4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
20 #ifdef SQLITE_HAVE_ISNAN
25 ** Routine needed to support the testcase() macro.
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x
){
29 static unsigned dummy
= 0;
34 #ifndef SQLITE_OMIT_FLOATING_POINT
36 ** Return true if the floating point value is Not a Number (NaN).
38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39 ** Otherwise, we have our own implementation that works on most systems.
41 int sqlite3IsNaN(double x
){
42 int rc
; /* The value return */
43 #if !defined(SQLITE_HAVE_ISNAN)
45 ** Systems that support the isnan() library function should probably
46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
47 ** found that many systems do not have a working isnan() function so
48 ** this implementation is provided as an alternative.
50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
51 ** On the other hand, the use of -ffast-math comes with the following
54 ** This option [-ffast-math] should never be turned on by any
55 ** -O option since it can result in incorrect output for programs
56 ** which depend on an exact implementation of IEEE or ISO
57 ** rules/specifications for math functions.
59 ** Under MSVC, this NaN test may fail if compiled with a floating-
60 ** point precision mode other than /fp:precise. From the MSDN
63 ** The compiler [with /fp:precise] will properly handle comparisons
64 ** involving NaN. For example, x != x evaluates to true if x is NaN
68 # error SQLite will not work correctly with the -ffast-math option of GCC.
70 volatile double y
= x
;
71 volatile double z
= y
;
73 #else /* if defined(SQLITE_HAVE_ISNAN) */
75 #endif /* SQLITE_HAVE_ISNAN */
79 #endif /* SQLITE_OMIT_FLOATING_POINT */
82 ** Compute a string length that is limited to what can be stored in
83 ** lower 30 bits of a 32-bit signed integer.
85 ** The value returned will never be negative. Nor will it ever be greater
86 ** than the actual length of the string. For very long strings (greater
87 ** than 1GiB) the value returned might be less than the true string length.
89 int sqlite3Strlen30(const char *z
){
93 return 0x3fffffff & (int)(z2
- z
);
97 ** Set the most recent error code and error string for the sqlite
98 ** handle "db". The error code is set to "err_code".
100 ** If it is not NULL, string zFormat specifies the format of the
101 ** error string in the style of the printf functions: The following
102 ** format characters are allowed:
104 ** %s Insert a string
105 ** %z A string that should be freed after use
106 ** %d Insert an integer
108 ** %S Insert the first element of a SrcList
110 ** zFormat and any string tokens that follow it are assumed to be
113 ** To clear the most recent error for sqlite handle "db", sqlite3Error
114 ** should be called with err_code set to SQLITE_OK and zFormat set
117 void sqlite3Error(sqlite3
*db
, int err_code
, const char *zFormat
, ...){
118 if( db
&& (db
->pErr
|| (db
->pErr
= sqlite3ValueNew(db
))!=0) ){
119 db
->errCode
= err_code
;
123 va_start(ap
, zFormat
);
124 z
= sqlite3VMPrintf(db
, zFormat
, ap
);
126 sqlite3ValueSetStr(db
->pErr
, -1, z
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
128 sqlite3ValueSetStr(db
->pErr
, 0, 0, SQLITE_UTF8
, SQLITE_STATIC
);
134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
135 ** The following formatting characters are allowed:
137 ** %s Insert a string
138 ** %z A string that should be freed after use
139 ** %d Insert an integer
141 ** %S Insert the first element of a SrcList
143 ** This function should be used to report any error that occurs whilst
144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
145 ** last thing the sqlite3_prepare() function does is copy the error
146 ** stored by this function into the database handle using sqlite3Error().
147 ** Function sqlite3Error() should be used during statement execution
148 ** (sqlite3_step() etc.).
