4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 #include "sqliteInt.h"
22 ** If pMem is an object with a valid string representation, this routine
23 ** ensures the internal encoding for the string representation is
24 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
26 ** If pMem is not a string object, or the encoding of the string
27 ** representation is already stored using the requested encoding, then this
28 ** routine is a no-op.
30 ** SQLITE_OK is returned if the conversion is successful (or not required).
31 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
34 int sqlite3VdbeChangeEncoding(Mem
*pMem
, int desiredEnc
){
36 assert( (pMem
->flags
&MEM_RowSet
)==0 );
37 assert( desiredEnc
==SQLITE_UTF8
|| desiredEnc
==SQLITE_UTF16LE
38 || desiredEnc
==SQLITE_UTF16BE
);
39 if( !(pMem
->flags
&MEM_Str
) || pMem
->enc
==desiredEnc
){
42 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
43 #ifdef SQLITE_OMIT_UTF16
47 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
48 ** then the encoding of the value may not have changed.
50 rc
= sqlite3VdbeMemTranslate(pMem
, (u8
)desiredEnc
);
51 assert(rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
52 assert(rc
==SQLITE_OK
|| pMem
->enc
!=desiredEnc
);
53 assert(rc
==SQLITE_NOMEM
|| pMem
->enc
==desiredEnc
);
59 ** Make sure pMem->z points to a writable allocation of at least
62 ** If the third argument passed to this function is true, then memory
63 ** cell pMem must contain a string or blob. In this case the content is
64 ** preserved. Otherwise, if the third parameter to this function is false,
65 ** any current string or blob value may be discarded.
67 ** This function sets the MEM_Dyn flag and clears any xDel callback.
68 ** It also clears MEM_Ephem and MEM_Static. If the preserve flag is
69 ** not set, Mem.n is zeroed.
71 int sqlite3VdbeMemGrow(Mem
*pMem
, int n
, int preserve
){
73 ((pMem
->zMalloc
&& pMem
->zMalloc
==pMem
->z
) ? 1 : 0) +
74 (((pMem
->flags
&MEM_Dyn
)&&pMem
->xDel
) ? 1 : 0) +
75 ((pMem
->flags
&MEM_Ephem
) ? 1 : 0) +
76 ((pMem
->flags
&MEM_Static
) ? 1 : 0)
78 assert( (pMem
->flags
&MEM_RowSet
)==0 );
80 /* If the preserve flag is set to true, then the memory cell must already
81 ** contain a valid string or blob value. */
82 assert( preserve
==0 || pMem
->flags
&(MEM_Blob
|MEM_Str
) );
85 if( sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
)<n
){
86 if( preserve
&& pMem
->z
==pMem
->zMalloc
){
87 pMem
->z
= pMem
->zMalloc
= sqlite3DbReallocOrFree(pMem
->db
, pMem
->z
, n
);
90 sqlite3DbFree(pMem
->db
, pMem
->zMalloc
);
91 pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, n
);
95 if( pMem
->z
&& preserve
&& pMem
->zMalloc
&& pMem
->z
!=pMem
->zMalloc
){
96 memcpy(pMem
->zMalloc
, pMem
->z
, pMem
->n
);
98 if( pMem
->flags
&MEM_Dyn
&& pMem
->xDel
){
99 assert( pMem
->xDel
!=SQLITE_DYNAMIC
);
100 pMem
->xDel((void *)(pMem
->z
));
103 pMem
->z
= pMem
->zMalloc
;
105 pMem
->flags
= MEM_Null
;
107 pMem
->flags
&= ~(MEM_Ephem
|MEM_Static
);
110 return (pMem
->z
? SQLITE_OK
: SQLITE_NOMEM
);
114 ** Make the given Mem object MEM_Dyn. In other words, make it so
115 ** that any TEXT or BLOB content is stored in memory obtained from
116 ** malloc(). In this way, we know that the memory is safe to be
117 ** overwritten or altered.
119 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
121 int sqlite3VdbeMemMakeWriteable(Mem
*pMem
){
123 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
124 assert( (pMem
->flags
&MEM_RowSet
)==0 );
127 if( (f
&(MEM_Str
|MEM_Blob
)) && pMem
->z
!=pMem
->zMalloc
){
128 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+ 2, 1) ){
131 pMem
->z
[pMem
->n
] = 0;
132 pMem
->z
[pMem
->n
+1] = 0;
133 pMem
->flags
|= MEM_Term
;
135 pMem
->pScopyFrom
= 0;
143 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
144 ** blob stored in dynamically allocated space.
