4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 #include "sqliteInt.h"
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed. Initialize the pParse structure as needed.
31 void sqlite3BeginParse(Parse
*pParse
, int explainFlag
){
32 pParse
->explain
= (u8
)explainFlag
;
36 #ifndef SQLITE_OMIT_SHARED_CACHE
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
42 int iDb
; /* The database containing the table to be locked */
43 int iTab
; /* The root page of the table to be locked */
44 u8 isWriteLock
; /* True for write lock. False for a read lock */
45 const char *zName
; /* Name of the table */
49 ** Record the fact that we want to lock a table at run-time.
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
54 ** This routine just records the fact that the lock is desired. The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
58 void sqlite3TableLock(
59 Parse
*pParse
, /* Parsing context */
60 int iDb
, /* Index of the database containing the table to lock */
61 int iTab
, /* Root page number of the table to be locked */
62 u8 isWriteLock
, /* True for a write lock */
63 const char *zName
/* Name of the table to be locked */
65 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
71 for(i
=0; i
<pToplevel
->nTableLock
; i
++){
72 p
= &pToplevel
->aTableLock
[i
];
73 if( p
->iDb
==iDb
&& p
->iTab
==iTab
){
74 p
->isWriteLock
= (p
->isWriteLock
|| isWriteLock
);
79 nBytes
= sizeof(TableLock
) * (pToplevel
->nTableLock
+1);
80 pToplevel
->aTableLock
=
81 sqlite3DbReallocOrFree(pToplevel
->db
, pToplevel
->aTableLock
, nBytes
);
82 if( pToplevel
->aTableLock
){
83 p
= &pToplevel
->aTableLock
[pToplevel
->nTableLock
++];
86 p
->isWriteLock
= isWriteLock
;
89 pToplevel
->nTableLock
= 0;
90 pToplevel
->db
->mallocFailed
= 1;
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
98 static void codeTableLocks(Parse
*pParse
){
102 pVdbe
= sqlite3GetVdbe(pParse
);
103 assert( pVdbe
!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
105 for(i
=0; i
<pParse
->nTableLock
; i
++){
106 TableLock
*p
= &pParse
->aTableLock
[i
];
108 sqlite3VdbeAddOp4(pVdbe
, OP_TableLock
, p1
, p
->iTab
, p
->isWriteLock
,
109 p
->zName
, P4_STATIC
);
113 #define codeTableLocks(x)
117 ** This routine is called after a single SQL statement has been
118 ** parsed and a VDBE program to execute that statement has been
119 ** prepared. This routine puts the finishing touches on the
120 ** VDBE program and resets the pParse structure for the next
123 ** Note that if an error occurred, it might be the case that
124 ** no VDBE code was generated.
126 void sqlite3FinishCoding(Parse
*pParse
){
131 if( db
->mallocFailed
) return;
132 if( pParse
->nested
) return;
133 if( pParse
->nErr
) return;
135 /* Begin by generating some termination code at the end of the
138 v
= sqlite3GetVdbe(pParse
);
139 assert( !pParse
->isMultiWrite
140 || sqlite3VdbeAssertMayAbort(v
, pParse
->mayAbort
));
142 sqlite3VdbeAddOp0(v
, OP_Halt
);
144 /* The cookie mask contains one bit for each database file open.
145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
146 ** set for each database that is used. Generate code to start a
147 ** transaction on each used database and to verify the schema cookie
148 ** on each used database.
150 if( pParse
->cookieGoto
>0 ){
153 sqlite3VdbeJumpHere(v
, pParse
->cookieGoto
-1);
154 for(iDb
=0, mask
=1; iDb
<db
->nDb
; mask
<<=1, iDb
++){
155 if( (mask
& pParse
->cookieMask
)==0 ) continue;
156 sqlite3VdbeUsesBtree(v
, iDb
);
157 sqlite3VdbeAddOp2(v
,OP_Transaction
, iDb
, (mask
& pParse
->writeMask
)!=0);
158 if( db
->init
.busy
==0 ){
159 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
160 sqlite3VdbeAddOp3(v
, OP_VerifyCookie
,
161 iDb
, pParse
->cookieValue
[iDb
],
162 db
->aDb
[iDb
].pSchema
->iGeneration
);
165 #ifndef SQLITE_OMIT_VIRTUALTABLE
168 for(i
=0; i
<pParse
->nVtabLock
; i
++){
169 char *vtab
= (char *)sqlite3GetVTable(db
, pParse
->apVtabLock
[i
]);
170 sqlite3VdbeAddOp4(v
, OP_VBegin
, 0, 0, 0, vtab
, P4_VTAB
);
172 pParse
->nVtabLock
= 0;
176 /* Once all the cookies have been verified and transactions opened,
177 ** obtain the required table-locks. This is a no-op unless the
178 ** shared-cache feature is enabled.
180 codeTableLocks(pParse
);
182 /* Initialize any AUTOINCREMENT data structures required.
184 sqlite3AutoincrementBegin(pParse
);
186 /* Finally, jump back to the beginning of the executable code. */
187 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pParse
->cookieGoto
);
192 /* Get the VDBE program ready for execution
194 if( v
&& ALWAYS(pParse
->nErr
==0) && !db
->mallocFailed
){
196 FILE *trace
= (db
->flags
& SQLITE_VdbeTrace
)!=0 ? stdout
: 0;
197 sqlite3VdbeTrace(v
, trace
);
199 assert( pParse
->iCacheLevel
==0 ); /* Disables and re-enables match */
200 /* A minimum of one cursor is required if autoincrement is used
201 * See ticket [a696379c1f08866] */
202 if( pParse
->pAinc
!=0 && pParse
->nTab
==0 ) pParse
->nTab
= 1;
203 sqlite3VdbeMakeReady(v
, pParse
);
204 pParse
->rc
= SQLITE_DONE
;
205 pParse
->colNamesSet
= 0;
207 pParse
->rc
= SQLITE_ERROR
;
213 pParse
->cookieMask
= 0;
214 pParse
->cookieGoto
= 0;
218 ** Run the parser and code generator recursively in order to generate
219 ** code for the SQL statement given onto the end of the pParse context
220 ** currently under construction. When the parser is run recursively
221 ** this way, the final OP_Halt is not appended and other initialization
222 ** and finalization steps are omitted because those are handling by the
225 ** Not everything is nestable. This facility is designed to permit
226 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
227 ** care if you decide to try to use this routine for some other purposes.
229 void sqlite3NestedParse(Parse
*pParse
, const char *zFormat
, ...){
233 sqlite3
*db
= pParse
->db
;
234 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
235 char saveBuf
[SAVE_SZ
];
237 if( pParse
->nErr
) return;
238 assert( pParse
->nested
<10 ); /* Nesting should only be of limited depth */
239 va_start(ap
, zFormat
);
240 zSql
= sqlite3VMPrintf(db
, zFormat
, ap
);
243 return; /* A malloc must have failed */
246 memcpy(saveBuf
, &pParse
->nVar
, SAVE_SZ
);
247 memset(&pParse
->nVar
, 0, SAVE_SZ
);
248 sqlite3RunParser(pParse
, zSql
, &zErrMsg
);
249 sqlite3DbFree(db
, zErrMsg
);
250 sqlite3DbFree(db
, zSql
);
251 memcpy(&pParse
->nVar
, saveBuf
, SAVE_SZ
);
256 ** Locate the in-memory structure that describes a particular database
257 ** table given the name of that table and (optionally) the name of the
258 ** database containing the table. Return NULL if not found.
260 ** If zDatabase is 0, all databases are searched for the table and the
261 ** first matching table is returned. (No checking for duplicate table
262 ** names is done.) The search order is TEMP first, then MAIN, then any
263 ** auxiliary databases added using the ATTACH command.
265 ** See also sqlite3LocateTable().
267 Table
*sqlite3FindTable(sqlite3
*db
, const char *zName
, const char *zDatabase
){
272 nName
= sqlite3Strlen30(zName
);
273 /* All mutexes are required for schema access. Make sure we hold them. */
274 assert( zDatabase
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
275 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
276 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
277 if( zDatabase
!=0 && sqlite3StrICmp(zDatabase
, db
->aDb
[j
].zName
) ) continue;
278 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
279 p
= sqlite3HashFind(&db
->aDb
[j
].pSchema
->tblHash
, zName
, nName
);
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table. Return NULL if not found. Also leave an
289 ** error message in pParse->zErrMsg.
291 ** The difference between this routine and sqlite3FindTable() is that this
292 ** routine leaves an error message in pParse->zErrMsg where
293 ** sqlite3FindTable() does not.
295 Table
*sqlite3LocateTable(
296 Parse
*pParse
, /* context in which to report errors */
297 int isView
, /* True if looking for a VIEW rather than a TABLE */
298 const char *zName
, /* Name of the table we are looking for */
299 const char *zDbase
/* Name of the database. Might be NULL */
303 /* Read the database schema. If an error occurs, leave an error message
304 ** and code in pParse and return NULL. */
305 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
309 p
= sqlite3FindTable(pParse
->db
, zName
, zDbase
);
311 const char *zMsg
= isView
? "no such view" : "no such table";
313 sqlite3ErrorMsg(pParse
, "%s: %s.%s", zMsg
, zDbase
, zName
);
315 sqlite3ErrorMsg(pParse
, "%s: %s", zMsg
, zName
);
317 pParse
->checkSchema
= 1;
323 ** Locate the in-memory structure that describes
324 ** a particular index given the name of that index
325 ** and the name of the database that contains the index.
326 ** Return NULL if not found.
328 ** If zDatabase is 0, all databases are searched for the
329 ** table and the first matching index is returned. (No checking
330 ** for duplicate index names is done.) The search order is
331 ** TEMP first, then MAIN, then any auxiliary databases added
332 ** using the ATTACH command.
334 Index
*sqlite3FindIndex(sqlite3
*db
, const char *zName
, const char *zDb
){
337 int nName
= sqlite3Strlen30(zName
);
338 /* All mutexes are required for schema access. Make sure we hold them. */
339 assert( zDb
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
340 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
341 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
342 Schema
*pSchema
= db
->aDb
[j
].pSchema
;
344 if( zDb
&& sqlite3StrICmp(zDb
, db
->aDb
[j
].zName
) ) continue;
345 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
346 p
= sqlite3HashFind(&pSchema
->idxHash
, zName
, nName
);
353 ** Reclaim the memory used by an index
355 static void freeIndex(sqlite3
*db
, Index
*p
){
356 #ifndef SQLITE_OMIT_ANALYZE
357 sqlite3DeleteIndexSamples(db
, p
);
359 sqlite3DbFree(db
, p
->zColAff
);
360 sqlite3DbFree(db
, p
);
364 ** For the index called zIdxName which is found in the database iDb,
365 ** unlike that index from its Table then remove the index from
366 ** the index hash table and free all memory structures associated
369 void sqlite3UnlinkAndDeleteIndex(sqlite3
*db
, int iDb
, const char *zIdxName
){
374 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
375 pHash
= &db
->aDb
[iDb
].pSchema
->idxHash
;
376 len
= sqlite3Strlen30(zIdxName
);
377 pIndex
= sqlite3HashInsert(pHash
, zIdxName
, len
, 0);
378 if( ALWAYS(pIndex
) ){
379 if( pIndex
->pTable
->pIndex
==pIndex
){
380 pIndex
->pTable
->pIndex
= pIndex
->pNext
;
383 /* Justification of ALWAYS(); The index must be on the list of
385 p
= pIndex
->pTable
->pIndex
;
386 while( ALWAYS(p
) && p
->pNext
!=pIndex
){ p
= p
->pNext
; }
387 if( ALWAYS(p
&& p
->pNext
==pIndex
) ){
388 p
->pNext
= pIndex
->pNext
;
391 freeIndex(db
, pIndex
);
393 db
->flags
|= SQLITE_InternChanges
;
397 ** Look through the list of open database files in db->aDb[] and if
398 ** any have been closed, remove them from the list. Reallocate the
399 ** db->aDb[] structure to a smaller size, if possible.
401 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
402 ** are never candidates for being collapsed.
404 void sqlite3CollapseDatabaseArray(sqlite3
*db
){
406 for(i
=j
=2; i
<db
->nDb
; i
++){
407 struct Db
*pDb
= &db
->aDb
[i
];
409 sqlite3DbFree(db
, pDb
->zName
);
414 db
->aDb
[j
] = db
->aDb
[i
];
418 memset(&db
->aDb
[j
], 0, (db
->nDb
-j
)*sizeof(db
->aDb
[j
]));
420 if( db
->nDb
<=2 && db
->aDb
!=db
->aDbStatic
){
421 memcpy(db
->aDbStatic
, db
->aDb
, 2*sizeof(db
->aDb
[0]));
422 sqlite3DbFree(db
, db
->aDb
);
423 db
->aDb
= db
->aDbStatic
;
428 ** Reset the schema for the database at index iDb. Also reset the
431 void sqlite3ResetOneSchema(sqlite3
*db
, int iDb
){
433 assert( iDb
<db
->nDb
);
435 /* Case 1: Reset the single schema identified by iDb */
437 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
438 assert( pDb
->pSchema
!=0 );
439 sqlite3SchemaClear(pDb
->pSchema
);
441 /* If any database other than TEMP is reset, then also reset TEMP
442 ** since TEMP might be holding triggers that reference tables in the
447 assert( pDb
->pSchema
!=0 );
448 sqlite3SchemaClear(pDb
->pSchema
);
454 ** Erase all schema information from all attached databases (including
455 ** "main" and "temp") for a single database connection.
457 void sqlite3ResetAllSchemasOfConnection(sqlite3
*db
){
459 sqlite3BtreeEnterAll(db
);
460 for(i
=0; i
<db
->nDb
; i
++){
461 Db
*pDb
= &db
->aDb
[i
];
463 sqlite3SchemaClear(pDb
->pSchema
);
466 db
->flags
&= ~SQLITE_InternChanges
;
467 sqlite3VtabUnlockList(db
);
468 sqlite3BtreeLeaveAll(db
);
469 sqlite3CollapseDatabaseArray(db
);
473 ** This routine is called when a commit occurs.
475 void sqlite3CommitInternalChanges(sqlite3
*db
){
476 db
->flags
&= ~SQLITE_InternChanges
;
480 ** Delete memory allocated for the column names of a table or view (the
481 ** Table.aCol[] array).
483 static void sqliteDeleteColumnNames(sqlite3
*db
, Table
*pTable
){
487 if( (pCol
= pTable
->aCol
)!=0 ){
488 for(i
=0; i
<pTable
->nCol
; i
++, pCol
++){
489 sqlite3DbFree(db
, pCol
->zName
);
490 sqlite3ExprDelete(db
, pCol
->pDflt
);
491 sqlite3DbFree(db
, pCol
->zDflt
);
492 sqlite3DbFree(db
, pCol
->zType
);
493 sqlite3DbFree(db
, pCol
->zColl
);
495 sqlite3DbFree(db
, pTable
->aCol
);
500 ** Remove the memory data structures associated with the given
501 ** Table. No changes are made to disk by this routine.
503 ** This routine just deletes the data structure. It does not unlink
504 ** the table data structure from the hash table. But it does destroy
505 ** memory structures of the indices and foreign keys associated with
508 ** The db parameter is optional. It is needed if the Table object
509 ** contains lookaside memory. (Table objects in the schema do not use
510 ** lookaside memory, but some ephemeral Table objects do.) Or the
511 ** db parameter can be used with db->pnBytesFreed to measure the memory
512 ** used by the Table object.
514 void sqlite3DeleteTable(sqlite3
*db
, Table
*pTable
){
515 Index
*pIndex
, *pNext
;
516 TESTONLY( int nLookaside
; ) /* Used to verify lookaside not used for schema */
518 assert( !pTable
|| pTable
->nRef
>0 );
520 /* Do not delete the table until the reference count reaches zero. */
521 if( !pTable
) return;
522 if( ((!db
|| db
->pnBytesFreed
==0) && (--pTable
->nRef
)>0) ) return;
524 /* Record the number of outstanding lookaside allocations in schema Tables
525 ** prior to doing any free() operations. Since schema Tables do not use
526 ** lookaside, this number should not change. */
527 TESTONLY( nLookaside
= (db
&& (pTable
->tabFlags
& TF_Ephemeral
)==0) ?
528 db
->lookaside
.nOut
: 0 );
530 /* Delete all indices associated with this table. */
531 for(pIndex
= pTable
->pIndex
; pIndex
; pIndex
=pNext
){
532 pNext
= pIndex
->pNext
;
533 assert( pIndex
->pSchema
==pTable
->pSchema
);
534 if( !db
|| db
->pnBytesFreed
==0 ){
535 char *zName
= pIndex
->zName
;
536 TESTONLY ( Index
*pOld
= ) sqlite3HashInsert(
537 &pIndex
->pSchema
->idxHash
, zName
, sqlite3Strlen30(zName
), 0
539 assert( db
==0 || sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
540 assert( pOld
==pIndex
|| pOld
==0 );
542 freeIndex(db
, pIndex
);
545 /* Delete any foreign keys attached to this table. */
546 sqlite3FkDelete(db
, pTable
);
548 /* Delete the Table structure itself.
