down to the left-most leaf entry beneath the
5507 ** entry to which it is currently pointing.
5509 ** The left-most leaf is the one with the smallest key - the first
5510 ** in ascending order.
5512 static int moveToLeftmost(BtCursor
*pCur
){
5517 assert( cursorOwnsBtShared(pCur
) );
5518 assert( pCur
->eState
==CURSOR_VALID
);
5519 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->pPage
)->leaf
){
5520 assert( pCur
->ix
<pPage
->nCell
);
5521 pgno
= get4byte(findCell(pPage
, pCur
->ix
));
5522 rc
= moveToChild(pCur
, pgno
);
5528 ** Move the cursor down to the right-most leaf entry beneath the
5529 ** page to which it is currently pointing. Notice the difference
5530 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5531 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5532 ** finds the right-most entry beneath the *page*.
5534 ** The right-most entry is the one with the largest key - the last
5535 ** key in ascending order.
5537 static int moveToRightmost(BtCursor
*pCur
){
5542 assert( cursorOwnsBtShared(pCur
) );
5543 assert( pCur
->eState
==CURSOR_VALID
);
5544 while( !(pPage
= pCur
->pPage
)->leaf
){
5545 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5546 pCur
->ix
= pPage
->nCell
;
5547 rc
= moveToChild(pCur
, pgno
);
5550 pCur
->ix
= pPage
->nCell
-1;
5551 assert( pCur
->info
.nSize
==0 );
5552 assert( (pCur
->curFlags
& BTCF_ValidNKey
)==0 );
5556 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5557 ** on success. Set *pRes to 0 if the cursor actually points to something
5558 ** or set *pRes to 1 if the table is empty.
5560 int sqlite3BtreeFirst(BtCursor
*pCur
, int *pRes
){
5563 assert( cursorOwnsBtShared(pCur
) );
5564 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5565 rc
= moveToRoot(pCur
);
5566 if( rc
==SQLITE_OK
){
5567 assert( pCur
->pPage
->nCell
>0 );
5569 rc
= moveToLeftmost(pCur
);
5570 }else if( rc
==SQLITE_EMPTY
){
5571 assert( pCur
->pgnoRoot
==0 || (pCur
->pPage
!=0 && pCur
->pPage
->nCell
==0) );
5578 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5579 ** on success. Set *pRes to 0 if the cursor actually points to something
5580 ** or set *pRes to 1 if the table is empty.
5582 static SQLITE_NOINLINE
int btreeLast(BtCursor
*pCur
, int *pRes
){
5583 int rc
= moveToRoot(pCur
);
5584 if( rc
==SQLITE_OK
){
5585 assert( pCur
->eState
==CURSOR_VALID
);
5587 rc
= moveToRightmost(pCur
);
5588 if( rc
==SQLITE_OK
){
5589 pCur
->curFlags
|= BTCF_AtLast
;
5591 pCur
->curFlags
&= ~BTCF_AtLast
;
5593 }else if( rc
==SQLITE_EMPTY
){
5594 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5600 int sqlite3BtreeLast(BtCursor
*pCur
, int *pRes
){
5601 assert( cursorOwnsBtShared(pCur
) );
5602 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5604 /* If the cursor already points to the last entry, this is a no-op. */
5605 if( CURSOR_VALID
==pCur
->eState
&& (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5607 /* This block serves to assert() that the cursor really does point
5608 ** to the last entry in the b-tree. */
5610 for(ii
=0; ii
<pCur
->iPage
; ii
++){
5611 assert( pCur
->aiIdx
[ii
]==pCur
->apPage
[ii
]->nCell
);
5613 assert( pCur
->ix
==pCur
->pPage
->nCell
-1 || CORRUPT_DB
);
5614 testcase( pCur
->ix
!=pCur
->pPage
->nCell
-1 );
5615 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5616 assert( pCur
->pPage
->leaf
);
5621 return btreeLast(pCur
, pRes
);
5624 /* Move the cursor so that it points to an entry in a table (a.k.a INTKEY)
5625 ** table near the key intKey. Return a success code.
5627 ** If an exact match is not found, then the cursor is always
5628 ** left pointing at a leaf page which would hold the entry if it
5629 ** were present. The cursor might point to an entry that comes
5630 ** before or after the key.
5632 ** An integer is written into *pRes which is the result of
5633 ** comparing the key with the entry to which the cursor is
5634 ** pointing. The meaning of the integer written into
5635 ** *pRes is as follows:
5637 ** *pRes<0 The cursor is left pointing at an entry that
5638 ** is smaller than intKey or if the table is empty
5639 ** and the cursor is therefore left point to nothing.
5641 ** *pRes==0 The cursor is left pointing at an entry that
5642 ** exactly matches intKey.
5644 ** *pRes>0 The cursor is left pointing at an entry that
5645 ** is larger than intKey.
5647 int sqlite3BtreeTableMoveto(
5648 BtCursor
*pCur
, /* The cursor to be moved */
5649 i64 intKey
, /* The table key */
5650 int biasRight
, /* If true, bias the search to the high end */
5651 int *pRes
/* Write search results here */
5655 assert( cursorOwnsBtShared(pCur
) );
5656 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5658 assert( pCur
->pKeyInfo
==0 );
5659 assert( pCur
->eState
!=CURSOR_VALID
|| pCur
->curIntKey
!=0 );
5661 /* If the cursor is already positioned at the point we are trying
5662 ** to move to, then just return without doing any work */
5663 if( pCur
->eState
==CURSOR_VALID
&& (pCur
->curFlags
& BTCF_ValidNKey
)!=0 ){
5664 if( pCur
->info
.nKey
==intKey
){
5668 if( pCur
->info
.nKey
<intKey
){
5669 if( (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5673 /* If the requested key is one more than the previous key, then
5674 ** try to get there using sqlite3BtreeNext() rather than a full
5675 ** binary search. This is an optimization only. The correct answer
5676 ** is still obtained without this case, only a little more slowly. */
5677 if( pCur
->info
.nKey
+1==intKey
){
5679 rc
= sqlite3BtreeNext(pCur
, 0);
5680 if( rc
==SQLITE_OK
){
5682 if( pCur
->info
.nKey
==intKey
){
5685 }else if( rc
!=SQLITE_DONE
){
5693 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5696 rc
= moveToRoot(pCur
);
5698 if( rc
==SQLITE_EMPTY
){
5699 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5705 assert( pCur
->pPage
);
5706 assert( pCur
->pPage
->isInit
);
5707 assert( pCur
->eState
==CURSOR_VALID
);
5708 assert( pCur
->pPage
->nCell
> 0 );
5709 assert( pCur
->iPage
==0 || pCur
->apPage
[0]->intKey
==pCur
->curIntKey
);
5710 assert( pCur
->curIntKey
);
5713 int lwr
, upr
, idx
, c
;
5715 MemPage
*pPage
= pCur
->pPage
;
5716 u8
*pCell
; /* Pointer to current cell in pPage */
5718 /* pPage->nCell must be greater than zero. If this is the root-page
5719 ** the cursor would have been INVALID above and this for(;;) loop
5720 ** not run. If this is not the root-page, then the moveToChild() routine
5721 ** would have already detected db corruption. Similarly, pPage must
5722 ** be the right kind (index or table) of b-tree page. Otherwise
5723 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5724 assert( pPage
->nCell
>0 );
5725 assert( pPage
->intKey
);
5727 upr
= pPage
->nCell
-1;
5728 assert( biasRight
==0 || biasRight
==1 );
5729 idx
= upr
>>(1-biasRight
); /* idx = biasRight ? upr : (lwr+upr)/2; */
5732 pCell
= findCellPastPtr(pPage
, idx
);
5733 if( pPage
->intKeyLeaf
){
5734 while( 0x80 <= *(pCell
++) ){
5735 if( pCell
>=pPage
->aDataEnd
){
5736 return SQLITE_CORRUPT_PAGE(pPage
);
5740 getVarint(pCell
, (u64
*)&nCellKey
);
5741 if( nCellKey
<intKey
){
5743 if( lwr
>upr
){ c
= -1; break; }
5744 }else if( nCellKey
>intKey
){
5746 if( lwr
>upr
){ c
= +1; break; }
5748 assert( nCellKey
==intKey
);
5749 pCur
->ix
= (u16
)idx
;
5752 goto moveto_table_next_layer
;
5754 pCur
->curFlags
|= BTCF_ValidNKey
;
5755 pCur
->info
.nKey
= nCellKey
;
5756 pCur
->info
.nSize
= 0;
5761 assert( lwr
+upr
>=0 );
5762 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2; */
5764 assert( lwr
==upr
+1 || !pPage
->leaf
);
5765 assert( pPage
->isInit
);
5767 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5768 pCur
->ix
= (u16
)idx
;
5771 goto moveto_table_finish
;
5773 moveto_table_next_layer
:
5774 if( lwr
>=pPage
->nCell
){
5775 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5777 chldPg
= get4byte(findCell(pPage
, lwr
));
5779 pCur
->ix
= (u16
)lwr
;
5780 rc
= moveToChild(pCur
, chldPg
);
5783 moveto_table_finish
:
5784 pCur
->info
.nSize
= 0;
5785 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5790 ** Compare the "idx"-th cell on the page the cursor pCur is currently
5791 ** pointing to to pIdxKey using xRecordCompare. Return negative or
5792 ** zero if the cell is less than or equal pIdxKey. Return positive
5795 ** Return value negative: Cell at pCur[idx] less than pIdxKey
5797 ** Return value is zero: Cell at pCur[idx] equals pIdxKey
5799 ** Return value positive: Nothing is known about the relationship
5800 ** of the cell at pCur[idx] and pIdxKey.
5802 ** This routine is part of an optimization. It is always safe to return
5803 ** a positive value as that will cause the optimization to be skipped.
5805 static int indexCellCompare(
5808 UnpackedRecord
*pIdxKey
,
5809 RecordCompare xRecordCompare
5811 MemPage
*pPage
= pCur
->pPage
;
5813 int nCell
; /* Size of the pCell cell in bytes */
5814 u8
*pCell
= findCellPastPtr(pPage
, idx
);
5817 if( nCell
<=pPage
->max1bytePayload
){
5818 /* This branch runs if the record-size field of the cell is a
5819 ** single byte varint and the record fits entirely on the main
5821 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5822 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5823 }else if( !(pCell
[1] & 0x80)
5824 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5826 /* The record-size field is a 2 byte varint and the record
5827 ** fits entirely on the main b-tree page. */
5828 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5829 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
5831 /* If the record extends into overflow pages, do not attempt
5832 ** the optimization. */
5839 ** Return true (non-zero) if pCur is current pointing to the last
5842 static int cursorOnLastPage(BtCursor
*pCur
){
5844 assert( pCur
->eState
==CURSOR_VALID
);
5845 for(i
=0; i
<pCur
->iPage
; i
++){
5846 MemPage
*pPage
= pCur
->apPage
[i
];
5847 if( pCur
->aiIdx
[i
]<pPage
->nCell
) return 0;
5852 /* Move the cursor so that it points to an entry in an index table
5853 ** near the key pIdxKey. Return a success code.
5855 ** If an exact match is not found, then the cursor is always
5856 ** left pointing at a leaf page which would hold the entry if it
5857 ** were present. The cursor might point to an entry that comes
5858 ** before or after the key.
5860 ** An integer is written into *pRes which is the result of
5861 ** comparing the key with the entry to which the cursor is
5862 ** pointing. The meaning of the integer written into
5863 ** *pRes is as follows:
5865 ** *pRes<0 The cursor is left pointing at an entry that
5866 ** is smaller than pIdxKey or if the table is empty
5867 ** and the cursor is therefore left point to nothing.
5869 ** *pRes==0 The cursor is left pointing at an entry that
5870 ** exactly matches pIdxKey.
5872 ** *pRes>0 The cursor is left pointing at an entry that
5873 ** is larger than pIdxKey.
5875 ** The pIdxKey->eqSeen field is set to 1 if there
5876 ** exists an entry in the table that exactly matches pIdxKey.
5878 int sqlite3BtreeIndexMoveto(
5879 BtCursor
*pCur
, /* The cursor to be moved */
5880 UnpackedRecord
*pIdxKey
, /* Unpacked index key */
5881 int *pRes
/* Write search results here */
5884 RecordCompare xRecordCompare
;
5886 assert( cursorOwnsBtShared(pCur
) );
5887 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5889 assert( pCur
->pKeyInfo
!=0 );
5892 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5895 xRecordCompare
= sqlite3VdbeFindCompare(pIdxKey
);
5896 pIdxKey
->errCode
= 0;
5897 assert( pIdxKey
->default_rc
==1
5898 || pIdxKey
->default_rc
==0
5899 || pIdxKey
->default_rc
==-1
5903 /* Check to see if we can skip a lot of work. Two cases:
5905 ** (1) If the cursor is already pointing to the very last cell
5906 ** in the table and the pIdxKey search key is greater than or
5907 ** equal to that last cell, then no movement is required.
5909 ** (2) If the cursor is on the last page of the table and the first
5910 ** cell on that last page is less than or equal to the pIdxKey
5911 ** search key, then we can start the search on the current page
5912 ** without needing to go back to root.
5914 if( pCur
->eState
==CURSOR_VALID
5915 && pCur
->pPage
->leaf
5916 && cursorOnLastPage(pCur
)
5919 if( pCur
->ix
==pCur
->pPage
->nCell
-1
5920 && (c
= indexCellCompare(pCur
, pCur
->ix
, pIdxKey
, xRecordCompare
))<=0
5921 && pIdxKey
->errCode
==SQLITE_OK
5924 return SQLITE_OK
; /* Cursor already pointing at the correct spot */
5927 && indexCellCompare(pCur
, 0, pIdxKey
, xRecordCompare
)<=0
5928 && pIdxKey
->errCode
==SQLITE_OK
5930 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
5931 if( !pCur
->pPage
->isInit
){
5932 return SQLITE_CORRUPT_BKPT
;
5934 goto bypass_moveto_root
; /* Start search on the current page */
5936 pIdxKey
->errCode
= SQLITE_OK
;
5939 rc
= moveToRoot(pCur
);
5941 if( rc
==SQLITE_EMPTY
){
5942 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5950 assert( pCur
->pPage
);
5951 assert( pCur
->pPage
->isInit
);
5952 assert( pCur
->eState
==CURSOR_VALID
);
5953 assert( pCur
->pPage
->nCell
> 0 );
5954 assert( pCur
->curIntKey
==0 );
5955 assert( pIdxKey
!=0 );
5957 int lwr
, upr
, idx
, c
;
5959 MemPage
*pPage
= pCur
->pPage
;
5960 u8
*pCell
; /* Pointer to current cell in pPage */
5962 /* pPage->nCell must be greater than zero. If this is the root-page
5963 ** the cursor would have been INVALID above and this for(;;) loop
5964 ** not run. If this is not the root-page, then the moveToChild() routine
5965 ** would have already detected db corruption. Similarly, pPage must
5966 ** be the right kind (index or table) of b-tree page. Otherwise
5967 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5968 assert( pPage
->nCell
>0 );
5969 assert( pPage
->intKey
==0 );
5971 upr
= pPage
->nCell
-1;
5972 idx
= upr
>>1; /* idx = (lwr+upr)/2; */
5974 int nCell
; /* Size of the pCell cell in bytes */
5975 pCell
= findCellPastPtr(pPage
, idx
);
5977 /* The maximum supported page-size is 65536 bytes. This means that
5978 ** the maximum number of record bytes stored on an index B-Tree
5979 ** page is less than 16384 bytes and may be stored as a 2-byte
5980 ** varint. This information is used to attempt to avoid parsing
5981 ** the entire cell by checking for the cases where the record is
5982 ** stored entirely within the b-tree page by inspecting the first
5983 ** 2 bytes of the cell.
5986 if( nCell
<=pPage
->max1bytePayload
){
5987 /* This branch runs if the record-size field of the cell is a
5988 ** single byte varint and the record fits entirely on the main
5990 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5991 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5992 }else if( !(pCell
[1] & 0x80)
5993 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5995 /* The record-size field is a 2 byte varint and the record
5996 ** fits entirely on the main b-tree page. */
5997 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5998 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
6000 /* The record flows over onto one or more overflow pages. In
6001 ** this case the whole cell needs to be parsed, a buffer allocated
6002 ** and accessPayload() used to retrieve the record into the
6003 ** buffer before VdbeRecordCompare() can be called.
6005 ** If the record is corrupt, the xRecordCompare routine may read
6006 ** up to two varints past the end of the buffer. An extra 18
6007 ** bytes of padding is allocated at the end of the buffer in
6008 ** case this happens. */
6010 u8
* const pCellBody
= pCell
- pPage
->childPtrSize
;
6011 const int nOverrun
= 18; /* Size of the overrun padding */
6012 pPage
->xParseCell(pPage
, pCellBody
, &pCur
->info
);
6013 nCell
= (int)pCur
->info
.nKey
;
6014 testcase( nCell
<0 ); /* True if key size is 2^32 or more */
6015 testcase( nCell
==0 ); /* Invalid key size: 0x80 0x80 0x00 */
6016 testcase( nCell
==1 ); /* Invalid key size: 0x80 0x80 0x01 */
6017 testcase( nCell
==2 ); /* Minimum legal index key size */
6018 if( nCell
<2 || nCell
/pCur
->pBt
->usableSize
>pCur
->pBt
->nPage
){
6019 rc
= SQLITE_CORRUPT_PAGE(pPage
);
6020 goto moveto_index_finish
;
6022 pCellKey
= sqlite3Malloc( nCell
+nOverrun
);
6024 rc
= SQLITE_NOMEM_BKPT
;
6025 goto moveto_index_finish
;
6027 pCur
->ix
= (u16
)idx
;
6028 rc
= accessPayload(pCur
, 0, nCell
, (unsigned char*)pCellKey
, 0);
6029 memset(((u8
*)pCellKey
)+nCell
,0,nOverrun
); /* Fix uninit warnings */
6030 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
6032 sqlite3_free(pCellKey
);
6033 goto moveto_index_finish
;
6035 c
= sqlite3VdbeRecordCompare(nCell
, pCellKey
, pIdxKey
);
6036 sqlite3_free(pCellKey
);
6039 (pIdxKey
->errCode
!=SQLITE_CORRUPT
|| c
==0)
6040 && (pIdxKey
->errCode
!=SQLITE_NOMEM
|| pCur
->pBtree
->db
->mallocFailed
)
6050 pCur
->ix
= (u16
)idx
;
6051 if( pIdxKey
->errCode
) rc
= SQLITE_CORRUPT_BKPT
;
6052 goto moveto_index_finish
;
6054 if( lwr
>upr
) break;
6055 assert( lwr
+upr
>=0 );
6056 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2 */
6058 assert( lwr
==upr
+1 || (pPage
->intKey
&& !pPage
->leaf
) );
6059 assert( pPage
->isInit
);
6061 assert( pCur
->ix
<pCur
->pPage
->nCell
|| CORRUPT_DB
);
6062 pCur
->ix
= (u16
)idx
;
6065 goto moveto_index_finish
;
6067 if( lwr
>=pPage
->nCell
){
6068 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
6070 chldPg
= get4byte(findCell(pPage
, lwr
));
6073 /* This block is similar to an in-lined version of:
6075 ** pCur->ix = (u16)lwr;
6076 ** rc = moveToChild(pCur, chldPg);
6079 pCur
->info
.nSize
= 0;
6080 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
6081 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
6082 return SQLITE_CORRUPT_BKPT
;
6084 pCur
->aiIdx
[pCur
->iPage
] = (u16
)lwr
;
6085 pCur
->apPage
[pCur
->iPage
] = pCur
->pPage
;
6088 rc
= getAndInitPage(pCur
->pBt
, chldPg
, &pCur
->pPage
, pCur
->curPagerFlags
);
6090 && (pCur
->pPage
->nCell
<1 || pCur
->pPage
->intKey
!=pCur
->curIntKey
)
6092 releasePage(pCur
->pPage
);
6093 rc
= SQLITE_CORRUPT_PGNO(chldPg
);
6096 pCur
->pPage
= pCur
->apPage
[--pCur
->iPage
];
6100 ***** End of in-lined moveToChild() call */
6102 moveto_index_finish
:
6103 pCur
->info
.nSize
= 0;
6104 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
6110 ** Return TRUE if the cursor is not pointing at an entry of the table.
6112 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
6113 ** past the last entry in the table or sqlite3BtreePrev() moves past
6114 ** the first entry. TRUE is also returned if the table is empty.
6116 int sqlite3BtreeEof(BtCursor
*pCur
){
6117 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
6118 ** have been deleted? This API will need to change to return an error code
6119 ** as well as the boolean result value.
6121 return (CURSOR_VALID
!=pCur
->eState
);
6125 ** Return an estimate for the number of rows in the table that pCur is
6126 ** pointing to. Return a negative number if no estimate is currently
6129 i64
sqlite3BtreeRowCountEst(BtCursor
*pCur
){
6133 assert( cursorOwnsBtShared(pCur
) );
6134 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
6136 /* Currently this interface is only called by the OP_IfSmaller
6137 ** opcode, and it that case the cursor will always be valid and
6138 ** will always point to a leaf node. */
6139 if( NEVER(pCur
->eState
!=CURSOR_VALID
) ) return -1;
6140 if( NEVER(pCur
->pPage
->leaf
==0) ) return -1;
6142 n
= pCur
->pPage
->nCell
;
6143 for(i
=0; i
<pCur
->iPage
; i
++){
6144 n
*= pCur
->apPage
[i
]->nCell
;
6150 ** Advance the cursor to the next entry in the database.
6153 ** SQLITE_OK success
6154 ** SQLITE_DONE cursor is already pointing at the last element
6155 ** otherwise some kind of error occurred
6157 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
6158 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
6159 ** to the next cell on the current page. The (slower) btreeNext() helper
6160 ** routine is called when it is necessary to move to a different page or
6161 ** to restore the cursor.
6163 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
6164 ** cursor corresponds to an SQL index and this routine could have been
6165 ** skipped if the SQL index had been a unique index. The F argument
6166 ** is a hint to the implement. SQLite btree implementation does not use
6167 ** this hint, but COMDB2 does.
6169 static SQLITE_NOINLINE
int btreeNext(BtCursor
*pCur
){
6174 assert( cursorOwnsBtShared(pCur
) );
6175 if( pCur
->eState
!=CURSOR_VALID
){
6176 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
6177 rc
= restoreCursorPosition(pCur
);
6178 if( rc
!=SQLITE_OK
){
6181 if( CURSOR_INVALID
==pCur
->eState
){
6184 if( pCur
->eState
==CURSOR_SKIPNEXT
){
6185 pCur
->eState
= CURSOR_VALID
;
6186 if( pCur
->skipNext
>0 ) return SQLITE_OK
;
6190 pPage
= pCur
->pPage
;
6192 if( sqlite3FaultSim(412) ) pPage
->isInit
= 0;
6193 if( !pPage
->isInit
){
6194 return SQLITE_CORRUPT_BKPT
;
6197 if( idx
>=pPage
->nCell
){
6199 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
6201 return moveToLeftmost(pCur
);
6204 if( pCur
->iPage
==0 ){
6205 pCur
->eState
= CURSOR_INVALID
;
6209 pPage
= pCur
->pPage
;
6210 }while( pCur
->ix
>=pPage
->nCell
);
6211 if( pPage
->intKey
){
6212 return sqlite3BtreeNext(pCur
, 0);
6220 return moveToLeftmost(pCur
);
6223 int sqlite3BtreeNext(BtCursor
*pCur
, int flags
){
6225 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
6226 assert( cursorOwnsBtShared(pCur
) );
6227 assert( flags
==0 || flags
==1 );
6228 pCur
->info
.nSize
= 0;
6229 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
6230 if( pCur
->eState
!=CURSOR_VALID
) return btreeNext(pCur
);
6231 pPage
= pCur
->pPage
;
6232 if( (++pCur
->ix
)>=pPage
->nCell
){
6234 return btreeNext(pCur
);
6239 return moveToLeftmost(pCur
);
6244 ** Step the cursor to the back to the previous entry in the database.
6247 ** SQLITE_OK success
6248 ** SQLITE_DONE the cursor is already on the first element of the table
6249 ** otherwise some kind of error occurred
6251 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
6252 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
6253 ** to the previous cell on the current page. The (slower) btreePrevious()
6254 ** helper routine is called when it is necessary to move to a different page
6255 ** or to restore the cursor.
6257 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
6258 ** the cursor corresponds to an SQL index and this routine could have been
6259 ** skipped if the SQL index had been a unique index. The F argument is a
6260 ** hint to the implement. The native SQLite btree implementation does not
6261 ** use this hint, but COMDB2 does.
6263 static SQLITE_NOINLINE
int btreePrevious(BtCursor
*pCur
){
6267 assert( cursorOwnsBtShared(pCur
) );
6268 assert( (pCur
->curFlags
& (BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
))==0 );
6269 assert( pCur
->info
.nSize
==0 );
6270 if( pCur
->eState
!=CURSOR_VALID
){
6271 rc
= restoreCursorPosition(pCur
);
6272 if( rc
!=SQLITE_OK
){
6275 if( CURSOR_INVALID
==pCur
->eState
){
6278 if( CURSOR_SKIPNEXT
==pCur
->eState
){
6279 pCur
->eState
= CURSOR_VALID
;
6280 if( pCur
->skipNext
<0 ) return SQLITE_OK
;
6284 pPage
= pCur
->pPage
;
6285 assert( pPage
->isInit
);
6288 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, idx
)));
6290 rc
= moveToRightmost(pCur
);
6292 while( pCur
->ix
==0 ){
6293 if( pCur
->iPage
==0 ){
6294 pCur
->eState
= CURSOR_INVALID
;
6299 assert( pCur
->info
.nSize
==0 );
6300 assert( (pCur
->curFlags
& (BTCF_ValidOvfl
))==0 );
6303 pPage
= pCur
->pPage
;
6304 if( pPage
->intKey
&& !pPage
->leaf
){
6305 rc
= sqlite3BtreePrevious(pCur
, 0);
6312 int sqlite3BtreePrevious(BtCursor
*pCur
, int flags
){
6313 assert( cursorOwnsBtShared(pCur
) );
6314 assert( flags
==0 || flags
==1 );
6315 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
6316 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
);
6317 pCur
->info
.nSize
= 0;
6318 if( pCur
->eState
!=CURSOR_VALID
6320 || pCur
->pPage
->leaf
==0
6322 return btreePrevious(pCur
);
6329 ** Allocate a new page from the database file.
6331 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
6332 ** has already been called on the new page.) The new page has also
6333 ** been referenced and the calling routine is responsible for calling
6334 ** sqlite3PagerUnref() on the new page when it is done.
6336 ** SQLITE_OK is returned on success. Any other return value indicates
6337 ** an error. *ppPage is set to NULL in the event of an error.
6339 ** If the "nearby" parameter is not 0, then an effort is made to
6340 ** locate a page close to the page number "nearby". This can be used in an
6341 ** attempt to keep related pages close to each other in the database file,
6342 ** which in turn can make database access faster.
6344 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
6345 ** anywhere on the free-list, then it is guaranteed to be returned. If
6346 ** eMode is BTALLOC_LT then the page returned will be less than or equal
6347 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
6348 ** are no restrictions on which page is returned.