150 void sqlite3ErrorMsg(Parse
*pParse
, const char *zFormat
, ...){
153 sqlite3
*db
= pParse
->db
;
154 va_start(ap
, zFormat
);
155 zMsg
= sqlite3VMPrintf(db
, zFormat
, ap
);
157 if( db
->suppressErr
){
158 sqlite3DbFree(db
, zMsg
);
161 sqlite3DbFree(db
, pParse
->zErrMsg
);
162 pParse
->zErrMsg
= zMsg
;
163 pParse
->rc
= SQLITE_ERROR
;
168 ** Convert an SQL-style quoted string into a normal string by removing
169 ** the quote characters. The conversion is done in-place. If the
170 ** input does not begin with a quote character, then this routine
173 ** The input string must be zero-terminated. A new zero-terminator
174 ** is added to the dequoted string.
176 ** The return value is -1 if no dequoting occurs or the length of the
177 ** dequoted string, exclusive of the zero terminator, if dequoting does
180 ** 2002-Feb-14: This routine is extended to remove MS-Access style
181 ** brackets from around identifers. For example: "[a-b-c]" becomes
184 int sqlite3Dequote(char *z
){
187 if( z
==0 ) return -1;
192 case '`': break; /* For MySQL compatibility */
193 case '[': quote
= ']'; break; /* For MS SqlServer compatibility */
196 for(i
=1, j
=0; ALWAYS(z
[i
]); i
++){
212 /* Convenient short-hand */
213 #define UpperToLower sqlite3UpperToLower
216 ** Some systems have stricmp(). Others have strcasecmp(). Because
217 ** there is no consistency, we will define our own.
219 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
220 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
221 ** the contents of two buffers containing UTF-8 strings in a
222 ** case-independent fashion, using the same definition of "case
223 ** independence" that SQLite uses internally when comparing identifiers.
225 int sqlite3_stricmp(const char *zLeft
, const char *zRight
){
226 register unsigned char *a
, *b
;
227 a
= (unsigned char *)zLeft
;
228 b
= (unsigned char *)zRight
;
229 while( *a
!=0 && UpperToLower
[*a
]==UpperToLower
[*b
]){ a
++; b
++; }
230 return UpperToLower
[*a
] - UpperToLower
[*b
];
232 int sqlite3_strnicmp(const char *zLeft
, const char *zRight
, int N
){
233 register unsigned char *a
, *b
;
234 a
= (unsigned char *)zLeft
;
235 b
= (unsigned char *)zRight
;
236 while( N
-- > 0 && *a
!=0 && UpperToLower
[*a
]==UpperToLower
[*b
]){ a
++; b
++; }
237 return N
<0 ? 0 : UpperToLower
[*a
] - UpperToLower
[*b
];
241 ** The string z[] is an text representation of a real number.
242 ** Convert this string to a double and write it into *pResult.
244 ** The string z[] is length bytes in length (bytes, not characters) and
245 ** uses the encoding enc. The string is not necessarily zero-terminated.
247 ** Return TRUE if the result is a valid real number (or integer) and FALSE
248 ** if the string is empty or contains extraneous text. Valid numbers
249 ** are in one of these formats:
251 ** [+-]digits[E[+-]digits]
252 ** [+-]digits.[digits][E[+-]digits]
253 ** [+-].digits[E[+-]digits]
255 ** Leading and trailing whitespace is ignored for the purpose of determining
258 ** If some prefix of the input string is a valid number, this routine
259 ** returns FALSE but it still converts the prefix and writes the result
262 int sqlite3AtoF(const char *z
, double *pResult
, int length
, u8 enc
){
263 #ifndef SQLITE_OMIT_FLOATING_POINT
264 int incr
= (enc
==SQLITE_UTF8
?1:2);
265 const char *zEnd
= z
+ length
;
266 /* sign * significand * (10 ^ (esign * exponent)) */
267 int sign
= 1; /* sign of significand */
268 i64 s
= 0; /* significand */
269 int d
= 0; /* adjust exponent for shifting decimal point */
270 int esign