550 sqliteDeleteColumnNames(db
, pTable
);
551 sqlite3DbFree(db
, pTable
->zName
);
552 sqlite3DbFree(db
, pTable
->zColAff
);
553 sqlite3SelectDelete(db
, pTable
->pSelect
);
554 #ifndef SQLITE_OMIT_CHECK
555 sqlite3ExprListDelete(db
, pTable
->pCheck
);
557 #ifndef SQLITE_OMIT_VIRTUALTABLE
558 sqlite3VtabClear(db
, pTable
);
560 sqlite3DbFree(db
, pTable
);
562 /* Verify that no lookaside memory was used by schema tables */
563 assert( nLookaside
==0 || nLookaside
==db
->lookaside
.nOut
);
567 ** Unlink the given table from the hash tables and the delete the
568 ** table structure with all its indices and foreign keys.
570 void sqlite3UnlinkAndDeleteTable(sqlite3
*db
, int iDb
, const char *zTabName
){
575 assert( iDb
>=0 && iDb
<db
->nDb
);
577 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
578 testcase( zTabName
[0]==0 ); /* Zero-length table names are allowed */
580 p
= sqlite3HashInsert(&pDb
->pSchema
->tblHash
, zTabName
,
581 sqlite3Strlen30(zTabName
),0);
582 sqlite3DeleteTable(db
, p
);
583 db
->flags
|= SQLITE_InternChanges
;
587 ** Given a token, return a string that consists of the text of that
588 ** token. Space to hold the returned string
589 ** is obtained from sqliteMalloc() and must be freed by the calling
592 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
593 ** surround the body of the token are removed.
595 ** Tokens are often just pointers into the original SQL text and so
596 ** are not \000 terminated and are not persistent. The returned string
597 ** is \000 terminated and is persistent.
599 char *sqlite3NameFromToken(sqlite3
*db
, Token
*pName
){
602 zName
= sqlite3DbStrNDup(db
, (char*)pName
->z
, pName
->n
);
603 sqlite3Dequote(zName
);
611 ** Open the sqlite_master table stored in database number iDb for
612 ** writing. The table is opened using cursor 0.
614 void sqlite3OpenMasterTable(Parse
*p
, int iDb
){
615 Vdbe
*v
= sqlite3GetVdbe(p
);
616 sqlite3TableLock(p
, iDb
, MASTER_ROOT
, 1, SCHEMA_TABLE(iDb
));
617 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, 0, MASTER_ROOT
, iDb
);
618 sqlite3VdbeChangeP4(v
, -1, (char *)5, P4_INT32
); /* 5 column table */
625 ** Parameter zName points to a nul-terminated buffer containing the name
626 ** of a database ("main", "temp" or the name of an attached db). This
627 ** function returns the index of the named database in db->aDb[], or
628 ** -1 if the named db cannot be found.
630 int sqlite3FindDbName(sqlite3
*db
, const char *zName
){
631 int i
= -1; /* Database number */
634 int n
= sqlite3Strlen30(zName
);
635 for(i
=(db
->nDb
-1), pDb
=&db
->aDb
[i
]; i
>=0; i
--, pDb
--){
636 if( (!OMIT_TEMPDB
|| i
!=1 ) && n
==sqlite3Strlen30(pDb
->zName
) &&
637 0==sqlite3StrICmp(pDb
->zName
, zName
) ){
646 ** The token *pName contains the name of a database (either "main" or
647 ** "temp" or the name of an attached db). This routine returns the
648 ** index of the named database in db->aDb[], or -1 if the named db
651 int sqlite3FindDb(sqlite3
*db
, Token
*pName
){
652 int i
; /* Database number */
653 char *zName
; /* Name we are searching for */
654 zName
= sqlite3NameFromToken(db
, pName
);
655 i
= sqlite3FindDbName(db
, zName
);
656 sqlite3DbFree(db
, zName
);
660 /* The table or view or trigger name is passed to this routine via tokens
661 ** pName1 and pName2. If the table name was fully qualified, for example:
663 ** CREATE TABLE xxx.yyy (...);
665 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
666 ** the table name is not fully qualified, i.e.:
668 ** CREATE TABLE yyy(...);
670 ** Then pName1 is set to "yyy" and pName2 is "".
672 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
673 ** pName2) that stores the unqualified table name. The index of the
674 ** database "xxx" is returned.
676 int sqlite3TwoPartName(
677 Parse
*pParse
, /* Parsing and code generating context */
678 Token
*pName1
, /* The "xxx" in the name "xxx.yyy" or "xxx" */
679 Token
*pName2
, /* The "yyy" in the name "xxx.yyy" */
680 Token
**pUnqual
/* Write the unqualified object name here */
682 int iDb
; /* Database holding the object */
683 sqlite3
*db
= pParse
->db
;
685 if( ALWAYS(pName2
!=0) && pName2
->n
>0 ){
686 if( db
->init
.busy
) {
687 sqlite3ErrorMsg(pParse
, "corrupt database");
692 iDb
= sqlite3FindDb(db
, pName1
);
694 sqlite3ErrorMsg(pParse
, "unknown database %T", pName1
);
699 assert( db
->init
.iDb
==0 || db
->init
.busy
);
707 ** This routine is used to check if the UTF-8 string zName is a legal
708 ** unqualified name for a new schema object (table, index, view or
709 ** trigger). All names are legal except those that begin with the string
710 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
711 ** is reserved for internal use.
713 int sqlite3CheckObjectName(Parse
*pParse
, const char *zName
){
714 if( !pParse
->db
->init
.busy
&& pParse
->nested
==0
715 && (pParse
->db
->flags
& SQLITE_WriteSchema
)==0
716 && 0==sqlite3StrNICmp(zName
, "sqlite_", 7) ){
717 sqlite3ErrorMsg(pParse
, "object name reserved for internal use: %s", zName
);
724 ** Begin constructing a new table representation in memory. This is
725 ** the first of several action routines that get called in response
726 ** to a CREATE TABLE statement. In particular, this routine is called
727 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
728 ** flag is true if the table should be stored in the auxiliary database
729 ** file instead of in the main database file. This is normally the case
730 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
733 ** The new table record is initialized and put in pParse->pNewTable.
734 ** As more of the CREATE TABLE statement is parsed, additional action
735 ** routines will be called to add more information to this record.
736 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
737 ** is called to complete the construction of the new table record.
739 void sqlite3StartTable(
740 Parse
*pParse
, /* Parser context */
741 Token
*pName1
, /* First part of the name of the table or view */
742 Token
*pName2
, /* Second part of the name of the table or view */
743 int isTemp
, /* True if this is a TEMP table */
744 int isView
, /* True if this is a VIEW */
745 int isVirtual
, /* True if this is a VIRTUAL table */
746 int noErr
/* Do nothing if table already exists */
749 char *zName
= 0; /* The name of the new table */
750 sqlite3
*db
= pParse
->db
;
752 int iDb
; /* Database number to create the table in */
753 Token
*pName
; /* Unqualified name of the table to create */
755 /* The table or view name to create is passed to this routine via tokens
756 ** pName1 and pName2. If the table name was fully qualified, for example:
758 ** CREATE TABLE xxx.yyy (...);
760 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
761 ** the table name is not fully qualified, i.e.:
763 ** CREATE TABLE yyy(...);
765 ** Then pName1 is set to "yyy" and pName2 is "".
767 ** The call below sets the pName pointer to point at the token (pName1 or
768 ** pName2) that stores the unqualified table name. The variable iDb is
769 ** set to the index of the database that the table or view is to be
772 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
774 if( !OMIT_TEMPDB
&& isTemp
&& pName2
->n
>0 && iDb
!=1 ){
775 /* If creating a temp table, the name may not be qualified. Unless
776 ** the database name is "temp" anyway. */
777 sqlite3ErrorMsg(pParse
, "temporary table name must be unqualified");
780 if( !OMIT_TEMPDB
&& isTemp
) iDb
= 1;
782 pParse
->sNameToken
= *pName
;
783 zName
= sqlite3NameFromToken(db
, pName
);
784 if( zName
==0 ) return;
785 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
) ){
786 goto begin_table_error
;
788 if( db
->init
.iDb
==1 ) isTemp
= 1;
789 #ifndef SQLITE_OMIT_AUTHORIZATION
790 assert( (isTemp
& 1)==isTemp
);
793 char *zDb
= db
->aDb
[iDb
].zName
;
794 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(isTemp
), 0, zDb
) ){
795 goto begin_table_error
;
798 if( !OMIT_TEMPDB
&& isTemp
){
799 code
= SQLITE_CREATE_TEMP_VIEW
;
801 code
= SQLITE_CREATE_VIEW
;
804 if( !OMIT_TEMPDB
&& isTemp
){
805 code
= SQLITE_CREATE_TEMP_TABLE
;
807 code
= SQLITE_CREATE_TABLE
;
810 if( !isVirtual
&& sqlite3AuthCheck(pParse
, code
, zName
, 0, zDb
) ){
811 goto begin_table_error
;
816 /* Make sure the new table name does not collide with an existing
817 ** index or table name in the same database. Issue an error message if
818 ** it does. The exception is if the statement being parsed was passed
819 ** to an sqlite3_declare_vtab() call. In that case only the column names
820 ** and types will be used, so there is no need to test for namespace
823 if( !IN_DECLARE_VTAB
){
824 char *zDb
= db
->aDb
[iDb
].zName
;
825 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
826 goto begin_table_error
;
828 pTable
= sqlite3FindTable(db
, zName
, zDb
);
831 sqlite3ErrorMsg(pParse
, "table %T already exists", pName
);
833 assert( !db
->init
.busy
);
834 sqlite3CodeVerifySchema(pParse
, iDb
);
836 goto begin_table_error
;
838 if( sqlite3FindIndex(db
, zName
, zDb
)!=0 ){
839 sqlite3ErrorMsg(pParse
, "there is already an index named %s", zName
);
840 goto begin_table_error
;
844 pTable
= sqlite3DbMallocZero(db
, sizeof(Table
));
846 db
->mallocFailed
= 1;
847 pParse
->rc
= SQLITE_NOMEM
;
849 goto begin_table_error
;
851 pTable
->zName
= zName
;
853 pTable
->pSchema
= db
->aDb
[iDb
].pSchema
;
855 pTable
->nRowEst
= 1000000;
856 assert( pParse
->pNewTable
==0 );
857 pParse
->pNewTable
= pTable
;
859 /* If this is the magic sqlite_sequence table used by autoincrement,
860 ** then record a pointer to this table in the main database structure
861 ** so that INSERT can find the table easily.
863 #ifndef SQLITE_OMIT_AUTOINCREMENT
864 if( !pParse
->nested
&& strcmp(zName
, "sqlite_sequence")==0 ){
865 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
866 pTable
->pSchema
->pSeqTab
= pTable
;
870 /* Begin generating the code that will insert the table record into
871 ** the SQLITE_MASTER table. Note in particular that we must go ahead
872 ** and allocate the record number for the table entry now. Before any
873 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
874 ** indices to be created and the table record must come before the
875 ** indices. Hence, the record number for the table must be allocated
878 if( !db
->init
.busy
&& (v
= sqlite3GetVdbe(pParse
))!=0 ){
881 int reg1
, reg2
, reg3
;
882 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
884 #ifndef SQLITE_OMIT_VIRTUALTABLE
886 sqlite3VdbeAddOp0(v
, OP_VBegin
);
890 /* If the file format and encoding in the database have not been set,
893 reg1
= pParse
->regRowid
= ++pParse
->nMem
;
894 reg2
= pParse
->regRoot
= ++pParse
->nMem
;
895 reg3
= ++pParse
->nMem
;
896 sqlite3VdbeAddOp3(v
, OP_ReadCookie
, iDb
, reg3
, BTREE_FILE_FORMAT
);
897 sqlite3VdbeUsesBtree(v
, iDb
);
898 j1
= sqlite3VdbeAddOp1(v
, OP_If
, reg3
);
899 fileFormat
= (db
->flags
& SQLITE_LegacyFileFmt
)!=0 ?
900 1 : SQLITE_MAX_FILE_FORMAT
;
901 sqlite3VdbeAddOp2(v
, OP_Integer
, fileFormat
, reg3
);
902 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_FILE_FORMAT
, reg3
);
903 sqlite3VdbeAddOp2(v
, OP_Integer
, ENC(db
), reg3
);
904 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_TEXT_ENCODING
, reg3
);
905 sqlite3VdbeJumpHere(v
, j1
);
907 /* This just creates a place-holder record in the sqlite_master table.
908 ** The record created does not contain anything yet. It will be replaced
909 ** by the real entry in code generated at sqlite3EndTable().
911 ** The rowid for the new entry is left in register pParse->regRowid.
912 ** The root page number of the new table is left in reg pParse->regRoot.
913 ** The rowid and root page number values are needed by the code that
914 ** sqlite3EndTable will generate.
916 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
917 if( isView
|| isVirtual
){
918 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, reg2
);
922 sqlite3VdbeAddOp2(v
, OP_CreateTable
, iDb
, reg2
);
924 sqlite3OpenMasterTable(pParse
, iDb
);
925 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 0, reg1
);
926 sqlite3VdbeAddOp2(v
, OP_Null
, 0, reg3
);
927 sqlite3VdbeAddOp3(v
, OP_Insert
, 0, reg3
, reg1
);
928 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
929 sqlite3VdbeAddOp0(v
, OP_Close
);
932 /* Normal (non-error) return. */
935 /* If an error occurs, we jump here */
937 sqlite3DbFree(db
, zName
);
942 ** This macro is used to compare two strings in a case-insensitive manner.
943 ** It is slightly faster than calling sqlite3StrICmp() directly, but
944 ** produces larger code.
946 ** WARNING: This macro is not compatible with the strcmp() family. It
947 ** returns true if the two strings are equal, otherwise false.
949 #define STRICMP(x, y) (\
950 sqlite3UpperToLower[*(unsigned char *)(x)]== \
951 sqlite3UpperToLower[*(unsigned char *)(y)] \
952 && sqlite3StrICmp((x)+1,(y)+1)==0 )
955 ** Add a new column to the table currently being constructed.
957 ** The parser calls this routine once for each column declaration
958 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
959 ** first to get things going. Then this routine is called for each
962 void sqlite3AddColumn(Parse
*pParse
, Token
*pName
){
967 sqlite3
*db
= pParse
->db
;
968 if( (p
= pParse
->pNewTable
)==0 ) return;
969 #if SQLITE_MAX_COLUMN
970 if( p
->nCol
+1>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
971 sqlite3ErrorMsg(pParse
, "too many columns on %s", p
->zName
);
975 z
= sqlite3NameFromToken(db
, pName
);
977 for(i
=0; i
<p
->nCol
; i
++){
978 if( STRICMP(z
, p
->aCol
[i
].zName
) ){
979 sqlite3ErrorMsg(pParse
, "duplicate column name: %s", z
);
980 sqlite3DbFree(db
, z
);
984 if( (p
->nCol
& 0x7)==0 ){
986 aNew
= sqlite3DbRealloc(db
,p
->aCol
,(p
->nCol
+8)*sizeof(p
->aCol
[0]));
988 sqlite3DbFree(db
, z
);
993 pCol
= &p
->aCol
[p
->nCol
];
994 memset(pCol
, 0, sizeof(p
->aCol
[0]));
997 /* If there is no type specified, columns have the default affinity
998 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
999 ** be called next to set pCol->affinity correctly.
1001 pCol
->affinity
= SQLITE_AFF_NONE
;
1006 ** This routine is called by the parser while in the middle of
1007 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1008 ** been seen on a column. This routine sets the notNull flag on
1009 ** the column currently under construction.
1011 void sqlite3AddNotNull(Parse
*pParse
, int onError
){
1013 p
= pParse
->pNewTable
;
1014 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1015 p
->aCol
[p
->nCol
-1].notNull
= (u8
)onError
;
1019 ** Scan the column type name zType (length nType) and return the
1020 ** associated affinity type.
1022 ** This routine does a case-independent search of zType for the
1023 ** substrings in the following table. If one of the substrings is
1024 ** found, the corresponding affinity is returned. If zType contains
1025 ** more than one of the substrings, entries toward the top of
1026 ** the table take priority. For example, if zType is 'BLOBINT',
1027 ** SQLITE_AFF_INTEGER is returned.
