Merge pull request #37 from developernotes/prerelease
[sqlcipher.git] / src / util.c
blobdd3b08ae464c3b7fd8505fe7ac9751dc833a001b
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifdef SQLITE_HAVE_ISNAN
21 # include <math.h>
22 #endif
25 ** Routine needed to support the testcase() macro.
27 #ifdef SQLITE_COVERAGE_TEST
28 void sqlite3Coverage(int x){
29 static unsigned dummy = 0;
30 dummy += (unsigned)x;
32 #endif
34 #ifndef SQLITE_OMIT_FLOATING_POINT
36 ** Return true if the floating point value is Not a Number (NaN).
38 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
39 ** Otherwise, we have our own implementation that works on most systems.
41 int sqlite3IsNaN(double x){
42 int rc; /* The value return */
43 #if !defined(SQLITE_HAVE_ISNAN)
45 ** Systems that support the isnan() library function should probably
46 ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have
47 ** found that many systems do not have a working isnan() function so
48 ** this implementation is provided as an alternative.
50 ** This NaN test sometimes fails if compiled on GCC with -ffast-math.
51 ** On the other hand, the use of -ffast-math comes with the following
52 ** warning:
54 ** This option [-ffast-math] should never be turned on by any
55 ** -O option since it can result in incorrect output for programs
56 ** which depend on an exact implementation of IEEE or ISO
57 ** rules/specifications for math functions.
59 ** Under MSVC, this NaN test may fail if compiled with a floating-
60 ** point precision mode other than /fp:precise. From the MSDN
61 ** documentation:
63 ** The compiler [with /fp:precise] will properly handle comparisons
64 ** involving NaN. For example, x != x evaluates to true if x is NaN
65 ** ...
67 #ifdef __FAST_MATH__
68 # error SQLite will not work correctly with the -ffast-math option of GCC.
69 #endif
70 volatile double y = x;
71 volatile double z = y;
72 rc = (y!=z);
73 #else /* if defined(SQLITE_HAVE_ISNAN) */
74 rc = isnan(x);
75 #endif /* SQLITE_HAVE_ISNAN */
76 testcase( rc );
77 return rc;
79 #endif /* SQLITE_OMIT_FLOATING_POINT */
82 ** Compute a string length that is limited to what can be stored in
83 ** lower 30 bits of a 32-bit signed integer.
85 ** The value returned will never be negative. Nor will it ever be greater
86 ** than the actual length of the string. For very long strings (greater
87 ** than 1GiB) the value returned might be less than the true string length.
89 int sqlite3Strlen30(const char *z){
90 const char *z2 = z;
91 if( z==0 ) return 0;
92 while( *z2 ){ z2++; }
93 return 0x3fffffff & (int)(z2 - z);
97 ** Set the most recent error code and error string for the sqlite
98 ** handle "db". The error code is set to "err_code".
100 ** If it is not NULL, string zFormat specifies the format of the
101 ** error string in the style of the printf functions: The following
102 ** format characters are allowed:
104 ** %s Insert a string
105 ** %z A string that should be freed after use
106 ** %d Insert an integer
107 ** %T Insert a token
108 ** %S Insert the first element of a SrcList
110 ** zFormat and any string tokens that follow it are assumed to be
111 ** encoded in UTF-8.
113 ** To clear the most recent error for sqlite handle "db", sqlite3Error
114 ** should be called with err_code set to SQLITE_OK and zFormat set
115 ** to NULL.
117 void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){
118 if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){
119 db->errCode = err_code;
120 if( zFormat ){
121 char *z;
122 va_list ap;
123 va_start(ap, zFormat);
124 z = sqlite3VMPrintf(db, zFormat, ap);
125 va_end(ap);
126 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
127 }else{
128 sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC);
134 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
135 ** The following formatting characters are allowed:
137 ** %s Insert a string
138 ** %z A string that should be freed after use
139 ** %d Insert an integer
140 ** %T Insert a token
141 ** %S Insert the first element of a SrcList
143 ** This function should be used to report any error that occurs whilst
144 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
145 ** last thing the sqlite3_prepare() function does is copy the error
146 ** stored by this function into the database handle using sqlite3Error().