= 1; /* sign of exponent */
271 int e
= 0; /* exponent */
272 int eValid
= 1; /* True exponent is either not used or is well-formed */
276 *pResult
= 0.0; /* Default return value, in case of an error */
278 if( enc
==SQLITE_UTF16BE
) z
++;
280 /* skip leading spaces */
281 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
282 if( z
>=zEnd
) return 0;
284 /* get sign of significand */
292 /* skip leading zeroes */
293 while( z
<zEnd
&& z
[0]=='0' ) z
+=incr
, nDigits
++;
295 /* copy max significant digits to significand */
296 while( z
<zEnd
&& sqlite3Isdigit(*z
) && s
<((LARGEST_INT64
-9)/10) ){
297 s
= s
*10 + (*z
- '0');
301 /* skip non-significant significand digits
302 ** (increase exponent by d to shift decimal left) */
303 while( z
<zEnd
&& sqlite3Isdigit(*z
) ) z
+=incr
, nDigits
++, d
++;
304 if( z
>=zEnd
) goto do_atof_calc
;
306 /* if decimal point is present */
309 /* copy digits from after decimal to significand
310 ** (decrease exponent by d to shift decimal right) */
311 while( z
<zEnd
&& sqlite3Isdigit(*z
) && s
<((LARGEST_INT64
-9)/10) ){
312 s
= s
*10 + (*z
- '0');
313 z
+=incr
, nDigits
++, d
--;
315 /* skip non-significant digits */
316 while( z
<zEnd
&& sqlite3Isdigit(*z
) ) z
+=incr
, nDigits
++;
318 if( z
>=zEnd
) goto do_atof_calc
;
320 /* if exponent is present */
321 if( *z
=='e' || *z
=='E' ){
324 if( z
>=zEnd
) goto do_atof_calc
;
325 /* get sign of exponent */
332 /* copy digits to exponent */
333 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
334 e
= e
<10000 ? (e
*10 + (*z
- '0')) : 10000;
340 /* skip trailing spaces */
341 if( nDigits
&& eValid
){
342 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
346 /* adjust exponent by d, and update sign */
355 /* if 0 significand */
357 /* In the IEEE 754 standard, zero is signed.
358 ** Add the sign if we've seen at least one digit */
359 result
= (sign
<0 && nDigits
) ? -(double)0 : (double)0;
361 /* attempt to reduce exponent */
363 while( s
<(LARGEST_INT64
/10) && e
>0 ) e
--,s
*=10;
365 while( !(s
%10) && e
>0 ) e
--,s
/=10;
368 /* adjust the sign of significand */
371 /* if exponent, scale significand as appropriate
372 ** and store in result. */
375 /* attempt to handle extremely small/large numbers better */
376 if( e
>307 && e
<342 ){
377 while( e
%308 ) { scale
*= 1.0e+1; e
-= 1; }
389 result
= 1e308
*1e308
*s
; /* Infinity */
392 /* 1.0e+22 is the largest power of 10 than can be
393 ** represented exactly. */
394 while( e
%22 ) { scale
*= 1.0e+1; e
-= 1; }
395 while( e
>0 ) { scale
*= 1.0e+22; e
-= 22; }
407 /* store the result */
410 /* return true if number and no extra non-whitespace chracters after */
411 return z
>=zEnd
&& nDigits
>0 && eValid
;
413 return !sqlite3Atoi64(z
, pResult
, length
, enc
);
414 #endif /* SQLITE_OMIT_FLOATING_POINT */
418 ** Compare the 19-character string zNum against the text representation
419 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
420 ** if zNum is less than, equal to, or greater than the string.
421 ** Note that zNum must contain exactly 19 characters.
423 ** Unlike memcmp() this routine is guaranteed to return the difference
424 ** in the values of the last digit if the only difference is in the
425 ** last digit. So, for example,
427 ** compare2pow63("9223372036854775800", 1)
431 static int compare2pow63(const char *zNum
, int incr
){
434 /* 012345678901234567 */
435 const char *pow63
= "922337203685477580";
436 for(i
=0; c
==0 && i
<18; i
++){
437 c
= (zNum
[i
*incr
]-pow63
[i
])*10;
440 c
= zNum
[18*incr
] - '8';
450 ** Convert zNum to a 64-bit signed integer.