1029 ** Substring | Affinity
1030 ** --------------------------------
1031 ** 'INT' | SQLITE_AFF_INTEGER
1032 ** 'CHAR' | SQLITE_AFF_TEXT
1033 ** 'CLOB' | SQLITE_AFF_TEXT
1034 ** 'TEXT' | SQLITE_AFF_TEXT
1035 ** 'BLOB' | SQLITE_AFF_NONE
1036 ** 'REAL' | SQLITE_AFF_REAL
1037 ** 'FLOA' | SQLITE_AFF_REAL
1038 ** 'DOUB' | SQLITE_AFF_REAL
1040 ** If none of the substrings in the above table are found,
1041 ** SQLITE_AFF_NUMERIC is returned.
1043 char sqlite3AffinityType(const char *zIn
){
1045 char aff
= SQLITE_AFF_NUMERIC
;
1047 if( zIn
) while( zIn
[0] ){
1048 h
= (h
<<8) + sqlite3UpperToLower
[(*zIn
)&0xff];
1050 if( h
==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1051 aff
= SQLITE_AFF_TEXT
;
1052 }else if( h
==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1053 aff
= SQLITE_AFF_TEXT
;
1054 }else if( h
==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1055 aff
= SQLITE_AFF_TEXT
;
1056 }else if( h
==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1057 && (aff
==SQLITE_AFF_NUMERIC
|| aff
==SQLITE_AFF_REAL
) ){
1058 aff
= SQLITE_AFF_NONE
;
1059 #ifndef SQLITE_OMIT_FLOATING_POINT
1060 }else if( h
==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1061 && aff
==SQLITE_AFF_NUMERIC
){
1062 aff
= SQLITE_AFF_REAL
;
1063 }else if( h
==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1064 && aff
==SQLITE_AFF_NUMERIC
){
1065 aff
= SQLITE_AFF_REAL
;
1066 }else if( h
==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1067 && aff
==SQLITE_AFF_NUMERIC
){
1068 aff
= SQLITE_AFF_REAL
;
1070 }else if( (h
&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1071 aff
= SQLITE_AFF_INTEGER
;
1080 ** This routine is called by the parser while in the middle of
1081 ** parsing a CREATE TABLE statement. The pFirst token is the first
1082 ** token in the sequence of tokens that describe the type of the
1083 ** column currently under construction. pLast is the last token
1084 ** in the sequence. Use this information to construct a string
1085 ** that contains the typename of the column and store that string
1088 void sqlite3AddColumnType(Parse
*pParse
, Token
*pType
){
1092 p
= pParse
->pNewTable
;
1093 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1094 pCol
= &p
->aCol
[p
->nCol
-1];
1095 assert( pCol
->zType
==0 );
1096 pCol
->zType
= sqlite3NameFromToken(pParse
->db
, pType
);
1097 pCol
->affinity
= sqlite3AffinityType(pCol
->zType
);
1101 ** The expression is the default value for the most recently added column
1102 ** of the table currently under construction.
1104 ** Default value expressions must be constant. Raise an exception if this
1107 ** This routine is called by the parser while in the middle of
1108 ** parsing a CREATE TABLE statement.
1110 void sqlite3AddDefaultValue(Parse
*pParse
, ExprSpan
*pSpan
){
1113 sqlite3
*db
= pParse
->db
;
1114 p
= pParse
->pNewTable
;
1116 pCol
= &(p
->aCol
[p
->nCol
-1]);
1117 if( !sqlite3ExprIsConstantOrFunction(pSpan
->pExpr
) ){
1118 sqlite3ErrorMsg(pParse
, "default value of column [%s] is not constant",
1121 /* A copy of pExpr is used instead of the original, as pExpr contains
1122 ** tokens that point to volatile memory. The 'span' of the expression
1123 ** is required by pragma table_info.
1125 sqlite3ExprDelete(db
, pCol
->pDflt
);
1126 pCol
->pDflt
= sqlite3ExprDup(db
, pSpan
->pExpr
, EXPRDUP_REDUCE
);
1127 sqlite3DbFree(db
, pCol
->zDflt
);
1128 pCol
->zDflt
= sqlite3DbStrNDup(db
, (char*)pSpan
->zStart
,
1129 (int)(pSpan
->zEnd
- pSpan
->zStart
));
1132 sqlite3ExprDelete(db
, pSpan
->pExpr
);
1136 ** Designate the PRIMARY KEY for the table. pList is a list of names
1137 ** of columns that form the primary key. If pList is NULL, then the
1138 ** most recently added column of the table is the primary key.
1140 ** A table can have at most one primary key. If the table already has
1141 ** a primary key (and this is the second primary key) then create an
1144 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1145 ** then we will try to use that column as the rowid. Set the Table.iPKey
1146 ** field of the table under construction to be the index of the
1147 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1148 ** no INTEGER PRIMARY KEY.
1150 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1151 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1153 void sqlite3AddPrimaryKey(
1154 Parse
*pParse
, /* Parsing context */
1155 ExprList
*pList
, /* List of field names to be indexed */
1156 int onError
, /* What to do with a uniqueness conflict */
1157 int autoInc
, /* True if the AUTOINCREMENT keyword is present */
1158 int sortOrder
/* SQLITE_SO_ASC or SQLITE_SO_DESC */
1160 Table
*pTab
= pParse
->pNewTable
;
1163 if( pTab
==0 || IN_DECLARE_VTAB
) goto primary_key_exit
;
1164 if( pTab
->tabFlags
& TF_HasPrimaryKey
){
1165 sqlite3ErrorMsg(pParse
,
1166 "table \"%s\" has more than one primary key", pTab
->zName
);
1167 goto primary_key_exit
;
1169 pTab
->tabFlags
|= TF_HasPrimaryKey
;
1171 iCol
= pTab
->nCol
- 1;
1172 pTab
->aCol
[iCol
].isPrimKey
= 1;
1174 for(i
=0; i
<pList
->nExpr
; i
++){
1175 for(iCol
=0; iCol
<pTab
->nCol
; iCol
++){
1176 if( sqlite3StrICmp(pList
->a
[i
].zName
, pTab
->aCol
[iCol
].zName
)==0 ){
1180 if( iCol
<pTab
->nCol
){
1181 pTab
->aCol
[iCol
].isPrimKey
= 1;
1184 if( pList
->nExpr
>1 ) iCol
= -1;
1186 if( iCol
>=0 && iCol
<pTab
->nCol
){
1187 zType
= pTab
->aCol
[iCol
].zType
;
1189 if( zType
&& sqlite3StrICmp(zType
, "INTEGER")==0
1190 && sortOrder
==SQLITE_SO_ASC
){
1192 pTab
->keyConf
= (u8
)onError
;
1193 assert( autoInc
==0 || autoInc
==1 );
1194 pTab
->tabFlags
|= autoInc
*TF_Autoincrement
;
1195 }else if( autoInc
){
1196 #ifndef SQLITE_OMIT_AUTOINCREMENT
1197 sqlite3ErrorMsg(pParse
, "AUTOINCREMENT is only allowed on an "
1198 "INTEGER PRIMARY KEY");
1202 p
= sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, onError
, 0, 0, sortOrder
, 0);
1210 sqlite3ExprListDelete(pParse
->db
, pList
);
1215 ** Add a new CHECK constraint to the table currently under construction.
1217 void sqlite3AddCheckConstraint(
1218 Parse
*pParse
, /* Parsing context */
1219 Expr
*pCheckExpr
/* The check expression */
1221 #ifndef SQLITE_OMIT_CHECK
1222 Table
*pTab
= pParse
->pNewTable
;
1223 if( pTab
&& !IN_DECLARE_VTAB
){
1224 pTab
->pCheck
= sqlite3ExprListAppend(pParse
, pTab
->pCheck
, pCheckExpr
);
1225 if( pParse
->constraintName
.n
){
1226 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &pParse
->constraintName
, 1);
1231 sqlite3ExprDelete(pParse
->db
, pCheckExpr
);
1236 ** Set the collation function of the most recently parsed table column
1237 ** to the CollSeq given.
1239 void sqlite3AddCollateType(Parse
*pParse
, Token
*pToken
){
1242 char *zColl
; /* Dequoted name of collation sequence */
1245 if( (p
= pParse
->pNewTable
)==0 ) return;
1248 zColl
= sqlite3NameFromToken(db
, pToken
);
1249 if( !zColl
) return;
1251 if( sqlite3LocateCollSeq(pParse
, zColl
) ){
1253 p
->aCol
[i
].zColl
= zColl
;
1255 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1256 ** then an index may have been created on this column before the
1257 ** collation type was added. Correct this if it is the case.
1259 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1260 assert( pIdx
->nColumn
==1 );
1261 if( pIdx
->aiColumn
[0]==i
){
1262 pIdx
->azColl
[0] = p
->aCol
[i
].zColl
;
1266 sqlite3DbFree(db
, zColl
);
1271 ** This function returns the collation sequence for database native text
1272 ** encoding identified by the string zName, length nName.
1274 ** If the requested collation sequence is not available, or not available
1275 ** in the database native encoding, the collation factory is invoked to
1276 ** request it. If the collation factory does not supply such a sequence,
1277 ** and the sequence is available in another text encoding, then that is
1278 ** returned instead.
1280 ** If no versions of the requested collations sequence are available, or
1281 ** another error occurs, NULL is returned and an error message written into
1284 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1285 ** invokes the collation factory if the named collation cannot be found
1286 ** and generates an error message.
1288 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1290 CollSeq
*sqlite3LocateCollSeq(Parse
*pParse
, const char *zName
){
1291 sqlite3
*db
= pParse
->db
;
1293 u8 initbusy
= db
->init
.busy
;
1296 pColl
= sqlite3FindCollSeq(db
, enc
, zName
, initbusy
);
1297 if( !initbusy
&& (!pColl
|| !pColl
->xCmp
) ){
1298 pColl
= sqlite3GetCollSeq(db
, enc
, pColl
, zName
);
1300 sqlite3ErrorMsg(pParse
, "no such collation sequence: %s", zName
);
1309 ** Generate code that will increment the schema cookie.
1311 ** The schema cookie is used to determine when the schema for the
1312 ** database changes. After each schema change, the cookie value
1313 ** changes. When a process first reads the schema it records the
1314 ** cookie. Thereafter, whenever it goes to access the database,
1315 ** it checks the cookie to make sure the schema has not changed
1316 ** since it was last read.
1318 ** This plan is not completely bullet-proof. It is possible for
1319 ** the schema to change multiple times and for the cookie to be
1320 ** set back to prior value. But schema changes are infrequent
1321 ** and the probability of hitting the same cookie value is only
1322 ** 1 chance in 2^32. So we're safe enough.
1324 void sqlite3ChangeCookie(Parse
*pParse
, int iDb
){
1325 int r1
= sqlite3GetTempReg(pParse
);
1326 sqlite3
*db
= pParse
->db
;
1327 Vdbe
*v
= pParse
->pVdbe
;
1328 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1329 sqlite3VdbeAddOp2(v
, OP_Integer
, db
->aDb
[iDb
].pSchema
->schema_cookie
+1, r1
);
1330 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_SCHEMA_VERSION
, r1
);
1331 sqlite3ReleaseTempReg(pParse
, r1
);
1335 ** Measure the number of characters needed to output the given
1336 ** identifier. The number returned includes any quotes used
1337 ** but does not include the null terminator.
1339 ** The estimate is conservative. It might be larger that what is
1342 static int identLength(const char *z
){
1344 for(n
=0; *z
; n
++, z
++){
1345 if( *z
=='"' ){ n
++; }
1351 ** The first parameter is a pointer to an output buffer. The second
1352 ** parameter is a pointer to an integer that contains the offset at
1353 ** which to write into the output buffer. This function copies the
1354 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1355 ** to the specified offset in the buffer and updates *pIdx to refer
1356 ** to the first byte after the last byte written before returning.
1358 ** If the string zSignedIdent consists entirely of alpha-numeric
1359 ** characters, does not begin with a digit and is not an SQL keyword,
1360 ** then it is copied to the output buffer exactly as it is. Otherwise,
1361 ** it is quoted using double-quotes.
1363 static void identPut(char *z
, int *pIdx
, char *zSignedIdent
){
1364 unsigned char *zIdent
= (unsigned char*)zSignedIdent
;
1365 int i
, j
, needQuote
;
1368 for(j
=0; zIdent
[j
]; j
++){
1369 if( !sqlite3Isalnum(zIdent
[j
]) && zIdent
[j
]!='_' ) break;
1371 needQuote
= sqlite3Isdigit(zIdent
[0]) || sqlite3KeywordCode(zIdent
, j
)!=TK_ID
;
1373 needQuote
= zIdent
[j
];
1376 if( needQuote
) z
[i
++] = '"';
1377 for(j
=0; zIdent
[j
]; j
++){
1379 if( zIdent
[j
]=='"' ) z
[i
++] = '"';
1381 if( needQuote
) z
[i
++] = '"';
1387 ** Generate a CREATE TABLE statement appropriate for the given
1388 ** table. Memory to hold the text of the statement is obtained
1389 ** from sqliteMalloc() and must be freed by the calling function.
1391 static char *createTableStmt(sqlite3
*db
, Table
*p
){
1394 char *zSep
, *zSep2
, *zEnd
;
1397 for(pCol
= p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
1398 n
+= identLength(pCol
->zName
) + 5;
1400 n
+= identLength(p
->zName
);
1410 n
+= 35 + 6*p
->nCol
;
1411 zStmt
= sqlite3DbMallocRaw(0, n
);
1413 db
->mallocFailed
= 1;
1416 sqlite3_snprintf(n
, zStmt
, "CREATE TABLE ");
1417 k
= sqlite3Strlen30(zStmt
);
1418 identPut(zStmt
, &k
, p
->zName
);
1420 for(pCol
=p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
1421 static const char * const azType
[] = {
1422 /* SQLITE_AFF_TEXT */ " TEXT",
1423 /* SQLITE_AFF_NONE */ "",
1424 /* SQLITE_AFF_NUMERIC */ " NUM",
1425 /* SQLITE_AFF_INTEGER */ " INT",
1426 /* SQLITE_AFF_REAL */ " REAL"
1431 sqlite3_snprintf(n
-k
, &zStmt
[k
], zSep
);
1432 k
+= sqlite3Strlen30(&zStmt
[k
]);
1434 identPut(zStmt
, &k
, pCol
->zName
);
1435 assert( pCol
->affinity
-SQLITE_AFF_TEXT
>= 0 );
1436 assert( pCol
->affinity
-SQLITE_AFF_TEXT
< ArraySize(azType
) );
1437 testcase( pCol
->affinity
==SQLITE_AFF_TEXT
);
1438 testcase( pCol
->affinity
==SQLITE_AFF_NONE
);
1439 testcase( pCol
->affinity
==SQLITE_AFF_NUMERIC
);
1440 testcase( pCol
->affinity
==SQLITE_AFF_INTEGER
);
1441 testcase( pCol
->affinity
==SQLITE_AFF_REAL
);
1443 zType
= azType
[pCol
->affinity
- SQLITE_AFF_TEXT
];
1444 len
= sqlite3Strlen30(zType
);
1445 assert( pCol
->affinity
==SQLITE_AFF_NONE
1446 || pCol
->affinity
==sqlite3AffinityType(zType
) );
1447 memcpy(&zStmt
[k
], zType
, len
);
1451 sqlite3_snprintf(n
-k
, &zStmt
[k
], "%s", zEnd
);
1456 ** This routine is called to report the final ")" that terminates
1457 ** a CREATE TABLE statement.
1459 ** The table structure that other action routines have been building
1460 ** is added to the internal hash tables, assuming no errors have
1463 ** An entry for the table is made in the master table on disk, unless
1464 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1465 ** it means we are reading the sqlite_master table because we just
1466 ** connected to the database or because the sqlite_master table has
1467 ** recently changed, so the entry for this table already exists in
1468 ** the sqlite_master table. We do not want to create it again.
1470 ** If the pSelect argument is not NULL, it means that this routine
1471 ** was called to create a table generated from a
1472 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1473 ** the new table will match the result set of the SELECT.
1475 void sqlite3EndTable(
1476 Parse
*pParse
, /* Parse context */
1477 Token
*pCons
, /* The ',' token after the last column defn. */
1478 Token
*pEnd
, /* The final ')' token in the CREATE TABLE */
1479 Select
*pSelect
/* Select from a "CREATE ... AS SELECT" */
1482 sqlite3
*db
= pParse
->db
;
1485 if( (pEnd
==0 && pSelect
==0) || db
->mallocFailed
){
1488 p
= pParse
->pNewTable
;
1491 assert( !db
->init
.busy
|| !pSelect
);
1493 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
1495 #ifndef SQLITE_OMIT_CHECK
1496 /* Resolve names in all CHECK constraint expressions.
