track 3.7.13
[sqlcipher.git] / src / build.c
blob9f13b7b11c7835b4871908bf4bb15fc68a674923
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed. Initialize the pParse structure as needed.
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32 pParse->explain = (u8)explainFlag;
33 pParse->nVar = 0;
36 #ifndef SQLITE_OMIT_SHARED_CACHE
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
41 struct TableLock {
42 int iDb; /* The database containing the table to be locked */
43 int iTab; /* The root page of the table to be locked */
44 u8 isWriteLock; /* True for write lock. False for a read lock */
45 const char *zName; /* Name of the table */
49 ** Record the fact that we want to lock a table at run-time.
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
54 ** This routine just records the fact that the lock is desired. The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
58 void sqlite3TableLock(
59 Parse *pParse, /* Parsing context */
60 int iDb, /* Index of the database containing the table to lock */
61 int iTab, /* Root page number of the table to be locked */
62 u8 isWriteLock, /* True for a write lock */
63 const char *zName /* Name of the table to be locked */
65 Parse *pToplevel = sqlite3ParseToplevel(pParse);
66 int i;
67 int nBytes;
68 TableLock *p;
69 assert( iDb>=0 );
71 for(i=0; i<pToplevel->nTableLock; i++){
72 p = &pToplevel->aTableLock[i];
73 if( p->iDb==iDb && p->iTab==iTab ){
74 p->isWriteLock = (p->isWriteLock || isWriteLock);
75 return;
79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80 pToplevel->aTableLock =
81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82 if( pToplevel->aTableLock ){
83 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84 p->iDb = iDb;
85 p->iTab = iTab;
86 p->isWriteLock = isWriteLock;
87 p->zName = zName;
88 }else{
89 pToplevel->nTableLock = 0;
90 pToplevel->db->mallocFailed = 1;
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
98 static void codeTableLocks(Parse *pParse){
99 int i;
100 Vdbe *pVdbe;
102 pVdbe = sqlite3GetVdbe(pParse);
103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
105 for(i=0; i<pParse->nTableLock; i++){
106 TableLock *p = &pParse->aTableLock[i];
107 int p1 = p->iDb;
108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109 p->zName, P4_STATIC);
112 #else
113 #define codeTableLocks(x)
114 #endif
117 ** This routine is called after a single SQL statement has been
118 ** parsed and a VDBE program to execute that statement has been
119 ** prepared. This routine puts the finishing touches on the
120 ** VDBE program and resets the pParse structure for the next
121 ** parse.
123 ** Note that if an error occurred, it might be the case that
124 ** no VDBE code was generated.
126 void sqlite3FinishCoding(Parse *pParse){
127 sqlite3 *db;
128 Vdbe *v;
130 db = pParse->db;
131 if( db->mallocFailed ) return;
132 if( pParse->nested ) return;
133 if( pParse->nErr ) return;
135 /* Begin by generating some termination code at the end of the
136 ** vdbe program
138 v = sqlite3GetVdbe(pParse);
139 assert( !pParse->isMultiWrite
140 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
141 if( v ){
142 sqlite3VdbeAddOp0(v, OP_Halt);
144 /* The cookie mask contains one bit for each database file open.
145 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
146 ** set for each database that is used. Generate code to start a
147 ** transaction on each used database and to verify the schema cookie
148 ** on each used database.
150 if( pParse->cookieGoto>0 ){
151 yDbMask mask;
152 int iDb;
153 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
154 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
155 if( (mask & pParse->cookieMask)==0 ) continue;
156 sqlite3VdbeUsesBtree(v, iDb);
157 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
158 if( db->init.busy==0 ){
159 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
160 sqlite3VdbeAddOp3(v, OP_VerifyCookie,
161 iDb, pParse->cookieValue[iDb],
162 db->aDb[iDb].pSchema->iGeneration);
165 #ifndef SQLITE_OMIT_VIRTUALTABLE
167 int i;
168 for(i=0; i<pParse->nVtabLock; i++){
169 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
170 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
172 pParse->nVtabLock = 0;
174 #endif
176 /* Once all the cookies have been verified and transactions opened,
177 ** obtain the required table-locks. This is a no-op unless the
178 ** shared-cache feature is enabled.
180 codeTableLocks(pParse);
182 /* Initialize any AUTOINCREMENT data structures required.
184 sqlite3AutoincrementBegin(pParse);
186 /* Finally, jump back to the beginning of the executable code. */
187 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
192 /* Get the VDBE program ready for execution
194 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
195 #ifdef SQLITE_DEBUG
196 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
197 sqlite3VdbeTrace(v, trace);
198 #endif
199 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
200 /* A minimum of one cursor is required if autoincrement is used
201 * See ticket [a696379c1f08866] */
202 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
203 sqlite3VdbeMakeReady(v, pParse);
204 pParse->rc = SQLITE_DONE;
205 pParse->colNamesSet = 0;
206 }else{
207 pParse->rc = SQLITE_ERROR;
209 pParse->nTab = 0;
210 pParse->nMem = 0;
211 pParse->nSet = 0;
212 pParse->nVar = 0;
213 pParse->cookieMask = 0;
214 pParse->cookieGoto = 0;
218 ** Run the parser and code generator recursively in order to generate
219 ** code for the SQL statement given onto the end of the pParse context
220 ** currently under construction. When the parser is run recursively
221 ** this way, the final OP_Halt is not appended and other initialization
222 ** and finalization steps are omitted because those are handling by the
223 ** outermost parser.
225 ** Not everything is nestable. This facility is designed to permit
226 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
227 ** care if you decide to try to use this routine for some other purposes.
229 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
230 va_list ap;
231 char *zSql;
232 char *zErrMsg = 0;
233 sqlite3 *db = pParse->db;
234 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
235 char saveBuf[SAVE_SZ];
237 if( pParse->nErr ) return;
238 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
239 va_start(ap, zFormat);
240 zSql = sqlite3VMPrintf(db, zFormat, ap);
241 va_end(ap);
242 if( zSql==0 ){
243 return; /* A malloc must have failed */
245 pParse->nested++;
246 memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
247 memset(&pParse->nVar, 0, SAVE_SZ);
248 sqlite3RunParser(pParse, zSql, &zErrMsg);
249 sqlite3DbFree(db, zErrMsg);
250 sqlite3DbFree(db, zSql);
251 memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
252 pParse->nested--;
256 ** Locate the in-memory structure that describes a particular database
257 ** table given the name of that table and (optionally) the name of the
258 ** database containing the table. Return NULL if not found.