146 #ifndef SQLITE_OMIT_INCRBLOB
147 int sqlite3VdbeMemExpandBlob(Mem
*pMem
){
148 if( pMem
->flags
& MEM_Zero
){
150 assert( pMem
->flags
&MEM_Blob
);
151 assert( (pMem
->flags
&MEM_RowSet
)==0 );
152 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
154 /* Set nByte to the number of bytes required to store the expanded blob. */
155 nByte
= pMem
->n
+ pMem
->u
.nZero
;
159 if( sqlite3VdbeMemGrow(pMem
, nByte
, 1) ){
163 memset(&pMem
->z
[pMem
->n
], 0, pMem
->u
.nZero
);
164 pMem
->n
+= pMem
->u
.nZero
;
165 pMem
->flags
&= ~(MEM_Zero
|MEM_Term
);
173 ** Make sure the given Mem is \u0000 terminated.
175 int sqlite3VdbeMemNulTerminate(Mem
*pMem
){
176 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
177 if( (pMem
->flags
& MEM_Term
)!=0 || (pMem
->flags
& MEM_Str
)==0 ){
178 return SQLITE_OK
; /* Nothing to do */
180 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+2, 1) ){
183 pMem
->z
[pMem
->n
] = 0;
184 pMem
->z
[pMem
->n
+1] = 0;
185 pMem
->flags
|= MEM_Term
;
190 ** Add MEM_Str to the set of representations for the given Mem. Numbers
191 ** are converted using sqlite3_snprintf(). Converting a BLOB to a string
194 ** Existing representations MEM_Int and MEM_Real are *not* invalidated.
196 ** A MEM_Null value will never be passed to this function. This function is
197 ** used for converting values to text for returning to the user (i.e. via
198 ** sqlite3_value_text()), or for ensuring that values to be used as btree
199 ** keys are strings. In the former case a NULL pointer is returned the
200 ** user and the later is an internal programming error.
202 int sqlite3VdbeMemStringify(Mem
*pMem
, int enc
){
204 int fg
= pMem
->flags
;
205 const int nByte
= 32;
207 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
208 assert( !(fg
&MEM_Zero
) );
209 assert( !(fg
&(MEM_Str
|MEM_Blob
)) );
210 assert( fg
&(MEM_Int
|MEM_Real
) );
211 assert( (pMem
->flags
&MEM_RowSet
)==0 );
212 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
215 if( sqlite3VdbeMemGrow(pMem
, nByte
, 0) ){
219 /* For a Real or Integer, use sqlite3_mprintf() to produce the UTF-8
220 ** string representation of the value. Then, if the required encoding
221 ** is UTF-16le or UTF-16be do a translation.
223 ** FIX ME: It would be better if sqlite3_snprintf() could do UTF-16.
226 sqlite3_snprintf(nByte
, pMem
->z
, "%lld", pMem
->u
.i
);
228 assert( fg
& MEM_Real
);
229 sqlite3_snprintf(nByte
, pMem
->z
, "%!.15g", pMem
->r
);
231 pMem
->n
= sqlite3Strlen30(pMem
->z
);
232 pMem
->enc
= SQLITE_UTF8
;
233 pMem
->flags
|= MEM_Str
|MEM_Term
;
234 sqlite3VdbeChangeEncoding(pMem
, enc
);
239 ** Memory cell pMem contains the context of an aggregate function.
240 ** This routine calls the finalize method for that function. The
241 ** result of the aggregate is stored back into pMem.
243 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
246 int sqlite3VdbeMemFinalize(Mem
*pMem
, FuncDef
*pFunc
){
248 if( ALWAYS(pFunc
&& pFunc
->xFinalize
) ){
250 assert( (pMem
->flags
& MEM_Null
)!=0 || pFunc
==pMem
->u
.pDef
);
251 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
252 memset(&ctx
, 0, sizeof(ctx
));
253 ctx
.s
.flags
= MEM_Null
;
257 pFunc
->xFinalize(&ctx
); /* IMP: R-24505-23230 */
258 assert( 0==(pMem
->flags
&MEM_Dyn
) && !pMem
->xDel
);
259 sqlite3DbFree(pMem
->db
, pMem
->zMalloc
);
260 memcpy(pMem
, &ctx
.s
, sizeof(ctx
.s
));
267 ** If the memory cell contains a string value that must be freed by
268 ** invoking an external callback, free it now. Calling this function
269 ** does not free any Mem.zMalloc buffer.
271 void sqlite3VdbeMemReleaseExternal(Mem
*p
){
272 assert( p
->db
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
273 if( p
->flags
&MEM_Agg
){
274 sqlite3VdbeMemFinalize(p
, p
->u
.pDef
);
275 assert( (p
->flags
& MEM_Agg
)==0 );
276 sqlite3VdbeMemRelease(p
);
277 }else if( p
->flags
&MEM_Dyn
&& p
->xDel
){
278 assert( (p
->flags
&MEM_RowSet
)==0 );
279 assert( p
->xDel
!=SQLITE_DYNAMIC
);
280 p
->xDel((void *)p
->z
);
282 }else if( p
->flags
&MEM_RowSet
){
283 sqlite3RowSetClear(p
->u
.pRowSet
);
284 }else if( p
->flags
&MEM_Frame
){
285 sqlite3VdbeMemSetNull(p
);
290 ** Release any memory held by the Mem. This may leave the Mem in an
291 ** inconsistent state, for example with (Mem.z==0) and
292 ** (Mem.type==SQLITE_TEXT).