1499 SrcList sSrc
; /* Fake SrcList for pParse->pNewTable */
1500 NameContext sNC
; /* Name context for pParse->pNewTable */
1501 ExprList
*pList
; /* List of all CHECK constraints */
1502 int i
; /* Loop counter */
1504 memset(&sNC
, 0, sizeof(sNC
));
1505 memset(&sSrc
, 0, sizeof(sSrc
));
1507 sSrc
.a
[0].zName
= p
->zName
;
1509 sSrc
.a
[0].iCursor
= -1;
1510 sNC
.pParse
= pParse
;
1511 sNC
.pSrcList
= &sSrc
;
1512 sNC
.ncFlags
= NC_IsCheck
;
1514 for(i
=0; i
<pList
->nExpr
; i
++){
1515 if( sqlite3ResolveExprNames(&sNC
, pList
->a
[i
].pExpr
) ){
1520 #endif /* !defined(SQLITE_OMIT_CHECK) */
1522 /* If the db->init.busy is 1 it means we are reading the SQL off the
1523 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1524 ** So do not write to the disk again. Extract the root page number
1525 ** for the table from the db->init.newTnum field. (The page number
1526 ** should have been put there by the sqliteOpenCb routine.)
1528 if( db
->init
.busy
){
1529 p
->tnum
= db
->init
.newTnum
;
1532 /* If not initializing, then create a record for the new table
1533 ** in the SQLITE_MASTER table of the database.
1535 ** If this is a TEMPORARY table, write the entry into the auxiliary
1536 ** file instead of into the main database file.
1538 if( !db
->init
.busy
){
1541 char *zType
; /* "view" or "table" */
1542 char *zType2
; /* "VIEW" or "TABLE" */
1543 char *zStmt
; /* Text of the CREATE TABLE or CREATE VIEW statement */
1545 v
= sqlite3GetVdbe(pParse
);
1546 if( NEVER(v
==0) ) return;
1548 sqlite3VdbeAddOp1(v
, OP_Close
, 0);
1551 ** Initialize zType for the new view or table.
1553 if( p
->pSelect
==0 ){
1554 /* A regular table */
1557 #ifndef SQLITE_OMIT_VIEW
1565 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1566 ** statement to populate the new table. The root-page number for the
1567 ** new table is in register pParse->regRoot.
1569 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1570 ** suitable state to query for the column names and types to be used
1571 ** by the new table.
1573 ** A shared-cache write-lock is not required to write to the new table,
1574 ** as a schema-lock must have already been obtained to create it. Since
1575 ** a schema-lock excludes all other database users, the write-lock would
1582 assert(pParse
->nTab
==1);
1583 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, 1, pParse
->regRoot
, iDb
);
1584 sqlite3VdbeChangeP5(v
, 1);
1586 sqlite3SelectDestInit(&dest
, SRT_Table
, 1);
1587 sqlite3Select(pParse
, pSelect
, &dest
);
1588 sqlite3VdbeAddOp1(v
, OP_Close
, 1);
1589 if( pParse
->nErr
==0 ){
1590 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSelect
);
1591 if( pSelTab
==0 ) return;
1592 assert( p
->aCol
==0 );
1593 p
->nCol
= pSelTab
->nCol
;
1594 p
->aCol
= pSelTab
->aCol
;
1597 sqlite3DeleteTable(db
, pSelTab
);
1601 /* Compute the complete text of the CREATE statement */
1603 zStmt
= createTableStmt(db
, p
);
1605 n
= (int)(pEnd
->z
- pParse
->sNameToken
.z
) + 1;
1606 zStmt
= sqlite3MPrintf(db
,
1607 "CREATE %s %.*s", zType2
, n
, pParse
->sNameToken
.z
1611 /* A slot for the record has already been allocated in the
1612 ** SQLITE_MASTER table. We just need to update that slot with all
1613 ** the information we've collected.
1615 sqlite3NestedParse(pParse
,
1617 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1619 db
->aDb
[iDb
].zName
, SCHEMA_TABLE(iDb
),
1627 sqlite3DbFree(db
, zStmt
);
1628 sqlite3ChangeCookie(pParse
, iDb
);
1630 #ifndef SQLITE_OMIT_AUTOINCREMENT
1631 /* Check to see if we need to create an sqlite_sequence table for
1632 ** keeping track of autoincrement keys.
1634 if( p
->tabFlags
& TF_Autoincrement
){
1635 Db
*pDb
= &db
->aDb
[iDb
];
1636 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1637 if( pDb
->pSchema
->pSeqTab
==0 ){
1638 sqlite3NestedParse(pParse
,
1639 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1646 /* Reparse everything to update our internal data structures */
1647 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
1648 sqlite3MPrintf(db
, "tbl_name='%q'", p
->zName
));
1652 /* Add the table to the in-memory representation of the database.
1654 if( db
->init
.busy
){
1656 Schema
*pSchema
= p
->pSchema
;
1657 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1658 pOld
= sqlite3HashInsert(&pSchema
->tblHash
, p
->zName
,
1659 sqlite3Strlen30(p
->zName
),p
);
1661 assert( p
==pOld
); /* Malloc must have failed inside HashInsert() */
1662 db
->mallocFailed
= 1;
1665 pParse
->pNewTable
= 0;
1666 db
->flags
|= SQLITE_InternChanges
;
1668 #ifndef SQLITE_OMIT_ALTERTABLE
1670 const char *zName
= (const char *)pParse
->sNameToken
.z
;
1672 assert( !pSelect
&& pCons
&& pEnd
);
1676 nName
= (int)((const char *)pCons
->z
- zName
);
1677 p
->addColOffset
= 13 + sqlite3Utf8CharLen(zName
, nName
);
1683 #ifndef SQLITE_OMIT_VIEW
1685 ** The parser calls this routine in order to create a new VIEW
1687 void sqlite3CreateView(
1688 Parse
*pParse
, /* The parsing context */
1689 Token
*pBegin
, /* The CREATE token that begins the statement */
1690 Token
*pName1
, /* The token that holds the name of the view */
1691 Token
*pName2
, /* The token that holds the name of the view */
1692 Select
*pSelect
, /* A SELECT statement that will become the new view */
1693 int isTemp
, /* TRUE for a TEMPORARY view */
1694 int noErr
/* Suppress error messages if VIEW already exists */
1703 sqlite3
*db
= pParse
->db
;
1705 if( pParse
->nVar
>0 ){
1706 sqlite3ErrorMsg(pParse
, "parameters are not allowed in views");
1707 sqlite3SelectDelete(db
, pSelect
);
1710 sqlite3StartTable(pParse
, pName1
, pName2
, isTemp
, 1, 0, noErr
);
1711 p
= pParse
->pNewTable
;
1712 if( p
==0 || pParse
->nErr
){
1713 sqlite3SelectDelete(db
, pSelect
);
1716 sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
1717 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
1718 if( sqlite3FixInit(&sFix
, pParse
, iDb
, "view", pName
)
1719 && sqlite3FixSelect(&sFix
, pSelect
)
1721 sqlite3SelectDelete(db
, pSelect
);
1725 /* Make a copy of the entire SELECT statement that defines the view.
1726 ** This will force all the Expr.token.z values to be dynamically
1727 ** allocated rather than point to the input string - which means that
1728 ** they will persist after the current sqlite3_exec() call returns.
1730 p
->pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
1731 sqlite3SelectDelete(db
, pSelect
);
1732 if( db
->mallocFailed
){
1735 if( !db
->init
.busy
){
1736 sqlite3ViewGetColumnNames(pParse
, p
);
1739 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
1742 sEnd
= pParse
->sLastToken
;
1743 if( ALWAYS(sEnd
.z
[0]!=0) && sEnd
.z
[0]!=';' ){
1747 n
= (int)(sEnd
.z
- pBegin
->z
);
1749 while( ALWAYS(n
>0) && sqlite3Isspace(z
[n
-1]) ){ n
--; }
1753 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1754 sqlite3EndTable(pParse
, 0, &sEnd
, 0);
1757 #endif /* SQLITE_OMIT_VIEW */
1759 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1761 ** The Table structure pTable is really a VIEW. Fill in the names of
1762 ** the columns of the view in the pTable structure. Return the number
1763 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
1765 int sqlite3ViewGetColumnNames(Parse
*pParse
, Table
*pTable
){
1766 Table
*pSelTab
; /* A fake table from which we get the result set */
1767 Select
*pSel
; /* Copy of the SELECT that implements the view */
1768 int nErr
= 0; /* Number of errors encountered */
1769 int n
; /* Temporarily holds the number of cursors assigned */
1770 sqlite3
*db
= pParse
->db
; /* Database connection for malloc errors */
1771 int (*xAuth
)(void*,int,const char*,const char*,const char*,const char*);
1775 #ifndef SQLITE_OMIT_VIRTUALTABLE
1776 if( sqlite3VtabCallConnect(pParse
, pTable
) ){
1777 return SQLITE_ERROR
;
1779 if( IsVirtual(pTable
) ) return 0;
1782 #ifndef SQLITE_OMIT_VIEW
1783 /* A positive nCol means the columns names for this view are
1786 if( pTable
->nCol
>0 ) return 0;
1788 /* A negative nCol is a special marker meaning that we are currently
1789 ** trying to compute the column names. If we enter this routine with
1790 ** a negative nCol, it means two or more views form a loop, like this:
1792 ** CREATE VIEW one AS SELECT * FROM two;
1793 ** CREATE VIEW two AS SELECT * FROM one;
1795 ** Actually, the error above is now caught prior to reaching this point.
1796 ** But the following test is still important as it does come up
1797 ** in the following:
1799 ** CREATE TABLE main.ex1(a);
1800 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1801 ** SELECT * FROM temp.ex1;
1803 if( pTable
->nCol
<0 ){
1804 sqlite3ErrorMsg(pParse
, "view %s is circularly defined", pTable
->zName
);
1807 assert( pTable
->nCol
>=0 );
1809 /* If we get this far, it means we need to compute the table names.
1810 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1811 ** "*" elements in the results set of the view and will assign cursors
1812 ** to the elements of the FROM clause. But we do not want these changes
1813 ** to be permanent. So the computation is done on a copy of the SELECT
1814 ** statement that defines the view.
1816 assert( pTable
->pSelect
);
1817 pSel
= sqlite3SelectDup(db
, pTable
->pSelect
, 0);
1819 u8 enableLookaside
= db
->lookaside
.bEnabled
;
1821 sqlite3SrcListAssignCursors(pParse
, pSel
->pSrc
);
1823 db
->lookaside
.bEnabled
= 0;
1824 #ifndef SQLITE_OMIT_AUTHORIZATION
1827 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
);
1830 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
);
1832 db
->lookaside
.bEnabled
= enableLookaside
;
1835 assert( pTable
->aCol
==0 );
1836 pTable
->nCol
= pSelTab
->nCol
;
1837 pTable
->aCol
= pSelTab
->aCol
;
1840 sqlite3DeleteTable(db
, pSelTab
);
1841 assert( sqlite3SchemaMutexHeld(db
, 0, pTable
->pSchema
) );
1842 pTable
->pSchema
->flags
|= DB_UnresetViews
;
1847 sqlite3SelectDelete(db
, pSel
);
1851 #endif /* SQLITE_OMIT_VIEW */
1854 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1856 #ifndef SQLITE_OMIT_VIEW
1858 ** Clear the column names from every VIEW in database idx.
1860 static void sqliteViewResetAll(sqlite3
*db
, int idx
){
1862 assert( sqlite3SchemaMutexHeld(db
, idx
, 0) );
1863 if( !DbHasProperty(db
, idx
, DB_UnresetViews
) ) return;
1864 for(i
=sqliteHashFirst(&db
->aDb
[idx
].pSchema
->tblHash
); i
;i
=sqliteHashNext(i
)){
1865 Table
*pTab
= sqliteHashData(i
);
1866 if( pTab
->pSelect
){
1867 sqliteDeleteColumnNames(db
, pTab
);
1872 DbClearProperty(db
, idx
, DB_UnresetViews
);
1875 # define sqliteViewResetAll(A,B)
1876 #endif /* SQLITE_OMIT_VIEW */
1879 ** This function is called by the VDBE to adjust the internal schema
1880 ** used by SQLite when the btree layer moves a table root page. The
1881 ** root-page of a table or index in database iDb has changed from iFrom
1884 ** Ticket #1728: The symbol table might still contain information
1885 ** on tables and/or indices that are the process of being deleted.
1886 ** If you are unlucky, one of those deleted indices or tables might
1887 ** have the same rootpage number as the real table or index that is
1888 ** being moved. So we cannot stop searching after the first match
1889 ** because the first match might be for one of the deleted indices
1890 ** or tables and not the table/index that is actually being moved.
1891 ** We must continue looping until all tables and indices with
1892 ** rootpage==iFrom have been converted to have a rootpage of iTo
1893 ** in order to be certain that we got the right one.
1895 #ifndef SQLITE_OMIT_AUTOVACUUM
1896 void sqlite3RootPageMoved(sqlite3
*db
, int iDb
, int iFrom
, int iTo
){
1901 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1902 pDb
= &db
->aDb
[iDb
];
1903 pHash
= &pDb
->pSchema
->tblHash
;
1904 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
1905 Table
*pTab
= sqliteHashData(pElem
);
1906 if( pTab
->tnum
==iFrom
){
1910 pHash
= &pDb
->pSchema
->idxHash
;
1911 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
1912 Index
*pIdx
= sqliteHashData(pElem
);
1913 if( pIdx
->tnum
==iFrom
){
1921 ** Write code to erase the table with root-page iTable from database iDb.
1922 ** Also write code to modify the sqlite_master table and internal schema
1923 ** if a root-page of another table is moved by the btree-layer whilst
1924 ** erasing iTable (this can happen with an auto-vacuum database).
1926 static void destroyRootPage(Parse
*pParse
, int iTable
, int iDb
){
1927 Vdbe
*v
= sqlite3GetVdbe(pParse
);
1928 int r1
= sqlite3GetTempReg(pParse
);
1929 sqlite3VdbeAddOp3(v
, OP_Destroy
, iTable
, r1
, iDb
);
1930 sqlite3MayAbort(pParse
);
1931 #ifndef SQLITE_OMIT_AUTOVACUUM
1932 /* OP_Destroy stores an in integer r1. If this integer
1933 ** is non-zero, then it is the root page number of a table moved to
1934 ** location iTable. The following code modifies the sqlite_master table to
1937 ** The "#NNN" in the SQL is a special constant that means whatever value
1938 ** is in register NNN. See grammar rules associated with the TK_REGISTER
1939 ** token for additional information.
1941 sqlite3NestedParse(pParse
,
1942 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1943 pParse
->db
->aDb
[iDb
].zName
, SCHEMA_TABLE(iDb
), iTable
, r1
, r1
);
1945 sqlite3ReleaseTempReg(pParse
, r1
);
1949 ** Write VDBE code to erase table pTab and all associated indices on disk.
1950 ** Code to update the sqlite_master tables and internal schema definitions
1951 ** in case a root-page belonging to another table is moved by the btree layer
1952 ** is also added (this can happen with an auto-vacuum database).
1954 static void destroyTable(Parse
*pParse
, Table
*pTab
){
1955 #ifdef SQLITE_OMIT_AUTOVACUUM
1957 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1958 destroyRootPage(pParse
, pTab
->tnum
, iDb
);
1959 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1960 destroyRootPage(pParse
, pIdx
->tnum
, iDb
);
1963 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1964 ** is not defined), then it is important to call OP_Destroy on the
1965 ** table and index root-pages in order, starting with the numerically
1966 ** largest root-page number. This guarantees that none of the root-pages
1967 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1968 ** following were coded:
1974 ** and root page 5 happened to be the largest root-page number in the
1975 ** database, then root page 5 would be moved to page 4 by the
1976 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1977 ** a free-list page.
1979 int iTab
= pTab
->tnum
;
1986 if( iDestroyed
==0 || iTab
<iDestroyed
){
1989 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1990 int iIdx
= pIdx
->tnum
;
1991 assert( pIdx
->pSchema
==pTab
->pSchema
);
1992 if( (iDestroyed
==0 || (iIdx
<iDestroyed
)) && iIdx
>iLargest
){
1999 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2000 destroyRootPage(pParse
, iLargest
, iDb
);
2001 iDestroyed
= iLargest
;
2008 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2009 ** after a DROP INDEX or DROP TABLE command.
2011 static void sqlite3ClearStatTables(
2012 Parse
*pParse
, /* The parsing context */
2013 int iDb
, /* The database number */
2014 const char *zType
, /* "idx" or "tbl" */
2015 const char *zName
/* Name of index or table */
2018 const char *zDbName
= pParse
->db
->aDb
[iDb
].zName
;
2019 for(i
=1; i
<=3; i
++){
2021 sqlite3_snprintf(sizeof(zTab
),zTab
,"sqlite_stat%d",i
);
2022 if( sqlite3FindTable(pParse
->db
, zTab
, zDbName
) ){
2023 sqlite3NestedParse(pParse
,
2024 "DELETE FROM %Q.%s WHERE %s=%Q",
2025 zDbName
, zTab
, zType
, zName
2032 ** Generate code to drop a table.