147 ** Function sqlite3Error() should be used during statement execution
148 ** (sqlite3_step() etc.).
150 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
151 char *zMsg;
152 va_list ap;
153 sqlite3 *db = pParse->db;
154 va_start(ap, zFormat);
155 zMsg = sqlite3VMPrintf(db, zFormat, ap);
156 va_end(ap);
157 if( db->suppressErr ){
158 sqlite3DbFree(db, zMsg);
159 }else{
160 pParse->nErr++;
161 sqlite3DbFree(db, pParse->zErrMsg);
162 pParse->zErrMsg = zMsg;
163 pParse->rc = SQLITE_ERROR;
168 ** Convert an SQL-style quoted string into a normal string by removing
169 ** the quote characters. The conversion is done in-place. If the
170 ** input does not begin with a quote character, then this routine
171 ** is a no-op.
173 ** The input string must be zero-terminated. A new zero-terminator
174 ** is added to the dequoted string.
176 ** The return value is -1 if no dequoting occurs or the length of the
177 ** dequoted string, exclusive of the zero terminator, if dequoting does
178 ** occur.
180 ** 2002-Feb-14: This routine is extended to remove MS-Access style
181 ** brackets from around identifers. For example: "[a-b-c]" becomes
182 ** "a-b-c".
184 int sqlite3Dequote(char *z){
185 char quote;
186 int i, j;
187 if( z==0 ) return -1;
188 quote = z[0];
189 switch( quote ){
190 case '\'': break;
191 case '"': break;
192 case '`': break; /* For MySQL compatibility */
193 case '[': quote = ']'; break; /* For MS SqlServer compatibility */
194 default: return -1;
196 for(i=1, j=0; ALWAYS(z[i]); i++){
197 if( z[i]==quote ){
198 if( z[i+1]==quote ){
199 z[j++] = quote;
200 i++;
201 }else{
202 break;
204 }else{
205 z[j++] = z[i];
208 z[j] = 0;
209 return j;
212 /* Convenient short-hand */
213 #define UpperToLower sqlite3UpperToLower
216 ** Some systems have stricmp(). Others have strcasecmp(). Because
217 ** there is no consistency, we will define our own.
219 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
220 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
221 ** the contents of two buffers containing UTF-8 strings in a
222 ** case-independent fashion, using the same definition of "case
223 ** independence" that SQLite uses internally when comparing identifiers.
225 int sqlite3_stricmp(const char *zLeft, const char *zRight){
226 register unsigned char *a, *b;
227 a = (unsigned char *)zLeft;
228 b = (unsigned char *)zRight;
229 while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
230 return UpperToLower[*a] - UpperToLower[*b];
232 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
233 register unsigned char *a, *b;
234 a = (unsigned char *)zLeft;
235 b = (unsigned char *)zRight;
236 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
237 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
241 ** The string z[] is an text representation of a real number.
242 ** Convert this string to a double and write it into *pResult.
244 ** The string z[] is length bytes in length (bytes, not characters) and
245 ** uses the encoding enc. The string is not necessarily zero-terminated.
247 ** Return TRUE if the result is a valid real number (or integer) and FALSE
248 ** if the string is empty or contains extraneous text. Valid numbers
249 ** are in one of these formats:
251 ** [+-]digits[E[+-]digits]
252 ** [+-]digits.[digits][E[+-]digits]
253 ** [+-].digits[E[+-]digits]
255 ** Leading and trailing whitespace is ignored for the purpose of determining
256 ** validity.
258 ** If some prefix of the input string is a valid number, this routine
259 ** returns FALSE but it still converts the prefix and writes the result
260 ** into *pResult.