452 ** If the zNum value is representable as a 64-bit twos-complement
453 ** integer, then write that value into *pNum and return 0.
455 ** If zNum is exactly 9223372036854665808, return 2. This special
456 ** case is broken out because while 9223372036854665808 cannot be a
457 ** signed 64-bit integer, its negative -9223372036854665808 can be.
459 ** If zNum is too big for a 64-bit integer and is not
460 ** 9223372036854665808 then return 1.
462 ** length is the number of bytes in the string (bytes, not characters).
463 ** The string is not necessarily zero-terminated. The encoding is
466 int sqlite3Atoi64(const char *zNum
, i64
*pNum
, int length
, u8 enc
){
467 int incr
= (enc
==SQLITE_UTF8
?1:2);
469 int neg
= 0; /* assume positive */
473 const char *zEnd
= zNum
+ length
;
474 if( enc
==SQLITE_UTF16BE
) zNum
++;
475 while( zNum
<zEnd
&& sqlite3Isspace(*zNum
) ) zNum
+=incr
;
480 }else if( *zNum
=='+' ){
485 while( zNum
<zEnd
&& zNum
[0]=='0' ){ zNum
+=incr
; } /* Skip leading zeros. */
486 for(i
=0; &zNum
[i
]<zEnd
&& (c
=zNum
[i
])>='0' && c
<='9'; i
+=incr
){
489 if( u
>LARGEST_INT64
){
490 *pNum
= SMALLEST_INT64
;
499 if( (c
!=0 && &zNum
[i
]<zEnd
) || (i
==0 && zStart
==zNum
) || i
>19*incr
){
500 /* zNum is empty or contains non-numeric text or is longer
501 ** than 19 digits (thus guaranteeing that it is too large) */
503 }else if( i
<19*incr
){
504 /* Less than 19 digits, so we know that it fits in 64 bits */
505 assert( u
<=LARGEST_INT64
);
508 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
509 c
= compare2pow63(zNum
, incr
);
511 /* zNum is less than 9223372036854775808 so it fits */
512 assert( u
<=LARGEST_INT64
);
515 /* zNum is greater than 9223372036854775808 so it overflows */
518 /* zNum is exactly 9223372036854775808. Fits if negative. The
519 ** special case 2 overflow if positive */
520 assert( u
-1==LARGEST_INT64
);
521 assert( (*pNum
)==SMALLEST_INT64
);
528 ** If zNum represents an integer that will fit in 32-bits, then set
529 ** *pValue to that integer and return true. Otherwise return false.
531 ** Any non-numeric characters that following zNum are ignored.
532 ** This is different from sqlite3Atoi64() which requires the
533 ** input number to be zero-terminated.
535 int sqlite3GetInt32(const char *zNum
, int *pValue
){
542 }else if( zNum
[0]=='+' ){
545 while( zNum
[0]=='0' ) zNum
++;
546 for(i
=0; i
<11 && (c
= zNum
[i
] - '0')>=0 && c
<=9; i
++){
550 /* The longest decimal representation of a 32 bit integer is 10 digits:
553 ** 2^31 -> 2147483648
559 testcase( v
-neg
==2147483647 );
560 if( v
-neg
>2147483647 ){
571 ** Return a 32-bit integer value extracted from a string. If the
572 ** string is not an integer, just return 0.
574 int sqlite3Atoi(const char *z
){
576 if( z
) sqlite3GetInt32(z
, &x
);
581 ** The variable-length integer encoding is as follows:
584 ** A = 0xxxxxxx 7 bits of data and one flag bit
585 ** B = 1xxxxxxx 7 bits of data and one flag bit
586 ** C = xxxxxxxx 8 bits of data
595 ** 56 bits - BBBBBBBA
596 ** 64 bits - BBBBBBBBC
600 ** Write a 64-bit variable-length integer to memory starting at p[0].
601 ** The length of data write will be between 1 and 9 bytes. The number
602 ** of bytes written is returned.