2034 void sqlite3CodeDropTable(Parse
*pParse
, Table
*pTab
, int iDb
, int isView
){
2036 sqlite3
*db
= pParse
->db
;
2038 Db
*pDb
= &db
->aDb
[iDb
];
2040 v
= sqlite3GetVdbe(pParse
);
2042 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
2044 #ifndef SQLITE_OMIT_VIRTUALTABLE
2045 if( IsVirtual(pTab
) ){
2046 sqlite3VdbeAddOp0(v
, OP_VBegin
);
2050 /* Drop all triggers associated with the table being dropped. Code
2051 ** is generated to remove entries from sqlite_master and/or
2052 ** sqlite_temp_master if required.
2054 pTrigger
= sqlite3TriggerList(pParse
, pTab
);
2056 assert( pTrigger
->pSchema
==pTab
->pSchema
||
2057 pTrigger
->pSchema
==db
->aDb
[1].pSchema
);
2058 sqlite3DropTriggerPtr(pParse
, pTrigger
);
2059 pTrigger
= pTrigger
->pNext
;
2062 #ifndef SQLITE_OMIT_AUTOINCREMENT
2063 /* Remove any entries of the sqlite_sequence table associated with
2064 ** the table being dropped. This is done before the table is dropped
2065 ** at the btree level, in case the sqlite_sequence table needs to
2066 ** move as a result of the drop (can happen in auto-vacuum mode).
2068 if( pTab
->tabFlags
& TF_Autoincrement
){
2069 sqlite3NestedParse(pParse
,
2070 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2071 pDb
->zName
, pTab
->zName
2076 /* Drop all SQLITE_MASTER table and index entries that refer to the
2077 ** table. The program name loops through the master table and deletes
2078 ** every row that refers to a table of the same name as the one being
2079 ** dropped. Triggers are handled seperately because a trigger can be
2080 ** created in the temp database that refers to a table in another
2083 sqlite3NestedParse(pParse
,
2084 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2085 pDb
->zName
, SCHEMA_TABLE(iDb
), pTab
->zName
);
2086 if( !isView
&& !IsVirtual(pTab
) ){
2087 destroyTable(pParse
, pTab
);
2090 /* Remove the table entry from SQLite's internal schema and modify
2091 ** the schema cookie.
2093 if( IsVirtual(pTab
) ){
2094 sqlite3VdbeAddOp4(v
, OP_VDestroy
, iDb
, 0, 0, pTab
->zName
, 0);
2096 sqlite3VdbeAddOp4(v
, OP_DropTable
, iDb
, 0, 0, pTab
->zName
, 0);
2097 sqlite3ChangeCookie(pParse
, iDb
);
2098 sqliteViewResetAll(db
, iDb
);
2102 ** This routine is called to do the work of a DROP TABLE statement.
2103 ** pName is the name of the table to be dropped.
2105 void sqlite3DropTable(Parse
*pParse
, SrcList
*pName
, int isView
, int noErr
){
2108 sqlite3
*db
= pParse
->db
;
2111 if( db
->mallocFailed
){
2112 goto exit_drop_table
;
2114 assert( pParse
->nErr
==0 );
2115 assert( pName
->nSrc
==1 );
2116 if( noErr
) db
->suppressErr
++;
2117 pTab
= sqlite3LocateTable(pParse
, isView
,
2118 pName
->a
[0].zName
, pName
->a
[0].zDatabase
);
2119 if( noErr
) db
->suppressErr
--;
2122 if( noErr
) sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
2123 goto exit_drop_table
;
2125 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
2126 assert( iDb
>=0 && iDb
<db
->nDb
);
2128 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2129 ** it is initialized.
2131 if( IsVirtual(pTab
) && sqlite3ViewGetColumnNames(pParse
, pTab
) ){
2132 goto exit_drop_table
;
2134 #ifndef SQLITE_OMIT_AUTHORIZATION
2137 const char *zTab
= SCHEMA_TABLE(iDb
);
2138 const char *zDb
= db
->aDb
[iDb
].zName
;
2139 const char *zArg2
= 0;
2140 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
)){
2141 goto exit_drop_table
;
2144 if( !OMIT_TEMPDB
&& iDb
==1 ){
2145 code
= SQLITE_DROP_TEMP_VIEW
;
2147 code
= SQLITE_DROP_VIEW
;
2149 #ifndef SQLITE_OMIT_VIRTUALTABLE
2150 }else if( IsVirtual(pTab
) ){
2151 code
= SQLITE_DROP_VTABLE
;
2152 zArg2
= sqlite3GetVTable(db
, pTab
)->pMod
->zName
;
2155 if( !OMIT_TEMPDB
&& iDb
==1 ){
2156 code
= SQLITE_DROP_TEMP_TABLE
;
2158 code
= SQLITE_DROP_TABLE
;
2161 if( sqlite3AuthCheck(pParse
, code
, pTab
->zName
, zArg2
, zDb
) ){
2162 goto exit_drop_table
;
2164 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, pTab
->zName
, 0, zDb
) ){
2165 goto exit_drop_table
;
2169 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
2170 && sqlite3StrNICmp(pTab
->zName
, "sqlite_stat", 11)!=0 ){
2171 sqlite3ErrorMsg(pParse
, "table %s may not be dropped", pTab
->zName
);
2172 goto exit_drop_table
;
2175 #ifndef SQLITE_OMIT_VIEW
2176 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2179 if( isView
&& pTab
->pSelect
==0 ){
2180 sqlite3ErrorMsg(pParse
, "use DROP TABLE to delete table %s", pTab
->zName
);
2181 goto exit_drop_table
;
2183 if( !isView
&& pTab
->pSelect
){
2184 sqlite3ErrorMsg(pParse
, "use DROP VIEW to delete view %s", pTab
->zName
);
2185 goto exit_drop_table
;
2189 /* Generate code to remove the table from the master table
2192 v
= sqlite3GetVdbe(pParse
);
2194 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
2195 sqlite3ClearStatTables(pParse
, iDb
, "tbl", pTab
->zName
);
2196 sqlite3FkDropTable(pParse
, pName
, pTab
);
2197 sqlite3CodeDropTable(pParse
, pTab
, iDb
, isView
);
2201 sqlite3SrcListDelete(db
, pName
);
2205 ** This routine is called to create a new foreign key on the table
2206 ** currently under construction. pFromCol determines which columns
2207 ** in the current table point to the foreign key. If pFromCol==0 then
2208 ** connect the key to the last column inserted. pTo is the name of
2209 ** the table referred to. pToCol is a list of tables in the other
2210 ** pTo table that the foreign key points to. flags contains all
2211 ** information about the conflict resolution algorithms specified
2212 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2214 ** An FKey structure is created and added to the table currently
2215 ** under construction in the pParse->pNewTable field.
2217 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2218 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2220 void sqlite3CreateForeignKey(
2221 Parse
*pParse
, /* Parsing context */
2222 ExprList
*pFromCol
, /* Columns in this table that point to other table */
2223 Token
*pTo
, /* Name of the other table */
2224 ExprList
*pToCol
, /* Columns in the other table */
2225 int flags
/* Conflict resolution algorithms. */
2227 sqlite3
*db
= pParse
->db
;
2228 #ifndef SQLITE_OMIT_FOREIGN_KEY
2231 Table
*p
= pParse
->pNewTable
;
2238 if( p
==0 || IN_DECLARE_VTAB
) goto fk_end
;
2240 int iCol
= p
->nCol
-1;
2241 if( NEVER(iCol
<0) ) goto fk_end
;
2242 if( pToCol
&& pToCol
->nExpr
!=1 ){
2243 sqlite3ErrorMsg(pParse
, "foreign key on %s"
2244 " should reference only one column of table %T",
2245 p
->aCol
[iCol
].zName
, pTo
);
2249 }else if( pToCol
&& pToCol
->nExpr
!=pFromCol
->nExpr
){
2250 sqlite3ErrorMsg(pParse
,
2251 "number of columns in foreign key does not match the number of "
2252 "columns in the referenced table");
2255 nCol
= pFromCol
->nExpr
;
2257 nByte
= sizeof(*pFKey
) + (nCol
-1)*sizeof(pFKey
->aCol
[0]) + pTo
->n
+ 1;
2259 for(i
=0; i
<pToCol
->nExpr
; i
++){
2260 nByte
+= sqlite3Strlen30(pToCol
->a
[i
].zName
) + 1;
2263 pFKey
= sqlite3DbMallocZero(db
, nByte
);
2268 pFKey
->pNextFrom
= p
->pFKey
;
2269 z
= (char*)&pFKey
->aCol
[nCol
];
2271 memcpy(z
, pTo
->z
, pTo
->n
);
2277 pFKey
->aCol
[0].iFrom
= p
->nCol
-1;
2279 for(i
=0; i
<nCol
; i
++){
2281 for(j
=0; j
<p
->nCol
; j
++){
2282 if( sqlite3StrICmp(p
->aCol
[j
].zName
, pFromCol
->a
[i
].zName
)==0 ){
2283 pFKey
->aCol
[i
].iFrom
= j
;
2288 sqlite3ErrorMsg(pParse
,
2289 "unknown column \"%s\" in foreign key definition",
2290 pFromCol
->a
[i
].zName
);
2296 for(i
=0; i
<nCol
; i
++){
2297 int n
= sqlite3Strlen30(pToCol
->a
[i
].zName
);
2298 pFKey
->aCol
[i
].zCol
= z
;
2299 memcpy(z
, pToCol
->a
[i
].zName
, n
);
2304 pFKey
->isDeferred
= 0;
2305 pFKey
->aAction
[0] = (u8
)(flags
& 0xff); /* ON DELETE action */
2306 pFKey
->aAction
[1] = (u8
)((flags
>> 8 ) & 0xff); /* ON UPDATE action */
2308 assert( sqlite3SchemaMutexHeld(db
, 0, p
->pSchema
) );
2309 pNextTo
= (FKey
*)sqlite3HashInsert(&p
->pSchema
->fkeyHash
,
2310 pFKey
->zTo
, sqlite3Strlen30(pFKey
->zTo
), (void *)pFKey
2312 if( pNextTo
==pFKey
){
2313 db
->mallocFailed
= 1;
2317 assert( pNextTo
->pPrevTo
==0 );
2318 pFKey
->pNextTo
= pNextTo
;
2319 pNextTo
->pPrevTo
= pFKey
;
2322 /* Link the foreign key to the table as the last step.
2328 sqlite3DbFree(db
, pFKey
);
2329 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2330 sqlite3ExprListDelete(db
, pFromCol
);
2331 sqlite3ExprListDelete(db
, pToCol
);
2335 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2336 ** clause is seen as part of a foreign key definition. The isDeferred
2337 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2338 ** The behavior of the most recently created foreign key is adjusted
2341 void sqlite3DeferForeignKey(Parse
*pParse
, int isDeferred
){
2342 #ifndef SQLITE_OMIT_FOREIGN_KEY
2345 if( (pTab
= pParse
->pNewTable
)==0 || (pFKey
= pTab
->pFKey
)==0 ) return;
2346 assert( isDeferred
==0 || isDeferred
==1 ); /* EV: R-30323-21917 */
2347 pFKey
->isDeferred
= (u8
)isDeferred
;
2352 ** Generate code that will erase and refill index *pIdx. This is
2353 ** used to initialize a newly created index or to recompute the
2354 ** content of an index in response to a REINDEX command.
2356 ** if memRootPage is not negative, it means that the index is newly
2357 ** created. The register specified by memRootPage contains the
2358 ** root page number of the index. If memRootPage is negative, then
2359 ** the index already exists and must be cleared before being refilled and
2360 ** the root page number of the index is taken from pIndex->tnum.
2362 static void sqlite3RefillIndex(Parse
*pParse
, Index
*pIndex
, int memRootPage
){
2363 Table
*pTab
= pIndex
->pTable
; /* The table that is indexed */
2364 int iTab
= pParse
->nTab
++; /* Btree cursor used for pTab */
2365 int iIdx
= pParse
->nTab
++; /* Btree cursor used for pIndex */
2366 int iSorter
; /* Cursor opened by OpenSorter (if in use) */
2367 int addr1
; /* Address of top of loop */
2368 int addr2
; /* Address to jump to for next iteration */
2369 int tnum
; /* Root page of index */
2370 Vdbe
*v
; /* Generate code into this virtual machine */
2371 KeyInfo
*pKey
; /* KeyInfo for index */
2372 #ifdef SQLITE_OMIT_MERGE_SORT
2373 int regIdxKey
; /* Registers containing the index key */
2375 int regRecord
; /* Register holding assemblied index record */
2376 sqlite3
*db
= pParse
->db
; /* The database connection */
2377 int iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
2379 #ifndef SQLITE_OMIT_AUTHORIZATION
2380 if( sqlite3AuthCheck(pParse
, SQLITE_REINDEX
, pIndex
->zName
, 0,
2381 db
->aDb
[iDb
].zName
) ){
2386 /* Require a write-lock on the table to perform this operation */
2387 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 1, pTab
->zName
);
2389 v
= sqlite3GetVdbe(pParse
);
2391 if( memRootPage
>=0 ){
2394 tnum
= pIndex
->tnum
;
2395 sqlite3VdbeAddOp2(v
, OP_Clear
, tnum
, iDb
);
2397 pKey
= sqlite3IndexKeyinfo(pParse
, pIndex
);
2398 sqlite3VdbeAddOp4(v
, OP_OpenWrite
, iIdx
, tnum
, iDb
,
2399 (char *)pKey
, P4_KEYINFO_HANDOFF
);
2400 if( memRootPage
>=0 ){
2401 sqlite3VdbeChangeP5(v
, 1);
2404 #ifndef SQLITE_OMIT_MERGE_SORT
2405 /* Open the sorter cursor if we are to use one. */
2406 iSorter
= pParse
->nTab
++;
2407 sqlite3VdbeAddOp4(v
, OP_SorterOpen
, iSorter
, 0, 0, (char*)pKey
, P4_KEYINFO
);
2412 /* Open the table. Loop through all rows of the table, inserting index
2413 ** records into the sorter. */
2414 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
2415 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0);
2416 regRecord
= sqlite3GetTempReg(pParse
);
2418 #ifndef SQLITE_OMIT_MERGE_SORT
2419 sqlite3GenerateIndexKey(pParse
, pIndex
, iTab
, regRecord
, 1);
2420 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, iSorter
, regRecord
);
2421 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr1
+1);
2422 sqlite3VdbeJumpHere(v
, addr1
);
2423 addr1
= sqlite3VdbeAddOp2(v
, OP_SorterSort
, iSorter
, 0);
2424 if( pIndex
->onError
!=OE_None
){
2425 int j2
= sqlite3VdbeCurrentAddr(v
) + 3;
2426 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, j2
);
2427 addr2
= sqlite3VdbeCurrentAddr(v
);
2428 sqlite3VdbeAddOp3(v
, OP_SorterCompare
, iSorter
, j2
, regRecord
);
2429 sqlite3HaltConstraint(
2430 pParse
, OE_Abort
, "indexed columns are not unique", P4_STATIC
2433 addr2
= sqlite3VdbeCurrentAddr(v
);
2435 sqlite3VdbeAddOp2(v
, OP_SorterData
, iSorter
, regRecord
);
2436 sqlite3VdbeAddOp3(v
, OP_IdxInsert
, iIdx
, regRecord
, 1);
2437 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
2439 regIdxKey
= sqlite3GenerateIndexKey(pParse
, pIndex
, iTab
, regRecord
, 1);
2441 if( pIndex
->onError
!=OE_None
){
2442 const int regRowid
= regIdxKey
+ pIndex
->nColumn
;
2443 const int j2
= sqlite3VdbeCurrentAddr(v
) + 2;
2444 void * const pRegKey
= SQLITE_INT_TO_PTR(regIdxKey
);
2446 /* The registers accessed by the OP_IsUnique opcode were allocated
2447 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2448 ** call above. Just before that function was freed they were released
2449 ** (made available to the compiler for reuse) using
2450 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2451 ** opcode use the values stored within seems dangerous. However, since
2452 ** we can be sure that no other temp registers have been allocated
2453 ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2455 sqlite3VdbeAddOp4(v
, OP_IsUnique
, iIdx
, j2
, regRowid
, pRegKey
, P4_INT32
);
2456 sqlite3HaltConstraint(
2457 pParse
, OE_Abort
, "indexed columns are not unique", P4_STATIC
);
2459 sqlite3VdbeAddOp3(v
, OP_IdxInsert
, iIdx
, regRecord
, 0);
2460 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
2462 sqlite3ReleaseTempReg(pParse
, regRecord
);
2463 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iSorter
, addr2
);
2464 sqlite3VdbeJumpHere(v
, addr1
);
2466 sqlite3VdbeAddOp1(v
, OP_Close
, iTab
);
2467 sqlite3VdbeAddOp1(v
, OP_Close
, iIdx
);
2468 sqlite3VdbeAddOp1(v
, OP_Close
, iSorter
);
2472 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2473 ** and pTblList is the name of the table that is to be indexed. Both will
2474 ** be NULL for a primary key or an index that is created to satisfy a
2475 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2476 ** as the table to be indexed. pParse->pNewTable is a table that is
2477 ** currently being constructed by a CREATE TABLE statement.