260 ** If zDatabase is 0, all databases are searched for the table and the
261 ** first matching table is returned. (No checking for duplicate table
262 ** names is done.) The search order is TEMP first, then MAIN, then any
263 ** auxiliary databases added using the ATTACH command.
265 ** See also sqlite3LocateTable().
267 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
268 Table *p = 0;
269 int i;
270 int nName;
271 assert( zName!=0 );
272 nName = sqlite3Strlen30(zName);
273 /* All mutexes are required for schema access. Make sure we hold them. */
274 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
275 for(i=OMIT_TEMPDB; i<db->nDb; i++){
276 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
277 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
278 assert( sqlite3SchemaMutexHeld(db, j, 0) );
279 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
280 if( p ) break;
282 return p;
286 ** Locate the in-memory structure that describes a particular database
287 ** table given the name of that table and (optionally) the name of the
288 ** database containing the table. Return NULL if not found. Also leave an
289 ** error message in pParse->zErrMsg.
291 ** The difference between this routine and sqlite3FindTable() is that this
292 ** routine leaves an error message in pParse->zErrMsg where
293 ** sqlite3FindTable() does not.
295 Table *sqlite3LocateTable(
296 Parse *pParse, /* context in which to report errors */
297 int isView, /* True if looking for a VIEW rather than a TABLE */
298 const char *zName, /* Name of the table we are looking for */
299 const char *zDbase /* Name of the database. Might be NULL */
301 Table *p;
303 /* Read the database schema. If an error occurs, leave an error message
304 ** and code in pParse and return NULL. */
305 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
306 return 0;
309 p = sqlite3FindTable(pParse->db, zName, zDbase);
310 if( p==0 ){
311 const char *zMsg = isView ? "no such view" : "no such table";
312 if( zDbase ){
313 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
314 }else{
315 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
317 pParse->checkSchema = 1;
319 return p;
323 ** Locate the in-memory structure that describes
324 ** a particular index given the name of that index
325 ** and the name of the database that contains the index.
326 ** Return NULL if not found.
328 ** If zDatabase is 0, all databases are searched for the
329 ** table and the first matching index is returned. (No checking
330 ** for duplicate index names is done.) The search order is
331 ** TEMP first, then MAIN, then any auxiliary databases added
332 ** using the ATTACH command.
334 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
335 Index *p = 0;
336 int i;
337 int nName = sqlite3Strlen30(zName);
338 /* All mutexes are required for schema access. Make sure we hold them. */
339 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
340 for(i=OMIT_TEMPDB; i<db->nDb; i++){
341 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
342 Schema *pSchema = db->aDb[j].pSchema;
343 assert( pSchema );
344 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
345 assert( sqlite3SchemaMutexHeld(db, j, 0) );
346 p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
347 if( p ) break;
349 return p;
353 ** Reclaim the memory used by an index
355 static void freeIndex(sqlite3 *db, Index *p){
356 #ifndef SQLITE_OMIT_ANALYZE
357 sqlite3DeleteIndexSamples(db, p);
358 #endif
359 sqlite3DbFree(db, p->zColAff);
360 sqlite3DbFree(db, p);
364 ** For the index called zIdxName which is found in the database iDb,
365 ** unlike that index from its Table then remove the index from
366 ** the index hash table and free all memory structures associated
367 ** with the index.
369 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
370 Index *pIndex;
371 int len;
372 Hash *pHash;
374 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
375 pHash = &db->aDb[iDb].pSchema->idxHash;
376 len = sqlite3Strlen30(zIdxName);
377 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
378 if( ALWAYS(pIndex) ){
379 if( pIndex->pTable->pIndex==pIndex ){
380 pIndex->pTable->pIndex = pIndex->pNext;
381 }else{
382 Index *p;
383 /* Justification of ALWAYS(); The index must be on the list of
384 ** indices. */
385 p = pIndex->pTable->pIndex;
386 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
387 if( ALWAYS(p && p->pNext==pIndex) ){
388 p->pNext = pIndex->pNext;
391 freeIndex(db, pIndex);
393 db->flags |= SQLITE_InternChanges;
397 ** Look through the list of open database files in db->aDb[] and if
398 ** any have been closed, remove them from the list. Reallocate the
399 ** db->aDb[] structure to a smaller size, if possible.
401 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
402 ** are never candidates for being collapsed.
404 void sqlite3CollapseDatabaseArray(sqlite3 *db){
405 int i, j;
406 for(i=j=2; i<db->nDb; i++){
407 struct Db *pDb = &db->aDb[i];
408 if( pDb->pBt==0 ){
409 sqlite3DbFree(db, pDb->zName);
410 pDb->zName = 0;
411 continue;
413 if( j<i ){
414 db->aDb[j] = db->aDb[i];
416 j++;
418 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
419 db->nDb = j;
420 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
421 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
422 sqlite3DbFree(db, db->aDb);
423 db->aDb = db->aDbStatic;
428 ** Reset the schema for the database at index iDb. Also reset the
429 ** TEMP schema.
431 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
432 Db *pDb;
433 assert( iDb<db->nDb );
435 /* Case 1: Reset the single schema identified by iDb */
436 pDb = &db->aDb[iDb];
437 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
438 assert( pDb->pSchema!=0 );
439 sqlite3SchemaClear(pDb->pSchema);
441 /* If any database other than TEMP is reset, then also reset TEMP
442 ** since TEMP might be holding triggers that reference tables in the
443 ** other database.
445 if( iDb!=1 ){
446 pDb = &db->aDb[1];
447 assert( pDb->pSchema!=0 );
448 sqlite3SchemaClear(pDb->pSchema);
450 return;
454 ** Erase all schema information from all attached databases (including
455 ** "main" and "temp") for a single database connection.
457 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
458 int i;
459 sqlite3BtreeEnterAll(db);
460 for(i=0; i<db->nDb; i++){
461 Db *pDb = &db->aDb[i];
462 if( pDb->pSchema ){
463 sqlite3SchemaClear(pDb->pSchema);
466 db->flags &= ~SQLITE_InternChanges;
467 sqlite3VtabUnlockList(db);
468 sqlite3BtreeLeaveAll(db);
469 sqlite3CollapseDatabaseArray(db);
473 ** This routine is called when a commit occurs.