294 void sqlite3VdbeMemRelease(Mem
*p
){
296 sqlite3DbFree(p
->db
, p
->zMalloc
);
303 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
304 ** If the double is too large, return 0x8000000000000000.
306 ** Most systems appear to do this simply by assigning
307 ** variables and without the extra range tests. But
308 ** there are reports that windows throws an expection
309 ** if the floating point value is out of range. (See ticket #2880.)
310 ** Because we do not completely understand the problem, we will
311 ** take the conservative approach and always do range tests
312 ** before attempting the conversion.
314 static i64
doubleToInt64(double r
){
315 #ifdef SQLITE_OMIT_FLOATING_POINT
316 /* When floating-point is omitted, double and int64 are the same thing */
320 ** Many compilers we encounter do not define constants for the
321 ** minimum and maximum 64-bit integers, or they define them
322 ** inconsistently. And many do not understand the "LL" notation.
323 ** So we define our own static constants here using nothing
324 ** larger than a 32-bit integer constant.
326 static const i64 maxInt
= LARGEST_INT64
;
327 static const i64 minInt
= SMALLEST_INT64
;
329 if( r
<(double)minInt
){
331 }else if( r
>(double)maxInt
){
332 /* minInt is correct here - not maxInt. It turns out that assigning
333 ** a very large positive number to an integer results in a very large
334 ** negative integer. This makes no sense, but it is what x86 hardware
335 ** does so for compatibility we will do the same in software. */
344 ** Return some kind of integer value which is the best we can do
345 ** at representing the value that *pMem describes as an integer.
346 ** If pMem is an integer, then the value is exact. If pMem is
347 ** a floating-point then the value returned is the integer part.
348 ** If pMem is a string or blob, then we make an attempt to convert
349 ** it into a integer and return that. If pMem represents an
350 ** an SQL-NULL value, return 0.
352 ** If pMem represents a string value, its encoding might be changed.
354 i64
sqlite3VdbeIntValue(Mem
*pMem
){
356 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
357 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
359 if( flags
& MEM_Int
){
361 }else if( flags
& MEM_Real
){
362 return doubleToInt64(pMem
->r
);
363 }else if( flags
& (MEM_Str
|MEM_Blob
) ){
365 assert( pMem
->z
|| pMem
->n
==0 );
366 testcase( pMem
->z
==0 );
367 sqlite3Atoi64(pMem
->z
, &value
, pMem
->n
, pMem
->enc
);
375 ** Return the best representation of pMem that we can get into a
376 ** double. If pMem is already a double or an integer, return its
377 ** value. If it is a string or blob, try to convert it to a double.
378 ** If it is a NULL, return 0.0.
380 double sqlite3VdbeRealValue(Mem
*pMem
){
381 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
382 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
383 if( pMem
->flags
& MEM_Real
){
385 }else if( pMem
->flags
& MEM_Int
){
386 return (double)pMem
->u
.i
;
387 }else if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
388 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
389 double val
= (double)0;
390 sqlite3AtoF(pMem
->z
, &val
, pMem
->n
, pMem
->enc
);
393 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
399 ** The MEM structure is already a MEM_Real. Try to also make it a
400 ** MEM_Int if we can.
402 void sqlite3VdbeIntegerAffinity(Mem
*pMem
){
403 assert( pMem
->flags
& MEM_Real
);
404 assert( (pMem
->flags
& MEM_RowSet
)==0 );
405 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
406 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
408 pMem
->u
.i
= doubleToInt64(pMem
->r
);
410 /* Only mark the value as an integer if
412 ** (1) the round-trip conversion real->int->real is a no-op, and
413 ** (2) The integer is neither the largest nor the smallest
414 ** possible integer (ticket #3922)
416 ** The second and third terms in the following conditional enforces
417 ** the second condition under the assumption that addition overflow causes
418 ** values to wrap around. On x86 hardware, the third term is always
419 ** true and could be omitted. But we leave it in because other
420 ** architectures might behave differently.
422 if( pMem
->r
==(double)pMem
->u
.i
423 && pMem
->u
.i
>SMALLEST_INT64
424 #if defined(__i486__) || defined(__x86_64__)
425 && ALWAYS(pMem
->u
.i
<LARGEST_INT64
)
427 && pMem
->u
.i
<LARGEST_INT64
430 pMem
->flags
|= MEM_Int
;
435 ** Convert pMem to type integer. Invalidate any prior representations.
437 int sqlite3VdbeMemIntegerify(Mem
*pMem
){
438 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
439 assert( (pMem
->flags
& MEM_RowSet
)==0 );
440 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
442 pMem
->u
.i
= sqlite3VdbeIntValue(pMem
);
443 MemSetTypeFlag(pMem
, MEM_Int
);
448 ** Convert pMem so that it is of type MEM_Real.