262 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
263 #ifndef SQLITE_OMIT_FLOATING_POINT
264 int incr = (enc==SQLITE_UTF8?1:2);
265 const char *zEnd = z + length;
266 /* sign * significand * (10 ^ (esign * exponent)) */
267 int sign = 1; /* sign of significand */
268 i64 s = 0; /* significand */
269 int d = 0; /* adjust exponent for shifting decimal point */
270 int esign = 1; /* sign of exponent */
271 int e = 0; /* exponent */
272 int eValid = 1; /* True exponent is either not used or is well-formed */
273 double result;
274 int nDigits = 0;
276 *pResult = 0.0; /* Default return value, in case of an error */
278 if( enc==SQLITE_UTF16BE ) z++;
280 /* skip leading spaces */
281 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
282 if( z>=zEnd ) return 0;
284 /* get sign of significand */
285 if( *z=='-' ){
286 sign = -1;
287 z+=incr;
288 }else if( *z=='+' ){
289 z+=incr;
292 /* skip leading zeroes */
293 while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++;
295 /* copy max significant digits to significand */
296 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
297 s = s*10 + (*z - '0');
298 z+=incr, nDigits++;
301 /* skip non-significant significand digits
302 ** (increase exponent by d to shift decimal left) */
303 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++;
304 if( z>=zEnd ) goto do_atof_calc;
306 /* if decimal point is present */
307 if( *z=='.' ){
308 z+=incr;
309 /* copy digits from after decimal to significand
310 ** (decrease exponent by d to shift decimal right) */
311 while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){
312 s = s*10 + (*z - '0');
313 z+=incr, nDigits++, d--;
315 /* skip non-significant digits */
316 while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++;
318 if( z>=zEnd ) goto do_atof_calc;
320 /* if exponent is present */
321 if( *z=='e' || *z=='E' ){
322 z+=incr;
323 eValid = 0;
324 if( z>=zEnd ) goto do_atof_calc;
325 /* get sign of exponent */
326 if( *z=='-' ){
327 esign = -1;
328 z+=incr;
329 }else if( *z=='+' ){
330 z+=incr;
332 /* copy digits to exponent */
333 while( z<zEnd && sqlite3Isdigit(*z) ){
334 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
335 z+=incr;
336 eValid = 1;
340 /* skip trailing spaces */
341 if( nDigits && eValid ){
342 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
345 do_atof_calc:
346 /* adjust exponent by d, and update sign */
347 e = (e*esign) + d;
348 if( e<0 ) {
349 esign = -1;
350 e *= -1;
351 } else {
352 esign = 1;
355 /* if 0 significand */
356 if( !s ) {
357 /* In the IEEE 754 standard, zero is signed.
358 ** Add the sign if we've seen at least one digit */
359 result = (sign<0 && nDigits) ? -(double)0 : (double)0;
360 } else {
361 /* attempt to reduce exponent */
362 if( esign>0 ){
363 while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10;
364 }else{
365 while( !(s%10) && e>0 ) e--,s/=10;
368 /* adjust the sign of significand */
369 s = sign<0 ? -s : s;
371 /* if exponent, scale significand as appropriate
372 ** and store in result. */
373 if( e ){
374 double scale = 1.0;
375 /* attempt to handle extremely small/large numbers better */
376 if( e>307 && e<342 ){
377 while( e%308 ) { scale *= 1.0e+1; e -= 1; }
378 if( esign<0 ){
379 result = s / scale;
380 result /= 1.0e+308;
381 }else{
382 result = s * scale;
383 result *= 1.0e+308;
385 }else if( e>=342 ){
386 if( esign<0 ){
387 result = 0.0*s;
388 }else{
389 result = 1e308*1e308*s; /* Infinity */
391 }else{
392 /* 1.0e+22 is the largest power of 10 than can be
393 ** represented exactly. */
394 while( e%22 ) { scale *= 1.0e+1; e -= 1; }
395 while( e>0 ) { scale *= 1.0e+22; e -= 22; }
396 if( esign<0 ){
397 result = s / scale;
398 }else{
399 result = s * scale;
402 } else {
403 result = (double)s;
407 /* store the result */
408 *pResult = result;
410 /* return true if number and no extra non-whitespace chracters after */
411 return z>=zEnd && nDigits>0 && eValid;
412 #else
413 return !sqlite3Atoi64(z, pResult, length, enc);
414 #endif /* SQLITE_OMIT_FLOATING_POINT */
418 ** Compare the 19-character string zNum against the text representation
419 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
420 ** if zNum is less than, equal to, or greater than the string.
421 ** Note that zNum must contain exactly 19 characters.