6350 static int allocateBtreePage(
6351 BtShared
*pBt
, /* The btree */
6352 MemPage
**ppPage
, /* Store pointer to the allocated page here */
6353 Pgno
*pPgno
, /* Store the page number here */
6354 Pgno nearby
, /* Search for a page near this one */
6355 u8 eMode
/* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
6359 u32 n
; /* Number of pages on the freelist */
6360 u32 k
; /* Number of leaves on the trunk of the freelist */
6361 MemPage
*pTrunk
= 0;
6362 MemPage
*pPrevTrunk
= 0;
6363 Pgno mxPage
; /* Total size of the database file */
6365 assert( sqlite3_mutex_held(pBt
->mutex
) );
6366 assert( eMode
==BTALLOC_ANY
|| (nearby
>0 && IfNotOmitAV(pBt
->autoVacuum
)) );
6367 pPage1
= pBt
->pPage1
;
6368 mxPage
= btreePagecount(pBt
);
6369 /* EVIDENCE-OF: R-21003-45125 The 4-byte big-endian integer at offset 36
6370 ** stores the total number of pages on the freelist. */
6371 n
= get4byte(&pPage1
->aData
[36]);
6372 testcase( n
==mxPage
-1 );
6374 return SQLITE_CORRUPT_BKPT
;
6377 /* There are pages on the freelist. Reuse one of those pages. */
6379 u8 searchList
= 0; /* If the free-list must be searched for 'nearby' */
6380 u32 nSearch
= 0; /* Count of the number of search attempts */
6382 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
6383 ** shows that the page 'nearby' is somewhere on the free-list, then
6384 ** the entire-list will be searched for that page.
6386 #ifndef SQLITE_OMIT_AUTOVACUUM
6387 if( eMode
==BTALLOC_EXACT
){
6388 if( nearby
<=mxPage
){
6391 assert( pBt
->autoVacuum
);
6392 rc
= ptrmapGet(pBt
, nearby
, &eType
, 0);
6394 if( eType
==PTRMAP_FREEPAGE
){
6398 }else if( eMode
==BTALLOC_LE
){
6403 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6404 ** first free-list trunk page. iPrevTrunk is initially 1.
6406 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6408 put4byte(&pPage1
->aData
[36], n
-1);
6410 /* The code within this loop is run only once if the 'searchList' variable
6411 ** is not true. Otherwise, it runs once for each trunk-page on the
6412 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6413 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6416 pPrevTrunk
= pTrunk
;
6418 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6419 ** is the page number of the next freelist trunk page in the list or
6420 ** zero if this is the last freelist trunk page. */
6421 iTrunk
= get4byte(&pPrevTrunk
->aData
[0]);
6423 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6424 ** stores the page number of the first page of the freelist, or zero if
6425 ** the freelist is empty. */
6426 iTrunk
= get4byte(&pPage1
->aData
[32]);
6428 testcase( iTrunk
==mxPage
);
6429 if( iTrunk
>mxPage
|| nSearch
++ > n
){
6430 rc
= SQLITE_CORRUPT_PGNO(pPrevTrunk
? pPrevTrunk
->pgno
: 1);
6432 rc
= btreeGetUnusedPage(pBt
, iTrunk
, &pTrunk
, 0);
6436 goto end_allocate_page
;
6438 assert( pTrunk
!=0 );
6439 assert( pTrunk
->aData
!=0 );
6440 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6441 ** is the number of leaf page pointers to follow. */
6442 k
= get4byte(&pTrunk
->aData
[4]);
6443 if( k
==0 && !searchList
){
6444 /* The trunk has no leaves and the list is not being searched.
6445 ** So extract the trunk page itself and use it as the newly
6446 ** allocated page */
6447 assert( pPrevTrunk
==0 );
6448 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6450 goto end_allocate_page
;
6453 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6456 TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno
, n
-1));
6457 }else if( k
>(u32
)(pBt
->usableSize
/4 - 2) ){
6458 /* Value of k is out of range. Database corruption */
6459 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6460 goto end_allocate_page
;
6461 #ifndef SQLITE_OMIT_AUTOVACUUM
6462 }else if( searchList
6463 && (nearby
==iTrunk
|| (iTrunk
<nearby
&& eMode
==BTALLOC_LE
))
6465 /* The list is being searched and this trunk page is the page
6466 ** to allocate, regardless of whether it has leaves.
6471 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6473 goto end_allocate_page
;
6477 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6479 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6480 if( rc
!=SQLITE_OK
){
6481 goto end_allocate_page
;
6483 memcpy(&pPrevTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6486 /* The trunk page is required by the caller but it contains
6487 ** pointers to free-list leaves. The first leaf becomes a trunk
6488 ** page in this case.
6491 Pgno iNewTrunk
= get4byte(&pTrunk
->aData
[8]);
6492 if( iNewTrunk
>mxPage
){
6493 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6494 goto end_allocate_page
;
6496 testcase( iNewTrunk
==mxPage
);
6497 rc
= btreeGetUnusedPage(pBt
, iNewTrunk
, &pNewTrunk
, 0);
6498 if( rc
!=SQLITE_OK
){
6499 goto end_allocate_page
;
6501 rc
= sqlite3PagerWrite(pNewTrunk
->pDbPage
);
6502 if( rc
!=SQLITE_OK
){
6503 releasePage(pNewTrunk
);
6504 goto end_allocate_page
;
6506 memcpy(&pNewTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6507 put4byte(&pNewTrunk
->aData
[4], k
-1);
6508 memcpy(&pNewTrunk
->aData
[8], &pTrunk
->aData
[12], (k
-1)*4);
6509 releasePage(pNewTrunk
);
6511 assert( sqlite3PagerIswriteable(pPage1
->pDbPage
) );
6512 put4byte(&pPage1
->aData
[32], iNewTrunk
);
6514 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6516 goto end_allocate_page
;
6518 put4byte(&pPrevTrunk
->aData
[0], iNewTrunk
);
6522 TRACE(("ALLOCATE: %u trunk - %u free pages left\n", *pPgno
, n
-1));
6525 /* Extract a leaf from the trunk */
6528 unsigned char *aData
= pTrunk
->aData
;
6532 if( eMode
==BTALLOC_LE
){
6534 iPage
= get4byte(&aData
[8+i
*4]);
6535 if( iPage
<=nearby
){
6542 dist
= sqlite3AbsInt32(get4byte(&aData
[8]) - nearby
);
6544 int d2
= sqlite3AbsInt32(get4byte(&aData
[8+i
*4]) - nearby
);
6555 iPage
= get4byte(&aData
[8+closest
*4]);
6556 testcase( iPage
==mxPage
);
6557 if( iPage
>mxPage
|| iPage
<2 ){
6558 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6559 goto end_allocate_page
;
6561 testcase( iPage
==mxPage
);
6563 || (iPage
==nearby
|| (iPage
<nearby
&& eMode
==BTALLOC_LE
))
6567 TRACE(("ALLOCATE: %u was leaf %u of %u on trunk %u"
6568 ": %u more free pages\n",
6569 *pPgno
, closest
+1, k
, pTrunk
->pgno
, n
-1));
6570 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6571 if( rc
) goto end_allocate_page
;
6573 memcpy(&aData
[8+closest
*4], &aData
[4+k
*4], 4);
6575 put4byte(&aData
[4], k
-1);
6576 noContent
= !btreeGetHasContent(pBt
, *pPgno
)? PAGER_GET_NOCONTENT
: 0;
6577 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, noContent
);
6578 if( rc
==SQLITE_OK
){
6579 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6580 if( rc
!=SQLITE_OK
){
6581 releasePage(*ppPage
);
6588 releasePage(pPrevTrunk
);
6590 }while( searchList
);
6592 /* There are no pages on the freelist, so append a new page to the
6595 ** Normally, new pages allocated by this block can be requested from the
6596 ** pager layer with the 'no-content' flag set. This prevents the pager
6597 ** from trying to read the pages content from disk. However, if the
6598 ** current transaction has already run one or more incremental-vacuum
6599 ** steps, then the page we are about to allocate may contain content
6600 ** that is required in the event of a rollback. In this case, do
6601 ** not set the no-content flag. This causes the pager to load and journal
6602 ** the current page content before overwriting it.
6604 ** Note that the pager will not actually attempt to load or journal
6605 ** content for any page that really does lie past the end of the database
6606 ** file on disk. So the effects of disabling the no-content optimization
6607 ** here are confined to those pages that lie between the end of the
6608 ** database image and the end of the database file.
6610 int bNoContent
= (0==IfNotOmitAV(pBt
->bDoTruncate
))? PAGER_GET_NOCONTENT
:0;
6612 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
6615 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ) pBt
->nPage
++;
6617 #ifndef SQLITE_OMIT_AUTOVACUUM
6618 if( pBt
->autoVacuum
&& PTRMAP_ISPAGE(pBt
, pBt
->nPage
) ){
6619 /* If *pPgno refers to a pointer-map page, allocate two new pages
6620 ** at the end of the file instead of one. The first allocated page
6621 ** becomes a new pointer-map page, the second is used by the caller.
6624 TRACE(("ALLOCATE: %u from end of file (pointer-map page)\n", pBt
->nPage
));
6625 assert( pBt
->nPage
!=PENDING_BYTE_PAGE(pBt
) );
6626 rc
= btreeGetUnusedPage(pBt
, pBt
->nPage
, &pPg
, bNoContent
);
6627 if( rc
==SQLITE_OK
){
6628 rc
= sqlite3PagerWrite(pPg
->pDbPage
);
6633 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ){ pBt
->nPage
++; }
6636 put4byte(28 + (u8
*)pBt
->pPage1
->aData
, pBt
->nPage
);
6637 *pPgno
= pBt
->nPage
;
6639 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6640 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, bNoContent
);
6642 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6643 if( rc
!=SQLITE_OK
){
6644 releasePage(*ppPage
);
6647 TRACE(("ALLOCATE: %u from end of file\n", *pPgno
));
6650 assert( CORRUPT_DB
|| *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6653 releasePage(pTrunk
);
6654 releasePage(pPrevTrunk
);
6655 assert( rc
!=SQLITE_OK
|| sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)<=1 );
6656 assert( rc
!=SQLITE_OK
|| (*ppPage
)->isInit
==0 );
6661 ** This function is used to add page iPage to the database file free-list.
6662 ** It is assumed that the page is not already a part of the free-list.
6664 ** The value passed as the second argument to this function is optional.
6665 ** If the caller happens to have a pointer to the MemPage object
6666 ** corresponding to page iPage handy, it may pass it as the second value.
6667 ** Otherwise, it may pass NULL.
6669 ** If a pointer to a MemPage object is passed as the second argument,
6670 ** its reference count is not altered by this function.
6672 static int freePage2(BtShared
*pBt
, MemPage
*pMemPage
, Pgno iPage
){
6673 MemPage
*pTrunk
= 0; /* Free-list trunk page */
6674 Pgno iTrunk
= 0; /* Page number of free-list trunk page */
6675 MemPage
*pPage1
= pBt
->pPage1
; /* Local reference to page 1 */
6676 MemPage
*pPage
; /* Page being freed. May be NULL. */
6677 int rc
; /* Return Code */
6678 u32 nFree
; /* Initial number of pages on free-list */
6680 assert( sqlite3_mutex_held(pBt
->mutex
) );
6681 assert( CORRUPT_DB
|| iPage
>1 );
6682 assert( !pMemPage
|| pMemPage
->pgno
==iPage
);
6684 if( iPage
<2 || iPage
>pBt
->nPage
){
6685 return SQLITE_CORRUPT_BKPT
;
6689 sqlite3PagerRef(pPage
->pDbPage
);
6691 pPage
= btreePageLookup(pBt
, iPage
);
6694 /* Increment the free page count on pPage1 */
6695 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6696 if( rc
) goto freepage_out
;
6697 nFree
= get4byte(&pPage1
->aData
[36]);
6698 put4byte(&pPage1
->aData
[36], nFree
+1);
6700 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
6701 /* If the secure_delete option is enabled, then
6702 ** always fully overwrite deleted information with zeros.
6704 if( (!pPage
&& ((rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0) )
6705 || ((rc
= sqlite3PagerWrite(pPage
->pDbPage
))!=0)
6709 memset(pPage
->aData
, 0, pPage
->pBt
->pageSize
);
6712 /* If the database supports auto-vacuum, write an entry in the pointer-map
6713 ** to indicate that the page is free.
6715 if( ISAUTOVACUUM(pBt
) ){
6716 ptrmapPut(pBt
, iPage
, PTRMAP_FREEPAGE
, 0, &rc
);
6717 if( rc
) goto freepage_out
;
6720 /* Now manipulate the actual database free-list structure. There are two
6721 ** possibilities. If the free-list is currently empty, or if the first
6722 ** trunk page in the free-list is full, then this page will become a
6723 ** new free-list trunk page. Otherwise, it will become a leaf of the
6724 ** first trunk page in the current free-list. This block tests if it
6725 ** is possible to add the page as a new free-list leaf.
6728 u32 nLeaf
; /* Initial number of leaf cells on trunk page */
6730 iTrunk
= get4byte(&pPage1
->aData
[32]);
6731 if( iTrunk
>btreePagecount(pBt
) ){
6732 rc
= SQLITE_CORRUPT_BKPT
;
6735 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0);
6736 if( rc
!=SQLITE_OK
){
6740 nLeaf
= get4byte(&pTrunk
->aData
[4]);
6741 assert( pBt
->usableSize
>32 );
6742 if( nLeaf
> (u32
)pBt
->usableSize
/4 - 2 ){
6743 rc
= SQLITE_CORRUPT_BKPT
;
6746 if( nLeaf
< (u32
)pBt
->usableSize
/4 - 8 ){
6747 /* In this case there is room on the trunk page to insert the page
6748 ** being freed as a new leaf.
6750 ** Note that the trunk page is not really full until it contains
6751 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6752 ** coded. But due to a coding error in versions of SQLite prior to
6753 ** 3.6.0, databases with freelist trunk pages holding more than
6754 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6755 ** to maintain backwards compatibility with older versions of SQLite,
6756 ** we will continue to restrict the number of entries to usableSize/4 - 8
6757 ** for now. At some point in the future (once everyone has upgraded
6758 ** to 3.6.0 or later) we should consider fixing the conditional above
6759 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6761 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6762 ** avoid using the last six entries in the freelist trunk page array in
6763 ** order that database files created by newer versions of SQLite can be
6764 ** read by older versions of SQLite.
6766 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6767 if( rc
==SQLITE_OK
){
6768 put4byte(&pTrunk
->aData
[4], nLeaf
+1);
6769 put4byte(&pTrunk
->aData
[8+nLeaf
*4], iPage
);
6770 if( pPage
&& (pBt
->btsFlags
& BTS_SECURE_DELETE
)==0 ){
6771 sqlite3PagerDontWrite(pPage
->pDbPage
);
6773 rc
= btreeSetHasContent(pBt
, iPage
);
6775 TRACE(("FREE-PAGE: %u leaf on trunk page %u\n",pPage
->pgno
,pTrunk
->pgno
));
6780 /* If control flows to this point, then it was not possible to add the
6781 ** the page being freed as a leaf page of the first trunk in the free-list.
6782 ** Possibly because the free-list is empty, or possibly because the
6783 ** first trunk in the free-list is full. Either way, the page being freed
6784 ** will become the new first trunk page in the free-list.
6786 if( pPage
==0 && SQLITE_OK
!=(rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0)) ){
6789 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6790 if( rc
!=SQLITE_OK
){
6793 put4byte(pPage
->aData
, iTrunk
);
6794 put4byte(&pPage
->aData
[4], 0);
6795 put4byte(&pPage1
->aData
[32], iPage
);
6796 TRACE(("FREE-PAGE: %u new trunk page replacing %u\n", pPage
->pgno
, iTrunk
));
6803 releasePage(pTrunk
);
6806 static void freePage(MemPage
*pPage
, int *pRC
){
6807 if( (*pRC
)==SQLITE_OK
){
6808 *pRC
= freePage2(pPage
->pBt
, pPage
, pPage
->pgno
);
6813 ** Free the overflow pages associated with the given Cell.
6815 static SQLITE_NOINLINE
int clearCellOverflow(
6816 MemPage
*pPage
, /* The page that contains the Cell */
6817 unsigned char *pCell
, /* First byte of the Cell */
6818 CellInfo
*pInfo
/* Size information about the cell */
6826 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6827 assert( pInfo
->nLocal
!=pInfo
->nPayload
);
6828 testcase( pCell
+ pInfo
->nSize
== pPage
->aDataEnd
);
6829 testcase( pCell
+ (pInfo
->nSize
-1) == pPage
->aDataEnd
);
6830 if( pCell
+ pInfo
->nSize
> pPage
->aDataEnd
){
6831 /* Cell extends past end of page */
6832 return SQLITE_CORRUPT_PAGE(pPage
);
6834 ovflPgno
= get4byte(pCell
+ pInfo
->nSize
- 4);
6836 assert( pBt
->usableSize
> 4 );
6837 ovflPageSize
= pBt
->usableSize
- 4;
6838 nOvfl
= (pInfo
->nPayload
- pInfo
->nLocal
+ ovflPageSize
- 1)/ovflPageSize
;
6840 (CORRUPT_DB
&& (pInfo
->nPayload
+ ovflPageSize
)<ovflPageSize
)
6845 if( ovflPgno
<2 || ovflPgno
>btreePagecount(pBt
) ){
6846 /* 0 is not a legal page number and page 1 cannot be an
6847 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6848 ** file the database must be corrupt. */
6849 return SQLITE_CORRUPT_BKPT
;
6852 rc
= getOverflowPage(pBt
, ovflPgno
, &pOvfl
, &iNext
);
6856 if( ( pOvfl
|| ((pOvfl
= btreePageLookup(pBt
, ovflPgno
))!=0) )
6857 && sqlite3PagerPageRefcount(pOvfl
->pDbPage
)!=1
6859 /* There is no reason any cursor should have an outstanding reference
6860 ** to an overflow page belonging to a cell that is being deleted/updated.
6861 ** So if there exists more than one reference to this page, then it
6862 ** must not really be an overflow page and the database must be corrupt.
6863 ** It is helpful to detect this before calling freePage2(), as
6864 ** freePage2() may zero the page contents if secure-delete mode is
6865 ** enabled. If this 'overflow' page happens to be a page that the
6866 ** caller is iterating through or using in some other way, this
6867 ** can be problematic.
6869 rc
= SQLITE_CORRUPT_BKPT
;
6871 rc
= freePage2(pBt
, pOvfl
, ovflPgno
);
6875 sqlite3PagerUnref(pOvfl
->pDbPage
);
6883 /* Call xParseCell to compute the size of a cell. If the cell contains
6884 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6885 ** Store the result code (SQLITE_OK or some error code) in rc.
6887 ** Implemented as macro to force inlining for performance.
6889 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6890 pPage->xParseCell(pPage, pCell, &sInfo); \
6891 if( sInfo.nLocal!=sInfo.nPayload ){ \
6892 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6899 ** Create the byte sequence used to represent a cell on page pPage
6900 ** and write that byte sequence into pCell[]. Overflow pages are
6901 ** allocated and filled in as necessary. The calling procedure
6902 ** is responsible for making sure sufficient space has been allocated
6905 ** Note that pCell does not necessary need to point to the pPage->aData
6906 ** area. pCell might point to some temporary storage. The cell will
6907 ** be constructed in this temporary area then copied into pPage->aData
6910 static int fillInCell(
6911 MemPage
*pPage
, /* The page that contains the cell */
6912 unsigned char *pCell
, /* Complete text of the cell */
6913 const BtreePayload
*pX
, /* Payload with which to construct the cell */
6914 int *pnSize
/* Write cell size here */
6918 int nSrc
, n
, rc
, mn
;
6920 MemPage
*pToRelease
;
6921 unsigned char *pPrior
;
6922 unsigned char *pPayload
;
6927 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6929 /* pPage is not necessarily writeable since pCell might be auxiliary
6930 ** buffer space that is separate from the pPage buffer area */
6931 assert( pCell
<pPage
->aData
|| pCell
>=&pPage
->aData
[pPage
->pBt
->pageSize
]
6932 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6934 /* Fill in the header. */
6935 nHeader
= pPage
->childPtrSize
;
6936 if( pPage
->intKey
){
6937 nPayload
= pX
->nData
+ pX
->nZero
;
6940 assert( pPage
->intKeyLeaf
); /* fillInCell() only called for leaves */
6941 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6942 nHeader
+= putVarint(&pCell
[nHeader
], *(u64
*)&pX
->nKey
);
6944 assert( pX
->nKey
<=0x7fffffff && pX
->pKey
!=0 );
6945 nSrc
= nPayload
= (int)pX
->nKey
;
6947 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6950 /* Fill in the payload */
6951 pPayload
= &pCell
[nHeader
];
6952 if( nPayload
<=pPage
->maxLocal
){
6953 /* This is the common case where everything fits on the btree page
6954 ** and no overflow pages are required. */
6955 n
= nHeader
+ nPayload
;
6960 assert( nSrc
<=nPayload
);
6961 testcase( nSrc
<nPayload
);
6962 memcpy(pPayload
, pSrc
, nSrc
);
6963 memset(pPayload
+nSrc
, 0, nPayload
-nSrc
);
6967 /* If we reach this point, it means that some of the content will need
6968 ** to spill onto overflow pages.
6970 mn
= pPage
->minLocal
;
6971 n
= mn
+ (nPayload
- mn
) % (pPage
->pBt
->usableSize
- 4);
6972 testcase( n
==pPage
->maxLocal
);
6973 testcase( n
==pPage
->maxLocal
+1 );
6974 if( n
> pPage
->maxLocal
) n
= mn
;
6976 *pnSize
= n
+ nHeader
+ 4;
6977 pPrior
= &pCell
[nHeader
+n
];
6982 /* At this point variables should be set as follows:
6984 ** nPayload Total payload size in bytes
6985 ** pPayload Begin writing payload here
6986 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6987 ** that means content must spill into overflow pages.
6988 ** *pnSize Size of the local cell (not counting overflow pages)
6989 ** pPrior Where to write the pgno of the first overflow page
6991 ** Use a call to btreeParseCellPtr() to verify that the values above
6992 ** were computed correctly.
6997 pPage
->xParseCell(pPage
, pCell
, &info
);
6998 assert( nHeader
==(int)(info
.pPayload
- pCell
) );
6999 assert( info
.nKey
==pX
->nKey
);
7000 assert( *pnSize
== info
.nSize
);
7001 assert( spaceLeft
== info
.nLocal
);
7005 /* Write the payload into the local Cell and any extra into overflow pages */
7008 if( n
>spaceLeft
) n
= spaceLeft
;
7010 /* If pToRelease is not zero than pPayload points into the data area
7011 ** of pToRelease. Make sure pToRelease is still writeable. */
7012 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
7014 /* If pPayload is part of the data area of pPage, then make sure pPage
7015 ** is still writeable */
7016 assert( pPayload
<pPage
->aData
|| pPayload
>=&pPage
->aData
[pBt
->pageSize
]
7017 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
7020 memcpy(pPayload
, pSrc
, n
);
7023 memcpy(pPayload
, pSrc
, n
);
7025 memset(pPayload
, 0, n
);
7028 if( nPayload
<=0 ) break;
7035 #ifndef SQLITE_OMIT_AUTOVACUUM
7036 Pgno pgnoPtrmap
= pgnoOvfl
; /* Overflow page pointer-map entry page */
7037 if( pBt
->autoVacuum
){
7041 PTRMAP_ISPAGE(pBt
, pgnoOvfl
) || pgnoOvfl
==PENDING_BYTE_PAGE(pBt
)
7045 rc
= allocateBtreePage(pBt
, &pOvfl
, &pgnoOvfl
, pgnoOvfl
, 0);
7046 #ifndef SQLITE_OMIT_AUTOVACUUM
7047 /* If the database supports auto-vacuum, and the second or subsequent
7048 ** overflow page is being allocated, add an entry to the pointer-map
7049 ** for that page now.
7051 ** If this is the first overflow page, then write a partial entry
7052 ** to the pointer-map. If we write nothing to this pointer-map slot,
7053 ** then the optimistic overflow chain processing in clearCell()
7054 ** may misinterpret the uninitialized values and delete the
7055 ** wrong pages from the database.
7057 if( pBt
->autoVacuum
&& rc
==SQLITE_OK
){
7058 u8 eType
= (pgnoPtrmap
?PTRMAP_OVERFLOW2
:PTRMAP_OVERFLOW1
);
7059 ptrmapPut(pBt
, pgnoOvfl
, eType
, pgnoPtrmap
, &rc
);
7066 releasePage(pToRelease
);
7070 /* If pToRelease is not zero than pPrior points into the data area
7071 ** of pToRelease. Make sure pToRelease is still writeable. */
7072 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
7074 /* If pPrior is part of the data area of pPage, then make sure pPage
7075 ** is still writeable */
7076 assert( pPrior
<pPage
->aData
|| pPrior
>=&pPage
->aData
[pBt
->pageSize
]
7077 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
7079 put4byte(pPrior
, pgnoOvfl
);
7080 releasePage(pToRelease
);
7082 pPrior
= pOvfl
->aData
;
7083 put4byte(pPrior
, 0);
7084 pPayload
= &pOvfl
->aData
[4];
7085 spaceLeft
= pBt
->usableSize
- 4;
7088 releasePage(pToRelease
);
7093 ** Remove the i-th cell from pPage. This routine effects pPage only.
7094 ** The cell content is not freed or deallocated. It is assumed that
7095 ** the cell content has been copied someplace else. This routine just
7096 ** removes the reference to the cell from pPage.
7098 ** "sz" must be the number of bytes in the cell.
7100 static void dropCell(MemPage
*pPage
, int idx
, int sz
, int *pRC
){
7101 u32 pc
; /* Offset to cell content of cell being deleted */
7102 u8
*data
; /* pPage->aData */
7103 u8
*ptr
; /* Used to move bytes around within data[] */
7104 int rc
; /* The return code */
7105 int hdr
; /* Beginning of the header. 0 most pages. 100 page 1 */
7109 assert( idx
<pPage
->nCell
);
7110 assert( CORRUPT_DB
|| sz
==cellSize(pPage
, idx
) );
7111 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
7112 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7113 assert( pPage
->nFree
>=0 );
7114 data
= pPage
->aData
;
7115 ptr
= &pPage
->aCellIdx
[2*idx
];
7116 assert( pPage
->pBt
->usableSize
> (u32
)(ptr
-data
) );
7118 hdr
= pPage
->hdrOffset
;
7119 testcase( pc
==(u32
)get2byte(&data
[hdr
+5]) );
7120 testcase( pc
+sz
==pPage
->pBt
->usableSize
);
7121 if( pc
+sz
> pPage
->pBt
->usableSize
){
7122 *pRC
= SQLITE_CORRUPT_BKPT
;
7125 rc
= freeSpace(pPage
, pc
, sz
);
7131 if( pPage
->nCell
==0 ){
7132 memset(&data
[hdr
+1], 0, 4);
7134 put2byte(&data
[hdr
+5], pPage
->pBt
->usableSize
);
7135 pPage
->nFree
= pPage
->pBt
->usableSize
- pPage
->hdrOffset
7136 - pPage
->childPtrSize
- 8;
7138 memmove(ptr
, ptr
+2, 2*(pPage
->nCell
- idx
));
7139 put2byte(&data
[hdr
+3], pPage
->nCell
);
7145 ** Insert a new cell on pPage at cell index "i". pCell points to the
7146 ** content of the cell.