449 ** Invalidate any prior representations.
451 int sqlite3VdbeMemRealify(Mem
*pMem
){
452 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
453 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
455 pMem
->r
= sqlite3VdbeRealValue(pMem
);
456 MemSetTypeFlag(pMem
, MEM_Real
);
461 ** Convert pMem so that it has types MEM_Real or MEM_Int or both.
462 ** Invalidate any prior representations.
464 ** Every effort is made to force the conversion, even if the input
465 ** is a string that does not look completely like a number. Convert
466 ** as much of the string as we can and ignore the rest.
468 int sqlite3VdbeMemNumerify(Mem
*pMem
){
469 if( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_Null
))==0 ){
470 assert( (pMem
->flags
& (MEM_Blob
|MEM_Str
))!=0 );
471 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
472 if( 0==sqlite3Atoi64(pMem
->z
, &pMem
->u
.i
, pMem
->n
, pMem
->enc
) ){
473 MemSetTypeFlag(pMem
, MEM_Int
);
475 pMem
->r
= sqlite3VdbeRealValue(pMem
);
476 MemSetTypeFlag(pMem
, MEM_Real
);
477 sqlite3VdbeIntegerAffinity(pMem
);
480 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_Null
))!=0 );
481 pMem
->flags
&= ~(MEM_Str
|MEM_Blob
);
486 ** Delete any previous value and set the value stored in *pMem to NULL.
488 void sqlite3VdbeMemSetNull(Mem
*pMem
){
489 if( pMem
->flags
& MEM_Frame
){
490 VdbeFrame
*pFrame
= pMem
->u
.pFrame
;
491 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
492 pFrame
->v
->pDelFrame
= pFrame
;
494 if( pMem
->flags
& MEM_RowSet
){
495 sqlite3RowSetClear(pMem
->u
.pRowSet
);
497 MemSetTypeFlag(pMem
, MEM_Null
);
498 pMem
->type
= SQLITE_NULL
;
502 ** Delete any previous value and set the value to be a BLOB of length
503 ** n containing all zeros.
505 void sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
506 sqlite3VdbeMemRelease(pMem
);
507 pMem
->flags
= MEM_Blob
|MEM_Zero
;
508 pMem
->type
= SQLITE_BLOB
;
512 pMem
->enc
= SQLITE_UTF8
;
514 #ifdef SQLITE_OMIT_INCRBLOB
515 sqlite3VdbeMemGrow(pMem
, n
, 0);
518 memset(pMem
->z
, 0, n
);
524 ** Delete any previous value and set the value stored in *pMem to val,
525 ** manifest type INTEGER.
527 void sqlite3VdbeMemSetInt64(Mem
*pMem
, i64 val
){
528 sqlite3VdbeMemRelease(pMem
);
530 pMem
->flags
= MEM_Int
;
531 pMem
->type
= SQLITE_INTEGER
;
534 #ifndef SQLITE_OMIT_FLOATING_POINT
536 ** Delete any previous value and set the value stored in *pMem to val,
537 ** manifest type REAL.
539 void sqlite3VdbeMemSetDouble(Mem
*pMem
, double val
){
540 if( sqlite3IsNaN(val
) ){
541 sqlite3VdbeMemSetNull(pMem
);
543 sqlite3VdbeMemRelease(pMem
);
545 pMem
->flags
= MEM_Real
;
546 pMem
->type
= SQLITE_FLOAT
;
552 ** Delete any previous value and set the value of pMem to be an
553 ** empty boolean index.
555 void sqlite3VdbeMemSetRowSet(Mem
*pMem
){
556 sqlite3
*db
= pMem
->db
;
558 assert( (pMem
->flags
& MEM_RowSet
)==0 );
559 sqlite3VdbeMemRelease(pMem
);
560 pMem
->zMalloc
= sqlite3DbMallocRaw(db
, 64);
561 if( db
->mallocFailed
){
562 pMem
->flags
= MEM_Null
;
564 assert( pMem
->zMalloc
);
565 pMem
->u
.pRowSet
= sqlite3RowSetInit(db
, pMem
->zMalloc
,
566 sqlite3DbMallocSize(db
, pMem
->zMalloc
));
567 assert( pMem
->u
.pRowSet
!=0 );
568 pMem
->flags
= MEM_RowSet
;
573 ** Return true if the Mem object contains a TEXT or BLOB that is
574 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
576 int sqlite3VdbeMemTooBig(Mem
*p
){
578 if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
580 if( p
->flags
& MEM_Zero
){
583 return n
>p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
590 ** This routine prepares a memory cell for modication by breaking
591 ** its link to a shallow copy and by marking any current shallow
592 ** copies of this cell as invalid.
594 ** This is used for testing and debugging only - to make sure shallow
595 ** copies are not misused.