423 ** Unlike memcmp() this routine is guaranteed to return the difference
424 ** in the values of the last digit if the only difference is in the
425 ** last digit. So, for example,
427 ** compare2pow63("9223372036854775800", 1)
429 ** will return -8.
431 static int compare2pow63(const char *zNum, int incr){
432 int c = 0;
433 int i;
434 /* 012345678901234567 */
435 const char *pow63 = "922337203685477580";
436 for(i=0; c==0 && i<18; i++){
437 c = (zNum[i*incr]-pow63[i])*10;
439 if( c==0 ){
440 c = zNum[18*incr] - '8';
441 testcase( c==(-1) );
442 testcase( c==0 );
443 testcase( c==(+1) );
445 return c;
450 ** Convert zNum to a 64-bit signed integer.
452 ** If the zNum value is representable as a 64-bit twos-complement
453 ** integer, then write that value into *pNum and return 0.
455 ** If zNum is exactly 9223372036854665808, return 2. This special
456 ** case is broken out because while 9223372036854665808 cannot be a
457 ** signed 64-bit integer, its negative -9223372036854665808 can be.
459 ** If zNum is too big for a 64-bit integer and is not
460 ** 9223372036854665808 then return 1.
462 ** length is the number of bytes in the string (bytes, not characters).
463 ** The string is not necessarily zero-terminated. The encoding is
464 ** given by enc.
466 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
467 int incr = (enc==SQLITE_UTF8?1:2);
468 u64 u = 0;
469 int neg = 0; /* assume positive */
470 int i;
471 int c = 0;
472 const char *zStart;
473 const char *zEnd = zNum + length;
474 if( enc==SQLITE_UTF16BE ) zNum++;
475 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
476 if( zNum<zEnd ){
477 if( *zNum=='-' ){
478 neg = 1;
479 zNum+=incr;
480 }else if( *zNum=='+' ){
481 zNum+=incr;
484 zStart = zNum;
485 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
486 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
487 u = u*10 + c - '0';
489 if( u>LARGEST_INT64 ){
490 *pNum = SMALLEST_INT64;
491 }else if( neg ){
492 *pNum = -(i64)u;
493 }else{
494 *pNum = (i64)u;
496 testcase( i==18 );
497 testcase( i==19 );
498 testcase( i==20 );
499 if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){
500 /* zNum is empty or contains non-numeric text or is longer
501 ** than 19 digits (thus guaranteeing that it is too large) */
502 return 1;
503 }else if( i<19*incr ){
504 /* Less than 19 digits, so we know that it fits in 64 bits */
505 assert( u<=LARGEST_INT64 );
506 return 0;
507 }else{
508 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
509 c = compare2pow63(zNum, incr);
510 if( c<0 ){
511 /* zNum is less than 9223372036854775808 so it fits */
512 assert( u<=LARGEST_INT64 );
513 return 0;
514 }else if( c>0 ){
515 /* zNum is greater than 9223372036854775808 so it overflows */
516 return 1;
517 }else{
518 /* zNum is exactly 9223372036854775808. Fits if negative. The
519 ** special case 2 overflow if positive */
520 assert( u-1==LARGEST_INT64 );
521 assert( (*pNum)==SMALLEST_INT64 );
522 return neg ? 0 : 2;
528 ** If zNum represents an integer that will fit in 32-bits, then set
529 ** *pValue to that integer and return true. Otherwise return false.
531 ** Any non-numeric characters that following zNum are ignored.
532 ** This is different from sqlite3Atoi64() which requires the
533 ** input number to be zero-terminated.
535 int sqlite3GetInt32(const char *zNum, int *pValue){
536 sqlite_int64 v = 0;
537 int i, c;
538 int neg = 0;
539 if( zNum[0]=='-' ){
540 neg = 1;
541 zNum++;
542 }else if( zNum[0]=='+' ){
543 zNum++;
545 while( zNum[0]=='0' ) zNum++;
546 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
547 v = v*10 + c;
550 /* The longest decimal representation of a 32 bit integer is 10 digits:
552 ** 1234567890
553 ** 2^31 -> 2147483648
555 testcase( i==10 );
556 if( i>10 ){
557 return 0;
559 testcase( v-neg==2147483647 );
560 if( v-neg>2147483647 ){
561 return 0;
563 if( neg ){
564 v = -v;
566 *pValue = (int)v;
567 return 1;
571 ** Return a 32-bit integer value extracted from a string. If the
572 ** string is not an integer, just return 0.