604 ** A variable-length integer consists of the lower 7 bits of each byte
605 ** for all bytes that have the 8th bit set and one byte with the 8th
606 ** bit clear. Except, if we get to the 9th byte, it stores the full
607 ** 8 bits and is the last byte.
609 int sqlite3PutVarint(unsigned char *p
, u64 v
){
612 if( v
& (((u64
)0xff000000)<<32) ){
616 p
[i
] = (u8
)((v
& 0x7f) | 0x80);
623 buf
[n
++] = (u8
)((v
& 0x7f) | 0x80);
628 for(i
=0, j
=n
-1; j
>=0; j
--, i
++){
635 ** This routine is a faster version of sqlite3PutVarint() that only
636 ** works for 32-bit positive integers and which is optimized for
637 ** the common case of small integers. A MACRO version, putVarint32,
638 ** is provided which inlines the single-byte case. All code should use
639 ** the MACRO version as this function assumes the single-byte case has
640 ** already been handled.
642 int sqlite3PutVarint32(unsigned char *p
, u32 v
){
644 if( (v
& ~0x7f)==0 ){
649 if( (v
& ~0x3fff)==0 ){
650 p
[0] = (u8
)((v
>>7) | 0x80);
651 p
[1] = (u8
)(v
& 0x7f);
654 return sqlite3PutVarint(p
, v
);
658 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
659 ** are defined here rather than simply putting the constant expressions
660 ** inline in order to work around bugs in the RVT compiler.
662 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
664 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
666 #define SLOT_2_0 0x001fc07f
667 #define SLOT_4_2_0 0xf01fc07f
671 ** Read a 64-bit variable-length integer from memory starting at p[0].
672 ** Return the number of bytes read. The value is stored in *v.
674 u8
sqlite3GetVarint(const unsigned char *p
, u64
*v
){
678 /* a: p0 (unmasked) */
687 /* b: p1 (unmasked) */
697 /* Verify that constants are precomputed correctly */
698 assert( SLOT_2_0
== ((0x7f<<14) | (0x7f)) );
699 assert( SLOT_4_2_0
== ((0xfU
<<28) | (0x7f<<14) | (0x7f)) );
704 /* a: p0<<14 | p2 (unmasked) */
715 /* CSE1 from below */
720 /* b: p1<<14 | p3 (unmasked) */
725 /* a &= (0x7f<<14)|(0x7f); */
732 /* a: p0<<14 | p2 (masked) */
733 /* b: p1<<14 | p3 (unmasked) */
734 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
736 /* a &= (0x7f<<14)|(0x7f); */
739 /* s: p0<<14 | p2 (masked) */
744 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
747 /* we can skip these cause they were (effectively) done above in calc'ing s */
748 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
749 /* b &= (0x7f<<14)|(0x7f); */
753 *v
= ((u64
)s
)<<32 | a
;
757 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
760 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
765 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
768 /* we can skip this cause it was (effectively) done above in calc'ing s */
769 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
774 *v
= ((u64
)s
)<<32 | a
;
781 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
789 *v
= ((u64
)s
)<<32 | a
;
793 /* CSE2 from below */
798 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
803 /* a &= (0x7f<<14)|(0x7f); */
807 *v
= ((u64
)s
)<<32 | a
;
814 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
817 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
828 *v
= ((u64
)s
)<<32 | a
;
834 ** Read a 32-bit variable-length integer from memory starting at p[0].
835 ** Return the number of bytes read. The value is stored in *v.
837 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
838 ** integer, then set *v to 0xffffffff.
840 ** A MACRO version, getVarint32, is provided which inlines the
841 ** single-byte case. All code should use the MACRO version as
842 ** this function assumes the single-byte case has already been handled.
844 u8
sqlite3GetVarint32(const unsigned char *p
, u32
*v
){
847 /* The 1-byte case. Overwhelmingly the most common. Handled inline
848 ** by the getVarin32() macro */
850 /* a: p0 (unmasked) */
854 /* Values between 0 and 127 */
860 /* The 2-byte case */
863 /* b: p1 (unmasked) */
866 /* Values between 128 and 16383 */
873 /* The 3-byte case */
877 /* a: p0<<14 | p2 (unmasked) */
880 /* Values between 16384 and 2097151 */
881 a
&= (0x7f<<14)|(0x7f);
888 /* A 32-bit varint is used to store size information in btrees.