475 void sqlite3CommitInternalChanges(sqlite3 *db){
476 db->flags &= ~SQLITE_InternChanges;
480 ** Delete memory allocated for the column names of a table or view (the
481 ** Table.aCol[] array).
483 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
484 int i;
485 Column *pCol;
486 assert( pTable!=0 );
487 if( (pCol = pTable->aCol)!=0 ){
488 for(i=0; i<pTable->nCol; i++, pCol++){
489 sqlite3DbFree(db, pCol->zName);
490 sqlite3ExprDelete(db, pCol->pDflt);
491 sqlite3DbFree(db, pCol->zDflt);
492 sqlite3DbFree(db, pCol->zType);
493 sqlite3DbFree(db, pCol->zColl);
495 sqlite3DbFree(db, pTable->aCol);
500 ** Remove the memory data structures associated with the given
501 ** Table. No changes are made to disk by this routine.
503 ** This routine just deletes the data structure. It does not unlink
504 ** the table data structure from the hash table. But it does destroy
505 ** memory structures of the indices and foreign keys associated with
506 ** the table.
508 ** The db parameter is optional. It is needed if the Table object
509 ** contains lookaside memory. (Table objects in the schema do not use
510 ** lookaside memory, but some ephemeral Table objects do.) Or the
511 ** db parameter can be used with db->pnBytesFreed to measure the memory
512 ** used by the Table object.
514 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
515 Index *pIndex, *pNext;
516 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
518 assert( !pTable || pTable->nRef>0 );
520 /* Do not delete the table until the reference count reaches zero. */
521 if( !pTable ) return;
522 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
524 /* Record the number of outstanding lookaside allocations in schema Tables
525 ** prior to doing any free() operations. Since schema Tables do not use
526 ** lookaside, this number should not change. */
527 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
528 db->lookaside.nOut : 0 );
530 /* Delete all indices associated with this table. */
531 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
532 pNext = pIndex->pNext;
533 assert( pIndex->pSchema==pTable->pSchema );
534 if( !db || db->pnBytesFreed==0 ){
535 char *zName = pIndex->zName;
536 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
537 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
539 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
540 assert( pOld==pIndex || pOld==0 );
542 freeIndex(db, pIndex);
545 /* Delete any foreign keys attached to this table. */
546 sqlite3FkDelete(db, pTable);
548 /* Delete the Table structure itself.
550 sqliteDeleteColumnNames(db, pTable);
551 sqlite3DbFree(db, pTable->zName);
552 sqlite3DbFree(db, pTable->zColAff);
553 sqlite3SelectDelete(db, pTable->pSelect);
554 #ifndef SQLITE_OMIT_CHECK
555 sqlite3ExprListDelete(db, pTable->pCheck);
556 #endif
557 #ifndef SQLITE_OMIT_VIRTUALTABLE
558 sqlite3VtabClear(db, pTable);
559 #endif
560 sqlite3DbFree(db, pTable);
562 /* Verify that no lookaside memory was used by schema tables */
563 assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
567 ** Unlink the given table from the hash tables and the delete the
568 ** table structure with all its indices and foreign keys.
570 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
571 Table *p;
572 Db *pDb;
574 assert( db!=0 );
575 assert( iDb>=0 && iDb<db->nDb );
576 assert( zTabName );
577 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
578 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
579 pDb = &db->aDb[iDb];
580 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
581 sqlite3Strlen30(zTabName),0);
582 sqlite3DeleteTable(db, p);
583 db->flags |= SQLITE_InternChanges;
587 ** Given a token, return a string that consists of the text of that
588 ** token. Space to hold the returned string
589 ** is obtained from sqliteMalloc() and must be freed by the calling
590 ** function.
592 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
593 ** surround the body of the token are removed.
595 ** Tokens are often just pointers into the original SQL text and so
596 ** are not \000 terminated and are not persistent. The returned string
597 ** is \000 terminated and is persistent.
599 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
600 char *zName;
601 if( pName ){
602 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
603 sqlite3Dequote(zName);
604 }else{
605 zName = 0;
607 return zName;
611 ** Open the sqlite_master table stored in database number iDb for
612 ** writing. The table is opened using cursor 0.
614 void sqlite3OpenMasterTable(Parse *p, int iDb){
615 Vdbe *v = sqlite3GetVdbe(p);
616 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
617 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
618 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */
619 if( p->nTab==0 ){
620 p->nTab = 1;
625 ** Parameter zName points to a nul-terminated buffer containing the name
626 ** of a database ("main", "temp" or the name of an attached db). This
627 ** function returns the index of the named database in db->aDb[], or
628 ** -1 if the named db cannot be found.
630 int sqlite3FindDbName(sqlite3 *db, const char *zName){
631 int i = -1; /* Database number */
632 if( zName ){
633 Db *pDb;
634 int n = sqlite3Strlen30(zName);
635 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
636 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
637 0==sqlite3StrICmp(pDb->zName, zName) ){
638 break;
642 return i;
646 ** The token *pName contains the name of a database (either "main" or
647 ** "temp" or the name of an attached db). This routine returns the
648 ** index of the named database in db->aDb[], or -1 if the named db
649 ** does not exist.
651 int sqlite3FindDb(sqlite3 *db, Token *pName){
652 int i; /* Database number */
653 char *zName; /* Name we are searching for */
654 zName = sqlite3NameFromToken(db, pName);
655 i = sqlite3FindDbName(db, zName);
656 sqlite3DbFree(db, zName);
657 return i;
660 /* The table or view or trigger name is passed to this routine via tokens
661 ** pName1 and pName2. If the table name was fully qualified, for example:
663 ** CREATE TABLE xxx.yyy (...);
665 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
666 ** the table name is not fully qualified, i.e.:
668 ** CREATE TABLE yyy(...);
670 ** Then pName1 is set to "yyy" and pName2 is "".
672 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
673 ** pName2) that stores the unqualified table name. The index of the
674 ** database "xxx" is returned.