597 void sqlite3VdbeMemAboutToChange(Vdbe
*pVdbe
, Mem
*pMem
){
600 for(i
=1, pX
=&pVdbe
->aMem
[1]; i
<=pVdbe
->nMem
; i
++, pX
++){
601 if( pX
->pScopyFrom
==pMem
){
602 pX
->flags
|= MEM_Invalid
;
606 pMem
->pScopyFrom
= 0;
608 #endif /* SQLITE_DEBUG */
611 ** Size of struct Mem not including the Mem.zMalloc member.
613 #define MEMCELLSIZE (size_t)(&(((Mem *)0)->zMalloc))
616 ** Make an shallow copy of pFrom into pTo. Prior contents of
617 ** pTo are freed. The pFrom->z field is not duplicated. If
618 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
619 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
621 void sqlite3VdbeMemShallowCopy(Mem
*pTo
, const Mem
*pFrom
, int srcType
){
622 assert( (pFrom
->flags
& MEM_RowSet
)==0 );
624 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
626 if( (pFrom
->flags
&MEM_Static
)==0 ){
627 pTo
->flags
&= ~(MEM_Dyn
|MEM_Static
|MEM_Ephem
);
628 assert( srcType
==MEM_Ephem
|| srcType
==MEM_Static
);
629 pTo
->flags
|= srcType
;
634 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
635 ** freed before the copy is made.
637 int sqlite3VdbeMemCopy(Mem
*pTo
, const Mem
*pFrom
){
640 assert( (pFrom
->flags
& MEM_RowSet
)==0 );
642 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
643 pTo
->flags
&= ~MEM_Dyn
;
645 if( pTo
->flags
&(MEM_Str
|MEM_Blob
) ){
646 if( 0==(pFrom
->flags
&MEM_Static
) ){
647 pTo
->flags
|= MEM_Ephem
;
648 rc
= sqlite3VdbeMemMakeWriteable(pTo
);
656 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
657 ** freed. If pFrom contains ephemeral data, a copy is made.
659 ** pFrom contains an SQL NULL when this routine returns.
661 void sqlite3VdbeMemMove(Mem
*pTo
, Mem
*pFrom
){
662 assert( pFrom
->db
==0 || sqlite3_mutex_held(pFrom
->db
->mutex
) );
663 assert( pTo
->db
==0 || sqlite3_mutex_held(pTo
->db
->mutex
) );
664 assert( pFrom
->db
==0 || pTo
->db
==0 || pFrom
->db
==pTo
->db
);
666 sqlite3VdbeMemRelease(pTo
);
667 memcpy(pTo
, pFrom
, sizeof(Mem
));
668 pFrom
->flags
= MEM_Null
;
674 ** Change the value of a Mem to be a string or a BLOB.
676 ** The memory management strategy depends on the value of the xDel
677 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
678 ** string is copied into a (possibly existing) buffer managed by the
679 ** Mem structure. Otherwise, any existing buffer is freed and the
682 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
683 ** size limit) then no memory allocation occurs. If the string can be
684 ** stored without allocating memory, then it is. If a memory allocation
685 ** is required to store the string, then value of pMem is unchanged. In
686 ** either case, SQLITE_TOOBIG is returned.
688 int sqlite3VdbeMemSetStr(
689 Mem
*pMem
, /* Memory cell to set to string value */
690 const char *z
, /* String pointer */
691 int n
, /* Bytes in string, or negative */
692 u8 enc
, /* Encoding of z. 0 for BLOBs */
693 void (*xDel
)(void*) /* Destructor function */
695 int nByte
= n
; /* New value for pMem->n */
696 int iLimit
; /* Maximum allowed string or blob size */
697 u16 flags
= 0; /* New value for pMem->flags */
699 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
700 assert( (pMem
->flags
& MEM_RowSet
)==0 );
702 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
704 sqlite3VdbeMemSetNull(pMem
);
709 iLimit
= pMem
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
711 iLimit
= SQLITE_MAX_LENGTH
;
713 flags
= (enc
==0?MEM_Blob
:MEM_Str
);
716 if( enc
==SQLITE_UTF8
){
717 for(nByte
=0; nByte
<=iLimit
&& z
[nByte
]; nByte
++){}
719 for(nByte
=0; nByte
<=iLimit
&& (z
[nByte
] | z
[nByte
+1]); nByte
+=2){}
724 /* The following block sets the new values of Mem.z and Mem.xDel. It
725 ** also sets a flag in local variable "flags" to indicate the memory
726 ** management (one of MEM_Dyn or MEM_Static).