889 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
890 ** A 3-byte varint is sufficient, for example, to record the size
891 ** of a 1048569-byte BLOB or string.
893 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
894 ** rare larger cases can be handled by the slower 64-bit varint
903 n
= sqlite3GetVarint(p
, &v64
);
904 assert( n
>3 && n
<=9 );
905 if( (v64
& SQLITE_MAX_U32
)!=v64
){
914 /* For following code (kept for historical record only) shows an
915 ** unrolling for the 3- and 4-byte varint cases. This code is
916 ** slightly faster, but it is also larger and much harder to test.
921 /* b: p1<<14 | p3 (unmasked) */
924 /* Values between 2097152 and 268435455 */
925 b
&= (0x7f<<14)|(0x7f);
926 a
&= (0x7f<<14)|(0x7f);
935 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
938 /* Values between 268435456 and 34359738367 */
946 /* We can only reach this point when reading a corrupt database
947 ** file. In that case we are not in any hurry. Use the (relatively
948 ** slow) general-purpose sqlite3GetVarint() routine to extract the
955 n
= sqlite3GetVarint(p
, &v64
);
956 assert( n
>5 && n
<=9 );
964 ** Return the number of bytes that will be needed to store the given
967 int sqlite3VarintLen(u64 v
){
972 }while( v
!=0 && ALWAYS(i
<9) );
978 ** Read or write a four-byte big-endian integer value.
980 u32
sqlite3Get4byte(const u8
*p
){
981 return (p
[0]<<24) | (p
[1]<<16) | (p
[2]<<8) | p
[3];
983 void sqlite3Put4byte(unsigned char *p
, u32 v
){
993 ** Translate a single byte of Hex into an integer.
994 ** This routine only works if h really is a valid hexadecimal
995 ** character: 0..9a..fA..F
997 u8
sqlite3HexToInt(int h
){
998 assert( (h
>='0' && h
<='9') || (h
>='a' && h
<='f') || (h
>='A' && h
<='F') );
1002 #ifdef SQLITE_EBCDIC
1005 return (u8
)(h
& 0xf);
1008 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1010 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1011 ** value. Return a pointer to its binary value. Space to hold the
1012 ** binary value has been obtained from malloc and must be freed by
1013 ** the calling routine.
1015 void *sqlite3HexToBlob(sqlite3
*db
, const char *z
, int n
){
1019 zBlob
= (char *)sqlite3DbMallocRaw(db
, n
/2 + 1);
1022 for(i
=0; i
<n
; i
+=2){
1023 zBlob
[i
/2] = (sqlite3HexToInt(z
[i
])<<4) | sqlite3HexToInt(z
[i
+1]);
1029 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1032 ** Log an error that is an API call on a connection pointer that should
1033 ** not have been used. The "type" of connection pointer is given as the
1034 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1036 static void logBadConnection(const char *zType
){
1037 sqlite3_log(SQLITE_MISUSE
,
1038 "API call with %s database connection pointer",
1044 ** Check to make sure we have a valid db pointer. This test is not
1045 ** foolproof but it does provide some measure of protection against
1046 ** misuse of the interface such as passing in db pointers that are
1047 ** NULL or which have been previously closed. If this routine returns
1048 ** 1 it means that the db pointer is valid and 0 if it should not be
1049 ** dereferenced for any reason. The calling function should invoke
1050 ** SQLITE_MISUSE immediately.