676 int sqlite3TwoPartName(
677 Parse *pParse, /* Parsing and code generating context */
678 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
679 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
680 Token **pUnqual /* Write the unqualified object name here */
682 int iDb; /* Database holding the object */
683 sqlite3 *db = pParse->db;
685 if( ALWAYS(pName2!=0) && pName2->n>0 ){
686 if( db->init.busy ) {
687 sqlite3ErrorMsg(pParse, "corrupt database");
688 pParse->nErr++;
689 return -1;
691 *pUnqual = pName2;
692 iDb = sqlite3FindDb(db, pName1);
693 if( iDb<0 ){
694 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
695 pParse->nErr++;
696 return -1;
698 }else{
699 assert( db->init.iDb==0 || db->init.busy );
700 iDb = db->init.iDb;
701 *pUnqual = pName1;
703 return iDb;
707 ** This routine is used to check if the UTF-8 string zName is a legal
708 ** unqualified name for a new schema object (table, index, view or
709 ** trigger). All names are legal except those that begin with the string
710 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
711 ** is reserved for internal use.
713 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
714 if( !pParse->db->init.busy && pParse->nested==0
715 && (pParse->db->flags & SQLITE_WriteSchema)==0
716 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
717 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
718 return SQLITE_ERROR;
720 return SQLITE_OK;
724 ** Begin constructing a new table representation in memory. This is
725 ** the first of several action routines that get called in response
726 ** to a CREATE TABLE statement. In particular, this routine is called
727 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
728 ** flag is true if the table should be stored in the auxiliary database
729 ** file instead of in the main database file. This is normally the case
730 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
731 ** CREATE and TABLE.
733 ** The new table record is initialized and put in pParse->pNewTable.
734 ** As more of the CREATE TABLE statement is parsed, additional action
735 ** routines will be called to add more information to this record.
736 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
737 ** is called to complete the construction of the new table record.
739 void sqlite3StartTable(
740 Parse *pParse, /* Parser context */
741 Token *pName1, /* First part of the name of the table or view */
742 Token *pName2, /* Second part of the name of the table or view */
743 int isTemp, /* True if this is a TEMP table */
744 int isView, /* True if this is a VIEW */
745 int isVirtual, /* True if this is a VIRTUAL table */
746 int noErr /* Do nothing if table already exists */
748 Table *pTable;
749 char *zName = 0; /* The name of the new table */
750 sqlite3 *db = pParse->db;
751 Vdbe *v;
752 int iDb; /* Database number to create the table in */
753 Token *pName; /* Unqualified name of the table to create */
755 /* The table or view name to create is passed to this routine via tokens
756 ** pName1 and pName2. If the table name was fully qualified, for example:
758 ** CREATE TABLE xxx.yyy (...);
760 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
761 ** the table name is not fully qualified, i.e.:
763 ** CREATE TABLE yyy(...);
765 ** Then pName1 is set to "yyy" and pName2 is "".
767 ** The call below sets the pName pointer to point at the token (pName1 or
768 ** pName2) that stores the unqualified table name. The variable iDb is
769 ** set to the index of the database that the table or view is to be
770 ** created in.
772 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
773 if( iDb<0 ) return;
774 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
775 /* If creating a temp table, the name may not be qualified. Unless
776 ** the database name is "temp" anyway. */
777 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
778 return;
780 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
782 pParse->sNameToken = *pName;
783 zName = sqlite3NameFromToken(db, pName);
784 if( zName==0 ) return;
785 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
786 goto begin_table_error;
788 if( db->init.iDb==1 ) isTemp = 1;
789 #ifndef SQLITE_OMIT_AUTHORIZATION
790 assert( (isTemp & 1)==isTemp );
792 int code;
793 char *zDb = db->aDb[iDb].zName;
794 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
795 goto begin_table_error;
797 if( isView ){
798 if( !OMIT_TEMPDB && isTemp ){
799 code = SQLITE_CREATE_TEMP_VIEW;
800 }else{
801 code = SQLITE_CREATE_VIEW;
803 }else{
804 if( !OMIT_TEMPDB && isTemp ){
805 code = SQLITE_CREATE_TEMP_TABLE;
806 }else{
807 code = SQLITE_CREATE_TABLE;
810 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
811 goto begin_table_error;
814 #endif
816 /* Make sure the new table name does not collide with an existing
817 ** index or table name in the same database. Issue an error message if
818 ** it does. The exception is if the statement being parsed was passed
819 ** to an sqlite3_declare_vtab() call. In that case only the column names
820 ** and types will be used, so there is no need to test for namespace
821 ** collisions.
823 if( !IN_DECLARE_VTAB ){
824 char *zDb = db->aDb[iDb].zName;
825 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
826 goto begin_table_error;
828 pTable = sqlite3FindTable(db, zName, zDb);
829 if( pTable ){
830 if( !noErr ){
831 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
832 }else{
833 assert( !db->init.busy );
834 sqlite3CodeVerifySchema(pParse, iDb);
836 goto begin_table_error;
838 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
839 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
840 goto begin_table_error;
844 pTable = sqlite3DbMallocZero(db, sizeof(Table));
845 if( pTable==0 ){
846 db->mallocFailed = 1;
847 pParse->rc = SQLITE_NOMEM;
848 pParse->nErr++;
849 goto begin_table_error;
851 pTable->zName = zName;
852 pTable->iPKey = -1;
853 pTable->pSchema = db->aDb[iDb].pSchema;
854 pTable->nRef = 1;
855 pTable->nRowEst = 1000000;
856 assert( pParse->pNewTable==0 );
857 pParse->pNewTable = pTable;
859 /* If this is the magic sqlite_sequence table used by autoincrement,
860 ** then record a pointer to this table in the main database structure
861 ** so that INSERT can find the table easily.
863 #ifndef SQLITE_OMIT_AUTOINCREMENT
864 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
865 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
866 pTable->pSchema->pSeqTab = pTable;
868 #endif
870 /* Begin generating the code that will insert the table record into
871 ** the SQLITE_MASTER table. Note in particular that we must go ahead
872 ** and allocate the record number for the table entry now. Before any
873 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
874 ** indices to be created and the table record must come before the
875 ** indices. Hence, the record number for the table must be allocated
876 ** now.
878 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
879 int j1;
880 int fileFormat;
881 int reg1, reg2, reg3;
882 sqlite3BeginWriteOperation(pParse, 0, iDb);
884 #ifndef SQLITE_OMIT_VIRTUALTABLE
885 if( isVirtual ){
886 sqlite3VdbeAddOp0(v, OP_VBegin);
888 #endif
890 /* If the file format and encoding in the database have not been set,
891 ** set them now.