574 int sqlite3Atoi(const char *z){
575 int x = 0;
576 if( z ) sqlite3GetInt32(z, &x);
577 return x;
581 ** The variable-length integer encoding is as follows:
583 ** KEY:
584 ** A = 0xxxxxxx 7 bits of data and one flag bit
585 ** B = 1xxxxxxx 7 bits of data and one flag bit
586 ** C = xxxxxxxx 8 bits of data
588 ** 7 bits - A
589 ** 14 bits - BA
590 ** 21 bits - BBA
591 ** 28 bits - BBBA
592 ** 35 bits - BBBBA
593 ** 42 bits - BBBBBA
594 ** 49 bits - BBBBBBA
595 ** 56 bits - BBBBBBBA
596 ** 64 bits - BBBBBBBBC
600 ** Write a 64-bit variable-length integer to memory starting at p[0].
601 ** The length of data write will be between 1 and 9 bytes. The number
602 ** of bytes written is returned.
604 ** A variable-length integer consists of the lower 7 bits of each byte
605 ** for all bytes that have the 8th bit set and one byte with the 8th
606 ** bit clear. Except, if we get to the 9th byte, it stores the full
607 ** 8 bits and is the last byte.
609 int sqlite3PutVarint(unsigned char *p, u64 v){
610 int i, j, n;
611 u8 buf[10];
612 if( v & (((u64)0xff000000)<<32) ){
613 p[8] = (u8)v;
614 v >>= 8;
615 for(i=7; i>=0; i--){
616 p[i] = (u8)((v & 0x7f) | 0x80);
617 v >>= 7;
619 return 9;
621 n = 0;
623 buf[n++] = (u8)((v & 0x7f) | 0x80);
624 v >>= 7;
625 }while( v!=0 );
626 buf[0] &= 0x7f;
627 assert( n<=9 );
628 for(i=0, j=n-1; j>=0; j--, i++){
629 p[i] = buf[j];
631 return n;
635 ** This routine is a faster version of sqlite3PutVarint() that only
636 ** works for 32-bit positive integers and which is optimized for
637 ** the common case of small integers. A MACRO version, putVarint32,
638 ** is provided which inlines the single-byte case. All code should use
639 ** the MACRO version as this function assumes the single-byte case has
640 ** already been handled.
642 int sqlite3PutVarint32(unsigned char *p, u32 v){
643 #ifndef putVarint32
644 if( (v & ~0x7f)==0 ){
645 p[0] = v;
646 return 1;
648 #endif
649 if( (v & ~0x3fff)==0 ){
650 p[0] = (u8)((v>>7) | 0x80);
651 p[1] = (u8)(v & 0x7f);
652 return 2;
654 return sqlite3PutVarint(p, v);
658 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
659 ** are defined here rather than simply putting the constant expressions
660 ** inline in order to work around bugs in the RVT compiler.
662 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
664 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
666 #define SLOT_2_0 0x001fc07f
667 #define SLOT_4_2_0 0xf01fc07f
671 ** Read a 64-bit variable-length integer from memory starting at p[0].
672 ** Return the number of bytes read. The value is stored in *v.