7148 ** If the cell content will fit on the page, then put it there. If it
7149 ** will not fit, then make a copy of the cell content into pTemp if
7150 ** pTemp is not null. Regardless of pTemp, allocate a new entry
7151 ** in pPage->apOvfl[] and make it point to the cell content (either
7152 ** in pTemp or the original pCell) and also record its index.
7153 ** Allocating a new entry in pPage->aCell[] implies that
7154 ** pPage->nOverflow is incremented.
7156 ** The insertCellFast() routine below works exactly the same as
7157 ** insertCell() except that it lacks the pTemp and iChild parameters
7158 ** which are assumed zero. Other than that, the two routines are the
7161 ** Fixes or enhancements to this routine should be reflected in
7162 ** insertCellFast()!
7164 static int insertCell(
7165 MemPage
*pPage
, /* Page into which we are copying */
7166 int i
, /* New cell becomes the i-th cell of the page */
7167 u8
*pCell
, /* Content of the new cell */
7168 int sz
, /* Bytes of content in pCell */
7169 u8
*pTemp
, /* Temp storage space for pCell, if needed */
7170 Pgno iChild
/* If non-zero, replace first 4 bytes with this value */
7172 int idx
= 0; /* Where to write new cell content in data[] */
7173 int j
; /* Loop counter */
7174 u8
*data
; /* The content of the whole page */
7175 u8
*pIns
; /* The point in pPage->aCellIdx[] where no cell inserted */
7177 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
7178 assert( MX_CELL(pPage
->pBt
)<=10921 );
7179 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
7180 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
7181 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
7182 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7183 assert( sz
==pPage
->xCellSize(pPage
, pCell
) || CORRUPT_DB
);
7184 assert( pPage
->nFree
>=0 );
7186 if( pPage
->nOverflow
|| sz
+2>pPage
->nFree
){
7188 memcpy(pTemp
, pCell
, sz
);
7191 put4byte(pCell
, iChild
);
7192 j
= pPage
->nOverflow
++;
7193 /* Comparison against ArraySize-1 since we hold back one extra slot
7194 ** as a contingency. In other words, never need more than 3 overflow
7195 ** slots but 4 are allocated, just to be safe. */
7196 assert( j
< ArraySize(pPage
->apOvfl
)-1 );
7197 pPage
->apOvfl
[j
] = pCell
;
7198 pPage
->aiOvfl
[j
] = (u16
)i
;
7200 /* When multiple overflows occur, they are always sequential and in
7201 ** sorted order. This invariants arise because multiple overflows can
7202 ** only occur when inserting divider cells into the parent page during
7203 ** balancing, and the dividers are adjacent and sorted.
7205 assert( j
==0 || pPage
->aiOvfl
[j
-1]<(u16
)i
); /* Overflows in sorted order */
7206 assert( j
==0 || i
==pPage
->aiOvfl
[j
-1]+1 ); /* Overflows are sequential */
7208 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7209 if( NEVER(rc
!=SQLITE_OK
) ){
7212 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
7213 data
= pPage
->aData
;
7214 assert( &data
[pPage
->cellOffset
]==pPage
->aCellIdx
);
7215 rc
= allocateSpace(pPage
, sz
, &idx
);
7216 if( rc
){ return rc
; }
7217 /* The allocateSpace() routine guarantees the following properties
7218 ** if it returns successfully */
7220 assert( idx
>= pPage
->cellOffset
+2*pPage
->nCell
+2 || CORRUPT_DB
);
7221 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
7222 pPage
->nFree
-= (u16
)(2 + sz
);
7223 /* In a corrupt database where an entry in the cell index section of
7224 ** a btree page has a value of 3 or less, the pCell value might point
7225 ** as many as 4 bytes in front of the start of the aData buffer for
7226 ** the source page. Make sure this does not cause problems by not
7227 ** reading the first 4 bytes */
7228 memcpy(&data
[idx
+4], pCell
+4, sz
-4);
7229 put4byte(&data
[idx
], iChild
);
7230 pIns
= pPage
->aCellIdx
+ i
*2;
7231 memmove(pIns
+2, pIns
, 2*(pPage
->nCell
- i
));
7232 put2byte(pIns
, idx
);
7234 /* increment the cell count */
7235 if( (++data
[pPage
->hdrOffset
+4])==0 ) data
[pPage
->hdrOffset
+3]++;
7236 assert( get2byte(&data
[pPage
->hdrOffset
+3])==pPage
->nCell
|| CORRUPT_DB
);
7237 #ifndef SQLITE_OMIT_AUTOVACUUM
7238 if( pPage
->pBt
->autoVacuum
){
7239 int rc2
= SQLITE_OK
;
7240 /* The cell may contain a pointer to an overflow page. If so, write
7241 ** the entry for the overflow page into the pointer map.
7243 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc2
);
7244 if( rc2
) return rc2
;
7252 ** This variant of insertCell() assumes that the pTemp and iChild
7253 ** parameters are both zero. Use this variant in sqlite3BtreeInsert()
7254 ** for performance improvement, and also so that this variant is only
7255 ** called from that one place, and is thus inlined, and thus runs must
7258 ** Fixes or enhancements to this routine should be reflected into
7259 ** the insertCell() routine.
7261 static int insertCellFast(
7262 MemPage
*pPage
, /* Page into which we are copying */
7263 int i
, /* New cell becomes the i-th cell of the page */
7264 u8
*pCell
, /* Content of the new cell */
7265 int sz
/* Bytes of content in pCell */
7267 int idx
= 0; /* Where to write new cell content in data[] */
7268 int j
; /* Loop counter */
7269 u8
*data
; /* The content of the whole page */
7270 u8
*pIns
; /* The point in pPage->aCellIdx[] where no cell inserted */
7272 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
7273 assert( MX_CELL(pPage
->pBt
)<=10921 );
7274 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
7275 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
7276 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
7277 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7278 assert( sz
==pPage
->xCellSize(pPage
, pCell
) || CORRUPT_DB
);
7279 assert( pPage
->nFree
>=0 );
7280 assert( pPage
->nOverflow
==0 );
7281 if( sz
+2>pPage
->nFree
){
7282 j
= pPage
->nOverflow
++;
7283 /* Comparison against ArraySize-1 since we hold back one extra slot
7284 ** as a contingency. In other words, never need more than 3 overflow
7285 ** slots but 4 are allocated, just to be safe. */
7286 assert( j
< ArraySize(pPage
->apOvfl
)-1 );
7287 pPage
->apOvfl
[j
] = pCell
;
7288 pPage
->aiOvfl
[j
] = (u16
)i
;
7290 /* When multiple overflows occur, they are always sequential and in
7291 ** sorted order. This invariants arise because multiple overflows can
7292 ** only occur when inserting divider cells into the parent page during
7293 ** balancing, and the dividers are adjacent and sorted.
7295 assert( j
==0 || pPage
->aiOvfl
[j
-1]<(u16
)i
); /* Overflows in sorted order */
7296 assert( j
==0 || i
==pPage
->aiOvfl
[j
-1]+1 ); /* Overflows are sequential */
7298 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
7299 if( rc
!=SQLITE_OK
){
7302 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
7303 data
= pPage
->aData
;
7304 assert( &data
[pPage
->cellOffset
]==pPage
->aCellIdx
);
7305 rc
= allocateSpace(pPage
, sz
, &idx
);
7306 if( rc
){ return rc
; }
7307 /* The allocateSpace() routine guarantees the following properties
7308 ** if it returns successfully */
7310 assert( idx
>= pPage
->cellOffset
+2*pPage
->nCell
+2 || CORRUPT_DB
);
7311 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
7312 pPage
->nFree
-= (u16
)(2 + sz
);
7313 memcpy(&data
[idx
], pCell
, sz
);
7314 pIns
= pPage
->aCellIdx
+ i
*2;
7315 memmove(pIns
+2, pIns
, 2*(pPage
->nCell
- i
));
7316 put2byte(pIns
, idx
);
7318 /* increment the cell count */
7319 if( (++data
[pPage
->hdrOffset
+4])==0 ) data
[pPage
->hdrOffset
+3]++;
7320 assert( get2byte(&data
[pPage
->hdrOffset
+3])==pPage
->nCell
|| CORRUPT_DB
);
7321 #ifndef SQLITE_OMIT_AUTOVACUUM
7322 if( pPage
->pBt
->autoVacuum
){
7323 int rc2
= SQLITE_OK
;
7324 /* The cell may contain a pointer to an overflow page. If so, write
7325 ** the entry for the overflow page into the pointer map.
7327 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc2
);
7328 if( rc2
) return rc2
;
7336 ** The following parameters determine how many adjacent pages get involved
7337 ** in a balancing operation. NN is the number of neighbors on either side
7338 ** of the page that participate in the balancing operation. NB is the
7339 ** total number of pages that participate, including the target page and
7340 ** NN neighbors on either side.
7342 ** The minimum value of NN is 1 (of course). Increasing NN above 1
7343 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
7344 ** in exchange for a larger degradation in INSERT and UPDATE performance.
7345 ** The value of NN appears to give the best results overall.
7347 ** (Later:) The description above makes it seem as if these values are
7348 ** tunable - as if you could change them and recompile and it would all work.
7349 ** But that is unlikely. NB has been 3 since the inception of SQLite and
7350 ** we have never tested any other value.
7352 #define NN 1 /* Number of neighbors on either side of pPage */
7353 #define NB 3 /* (NN*2+1): Total pages involved in the balance */
7356 ** A CellArray object contains a cache of pointers and sizes for a
7357 ** consecutive sequence of cells that might be held on multiple pages.
7359 ** The cells in this array are the divider cell or cells from the pParent
7360 ** page plus up to three child pages. There are a total of nCell cells.
7362 ** pRef is a pointer to one of the pages that contributes cells. This is
7363 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
7364 ** which should be common to all pages that contribute cells to this array.
7366 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
7367 ** cell and the size of each cell. Some of the apCell[] pointers might refer
7368 ** to overflow cells. In other words, some apCel[] pointers might not point
7369 ** to content area of the pages.
7371 ** A szCell[] of zero means the size of that cell has not yet been computed.
7373 ** The cells come from as many as four different pages:
7380 ** --------- --------- ---------
7381 ** |Child-1| |Child-2| |Child-3|
7382 ** --------- --------- ---------
7384 ** The order of cells is in the array is for an index btree is:
7386 ** 1. All cells from Child-1 in order
7387 ** 2. The first divider cell from Parent
7388 ** 3. All cells from Child-2 in order
7389 ** 4. The second divider cell from Parent
7390 ** 5. All cells from Child-3 in order
7392 ** For a table-btree (with rowids) the items 2 and 4 are empty because
7393 ** content exists only in leaves and there are no divider cells.
7395 ** For an index btree, the apEnd[] array holds pointer to the end of page
7396 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
7397 ** respectively. The ixNx[] array holds the number of cells contained in
7398 ** each of these 5 stages, and all stages to the left. Hence:
7400 ** ixNx[0] = Number of cells in Child-1.
7401 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
7402 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
7403 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
7404 ** ixNx[4] = Total number of cells.
7406 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
7407 ** are used and they point to the leaf pages only, and the ixNx value are:
7409 ** ixNx[0] = Number of cells in Child-1.
7410 ** ixNx[1] = Number of cells in Child-1 and Child-2.
7411 ** ixNx[2] = Total number of cells.
7413 ** Sometimes when deleting, a child page can have zero cells. In those
7414 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
7415 ** entries, shift down. The end result is that each ixNx[] entry should
7416 ** be larger than the previous
7418 typedef struct CellArray CellArray
;
7420 int nCell
; /* Number of cells in apCell[] */
7421 MemPage
*pRef
; /* Reference page */
7422 u8
**apCell
; /* All cells begin balanced */
7423 u16
*szCell
; /* Local size of all cells in apCell[] */
7424 u8
*apEnd
[NB
*2]; /* MemPage.aDataEnd values */
7425 int ixNx
[NB
*2]; /* Index of at which we move to the next apEnd[] */
7429 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
7432 static void populateCellCache(CellArray
*p
, int idx
, int N
){
7433 MemPage
*pRef
= p
->pRef
;
7434 u16
*szCell
= p
->szCell
;
7435 assert( idx
>=0 && idx
+N
<=p
->nCell
);
7437 assert( p
->apCell
[idx
]!=0 );
7438 if( szCell
[idx
]==0 ){
7439 szCell
[idx
] = pRef
->xCellSize(pRef
, p
->apCell
[idx
]);
7441 assert( CORRUPT_DB
||
7442 szCell
[idx
]==pRef
->xCellSize(pRef
, p
->apCell
[idx
]) );
7450 ** Return the size of the Nth element of the cell array
7452 static SQLITE_NOINLINE u16
computeCellSize(CellArray
*p
, int N
){
7453 assert( N
>=0 && N
<p
->nCell
);
7454 assert( p
->szCell
[N
]==0 );
7455 p
->szCell
[N
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[N
]);
7456 return p
->szCell
[N
];
7458 static u16
cachedCellSize(CellArray
*p
, int N
){
7459 assert( N
>=0 && N
<p
->nCell
);
7460 if( p
->szCell
[N
] ) return p
->szCell
[N
];
7461 return computeCellSize(p
, N
);
7465 ** Array apCell[] contains pointers to nCell b-tree page cells. The
7466 ** szCell[] array contains the size in bytes of each cell. This function
7467 ** replaces the current contents of page pPg with the contents of the cell
7470 ** Some of the cells in apCell[] may currently be stored in pPg. This
7471 ** function works around problems caused by this by making a copy of any
7472 ** such cells before overwriting the page data.
7474 ** The MemPage.nFree field is invalidated by this function. It is the
7475 ** responsibility of the caller to set it correctly.
7477 static int rebuildPage(
7478 CellArray
*pCArray
, /* Content to be added to page pPg */
7479 int iFirst
, /* First cell in pCArray to use */
7480 int nCell
, /* Final number of cells on page */
7481 MemPage
*pPg
/* The page to be reconstructed */
7483 const int hdr
= pPg
->hdrOffset
; /* Offset of header on pPg */
7484 u8
* const aData
= pPg
->aData
; /* Pointer to data for pPg */
7485 const int usableSize
= pPg
->pBt
->usableSize
;
7486 u8
* const pEnd
= &aData
[usableSize
];
7487 int i
= iFirst
; /* Which cell to copy from pCArray*/
7488 u32 j
; /* Start of cell content area */
7489 int iEnd
= i
+nCell
; /* Loop terminator */
7490 u8
*pCellptr
= pPg
->aCellIdx
;
7491 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7493 int k
; /* Current slot in pCArray->apEnd[] */
7494 u8
*pSrcEnd
; /* Current pCArray->apEnd[k] value */
7498 j
= get2byte(&aData
[hdr
+5]);
7499 if( NEVER(j
>(u32
)usableSize
) ){ j
= 0; }
7500 memcpy(&pTmp
[j
], &aData
[j
], usableSize
- j
);
7502 for(k
=0; ALWAYS(k
<NB
*2) && pCArray
->ixNx
[k
]<=i
; k
++){}
7503 pSrcEnd
= pCArray
->apEnd
[k
];
7506 while( 1/*exit by break*/ ){
7507 u8
*pCell
= pCArray
->apCell
[i
];
7508 u16 sz
= pCArray
->szCell
[i
];
7510 if( SQLITE_WITHIN(pCell
,aData
+j
,pEnd
) ){
7511 if( ((uptr
)(pCell
+sz
))>(uptr
)pEnd
) return SQLITE_CORRUPT_BKPT
;
7512 pCell
= &pTmp
[pCell
- aData
];
7513 }else if( (uptr
)(pCell
+sz
)>(uptr
)pSrcEnd
7514 && (uptr
)(pCell
)<(uptr
)pSrcEnd
7516 return SQLITE_CORRUPT_BKPT
;
7520 put2byte(pCellptr
, (pData
- aData
));
7522 if( pData
< pCellptr
) return SQLITE_CORRUPT_BKPT
;
7523 memmove(pData
, pCell
, sz
);
7524 assert( sz
==pPg
->xCellSize(pPg
, pCell
) || CORRUPT_DB
);
7526 if( i
>=iEnd
) break;
7527 if( pCArray
->ixNx
[k
]<=i
){
7529 pSrcEnd
= pCArray
->apEnd
[k
];
7533 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7537 put2byte(&aData
[hdr
+1], 0);
7538 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7539 put2byte(&aData
[hdr
+5], pData
- aData
);
7540 aData
[hdr
+7] = 0x00;
7545 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7546 ** This function attempts to add the cells stored in the array to page pPg.
7547 ** If it cannot (because the page needs to be defragmented before the cells
7548 ** will fit), non-zero is returned. Otherwise, if the cells are added
7549 ** successfully, zero is returned.
7551 ** Argument pCellptr points to the first entry in the cell-pointer array
7552 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7553 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7554 ** cell in the array. It is the responsibility of the caller to ensure
7555 ** that it is safe to overwrite this part of the cell-pointer array.
7557 ** When this function is called, *ppData points to the start of the
7558 ** content area on page pPg. If the size of the content area is extended,
7559 ** *ppData is updated to point to the new start of the content area
7560 ** before returning.
7562 ** Finally, argument pBegin points to the byte immediately following the
7563 ** end of the space required by this page for the cell-pointer area (for
7564 ** all cells - not just those inserted by the current call). If the content
7565 ** area must be extended to before this point in order to accommodate all
7566 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7568 static int pageInsertArray(
7569 MemPage
*pPg
, /* Page to add cells to */
7570 u8
*pBegin
, /* End of cell-pointer array */
7571 u8
**ppData
, /* IN/OUT: Page content-area pointer */
7572 u8
*pCellptr
, /* Pointer to cell-pointer area */
7573 int iFirst
, /* Index of first cell to add */
7574 int nCell
, /* Number of cells to add to pPg */
7575 CellArray
*pCArray
/* Array of cells */
7577 int i
= iFirst
; /* Loop counter - cell index to insert */
7578 u8
*aData
= pPg
->aData
; /* Complete page */
7579 u8
*pData
= *ppData
; /* Content area. A subset of aData[] */
7580 int iEnd
= iFirst
+ nCell
; /* End of loop. One past last cell to ins */
7581 int k
; /* Current slot in pCArray->apEnd[] */
7582 u8
*pEnd
; /* Maximum extent of cell data */
7583 assert( CORRUPT_DB
|| pPg
->hdrOffset
==0 ); /* Never called on page 1 */
7584 if( iEnd
<=iFirst
) return 0;
7585 for(k
=0; ALWAYS(k
<NB
*2) && pCArray
->ixNx
[k
]<=i
; k
++){}
7586 pEnd
= pCArray
->apEnd
[k
];
7587 while( 1 /*Exit by break*/ ){
7590 assert( pCArray
->szCell
[i
]!=0 );
7591 sz
= pCArray
->szCell
[i
];
7592 if( (aData
[1]==0 && aData
[2]==0) || (pSlot
= pageFindSlot(pPg
,sz
,&rc
))==0 ){
7593 if( (pData
- pBegin
)<sz
) return 1;
7597 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7598 ** database. But they might for a corrupt database. Hence use memmove()
7599 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7600 assert( (pSlot
+sz
)<=pCArray
->apCell
[i
]
7601 || pSlot
>=(pCArray
->apCell
[i
]+sz
)
7603 if( (uptr
)(pCArray
->apCell
[i
]+sz
)>(uptr
)pEnd
7604 && (uptr
)(pCArray
->apCell
[i
])<(uptr
)pEnd
7606 assert( CORRUPT_DB
);
7607 (void)SQLITE_CORRUPT_BKPT
;
7610 memmove(pSlot
, pCArray
->apCell
[i
], sz
);
7611 put2byte(pCellptr
, (pSlot
- aData
));
7614 if( i
>=iEnd
) break;
7615 if( pCArray
->ixNx
[k
]<=i
){
7617 pEnd
= pCArray
->apEnd
[k
];
7625 ** The pCArray object contains pointers to b-tree cells and their sizes.
7627 ** This function adds the space associated with each cell in the array
7628 ** that is currently stored within the body of pPg to the pPg free-list.
7629 ** The cell-pointers and other fields of the page are not updated.
7631 ** This function returns the total number of cells added to the free-list.
7633 static int pageFreeArray(
7634 MemPage
*pPg
, /* Page to edit */
7635 int iFirst
, /* First cell to delete */
7636 int nCell
, /* Cells to delete */
7637 CellArray
*pCArray
/* Array of cells */
7639 u8
* const aData
= pPg
->aData
;
7640 u8
* const pEnd
= &aData
[pPg
->pBt
->usableSize
];
7641 u8
* const pStart
= &aData
[pPg
->hdrOffset
+ 8 + pPg
->childPtrSize
];
7644 int iEnd
= iFirst
+ nCell
;
7649 for(i
=iFirst
; i
<iEnd
; i
++){
7650 u8
*pCell
= pCArray
->apCell
[i
];
7651 if( SQLITE_WITHIN(pCell
, pStart
, pEnd
) ){
7655 /* No need to use cachedCellSize() here. The sizes of all cells that
7656 ** are to be freed have already been computing while deciding which
7657 ** cells need freeing */
7658 sz
= pCArray
->szCell
[i
]; assert( sz
>0 );
7659 iOfst
= (u16
)(pCell
- aData
);
7661 for(j
=0; j
<nFree
; j
++){
7662 if( aOfst
[j
]==iAfter
){
7665 }else if( aAfter
[j
]==iOfst
){
7671 if( nFree
>=(int)(sizeof(aOfst
)/sizeof(aOfst
[0])) ){
7672 for(j
=0; j
<nFree
; j
++){
7673 freeSpace(pPg
, aOfst
[j
], aAfter
[j
]-aOfst
[j
]);
7677 aOfst
[nFree
] = iOfst
;
7678 aAfter
[nFree
] = iAfter
;
7679 if( &aData
[iAfter
]>pEnd
) return 0;
7685 for(j
=0; j
<nFree
; j
++){
7686 freeSpace(pPg
, aOfst
[j
], aAfter
[j
]-aOfst
[j
]);
7692 ** pCArray contains pointers to and sizes of all cells in the page being
7693 ** balanced. The current page, pPg, has pPg->nCell cells starting with
7694 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
7695 ** starting at apCell[iNew].
7697 ** This routine makes the necessary adjustments to pPg so that it contains
7698 ** the correct cells after being balanced.
7700 ** The pPg->nFree field is invalid when this function returns. It is the
7701 ** responsibility of the caller to set it correctly.
7703 static int editPage(
7704 MemPage
*pPg
, /* Edit this page */
7705 int iOld
, /* Index of first cell currently on page */
7706 int iNew
, /* Index of new first cell on page */
7707 int nNew
, /* Final number of cells on page */
7708 CellArray
*pCArray
/* Array of cells and sizes */
7710 u8
* const aData
= pPg
->aData
;
7711 const int hdr
= pPg
->hdrOffset
;
7712 u8
*pBegin
= &pPg
->aCellIdx
[nNew
* 2];
7713 int nCell
= pPg
->nCell
; /* Cells stored on pPg */
7717 int iOldEnd
= iOld
+ pPg
->nCell
+ pPg
->nOverflow
;
7718 int iNewEnd
= iNew
+ nNew
;
7721 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7722 memcpy(pTmp
, aData
, pPg
->pBt
->usableSize
);
7725 /* Remove cells from the start and end of the page */
7728 int nShift
= pageFreeArray(pPg
, iOld
, iNew
-iOld
, pCArray
);
7729 if( NEVER(nShift
>nCell
) ) return SQLITE_CORRUPT_BKPT
;
7730 memmove(pPg
->aCellIdx
, &pPg
->aCellIdx
[nShift
*2], nCell
*2);
7733 if( iNewEnd
< iOldEnd
){
7734 int nTail
= pageFreeArray(pPg
, iNewEnd
, iOldEnd
- iNewEnd
, pCArray
);
7735 assert( nCell
>=nTail
);
7739 pData
= &aData
[get2byte(&aData
[hdr
+5])];
7740 if( pData
<pBegin
) goto editpage_fail
;
7741 if( NEVER(pData
>pPg
->aDataEnd
) ) goto editpage_fail
;
7743 /* Add cells to the start of the page */
7745 int nAdd
= MIN(nNew
,iOld
-iNew
);
7746 assert( (iOld
-iNew
)<nNew
|| nCell
==0 || CORRUPT_DB
);
7748 pCellptr
= pPg
->aCellIdx
;
7749 memmove(&pCellptr
[nAdd
*2], pCellptr
, nCell
*2);
7750 if( pageInsertArray(
7751 pPg
, pBegin
, &pData
, pCellptr
,
7753 ) ) goto editpage_fail
;
7757 /* Add any overflow cells */
7758 for(i
=0; i
<pPg
->nOverflow
; i
++){
7759 int iCell
= (iOld
+ pPg
->aiOvfl
[i
]) - iNew
;
7760 if( iCell
>=0 && iCell
<nNew
){
7761 pCellptr
= &pPg
->aCellIdx
[iCell
* 2];
7763 memmove(&pCellptr
[2], pCellptr
, (nCell
- iCell
) * 2);
7766 cachedCellSize(pCArray
, iCell
+iNew
);
7767 if( pageInsertArray(
7768 pPg
, pBegin
, &pData
, pCellptr
,
7769 iCell
+iNew
, 1, pCArray
7770 ) ) goto editpage_fail
;
7774 /* Append cells to the end of the page */
7776 pCellptr
= &pPg
->aCellIdx
[nCell
*2];
7777 if( pageInsertArray(
7778 pPg
, pBegin
, &pData
, pCellptr
,
7779 iNew
+nCell
, nNew
-nCell
, pCArray
7780 ) ) goto editpage_fail
;
7785 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7786 put2byte(&aData
[hdr
+5], pData
- aData
);
7789 for(i
=0; i
<nNew
&& !CORRUPT_DB
; i
++){
7790 u8
*pCell
= pCArray
->apCell
[i
+iNew
];
7791 int iOff
= get2byteAligned(&pPg
->aCellIdx
[i
*2]);
7792 if( SQLITE_WITHIN(pCell
, aData
, &aData
[pPg
->pBt
->usableSize
]) ){
7793 pCell
= &pTmp
[pCell
- aData
];
7795 assert( 0==memcmp(pCell
, &aData
[iOff
],
7796 pCArray
->pRef
->xCellSize(pCArray
->pRef
, pCArray
->apCell
[i
+iNew
])) );
7802 /* Unable to edit this page. Rebuild it from scratch instead. */
7803 if( nNew
<1 ) return SQLITE_CORRUPT_BKPT
;
7804 populateCellCache(pCArray
, iNew
, nNew
);
7805 return rebuildPage(pCArray
, iNew
, nNew
, pPg
);
7809 #ifndef SQLITE_OMIT_QUICKBALANCE
7811 ** This version of balance() handles the common special case where
7812 ** a new entry is being inserted on the extreme right-end of the
7813 ** tree, in other words, when the new entry will become the largest
7814 ** entry in the tree.