2479 ** pList is a list of columns to be indexed. pList will be NULL if this
2480 ** is a primary key or unique-constraint on the most recent column added
2481 ** to the table currently under construction.
2483 ** If the index is created successfully, return a pointer to the new Index
2484 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2485 ** as the tables primary key (Index.autoIndex==2).
2487 Index
*sqlite3CreateIndex(
2488 Parse
*pParse
, /* All information about this parse */
2489 Token
*pName1
, /* First part of index name. May be NULL */
2490 Token
*pName2
, /* Second part of index name. May be NULL */
2491 SrcList
*pTblName
, /* Table to index. Use pParse->pNewTable if 0 */
2492 ExprList
*pList
, /* A list of columns to be indexed */
2493 int onError
, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2494 Token
*pStart
, /* The CREATE token that begins this statement */
2495 Token
*pEnd
, /* The ")" that closes the CREATE INDEX statement */
2496 int sortOrder
, /* Sort order of primary key when pList==NULL */
2497 int ifNotExist
/* Omit error if index already exists */
2499 Index
*pRet
= 0; /* Pointer to return */
2500 Table
*pTab
= 0; /* Table to be indexed */
2501 Index
*pIndex
= 0; /* The index to be created */
2502 char *zName
= 0; /* Name of the index */
2503 int nName
; /* Number of characters in zName */
2505 Token nullId
; /* Fake token for an empty ID list */
2506 DbFixer sFix
; /* For assigning database names to pTable */
2507 int sortOrderMask
; /* 1 to honor DESC in index. 0 to ignore. */
2508 sqlite3
*db
= pParse
->db
;
2509 Db
*pDb
; /* The specific table containing the indexed database */
2510 int iDb
; /* Index of the database that is being written */
2511 Token
*pName
= 0; /* Unqualified name of the index to create */
2512 struct ExprList_item
*pListItem
; /* For looping over pList */
2517 assert( pStart
==0 || pEnd
!=0 ); /* pEnd must be non-NULL if pStart is */
2518 assert( pParse
->nErr
==0 ); /* Never called with prior errors */
2519 if( db
->mallocFailed
|| IN_DECLARE_VTAB
){
2520 goto exit_create_index
;
2522 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
2523 goto exit_create_index
;
2527 ** Find the table that is to be indexed. Return early if not found.
2531 /* Use the two-part index name to determine the database
2532 ** to search for the table. 'Fix' the table name to this db
2533 ** before looking up the table.
2535 assert( pName1
&& pName2
);
2536 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
2537 if( iDb
<0 ) goto exit_create_index
;
2538 assert( pName
&& pName
->z
);
2540 #ifndef SQLITE_OMIT_TEMPDB
2541 /* If the index name was unqualified, check if the the table
2542 ** is a temp table. If so, set the database to 1. Do not do this
2543 ** if initialising a database schema.
2545 if( !db
->init
.busy
){
2546 pTab
= sqlite3SrcListLookup(pParse
, pTblName
);
2547 if( pName2
->n
==0 && pTab
&& pTab
->pSchema
==db
->aDb
[1].pSchema
){
2553 if( sqlite3FixInit(&sFix
, pParse
, iDb
, "index", pName
) &&
2554 sqlite3FixSrcList(&sFix
, pTblName
)
2556 /* Because the parser constructs pTblName from a single identifier,
2557 ** sqlite3FixSrcList can never fail. */
2560 pTab
= sqlite3LocateTable(pParse
, 0, pTblName
->a
[0].zName
,
2561 pTblName
->a
[0].zDatabase
);
2562 if( !pTab
|| db
->mallocFailed
) goto exit_create_index
;
2563 assert( db
->aDb
[iDb
].pSchema
==pTab
->pSchema
);
2566 assert( pStart
==0 );
2567 pTab
= pParse
->pNewTable
;
2568 if( !pTab
) goto exit_create_index
;
2569 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
2571 pDb
= &db
->aDb
[iDb
];
2574 assert( pParse
->nErr
==0 );
2575 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
2576 && memcmp(&pTab
->zName
[7],"altertab_",9)!=0 ){
2577 sqlite3ErrorMsg(pParse
, "table %s may not be indexed", pTab
->zName
);
2578 goto exit_create_index
;
2580 #ifndef SQLITE_OMIT_VIEW
2581 if( pTab
->pSelect
){
2582 sqlite3ErrorMsg(pParse
, "views may not be indexed");
2583 goto exit_create_index
;
2586 #ifndef SQLITE_OMIT_VIRTUALTABLE
2587 if( IsVirtual(pTab
) ){
2588 sqlite3ErrorMsg(pParse
, "virtual tables may not be indexed");
2589 goto exit_create_index
;
2594 ** Find the name of the index. Make sure there is not already another
2595 ** index or table with the same name.
2597 ** Exception: If we are reading the names of permanent indices from the
2598 ** sqlite_master table (because some other process changed the schema) and
2599 ** one of the index names collides with the name of a temporary table or
2600 ** index, then we will continue to process this index.
2602 ** If pName==0 it means that we are
2603 ** dealing with a primary key or UNIQUE constraint. We have to invent our
2607 zName
= sqlite3NameFromToken(db
, pName
);
2608 if( zName
==0 ) goto exit_create_index
;
2609 assert( pName
->z
!=0 );
2610 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
) ){
2611 goto exit_create_index
;
2613 if( !db
->init
.busy
){
2614 if( sqlite3FindTable(db
, zName
, 0)!=0 ){
2615 sqlite3ErrorMsg(pParse
, "there is already a table named %s", zName
);
2616 goto exit_create_index
;
2619 if( sqlite3FindIndex(db
, zName
, pDb
->zName
)!=0 ){
2621 sqlite3ErrorMsg(pParse
, "index %s already exists", zName
);
2623 assert( !db
->init
.busy
);
2624 sqlite3CodeVerifySchema(pParse
, iDb
);
2626 goto exit_create_index
;
2631 for(pLoop
=pTab
->pIndex
, n
=1; pLoop
; pLoop
=pLoop
->pNext
, n
++){}
2632 zName
= sqlite3MPrintf(db
, "sqlite_autoindex_%s_%d", pTab
->zName
, n
);
2634 goto exit_create_index
;
2638 /* Check for authorization to create an index.
2640 #ifndef SQLITE_OMIT_AUTHORIZATION
2642 const char *zDb
= pDb
->zName
;
2643 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(iDb
), 0, zDb
) ){
2644 goto exit_create_index
;
2646 i
= SQLITE_CREATE_INDEX
;
2647 if( !OMIT_TEMPDB
&& iDb
==1 ) i
= SQLITE_CREATE_TEMP_INDEX
;
2648 if( sqlite3AuthCheck(pParse
, i
, zName
, pTab
->zName
, zDb
) ){
2649 goto exit_create_index
;
2654 /* If pList==0, it means this routine was called to make a primary
2655 ** key out of the last column added to the table under construction.
2656 ** So create a fake list to simulate this.
2659 nullId
.z
= pTab
->aCol
[pTab
->nCol
-1].zName
;
2660 nullId
.n
= sqlite3Strlen30((char*)nullId
.z
);
2661 pList
= sqlite3ExprListAppend(pParse
, 0, 0);
2662 if( pList
==0 ) goto exit_create_index
;
2663 sqlite3ExprListSetName(pParse
, pList
, &nullId
, 0);
2664 pList
->a
[0].sortOrder
= (u8
)sortOrder
;
2667 /* Figure out how many bytes of space are required to store explicitly
2668 ** specified collation sequence names.
2670 for(i
=0; i
<pList
->nExpr
; i
++){
2671 Expr
*pExpr
= pList
->a
[i
].pExpr
;
2673 CollSeq
*pColl
= pExpr
->pColl
;
2674 /* Either pColl!=0 or there was an OOM failure. But if an OOM
2675 ** failure we have quit before reaching this point. */
2676 if( ALWAYS(pColl
) ){
2677 nExtra
+= (1 + sqlite3Strlen30(pColl
->zName
));
2683 ** Allocate the index structure.
2685 nName
= sqlite3Strlen30(zName
);
2686 nCol
= pList
->nExpr
;
2687 pIndex
= sqlite3DbMallocZero(db
,
2688 ROUND8(sizeof(Index
)) + /* Index structure */
2689 ROUND8(sizeof(tRowcnt
)*(nCol
+1)) + /* Index.aiRowEst */
2690 sizeof(char *)*nCol
+ /* Index.azColl */
2691 sizeof(int)*nCol
+ /* Index.aiColumn */
2692 sizeof(u8
)*nCol
+ /* Index.aSortOrder */
2693 nName
+ 1 + /* Index.zName */
2694 nExtra
/* Collation sequence names */
2696 if( db
->mallocFailed
){
2697 goto exit_create_index
;
2699 zExtra
= (char*)pIndex
;
2700 pIndex
->aiRowEst
= (tRowcnt
*)&zExtra
[ROUND8(sizeof(Index
))];
2701 pIndex
->azColl
= (char**)
2702 ((char*)pIndex
->aiRowEst
+ ROUND8(sizeof(tRowcnt
)*nCol
+1));
2703 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->aiRowEst
) );
2704 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->azColl
) );
2705 pIndex
->aiColumn
= (int *)(&pIndex
->azColl
[nCol
]);
2706 pIndex
->aSortOrder
= (u8
*)(&pIndex
->aiColumn
[nCol
]);
2707 pIndex
->zName
= (char *)(&pIndex
->aSortOrder
[nCol
]);
2708 zExtra
= (char *)(&pIndex
->zName
[nName
+1]);
2709 memcpy(pIndex
->zName
, zName
, nName
+1);
2710 pIndex
->pTable
= pTab
;
2711 pIndex
->nColumn
= pList
->nExpr
;
2712 pIndex
->onError
= (u8
)onError
;
2713 pIndex
->autoIndex
= (u8
)(pName
==0);
2714 pIndex
->pSchema
= db
->aDb
[iDb
].pSchema
;
2715 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2717 /* Check to see if we should honor DESC requests on index columns
2719 if( pDb
->pSchema
->file_format
>=4 ){
2720 sortOrderMask
= -1; /* Honor DESC */
2722 sortOrderMask
= 0; /* Ignore DESC */
2725 /* Scan the names of the columns of the table to be indexed and
2726 ** load the column indices into the Index structure. Report an error
2727 ** if any column is not found.
2729 ** TODO: Add a test to make sure that the same column is not named
2730 ** more than once within the same index. Only the first instance of
2731 ** the column will ever be used by the optimizer. Note that using the
2732 ** same column more than once cannot be an error because that would
2733 ** break backwards compatibility - it needs to be a warning.
2735 for(i
=0, pListItem
=pList
->a
; i
<pList
->nExpr
; i
++, pListItem
++){
2736 const char *zColName
= pListItem
->zName
;
2738 int requestedSortOrder
;
2739 char *zColl
; /* Collation sequence name */
2741 for(j
=0, pTabCol
=pTab
->aCol
; j
<pTab
->nCol
; j
++, pTabCol
++){
2742 if( sqlite3StrICmp(zColName
, pTabCol
->zName
)==0 ) break;
2744 if( j
>=pTab
->nCol
){
2745 sqlite3ErrorMsg(pParse
, "table %s has no column named %s",
2746 pTab
->zName
, zColName
);
2747 pParse
->checkSchema
= 1;
2748 goto exit_create_index
;
2750 pIndex
->aiColumn
[i
] = j
;
2751 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of
2752 ** the way the "idxlist" non-terminal is constructed by the parser,
2753 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2754 ** must exist or else there must have been an OOM error. But if there
2755 ** was an OOM error, we would never reach this point. */
2756 if( pListItem
->pExpr
&& ALWAYS(pListItem
->pExpr
->pColl
) ){
2758 zColl
= pListItem
->pExpr
->pColl
->zName
;
2759 nColl
= sqlite3Strlen30(zColl
) + 1;
2760 assert( nExtra
>=nColl
);
2761 memcpy(zExtra
, zColl
, nColl
);
2766 zColl
= pTab
->aCol
[j
].zColl
;
2771 if( !db
->init
.busy
&& !sqlite3LocateCollSeq(pParse
, zColl
) ){
2772 goto exit_create_index
;
2774 pIndex
->azColl
[i
] = zColl
;
2775 requestedSortOrder
= pListItem
->sortOrder
& sortOrderMask
;
2776 pIndex
->aSortOrder
[i
] = (u8
)requestedSortOrder
;
2778 sqlite3DefaultRowEst(pIndex
);
2780 if( pTab
==pParse
->pNewTable
){
2781 /* This routine has been called to create an automatic index as a
2782 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2783 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2786 ** CREATE TABLE t(x PRIMARY KEY, y);
2787 ** CREATE TABLE t(x, y, UNIQUE(x, y));
2789 ** Either way, check to see if the table already has such an index. If
2790 ** so, don't bother creating this one. This only applies to
2791 ** automatically created indices. Users can do as they wish with
2792 ** explicit indices.
2794 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2795 ** (and thus suppressing the second one) even if they have different
2798 ** If there are different collating sequences or if the columns of
2799 ** the constraint occur in different orders, then the constraints are
2800 ** considered distinct and both result in separate indices.
2803 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2805 assert( pIdx
->onError
!=OE_None
);
2806 assert( pIdx
->autoIndex
);
2807 assert( pIndex
->onError
!=OE_None
);
2809 if( pIdx
->nColumn
!=pIndex
->nColumn
) continue;
2810 for(k
=0; k
<pIdx
->nColumn
; k
++){
2813 if( pIdx
->aiColumn
[k
]!=pIndex
->aiColumn
[k
] ) break;
2814 z1
= pIdx
->azColl
[k
];
2815 z2
= pIndex
->azColl
[k
];
2816 if( z1
!=z2
&& sqlite3StrICmp(z1
, z2
) ) break;
2818 if( k
==pIdx
->nColumn
){
2819 if( pIdx
->onError
!=pIndex
->onError
){
2820 /* This constraint creates the same index as a previous
2821 ** constraint specified somewhere in the CREATE TABLE statement.
2822 ** However the ON CONFLICT clauses are different. If both this
2823 ** constraint and the previous equivalent constraint have explicit
2824 ** ON CONFLICT clauses this is an error. Otherwise, use the
2825 ** explicitly specified behaviour for the index.
2827 if( !(pIdx
->onError
==OE_Default
|| pIndex
->onError
==OE_Default
) ){
2828 sqlite3ErrorMsg(pParse
,
2829 "conflicting ON CONFLICT clauses specified", 0);
2831 if( pIdx
->onError
==OE_Default
){
2832 pIdx
->onError
= pIndex
->onError
;
2835 goto exit_create_index
;
2840 /* Link the new Index structure to its table and to the other
2841 ** in-memory database structures.
2843 if( db
->init
.busy
){
2845 assert( sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
2846 p
= sqlite3HashInsert(&pIndex
->pSchema
->idxHash
,
2847 pIndex
->zName
, sqlite3Strlen30(pIndex
->zName
),
2850 assert( p
==pIndex
); /* Malloc must have failed */
2851 db
->mallocFailed
= 1;
2852 goto exit_create_index
;
2854 db
->flags
|= SQLITE_InternChanges
;
2856 pIndex
->tnum
= db
->init
.newTnum
;
2860 /* If the db->init.busy is 0 then create the index on disk. This
2861 ** involves writing the index into the master table and filling in the
2862 ** index with the current table contents.
2864 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2865 ** command. db->init.busy is 1 when a database is opened and
2866 ** CREATE INDEX statements are read out of the master table. In
2867 ** the latter case the index already exists on disk, which is why
2868 ** we don't want to recreate it.
2870 ** If pTblName==0 it means this index is generated as a primary key
2871 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
2872 ** has just been created, it contains no data and the index initialization
2873 ** step can be skipped.