893 reg1 = pParse->regRowid = ++pParse->nMem;
894 reg2 = pParse->regRoot = ++pParse->nMem;
895 reg3 = ++pParse->nMem;
896 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
897 sqlite3VdbeUsesBtree(v, iDb);
898 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
899 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
900 1 : SQLITE_MAX_FILE_FORMAT;
901 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
902 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
903 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
904 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
905 sqlite3VdbeJumpHere(v, j1);
907 /* This just creates a place-holder record in the sqlite_master table.
908 ** The record created does not contain anything yet. It will be replaced
909 ** by the real entry in code generated at sqlite3EndTable().
911 ** The rowid for the new entry is left in register pParse->regRowid.
912 ** The root page number of the new table is left in reg pParse->regRoot.
913 ** The rowid and root page number values are needed by the code that
914 ** sqlite3EndTable will generate.
916 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
917 if( isView || isVirtual ){
918 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
919 }else
920 #endif
922 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
924 sqlite3OpenMasterTable(pParse, iDb);
925 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
926 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
927 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
928 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
929 sqlite3VdbeAddOp0(v, OP_Close);
932 /* Normal (non-error) return. */
933 return;
935 /* If an error occurs, we jump here */
936 begin_table_error:
937 sqlite3DbFree(db, zName);
938 return;
942 ** This macro is used to compare two strings in a case-insensitive manner.
943 ** It is slightly faster than calling sqlite3StrICmp() directly, but
944 ** produces larger code.
946 ** WARNING: This macro is not compatible with the strcmp() family. It
947 ** returns true if the two strings are equal, otherwise false.
949 #define STRICMP(x, y) (\
950 sqlite3UpperToLower[*(unsigned char *)(x)]== \
951 sqlite3UpperToLower[*(unsigned char *)(y)] \
952 && sqlite3StrICmp((x)+1,(y)+1)==0 )
955 ** Add a new column to the table currently being constructed.
957 ** The parser calls this routine once for each column declaration
958 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
959 ** first to get things going. Then this routine is called for each
960 ** column.
962 void sqlite3AddColumn(Parse *pParse, Token *pName){
963 Table *p;
964 int i;
965 char *z;
966 Column *pCol;
967 sqlite3 *db = pParse->db;
968 if( (p = pParse->pNewTable)==0 ) return;
969 #if SQLITE_MAX_COLUMN
970 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
971 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
972 return;
974 #endif
975 z = sqlite3NameFromToken(db, pName);
976 if( z==0 ) return;
977 for(i=0; i<p->nCol; i++){
978 if( STRICMP(z, p->aCol[i].zName) ){
979 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
980 sqlite3DbFree(db, z);
981 return;
984 if( (p->nCol & 0x7)==0 ){
985 Column *aNew;
986 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
987 if( aNew==0 ){
988 sqlite3DbFree(db, z);
989 return;
991 p->aCol = aNew;
993 pCol = &p->aCol[p->nCol];
994 memset(pCol, 0, sizeof(p->aCol[0]));
995 pCol->zName = z;
997 /* If there is no type specified, columns have the default affinity
998 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
999 ** be called next to set pCol->affinity correctly.
1001 pCol->affinity = SQLITE_AFF_NONE;
1002 p->nCol++;
1006 ** This routine is called by the parser while in the middle of
1007 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1008 ** been seen on a column. This routine sets the notNull flag on
1009 ** the column currently under construction.
1011 void sqlite3AddNotNull(Parse *pParse, int onError){
1012 Table *p;
1013 p = pParse->pNewTable;
1014 if( p==0 || NEVER(p->nCol<1) ) return;
1015 p->aCol[p->nCol-1].notNull = (u8)onError;
1019 ** Scan the column type name zType (length nType) and return the
1020 ** associated affinity type.
1022 ** This routine does a case-independent search of zType for the
1023 ** substrings in the following table. If one of the substrings is
1024 ** found, the corresponding affinity is returned. If zType contains
1025 ** more than one of the substrings, entries toward the top of
1026 ** the table take priority. For example, if zType is 'BLOBINT',
1027 ** SQLITE_AFF_INTEGER is returned.
1029 ** Substring | Affinity
1030 ** --------------------------------
1031 ** 'INT' | SQLITE_AFF_INTEGER
1032 ** 'CHAR' | SQLITE_AFF_TEXT
1033 ** 'CLOB' | SQLITE_AFF_TEXT
1034 ** 'TEXT' | SQLITE_AFF_TEXT
1035 ** 'BLOB' | SQLITE_AFF_NONE
1036 ** 'REAL' | SQLITE_AFF_REAL
1037 ** 'FLOA' | SQLITE_AFF_REAL
1038 ** 'DOUB' | SQLITE_AFF_REAL
1040 ** If none of the substrings in the above table are found,
1041 ** SQLITE_AFF_NUMERIC is returned.
1043 char sqlite3AffinityType(const char *zIn){
1044 u32 h = 0;
1045 char aff = SQLITE_AFF_NUMERIC;
1047 if( zIn ) while( zIn[0] ){
1048 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1049 zIn++;
1050 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1051 aff = SQLITE_AFF_TEXT;
1052 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1053 aff = SQLITE_AFF_TEXT;
1054 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1055 aff = SQLITE_AFF_TEXT;
1056 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1057 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1058 aff = SQLITE_AFF_NONE;
1059 #ifndef SQLITE_OMIT_FLOATING_POINT
1060 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1061 && aff==SQLITE_AFF_NUMERIC ){
1062 aff = SQLITE_AFF_REAL;
1063 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1064 && aff==SQLITE_AFF_NUMERIC ){
1065 aff = SQLITE_AFF_REAL;
1066 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1067 && aff==SQLITE_AFF_NUMERIC ){
1068 aff = SQLITE_AFF_REAL;
1069 #endif
1070 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1071 aff = SQLITE_AFF_INTEGER;
1072 break;
1076 return aff;
1080 ** This routine is called by the parser while in the middle of
1081 ** parsing a CREATE TABLE statement. The pFirst token is the first
1082 ** token in the sequence of tokens that describe the type of the
1083 ** column currently under construction. pLast is the last token
1084 ** in the sequence. Use this information to construct a string
1085 ** that contains the typename of the column and store that string
1086 ** in zType.