674 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
675 u32 a,b,s;
677 a = *p;
678 /* a: p0 (unmasked) */
679 if (!(a&0x80))
681 *v = a;
682 return 1;
685 p++;
686 b = *p;
687 /* b: p1 (unmasked) */
688 if (!(b&0x80))
690 a &= 0x7f;
691 a = a<<7;
692 a |= b;
693 *v = a;
694 return 2;
697 /* Verify that constants are precomputed correctly */
698 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
699 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
701 p++;
702 a = a<<14;
703 a |= *p;
704 /* a: p0<<14 | p2 (unmasked) */
705 if (!(a&0x80))
707 a &= SLOT_2_0;
708 b &= 0x7f;
709 b = b<<7;
710 a |= b;
711 *v = a;
712 return 3;
715 /* CSE1 from below */
716 a &= SLOT_2_0;
717 p++;
718 b = b<<14;
719 b |= *p;
720 /* b: p1<<14 | p3 (unmasked) */
721 if (!(b&0x80))
723 b &= SLOT_2_0;
724 /* moved CSE1 up */
725 /* a &= (0x7f<<14)|(0x7f); */
726 a = a<<7;
727 a |= b;
728 *v = a;
729 return 4;
732 /* a: p0<<14 | p2 (masked) */
733 /* b: p1<<14 | p3 (unmasked) */
734 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
735 /* moved CSE1 up */
736 /* a &= (0x7f<<14)|(0x7f); */
737 b &= SLOT_2_0;
738 s = a;
739 /* s: p0<<14 | p2 (masked) */
741 p++;
742 a = a<<14;
743 a |= *p;
744 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
745 if (!(a&0x80))
747 /* we can skip these cause they were (effectively) done above in calc'ing s */
748 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
749 /* b &= (0x7f<<14)|(0x7f); */
750 b = b<<7;
751 a |= b;
752 s = s>>18;
753 *v = ((u64)s)<<32 | a;
754 return 5;
757 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
758 s = s<<7;
759 s |= b;
760 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
762 p++;
763 b = b<<14;
764 b |= *p;
765 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
766 if (!(b&0x80))
768 /* we can skip this cause it was (effectively) done above in calc'ing s */
769 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
770 a &= SLOT_2_0;
771 a = a<<7;
772 a |= b;
773 s = s>>18;
774 *v = ((u64)s)<<32 | a;
775 return 6;
778 p++;
779 a = a<<14;
780 a |= *p;
781 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
782 if (!(a&0x80))
784 a &= SLOT_4_2_0;
785 b &= SLOT_2_0;
786 b = b<<7;
787 a |= b;
788 s = s>>11;
789 *v = ((u64)s)<<32 | a;
790 return 7;
793 /* CSE2 from below */
794 a &= SLOT_2_0;
795 p++;
796 b = b<<14;
797 b |= *p;
798 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
799 if (!(b&0x80))
801 b &= SLOT_4_2_0;
802 /* moved CSE2 up */
803 /* a &= (0x7f<<14)|(0x7f); */
804 a = a<<7;
805 a |= b;
806 s = s>>4;
807 *v = ((u64)s)<<32 | a;
808 return 8;
811 p++;
812 a = a<<15;
813 a |= *p;
814 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
816 /* moved CSE2 up */
817 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
818 b &= SLOT_2_0;
819 b = b<<8;
820 a |= b;
822 s = s<<4;
823 b = p[-4];
824 b &= 0x7f;
825 b = b>>3;
826 s |= b;
828 *v = ((u64)s)<<32 | a;
830 return 9;
834 ** Read a 32-bit variable-length integer from memory starting at p[0].
835 ** Return the number of bytes read. The value is stored in *v.
837 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
838 ** integer, then set *v to 0xffffffff.
840 ** A MACRO version, getVarint32, is provided which inlines the
841 ** single-byte case. All code should use the MACRO version as
842 ** this function assumes the single-byte case has already been handled.
844 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
845 u32 a,b;
847 /* The 1-byte case. Overwhelmingly the most common. Handled inline
848 ** by the getVarin32() macro */
849 a = *p;
850 /* a: p0 (unmasked) */
851 #ifndef getVarint32
852 if (!(a&0x80))
854 /* Values between 0 and 127 */
855 *v = a;
856 return 1;
858 #endif
860 /* The 2-byte case */
861 p++;
862 b = *p;
863 /* b: p1 (unmasked) */
864 if (!(b&0x80))
866 /* Values between 128 and 16383 */
867 a &= 0x7f;
868 a = a<<7;
869 *v = a | b;
870 return 2;
873 /* The 3-byte case */
874 p++;
875 a = a<<14;
876 a |= *p;
877 /* a: p0<<14 | p2 (unmasked) */
878 if (!(a&0x80))
880 /* Values between 16384 and 2097151 */
881 a &= (0x7f<<14)|(0x7f);
882 b &= 0x7f;
883 b = b<<7;
884 *v = a | b;
885 return 3;
888 /* A 32-bit varint is used to store size information in btrees.