7816 ** Instead of trying to balance the 3 right-most leaf pages, just add
7817 ** a new page to the right-hand side and put the one new entry in
7818 ** that page. This leaves the right side of the tree somewhat
7819 ** unbalanced. But odds are that we will be inserting new entries
7820 ** at the end soon afterwards so the nearly empty page will quickly
7821 ** fill up. On average.
7823 ** pPage is the leaf page which is the right-most page in the tree.
7824 ** pParent is its parent. pPage must have a single overflow entry
7825 ** which is also the right-most entry on the page.
7827 ** The pSpace buffer is used to store a temporary copy of the divider
7828 ** cell that will be inserted into pParent. Such a cell consists of a 4
7829 ** byte page number followed by a variable length integer. In other
7830 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7831 ** least 13 bytes in size.
7833 static int balance_quick(MemPage
*pParent
, MemPage
*pPage
, u8
*pSpace
){
7834 BtShared
*const pBt
= pPage
->pBt
; /* B-Tree Database */
7835 MemPage
*pNew
; /* Newly allocated page */
7836 int rc
; /* Return Code */
7837 Pgno pgnoNew
; /* Page number of pNew */
7839 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7840 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7841 assert( pPage
->nOverflow
==1 );
7843 if( pPage
->nCell
==0 ) return SQLITE_CORRUPT_BKPT
; /* dbfuzz001.test */
7844 assert( pPage
->nFree
>=0 );
7845 assert( pParent
->nFree
>=0 );
7847 /* Allocate a new page. This page will become the right-sibling of
7848 ** pPage. Make the parent page writable, so that the new divider cell
7849 ** may be inserted. If both these operations are successful, proceed.
7851 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
7853 if( rc
==SQLITE_OK
){
7855 u8
*pOut
= &pSpace
[4];
7856 u8
*pCell
= pPage
->apOvfl
[0];
7857 u16 szCell
= pPage
->xCellSize(pPage
, pCell
);
7861 assert( sqlite3PagerIswriteable(pNew
->pDbPage
) );
7862 assert( CORRUPT_DB
|| pPage
->aData
[0]==(PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
) );
7863 zeroPage(pNew
, PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
);
7868 b
.apEnd
[0] = pPage
->aDataEnd
;
7870 rc
= rebuildPage(&b
, 0, 1, pNew
);
7875 pNew
->nFree
= pBt
->usableSize
- pNew
->cellOffset
- 2 - szCell
;
7877 /* If this is an auto-vacuum database, update the pointer map
7878 ** with entries for the new page, and any pointer from the
7879 ** cell on the page to an overflow page. If either of these
7880 ** operations fails, the return code is set, but the contents
7881 ** of the parent page are still manipulated by the code below.
7882 ** That is Ok, at this point the parent page is guaranteed to
7883 ** be marked as dirty. Returning an error code will cause a
7884 ** rollback, undoing any changes made to the parent page.
7886 if( ISAUTOVACUUM(pBt
) ){
7887 ptrmapPut(pBt
, pgnoNew
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
7888 if( szCell
>pNew
->minLocal
){
7889 ptrmapPutOvflPtr(pNew
, pNew
, pCell
, &rc
);
7893 /* Create a divider cell to insert into pParent. The divider cell
7894 ** consists of a 4-byte page number (the page number of pPage) and
7895 ** a variable length key value (which must be the same value as the
7896 ** largest key on pPage).
7898 ** To find the largest key value on pPage, first find the right-most
7899 ** cell on pPage. The first two fields of this cell are the
7900 ** record-length (a variable length integer at most 32-bits in size)
7901 ** and the key value (a variable length integer, may have any value).
7902 ** The first of the while(...) loops below skips over the record-length
7903 ** field. The second while(...) loop copies the key value from the
7904 ** cell on pPage into the pSpace buffer.
7906 pCell
= findCell(pPage
, pPage
->nCell
-1);
7908 while( (*(pCell
++)&0x80) && pCell
<pStop
);
7910 while( ((*(pOut
++) = *(pCell
++))&0x80) && pCell
<pStop
);
7912 /* Insert the new divider cell into pParent. */
7913 if( rc
==SQLITE_OK
){
7914 rc
= insertCell(pParent
, pParent
->nCell
, pSpace
, (int)(pOut
-pSpace
),
7918 /* Set the right-child pointer of pParent to point to the new page. */
7919 put4byte(&pParent
->aData
[pParent
->hdrOffset
+8], pgnoNew
);
7921 /* Release the reference to the new page. */
7927 #endif /* SQLITE_OMIT_QUICKBALANCE */
7931 ** This function does not contribute anything to the operation of SQLite.
7932 ** it is sometimes activated temporarily while debugging code responsible
7933 ** for setting pointer-map entries.
7935 static int ptrmapCheckPages(MemPage
**apPage
, int nPage
){
7937 for(i
=0; i
<nPage
; i
++){
7940 MemPage
*pPage
= apPage
[i
];
7941 BtShared
*pBt
= pPage
->pBt
;
7942 assert( pPage
->isInit
);
7944 for(j
=0; j
<pPage
->nCell
; j
++){
7948 z
= findCell(pPage
, j
);
7949 pPage
->xParseCell(pPage
, z
, &info
);
7950 if( info
.nLocal
<info
.nPayload
){
7951 Pgno ovfl
= get4byte(&z
[info
.nSize
-4]);
7952 ptrmapGet(pBt
, ovfl
, &e
, &n
);
7953 assert( n
==pPage
->pgno
&& e
==PTRMAP_OVERFLOW1
);
7956 Pgno child
= get4byte(z
);
7957 ptrmapGet(pBt
, child
, &e
, &n
);
7958 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7962 Pgno child
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
7963 ptrmapGet(pBt
, child
, &e
, &n
);
7964 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7972 ** This function is used to copy the contents of the b-tree node stored
7973 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7974 ** the pointer-map entries for each child page are updated so that the
7975 ** parent page stored in the pointer map is page pTo. If pFrom contained
7976 ** any cells with overflow page pointers, then the corresponding pointer
7977 ** map entries are also updated so that the parent page is page pTo.
7979 ** If pFrom is currently carrying any overflow cells (entries in the
7980 ** MemPage.apOvfl[] array), they are not copied to pTo.
7982 ** Before returning, page pTo is reinitialized using btreeInitPage().
7984 ** The performance of this function is not critical. It is only used by
7985 ** the balance_shallower() and balance_deeper() procedures, neither of
7986 ** which are called often under normal circumstances.
7988 static void copyNodeContent(MemPage
*pFrom
, MemPage
*pTo
, int *pRC
){
7989 if( (*pRC
)==SQLITE_OK
){
7990 BtShared
* const pBt
= pFrom
->pBt
;
7991 u8
* const aFrom
= pFrom
->aData
;
7992 u8
* const aTo
= pTo
->aData
;
7993 int const iFromHdr
= pFrom
->hdrOffset
;
7994 int const iToHdr
= ((pTo
->pgno
==1) ? 100 : 0);
7999 assert( pFrom
->isInit
);
8000 assert( pFrom
->nFree
>=iToHdr
);
8001 assert( get2byte(&aFrom
[iFromHdr
+5]) <= (int)pBt
->usableSize
);
8003 /* Copy the b-tree node content from page pFrom to page pTo. */
8004 iData
= get2byte(&aFrom
[iFromHdr
+5]);
8005 memcpy(&aTo
[iData
], &aFrom
[iData
], pBt
->usableSize
-iData
);
8006 memcpy(&aTo
[iToHdr
], &aFrom
[iFromHdr
], pFrom
->cellOffset
+ 2*pFrom
->nCell
);
8008 /* Reinitialize page pTo so that the contents of the MemPage structure
8009 ** match the new data. The initialization of pTo can actually fail under
8010 ** fairly obscure circumstances, even though it is a copy of initialized
8014 rc
= btreeInitPage(pTo
);
8015 if( rc
==SQLITE_OK
) rc
= btreeComputeFreeSpace(pTo
);
8016 if( rc
!=SQLITE_OK
){
8021 /* If this is an auto-vacuum database, update the pointer-map entries
8022 ** for any b-tree or overflow pages that pTo now contains the pointers to.
8024 if( ISAUTOVACUUM(pBt
) ){
8025 *pRC
= setChildPtrmaps(pTo
);
8031 ** This routine redistributes cells on the iParentIdx'th child of pParent
8032 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
8033 ** same amount of free space. Usually a single sibling on either side of the
8034 ** page are used in the balancing, though both siblings might come from one
8035 ** side if the page is the first or last child of its parent. If the page
8036 ** has fewer than 2 siblings (something which can only happen if the page
8037 ** is a root page or a child of a root page) then all available siblings
8038 ** participate in the balancing.
8040 ** The number of siblings of the page might be increased or decreased by
8041 ** one or two in an effort to keep pages nearly full but not over full.
8043 ** Note that when this routine is called, some of the cells on the page
8044 ** might not actually be stored in MemPage.aData[]. This can happen
8045 ** if the page is overfull. This routine ensures that all cells allocated
8046 ** to the page and its siblings fit into MemPage.aData[] before returning.
8048 ** In the course of balancing the page and its siblings, cells may be
8049 ** inserted into or removed from the parent page (pParent). Doing so
8050 ** may cause the parent page to become overfull or underfull. If this
8051 ** happens, it is the responsibility of the caller to invoke the correct
8052 ** balancing routine to fix this problem (see the balance() routine).
8054 ** If this routine fails for any reason, it might leave the database
8055 ** in a corrupted state. So if this routine fails, the database should
8058 ** The third argument to this function, aOvflSpace, is a pointer to a
8059 ** buffer big enough to hold one page. If while inserting cells into the parent
8060 ** page (pParent) the parent page becomes overfull, this buffer is
8061 ** used to store the parent's overflow cells. Because this function inserts
8062 ** a maximum of four divider cells into the parent page, and the maximum
8063 ** size of a cell stored within an internal node is always less than 1/4
8064 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
8065 ** enough for all overflow cells.
8067 ** If aOvflSpace is set to a null pointer, this function returns
8070 static int balance_nonroot(
8071 MemPage
*pParent
, /* Parent page of siblings being balanced */
8072 int iParentIdx
, /* Index of "the page" in pParent */
8073 u8
*aOvflSpace
, /* page-size bytes of space for parent ovfl */
8074 int isRoot
, /* True if pParent is a root-page */
8075 int bBulk
/* True if this call is part of a bulk load */
8077 BtShared
*pBt
; /* The whole database */
8078 int nMaxCells
= 0; /* Allocated size of apCell, szCell, aFrom. */
8079 int nNew
= 0; /* Number of pages in apNew[] */
8080 int nOld
; /* Number of pages in apOld[] */
8081 int i
, j
, k
; /* Loop counters */
8082 int nxDiv
; /* Next divider slot in pParent->aCell[] */
8083 int rc
= SQLITE_OK
; /* The return code */
8084 u16 leafCorrection
; /* 4 if pPage is a leaf. 0 if not */
8085 int leafData
; /* True if pPage is a leaf of a LEAFDATA tree */
8086 int usableSpace
; /* Bytes in pPage beyond the header */
8087 int pageFlags
; /* Value of pPage->aData[0] */
8088 int iSpace1
= 0; /* First unused byte of aSpace1[] */
8089 int iOvflSpace
= 0; /* First unused byte of aOvflSpace[] */
8090 int szScratch
; /* Size of scratch memory requested */
8091 MemPage
*apOld
[NB
]; /* pPage and up to two siblings */
8092 MemPage
*apNew
[NB
+2]; /* pPage and up to NB siblings after balancing */
8093 u8
*pRight
; /* Location in parent of right-sibling pointer */
8094 u8
*apDiv
[NB
-1]; /* Divider cells in pParent */
8095 int cntNew
[NB
+2]; /* Index in b.paCell[] of cell after i-th page */
8096 int cntOld
[NB
+2]; /* Old index in b.apCell[] */
8097 int szNew
[NB
+2]; /* Combined size of cells placed on i-th page */
8098 u8
*aSpace1
; /* Space for copies of dividers cells */
8099 Pgno pgno
; /* Temp var to store a page number in */
8100 u8 abDone
[NB
+2]; /* True after i'th new page is populated */
8101 Pgno aPgno
[NB
+2]; /* Page numbers of new pages before shuffling */
8102 CellArray b
; /* Parsed information on cells being balanced */
8104 memset(abDone
, 0, sizeof(abDone
));
8105 memset(&b
, 0, sizeof(b
));
8107 assert( sqlite3_mutex_held(pBt
->mutex
) );
8108 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8110 /* At this point pParent may have at most one overflow cell. And if
8111 ** this overflow cell is present, it must be the cell with
8112 ** index iParentIdx. This scenario comes about when this function
8113 ** is called (indirectly) from sqlite3BtreeDelete().
8115 assert( pParent
->nOverflow
==0 || pParent
->nOverflow
==1 );
8116 assert( pParent
->nOverflow
==0 || pParent
->aiOvfl
[0]==iParentIdx
);
8119 return SQLITE_NOMEM_BKPT
;
8121 assert( pParent
->nFree
>=0 );
8123 /* Find the sibling pages to balance. Also locate the cells in pParent
8124 ** that divide the siblings. An attempt is made to find NN siblings on
8125 ** either side of pPage. More siblings are taken from one side, however,
8126 ** if there are fewer than NN siblings on the other side. If pParent
8127 ** has NB or fewer children then all children of pParent are taken.
8129 ** This loop also drops the divider cells from the parent page. This
8130 ** way, the remainder of the function does not have to deal with any
8131 ** overflow cells in the parent page, since if any existed they will
8132 ** have already been removed.
8134 i
= pParent
->nOverflow
+ pParent
->nCell
;
8138 assert( bBulk
==0 || bBulk
==1 );
8139 if( iParentIdx
==0 ){
8141 }else if( iParentIdx
==i
){
8144 nxDiv
= iParentIdx
-1;
8149 if( (i
+nxDiv
-pParent
->nOverflow
)==pParent
->nCell
){
8150 pRight
= &pParent
->aData
[pParent
->hdrOffset
+8];
8152 pRight
= findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
8154 pgno
= get4byte(pRight
);
8156 if( rc
==SQLITE_OK
){
8157 rc
= getAndInitPage(pBt
, pgno
, &apOld
[i
], 0);
8160 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
8161 goto balance_cleanup
;
8163 if( apOld
[i
]->nFree
<0 ){
8164 rc
= btreeComputeFreeSpace(apOld
[i
]);
8166 memset(apOld
, 0, (i
)*sizeof(MemPage
*));
8167 goto balance_cleanup
;
8170 nMaxCells
+= apOld
[i
]->nCell
+ ArraySize(pParent
->apOvfl
);
8171 if( (i
--)==0 ) break;
8173 if( pParent
->nOverflow
&& i
+nxDiv
==pParent
->aiOvfl
[0] ){
8174 apDiv
[i
] = pParent
->apOvfl
[0];
8175 pgno
= get4byte(apDiv
[i
]);
8176 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
8177 pParent
->nOverflow
= 0;
8179 apDiv
[i
] = findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
8180 pgno
= get4byte(apDiv
[i
]);
8181 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
8183 /* Drop the cell from the parent page. apDiv[i] still points to
8184 ** the cell within the parent, even though it has been dropped.
8185 ** This is safe because dropping a cell only overwrites the first
8186 ** four bytes of it, and this function does not need the first
8187 ** four bytes of the divider cell. So the pointer is safe to use
8190 ** But not if we are in secure-delete mode. In secure-delete mode,
8191 ** the dropCell() routine will overwrite the entire cell with zeroes.
8192 ** In this case, temporarily copy the cell into the aOvflSpace[]
8193 ** buffer. It will be copied out again as soon as the aSpace[] buffer
8195 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
8198 /* If the following if() condition is not true, the db is corrupted.
8199 ** The call to dropCell() below will detect this. */
8200 iOff
= SQLITE_PTR_TO_INT(apDiv
[i
]) - SQLITE_PTR_TO_INT(pParent
->aData
);
8201 if( (iOff
+szNew
[i
])<=(int)pBt
->usableSize
){
8202 memcpy(&aOvflSpace
[iOff
], apDiv
[i
], szNew
[i
]);
8203 apDiv
[i
] = &aOvflSpace
[apDiv
[i
]-pParent
->aData
];
8206 dropCell(pParent
, i
+nxDiv
-pParent
->nOverflow
, szNew
[i
], &rc
);
8210 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
8212 nMaxCells
= (nMaxCells
+ 3)&~3;
8215 ** Allocate space for memory structures
8218 nMaxCells
*sizeof(u8
*) /* b.apCell */
8219 + nMaxCells
*sizeof(u16
) /* b.szCell */
8220 + pBt
->pageSize
; /* aSpace1 */
8222 assert( szScratch
<=7*(int)pBt
->pageSize
);
8223 b
.apCell
= sqlite3StackAllocRaw(0, szScratch
);
8225 rc
= SQLITE_NOMEM_BKPT
;
8226 goto balance_cleanup
;
8228 b
.szCell
= (u16
*)&b
.apCell
[nMaxCells
];
8229 aSpace1
= (u8
*)&b
.szCell
[nMaxCells
];
8230 assert( EIGHT_BYTE_ALIGNMENT(aSpace1
) );
8233 ** Load pointers to all cells on sibling pages and the divider cells
8234 ** into the local b.apCell[] array. Make copies of the divider cells
8235 ** into space obtained from aSpace1[]. The divider cells have already
8236 ** been removed from pParent.
8238 ** If the siblings are on leaf pages, then the child pointers of the
8239 ** divider cells are stripped from the cells before they are copied
8240 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
8241 ** child pointers. If siblings are not leaves, then all cell in
8242 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
8245 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
8246 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
8249 leafCorrection
= b
.pRef
->leaf
*4;
8250 leafData
= b
.pRef
->intKeyLeaf
;
8251 for(i
=0; i
<nOld
; i
++){
8252 MemPage
*pOld
= apOld
[i
];
8253 int limit
= pOld
->nCell
;
8254 u8
*aData
= pOld
->aData
;
8255 u16 maskPage
= pOld
->maskPage
;
8256 u8
*piCell
= aData
+ pOld
->cellOffset
;
8258 VVA_ONLY( int nCellAtStart
= b
.nCell
; )
8260 /* Verify that all sibling pages are of the same "type" (table-leaf,
8261 ** table-interior, index-leaf, or index-interior).
8263 if( pOld
->aData
[0]!=apOld
[0]->aData
[0] ){
8264 rc
= SQLITE_CORRUPT_BKPT
;
8265 goto balance_cleanup
;
8268 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
8269 ** contains overflow cells, include them in the b.apCell[] array
8270 ** in the correct spot.
8272 ** Note that when there are multiple overflow cells, it is always the
8273 ** case that they are sequential and adjacent. This invariant arises
8274 ** because multiple overflows can only occurs when inserting divider
8275 ** cells into a parent on a prior balance, and divider cells are always
8276 ** adjacent and are inserted in order. There is an assert() tagged
8277 ** with "NOTE 1" in the overflow cell insertion loop to prove this
8280 ** This must be done in advance. Once the balance starts, the cell
8281 ** offset section of the btree page will be overwritten and we will no
8282 ** long be able to find the cells if a pointer to each cell is not saved
8285 memset(&b
.szCell
[b
.nCell
], 0, sizeof(b
.szCell
[0])*(limit
+pOld
->nOverflow
));
8286 if( pOld
->nOverflow
>0 ){
8287 if( NEVER(limit
<pOld
->aiOvfl
[0]) ){
8288 rc
= SQLITE_CORRUPT_BKPT
;
8289 goto balance_cleanup
;
8291 limit
= pOld
->aiOvfl
[0];
8292 for(j
=0; j
<limit
; j
++){
8293 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
8297 for(k
=0; k
<pOld
->nOverflow
; k
++){
8298 assert( k
==0 || pOld
->aiOvfl
[k
-1]+1==pOld
->aiOvfl
[k
] );/* NOTE 1 */
8299 b
.apCell
[b
.nCell
] = pOld
->apOvfl
[k
];
8303 piEnd
= aData
+ pOld
->cellOffset
+ 2*pOld
->nCell
;
8304 while( piCell
<piEnd
){
8305 assert( b
.nCell
<nMaxCells
);
8306 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
8310 assert( (b
.nCell
-nCellAtStart
)==(pOld
->nCell
+pOld
->nOverflow
) );
8312 cntOld
[i
] = b
.nCell
;
8313 if( i
<nOld
-1 && !leafData
){
8314 u16 sz
= (u16
)szNew
[i
];
8316 assert( b
.nCell
<nMaxCells
);
8317 b
.szCell
[b
.nCell
] = sz
;
8318 pTemp
= &aSpace1
[iSpace1
];
8320 assert( sz
<=pBt
->maxLocal
+23 );
8321 assert( iSpace1
<= (int)pBt
->pageSize
);
8322 memcpy(pTemp
, apDiv
[i
], sz
);
8323 b
.apCell
[b
.nCell
] = pTemp
+leafCorrection
;
8324 assert( leafCorrection
==0 || leafCorrection
==4 );
8325 b
.szCell
[b
.nCell
] = b
.szCell
[b
.nCell
] - leafCorrection
;
8327 assert( leafCorrection
==0 );
8328 assert( pOld
->hdrOffset
==0 || CORRUPT_DB
);
8329 /* The right pointer of the child page pOld becomes the left
8330 ** pointer of the divider cell */
8331 memcpy(b
.apCell
[b
.nCell
], &pOld
->aData
[8], 4);
8333 assert( leafCorrection
==4 );
8334 while( b
.szCell
[b
.nCell
]<4 ){
8335 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
8336 ** does exist, pad it with 0x00 bytes. */
8337 assert( b
.szCell
[b
.nCell
]==3 || CORRUPT_DB
);
8338 assert( b
.apCell
[b
.nCell
]==&aSpace1
[iSpace1
-3] || CORRUPT_DB
);
8339 aSpace1
[iSpace1
++] = 0x00;
8340 b
.szCell
[b
.nCell
]++;
8348 ** Figure out the number of pages needed to hold all b.nCell cells.
8349 ** Store this number in "k". Also compute szNew[] which is the total
8350 ** size of all cells on the i-th page and cntNew[] which is the index
8351 ** in b.apCell[] of the cell that divides page i from page i+1.
8352 ** cntNew[k] should equal b.nCell.
8354 ** Values computed by this block:
8356 ** k: The total number of sibling pages
8357 ** szNew[i]: Spaced used on the i-th sibling page.
8358 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
8359 ** the right of the i-th sibling page.
8360 ** usableSpace: Number of bytes of space available on each sibling.
8363 usableSpace
= pBt
->usableSize
- 12 + leafCorrection
;
8364 for(i
=k
=0; i
<nOld
; i
++, k
++){
8365 MemPage
*p
= apOld
[i
];
8366 b
.apEnd
[k
] = p
->aDataEnd
;
8367 b
.ixNx
[k
] = cntOld
[i
];
8368 if( k
&& b
.ixNx
[k
]==b
.ixNx
[k
-1] ){
8369 k
--; /* Omit b.ixNx[] entry for child pages with no cells */
8373 b
.apEnd
[k
] = pParent
->aDataEnd
;
8374 b
.ixNx
[k
] = cntOld
[i
]+1;
8376 assert( p
->nFree
>=0 );
8377 szNew
[i
] = usableSpace
- p
->nFree
;
8378 for(j
=0; j
<p
->nOverflow
; j
++){
8379 szNew
[i
] += 2 + p
->xCellSize(p
, p
->apOvfl
[j
]);
8381 cntNew
[i
] = cntOld
[i
];
8386 while( szNew
[i
]>usableSpace
){
8389 if( k
>NB
+2 ){ rc
= SQLITE_CORRUPT_BKPT
; goto balance_cleanup
; }
8391 cntNew
[k
-1] = b
.nCell
;
8393 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]-1);
8396 if( cntNew
[i
]<b
.nCell
){
8397 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8405 while( cntNew
[i
]<b
.nCell
){
8406 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8407 if( szNew
[i
]+sz
>usableSpace
) break;
8411 if( cntNew
[i
]<b
.nCell
){
8412 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
8419 if( cntNew
[i
]>=b
.nCell
){
8421 }else if( cntNew
[i
] <= (i
>0 ? cntNew
[i
-1] : 0) ){
8422 rc
= SQLITE_CORRUPT_BKPT
;
8423 goto balance_cleanup
;
8428 ** The packing computed by the previous block is biased toward the siblings
8429 ** on the left side (siblings with smaller keys). The left siblings are
8430 ** always nearly full, while the right-most sibling might be nearly empty.
8431 ** The next block of code attempts to adjust the packing of siblings to
8432 ** get a better balance.
8434 ** This adjustment is more than an optimization. The packing above might
8435 ** be so out of balance as to be illegal. For example, the right-most
8436 ** sibling might be completely empty. This adjustment is not optional.
8438 for(i
=k
-1; i
>0; i
--){
8439 int szRight
= szNew
[i
]; /* Size of sibling on the right */
8440 int szLeft
= szNew
[i
-1]; /* Size of sibling on the left */
8441 int r
; /* Index of right-most cell in left sibling */
8442 int d
; /* Index of first cell to the left of right sibling */
8444 r
= cntNew
[i
-1] - 1;
8445 d
= r
+ 1 - leafData
;
8446 (void)cachedCellSize(&b
, d
);
8449 assert( d
<nMaxCells
);
8450 assert( r
<nMaxCells
);
8451 szR
= cachedCellSize(&b
, r
);
8454 && (bBulk
|| szRight
+szD
+2 > szLeft
-(szR
+(i
==k
-1?0:2)))){
8464 szNew
[i
-1] = szLeft
;
8465 if( cntNew
[i
-1] <= (i
>1 ? cntNew
[i
-2] : 0) ){
8466 rc
= SQLITE_CORRUPT_BKPT
;
8467 goto balance_cleanup
;
8471 /* Sanity check: For a non-corrupt database file one of the following
8473 ** (1) We found one or more cells (cntNew[0])>0), or
8474 ** (2) pPage is a virtual root page. A virtual root page is when
8475 ** the real root page is page 1 and we are the only child of
8478 assert( cntNew
[0]>0 || (pParent
->pgno
==1 && pParent
->nCell
==0) || CORRUPT_DB
);
8479 TRACE(("BALANCE: old: %u(nc=%u) %u(nc=%u) %u(nc=%u)\n",
8480 apOld
[0]->pgno
, apOld
[0]->nCell
,
8481 nOld
>=2 ? apOld
[1]->pgno
: 0, nOld
>=2 ? apOld
[1]->nCell
: 0,
8482 nOld
>=3 ? apOld
[2]->pgno
: 0, nOld
>=3 ? apOld
[2]->nCell
: 0
8486 ** Allocate k new pages. Reuse old pages where possible.