728 if( xDel
==SQLITE_TRANSIENT
){
730 if( flags
&MEM_Term
){
731 nAlloc
+= (enc
==SQLITE_UTF8
?1:2);
734 return SQLITE_TOOBIG
;
736 if( sqlite3VdbeMemGrow(pMem
, nAlloc
, 0) ){
739 memcpy(pMem
->z
, z
, nAlloc
);
740 }else if( xDel
==SQLITE_DYNAMIC
){
741 sqlite3VdbeMemRelease(pMem
);
742 pMem
->zMalloc
= pMem
->z
= (char *)z
;
745 sqlite3VdbeMemRelease(pMem
);
748 flags
|= ((xDel
==SQLITE_STATIC
)?MEM_Static
:MEM_Dyn
);
753 pMem
->enc
= (enc
==0 ? SQLITE_UTF8
: enc
);
754 pMem
->type
= (enc
==0 ? SQLITE_BLOB
: SQLITE_TEXT
);
756 #ifndef SQLITE_OMIT_UTF16
757 if( pMem
->enc
!=SQLITE_UTF8
&& sqlite3VdbeMemHandleBom(pMem
) ){
763 return SQLITE_TOOBIG
;
770 ** Compare the values contained by the two memory cells, returning
771 ** negative, zero or positive if pMem1 is less than, equal to, or greater
772 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
773 ** and reals) sorted numerically, followed by text ordered by the collating
774 ** sequence pColl and finally blob's ordered by memcmp().
776 ** Two NULL values are considered equal by this function.
778 int sqlite3MemCompare(const Mem
*pMem1
, const Mem
*pMem2
, const CollSeq
*pColl
){
785 combined_flags
= f1
|f2
;
786 assert( (combined_flags
& MEM_RowSet
)==0 );
788 /* If one value is NULL, it is less than the other. If both values
789 ** are NULL, return 0.
791 if( combined_flags
&MEM_Null
){
792 return (f2
&MEM_Null
) - (f1
&MEM_Null
);
795 /* If one value is a number and the other is not, the number is less.
796 ** If both are numbers, compare as reals if one is a real, or as integers
797 ** if both values are integers.
799 if( combined_flags
&(MEM_Int
|MEM_Real
) ){
800 if( !(f1
&(MEM_Int
|MEM_Real
)) ){
803 if( !(f2
&(MEM_Int
|MEM_Real
)) ){
806 if( (f1
& f2
& MEM_Int
)==0 ){
808 if( (f1
&MEM_Real
)==0 ){
809 r1
= (double)pMem1
->u
.i
;
813 if( (f2
&MEM_Real
)==0 ){
814 r2
= (double)pMem2
->u
.i
;
818 if( r1
<r2
) return -1;
819 if( r1
>r2
) return 1;
822 assert( f1
&MEM_Int
);
823 assert( f2
&MEM_Int
);
824 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
825 if( pMem1
->u
.i
> pMem2
->u
.i
) return 1;
830 /* If one value is a string and the other is a blob, the string is less.
831 ** If both are strings, compare using the collating functions.
833 if( combined_flags
&MEM_Str
){
834 if( (f1
& MEM_Str
)==0 ){
837 if( (f2
& MEM_Str
)==0 ){
841 assert( pMem1
->enc
==pMem2
->enc
);
842 assert( pMem1
->enc
==SQLITE_UTF8
||
843 pMem1
->enc
==SQLITE_UTF16LE
|| pMem1
->enc
==SQLITE_UTF16BE
);
845 /* The collation sequence must be defined at this point, even if
846 ** the user deletes the collation sequence after the vdbe program is
847 ** compiled (this was not always the case).
849 assert( !pColl
|| pColl
->xCmp
);
852 if( pMem1
->enc
==pColl
->enc
){
853 /* The strings are already in the correct encoding. Call the
854 ** comparison function directly */
855 return pColl
->xCmp(pColl
->pUser
,pMem1
->n
,pMem1
->z
,pMem2
->n
,pMem2
->z
);
861 memset(&c1
, 0, sizeof(c1
));
862 memset(&c2
, 0, sizeof(c2
));
863 sqlite3VdbeMemShallowCopy(&c1
, pMem1
, MEM_Ephem
);
864 sqlite3VdbeMemShallowCopy(&c2
, pMem2
, MEM_Ephem
);
865 v1
= sqlite3ValueText((sqlite3_value
*)&c1
, pColl
->enc
);
866 n1
= v1
==0 ? 0 : c1
.n
;
867 v2
= sqlite3ValueText((sqlite3_value
*)&c2
, pColl
->enc
);
868 n2
= v2
==0 ? 0 : c2
.n
;
869 rc
= pColl
->xCmp(pColl
->pUser
, n1
, v1
, n2
, v2
);
870 sqlite3VdbeMemRelease(&c1
);
871 sqlite3VdbeMemRelease(&c2
);
875 /* If a NULL pointer was passed as the collate function, fall through
876 ** to the blob case and use memcmp(). */
879 /* Both values must be blobs. Compare using memcmp(). */
880 rc
= memcmp(pMem1
->z
, pMem2
->z
, (pMem1
->n
>pMem2
->n
)?pMem2
->n
:pMem1
->n
);
882 rc
= pMem1
->n
- pMem2
->n
;
888 ** Move data out of a btree key or data field and into a Mem structure.
889 ** The data or key is taken from the entry that pCur is currently pointing
890 ** to. offset and amt determine what portion of the data or key to retrieve.
891 ** key is true to get the key or false to get data. The result is written
892 ** into the pMem element.