889 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
890 ** A 3-byte varint is sufficient, for example, to record the size
891 ** of a 1048569-byte BLOB or string.
893 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
894 ** rare larger cases can be handled by the slower 64-bit varint
895 ** routine.
897 #if 1
899 u64 v64;
900 u8 n;
902 p -= 2;
903 n = sqlite3GetVarint(p, &v64);
904 assert( n>3 && n<=9 );
905 if( (v64 & SQLITE_MAX_U32)!=v64 ){
906 *v = 0xffffffff;
907 }else{
908 *v = (u32)v64;
910 return n;
913 #else
914 /* For following code (kept for historical record only) shows an
915 ** unrolling for the 3- and 4-byte varint cases. This code is
916 ** slightly faster, but it is also larger and much harder to test.
918 p++;
919 b = b<<14;
920 b |= *p;
921 /* b: p1<<14 | p3 (unmasked) */
922 if (!(b&0x80))
924 /* Values between 2097152 and 268435455 */
925 b &= (0x7f<<14)|(0x7f);
926 a &= (0x7f<<14)|(0x7f);
927 a = a<<7;
928 *v = a | b;
929 return 4;
932 p++;
933 a = a<<14;
934 a |= *p;
935 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
936 if (!(a&0x80))
938 /* Values between 268435456 and 34359738367 */
939 a &= SLOT_4_2_0;
940 b &= SLOT_4_2_0;
941 b = b<<7;
942 *v = a | b;
943 return 5;
946 /* We can only reach this point when reading a corrupt database
947 ** file. In that case we are not in any hurry. Use the (relatively
948 ** slow) general-purpose sqlite3GetVarint() routine to extract the
949 ** value. */
951 u64 v64;
952 u8 n;
954 p -= 4;
955 n = sqlite3GetVarint(p, &v64);
956 assert( n>5 && n<=9 );
957 *v = (u32)v64;
958 return n;
960 #endif
964 ** Return the number of bytes that will be needed to store the given
965 ** 64-bit integer.
967 int sqlite3VarintLen(u64 v){
968 int i = 0;
970 i++;
971 v >>= 7;
972 }while( v!=0 && ALWAYS(i<9) );
973 return i;
978 ** Read or write a four-byte big-endian integer value.
980 u32 sqlite3Get4byte(const u8 *p){
981 return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
983 void sqlite3Put4byte(unsigned char *p, u32 v){
984 p[0] = (u8)(v>>24);
985 p[1] = (u8)(v>>16);
986 p[2] = (u8)(v>>8);
987 p[3] = (u8)v;
993 ** Translate a single byte of Hex into an integer.
994 ** This routine only works if h really is a valid hexadecimal
995 ** character: 0..9a..fA..F
997 u8 sqlite3HexToInt(int h){
998 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
999 #ifdef SQLITE_ASCII
1000 h += 9*(1&(h>>6));
1001 #endif
1002 #ifdef SQLITE_EBCDIC
1003 h += 9*(1&~(h>>4));
1004 #endif
1005 return (u8)(h & 0xf);
1008 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1010 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1011 ** value. Return a pointer to its binary value. Space to hold the
1012 ** binary value has been obtained from malloc and must be freed by
1013 ** the calling routine.
1015 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1016 char *zBlob;
1017 int i;
1019 zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1);
1020 n--;
1021 if( zBlob ){
1022 for(i=0; i<n; i+=2){
1023 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1025 zBlob[i/2] = 0;
1027 return zBlob;
1029 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1032 ** Log an error that is an API call on a connection pointer that should
1033 ** not have been used. The "type" of connection pointer is given as the
1034 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1036 static void logBadConnection(const char *zType){
1037 sqlite3_log(SQLITE_MISUSE,
1038 "API call with %s database connection pointer",
1039 zType
1044 ** Check to make sure we have a valid db pointer. This test is not
1045 ** foolproof but it does provide some measure of protection against
1046 ** misuse of the interface such as passing in db pointers that are
1047 ** NULL or which have been previously closed. If this routine returns
1048 ** 1 it means that the db pointer is valid and 0 if it should not be
1049 ** dereferenced for any reason. The calling function should invoke
1050 ** SQLITE_MISUSE immediately.