8488 pageFlags
= apOld
[0]->aData
[0];
8492 pNew
= apNew
[i
] = apOld
[i
];
8494 rc
= sqlite3PagerWrite(pNew
->pDbPage
);
8496 if( sqlite3PagerPageRefcount(pNew
->pDbPage
)!=1+(i
==(iParentIdx
-nxDiv
))
8499 rc
= SQLITE_CORRUPT_BKPT
;
8501 if( rc
) goto balance_cleanup
;
8504 rc
= allocateBtreePage(pBt
, &pNew
, &pgno
, (bBulk
? 1 : pgno
), 0);
8505 if( rc
) goto balance_cleanup
;
8506 zeroPage(pNew
, pageFlags
);
8509 cntOld
[i
] = b
.nCell
;
8511 /* Set the pointer-map entry for the new sibling page. */
8512 if( ISAUTOVACUUM(pBt
) ){
8513 ptrmapPut(pBt
, pNew
->pgno
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
8514 if( rc
!=SQLITE_OK
){
8515 goto balance_cleanup
;
8522 ** Reassign page numbers so that the new pages are in ascending order.
8523 ** This helps to keep entries in the disk file in order so that a scan
8524 ** of the table is closer to a linear scan through the file. That in turn
8525 ** helps the operating system to deliver pages from the disk more rapidly.
8527 ** An O(N*N) sort algorithm is used, but since N is never more than NB+2
8528 ** (5), that is not a performance concern.
8530 ** When NB==3, this one optimization makes the database about 25% faster
8531 ** for large insertions and deletions.
8533 for(i
=0; i
<nNew
; i
++){
8534 aPgno
[i
] = apNew
[i
]->pgno
;
8535 assert( apNew
[i
]->pDbPage
->flags
& PGHDR_WRITEABLE
);
8536 assert( apNew
[i
]->pDbPage
->flags
& PGHDR_DIRTY
);
8538 for(i
=0; i
<nNew
-1; i
++){
8540 for(j
=i
+1; j
<nNew
; j
++){
8541 if( apNew
[j
]->pgno
< apNew
[iB
]->pgno
) iB
= j
;
8544 /* If apNew[i] has a page number that is bigger than any of the
8545 ** subsequence apNew[i] entries, then swap apNew[i] with the subsequent
8546 ** entry that has the smallest page number (which we know to be
8547 ** entry apNew[iB]).
8550 Pgno pgnoA
= apNew
[i
]->pgno
;
8551 Pgno pgnoB
= apNew
[iB
]->pgno
;
8552 Pgno pgnoTemp
= (PENDING_BYTE
/pBt
->pageSize
)+1;
8553 u16 fgA
= apNew
[i
]->pDbPage
->flags
;
8554 u16 fgB
= apNew
[iB
]->pDbPage
->flags
;
8555 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgnoTemp
, fgB
);
8556 sqlite3PagerRekey(apNew
[iB
]->pDbPage
, pgnoA
, fgA
);
8557 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgnoB
, fgB
);
8558 apNew
[i
]->pgno
= pgnoB
;
8559 apNew
[iB
]->pgno
= pgnoA
;
8563 TRACE(("BALANCE: new: %u(%u nc=%u) %u(%u nc=%u) %u(%u nc=%u) "
8564 "%u(%u nc=%u) %u(%u nc=%u)\n",
8565 apNew
[0]->pgno
, szNew
[0], cntNew
[0],
8566 nNew
>=2 ? apNew
[1]->pgno
: 0, nNew
>=2 ? szNew
[1] : 0,
8567 nNew
>=2 ? cntNew
[1] - cntNew
[0] - !leafData
: 0,
8568 nNew
>=3 ? apNew
[2]->pgno
: 0, nNew
>=3 ? szNew
[2] : 0,
8569 nNew
>=3 ? cntNew
[2] - cntNew
[1] - !leafData
: 0,
8570 nNew
>=4 ? apNew
[3]->pgno
: 0, nNew
>=4 ? szNew
[3] : 0,
8571 nNew
>=4 ? cntNew
[3] - cntNew
[2] - !leafData
: 0,
8572 nNew
>=5 ? apNew
[4]->pgno
: 0, nNew
>=5 ? szNew
[4] : 0,
8573 nNew
>=5 ? cntNew
[4] - cntNew
[3] - !leafData
: 0
8576 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8577 assert( nNew
>=1 && nNew
<=ArraySize(apNew
) );
8578 assert( apNew
[nNew
-1]!=0 );
8579 put4byte(pRight
, apNew
[nNew
-1]->pgno
);
8581 /* If the sibling pages are not leaves, ensure that the right-child pointer
8582 ** of the right-most new sibling page is set to the value that was
8583 ** originally in the same field of the right-most old sibling page. */
8584 if( (pageFlags
& PTF_LEAF
)==0 && nOld
!=nNew
){
8585 MemPage
*pOld
= (nNew
>nOld
? apNew
: apOld
)[nOld
-1];
8586 memcpy(&apNew
[nNew
-1]->aData
[8], &pOld
->aData
[8], 4);
8589 /* Make any required updates to pointer map entries associated with
8590 ** cells stored on sibling pages following the balance operation. Pointer
8591 ** map entries associated with divider cells are set by the insertCell()
8592 ** routine. The associated pointer map entries are:
8594 ** a) if the cell contains a reference to an overflow chain, the
8595 ** entry associated with the first page in the overflow chain, and
8597 ** b) if the sibling pages are not leaves, the child page associated
8600 ** If the sibling pages are not leaves, then the pointer map entry
8601 ** associated with the right-child of each sibling may also need to be
8602 ** updated. This happens below, after the sibling pages have been
8603 ** populated, not here.
8605 if( ISAUTOVACUUM(pBt
) ){
8607 MemPage
*pNew
= pOld
= apNew
[0];
8608 int cntOldNext
= pNew
->nCell
+ pNew
->nOverflow
;
8612 for(i
=0; i
<b
.nCell
; i
++){
8613 u8
*pCell
= b
.apCell
[i
];
8614 while( i
==cntOldNext
){
8616 assert( iOld
<nNew
|| iOld
<nOld
);
8617 assert( iOld
>=0 && iOld
<NB
);
8618 pOld
= iOld
<nNew
? apNew
[iOld
] : apOld
[iOld
];
8619 cntOldNext
+= pOld
->nCell
+ pOld
->nOverflow
+ !leafData
;
8621 if( i
==cntNew
[iNew
] ){
8622 pNew
= apNew
[++iNew
];
8623 if( !leafData
) continue;
8626 /* Cell pCell is destined for new sibling page pNew. Originally, it
8627 ** was either part of sibling page iOld (possibly an overflow cell),
8628 ** or else the divider cell to the left of sibling page iOld. So,
8629 ** if sibling page iOld had the same page number as pNew, and if
8630 ** pCell really was a part of sibling page iOld (not a divider or
8631 ** overflow cell), we can skip updating the pointer map entries. */
8633 || pNew
->pgno
!=aPgno
[iOld
]
8634 || !SQLITE_WITHIN(pCell
,pOld
->aData
,pOld
->aDataEnd
)
8636 if( !leafCorrection
){
8637 ptrmapPut(pBt
, get4byte(pCell
), PTRMAP_BTREE
, pNew
->pgno
, &rc
);
8639 if( cachedCellSize(&b
,i
)>pNew
->minLocal
){
8640 ptrmapPutOvflPtr(pNew
, pOld
, pCell
, &rc
);
8642 if( rc
) goto balance_cleanup
;
8647 /* Insert new divider cells into pParent. */
8648 for(i
=0; i
<nNew
-1; i
++){
8653 MemPage
*pNew
= apNew
[i
];
8656 assert( j
<nMaxCells
);
8657 assert( b
.apCell
[j
]!=0 );
8658 pCell
= b
.apCell
[j
];
8659 sz
= b
.szCell
[j
] + leafCorrection
;
8660 pTemp
= &aOvflSpace
[iOvflSpace
];
8662 memcpy(&pNew
->aData
[8], pCell
, 4);
8663 }else if( leafData
){
8664 /* If the tree is a leaf-data tree, and the siblings are leaves,
8665 ** then there is no divider cell in b.apCell[]. Instead, the divider
8666 ** cell consists of the integer key for the right-most cell of
8667 ** the sibling-page assembled above only.
8671 pNew
->xParseCell(pNew
, b
.apCell
[j
], &info
);
8673 sz
= 4 + putVarint(&pCell
[4], info
.nKey
);
8677 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8678 ** previously stored on a leaf node, and its reported size was 4
8679 ** bytes, then it may actually be smaller than this
8680 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8681 ** any cell). But it is important to pass the correct size to
8682 ** insertCell(), so reparse the cell now.
8684 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8685 ** and WITHOUT ROWID tables with exactly one column which is the
8688 if( b
.szCell
[j
]==4 ){
8689 assert(leafCorrection
==4);
8690 sz
= pParent
->xCellSize(pParent
, pCell
);
8694 assert( sz
<=pBt
->maxLocal
+23 );
8695 assert( iOvflSpace
<= (int)pBt
->pageSize
);
8696 for(k
=0; ALWAYS(k
<NB
*2) && b
.ixNx
[k
]<=j
; k
++){}
8697 pSrcEnd
= b
.apEnd
[k
];
8698 if( SQLITE_OVERFLOW(pSrcEnd
, pCell
, pCell
+sz
) ){
8699 rc
= SQLITE_CORRUPT_BKPT
;
8700 goto balance_cleanup
;
8702 rc
= insertCell(pParent
, nxDiv
+i
, pCell
, sz
, pTemp
, pNew
->pgno
);
8703 if( rc
!=SQLITE_OK
) goto balance_cleanup
;
8704 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8707 /* Now update the actual sibling pages. The order in which they are updated
8708 ** is important, as this code needs to avoid disrupting any page from which
8709 ** cells may still to be read. In practice, this means:
8711 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8712 ** then it is not safe to update page apNew[iPg] until after
8713 ** the left-hand sibling apNew[iPg-1] has been updated.
8715 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8716 ** then it is not safe to update page apNew[iPg] until after
8717 ** the right-hand sibling apNew[iPg+1] has been updated.
8719 ** If neither of the above apply, the page is safe to update.
8721 ** The iPg value in the following loop starts at nNew-1 goes down
8722 ** to 0, then back up to nNew-1 again, thus making two passes over
8723 ** the pages. On the initial downward pass, only condition (1) above
8724 ** needs to be tested because (2) will always be true from the previous
8725 ** step. On the upward pass, both conditions are always true, so the
8726 ** upwards pass simply processes pages that were missed on the downward
8729 for(i
=1-nNew
; i
<nNew
; i
++){
8730 int iPg
= i
<0 ? -i
: i
;
8731 assert( iPg
>=0 && iPg
<nNew
);
8732 assert( iPg
>=1 || i
>=0 );
8733 assert( iPg
<ArraySize(cntOld
) );
8734 if( abDone
[iPg
] ) continue; /* Skip pages already processed */
8735 if( i
>=0 /* On the upwards pass, or... */
8736 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] /* Condition (1) is true */
8742 /* Verify condition (1): If cells are moving left, update iPg
8743 ** only after iPg-1 has already been updated. */
8744 assert( iPg
==0 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] || abDone
[iPg
-1] );
8746 /* Verify condition (2): If cells are moving right, update iPg
8747 ** only after iPg+1 has already been updated. */
8748 assert( cntNew
[iPg
]>=cntOld
[iPg
] || abDone
[iPg
+1] );
8752 nNewCell
= cntNew
[0];
8754 iOld
= iPg
<nOld
? (cntOld
[iPg
-1] + !leafData
) : b
.nCell
;
8755 iNew
= cntNew
[iPg
-1] + !leafData
;
8756 nNewCell
= cntNew
[iPg
] - iNew
;
8759 rc
= editPage(apNew
[iPg
], iOld
, iNew
, nNewCell
, &b
);
8760 if( rc
) goto balance_cleanup
;
8762 apNew
[iPg
]->nFree
= usableSpace
-szNew
[iPg
];
8763 assert( apNew
[iPg
]->nOverflow
==0 );
8764 assert( apNew
[iPg
]->nCell
==nNewCell
);
8768 /* All pages have been processed exactly once */
8769 assert( memcmp(abDone
, "\01\01\01\01\01", nNew
)==0 );
8774 if( isRoot
&& pParent
->nCell
==0 && pParent
->hdrOffset
<=apNew
[0]->nFree
){
8775 /* The root page of the b-tree now contains no cells. The only sibling
8776 ** page is the right-child of the parent. Copy the contents of the
8777 ** child page into the parent, decreasing the overall height of the
8778 ** b-tree structure by one. This is described as the "balance-shallower"
8779 ** sub-algorithm in some documentation.
8781 ** If this is an auto-vacuum database, the call to copyNodeContent()
8782 ** sets all pointer-map entries corresponding to database image pages
8783 ** for which the pointer is stored within the content being copied.
8785 ** It is critical that the child page be defragmented before being
8786 ** copied into the parent, because if the parent is page 1 then it will
8787 ** by smaller than the child due to the database header, and so all the
8788 ** free space needs to be up front.
8790 assert( nNew
==1 || CORRUPT_DB
);
8791 rc
= defragmentPage(apNew
[0], -1);
8792 testcase( rc
!=SQLITE_OK
);
8793 assert( apNew
[0]->nFree
==
8794 (get2byteNotZero(&apNew
[0]->aData
[5]) - apNew
[0]->cellOffset
8795 - apNew
[0]->nCell
*2)
8798 copyNodeContent(apNew
[0], pParent
, &rc
);
8799 freePage(apNew
[0], &rc
);
8800 }else if( ISAUTOVACUUM(pBt
) && !leafCorrection
){
8801 /* Fix the pointer map entries associated with the right-child of each
8802 ** sibling page. All other pointer map entries have already been taken
8804 for(i
=0; i
<nNew
; i
++){
8805 u32 key
= get4byte(&apNew
[i
]->aData
[8]);
8806 ptrmapPut(pBt
, key
, PTRMAP_BTREE
, apNew
[i
]->pgno
, &rc
);
8810 assert( pParent
->isInit
);
8811 TRACE(("BALANCE: finished: old=%u new=%u cells=%u\n",
8812 nOld
, nNew
, b
.nCell
));
8814 /* Free any old pages that were not reused as new pages.
8816 for(i
=nNew
; i
<nOld
; i
++){
8817 freePage(apOld
[i
], &rc
);
8821 if( ISAUTOVACUUM(pBt
) && rc
==SQLITE_OK
&& apNew
[0]->isInit
){
8822 /* The ptrmapCheckPages() contains assert() statements that verify that
8823 ** all pointer map pages are set correctly. This is helpful while
8824 ** debugging. This is usually disabled because a corrupt database may
8825 ** cause an assert() statement to fail. */
8826 ptrmapCheckPages(apNew
, nNew
);
8827 ptrmapCheckPages(&pParent
, 1);
8832 ** Cleanup before returning.
8835 sqlite3StackFree(0, b
.apCell
);
8836 for(i
=0; i
<nOld
; i
++){
8837 releasePage(apOld
[i
]);
8839 for(i
=0; i
<nNew
; i
++){
8840 releasePage(apNew
[i
]);
8848 ** This function is called when the root page of a b-tree structure is
8849 ** overfull (has one or more overflow pages).
8851 ** A new child page is allocated and the contents of the current root
8852 ** page, including overflow cells, are copied into the child. The root
8853 ** page is then overwritten to make it an empty page with the right-child
8854 ** pointer pointing to the new page.
8856 ** Before returning, all pointer-map entries corresponding to pages
8857 ** that the new child-page now contains pointers to are updated. The
8858 ** entry corresponding to the new right-child pointer of the root
8859 ** page is also updated.
8861 ** If successful, *ppChild is set to contain a reference to the child
8862 ** page and SQLITE_OK is returned. In this case the caller is required
8863 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8864 ** an error code is returned and *ppChild is set to 0.
8866 static int balance_deeper(MemPage
*pRoot
, MemPage
**ppChild
){
8867 int rc
; /* Return value from subprocedures */
8868 MemPage
*pChild
= 0; /* Pointer to a new child page */
8869 Pgno pgnoChild
= 0; /* Page number of the new child page */
8870 BtShared
*pBt
= pRoot
->pBt
; /* The BTree */
8872 assert( pRoot
->nOverflow
>0 );
8873 assert( sqlite3_mutex_held(pBt
->mutex
) );
8875 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8876 ** page that will become the new right-child of pPage. Copy the contents
8877 ** of the node stored on pRoot into the new child page.
8879 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
8880 if( rc
==SQLITE_OK
){
8881 rc
= allocateBtreePage(pBt
,&pChild
,&pgnoChild
,pRoot
->pgno
,0);
8882 copyNodeContent(pRoot
, pChild
, &rc
);
8883 if( ISAUTOVACUUM(pBt
) ){
8884 ptrmapPut(pBt
, pgnoChild
, PTRMAP_BTREE
, pRoot
->pgno
, &rc
);
8889 releasePage(pChild
);
8892 assert( sqlite3PagerIswriteable(pChild
->pDbPage
) );
8893 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
8894 assert( pChild
->nCell
==pRoot
->nCell
|| CORRUPT_DB
);
8896 TRACE(("BALANCE: copy root %u into %u\n", pRoot
->pgno
, pChild
->pgno
));
8898 /* Copy the overflow cells from pRoot to pChild */
8899 memcpy(pChild
->aiOvfl
, pRoot
->aiOvfl
,
8900 pRoot
->nOverflow
*sizeof(pRoot
->aiOvfl
[0]));
8901 memcpy(pChild
->apOvfl
, pRoot
->apOvfl
,
8902 pRoot
->nOverflow
*sizeof(pRoot
->apOvfl
[0]));
8903 pChild
->nOverflow
= pRoot
->nOverflow
;
8905 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8906 zeroPage(pRoot
, pChild
->aData
[0] & ~PTF_LEAF
);
8907 put4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8], pgnoChild
);
8914 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8915 ** on the same B-tree as pCur.
8917 ** This can occur if a database is corrupt with two or more SQL tables
8918 ** pointing to the same b-tree. If an insert occurs on one SQL table
8919 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8920 ** table linked to the same b-tree. If the secondary insert causes a
8921 ** rebalance, that can change content out from under the cursor on the
8922 ** first SQL table, violating invariants on the first insert.
8924 static int anotherValidCursor(BtCursor
*pCur
){
8926 for(pOther
=pCur
->pBt
->pCursor
; pOther
; pOther
=pOther
->pNext
){
8928 && pOther
->eState
==CURSOR_VALID
8929 && pOther
->pPage
==pCur
->pPage
8931 return SQLITE_CORRUPT_BKPT
;
8938 ** The page that pCur currently points to has just been modified in
8939 ** some way. This function figures out if this modification means the
8940 ** tree needs to be balanced, and if so calls the appropriate balancing
8941 ** routine. Balancing routines are:
8945 ** balance_nonroot()
8947 static int balance(BtCursor
*pCur
){
8949 u8 aBalanceQuickSpace
[13];
8952 VVA_ONLY( int balance_quick_called
= 0 );
8953 VVA_ONLY( int balance_deeper_called
= 0 );
8957 MemPage
*pPage
= pCur
->pPage
;
8959 if( NEVER(pPage
->nFree
<0) && btreeComputeFreeSpace(pPage
) ) break;
8960 if( pPage
->nOverflow
==0 && pPage
->nFree
*3<=(int)pCur
->pBt
->usableSize
*2 ){
8961 /* No rebalance required as long as:
8962 ** (1) There are no overflow cells
8963 ** (2) The amount of free space on the page is less than 2/3rds of
8964 ** the total usable space on the page. */
8966 }else if( (iPage
= pCur
->iPage
)==0 ){
8967 if( pPage
->nOverflow
&& (rc
= anotherValidCursor(pCur
))==SQLITE_OK
){
8968 /* The root page of the b-tree is overfull. In this case call the
8969 ** balance_deeper() function to create a new child for the root-page
8970 ** and copy the current contents of the root-page to it. The
8971 ** next iteration of the do-loop will balance the child page.
8973 assert( balance_deeper_called
==0 );
8974 VVA_ONLY( balance_deeper_called
++ );
8975 rc
= balance_deeper(pPage
, &pCur
->apPage
[1]);
8976 if( rc
==SQLITE_OK
){
8980 pCur
->apPage
[0] = pPage
;
8981 pCur
->pPage
= pCur
->apPage
[1];
8982 assert( pCur
->pPage
->nOverflow
);
8987 }else if( sqlite3PagerPageRefcount(pPage
->pDbPage
)>1 ){
8988 /* The page being written is not a root page, and there is currently
8989 ** more than one reference to it. This only happens if the page is one
8990 ** of its own ancestor pages. Corruption. */
8991 rc
= SQLITE_CORRUPT_BKPT
;
8993 MemPage
* const pParent
= pCur
->apPage
[iPage
-1];
8994 int const iIdx
= pCur
->aiIdx
[iPage
-1];
8996 rc
= sqlite3PagerWrite(pParent
->pDbPage
);
8997 if( rc
==SQLITE_OK
&& pParent
->nFree
<0 ){
8998 rc
= btreeComputeFreeSpace(pParent
);
9000 if( rc
==SQLITE_OK
){
9001 #ifndef SQLITE_OMIT_QUICKBALANCE
9002 if( pPage
->intKeyLeaf
9003 && pPage
->nOverflow
==1
9004 && pPage
->aiOvfl
[0]==pPage
->nCell
9006 && pParent
->nCell
==iIdx
9008 /* Call balance_quick() to create a new sibling of pPage on which
9009 ** to store the overflow cell. balance_quick() inserts a new cell
9010 ** into pParent, which may cause pParent overflow. If this
9011 ** happens, the next iteration of the do-loop will balance pParent
9012 ** use either balance_nonroot() or balance_deeper(). Until this
9013 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
9016 ** The purpose of the following assert() is to check that only a
9017 ** single call to balance_quick() is made for each call to this
9018 ** function. If this were not verified, a subtle bug involving reuse
9019 ** of the aBalanceQuickSpace[] might sneak in.
9021 assert( balance_quick_called
==0 );
9022 VVA_ONLY( balance_quick_called
++ );
9023 rc
= balance_quick(pParent
, pPage
, aBalanceQuickSpace
);
9027 /* In this case, call balance_nonroot() to redistribute cells
9028 ** between pPage and up to 2 of its sibling pages. This involves
9029 ** modifying the contents of pParent, which may cause pParent to
9030 ** become overfull or underfull. The next iteration of the do-loop
9031 ** will balance the parent page to correct this.
9033 ** If the parent page becomes overfull, the overflow cell or cells
9034 ** are stored in the pSpace buffer allocated immediately below.
9035 ** A subsequent iteration of the do-loop will deal with this by
9036 ** calling balance_nonroot() (balance_deeper() may be called first,
9037 ** but it doesn't deal with overflow cells - just moves them to a
9038 ** different page). Once this subsequent call to balance_nonroot()
9039 ** has completed, it is safe to release the pSpace buffer used by
9040 ** the previous call, as the overflow cell data will have been
9041 ** copied either into the body of a database page or into the new
9042 ** pSpace buffer passed to the latter call to balance_nonroot().
9044 u8
*pSpace
= sqlite3PageMalloc(pCur
->pBt
->pageSize
);
9045 rc
= balance_nonroot(pParent
, iIdx
, pSpace
, iPage
==1,
9046 pCur
->hints
&BTREE_BULKLOAD
);
9048 /* If pFree is not NULL, it points to the pSpace buffer used
9049 ** by a previous call to balance_nonroot(). Its contents are
9050 ** now stored either on real database pages or within the
9051 ** new pSpace buffer, so it may be safely freed here. */
9052 sqlite3PageFree(pFree
);
9055 /* The pSpace buffer will be freed after the next call to
9056 ** balance_nonroot(), or just before this function returns, whichever
9062 pPage
->nOverflow
= 0;
9064 /* The next iteration of the do-loop balances the parent page. */
9067 assert( pCur
->iPage
>=0 );
9068 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
9070 }while( rc
==SQLITE_OK
);
9073 sqlite3PageFree(pFree
);
9078 /* Overwrite content from pX into pDest. Only do the write if the
9079 ** content is different from what is already there.
9081 static int btreeOverwriteContent(
9082 MemPage
*pPage
, /* MemPage on which writing will occur */
9083 u8
*pDest
, /* Pointer to the place to start writing */
9084 const BtreePayload
*pX
, /* Source of data to write */
9085 int iOffset
, /* Offset of first byte to write */
9086 int iAmt
/* Number of bytes to be written */
9088 int nData
= pX
->nData
- iOffset
;
9090 /* Overwriting with zeros */
9092 for(i
=0; i
<iAmt
&& pDest
[i
]==0; i
++){}
9094 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9096 memset(pDest
+ i
, 0, iAmt
- i
);
9100 /* Mixed read data and zeros at the end. Make a recursive call
9101 ** to write the zeros then fall through to write the real data */
9102 int rc
= btreeOverwriteContent(pPage
, pDest
+nData
, pX
, iOffset
+nData
,
9107 if( memcmp(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
)!=0 ){
9108 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9110 /* In a corrupt database, it is possible for the source and destination
9111 ** buffers to overlap. This is harmless since the database is already
9112 ** corrupt but it does cause valgrind and ASAN warnings. So use
9114 memmove(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
);
9121 ** Overwrite the cell that cursor pCur is pointing to with fresh content
9122 ** contained in pX. In this variant, pCur is pointing to an overflow
9125 static SQLITE_NOINLINE
int btreeOverwriteOverflowCell(
9126 BtCursor
*pCur
, /* Cursor pointing to cell to overwrite */
9127 const BtreePayload
*pX
/* Content to write into the cell */
9129 int iOffset
; /* Next byte of pX->pData to write */
9130 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
9131 int rc
; /* Return code */
9132 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
9133 BtShared
*pBt
; /* Btree */
9134 Pgno ovflPgno
; /* Next overflow page to write */
9135 u32 ovflPageSize
; /* Size to write on overflow page */
9137 assert( pCur
->info
.nLocal
<nTotal
); /* pCur is an overflow cell */
9139 /* Overwrite the local portion first */
9140 rc
= btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
9141 0, pCur
->info
.nLocal
);
9144 /* Now overwrite the overflow pages */
9145 iOffset
= pCur
->info
.nLocal
;
9146 assert( nTotal
>=0 );
9147 assert( iOffset
>=0 );
9148 ovflPgno
= get4byte(pCur
->info
.pPayload
+ iOffset
);
9150 ovflPageSize
= pBt
->usableSize
- 4;
9152 rc
= btreeGetPage(pBt
, ovflPgno
, &pPage
, 0);
9154 if( sqlite3PagerPageRefcount(pPage
->pDbPage
)!=1 || pPage
->isInit
){
9155 rc
= SQLITE_CORRUPT_BKPT
;
9157 if( iOffset
+ovflPageSize
<(u32
)nTotal
){
9158 ovflPgno
= get4byte(pPage
->aData
);
9160 ovflPageSize
= nTotal
- iOffset
;
9162 rc
= btreeOverwriteContent(pPage
, pPage
->aData
+4, pX
,
9163 iOffset
, ovflPageSize
);
9165 sqlite3PagerUnref(pPage
->pDbPage
);
9167 iOffset
+= ovflPageSize
;
9168 }while( iOffset
<nTotal
);
9173 ** Overwrite the cell that cursor pCur is pointing to with fresh content
9176 static int btreeOverwriteCell(BtCursor
*pCur
, const BtreePayload
*pX
){
9177 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
9178 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
9180 if( pCur
->info
.pPayload
+ pCur
->info
.nLocal
> pPage
->aDataEnd
9181 || pCur
->info
.pPayload
< pPage
->aData
+ pPage
->cellOffset
9183 return SQLITE_CORRUPT_BKPT
;
9185 if( pCur
->info
.nLocal
==nTotal
){
9186 /* The entire cell is local */
9187 return btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
9188 0, pCur
->info
.nLocal
);
9190 /* The cell contains overflow content */
9191 return btreeOverwriteOverflowCell(pCur
, pX
);
9197 ** Insert a new record into the BTree. The content of the new record
9198 ** is described by the pX object. The pCur cursor is used only to
9199 ** define what table the record should be inserted into, and is left
9200 ** pointing at a random location.