1052 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1053 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1054 ** open properly and is not fit for general use but which can be
1055 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1057 int sqlite3SafetyCheckOk(sqlite3
*db
){
1060 logBadConnection("NULL");
1064 if( magic
!=SQLITE_MAGIC_OPEN
){
1065 if( sqlite3SafetyCheckSickOrOk(db
) ){
1066 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1067 logBadConnection("unopened");
1074 int sqlite3SafetyCheckSickOrOk(sqlite3
*db
){
1077 if( magic
!=SQLITE_MAGIC_SICK
&&
1078 magic
!=SQLITE_MAGIC_OPEN
&&
1079 magic
!=SQLITE_MAGIC_BUSY
){
1080 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1081 logBadConnection("invalid");
1089 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1090 ** the other 64-bit signed integer at *pA and store the result in *pA.
1091 ** Return 0 on success. Or if the operation would have resulted in an
1092 ** overflow, leave *pA unchanged and return 1.
1094 int sqlite3AddInt64(i64
*pA
, i64 iB
){
1096 testcase( iA
==0 ); testcase( iA
==1 );
1097 testcase( iB
==-1 ); testcase( iB
==0 );
1099 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
);
1100 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
- 1 );
1101 if( iA
>0 && LARGEST_INT64
- iA
< iB
) return 1;
1104 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 1 );
1105 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 2 );
1106 if( iA
<0 && -(iA
+ LARGEST_INT64
) > iB
+ 1 ) return 1;
1111 int sqlite3SubInt64(i64
*pA
, i64 iB
){
1112 testcase( iB
==SMALLEST_INT64
+1 );
1113 if( iB
==SMALLEST_INT64
){
1114 testcase( (*pA
)==(-1) ); testcase( (*pA
)==0 );
1115 if( (*pA
)>=0 ) return 1;
1119 return sqlite3AddInt64(pA
, -iB
);
1122 #define TWOPOWER32 (((i64)1)<<32)
1123 #define TWOPOWER31 (((i64)1)<<31)
1124 int sqlite3MulInt64(i64
*pA
, i64 iB
){
1126 i64 iA1
, iA0
, iB1
, iB0
, r
;
1128 iA1
= iA
/TWOPOWER32
;
1129 iA0
= iA
% TWOPOWER32
;
1130 iB1
= iB
/TWOPOWER32
;
1131 iB0
= iB
% TWOPOWER32
;
1132 if( iA1
*iB1
!= 0 ) return 1;
1133 assert( iA1
*iB0
==0 || iA0
*iB1
==0 );
1134 r
= iA1
*iB0
+ iA0
*iB1
;
1135 testcase( r
==(-TWOPOWER31
)-1 );
1136 testcase( r
==(-TWOPOWER31
) );
1137 testcase( r
==TWOPOWER31
);
1138 testcase( r
==TWOPOWER31
-1 );
1139 if( r
<(-TWOPOWER31
) || r
>=TWOPOWER31
) return 1;
1141 if( sqlite3AddInt64(&r
, iA0
*iB0
) ) return 1;
1147 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1148 ** if the integer has a value of -2147483648, return +2147483647
1150 int sqlite3AbsInt32(int x
){
1151 if( x
>=0 ) return x
;
1152 if( x
==(int)0x80000000 ) return 0x7fffffff;
1156 #ifdef SQLITE_ENABLE_8_3_NAMES
1158 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1159 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1160 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1161 ** three characters, then shorten the suffix on z[] to be the last three
1162 ** characters of the original suffix.
1164 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1165 ** do the suffix shortening regardless of URI parameter.
1169 ** test.db-journal => test.nal
1170 ** test.db-wal => test.wal
1171 ** test.db-shm => test.shm
1172 ** test.db-mj7f3319fa => test.9fa
1174 void sqlite3FileSuffix3(const char *zBaseFilename
, char *z
){
1175 #if SQLITE_ENABLE_8_3_NAMES<2
1176 if( sqlite3_uri_boolean(zBaseFilename
, "8_3_names", 0) )
1180 sz
= sqlite3Strlen30(z
);
1181 for(i
=sz
-1; i
>0 && z
[i
]!='/' && z
[i
]!='.'; i
--){}
1182 if( z
[i
]=='.' && ALWAYS(sz
>i
+4) ) memmove(&z
[i
+1], &z
[sz
-3], 4);