2875 else{ /* if( db->init.busy==0 ) */
2878 int iMem
= ++pParse
->nMem
;
2880 v
= sqlite3GetVdbe(pParse
);
2881 if( v
==0 ) goto exit_create_index
;
2884 /* Create the rootpage for the index
2886 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
2887 sqlite3VdbeAddOp2(v
, OP_CreateIndex
, iDb
, iMem
);
2889 /* Gather the complete text of the CREATE INDEX statement into
2890 ** the zStmt variable
2894 /* A named index with an explicit CREATE INDEX statement */
2895 zStmt
= sqlite3MPrintf(db
, "CREATE%s INDEX %.*s",
2896 onError
==OE_None
? "" : " UNIQUE",
2897 (int)(pEnd
->z
- pName
->z
) + 1,
2900 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2901 /* zStmt = sqlite3MPrintf(""); */
2905 /* Add an entry in sqlite_master for this index
2907 sqlite3NestedParse(pParse
,
2908 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2909 db
->aDb
[iDb
].zName
, SCHEMA_TABLE(iDb
),
2915 sqlite3DbFree(db
, zStmt
);
2917 /* Fill the index with data and reparse the schema. Code an OP_Expire
2918 ** to invalidate all pre-compiled statements.
2921 sqlite3RefillIndex(pParse
, pIndex
, iMem
);
2922 sqlite3ChangeCookie(pParse
, iDb
);
2923 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
2924 sqlite3MPrintf(db
, "name='%q' AND type='index'", pIndex
->zName
));
2925 sqlite3VdbeAddOp1(v
, OP_Expire
, 0);
2929 /* When adding an index to the list of indices for a table, make
2930 ** sure all indices labeled OE_Replace come after all those labeled
2931 ** OE_Ignore. This is necessary for the correct constraint check
2932 ** processing (in sqlite3GenerateConstraintChecks()) as part of
2933 ** UPDATE and INSERT statements.
2935 if( db
->init
.busy
|| pTblName
==0 ){
2936 if( onError
!=OE_Replace
|| pTab
->pIndex
==0
2937 || pTab
->pIndex
->onError
==OE_Replace
){
2938 pIndex
->pNext
= pTab
->pIndex
;
2939 pTab
->pIndex
= pIndex
;
2941 Index
*pOther
= pTab
->pIndex
;
2942 while( pOther
->pNext
&& pOther
->pNext
->onError
!=OE_Replace
){
2943 pOther
= pOther
->pNext
;
2945 pIndex
->pNext
= pOther
->pNext
;
2946 pOther
->pNext
= pIndex
;
2952 /* Clean up before exiting */
2955 sqlite3DbFree(db
, pIndex
->zColAff
);
2956 sqlite3DbFree(db
, pIndex
);
2958 sqlite3ExprListDelete(db
, pList
);
2959 sqlite3SrcListDelete(db
, pTblName
);
2960 sqlite3DbFree(db
, zName
);
2965 ** Fill the Index.aiRowEst[] array with default information - information
2966 ** to be used when we have not run the ANALYZE command.
2968 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2969 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
2970 ** number of rows in the table that match any particular value of the
2971 ** first column of the index. aiRowEst[2] is an estimate of the number
2972 ** of rows that match any particular combiniation of the first 2 columns
2973 ** of the index. And so forth. It must always be the case that
2975 ** aiRowEst[N]<=aiRowEst[N-1]
2978 ** Apart from that, we have little to go on besides intuition as to
2979 ** how aiRowEst[] should be initialized. The numbers generated here
2980 ** are based on typical values found in actual indices.
2982 void sqlite3DefaultRowEst(Index
*pIdx
){
2983 tRowcnt
*a
= pIdx
->aiRowEst
;
2987 a
[0] = pIdx
->pTable
->nRowEst
;
2988 if( a
[0]<10 ) a
[0] = 10;
2990 for(i
=1; i
<=pIdx
->nColumn
; i
++){
2994 if( pIdx
->onError
!=OE_None
){
2995 a
[pIdx
->nColumn
] = 1;
3000 ** This routine will drop an existing named index. This routine
3001 ** implements the DROP INDEX statement.
3003 void sqlite3DropIndex(Parse
*pParse
, SrcList
*pName
, int ifExists
){
3006 sqlite3
*db
= pParse
->db
;
3009 assert( pParse
->nErr
==0 ); /* Never called with prior errors */
3010 if( db
->mallocFailed
){
3011 goto exit_drop_index
;
3013 assert( pName
->nSrc
==1 );
3014 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
3015 goto exit_drop_index
;
3017 pIndex
= sqlite3FindIndex(db
, pName
->a
[0].zName
, pName
->a
[0].zDatabase
);
3020 sqlite3ErrorMsg(pParse
, "no such index: %S", pName
, 0);
3022 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
3024 pParse
->checkSchema
= 1;
3025 goto exit_drop_index
;
3027 if( pIndex
->autoIndex
){
3028 sqlite3ErrorMsg(pParse
, "index associated with UNIQUE "
3029 "or PRIMARY KEY constraint cannot be dropped", 0);
3030 goto exit_drop_index
;
3032 iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
3033 #ifndef SQLITE_OMIT_AUTHORIZATION
3035 int code
= SQLITE_DROP_INDEX
;
3036 Table
*pTab
= pIndex
->pTable
;
3037 const char *zDb
= db
->aDb
[iDb
].zName
;
3038 const char *zTab
= SCHEMA_TABLE(iDb
);
3039 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
) ){
3040 goto exit_drop_index
;
3042 if( !OMIT_TEMPDB
&& iDb
) code
= SQLITE_DROP_TEMP_INDEX
;
3043 if( sqlite3AuthCheck(pParse
, code
, pIndex
->zName
, pTab
->zName
, zDb
) ){
3044 goto exit_drop_index
;
3049 /* Generate code to remove the index and from the master table */
3050 v
= sqlite3GetVdbe(pParse
);
3052 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3053 sqlite3NestedParse(pParse
,
3054 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3055 db
->aDb
[iDb
].zName
, SCHEMA_TABLE(iDb
), pIndex
->zName
3057 sqlite3ClearStatTables(pParse
, iDb
, "idx", pIndex
->zName
);
3058 sqlite3ChangeCookie(pParse
, iDb
);
3059 destroyRootPage(pParse
, pIndex
->tnum
, iDb
);
3060 sqlite3VdbeAddOp4(v
, OP_DropIndex
, iDb
, 0, 0, pIndex
->zName
, 0);
3064 sqlite3SrcListDelete(db
, pName
);
3068 ** pArray is a pointer to an array of objects. Each object in the
3069 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3070 ** to extend the array so that there is space for a new object at the end.
3072 ** When this function is called, *pnEntry contains the current size of
3073 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3076 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3077 ** space allocated for the new object is zeroed, *pnEntry updated to
3078 ** reflect the new size of the array and a pointer to the new allocation
3079 ** returned. *pIdx is set to the index of the new array entry in this case.
3081 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3082 ** unchanged and a copy of pArray returned.
3084 void *sqlite3ArrayAllocate(
3085 sqlite3
*db
, /* Connection to notify of malloc failures */
3086 void *pArray
, /* Array of objects. Might be reallocated */
3087 int szEntry
, /* Size of each object in the array */
3088 int *pnEntry
, /* Number of objects currently in use */
3089 int *pIdx
/* Write the index of a new slot here */
3093 if( (n
& (n
-1))==0 ){
3094 int sz
= (n
==0) ? 1 : 2*n
;
3095 void *pNew
= sqlite3DbRealloc(db
, pArray
, sz
*szEntry
);
3103 memset(&z
[n
* szEntry
], 0, szEntry
);
3110 ** Append a new element to the given IdList. Create a new IdList if
3113 ** A new IdList is returned, or NULL if malloc() fails.
3115 IdList
*sqlite3IdListAppend(sqlite3
*db
, IdList
*pList
, Token
*pToken
){
3118 pList
= sqlite3DbMallocZero(db
, sizeof(IdList
) );
3119 if( pList
==0 ) return 0;
3121 pList
->a
= sqlite3ArrayAllocate(
3124 sizeof(pList
->a
[0]),
3129 sqlite3IdListDelete(db
, pList
);
3132 pList
->a
[i
].zName
= sqlite3NameFromToken(db
, pToken
);
3137 ** Delete an IdList.
3139 void sqlite3IdListDelete(sqlite3
*db
, IdList
*pList
){
3141 if( pList
==0 ) return;
3142 for(i
=0; i
<pList
->nId
; i
++){
3143 sqlite3DbFree(db
, pList
->a
[i
].zName
);
3145 sqlite3DbFree(db
, pList
->a
);
3146 sqlite3DbFree(db
, pList
);
3150 ** Return the index in pList of the identifier named zId. Return -1
3153 int sqlite3IdListIndex(IdList
*pList
, const char *zName
){
3155 if( pList
==0 ) return -1;
3156 for(i
=0; i
<pList
->nId
; i
++){
3157 if( sqlite3StrICmp(pList
->a
[i
].zName
, zName
)==0 ) return i
;
3163 ** Expand the space allocated for the given SrcList object by
3164 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3165 ** New slots are zeroed.
3167 ** For example, suppose a SrcList initially contains two entries: A,B.
3168 ** To append 3 new entries onto the end, do this:
3170 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3172 ** After the call above it would contain: A, B, nil, nil, nil.
3173 ** If the iStart argument had been 1 instead of 2, then the result
3174 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3175 ** the iStart value would be 0. The result then would
3176 ** be: nil, nil, nil, A, B.
3178 ** If a memory allocation fails the SrcList is unchanged. The
3179 ** db->mallocFailed flag will be set to true.
3181 SrcList
*sqlite3SrcListEnlarge(
3182 sqlite3
*db
, /* Database connection to notify of OOM errors */
3183 SrcList
*pSrc
, /* The SrcList to be enlarged */
3184 int nExtra
, /* Number of new slots to add to pSrc->a[] */
3185 int iStart
/* Index in pSrc->a[] of first new slot */
3189 /* Sanity checking on calling parameters */
3190 assert( iStart
>=0 );
3191 assert( nExtra
>=1 );
3193 assert( iStart
<=pSrc
->nSrc
);
3195 /* Allocate additional space if needed */
3196 if( pSrc
->nSrc
+nExtra
>pSrc
->nAlloc
){
3198 int nAlloc
= pSrc
->nSrc
+nExtra
;
3200 pNew
= sqlite3DbRealloc(db
, pSrc
,
3201 sizeof(*pSrc
) + (nAlloc
-1)*sizeof(pSrc
->a
[0]) );
3203 assert( db
->mallocFailed
);
3207 nGot
= (sqlite3DbMallocSize(db
, pNew
) - sizeof(*pSrc
))/sizeof(pSrc
->a
[0])+1;
3208 pSrc
->nAlloc
= (u16
)nGot
;
3211 /* Move existing slots that come after the newly inserted slots
3212 ** out of the way */
3213 for(i
=pSrc
->nSrc
-1; i
>=iStart
; i
--){
3214 pSrc
->a
[i
+nExtra
] = pSrc
->a
[i
];
3216 pSrc
->nSrc
+= (i16
)nExtra
;
3218 /* Zero the newly allocated slots */
3219 memset(&pSrc
->a
[iStart
], 0, sizeof(pSrc
->a
[0])*nExtra
);
3220 for(i
=iStart
; i
<iStart
+nExtra
; i
++){
3221 pSrc
->a
[i
].iCursor
= -1;
3224 /* Return a pointer to the enlarged SrcList */
3230 ** Append a new table name to the given SrcList. Create a new SrcList if
3231 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3233 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3234 ** SrcList might be the same as the SrcList that was input or it might be
3235 ** a new one. If an OOM error does occurs, then the prior value of pList
3236 ** that is input to this routine is automatically freed.
3238 ** If pDatabase is not null, it means that the table has an optional
3239 ** database name prefix. Like this: "database.table". The pDatabase
3240 ** points to the table name and the pTable points to the database name.
3241 ** The SrcList.a[].zName field is filled with the table name which might
3242 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3243 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3244 ** or with NULL if no database is specified.
3246 ** In other words, if call like this:
3248 ** sqlite3SrcListAppend(D,A,B,0);
3250 ** Then B is a table name and the database name is unspecified. If called
3253 ** sqlite3SrcListAppend(D,A,B,C);
3255 ** Then C is the table name and B is the database name. If C is defined
3256 ** then so is B. In other words, we never have a case where:
3258 ** sqlite3SrcListAppend(D,A,0,C);
3260 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3261 ** before being added to the SrcList.
3263 SrcList
*sqlite3SrcListAppend(
3264 sqlite3
*db
, /* Connection to notify of malloc failures */
3265 SrcList
*pList
, /* Append to this SrcList. NULL creates a new SrcList */
3266 Token
*pTable
, /* Table to append */
3267 Token
*pDatabase
/* Database of the table */
3269 struct SrcList_item
*pItem
;
3270 assert( pDatabase
==0 || pTable
!=0 ); /* Cannot have C without B */
3272 pList
= sqlite3DbMallocZero(db
, sizeof(SrcList
) );
3273 if( pList
==0 ) return 0;
3276 pList
= sqlite3SrcListEnlarge(db
, pList
, 1, pList
->nSrc
);
3277 if( db
->mallocFailed
){
3278 sqlite3SrcListDelete(db
, pList
);
3281 pItem
= &pList
->a
[pList
->nSrc
-1];
3282 if( pDatabase
&& pDatabase
->z
==0 ){
3286 Token
*pTemp
= pDatabase
;
3290 pItem
->zName
= sqlite3NameFromToken(db
, pTable
);
3291 pItem
->zDatabase
= sqlite3NameFromToken(db
, pDatabase
);
3296 ** Assign VdbeCursor index numbers to all tables in a SrcList
3298 void sqlite3SrcListAssignCursors(Parse
*pParse
, SrcList
*pList
){
3300 struct SrcList_item
*pItem
;
3301 assert(pList
|| pParse
->db
->mallocFailed
);
3303 for(i
=0, pItem
=pList
->a
; i
<pList
->nSrc
; i
++, pItem
++){
3304 if( pItem
->iCursor
>=0 ) break;
3305 pItem
->iCursor
= pParse
->nTab
++;
3306 if( pItem
->pSelect
){
3307 sqlite3SrcListAssignCursors(pParse
, pItem
->pSelect
->pSrc
);
3314 ** Delete an entire SrcList including all its substructure.
3316 void sqlite3SrcListDelete(sqlite3
*db
, SrcList
*pList
){
3318 struct SrcList_item
*pItem
;
3319 if( pList
==0 ) return;
3320 for(pItem
=pList
->a
, i
=0; i
<pList
->nSrc
; i
++, pItem
++){
3321 sqlite3DbFree(db
, pItem
->zDatabase
);
3322 sqlite3DbFree(db
, pItem
->zName
);
3323 sqlite3DbFree(db
, pItem
->zAlias
);
3324 sqlite3DbFree(db
, pItem
->zIndex
);
3325 sqlite3DeleteTable(db
, pItem
->pTab
);
3326 sqlite3SelectDelete(db
, pItem
->pSelect
);
3327 sqlite3ExprDelete(db
, pItem
->pOn
);
3328 sqlite3IdListDelete(db
, pItem
->pUsing
);
3330 sqlite3DbFree(db
, pList
);
3334 ** This routine is called by the parser to add a new term to the
3335 ** end of a growing FROM clause. The "p" parameter is the part of
3336 ** the FROM clause that has already been constructed. "p" is NULL
3337 ** if this is the first term of the FROM clause. pTable and pDatabase
3338 ** are the name of the table and database named in the FROM clause term.
3339 ** pDatabase is NULL if the database name qualifier is missing - the
3340 ** usual case. If the term has a alias, then pAlias points to the
3341 ** alias token. If the term is a subquery, then pSubquery is the
3342 ** SELECT statement that the subquery encodes. The pTable and
3343 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3344 ** parameters are the content of the ON and USING clauses.
3346 ** Return a new SrcList which encodes is the FROM with the new
3349 SrcList
*sqlite3SrcListAppendFromTerm(
3350 Parse
*pParse
, /* Parsing context */
3351 SrcList
*p
, /* The left part of the FROM clause already seen */
3352 Token
*pTable
, /* Name of the table to add to the FROM clause */
3353 Token
*pDatabase
, /* Name of the database containing pTable */
3354 Token
*pAlias
, /* The right-hand side of the AS subexpression */
3355 Select
*pSubquery
, /* A subquery used in place of a table name */
3356 Expr
*pOn
, /* The ON clause of a join */
3357 IdList
*pUsing
/* The USING clause of a join */
3359 struct SrcList_item
*pItem
;
3360 sqlite3
*db
= pParse
->db
;
3361 if( !p
&& (pOn
|| pUsing
) ){
3362 sqlite3ErrorMsg(pParse
, "a JOIN clause is required before %s",
3363 (pOn
? "ON" : "USING")
3365 goto append_from_error
;
3367 p
= sqlite3SrcListAppend(db
, p
, pTable
, pDatabase
);
3368 if( p
==0 || NEVER(p
->nSrc
==0) ){
3369 goto append_from_error
;
3371 pItem
= &p
->a
[p
->nSrc
-1];
3372 assert( pAlias
!=0 );
3374 pItem
->zAlias
= sqlite3NameFromToken(db
, pAlias
);
3376 pItem
->pSelect
= pSubquery
;
3378 pItem
->pUsing
= pUsing
;
3383 sqlite3ExprDelete(db
, pOn
);
3384 sqlite3IdListDelete(db
, pUsing
);
3385 sqlite3SelectDelete(db
, pSubquery
);
3390 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3391 ** element of the source-list passed as the second argument.