9202 ** For a table btree (used for rowid tables), only the pX.nKey value of
9203 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
9204 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
9205 ** hold the content of the row.
9207 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
9208 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
9209 ** pX.pData,nData,nZero fields must be zero.
9211 ** If the seekResult parameter is non-zero, then a successful call to
9212 ** sqlite3BtreeIndexMoveto() to seek cursor pCur to (pKey,nKey) has already
9213 ** been performed. In other words, if seekResult!=0 then the cursor
9214 ** is currently pointing to a cell that will be adjacent to the cell
9215 ** to be inserted. If seekResult<0 then pCur points to a cell that is
9216 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
9217 ** that is larger than (pKey,nKey).
9219 ** If seekResult==0, that means pCur is pointing at some unknown location.
9220 ** In that case, this routine must seek the cursor to the correct insertion
9221 ** point for (pKey,nKey) before doing the insertion. For index btrees,
9222 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
9223 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
9224 ** to decode the key.
9226 int sqlite3BtreeInsert(
9227 BtCursor
*pCur
, /* Insert data into the table of this cursor */
9228 const BtreePayload
*pX
, /* Content of the row to be inserted */
9229 int flags
, /* True if this is likely an append */
9230 int seekResult
/* Result of prior IndexMoveto() call */
9233 int loc
= seekResult
; /* -1: before desired location +1: after */
9237 Btree
*p
= pCur
->pBtree
;
9238 unsigned char *oldCell
;
9239 unsigned char *newCell
= 0;
9241 assert( (flags
& (BTREE_SAVEPOSITION
|BTREE_APPEND
|BTREE_PREFORMAT
))==flags
);
9242 assert( (flags
& BTREE_PREFORMAT
)==0 || seekResult
|| pCur
->pKeyInfo
==0 );
9244 /* Save the positions of any other cursors open on this table.
9246 ** In some cases, the call to btreeMoveto() below is a no-op. For
9247 ** example, when inserting data into a table with auto-generated integer
9248 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
9249 ** integer key to use. It then calls this function to actually insert the
9250 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
9251 ** that the cursor is already where it needs to be and returns without
9252 ** doing any work. To avoid thwarting these optimizations, it is important
9253 ** not to clear the cursor here.
9255 if( pCur
->curFlags
& BTCF_Multiple
){
9256 rc
= saveAllCursors(p
->pBt
, pCur
->pgnoRoot
, pCur
);
9258 if( loc
&& pCur
->iPage
<0 ){
9259 /* This can only happen if the schema is corrupt such that there is more
9260 ** than one table or index with the same root page as used by the cursor.
9261 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
9262 ** the schema was loaded. This cannot be asserted though, as a user might
9263 ** set the flag, load the schema, and then unset the flag. */
9264 return SQLITE_CORRUPT_BKPT
;
9268 /* Ensure that the cursor is not in the CURSOR_FAULT state and that it
9269 ** points to a valid cell.
9271 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
9272 testcase( pCur
->eState
==CURSOR_REQUIRESEEK
);
9273 testcase( pCur
->eState
==CURSOR_FAULT
);
9274 rc
= moveToRoot(pCur
);
9275 if( rc
&& rc
!=SQLITE_EMPTY
) return rc
;
9278 assert( cursorOwnsBtShared(pCur
) );
9279 assert( (pCur
->curFlags
& BTCF_WriteFlag
)!=0
9280 && p
->pBt
->inTransaction
==TRANS_WRITE
9281 && (p
->pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9282 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
9284 /* Assert that the caller has been consistent. If this cursor was opened
9285 ** expecting an index b-tree, then the caller should be inserting blob
9286 ** keys with no associated data. If the cursor was opened expecting an
9287 ** intkey table, the caller should be inserting integer keys with a
9288 ** blob of associated data. */
9289 assert( (flags
& BTREE_PREFORMAT
) || (pX
->pKey
==0)==(pCur
->pKeyInfo
==0) );
9291 if( pCur
->pKeyInfo
==0 ){
9292 assert( pX
->pKey
==0 );
9293 /* If this is an insert into a table b-tree, invalidate any incrblob
9294 ** cursors open on the row being replaced */
9295 if( p
->hasIncrblobCur
){
9296 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pX
->nKey
, 0);
9299 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9300 ** to a row with the same key as the new entry being inserted.
9303 if( flags
& BTREE_SAVEPOSITION
){
9304 assert( pCur
->curFlags
& BTCF_ValidNKey
);
9305 assert( pX
->nKey
==pCur
->info
.nKey
);
9310 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
9311 ** that the cursor is not pointing to a row to be overwritten.
9312 ** So do a complete check.
9314 if( (pCur
->curFlags
&BTCF_ValidNKey
)!=0 && pX
->nKey
==pCur
->info
.nKey
){
9315 /* The cursor is pointing to the entry that is to be
9317 assert( pX
->nData
>=0 && pX
->nZero
>=0 );
9318 if( pCur
->info
.nSize
!=0
9319 && pCur
->info
.nPayload
==(u32
)pX
->nData
+pX
->nZero
9321 /* New entry is the same size as the old. Do an overwrite */
9322 return btreeOverwriteCell(pCur
, pX
);
9326 /* The cursor is *not* pointing to the cell to be overwritten, nor
9327 ** to an adjacent cell. Move the cursor so that it is pointing either
9328 ** to the cell to be overwritten or an adjacent cell.
9330 rc
= sqlite3BtreeTableMoveto(pCur
, pX
->nKey
,
9331 (flags
& BTREE_APPEND
)!=0, &loc
);
9335 /* This is an index or a WITHOUT ROWID table */
9337 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
9338 ** to a row with the same key as the new entry being inserted.
9340 assert( (flags
& BTREE_SAVEPOSITION
)==0 || loc
==0 );
9342 /* If the cursor is not already pointing either to the cell to be
9343 ** overwritten, or if a new cell is being inserted, if the cursor is
9344 ** not pointing to an immediately adjacent cell, then move the cursor
9347 if( loc
==0 && (flags
& BTREE_SAVEPOSITION
)==0 ){
9350 r
.pKeyInfo
= pCur
->pKeyInfo
;
9352 r
.nField
= pX
->nMem
;
9355 rc
= sqlite3BtreeIndexMoveto(pCur
, &r
, &loc
);
9357 rc
= btreeMoveto(pCur
, pX
->pKey
, pX
->nKey
,
9358 (flags
& BTREE_APPEND
)!=0, &loc
);
9363 /* If the cursor is currently pointing to an entry to be overwritten
9364 ** and the new content is the same as as the old, then use the
9365 ** overwrite optimization.
9369 if( pCur
->info
.nKey
==pX
->nKey
){
9371 x2
.pData
= pX
->pKey
;
9372 x2
.nData
= pX
->nKey
;
9374 return btreeOverwriteCell(pCur
, &x2
);
9378 assert( pCur
->eState
==CURSOR_VALID
9379 || (pCur
->eState
==CURSOR_INVALID
&& loc
) || CORRUPT_DB
);
9381 pPage
= pCur
->pPage
;
9382 assert( pPage
->intKey
|| pX
->nKey
>=0 || (flags
& BTREE_PREFORMAT
) );
9383 assert( pPage
->leaf
|| !pPage
->intKey
);
9384 if( pPage
->nFree
<0 ){
9385 if( NEVER(pCur
->eState
>CURSOR_INVALID
) ){
9386 /* ^^^^^--- due to the moveToRoot() call above */
9387 rc
= SQLITE_CORRUPT_BKPT
;
9389 rc
= btreeComputeFreeSpace(pPage
);
9394 TRACE(("INSERT: table=%u nkey=%lld ndata=%u page=%u %s\n",
9395 pCur
->pgnoRoot
, pX
->nKey
, pX
->nData
, pPage
->pgno
,
9396 loc
==0 ? "overwrite" : "new entry"));
9397 assert( pPage
->isInit
|| CORRUPT_DB
);
9398 newCell
= p
->pBt
->pTmpSpace
;
9399 assert( newCell
!=0 );
9400 assert( BTREE_PREFORMAT
==OPFLAG_PREFORMAT
);
9401 if( flags
& BTREE_PREFORMAT
){
9403 szNew
= p
->pBt
->nPreformatSize
;
9404 if( szNew
<4 ) szNew
= 4;
9405 if( ISAUTOVACUUM(p
->pBt
) && szNew
>pPage
->maxLocal
){
9407 pPage
->xParseCell(pPage
, newCell
, &info
);
9408 if( info
.nPayload
!=info
.nLocal
){
9409 Pgno ovfl
= get4byte(&newCell
[szNew
-4]);
9410 ptrmapPut(p
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, &rc
);
9411 if( NEVER(rc
) ) goto end_insert
;
9415 rc
= fillInCell(pPage
, newCell
, pX
, &szNew
);
9416 if( rc
) goto end_insert
;
9418 assert( szNew
==pPage
->xCellSize(pPage
, newCell
) );
9419 assert( szNew
<= MX_CELL_SIZE(p
->pBt
) );
9421 pCur
->info
.nSize
= 0;
9425 if( idx
>=pPage
->nCell
){
9426 return SQLITE_CORRUPT_BKPT
;
9428 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9432 oldCell
= findCell(pPage
, idx
);
9434 memcpy(newCell
, oldCell
, 4);
9436 BTREE_CLEAR_CELL(rc
, pPage
, oldCell
, info
);
9437 testcase( pCur
->curFlags
& BTCF_ValidOvfl
);
9438 invalidateOverflowCache(pCur
);
9439 if( info
.nSize
==szNew
&& info
.nLocal
==info
.nPayload
9440 && (!ISAUTOVACUUM(p
->pBt
) || szNew
<pPage
->minLocal
)
9442 /* Overwrite the old cell with the new if they are the same size.
9443 ** We could also try to do this if the old cell is smaller, then add
9444 ** the leftover space to the free list. But experiments show that
9445 ** doing that is no faster then skipping this optimization and just
9446 ** calling dropCell() and insertCell().
9448 ** This optimization cannot be used on an autovacuum database if the
9449 ** new entry uses overflow pages, as the insertCell() call below is
9450 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
9451 assert( rc
==SQLITE_OK
); /* clearCell never fails when nLocal==nPayload */
9452 if( oldCell
< pPage
->aData
+pPage
->hdrOffset
+10 ){
9453 return SQLITE_CORRUPT_BKPT
;
9455 if( oldCell
+szNew
> pPage
->aDataEnd
){
9456 return SQLITE_CORRUPT_BKPT
;
9458 memcpy(oldCell
, newCell
, szNew
);
9461 dropCell(pPage
, idx
, info
.nSize
, &rc
);
9462 if( rc
) goto end_insert
;
9463 }else if( loc
<0 && pPage
->nCell
>0 ){
9464 assert( pPage
->leaf
);
9466 pCur
->curFlags
&= ~BTCF_ValidNKey
;
9468 assert( pPage
->leaf
);
9470 rc
= insertCellFast(pPage
, idx
, newCell
, szNew
);
9471 assert( pPage
->nOverflow
==0 || rc
==SQLITE_OK
);
9472 assert( rc
!=SQLITE_OK
|| pPage
->nCell
>0 || pPage
->nOverflow
>0 );
9474 /* If no error has occurred and pPage has an overflow cell, call balance()
9475 ** to redistribute the cells within the tree. Since balance() may move
9476 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
9479 ** Previous versions of SQLite called moveToRoot() to move the cursor
9480 ** back to the root page as balance() used to invalidate the contents
9481 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
9482 ** set the cursor state to "invalid". This makes common insert operations
9485 ** There is a subtle but important optimization here too. When inserting
9486 ** multiple records into an intkey b-tree using a single cursor (as can
9487 ** happen while processing an "INSERT INTO ... SELECT" statement), it
9488 ** is advantageous to leave the cursor pointing to the last entry in
9489 ** the b-tree if possible. If the cursor is left pointing to the last
9490 ** entry in the table, and the next row inserted has an integer key
9491 ** larger than the largest existing key, it is possible to insert the
9492 ** row without seeking the cursor. This can be a big performance boost.
9494 if( pPage
->nOverflow
){
9495 assert( rc
==SQLITE_OK
);
9496 pCur
->curFlags
&= ~(BTCF_ValidNKey
);
9499 /* Must make sure nOverflow is reset to zero even if the balance()
9500 ** fails. Internal data structure corruption will result otherwise.
9501 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
9502 ** from trying to save the current position of the cursor. */
9503 pCur
->pPage
->nOverflow
= 0;
9504 pCur
->eState
= CURSOR_INVALID
;
9505 if( (flags
& BTREE_SAVEPOSITION
) && rc
==SQLITE_OK
){
9506 btreeReleaseAllCursorPages(pCur
);
9507 if( pCur
->pKeyInfo
){
9508 assert( pCur
->pKey
==0 );
9509 pCur
->pKey
= sqlite3Malloc( pX
->nKey
);
9510 if( pCur
->pKey
==0 ){
9513 memcpy(pCur
->pKey
, pX
->pKey
, pX
->nKey
);
9516 pCur
->eState
= CURSOR_REQUIRESEEK
;
9517 pCur
->nKey
= pX
->nKey
;
9520 assert( pCur
->iPage
<0 || pCur
->pPage
->nOverflow
==0 );
9527 ** This function is used as part of copying the current row from cursor
9528 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
9529 ** parameter iKey is used as the rowid value when the record is copied
9530 ** into pDest. Otherwise, the record is copied verbatim.
9532 ** This function does not actually write the new value to cursor pDest.
9533 ** Instead, it creates and populates any required overflow pages and
9534 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9535 ** for the destination database. The size of the cell, in bytes, is left
9536 ** in BtShared.nPreformatSize. The caller completes the insertion by
9537 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9539 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9541 int sqlite3BtreeTransferRow(BtCursor
*pDest
, BtCursor
*pSrc
, i64 iKey
){
9542 BtShared
*pBt
= pDest
->pBt
;
9543 u8
*aOut
= pBt
->pTmpSpace
; /* Pointer to next output buffer */
9544 const u8
*aIn
; /* Pointer to next input buffer */
9545 u32 nIn
; /* Size of input buffer aIn[] */
9546 u32 nRem
; /* Bytes of data still to copy */
9549 if( pSrc
->info
.nPayload
<0x80 ){
9550 *(aOut
++) = pSrc
->info
.nPayload
;
9552 aOut
+= sqlite3PutVarint(aOut
, pSrc
->info
.nPayload
);
9554 if( pDest
->pKeyInfo
==0 ) aOut
+= putVarint(aOut
, iKey
);
9555 nIn
= pSrc
->info
.nLocal
;
9556 aIn
= pSrc
->info
.pPayload
;
9557 if( aIn
+nIn
>pSrc
->pPage
->aDataEnd
){
9558 return SQLITE_CORRUPT_BKPT
;
9560 nRem
= pSrc
->info
.nPayload
;
9561 if( nIn
==nRem
&& nIn
<pDest
->pPage
->maxLocal
){
9562 memcpy(aOut
, aIn
, nIn
);
9563 pBt
->nPreformatSize
= nIn
+ (aOut
- pBt
->pTmpSpace
);
9567 Pager
*pSrcPager
= pSrc
->pBt
->pPager
;
9570 DbPage
*pPageIn
= 0;
9571 MemPage
*pPageOut
= 0;
9572 u32 nOut
; /* Size of output buffer aOut[] */
9574 nOut
= btreePayloadToLocal(pDest
->pPage
, pSrc
->info
.nPayload
);
9575 pBt
->nPreformatSize
= nOut
+ (aOut
- pBt
->pTmpSpace
);
9576 if( nOut
<pSrc
->info
.nPayload
){
9577 pPgnoOut
= &aOut
[nOut
];
9578 pBt
->nPreformatSize
+= 4;
9582 if( aIn
+nIn
+4>pSrc
->pPage
->aDataEnd
){
9583 return SQLITE_CORRUPT_BKPT
;
9585 ovflIn
= get4byte(&pSrc
->info
.pPayload
[nIn
]);
9593 int nCopy
= MIN(nOut
, nIn
);
9594 memcpy(aOut
, aIn
, nCopy
);
9601 sqlite3PagerUnref(pPageIn
);
9603 rc
= sqlite3PagerGet(pSrcPager
, ovflIn
, &pPageIn
, PAGER_GET_READONLY
);
9604 if( rc
==SQLITE_OK
){
9605 aIn
= (const u8
*)sqlite3PagerGetData(pPageIn
);
9606 ovflIn
= get4byte(aIn
);
9608 nIn
= pSrc
->pBt
->usableSize
- 4;
9611 }while( rc
==SQLITE_OK
&& nOut
>0 );
9613 if( rc
==SQLITE_OK
&& nRem
>0 && ALWAYS(pPgnoOut
) ){
9616 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
9617 put4byte(pPgnoOut
, pgnoNew
);
9618 if( ISAUTOVACUUM(pBt
) && pPageOut
){
9619 ptrmapPut(pBt
, pgnoNew
, PTRMAP_OVERFLOW2
, pPageOut
->pgno
, &rc
);
9621 releasePage(pPageOut
);
9624 pPgnoOut
= pPageOut
->aData
;
9625 put4byte(pPgnoOut
, 0);
9626 aOut
= &pPgnoOut
[4];
9627 nOut
= MIN(pBt
->usableSize
- 4, nRem
);
9630 }while( nRem
>0 && rc
==SQLITE_OK
);
9632 releasePage(pPageOut
);
9633 sqlite3PagerUnref(pPageIn
);
9639 ** Delete the entry that the cursor is pointing to.
9641 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9642 ** the cursor is left pointing at an arbitrary location after the delete.
9643 ** But if that bit is set, then the cursor is left in a state such that
9644 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9645 ** as it would have been on if the call to BtreeDelete() had been omitted.
9647 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9648 ** associated with a single table entry and its indexes. Only one of those
9649 ** deletes is considered the "primary" delete. The primary delete occurs
9650 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9651 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9652 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9653 ** but which might be used by alternative storage engines.
9655 int sqlite3BtreeDelete(BtCursor
*pCur
, u8 flags
){
9656 Btree
*p
= pCur
->pBtree
;
9657 BtShared
*pBt
= p
->pBt
;
9658 int rc
; /* Return code */
9659 MemPage
*pPage
; /* Page to delete cell from */
9660 unsigned char *pCell
; /* Pointer to cell to delete */
9661 int iCellIdx
; /* Index of cell to delete */
9662 int iCellDepth
; /* Depth of node containing pCell */
9663 CellInfo info
; /* Size of the cell being deleted */
9664 u8 bPreserve
; /* Keep cursor valid. 2 for CURSOR_SKIPNEXT */
9666 assert( cursorOwnsBtShared(pCur
) );
9667 assert( pBt
->inTransaction
==TRANS_WRITE
);
9668 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9669 assert( pCur
->curFlags
& BTCF_WriteFlag
);
9670 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
9671 assert( !hasReadConflicts(p
, pCur
->pgnoRoot
) );
9672 assert( (flags
& ~(BTREE_SAVEPOSITION
| BTREE_AUXDELETE
))==0 );
9673 if( pCur
->eState
!=CURSOR_VALID
){
9674 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
9675 rc
= btreeRestoreCursorPosition(pCur
);
9676 assert( rc
!=SQLITE_OK
|| CORRUPT_DB
|| pCur
->eState
==CURSOR_VALID
);
9677 if( rc
|| pCur
->eState
!=CURSOR_VALID
) return rc
;
9679 return SQLITE_CORRUPT_BKPT
;
9682 assert( pCur
->eState
==CURSOR_VALID
);
9684 iCellDepth
= pCur
->iPage
;
9685 iCellIdx
= pCur
->ix
;
9686 pPage
= pCur
->pPage
;
9687 if( pPage
->nCell
<=iCellIdx
){
9688 return SQLITE_CORRUPT_BKPT
;
9690 pCell
= findCell(pPage
, iCellIdx
);
9691 if( pPage
->nFree
<0 && btreeComputeFreeSpace(pPage
) ){
9692 return SQLITE_CORRUPT_BKPT
;
9694 if( pCell
<&pPage
->aCellIdx
[pPage
->nCell
] ){
9695 return SQLITE_CORRUPT_BKPT
;
9698 /* If the BTREE_SAVEPOSITION bit is on, then the cursor position must
9699 ** be preserved following this delete operation. If the current delete
9700 ** will cause a b-tree rebalance, then this is done by saving the cursor
9701 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9704 ** If the current delete will not cause a rebalance, then the cursor
9705 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9706 ** before or after the deleted entry.
9708 ** The bPreserve value records which path is required:
9710 ** bPreserve==0 Not necessary to save the cursor position
9711 ** bPreserve==1 Use CURSOR_REQUIRESEEK to save the cursor position
9712 ** bPreserve==2 Cursor won't move. Set CURSOR_SKIPNEXT.
9714 bPreserve
= (flags
& BTREE_SAVEPOSITION
)!=0;
9717 || (pPage
->nFree
+pPage
->xCellSize(pPage
,pCell
)+2) >
9718 (int)(pBt
->usableSize
*2/3)
9719 || pPage
->nCell
==1 /* See dbfuzz001.test for a test case */
9721 /* A b-tree rebalance will be required after deleting this entry.
9722 ** Save the cursor key. */
9723 rc
= saveCursorKey(pCur
);
9730 /* If the page containing the entry to delete is not a leaf page, move
9731 ** the cursor to the largest entry in the tree that is smaller than
9732 ** the entry being deleted. This cell will replace the cell being deleted
9733 ** from the internal node. The 'previous' entry is used for this instead
9734 ** of the 'next' entry, as the previous entry is always a part of the
9735 ** sub-tree headed by the child page of the cell being deleted. This makes
9736 ** balancing the tree following the delete operation easier. */
9738 rc
= sqlite3BtreePrevious(pCur
, 0);
9739 assert( rc
!=SQLITE_DONE
);
9743 /* Save the positions of any other cursors open on this table before
9744 ** making any modifications. */
9745 if( pCur
->curFlags
& BTCF_Multiple
){
9746 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
9750 /* If this is a delete operation to remove a row from a table b-tree,
9751 ** invalidate any incrblob cursors open on the row being deleted. */
9752 if( pCur
->pKeyInfo
==0 && p
->hasIncrblobCur
){
9753 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pCur
->info
.nKey
, 0);
9756 /* Make the page containing the entry to be deleted writable. Then free any
9757 ** overflow pages associated with the entry and finally remove the cell
9758 ** itself from within the page. */
9759 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9761 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
9762 dropCell(pPage
, iCellIdx
, info
.nSize
, &rc
);
9765 /* If the cell deleted was not located on a leaf page, then the cursor
9766 ** is currently pointing to the largest entry in the sub-tree headed
9767 ** by the child-page of the cell that was just deleted from an internal
9768 ** node. The cell from the leaf node needs to be moved to the internal
9769 ** node to replace the deleted cell. */
9771 MemPage
*pLeaf
= pCur
->pPage
;
9774 unsigned char *pTmp
;
9776 if( pLeaf
->nFree
<0 ){
9777 rc
= btreeComputeFreeSpace(pLeaf
);
9780 if( iCellDepth
<pCur
->iPage
-1 ){
9781 n
= pCur
->apPage
[iCellDepth
+1]->pgno
;
9783 n
= pCur
->pPage
->pgno
;
9785 pCell
= findCell(pLeaf
, pLeaf
->nCell
-1);
9786 if( pCell
<&pLeaf
->aData
[4] ) return SQLITE_CORRUPT_BKPT
;
9787 nCell
= pLeaf
->xCellSize(pLeaf
, pCell
);
9788 assert( MX_CELL_SIZE(pBt
) >= nCell
);
9789 pTmp
= pBt
->pTmpSpace
;
9791 rc
= sqlite3PagerWrite(pLeaf
->pDbPage
);
9792 if( rc
==SQLITE_OK
){
9793 rc
= insertCell(pPage
, iCellIdx
, pCell
-4, nCell
+4, pTmp
, n
);
9795 dropCell(pLeaf
, pLeaf
->nCell
-1, nCell
, &rc
);
9799 /* Balance the tree. If the entry deleted was located on a leaf page,
9800 ** then the cursor still points to that page. In this case the first
9801 ** call to balance() repairs the tree, and the if(...) condition is
9804 ** Otherwise, if the entry deleted was on an internal node page, then
9805 ** pCur is pointing to the leaf page from which a cell was removed to
9806 ** replace the cell deleted from the internal node. This is slightly
9807 ** tricky as the leaf node may be underfull, and the internal node may
9808 ** be either under or overfull. In this case run the balancing algorithm
9809 ** on the leaf node first. If the balance proceeds far enough up the
9810 ** tree that we can be sure that any problem in the internal node has
9811 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9812 ** walk the cursor up the tree to the internal node and balance it as
9814 assert( pCur
->pPage
->nOverflow
==0 );
9815 assert( pCur
->pPage
->nFree
>=0 );
9816 if( pCur
->pPage
->nFree
*3<=(int)pCur
->pBt
->usableSize
*2 ){
9817 /* Optimization: If the free space is less than 2/3rds of the page,
9818 ** then balance() will always be a no-op. No need to invoke it. */
9823 if( rc
==SQLITE_OK
&& pCur
->iPage
>iCellDepth
){
9824 releasePageNotNull(pCur
->pPage
);
9826 while( pCur
->iPage
>iCellDepth
){
9827 releasePage(pCur
->apPage
[pCur
->iPage
--]);
9829 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
9833 if( rc
==SQLITE_OK
){
9835 assert( (pCur
->iPage
==iCellDepth
|| CORRUPT_DB
) );
9836 assert( pPage
==pCur
->pPage
|| CORRUPT_DB
);
9837 assert( (pPage
->nCell
>0 || CORRUPT_DB
) && iCellIdx
<=pPage
->nCell
);
9838 pCur
->eState
= CURSOR_SKIPNEXT
;
9839 if( iCellIdx
>=pPage
->nCell
){
9840 pCur
->skipNext
= -1;
9841 pCur
->ix
= pPage
->nCell
-1;
9846 rc
= moveToRoot(pCur
);
9848 btreeReleaseAllCursorPages(pCur
);
9849 pCur
->eState
= CURSOR_REQUIRESEEK
;
9851 if( rc
==SQLITE_EMPTY
) rc
= SQLITE_OK
;
9858 ** Create a new BTree table. Write into *piTable the page
9859 ** number for the root page of the new table.