1088 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1089 Table *p;
1090 Column *pCol;
1092 p = pParse->pNewTable;
1093 if( p==0 || NEVER(p->nCol<1) ) return;
1094 pCol = &p->aCol[p->nCol-1];
1095 assert( pCol->zType==0 );
1096 pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1097 pCol->affinity = sqlite3AffinityType(pCol->zType);
1101 ** The expression is the default value for the most recently added column
1102 ** of the table currently under construction.
1104 ** Default value expressions must be constant. Raise an exception if this
1105 ** is not the case.
1107 ** This routine is called by the parser while in the middle of
1108 ** parsing a CREATE TABLE statement.
1110 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1111 Table *p;
1112 Column *pCol;
1113 sqlite3 *db = pParse->db;
1114 p = pParse->pNewTable;
1115 if( p!=0 ){
1116 pCol = &(p->aCol[p->nCol-1]);
1117 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1118 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1119 pCol->zName);
1120 }else{
1121 /* A copy of pExpr is used instead of the original, as pExpr contains
1122 ** tokens that point to volatile memory. The 'span' of the expression
1123 ** is required by pragma table_info.
1125 sqlite3ExprDelete(db, pCol->pDflt);
1126 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1127 sqlite3DbFree(db, pCol->zDflt);
1128 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1129 (int)(pSpan->zEnd - pSpan->zStart));
1132 sqlite3ExprDelete(db, pSpan->pExpr);
1136 ** Designate the PRIMARY KEY for the table. pList is a list of names
1137 ** of columns that form the primary key. If pList is NULL, then the
1138 ** most recently added column of the table is the primary key.
1140 ** A table can have at most one primary key. If the table already has
1141 ** a primary key (and this is the second primary key) then create an
1142 ** error.
1144 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1145 ** then we will try to use that column as the rowid. Set the Table.iPKey
1146 ** field of the table under construction to be the index of the
1147 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1148 ** no INTEGER PRIMARY KEY.
1150 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1151 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1153 void sqlite3AddPrimaryKey(
1154 Parse *pParse, /* Parsing context */
1155 ExprList *pList, /* List of field names to be indexed */
1156 int onError, /* What to do with a uniqueness conflict */
1157 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1158 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1160 Table *pTab = pParse->pNewTable;
1161 char *zType = 0;
1162 int iCol = -1, i;
1163 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1164 if( pTab->tabFlags & TF_HasPrimaryKey ){
1165 sqlite3ErrorMsg(pParse,
1166 "table \"%s\" has more than one primary key", pTab->zName);
1167 goto primary_key_exit;
1169 pTab->tabFlags |= TF_HasPrimaryKey;
1170 if( pList==0 ){
1171 iCol = pTab->nCol - 1;
1172 pTab->aCol[iCol].isPrimKey = 1;
1173 }else{
1174 for(i=0; i<pList->nExpr; i++){
1175 for(iCol=0; iCol<pTab->nCol; iCol++){
1176 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1177 break;
1180 if( iCol<pTab->nCol ){
1181 pTab->aCol[iCol].isPrimKey = 1;
1184 if( pList->nExpr>1 ) iCol = -1;
1186 if( iCol>=0 && iCol<pTab->nCol ){
1187 zType = pTab->aCol[iCol].zType;
1189 if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1190 && sortOrder==SQLITE_SO_ASC ){
1191 pTab->iPKey = iCol;
1192 pTab->keyConf = (u8)onError;
1193 assert( autoInc==0 || autoInc==1 );
1194 pTab->tabFlags |= autoInc*TF_Autoincrement;
1195 }else if( autoInc ){
1196 #ifndef SQLITE_OMIT_AUTOINCREMENT
1197 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1198 "INTEGER PRIMARY KEY");
1199 #endif
1200 }else{
1201 Index *p;
1202 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1203 if( p ){
1204 p->autoIndex = 2;
1206 pList = 0;
1209 primary_key_exit:
1210 sqlite3ExprListDelete(pParse->db, pList);
1211 return;
1215 ** Add a new CHECK constraint to the table currently under construction.
1217 void sqlite3AddCheckConstraint(
1218 Parse *pParse, /* Parsing context */
1219 Expr *pCheckExpr /* The check expression */
1221 #ifndef SQLITE_OMIT_CHECK
1222 Table *pTab = pParse->pNewTable;
1223 if( pTab && !IN_DECLARE_VTAB ){
1224 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1225 if( pParse->constraintName.n ){
1226 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1228 }else
1229 #endif
1231 sqlite3ExprDelete(pParse->db, pCheckExpr);
1236 ** Set the collation function of the most recently parsed table column
1237 ** to the CollSeq given.
1239 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1240 Table *p;
1241 int i;
1242 char *zColl; /* Dequoted name of collation sequence */
1243 sqlite3 *db;
1245 if( (p = pParse->pNewTable)==0 ) return;
1246 i = p->nCol-1;
1247 db = pParse->db;
1248 zColl = sqlite3NameFromToken(db, pToken);
1249 if( !zColl ) return;
1251 if( sqlite3LocateCollSeq(pParse, zColl) ){
1252 Index *pIdx;
1253 p->aCol[i].zColl = zColl;
1255 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1256 ** then an index may have been created on this column before the
1257 ** collation type was added. Correct this if it is the case.
1259 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1260 assert( pIdx->nColumn==1 );
1261 if( pIdx->aiColumn[0]==i ){
1262 pIdx->azColl[0] = p->aCol[i].zColl;
1265 }else{
1266 sqlite3DbFree(db, zColl);
1271 ** This function returns the collation sequence for database native text
1272 ** encoding identified by the string zName, length nName.
1274 ** If the requested collation sequence is not available, or not available
1275 ** in the database native encoding, the collation factory is invoked to
1276 ** request it. If the collation factory does not supply such a sequence,
1277 ** and the sequence is available in another text encoding, then that is
1278 ** returned instead.
1280 ** If no versions of the requested collations sequence are available, or
1281 ** another error occurs, NULL is returned and an error message written into
1282 ** pParse.
1284 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1285 ** invokes the collation factory if the named collation cannot be found
1286 ** and generates an error message.