894 ** The pMem structure is assumed to be uninitialized. Any prior content
895 ** is overwritten without being freed.
897 ** If this routine fails for any reason (malloc returns NULL or unable
898 ** to read from the disk) then the pMem is left in an inconsistent state.
900 int sqlite3VdbeMemFromBtree(
901 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
902 int offset
, /* Offset from the start of data to return bytes from. */
903 int amt
, /* Number of bytes to return. */
904 int key
, /* If true, retrieve from the btree key, not data. */
905 Mem
*pMem
/* OUT: Return data in this Mem structure. */
907 char *zData
; /* Data from the btree layer */
908 int available
= 0; /* Number of bytes available on the local btree page */
909 int rc
= SQLITE_OK
; /* Return code */
911 assert( sqlite3BtreeCursorIsValid(pCur
) );
913 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
914 ** that both the BtShared and database handle mutexes are held. */
915 assert( (pMem
->flags
& MEM_RowSet
)==0 );
917 zData
= (char *)sqlite3BtreeKeyFetch(pCur
, &available
);
919 zData
= (char *)sqlite3BtreeDataFetch(pCur
, &available
);
923 if( offset
+amt
<=available
&& (pMem
->flags
&MEM_Dyn
)==0 ){
924 sqlite3VdbeMemRelease(pMem
);
925 pMem
->z
= &zData
[offset
];
926 pMem
->flags
= MEM_Blob
|MEM_Ephem
;
927 }else if( SQLITE_OK
==(rc
= sqlite3VdbeMemGrow(pMem
, amt
+2, 0)) ){
928 pMem
->flags
= MEM_Blob
|MEM_Dyn
|MEM_Term
;
930 pMem
->type
= SQLITE_BLOB
;
932 rc
= sqlite3BtreeKey(pCur
, offset
, amt
, pMem
->z
);
934 rc
= sqlite3BtreeData(pCur
, offset
, amt
, pMem
->z
);
939 sqlite3VdbeMemRelease(pMem
);
947 /* This function is only available internally, it is not part of the
948 ** external API. It works in a similar way to sqlite3_value_text(),
949 ** except the data returned is in the encoding specified by the second
950 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
953 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
954 ** If that is the case, then the result must be aligned on an even byte
957 const void *sqlite3ValueText(sqlite3_value
* pVal
, u8 enc
){
958 if( !pVal
) return 0;
960 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
961 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
962 assert( (pVal
->flags
& MEM_RowSet
)==0 );
964 if( pVal
->flags
&MEM_Null
){
967 assert( (MEM_Blob
>>3) == MEM_Str
);
968 pVal
->flags
|= (pVal
->flags
& MEM_Blob
)>>3;
970 if( pVal
->flags
&MEM_Str
){
971 sqlite3VdbeChangeEncoding(pVal
, enc
& ~SQLITE_UTF16_ALIGNED
);
972 if( (enc
& SQLITE_UTF16_ALIGNED
)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal
->z
)) ){
973 assert( (pVal
->flags
& (MEM_Ephem
|MEM_Static
))!=0 );
974 if( sqlite3VdbeMemMakeWriteable(pVal
)!=SQLITE_OK
){
978 sqlite3VdbeMemNulTerminate(pVal
); /* IMP: R-31275-44060 */
980 assert( (pVal
->flags
&MEM_Blob
)==0 );
981 sqlite3VdbeMemStringify(pVal
, enc
);
982 assert( 0==(1&SQLITE_PTR_TO_INT(pVal
->z
)) );
984 assert(pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) || pVal
->db
==0
985 || pVal
->db
->mallocFailed
);
986 if( pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) ){
994 ** Create a new sqlite3_value object.
996 sqlite3_value
*sqlite3ValueNew(sqlite3
*db
){
997 Mem
*p
= sqlite3DbMallocZero(db
, sizeof(*p
));
1000 p
->type
= SQLITE_NULL
;
1007 ** Create a new sqlite3_value object, containing the value of pExpr.
1009 ** This only works for very simple expressions that consist of one constant
1010 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1011 ** be converted directly into a value, then the value is allocated and
1012 ** a pointer written to *ppVal. The caller is responsible for deallocating
1013 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1014 ** cannot be converted to a value, then *ppVal is set to NULL.
1016 int sqlite3ValueFromExpr(
1017 sqlite3
*db
, /* The database connection */
1018 Expr
*pExpr
, /* The expression to evaluate */
1019 u8 enc
, /* Encoding to use */
1020 u8 affinity
, /* Affinity to use */
1021 sqlite3_value
**ppVal
/* Write the new value here */
1025 sqlite3_value
*pVal
= 0;
1027 const char *zNeg
= "";
1035 /* op can only be TK_REGISTER if we have compiled with SQLITE_ENABLE_STAT3.
1036 ** The ifdef here is to enable us to achieve 100% branch test coverage even
1037 ** when SQLITE_ENABLE_STAT3 is omitted.