9861 ** The type of type is determined by the flags parameter. Only the
9862 ** following values of flags are currently in use. Other values for
9863 ** flags might not work:
9865 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9866 ** BTREE_ZERODATA Used for SQL indices
9868 static int btreeCreateTable(Btree
*p
, Pgno
*piTable
, int createTabFlags
){
9869 BtShared
*pBt
= p
->pBt
;
9873 int ptfFlags
; /* Page-type flags for the root page of new table */
9875 assert( sqlite3BtreeHoldsMutex(p
) );
9876 assert( pBt
->inTransaction
==TRANS_WRITE
);
9877 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9879 #ifdef SQLITE_OMIT_AUTOVACUUM
9880 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9885 if( pBt
->autoVacuum
){
9886 Pgno pgnoMove
; /* Move a page here to make room for the root-page */
9887 MemPage
*pPageMove
; /* The page to move to. */
9889 /* Creating a new table may probably require moving an existing database
9890 ** to make room for the new tables root page. In case this page turns
9891 ** out to be an overflow page, delete all overflow page-map caches
9892 ** held by open cursors.
9894 invalidateAllOverflowCache(pBt
);
9896 /* Read the value of meta[3] from the database to determine where the
9897 ** root page of the new table should go. meta[3] is the largest root-page
9898 ** created so far, so the new root-page is (meta[3]+1).
9900 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &pgnoRoot
);
9901 if( pgnoRoot
>btreePagecount(pBt
) ){
9902 return SQLITE_CORRUPT_BKPT
;
9906 /* The new root-page may not be allocated on a pointer-map page, or the
9907 ** PENDING_BYTE page.
9909 while( pgnoRoot
==PTRMAP_PAGENO(pBt
, pgnoRoot
) ||
9910 pgnoRoot
==PENDING_BYTE_PAGE(pBt
) ){
9913 assert( pgnoRoot
>=3 );
9915 /* Allocate a page. The page that currently resides at pgnoRoot will
9916 ** be moved to the allocated page (unless the allocated page happens
9917 ** to reside at pgnoRoot).
9919 rc
= allocateBtreePage(pBt
, &pPageMove
, &pgnoMove
, pgnoRoot
, BTALLOC_EXACT
);
9920 if( rc
!=SQLITE_OK
){
9924 if( pgnoMove
!=pgnoRoot
){
9925 /* pgnoRoot is the page that will be used for the root-page of
9926 ** the new table (assuming an error did not occur). But we were
9927 ** allocated pgnoMove. If required (i.e. if it was not allocated
9928 ** by extending the file), the current page at position pgnoMove
9929 ** is already journaled.
9934 /* Save the positions of any open cursors. This is required in
9935 ** case they are holding a reference to an xFetch reference
9936 ** corresponding to page pgnoRoot. */
9937 rc
= saveAllCursors(pBt
, 0, 0);
9938 releasePage(pPageMove
);
9939 if( rc
!=SQLITE_OK
){
9943 /* Move the page currently at pgnoRoot to pgnoMove. */
9944 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9945 if( rc
!=SQLITE_OK
){
9948 rc
= ptrmapGet(pBt
, pgnoRoot
, &eType
, &iPtrPage
);
9949 if( eType
==PTRMAP_ROOTPAGE
|| eType
==PTRMAP_FREEPAGE
){
9950 rc
= SQLITE_CORRUPT_BKPT
;
9952 if( rc
!=SQLITE_OK
){
9956 assert( eType
!=PTRMAP_ROOTPAGE
);
9957 assert( eType
!=PTRMAP_FREEPAGE
);
9958 rc
= relocatePage(pBt
, pRoot
, eType
, iPtrPage
, pgnoMove
, 0);
9961 /* Obtain the page at pgnoRoot */
9962 if( rc
!=SQLITE_OK
){
9965 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9966 if( rc
!=SQLITE_OK
){
9969 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
9970 if( rc
!=SQLITE_OK
){
9978 /* Update the pointer-map and meta-data with the new root-page number. */
9979 ptrmapPut(pBt
, pgnoRoot
, PTRMAP_ROOTPAGE
, 0, &rc
);
9985 /* When the new root page was allocated, page 1 was made writable in
9986 ** order either to increase the database filesize, or to decrement the
9987 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9989 assert( sqlite3PagerIswriteable(pBt
->pPage1
->pDbPage
) );
9990 rc
= sqlite3BtreeUpdateMeta(p
, 4, pgnoRoot
);
9997 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
10001 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
10002 if( createTabFlags
& BTREE_INTKEY
){
10003 ptfFlags
= PTF_INTKEY
| PTF_LEAFDATA
| PTF_LEAF
;
10005 ptfFlags
= PTF_ZERODATA
| PTF_LEAF
;
10007 zeroPage(pRoot
, ptfFlags
);
10008 sqlite3PagerUnref(pRoot
->pDbPage
);
10009 assert( (pBt
->openFlags
& BTREE_SINGLE
)==0 || pgnoRoot
==2 );
10010 *piTable
= pgnoRoot
;
10013 int sqlite3BtreeCreateTable(Btree
*p
, Pgno
*piTable
, int flags
){
10015 sqlite3BtreeEnter(p
);
10016 rc
= btreeCreateTable(p
, piTable
, flags
);
10017 sqlite3BtreeLeave(p
);
10022 ** Erase the given database page and all its children. Return
10023 ** the page to the freelist.
10025 static int clearDatabasePage(
10026 BtShared
*pBt
, /* The BTree that contains the table */
10027 Pgno pgno
, /* Page number to clear */
10028 int freePageFlag
, /* Deallocate page if true */
10029 i64
*pnChange
/* Add number of Cells freed to this counter */
10033 unsigned char *pCell
;
10038 assert( sqlite3_mutex_held(pBt
->mutex
) );
10039 if( pgno
>btreePagecount(pBt
) ){
10040 return SQLITE_CORRUPT_BKPT
;
10042 rc
= getAndInitPage(pBt
, pgno
, &pPage
, 0);
10043 if( rc
) return rc
;
10044 if( (pBt
->openFlags
& BTREE_SINGLE
)==0
10045 && sqlite3PagerPageRefcount(pPage
->pDbPage
) != (1 + (pgno
==1))
10047 rc
= SQLITE_CORRUPT_BKPT
;
10048 goto cleardatabasepage_out
;
10050 hdr
= pPage
->hdrOffset
;
10051 for(i
=0; i
<pPage
->nCell
; i
++){
10052 pCell
= findCell(pPage
, i
);
10053 if( !pPage
->leaf
){
10054 rc
= clearDatabasePage(pBt
, get4byte(pCell
), 1, pnChange
);
10055 if( rc
) goto cleardatabasepage_out
;
10057 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
10058 if( rc
) goto cleardatabasepage_out
;
10060 if( !pPage
->leaf
){
10061 rc
= clearDatabasePage(pBt
, get4byte(&pPage
->aData
[hdr
+8]), 1, pnChange
);
10062 if( rc
) goto cleardatabasepage_out
;
10063 if( pPage
->intKey
) pnChange
= 0;
10066 testcase( !pPage
->intKey
);
10067 *pnChange
+= pPage
->nCell
;
10069 if( freePageFlag
){
10070 freePage(pPage
, &rc
);
10071 }else if( (rc
= sqlite3PagerWrite(pPage
->pDbPage
))==0 ){
10072 zeroPage(pPage
, pPage
->aData
[hdr
] | PTF_LEAF
);
10075 cleardatabasepage_out
:
10076 releasePage(pPage
);
10081 ** Delete all information from a single table in the database. iTable is
10082 ** the page number of the root of the table. After this routine returns,
10083 ** the root page is empty, but still exists.
10085 ** This routine will fail with SQLITE_LOCKED if there are any open
10086 ** read cursors on the table. Open write cursors are moved to the
10087 ** root of the table.
10089 ** If pnChange is not NULL, then the integer value pointed to by pnChange
10090 ** is incremented by the number of entries in the table.
10092 int sqlite3BtreeClearTable(Btree
*p
, int iTable
, i64
*pnChange
){
10094 BtShared
*pBt
= p
->pBt
;
10095 sqlite3BtreeEnter(p
);
10096 assert( p
->inTrans
==TRANS_WRITE
);
10098 rc
= saveAllCursors(pBt
, (Pgno
)iTable
, 0);
10100 if( SQLITE_OK
==rc
){
10101 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
10102 ** is the root of a table b-tree - if it is not, the following call is
10104 if( p
->hasIncrblobCur
){
10105 invalidateIncrblobCursors(p
, (Pgno
)iTable
, 0, 1);
10107 rc
= clearDatabasePage(pBt
, (Pgno
)iTable
, 0, pnChange
);
10109 sqlite3BtreeLeave(p
);
10114 ** Delete all information from the single table that pCur is open on.
10116 ** This routine only work for pCur on an ephemeral table.
10118 int sqlite3BtreeClearTableOfCursor(BtCursor
*pCur
){
10119 return sqlite3BtreeClearTable(pCur
->pBtree
, pCur
->pgnoRoot
, 0);
10123 ** Erase all information in a table and add the root of the table to
10124 ** the freelist. Except, the root of the principle table (the one on
10125 ** page 1) is never added to the freelist.
10127 ** This routine will fail with SQLITE_LOCKED if there are any open
10128 ** cursors on the table.
10130 ** If AUTOVACUUM is enabled and the page at iTable is not the last
10131 ** root page in the database file, then the last root page
10132 ** in the database file is moved into the slot formerly occupied by
10133 ** iTable and that last slot formerly occupied by the last root page
10134 ** is added to the freelist instead of iTable. In this say, all
10135 ** root pages are kept at the beginning of the database file, which
10136 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
10137 ** page number that used to be the last root page in the file before
10138 ** the move. If no page gets moved, *piMoved is set to 0.
10139 ** The last root page is recorded in meta[3] and the value of
10140 ** meta[3] is updated by this procedure.
10142 static int btreeDropTable(Btree
*p
, Pgno iTable
, int *piMoved
){
10144 MemPage
*pPage
= 0;
10145 BtShared
*pBt
= p
->pBt
;
10147 assert( sqlite3BtreeHoldsMutex(p
) );
10148 assert( p
->inTrans
==TRANS_WRITE
);
10149 assert( iTable
>=2 );
10150 if( iTable
>btreePagecount(pBt
) ){
10151 return SQLITE_CORRUPT_BKPT
;
10154 rc
= sqlite3BtreeClearTable(p
, iTable
, 0);
10155 if( rc
) return rc
;
10156 rc
= btreeGetPage(pBt
, (Pgno
)iTable
, &pPage
, 0);
10158 releasePage(pPage
);
10164 #ifdef SQLITE_OMIT_AUTOVACUUM
10165 freePage(pPage
, &rc
);
10166 releasePage(pPage
);
10168 if( pBt
->autoVacuum
){
10170 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &maxRootPgno
);
10172 if( iTable
==maxRootPgno
){
10173 /* If the table being dropped is the table with the largest root-page
10174 ** number in the database, put the root page on the free list.
10176 freePage(pPage
, &rc
);
10177 releasePage(pPage
);
10178 if( rc
!=SQLITE_OK
){
10182 /* The table being dropped does not have the largest root-page
10183 ** number in the database. So move the page that does into the
10184 ** gap left by the deleted root-page.
10187 releasePage(pPage
);
10188 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
10189 if( rc
!=SQLITE_OK
){
10192 rc
= relocatePage(pBt
, pMove
, PTRMAP_ROOTPAGE
, 0, iTable
, 0);
10193 releasePage(pMove
);
10194 if( rc
!=SQLITE_OK
){
10198 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
10199 freePage(pMove
, &rc
);
10200 releasePage(pMove
);
10201 if( rc
!=SQLITE_OK
){
10204 *piMoved
= maxRootPgno
;
10207 /* Set the new 'max-root-page' value in the database header. This
10208 ** is the old value less one, less one more if that happens to
10209 ** be a root-page number, less one again if that is the
10210 ** PENDING_BYTE_PAGE.
10213 while( maxRootPgno
==PENDING_BYTE_PAGE(pBt
)
10214 || PTRMAP_ISPAGE(pBt
, maxRootPgno
) ){
10217 assert( maxRootPgno
!=PENDING_BYTE_PAGE(pBt
) );
10219 rc
= sqlite3BtreeUpdateMeta(p
, 4, maxRootPgno
);
10221 freePage(pPage
, &rc
);
10222 releasePage(pPage
);
10227 int sqlite3BtreeDropTable(Btree
*p
, int iTable
, int *piMoved
){
10229 sqlite3BtreeEnter(p
);
10230 rc
= btreeDropTable(p
, iTable
, piMoved
);
10231 sqlite3BtreeLeave(p
);
10237 ** This function may only be called if the b-tree connection already
10238 ** has a read or write transaction open on the database.
10240 ** Read the meta-information out of a database file. Meta[0]
10241 ** is the number of free pages currently in the database. Meta[1]
10242 ** through meta[15] are available for use by higher layers. Meta[0]
10243 ** is read-only, the others are read/write.
10245 ** The schema layer numbers meta values differently. At the schema
10246 ** layer (and the SetCookie and ReadCookie opcodes) the number of
10247 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
10249 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
10250 ** of reading the value out of the header, it instead loads the "DataVersion"
10251 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
10252 ** database file. It is a number computed by the pager. But its access
10253 ** pattern is the same as header meta values, and so it is convenient to
10254 ** read it from this routine.
10256 void sqlite3BtreeGetMeta(Btree
*p
, int idx
, u32
*pMeta
){
10257 BtShared
*pBt
= p
->pBt
;
10259 sqlite3BtreeEnter(p
);
10260 assert( p
->inTrans
>TRANS_NONE
);
10261 assert( SQLITE_OK
==querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
) );
10262 assert( pBt
->pPage1
);
10263 assert( idx
>=0 && idx
<=15 );
10265 if( idx
==BTREE_DATA_VERSION
){
10266 *pMeta
= sqlite3PagerDataVersion(pBt
->pPager
) + p
->iBDataVersion
;
10268 *pMeta
= get4byte(&pBt
->pPage1
->aData
[36 + idx
*4]);
10271 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
10272 ** database, mark the database as read-only. */
10273 #ifdef SQLITE_OMIT_AUTOVACUUM
10274 if( idx
==BTREE_LARGEST_ROOT_PAGE
&& *pMeta
>0 ){
10275 pBt
->btsFlags
|= BTS_READ_ONLY
;
10279 sqlite3BtreeLeave(p
);
10283 ** Write meta-information back into the database. Meta[0] is
10284 ** read-only and may not be written.
10286 int sqlite3BtreeUpdateMeta(Btree
*p
, int idx
, u32 iMeta
){
10287 BtShared
*pBt
= p
->pBt
;
10288 unsigned char *pP1
;
10290 assert( idx
>=1 && idx
<=15 );
10291 sqlite3BtreeEnter(p
);
10292 assert( p
->inTrans
==TRANS_WRITE
);
10293 assert( pBt
->pPage1
!=0 );
10294 pP1
= pBt
->pPage1
->aData
;
10295 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
10296 if( rc
==SQLITE_OK
){
10297 put4byte(&pP1
[36 + idx
*4], iMeta
);
10298 #ifndef SQLITE_OMIT_AUTOVACUUM
10299 if( idx
==BTREE_INCR_VACUUM
){
10300 assert( pBt
->autoVacuum
|| iMeta
==0 );
10301 assert( iMeta
==0 || iMeta
==1 );
10302 pBt
->incrVacuum
= (u8
)iMeta
;
10306 sqlite3BtreeLeave(p
);
10311 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
10312 ** number of entries in the b-tree and write the result to *pnEntry.
10314 ** SQLITE_OK is returned if the operation is successfully executed.
10315 ** Otherwise, if an error is encountered (i.e. an IO error or database
10316 ** corruption) an SQLite error code is returned.
10318 int sqlite3BtreeCount(sqlite3
*db
, BtCursor
*pCur
, i64
*pnEntry
){
10319 i64 nEntry
= 0; /* Value to return in *pnEntry */
10320 int rc
; /* Return code */
10322 rc
= moveToRoot(pCur
);
10323 if( rc
==SQLITE_EMPTY
){
10328 /* Unless an error occurs, the following loop runs one iteration for each
10329 ** page in the B-Tree structure (not including overflow pages).
10331 while( rc
==SQLITE_OK
&& !AtomicLoad(&db
->u1
.isInterrupted
) ){
10332 int iIdx
; /* Index of child node in parent */
10333 MemPage
*pPage
; /* Current page of the b-tree */
10335 /* If this is a leaf page or the tree is not an int-key tree, then
10336 ** this page contains countable entries. Increment the entry counter
10339 pPage
= pCur
->pPage
;
10340 if( pPage
->leaf
|| !pPage
->intKey
){
10341 nEntry
+= pPage
->nCell
;
10344 /* pPage is a leaf node. This loop navigates the cursor so that it
10345 ** points to the first interior cell that it points to the parent of
10346 ** the next page in the tree that has not yet been visited. The
10347 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
10348 ** of the page, or to the number of cells in the page if the next page
10349 ** to visit is the right-child of its parent.
10351 ** If all pages in the tree have been visited, return SQLITE_OK to the
10356 if( pCur
->iPage
==0 ){
10357 /* All pages of the b-tree have been visited. Return successfully. */
10359 return moveToRoot(pCur
);
10361 moveToParent(pCur
);
10362 }while ( pCur
->ix
>=pCur
->pPage
->nCell
);
10365 pPage
= pCur
->pPage
;
10368 /* Descend to the child node of the cell that the cursor currently
10369 ** points at. This is the right-child if (iIdx==pPage->nCell).
10372 if( iIdx
==pPage
->nCell
){
10373 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
10375 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, iIdx
)));
10379 /* An error has occurred. Return an error code. */
10384 ** Return the pager associated with a BTree. This routine is used for
10385 ** testing and debugging only.
10387 Pager
*sqlite3BtreePager(Btree
*p
){
10388 return p
->pBt
->pPager
;
10391 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10393 ** Record an OOM error during integrity_check
10395 static void checkOom(IntegrityCk
*pCheck
){
10396 pCheck
->rc
= SQLITE_NOMEM
;
10397 pCheck
->mxErr
= 0; /* Causes integrity_check processing to stop */
10398 if( pCheck
->nErr
==0 ) pCheck
->nErr
++;
10402 ** Invoke the progress handler, if appropriate. Also check for an
10405 static void checkProgress(IntegrityCk
*pCheck
){
10406 sqlite3
*db
= pCheck
->db
;
10407 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
10408 pCheck
->rc
= SQLITE_INTERRUPT
;
10412 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
10413 if( db
->xProgress
){
10414 assert( db
->nProgressOps
>0 );
10416 if( (pCheck
->nStep
% db
->nProgressOps
)==0
10417 && db
->xProgress(db
->pProgressArg
)
10419 pCheck
->rc
= SQLITE_INTERRUPT
;
10428 ** Append a message to the error message string.
10430 static void checkAppendMsg(
10431 IntegrityCk
*pCheck
,
10432 const char *zFormat
,
10436 checkProgress(pCheck
);
10437 if( !pCheck
->mxErr
) return;
10440 va_start(ap
, zFormat
);
10441 if( pCheck
->errMsg
.nChar
){
10442 sqlite3_str_append(&pCheck
->errMsg
, "\n", 1);
10444 if( pCheck
->zPfx
){
10445 sqlite3_str_appendf(&pCheck
->errMsg
, pCheck
->zPfx
,
10446 pCheck
->v0
, pCheck
->v1
, pCheck
->v2
);
10448 sqlite3_str_vappendf(&pCheck
->errMsg
, zFormat
, ap
);
10450 if( pCheck
->errMsg
.accError
==SQLITE_NOMEM
){
10454 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10456 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10459 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
10460 ** corresponds to page iPg is already set.
10462 static int getPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
10463 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
10464 return (pCheck
->aPgRef
[iPg
/8] & (1 << (iPg
& 0x07)));
10468 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
10470 static void setPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
10471 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
10472 pCheck
->aPgRef
[iPg
/8] |= (1 << (iPg
& 0x07));
10477 ** Add 1 to the reference count for page iPage. If this is the second
10478 ** reference to the page, add an error message to pCheck->zErrMsg.
10479 ** Return 1 if there are 2 or more references to the page and 0 if
10480 ** if this is the first reference to the page.
10482 ** Also check that the page number is in bounds.
10484 static int checkRef(IntegrityCk
*pCheck
, Pgno iPage
){
10485 if( iPage
>pCheck
->nPage
|| iPage
==0 ){
10486 checkAppendMsg(pCheck
, "invalid page number %u", iPage
);
10489 if( getPageReferenced(pCheck
, iPage
) ){
10490 checkAppendMsg(pCheck
, "2nd reference to page %u", iPage
);
10493 setPageReferenced(pCheck
, iPage
);
10497 #ifndef SQLITE_OMIT_AUTOVACUUM
10499 ** Check that the entry in the pointer-map for page iChild maps to
10500 ** page iParent, pointer type ptrType. If not, append an error message
10503 static void checkPtrmap(
10504 IntegrityCk
*pCheck
, /* Integrity check context */
10505 Pgno iChild
, /* Child page number */
10506 u8 eType
, /* Expected pointer map type */
10507 Pgno iParent
/* Expected pointer map parent page number */
10511 Pgno iPtrmapParent
;
10513 rc
= ptrmapGet(pCheck
->pBt
, iChild
, &ePtrmapType
, &iPtrmapParent
);
10514 if( rc
!=SQLITE_OK
){
10515 if( rc
==SQLITE_NOMEM
|| rc
==SQLITE_IOERR_NOMEM
) checkOom(pCheck
);
10516 checkAppendMsg(pCheck
, "Failed to read ptrmap key=%u", iChild
);
10520 if( ePtrmapType
!=eType
|| iPtrmapParent
!=iParent
){
10521 checkAppendMsg(pCheck
,
10522 "Bad ptr map entry key=%u expected=(%u,%u) got=(%u,%u)",
10523 iChild
, eType
, iParent
, ePtrmapType
, iPtrmapParent
);
10529 ** Check the integrity of the freelist or of an overflow page list.
10530 ** Verify that the number of pages on the list is N.
10532 static void checkList(
10533 IntegrityCk
*pCheck
, /* Integrity checking context */
10534 int isFreeList
, /* True for a freelist. False for overflow page list */
10535 Pgno iPage
, /* Page number for first page in the list */
10536 u32 N
/* Expected number of pages in the list */
10540 int nErrAtStart
= pCheck
->nErr
;
10541 while( iPage
!=0 && pCheck
->mxErr
){
10543 unsigned char *pOvflData
;
10544 if( checkRef(pCheck
, iPage
) ) break;
10546 if( sqlite3PagerGet(pCheck
->pPager
, (Pgno
)iPage
, &pOvflPage
, 0) ){
10547 checkAppendMsg(pCheck
, "failed to get page %u", iPage
);
10550 pOvflData
= (unsigned char *)sqlite3PagerGetData(pOvflPage
);
10552 u32 n
= (u32
)get4byte(&pOvflData
[4]);
10553 #ifndef SQLITE_OMIT_AUTOVACUUM
10554 if( pCheck
->pBt
->autoVacuum
){
10555 checkPtrmap(pCheck
, iPage
, PTRMAP_FREEPAGE
, 0);
10558 if( n
>pCheck
->pBt
->usableSize
/4-2 ){
10559 checkAppendMsg(pCheck
,
10560 "freelist leaf count too big on page %u", iPage
);
10563 for(i
=0; i
<(int)n
; i
++){
10564 Pgno iFreePage
= get4byte(&pOvflData
[8+i
*4]);
10565 #ifndef SQLITE_OMIT_AUTOVACUUM
10566 if( pCheck
->pBt
->autoVacuum
){
10567 checkPtrmap(pCheck
, iFreePage
, PTRMAP_FREEPAGE
, 0);
10570 checkRef(pCheck
, iFreePage
);
10575 #ifndef SQLITE_OMIT_AUTOVACUUM
10577 /* If this database supports auto-vacuum and iPage is not the last
10578 ** page in this overflow list, check that the pointer-map entry for
10579 ** the following page matches iPage.
10581 if( pCheck
->pBt
->autoVacuum
&& N
>0 ){
10582 i
= get4byte(pOvflData
);
10583 checkPtrmap(pCheck
, i
, PTRMAP_OVERFLOW2
, iPage
);
10587 iPage
= get4byte(pOvflData
);
10588 sqlite3PagerUnref(pOvflPage
);
10590 if( N
&& nErrAtStart
==pCheck
->nErr
){
10591 checkAppendMsg(pCheck
,
10592 "%s is %u but should be %u",
10593 isFreeList
? "size" : "overflow list length",
10594 expected
-N
, expected
);
10597 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10600 ** An implementation of a min-heap.
10602 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
10603 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
10604 ** and aHeap[N*2+1].
10606 ** The heap property is this: Every node is less than or equal to both
10607 ** of its daughter nodes. A consequence of the heap property is that the
10608 ** root node aHeap[1] is always the minimum value currently in the heap.
10610 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10611 ** the heap, preserving the heap property. The btreeHeapPull() routine
10612 ** removes the root element from the heap (the minimum value in the heap)
10613 ** and then moves other nodes around as necessary to preserve the heap
10616 ** This heap is used for cell overlap and coverage testing. Each u32
10617 ** entry represents the span of a cell or freeblock on a btree page.
10618 ** The upper 16 bits are the index of the first byte of a range and the
10619 ** lower 16 bits are the index of the last byte of that range.
10621 static void btreeHeapInsert(u32
*aHeap
, u32 x
){
10623 assert( aHeap
!=0 );
10626 while( (j
= i
/2)>0 && aHeap
[j
]>aHeap
[i
] ){
10628 aHeap
[j
] = aHeap
[i
];
10633 static int btreeHeapPull(u32
*aHeap
, u32
*pOut
){
10635 if( (x
= aHeap
[0])==0 ) return 0;
10637 aHeap
[1] = aHeap
[x
];
10638 aHeap
[x
] = 0xffffffff;
10641 while( (j
= i
*2)<=aHeap
[0] ){
10642 if( aHeap
[j
]>aHeap
[j
+1] ) j
++;
10643 if( aHeap
[i
]<aHeap
[j
] ) break;
10645 aHeap
[i
] = aHeap
[j
];
10652 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10654 ** Do various sanity checks on a single page of a tree. Return
10655 ** the tree depth. Root pages return 0. Parents of root pages
10656 ** return 1, and so forth.
10658 ** These checks are done:
10660 ** 1. Make sure that cells and freeblocks do not overlap
10661 ** but combine to completely cover the page.
10662 ** 2. Make sure integer cell keys are in order.
10663 ** 3. Check the integrity of overflow pages.
10664 ** 4. Recursively call checkTreePage on all children.
10665 ** 5. Verify that the depth of all children is the same.