1052 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1053 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1054 ** open properly and is not fit for general use but which can be
1055 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1057 int sqlite3SafetyCheckOk(sqlite3 *db){
1058 u32 magic;
1059 if( db==0 ){
1060 logBadConnection("NULL");
1061 return 0;
1063 magic = db->magic;
1064 if( magic!=SQLITE_MAGIC_OPEN ){
1065 if( sqlite3SafetyCheckSickOrOk(db) ){
1066 testcase( sqlite3GlobalConfig.xLog!=0 );
1067 logBadConnection("unopened");
1069 return 0;
1070 }else{
1071 return 1;
1074 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1075 u32 magic;
1076 magic = db->magic;
1077 if( magic!=SQLITE_MAGIC_SICK &&
1078 magic!=SQLITE_MAGIC_OPEN &&
1079 magic!=SQLITE_MAGIC_BUSY ){
1080 testcase( sqlite3GlobalConfig.xLog!=0 );
1081 logBadConnection("invalid");
1082 return 0;
1083 }else{
1084 return 1;
1089 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1090 ** the other 64-bit signed integer at *pA and store the result in *pA.
1091 ** Return 0 on success. Or if the operation would have resulted in an
1092 ** overflow, leave *pA unchanged and return 1.
1094 int sqlite3AddInt64(i64 *pA, i64 iB){
1095 i64 iA = *pA;
1096 testcase( iA==0 ); testcase( iA==1 );
1097 testcase( iB==-1 ); testcase( iB==0 );
1098 if( iB>=0 ){
1099 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1100 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1101 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1102 *pA += iB;
1103 }else{
1104 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1105 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1106 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1107 *pA += iB;
1109 return 0;
1111 int sqlite3SubInt64(i64 *pA, i64 iB){
1112 testcase( iB==SMALLEST_INT64+1 );
1113 if( iB==SMALLEST_INT64 ){
1114 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1115 if( (*pA)>=0 ) return 1;
1116 *pA -= iB;
1117 return 0;
1118 }else{
1119 return sqlite3AddInt64(pA, -iB);
1122 #define TWOPOWER32 (((i64)1)<<32)
1123 #define TWOPOWER31 (((i64)1)<<31)
1124 int sqlite3MulInt64(i64 *pA, i64 iB){
1125 i64 iA = *pA;
1126 i64 iA1, iA0, iB1, iB0, r;
1128 iA1 = iA/TWOPOWER32;
1129 iA0 = iA % TWOPOWER32;
1130 iB1 = iB/TWOPOWER32;
1131 iB0 = iB % TWOPOWER32;
1132 if( iA1*iB1 != 0 ) return 1;
1133 assert( iA1*iB0==0 || iA0*iB1==0 );
1134 r = iA1*iB0 + iA0*iB1;
1135 testcase( r==(-TWOPOWER31)-1 );
1136 testcase( r==(-TWOPOWER31) );
1137 testcase( r==TWOPOWER31 );
1138 testcase( r==TWOPOWER31-1 );
1139 if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1;
1140 r *= TWOPOWER32;
1141 if( sqlite3AddInt64(&r, iA0*iB0) ) return 1;
1142 *pA = r;
1143 return 0;
1147 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1148 ** if the integer has a value of -2147483648, return +2147483647
1150 int sqlite3AbsInt32(int x){
1151 if( x>=0 ) return x;
1152 if( x==(int)0x80000000 ) return 0x7fffffff;
1153 return -x;
1156 #ifdef SQLITE_ENABLE_8_3_NAMES
1158 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1159 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1160 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1161 ** three characters, then shorten the suffix on z[] to be the last three
1162 ** characters of the original suffix.
1164 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1165 ** do the suffix shortening regardless of URI parameter.
1167 ** Examples:
1169 ** test.db-journal => test.nal
1170 ** test.db-wal => test.wal
1171 ** test.db-shm => test.shm
1172 ** test.db-mj7f3319fa => test.9fa
1174 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1175 #if SQLITE_ENABLE_8_3_NAMES<2
1176 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1177 #endif
1179 int i, sz;
1180 sz = sqlite3Strlen30(z);
1181 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1182 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1185 #endif