1288 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1290 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1291 sqlite3 *db = pParse->db;
1292 u8 enc = ENC(db);
1293 u8 initbusy = db->init.busy;
1294 CollSeq *pColl;
1296 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1297 if( !initbusy && (!pColl || !pColl->xCmp) ){
1298 pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
1299 if( !pColl ){
1300 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1304 return pColl;
1309 ** Generate code that will increment the schema cookie.
1311 ** The schema cookie is used to determine when the schema for the
1312 ** database changes. After each schema change, the cookie value
1313 ** changes. When a process first reads the schema it records the
1314 ** cookie. Thereafter, whenever it goes to access the database,
1315 ** it checks the cookie to make sure the schema has not changed
1316 ** since it was last read.
1318 ** This plan is not completely bullet-proof. It is possible for
1319 ** the schema to change multiple times and for the cookie to be
1320 ** set back to prior value. But schema changes are infrequent
1321 ** and the probability of hitting the same cookie value is only
1322 ** 1 chance in 2^32. So we're safe enough.
1324 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1325 int r1 = sqlite3GetTempReg(pParse);
1326 sqlite3 *db = pParse->db;
1327 Vdbe *v = pParse->pVdbe;
1328 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1329 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1330 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1331 sqlite3ReleaseTempReg(pParse, r1);
1335 ** Measure the number of characters needed to output the given
1336 ** identifier. The number returned includes any quotes used
1337 ** but does not include the null terminator.
1339 ** The estimate is conservative. It might be larger that what is
1340 ** really needed.
1342 static int identLength(const char *z){
1343 int n;
1344 for(n=0; *z; n++, z++){
1345 if( *z=='"' ){ n++; }
1347 return n + 2;
1351 ** The first parameter is a pointer to an output buffer. The second
1352 ** parameter is a pointer to an integer that contains the offset at
1353 ** which to write into the output buffer. This function copies the
1354 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1355 ** to the specified offset in the buffer and updates *pIdx to refer
1356 ** to the first byte after the last byte written before returning.
1358 ** If the string zSignedIdent consists entirely of alpha-numeric
1359 ** characters, does not begin with a digit and is not an SQL keyword,
1360 ** then it is copied to the output buffer exactly as it is. Otherwise,
1361 ** it is quoted using double-quotes.
1363 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1364 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1365 int i, j, needQuote;
1366 i = *pIdx;
1368 for(j=0; zIdent[j]; j++){
1369 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1371 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1372 if( !needQuote ){
1373 needQuote = zIdent[j];
1376 if( needQuote ) z[i++] = '"';
1377 for(j=0; zIdent[j]; j++){
1378 z[i++] = zIdent[j];
1379 if( zIdent[j]=='"' ) z[i++] = '"';
1381 if( needQuote ) z[i++] = '"';
1382 z[i] = 0;
1383 *pIdx = i;
1387 ** Generate a CREATE TABLE statement appropriate for the given
1388 ** table. Memory to hold the text of the statement is obtained
1389 ** from sqliteMalloc() and must be freed by the calling function.
1391 static char *createTableStmt(sqlite3 *db, Table *p){
1392 int i, k, n;
1393 char *zStmt;
1394 char *zSep, *zSep2, *zEnd;
1395 Column *pCol;
1396 n = 0;
1397 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1398 n += identLength(pCol->zName) + 5;
1400 n += identLength(p->zName);
1401 if( n<50 ){
1402 zSep = "";
1403 zSep2 = ",";
1404 zEnd = ")";
1405 }else{
1406 zSep = "\n ";
1407 zSep2 = ",\n ";
1408 zEnd = "\n)";
1410 n += 35 + 6*p->nCol;
1411 zStmt = sqlite3DbMallocRaw(0, n);
1412 if( zStmt==0 ){
1413 db->mallocFailed = 1;
1414 return 0;
1416 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1417 k = sqlite3Strlen30(zStmt);
1418 identPut(zStmt, &k, p->zName);
1419 zStmt[k++] = '(';
1420 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1421 static const char * const azType[] = {
1422 /* SQLITE_AFF_TEXT */ " TEXT",
1423 /* SQLITE_AFF_NONE */ "",
1424 /* SQLITE_AFF_NUMERIC */ " NUM",
1425 /* SQLITE_AFF_INTEGER */ " INT",
1426 /* SQLITE_AFF_REAL */ " REAL"
1428 int len;
1429 const char *zType;
1431 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1432 k += sqlite3Strlen30(&zStmt[k]);
1433 zSep = zSep2;
1434 identPut(zStmt, &k, pCol->zName);
1435 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1436 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
1437 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1438 testcase( pCol->affinity==SQLITE_AFF_NONE );
1439 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1440 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1441 testcase( pCol->affinity==SQLITE_AFF_REAL );
1443 zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1444 len = sqlite3Strlen30(zType);
1445 assert( pCol->affinity==SQLITE_AFF_NONE
1446 || pCol->affinity==sqlite3AffinityType(zType) );
1447 memcpy(&zStmt[k], zType, len);
1448 k += len;
1449 assert( k<=n );
1451 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1452 return zStmt;
1456 ** This routine is called to report the final ")" that terminates
1457 ** a CREATE TABLE statement.
1459 ** The table structure that other action routines have been building
1460 ** is added to the internal hash tables, assuming no errors have
1461 ** occurred.
1463 ** An entry for the table is made in the master table on disk, unless
1464 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1465 ** it means we are reading the sqlite_master table because we just
1466 ** connected to the database or because the sqlite_master table has
1467 ** recently changed, so the entry for this table already exists in
1468 ** the sqlite_master table. We do not want to create it again.
1470 ** If the pSelect argument is not NULL, it means that this routine
1471 ** was called to create a table generated from a
1472 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1473 ** the new table will match the result set of the SELECT.
1475 void sqlite3EndTable(
1476 Parse *pParse, /* Parse context */
1477 Token *pCons, /* The ',' token after the last column defn. */
1478 Token *pEnd, /* The final ')' token in the CREATE TABLE */
1479 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1481 Table *p;
1482 sqlite3 *db = pParse->db;
1483 int iDb;
1485 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1486 return;
1488 p = pParse->pNewTable;
1489 if( p==0 ) return;
1491 assert( !db->init.busy || !pSelect );
1493 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1495 #ifndef SQLITE_OMIT_CHECK
1496 /* Resolve names in all CHECK constraint expressions.