10667 static int checkTreePage(
10668 IntegrityCk
*pCheck
, /* Context for the sanity check */
10669 Pgno iPage
, /* Page number of the page to check */
10670 i64
*piMinKey
, /* Write minimum integer primary key here */
10671 i64 maxKey
/* Error if integer primary key greater than this */
10673 MemPage
*pPage
= 0; /* The page being analyzed */
10674 int i
; /* Loop counter */
10675 int rc
; /* Result code from subroutine call */
10676 int depth
= -1, d2
; /* Depth of a subtree */
10677 int pgno
; /* Page number */
10678 int nFrag
; /* Number of fragmented bytes on the page */
10679 int hdr
; /* Offset to the page header */
10680 int cellStart
; /* Offset to the start of the cell pointer array */
10681 int nCell
; /* Number of cells */
10682 int doCoverageCheck
= 1; /* True if cell coverage checking should be done */
10683 int keyCanBeEqual
= 1; /* True if IPK can be equal to maxKey
10684 ** False if IPK must be strictly less than maxKey */
10685 u8
*data
; /* Page content */
10686 u8
*pCell
; /* Cell content */
10687 u8
*pCellIdx
; /* Next element of the cell pointer array */
10688 BtShared
*pBt
; /* The BtShared object that owns pPage */
10689 u32 pc
; /* Address of a cell */
10690 u32 usableSize
; /* Usable size of the page */
10691 u32 contentOffset
; /* Offset to the start of the cell content area */
10692 u32
*heap
= 0; /* Min-heap used for checking cell coverage */
10693 u32 x
, prev
= 0; /* Next and previous entry on the min-heap */
10694 const char *saved_zPfx
= pCheck
->zPfx
;
10695 int saved_v1
= pCheck
->v1
;
10696 int saved_v2
= pCheck
->v2
;
10697 u8 savedIsInit
= 0;
10699 /* Check that the page exists
10701 checkProgress(pCheck
);
10702 if( pCheck
->mxErr
==0 ) goto end_of_check
;
10704 usableSize
= pBt
->usableSize
;
10705 if( iPage
==0 ) return 0;
10706 if( checkRef(pCheck
, iPage
) ) return 0;
10707 pCheck
->zPfx
= "Tree %u page %u: ";
10708 pCheck
->v1
= iPage
;
10709 if( (rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0 ){
10710 checkAppendMsg(pCheck
,
10711 "unable to get the page. error code=%d", rc
);
10715 /* Clear MemPage.isInit to make sure the corruption detection code in
10716 ** btreeInitPage() is executed. */
10717 savedIsInit
= pPage
->isInit
;
10719 if( (rc
= btreeInitPage(pPage
))!=0 ){
10720 assert( rc
==SQLITE_CORRUPT
); /* The only possible error from InitPage */
10721 checkAppendMsg(pCheck
,
10722 "btreeInitPage() returns error code %d", rc
);
10725 if( (rc
= btreeComputeFreeSpace(pPage
))!=0 ){
10726 assert( rc
==SQLITE_CORRUPT
);
10727 checkAppendMsg(pCheck
, "free space corruption", rc
);
10730 data
= pPage
->aData
;
10731 hdr
= pPage
->hdrOffset
;
10733 /* Set up for cell analysis */
10734 pCheck
->zPfx
= "Tree %u page %u cell %u: ";
10735 contentOffset
= get2byteNotZero(&data
[hdr
+5]);
10736 assert( contentOffset
<=usableSize
); /* Enforced by btreeInitPage() */
10738 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10739 ** number of cells on the page. */
10740 nCell
= get2byte(&data
[hdr
+3]);
10741 assert( pPage
->nCell
==nCell
);
10743 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10744 ** immediately follows the b-tree page header. */
10745 cellStart
= hdr
+ 12 - 4*pPage
->leaf
;
10746 assert( pPage
->aCellIdx
==&data
[cellStart
] );
10747 pCellIdx
= &data
[cellStart
+ 2*(nCell
-1)];
10749 if( !pPage
->leaf
){
10750 /* Analyze the right-child page of internal pages */
10751 pgno
= get4byte(&data
[hdr
+8]);
10752 #ifndef SQLITE_OMIT_AUTOVACUUM
10753 if( pBt
->autoVacuum
){
10754 pCheck
->zPfx
= "Tree %u page %u right child: ";
10755 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10758 depth
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10761 /* For leaf pages, the coverage check will occur in the same loop
10762 ** as the other cell checks, so initialize the heap. */
10763 heap
= pCheck
->heap
;
10767 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10768 ** integer offsets to the cell contents. */
10769 for(i
=nCell
-1; i
>=0 && pCheck
->mxErr
; i
--){
10772 /* Check cell size */
10774 assert( pCellIdx
==&data
[cellStart
+ i
*2] );
10775 pc
= get2byteAligned(pCellIdx
);
10777 if( pc
<contentOffset
|| pc
>usableSize
-4 ){
10778 checkAppendMsg(pCheck
, "Offset %u out of range %u..%u",
10779 pc
, contentOffset
, usableSize
-4);
10780 doCoverageCheck
= 0;
10784 pPage
->xParseCell(pPage
, pCell
, &info
);
10785 if( pc
+info
.nSize
>usableSize
){
10786 checkAppendMsg(pCheck
, "Extends off end of page");
10787 doCoverageCheck
= 0;
10791 /* Check for integer primary key out of range */
10792 if( pPage
->intKey
){
10793 if( keyCanBeEqual
? (info
.nKey
> maxKey
) : (info
.nKey
>= maxKey
) ){
10794 checkAppendMsg(pCheck
, "Rowid %lld out of order", info
.nKey
);
10796 maxKey
= info
.nKey
;
10797 keyCanBeEqual
= 0; /* Only the first key on the page may ==maxKey */
10800 /* Check the content overflow list */
10801 if( info
.nPayload
>info
.nLocal
){
10802 u32 nPage
; /* Number of pages on the overflow chain */
10803 Pgno pgnoOvfl
; /* First page of the overflow chain */
10804 assert( pc
+ info
.nSize
- 4 <= usableSize
);
10805 nPage
= (info
.nPayload
- info
.nLocal
+ usableSize
- 5)/(usableSize
- 4);
10806 pgnoOvfl
= get4byte(&pCell
[info
.nSize
- 4]);
10807 #ifndef SQLITE_OMIT_AUTOVACUUM
10808 if( pBt
->autoVacuum
){
10809 checkPtrmap(pCheck
, pgnoOvfl
, PTRMAP_OVERFLOW1
, iPage
);
10812 checkList(pCheck
, 0, pgnoOvfl
, nPage
);
10815 if( !pPage
->leaf
){
10816 /* Check sanity of left child page for internal pages */
10817 pgno
= get4byte(pCell
);
10818 #ifndef SQLITE_OMIT_AUTOVACUUM
10819 if( pBt
->autoVacuum
){
10820 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10823 d2
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10826 checkAppendMsg(pCheck
, "Child page depth differs");
10830 /* Populate the coverage-checking heap for leaf pages */
10831 btreeHeapInsert(heap
, (pc
<<16)|(pc
+info
.nSize
-1));
10834 *piMinKey
= maxKey
;
10836 /* Check for complete coverage of the page
10839 if( doCoverageCheck
&& pCheck
->mxErr
>0 ){
10840 /* For leaf pages, the min-heap has already been initialized and the
10841 ** cells have already been inserted. But for internal pages, that has
10842 ** not yet been done, so do it now */
10843 if( !pPage
->leaf
){
10844 heap
= pCheck
->heap
;
10846 for(i
=nCell
-1; i
>=0; i
--){
10848 pc
= get2byteAligned(&data
[cellStart
+i
*2]);
10849 size
= pPage
->xCellSize(pPage
, &data
[pc
]);
10850 btreeHeapInsert(heap
, (pc
<<16)|(pc
+size
-1));
10853 /* Add the freeblocks to the min-heap
10855 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10856 ** is the offset of the first freeblock, or zero if there are no
10857 ** freeblocks on the page.
10859 i
= get2byte(&data
[hdr
+1]);
10862 assert( (u32
)i
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10863 size
= get2byte(&data
[i
+2]);
10864 assert( (u32
)(i
+size
)<=usableSize
); /* due to btreeComputeFreeSpace() */
10865 btreeHeapInsert(heap
, (((u32
)i
)<<16)|(i
+size
-1));
10866 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10867 ** big-endian integer which is the offset in the b-tree page of the next
10868 ** freeblock in the chain, or zero if the freeblock is the last on the
10870 j
= get2byte(&data
[i
]);
10871 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10872 ** increasing offset. */
10873 assert( j
==0 || j
>i
+size
); /* Enforced by btreeComputeFreeSpace() */
10874 assert( (u32
)j
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10877 /* Analyze the min-heap looking for overlap between cells and/or
10878 ** freeblocks, and counting the number of untracked bytes in nFrag.
10880 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10881 ** There is an implied first entry the covers the page header, the cell
10882 ** pointer index, and the gap between the cell pointer index and the start
10883 ** of cell content.
10885 ** The loop below pulls entries from the min-heap in order and compares
10886 ** the start_address against the previous end_address. If there is an
10887 ** overlap, that means bytes are used multiple times. If there is a gap,
10888 ** that gap is added to the fragmentation count.
10891 prev
= contentOffset
- 1; /* Implied first min-heap entry */
10892 while( btreeHeapPull(heap
,&x
) ){
10893 if( (prev
&0xffff)>=(x
>>16) ){
10894 checkAppendMsg(pCheck
,
10895 "Multiple uses for byte %u of page %u", x
>>16, iPage
);
10898 nFrag
+= (x
>>16) - (prev
&0xffff) - 1;
10902 nFrag
+= usableSize
- (prev
&0xffff) - 1;
10903 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10904 ** is stored in the fifth field of the b-tree page header.
10905 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10906 ** number of fragmented free bytes within the cell content area.
10908 if( heap
[0]==0 && nFrag
!=data
[hdr
+7] ){
10909 checkAppendMsg(pCheck
,
10910 "Fragmentation of %u bytes reported as %u on page %u",
10911 nFrag
, data
[hdr
+7], iPage
);
10916 if( !doCoverageCheck
) pPage
->isInit
= savedIsInit
;
10917 releasePage(pPage
);
10918 pCheck
->zPfx
= saved_zPfx
;
10919 pCheck
->v1
= saved_v1
;
10920 pCheck
->v2
= saved_v2
;
10923 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10925 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10927 ** This routine does a complete check of the given BTree file. aRoot[] is
10928 ** an array of pages numbers were each page number is the root page of
10929 ** a table. nRoot is the number of entries in aRoot.
10931 ** A read-only or read-write transaction must be opened before calling
10934 ** Write the number of error seen in *pnErr. Except for some memory
10935 ** allocation errors, an error message held in memory obtained from
10936 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
10937 ** returned. If a memory allocation error occurs, NULL is returned.
10939 ** If the first entry in aRoot[] is 0, that indicates that the list of
10940 ** root pages is incomplete. This is a "partial integrity-check". This
10941 ** happens when performing an integrity check on a single table. The
10942 ** zero is skipped, of course. But in addition, the freelist checks
10943 ** and the checks to make sure every page is referenced are also skipped,
10944 ** since obviously it is not possible to know which pages are covered by
10945 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10946 ** checks are still performed.
10948 int sqlite3BtreeIntegrityCheck(
10949 sqlite3
*db
, /* Database connection that is running the check */
10950 Btree
*p
, /* The btree to be checked */
10951 Pgno
*aRoot
, /* An array of root pages numbers for individual trees */
10952 int nRoot
, /* Number of entries in aRoot[] */
10953 int mxErr
, /* Stop reporting errors after this many */
10954 int *pnErr
, /* OUT: Write number of errors seen to this variable */
10955 char **pzOut
/* OUT: Write the error message string here */
10958 IntegrityCk sCheck
;
10959 BtShared
*pBt
= p
->pBt
;
10960 u64 savedDbFlags
= pBt
->db
->flags
;
10962 int bPartial
= 0; /* True if not checking all btrees */
10963 int bCkFreelist
= 1; /* True to scan the freelist */
10964 VVA_ONLY( int nRef
);
10967 /* aRoot[0]==0 means this is a partial check */
10971 if( aRoot
[1]!=1 ) bCkFreelist
= 0;
10974 sqlite3BtreeEnter(p
);
10975 assert( p
->inTrans
>TRANS_NONE
&& pBt
->inTransaction
>TRANS_NONE
);
10976 VVA_ONLY( nRef
= sqlite3PagerRefcount(pBt
->pPager
) );
10978 memset(&sCheck
, 0, sizeof(sCheck
));
10981 sCheck
.pPager
= pBt
->pPager
;
10982 sCheck
.nPage
= btreePagecount(sCheck
.pBt
);
10983 sCheck
.mxErr
= mxErr
;
10984 sqlite3StrAccumInit(&sCheck
.errMsg
, 0, zErr
, sizeof(zErr
), SQLITE_MAX_LENGTH
);
10985 sCheck
.errMsg
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
10986 if( sCheck
.nPage
==0 ){
10987 goto integrity_ck_cleanup
;
10990 sCheck
.aPgRef
= sqlite3MallocZero((sCheck
.nPage
/ 8)+ 1);
10991 if( !sCheck
.aPgRef
){
10993 goto integrity_ck_cleanup
;
10995 sCheck
.heap
= (u32
*)sqlite3PageMalloc( pBt
->pageSize
);
10996 if( sCheck
.heap
==0 ){
10998 goto integrity_ck_cleanup
;
11001 i
= PENDING_BYTE_PAGE(pBt
);
11002 if( i
<=sCheck
.nPage
) setPageReferenced(&sCheck
, i
);
11004 /* Check the integrity of the freelist
11007 sCheck
.zPfx
= "Freelist: ";
11008 checkList(&sCheck
, 1, get4byte(&pBt
->pPage1
->aData
[32]),
11009 get4byte(&pBt
->pPage1
->aData
[36]));
11013 /* Check all the tables.
11015 #ifndef SQLITE_OMIT_AUTOVACUUM
11017 if( pBt
->autoVacuum
){
11020 for(i
=0; (int)i
<nRoot
; i
++) if( mx
<aRoot
[i
] ) mx
= aRoot
[i
];
11021 mxInHdr
= get4byte(&pBt
->pPage1
->aData
[52]);
11023 checkAppendMsg(&sCheck
,
11024 "max rootpage (%u) disagrees with header (%u)",
11028 }else if( get4byte(&pBt
->pPage1
->aData
[64])!=0 ){
11029 checkAppendMsg(&sCheck
,
11030 "incremental_vacuum enabled with a max rootpage of zero"
11035 testcase( pBt
->db
->flags
& SQLITE_CellSizeCk
);
11036 pBt
->db
->flags
&= ~(u64
)SQLITE_CellSizeCk
;
11037 for(i
=0; (int)i
<nRoot
&& sCheck
.mxErr
; i
++){
11039 if( aRoot
[i
]==0 ) continue;
11040 #ifndef SQLITE_OMIT_AUTOVACUUM
11041 if( pBt
->autoVacuum
&& aRoot
[i
]>1 && !bPartial
){
11042 checkPtrmap(&sCheck
, aRoot
[i
], PTRMAP_ROOTPAGE
, 0);
11045 sCheck
.v0
= aRoot
[i
];
11046 checkTreePage(&sCheck
, aRoot
[i
], ¬Used
, LARGEST_INT64
);
11048 pBt
->db
->flags
= savedDbFlags
;
11050 /* Make sure every page in the file is referenced
11053 for(i
=1; i
<=sCheck
.nPage
&& sCheck
.mxErr
; i
++){
11054 #ifdef SQLITE_OMIT_AUTOVACUUM
11055 if( getPageReferenced(&sCheck
, i
)==0 ){
11056 checkAppendMsg(&sCheck
, "Page %u: never used", i
);
11059 /* If the database supports auto-vacuum, make sure no tables contain
11060 ** references to pointer-map pages.
11062 if( getPageReferenced(&sCheck
, i
)==0 &&
11063 (PTRMAP_PAGENO(pBt
, i
)!=i
|| !pBt
->autoVacuum
) ){
11064 checkAppendMsg(&sCheck
, "Page %u: never used", i
);
11066 if( getPageReferenced(&sCheck
, i
)!=0 &&
11067 (PTRMAP_PAGENO(pBt
, i
)==i
&& pBt
->autoVacuum
) ){
11068 checkAppendMsg(&sCheck
, "Page %u: pointer map referenced", i
);
11074 /* Clean up and report errors.
11076 integrity_ck_cleanup
:
11077 sqlite3PageFree(sCheck
.heap
);
11078 sqlite3_free(sCheck
.aPgRef
);
11079 *pnErr
= sCheck
.nErr
;
11080 if( sCheck
.nErr
==0 ){
11081 sqlite3_str_reset(&sCheck
.errMsg
);
11084 *pzOut
= sqlite3StrAccumFinish(&sCheck
.errMsg
);
11086 /* Make sure this analysis did not leave any unref() pages. */
11087 assert( nRef
==sqlite3PagerRefcount(pBt
->pPager
) );
11088 sqlite3BtreeLeave(p
);
11091 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
11094 ** Return the full pathname of the underlying database file. Return
11095 ** an empty string if the database is in-memory or a TEMP database.
11097 ** The pager filename is invariant as long as the pager is
11098 ** open so it is safe to access without the BtShared mutex.
11100 const char *sqlite3BtreeGetFilename(Btree
*p
){
11101 assert( p
->pBt
->pPager
!=0 );
11102 return sqlite3PagerFilename(p
->pBt
->pPager
, 1);
11106 ** Return the pathname of the journal file for this database. The return
11107 ** value of this routine is the same regardless of whether the journal file
11108 ** has been created or not.
11110 ** The pager journal filename is invariant as long as the pager is
11111 ** open so it is safe to access without the BtShared mutex.
11113 const char *sqlite3BtreeGetJournalname(Btree
*p
){
11114 assert( p
->pBt
->pPager
!=0 );
11115 return sqlite3PagerJournalname(p
->pBt
->pPager
);
11119 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
11120 ** to describe the current transaction state of Btree p.
11122 int sqlite3BtreeTxnState(Btree
*p
){
11123 assert( p
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
11124 return p
? p
->inTrans
: 0;
11127 #ifndef SQLITE_OMIT_WAL
11129 ** Run a checkpoint on the Btree passed as the first argument.
11131 ** Return SQLITE_LOCKED if this or any other connection has an open
11132 ** transaction on the shared-cache the argument Btree is connected to.
11134 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
11136 int sqlite3BtreeCheckpoint(Btree
*p
, int eMode
, int *pnLog
, int *pnCkpt
){
11137 int rc
= SQLITE_OK
;
11139 BtShared
*pBt
= p
->pBt
;
11140 sqlite3BtreeEnter(p
);
11141 if( pBt
->inTransaction
!=TRANS_NONE
){
11142 rc
= SQLITE_LOCKED
;
11144 rc
= sqlite3PagerCheckpoint(pBt
->pPager
, p
->db
, eMode
, pnLog
, pnCkpt
);
11146 sqlite3BtreeLeave(p
);
11153 ** Return true if there is currently a backup running on Btree p.
11155 int sqlite3BtreeIsInBackup(Btree
*p
){
11157 assert( sqlite3_mutex_held(p
->db
->mutex
) );
11158 return p
->nBackup
!=0;
11162 ** This function returns a pointer to a blob of memory associated with
11163 ** a single shared-btree. The memory is used by client code for its own
11164 ** purposes (for example, to store a high-level schema associated with
11165 ** the shared-btree). The btree layer manages reference counting issues.
11167 ** The first time this is called on a shared-btree, nBytes bytes of memory
11168 ** are allocated, zeroed, and returned to the caller. For each subsequent
11169 ** call the nBytes parameter is ignored and a pointer to the same blob
11170 ** of memory returned.
11172 ** If the nBytes parameter is 0 and the blob of memory has not yet been
11173 ** allocated, a null pointer is returned. If the blob has already been
11174 ** allocated, it is returned as normal.
11176 ** Just before the shared-btree is closed, the function passed as the
11177 ** xFree argument when the memory allocation was made is invoked on the
11178 ** blob of allocated memory. The xFree function should not call sqlite3_free()
11179 ** on the memory, the btree layer does that.
11181 void *sqlite3BtreeSchema(Btree
*p
, int nBytes
, void(*xFree
)(void *)){
11182 BtShared
*pBt
= p
->pBt
;
11183 sqlite3BtreeEnter(p
);
11184 if( !pBt
->pSchema
&& nBytes
){
11185 pBt
->pSchema
= sqlite3DbMallocZero(0, nBytes
);
11186 pBt
->xFreeSchema
= xFree
;
11188 sqlite3BtreeLeave(p
);
11189 return pBt
->pSchema
;
11193 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
11194 ** btree as the argument handle holds an exclusive lock on the
11195 ** sqlite_schema table. Otherwise SQLITE_OK.
11197 int sqlite3BtreeSchemaLocked(Btree
*p
){
11199 assert( sqlite3_mutex_held(p
->db
->mutex
) );
11200 sqlite3BtreeEnter(p
);
11201 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
11202 assert( rc
==SQLITE_OK
|| rc
==SQLITE_LOCKED_SHAREDCACHE
);
11203 sqlite3BtreeLeave(p
);
11208 #ifndef SQLITE_OMIT_SHARED_CACHE
11210 ** Obtain a lock on the table whose root page is iTab. The
11211 ** lock is a write lock if isWritelock is true or a read lock
11214 int sqlite3BtreeLockTable(Btree
*p
, int iTab
, u8 isWriteLock
){
11215 int rc
= SQLITE_OK
;
11216 assert( p
->inTrans
!=TRANS_NONE
);
11218 u8 lockType
= READ_LOCK
+ isWriteLock
;
11219 assert( READ_LOCK
+1==WRITE_LOCK
);
11220 assert( isWriteLock
==0 || isWriteLock
==1 );
11222 sqlite3BtreeEnter(p
);
11223 rc
= querySharedCacheTableLock(p
, iTab
, lockType
);
11224 if( rc
==SQLITE_OK
){
11225 rc
= setSharedCacheTableLock(p
, iTab
, lockType
);
11227 sqlite3BtreeLeave(p
);
11233 #ifndef SQLITE_OMIT_INCRBLOB
11235 ** Argument pCsr must be a cursor opened for writing on an
11236 ** INTKEY table currently pointing at a valid table entry.
11237 ** This function modifies the data stored as part of that entry.
11239 ** Only the data content may only be modified, it is not possible to
11240 ** change the length of the data stored. If this function is called with
11241 ** parameters that attempt to write past the end of the existing data,
11242 ** no modifications are made and SQLITE_CORRUPT is returned.
11244 int sqlite3BtreePutData(BtCursor
*pCsr
, u32 offset
, u32 amt
, void *z
){
11246 assert( cursorOwnsBtShared(pCsr
) );
11247 assert( sqlite3_mutex_held(pCsr
->pBtree
->db
->mutex
) );
11248 assert( pCsr
->curFlags
& BTCF_Incrblob
);
11250 rc
= restoreCursorPosition(pCsr
);
11251 if( rc
!=SQLITE_OK
){
11254 assert( pCsr
->eState
!=CURSOR_REQUIRESEEK
);
11255 if( pCsr
->eState
!=CURSOR_VALID
){
11256 return SQLITE_ABORT
;
11259 /* Save the positions of all other cursors open on this table. This is
11260 ** required in case any of them are holding references to an xFetch
11261 ** version of the b-tree page modified by the accessPayload call below.
11263 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
11264 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
11265 ** saveAllCursors can only return SQLITE_OK.
11267 VVA_ONLY(rc
=) saveAllCursors(pCsr
->pBt
, pCsr
->pgnoRoot
, pCsr
);
11268 assert( rc
==SQLITE_OK
);
11270 /* Check some assumptions:
11271 ** (a) the cursor is open for writing,
11272 ** (b) there is a read/write transaction open,
11273 ** (c) the connection holds a write-lock on the table (if required),
11274 ** (d) there are no conflicting read-locks, and
11275 ** (e) the cursor points at a valid row of an intKey table.
11277 if( (pCsr
->curFlags
& BTCF_WriteFlag
)==0 ){
11278 return SQLITE_READONLY
;
11280 assert( (pCsr
->pBt
->btsFlags
& BTS_READ_ONLY
)==0
11281 && pCsr
->pBt
->inTransaction
==TRANS_WRITE
);
11282 assert( hasSharedCacheTableLock(pCsr
->pBtree
, pCsr
->pgnoRoot
, 0, 2) );
11283 assert( !hasReadConflicts(pCsr
->pBtree
, pCsr
->pgnoRoot
) );
11284 assert( pCsr
->pPage
->intKey
);
11286 return accessPayload(pCsr
, offset
, amt
, (unsigned char *)z
, 1);
11290 ** Mark this cursor as an incremental blob cursor.
11292 void sqlite3BtreeIncrblobCursor(BtCursor
*pCur
){
11293 pCur
->curFlags
|= BTCF_Incrblob
;
11294 pCur
->pBtree
->hasIncrblobCur
= 1;
11299 ** Set both the "read version" (single byte at byte offset 18) and
11300 ** "write version" (single byte at byte offset 19) fields in the database
11301 ** header to iVersion.
11303 int sqlite3BtreeSetVersion(Btree
*pBtree
, int iVersion
){
11304 BtShared
*pBt
= pBtree
->pBt
;
11305 int rc
; /* Return code */
11307 assert( iVersion
==1 || iVersion
==2 );
11309 /* If setting the version fields to 1, do not automatically open the
11310 ** WAL connection, even if the version fields are currently set to 2.
11312 pBt
->btsFlags
&= ~BTS_NO_WAL
;
11313 if( iVersion
==1 ) pBt
->btsFlags
|= BTS_NO_WAL
;
11315 rc
= sqlite3BtreeBeginTrans(pBtree
, 0, 0);
11316 if( rc
==SQLITE_OK
){
11317 u8
*aData
= pBt
->pPage1
->aData
;
11318 if( aData
[18]!=(u8
)iVersion
|| aData
[19]!=(u8
)iVersion
){
11319 rc
= sqlite3BtreeBeginTrans(pBtree
, 2, 0);
11320 if( rc
==SQLITE_OK
){
11321 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
11322 if( rc
==SQLITE_OK
){
11323 aData
[18] = (u8
)iVersion
;
11324 aData
[19] = (u8
)iVersion
;
11330 pBt
->btsFlags
&= ~BTS_NO_WAL
;
11335 ** Return true if the cursor has a hint specified. This routine is
11336 ** only used from within assert() statements
11338 int sqlite3BtreeCursorHasHint(BtCursor
*pCsr
, unsigned int mask
){
11339 return (pCsr
->hints
& mask
)!=0;
11343 ** Return true if the given Btree is read-only.
11345 int sqlite3BtreeIsReadonly(Btree
*p
){
11346 return (p
->pBt
->btsFlags
& BTS_READ_ONLY
)!=0;
11350 ** Return the size of the header added to each page by this module.
11352 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage
)); }
11355 ** If no transaction is active and the database is not a temp-db, clear
11356 ** the in-memory pager cache.
11358 void sqlite3BtreeClearCache(Btree
*p
){
11359 BtShared
*pBt
= p
->pBt
;
11360 if( pBt
->inTransaction
==TRANS_NONE
){
11361 sqlite3PagerClearCache(pBt
->pPager
);
11365 #if !defined(SQLITE_OMIT_SHARED_CACHE)
11367 ** Return true if the Btree passed as the only argument is sharable.
11369 int sqlite3BtreeSharable(Btree
*p
){
11370 return p
->sharable
;
11374 ** Return the number of connections to the BtShared object accessed by
11375 ** the Btree handle passed as the only argument. For private caches
11376 ** this is always 1. For shared caches it may be 1 or greater.
11378 int sqlite3BtreeConnectionCount(Btree
*p
){
11379 testcase( p
->sharable
);
11380 return p
->pBt
->nRef
;