1039 #ifdef SQLITE_ENABLE_STAT3
1040 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
1042 if( NEVER(op
==TK_REGISTER
) ) op
= pExpr
->op2
;
1045 /* Handle negative integers in a single step. This is needed in the
1046 ** case when the value is -9223372036854775808.
1049 && (pExpr
->pLeft
->op
==TK_INTEGER
|| pExpr
->pLeft
->op
==TK_FLOAT
) ){
1050 pExpr
= pExpr
->pLeft
;
1056 if( op
==TK_STRING
|| op
==TK_FLOAT
|| op
==TK_INTEGER
){
1057 pVal
= sqlite3ValueNew(db
);
1058 if( pVal
==0 ) goto no_mem
;
1059 if( ExprHasProperty(pExpr
, EP_IntValue
) ){
1060 sqlite3VdbeMemSetInt64(pVal
, (i64
)pExpr
->u
.iValue
*negInt
);
1062 zVal
= sqlite3MPrintf(db
, "%s%s", zNeg
, pExpr
->u
.zToken
);
1063 if( zVal
==0 ) goto no_mem
;
1064 sqlite3ValueSetStr(pVal
, -1, zVal
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
1065 if( op
==TK_FLOAT
) pVal
->type
= SQLITE_FLOAT
;
1067 if( (op
==TK_INTEGER
|| op
==TK_FLOAT
) && affinity
==SQLITE_AFF_NONE
){
1068 sqlite3ValueApplyAffinity(pVal
, SQLITE_AFF_NUMERIC
, SQLITE_UTF8
);
1070 sqlite3ValueApplyAffinity(pVal
, affinity
, SQLITE_UTF8
);
1072 if( pVal
->flags
& (MEM_Int
|MEM_Real
) ) pVal
->flags
&= ~MEM_Str
;
1073 if( enc
!=SQLITE_UTF8
){
1074 sqlite3VdbeChangeEncoding(pVal
, enc
);
1076 }else if( op
==TK_UMINUS
) {
1077 /* This branch happens for multiple negative signs. Ex: -(-5) */
1078 if( SQLITE_OK
==sqlite3ValueFromExpr(db
,pExpr
->pLeft
,enc
,affinity
,&pVal
) ){
1079 sqlite3VdbeMemNumerify(pVal
);
1080 if( pVal
->u
.i
==SMALLEST_INT64
){
1081 pVal
->flags
&= MEM_Int
;
1082 pVal
->flags
|= MEM_Real
;
1083 pVal
->r
= (double)LARGEST_INT64
;
1085 pVal
->u
.i
= -pVal
->u
.i
;
1088 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1090 }else if( op
==TK_NULL
){
1091 pVal
= sqlite3ValueNew(db
);
1092 if( pVal
==0 ) goto no_mem
;
1094 #ifndef SQLITE_OMIT_BLOB_LITERAL
1095 else if( op
==TK_BLOB
){
1097 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
1098 assert( pExpr
->u
.zToken
[1]=='\'' );
1099 pVal
= sqlite3ValueNew(db
);
1100 if( !pVal
) goto no_mem
;
1101 zVal
= &pExpr
->u
.zToken
[2];
1102 nVal
= sqlite3Strlen30(zVal
)-1;
1103 assert( zVal
[nVal
]=='\'' );
1104 sqlite3VdbeMemSetStr(pVal
, sqlite3HexToBlob(db
, zVal
, nVal
), nVal
/2,
1110 sqlite3VdbeMemStoreType(pVal
);
1116 db
->mallocFailed
= 1;
1117 sqlite3DbFree(db
, zVal
);
1118 sqlite3ValueFree(pVal
);
1120 return SQLITE_NOMEM
;
1124 ** Change the string value of an sqlite3_value object
1126 void sqlite3ValueSetStr(
1127 sqlite3_value
*v
, /* Value to be set */
1128 int n
, /* Length of string z */
1129 const void *z
, /* Text of the new string */
1130 u8 enc
, /* Encoding to use */
1131 void (*xDel
)(void*) /* Destructor for the string */
1133 if( v
) sqlite3VdbeMemSetStr((Mem
*)v
, z
, n
, enc
, xDel
);
1137 ** Free an sqlite3_value object
1139 void sqlite3ValueFree(sqlite3_value
*v
){
1141 sqlite3VdbeMemRelease((Mem
*)v
);
1142 sqlite3DbFree(((Mem
*)v
)->db
, v
);
1146 ** Return the number of bytes in the sqlite3_value object assuming
1147 ** that it uses the encoding "enc"
1149 int sqlite3ValueBytes(sqlite3_value
*pVal
, u8 enc
){
1150 Mem
*p
= (Mem
*)pVal
;
1151 if( (p
->flags
& MEM_Blob
)!=0 || sqlite3ValueText(pVal
, enc
) ){
1152 if( p
->flags
& MEM_Zero
){
1153 return p
->n
+ p
->u
.nZero
;