3393 void sqlite3SrcListIndexedBy(Parse
*pParse
, SrcList
*p
, Token
*pIndexedBy
){
3394 assert( pIndexedBy
!=0 );
3395 if( p
&& ALWAYS(p
->nSrc
>0) ){
3396 struct SrcList_item
*pItem
= &p
->a
[p
->nSrc
-1];
3397 assert( pItem
->notIndexed
==0 && pItem
->zIndex
==0 );
3398 if( pIndexedBy
->n
==1 && !pIndexedBy
->z
){
3399 /* A "NOT INDEXED" clause was supplied. See parse.y
3400 ** construct "indexed_opt" for details. */
3401 pItem
->notIndexed
= 1;
3403 pItem
->zIndex
= sqlite3NameFromToken(pParse
->db
, pIndexedBy
);
3409 ** When building up a FROM clause in the parser, the join operator
3410 ** is initially attached to the left operand. But the code generator
3411 ** expects the join operator to be on the right operand. This routine
3412 ** Shifts all join operators from left to right for an entire FROM
3415 ** Example: Suppose the join is like this:
3417 ** A natural cross join B
3419 ** The operator is "natural cross join". The A and B operands are stored
3420 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3421 ** operator with A. This routine shifts that operator over to B.
3423 void sqlite3SrcListShiftJoinType(SrcList
*p
){
3426 assert( p
->a
|| p
->nSrc
==0 );
3427 for(i
=p
->nSrc
-1; i
>0; i
--){
3428 p
->a
[i
].jointype
= p
->a
[i
-1].jointype
;
3430 p
->a
[0].jointype
= 0;
3435 ** Begin a transaction
3437 void sqlite3BeginTransaction(Parse
*pParse
, int type
){
3442 assert( pParse
!=0 );
3445 /* if( db->aDb[0].pBt==0 ) return; */
3446 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "BEGIN", 0, 0) ){
3449 v
= sqlite3GetVdbe(pParse
);
3451 if( type
!=TK_DEFERRED
){
3452 for(i
=0; i
<db
->nDb
; i
++){
3453 sqlite3VdbeAddOp2(v
, OP_Transaction
, i
, (type
==TK_EXCLUSIVE
)+1);
3454 sqlite3VdbeUsesBtree(v
, i
);
3457 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 0, 0);
3461 ** Commit a transaction
3463 void sqlite3CommitTransaction(Parse
*pParse
){
3466 assert( pParse
!=0 );
3467 assert( pParse
->db
!=0 );
3468 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "COMMIT", 0, 0) ){
3471 v
= sqlite3GetVdbe(pParse
);
3473 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, 0);
3478 ** Rollback a transaction
3480 void sqlite3RollbackTransaction(Parse
*pParse
){
3483 assert( pParse
!=0 );
3484 assert( pParse
->db
!=0 );
3485 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "ROLLBACK", 0, 0) ){
3488 v
= sqlite3GetVdbe(pParse
);
3490 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, 1);
3495 ** This function is called by the parser when it parses a command to create,
3496 ** release or rollback an SQL savepoint.
3498 void sqlite3Savepoint(Parse
*pParse
, int op
, Token
*pName
){
3499 char *zName
= sqlite3NameFromToken(pParse
->db
, pName
);
3501 Vdbe
*v
= sqlite3GetVdbe(pParse
);
3502 #ifndef SQLITE_OMIT_AUTHORIZATION
3503 static const char * const az
[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3504 assert( !SAVEPOINT_BEGIN
&& SAVEPOINT_RELEASE
==1 && SAVEPOINT_ROLLBACK
==2 );
3506 if( !v
|| sqlite3AuthCheck(pParse
, SQLITE_SAVEPOINT
, az
[op
], zName
, 0) ){
3507 sqlite3DbFree(pParse
->db
, zName
);
3510 sqlite3VdbeAddOp4(v
, OP_Savepoint
, op
, 0, 0, zName
, P4_DYNAMIC
);
3515 ** Make sure the TEMP database is open and available for use. Return
3516 ** the number of errors. Leave any error messages in the pParse structure.
3518 int sqlite3OpenTempDatabase(Parse
*pParse
){
3519 sqlite3
*db
= pParse
->db
;
3520 if( db
->aDb
[1].pBt
==0 && !pParse
->explain
){
3523 static const int flags
=
3524 SQLITE_OPEN_READWRITE
|
3525 SQLITE_OPEN_CREATE
|
3526 SQLITE_OPEN_EXCLUSIVE
|
3527 SQLITE_OPEN_DELETEONCLOSE
|
3528 SQLITE_OPEN_TEMP_DB
;
3530 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pBt
, 0, flags
);
3531 if( rc
!=SQLITE_OK
){
3532 sqlite3ErrorMsg(pParse
, "unable to open a temporary database "
3533 "file for storing temporary tables");
3537 db
->aDb
[1].pBt
= pBt
;
3538 assert( db
->aDb
[1].pSchema
);
3539 if( SQLITE_NOMEM
==sqlite3BtreeSetPageSize(pBt
, db
->nextPagesize
, -1, 0) ){
3540 db
->mallocFailed
= 1;
3548 ** Generate VDBE code that will verify the schema cookie and start
3549 ** a read-transaction for all named database files.
3551 ** It is important that all schema cookies be verified and all
3552 ** read transactions be started before anything else happens in
3553 ** the VDBE program. But this routine can be called after much other
3554 ** code has been generated. So here is what we do:
3556 ** The first time this routine is called, we code an OP_Goto that
3557 ** will jump to a subroutine at the end of the program. Then we
3558 ** record every database that needs its schema verified in the
3559 ** pParse->cookieMask field. Later, after all other code has been
3560 ** generated, the subroutine that does the cookie verifications and
3561 ** starts the transactions will be coded and the OP_Goto P2 value
3562 ** will be made to point to that subroutine. The generation of the
3563 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3565 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3566 ** schema on any databases. This can be used to position the OP_Goto
3567 ** early in the code, before we know if any database tables will be used.
3569 void sqlite3CodeVerifySchema(Parse
*pParse
, int iDb
){
3570 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3572 if( pToplevel
->cookieGoto
==0 ){
3573 Vdbe
*v
= sqlite3GetVdbe(pToplevel
);
3574 if( v
==0 ) return; /* This only happens if there was a prior error */
3575 pToplevel
->cookieGoto
= sqlite3VdbeAddOp2(v
, OP_Goto
, 0, 0)+1;
3578 sqlite3
*db
= pToplevel
->db
;
3581 assert( iDb
<db
->nDb
);
3582 assert( db
->aDb
[iDb
].pBt
!=0 || iDb
==1 );
3583 assert( iDb
<SQLITE_MAX_ATTACHED
+2 );
3584 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3585 mask
= ((yDbMask
)1)<<iDb
;
3586 if( (pToplevel
->cookieMask
& mask
)==0 ){
3587 pToplevel
->cookieMask
|= mask
;
3588 pToplevel
->cookieValue
[iDb
] = db
->aDb
[iDb
].pSchema
->schema_cookie
;
3589 if( !OMIT_TEMPDB
&& iDb
==1 ){
3590 sqlite3OpenTempDatabase(pToplevel
);
3597 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3598 ** attached database. Otherwise, invoke it for the database named zDb only.
3600 void sqlite3CodeVerifyNamedSchema(Parse
*pParse
, const char *zDb
){
3601 sqlite3
*db
= pParse
->db
;
3603 for(i
=0; i
<db
->nDb
; i
++){
3604 Db
*pDb
= &db
->aDb
[i
];
3605 if( pDb
->pBt
&& (!zDb
|| 0==sqlite3StrICmp(zDb
, pDb
->zName
)) ){
3606 sqlite3CodeVerifySchema(pParse
, i
);
3612 ** Generate VDBE code that prepares for doing an operation that
3613 ** might change the database.
3615 ** This routine starts a new transaction if we are not already within
3616 ** a transaction. If we are already within a transaction, then a checkpoint
3617 ** is set if the setStatement parameter is true. A checkpoint should
3618 ** be set for operations that might fail (due to a constraint) part of
3619 ** the way through and which will need to undo some writes without having to
3620 ** rollback the whole transaction. For operations where all constraints
3621 ** can be checked before any changes are made to the database, it is never
3622 ** necessary to undo a write and the checkpoint should not be set.
3624 void sqlite3BeginWriteOperation(Parse
*pParse
, int setStatement
, int iDb
){
3625 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3626 sqlite3CodeVerifySchema(pParse
, iDb
);
3627 pToplevel
->writeMask
|= ((yDbMask
)1)<<iDb
;
3628 pToplevel
->isMultiWrite
|= setStatement
;
3632 ** Indicate that the statement currently under construction might write
3633 ** more than one entry (example: deleting one row then inserting another,
3634 ** inserting multiple rows in a table, or inserting a row and index entries.)
3635 ** If an abort occurs after some of these writes have completed, then it will
3636 ** be necessary to undo the completed writes.
3638 void sqlite3MultiWrite(Parse
*pParse
){
3639 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3640 pToplevel
->isMultiWrite
= 1;
3644 ** The code generator calls this routine if is discovers that it is
3645 ** possible to abort a statement prior to completion. In order to
3646 ** perform this abort without corrupting the database, we need to make
3647 ** sure that the statement is protected by a statement transaction.
3649 ** Technically, we only need to set the mayAbort flag if the
3650 ** isMultiWrite flag was previously set. There is a time dependency
3651 ** such that the abort must occur after the multiwrite. This makes
3652 ** some statements involving the REPLACE conflict resolution algorithm
3653 ** go a little faster. But taking advantage of this time dependency
3654 ** makes it more difficult to prove that the code is correct (in
3655 ** particular, it prevents us from writing an effective
3656 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3657 ** to take the safe route and skip the optimization.
3659 void sqlite3MayAbort(Parse
*pParse
){
3660 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
3661 pToplevel
->mayAbort
= 1;
3665 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3666 ** error. The onError parameter determines which (if any) of the statement
3667 ** and/or current transaction is rolled back.
3669 void sqlite3HaltConstraint(Parse
*pParse
, int onError
, char *p4
, int p4type
){
3670 Vdbe
*v
= sqlite3GetVdbe(pParse
);
3671 if( onError
==OE_Abort
){
3672 sqlite3MayAbort(pParse
);
3674 sqlite3VdbeAddOp4(v
, OP_Halt
, SQLITE_CONSTRAINT
, onError
, 0, p4
, p4type
);
3678 ** Check to see if pIndex uses the collating sequence pColl. Return
3679 ** true if it does and false if it does not.
3681 #ifndef SQLITE_OMIT_REINDEX
3682 static int collationMatch(const char *zColl
, Index
*pIndex
){
3685 for(i
=0; i
<pIndex
->nColumn
; i
++){
3686 const char *z
= pIndex
->azColl
[i
];
3688 if( 0==sqlite3StrICmp(z
, zColl
) ){
3697 ** Recompute all indices of pTab that use the collating sequence pColl.
3698 ** If pColl==0 then recompute all indices of pTab.
3700 #ifndef SQLITE_OMIT_REINDEX
3701 static void reindexTable(Parse
*pParse
, Table
*pTab
, char const *zColl
){
3702 Index
*pIndex
; /* An index associated with pTab */
3704 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
3705 if( zColl
==0 || collationMatch(zColl
, pIndex
) ){
3706 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
3707 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
3708 sqlite3RefillIndex(pParse
, pIndex
, -1);
3715 ** Recompute all indices of all tables in all databases where the
3716 ** indices use the collating sequence pColl. If pColl==0 then recompute
3717 ** all indices everywhere.
3719 #ifndef SQLITE_OMIT_REINDEX
3720 static void reindexDatabases(Parse
*pParse
, char const *zColl
){
3721 Db
*pDb
; /* A single database */
3722 int iDb
; /* The database index number */
3723 sqlite3
*db
= pParse
->db
; /* The database connection */
3724 HashElem
*k
; /* For looping over tables in pDb */
3725 Table
*pTab
; /* A table in the database */
3727 assert( sqlite3BtreeHoldsAllMutexes(db
) ); /* Needed for schema access */
3728 for(iDb
=0, pDb
=db
->aDb
; iDb
<db
->nDb
; iDb
++, pDb
++){
3730 for(k
=sqliteHashFirst(&pDb
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
3731 pTab
= (Table
*)sqliteHashData(k
);
3732 reindexTable(pParse
, pTab
, zColl
);
3739 ** Generate code for the REINDEX command.
3742 ** REINDEX <collation> -- 2
3743 ** REINDEX ?<database>.?<tablename> -- 3
3744 ** REINDEX ?<database>.?<indexname> -- 4
3746 ** Form 1 causes all indices in all attached databases to be rebuilt.
3747 ** Form 2 rebuilds all indices in all databases that use the named
3748 ** collating function. Forms 3 and 4 rebuild the named index or all
3749 ** indices associated with the named table.
3751 #ifndef SQLITE_OMIT_REINDEX
3752 void sqlite3Reindex(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
3753 CollSeq
*pColl
; /* Collating sequence to be reindexed, or NULL */
3754 char *z
; /* Name of a table or index */
3755 const char *zDb
; /* Name of the database */
3756 Table
*pTab
; /* A table in the database */
3757 Index
*pIndex
; /* An index associated with pTab */
3758 int iDb
; /* The database index number */
3759 sqlite3
*db
= pParse
->db
; /* The database connection */
3760 Token
*pObjName
; /* Name of the table or index to be reindexed */
3762 /* Read the database schema. If an error occurs, leave an error message
3763 ** and code in pParse and return NULL. */
3764 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
3769 reindexDatabases(pParse
, 0);
3771 }else if( NEVER(pName2
==0) || pName2
->z
==0 ){
3773 assert( pName1
->z
);
3774 zColl
= sqlite3NameFromToken(pParse
->db
, pName1
);
3775 if( !zColl
) return;
3776 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
3778 reindexDatabases(pParse
, zColl
);
3779 sqlite3DbFree(db
, zColl
);
3782 sqlite3DbFree(db
, zColl
);
3784 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pObjName
);
3786 z
= sqlite3NameFromToken(db
, pObjName
);
3788 zDb
= db
->aDb
[iDb
].zName
;
3789 pTab
= sqlite3FindTable(db
, z
, zDb
);
3791 reindexTable(pParse
, pTab
, 0);
3792 sqlite3DbFree(db
, z
);
3795 pIndex
= sqlite3FindIndex(db
, z
, zDb
);
3796 sqlite3DbFree(db
, z
);
3798 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
3799 sqlite3RefillIndex(pParse
, pIndex
, -1);
3802 sqlite3ErrorMsg(pParse
, "unable to identify the object to be reindexed");
3807 ** Return a dynamicly allocated KeyInfo structure that can be used
3808 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3810 ** If successful, a pointer to the new structure is returned. In this case
3811 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3812 ** pointer. If an error occurs (out of memory or missing collation
3813 ** sequence), NULL is returned and the state of pParse updated to reflect
3816 KeyInfo
*sqlite3IndexKeyinfo(Parse
*pParse
, Index
*pIdx
){
3818 int nCol
= pIdx
->nColumn
;
3819 int nBytes
= sizeof(KeyInfo
) + (nCol
-1)*sizeof(CollSeq
*) + nCol
;
3820 sqlite3
*db
= pParse
->db
;
3821 KeyInfo
*pKey
= (KeyInfo
*)sqlite3DbMallocZero(db
, nBytes
);
3824 pKey
->db
= pParse
->db
;
3825 pKey
->aSortOrder
= (u8
*)&(pKey
->aColl
[nCol
]);
3826 assert( &pKey
->aSortOrder
[nCol
]==&(((u8
*)pKey
)[nBytes
]) );
3827 for(i
=0; i
<nCol
; i
++){
3828 char *zColl
= pIdx
->azColl
[i
];
3830 pKey
->aColl
[i
] = sqlite3LocateCollSeq(pParse
, zColl
);
3831 pKey
->aSortOrder
[i
] = pIdx
->aSortOrder
[i
];
3833 pKey
->nField
= (u16
)nCol
;
3837 sqlite3DbFree(db
, pKey
);