1498 if( p->pCheck ){
1499 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
1500 NameContext sNC; /* Name context for pParse->pNewTable */
1501 ExprList *pList; /* List of all CHECK constraints */
1502 int i; /* Loop counter */
1504 memset(&sNC, 0, sizeof(sNC));
1505 memset(&sSrc, 0, sizeof(sSrc));
1506 sSrc.nSrc = 1;
1507 sSrc.a[0].zName = p->zName;
1508 sSrc.a[0].pTab = p;
1509 sSrc.a[0].iCursor = -1;
1510 sNC.pParse = pParse;
1511 sNC.pSrcList = &sSrc;
1512 sNC.ncFlags = NC_IsCheck;
1513 pList = p->pCheck;
1514 for(i=0; i<pList->nExpr; i++){
1515 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
1516 return;
1520 #endif /* !defined(SQLITE_OMIT_CHECK) */
1522 /* If the db->init.busy is 1 it means we are reading the SQL off the
1523 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1524 ** So do not write to the disk again. Extract the root page number
1525 ** for the table from the db->init.newTnum field. (The page number
1526 ** should have been put there by the sqliteOpenCb routine.)
1528 if( db->init.busy ){
1529 p->tnum = db->init.newTnum;
1532 /* If not initializing, then create a record for the new table
1533 ** in the SQLITE_MASTER table of the database.
1535 ** If this is a TEMPORARY table, write the entry into the auxiliary
1536 ** file instead of into the main database file.
1538 if( !db->init.busy ){
1539 int n;
1540 Vdbe *v;
1541 char *zType; /* "view" or "table" */
1542 char *zType2; /* "VIEW" or "TABLE" */
1543 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1545 v = sqlite3GetVdbe(pParse);
1546 if( NEVER(v==0) ) return;
1548 sqlite3VdbeAddOp1(v, OP_Close, 0);
1551 ** Initialize zType for the new view or table.
1553 if( p->pSelect==0 ){
1554 /* A regular table */
1555 zType = "table";
1556 zType2 = "TABLE";
1557 #ifndef SQLITE_OMIT_VIEW
1558 }else{
1559 /* A view */
1560 zType = "view";
1561 zType2 = "VIEW";
1562 #endif
1565 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1566 ** statement to populate the new table. The root-page number for the
1567 ** new table is in register pParse->regRoot.
1569 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1570 ** suitable state to query for the column names and types to be used
1571 ** by the new table.
1573 ** A shared-cache write-lock is not required to write to the new table,
1574 ** as a schema-lock must have already been obtained to create it. Since
1575 ** a schema-lock excludes all other database users, the write-lock would
1576 ** be redundant.
1578 if( pSelect ){
1579 SelectDest dest;
1580 Table *pSelTab;
1582 assert(pParse->nTab==1);
1583 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1584 sqlite3VdbeChangeP5(v, 1);
1585 pParse->nTab = 2;
1586 sqlite3SelectDestInit(&dest, SRT_Table, 1);
1587 sqlite3Select(pParse, pSelect, &dest);
1588 sqlite3VdbeAddOp1(v, OP_Close, 1);
1589 if( pParse->nErr==0 ){
1590 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1591 if( pSelTab==0 ) return;
1592 assert( p->aCol==0 );
1593 p->nCol = pSelTab->nCol;
1594 p->aCol = pSelTab->aCol;
1595 pSelTab->nCol = 0;
1596 pSelTab->aCol = 0;
1597 sqlite3DeleteTable(db, pSelTab);
1601 /* Compute the complete text of the CREATE statement */
1602 if( pSelect ){
1603 zStmt = createTableStmt(db, p);
1604 }else{
1605 n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1606 zStmt = sqlite3MPrintf(db,
1607 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1611 /* A slot for the record has already been allocated in the
1612 ** SQLITE_MASTER table. We just need to update that slot with all
1613 ** the information we've collected.
1615 sqlite3NestedParse(pParse,
1616 "UPDATE %Q.%s "
1617 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1618 "WHERE rowid=#%d",
1619 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1620 zType,
1621 p->zName,
1622 p->zName,
1623 pParse->regRoot,
1624 zStmt,
1625 pParse->regRowid
1627 sqlite3DbFree(db, zStmt);
1628 sqlite3ChangeCookie(pParse, iDb);
1630 #ifndef SQLITE_OMIT_AUTOINCREMENT
1631 /* Check to see if we need to create an sqlite_sequence table for
1632 ** keeping track of autoincrement keys.
1634 if( p->tabFlags & TF_Autoincrement ){
1635 Db *pDb = &db->aDb[iDb];
1636 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1637 if( pDb->pSchema->pSeqTab==0 ){
1638 sqlite3NestedParse(pParse,
1639 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1640 pDb->zName
1644 #endif
1646 /* Reparse everything to update our internal data structures */
1647 sqlite3VdbeAddParseSchemaOp(v, iDb,
1648 sqlite3MPrintf(db, "tbl_name='%q'", p->zName));
1652 /* Add the table to the in-memory representation of the database.
1654 if( db->init.busy ){
1655 Table *pOld;
1656 Schema *pSchema = p->pSchema;
1657 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1658 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1659 sqlite3Strlen30(p->zName),p);
1660 if( pOld ){
1661 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
1662 db->mallocFailed = 1;
1663 return;
1665 pParse->pNewTable = 0;
1666 db->flags |= SQLITE_InternChanges;
1668 #ifndef SQLITE_OMIT_ALTERTABLE
1669 if( !p->pSelect ){
1670 const char *zName = (const char *)pParse->sNameToken.z;
1671 int nName;
1672 assert( !pSelect && pCons && pEnd );
1673 if( pCons->z==0 ){
1674 pCons = pEnd;
1676 nName = (int)((const char *)pCons->z - zName);
1677 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1679 #endif
1683 #ifndef SQLITE_OMIT_VIEW
1685 ** The parser calls this routine in order to create a new VIEW
1687 void sqlite3CreateView(
1688 Parse *pParse, /* The parsing context */
1689 Token *pBegin, /* The CREATE token that begins the statement */
1690 Token *pName1, /* The token that holds the name of the view */
1691 Token *pName2, /* The token that holds the name of the view */
1692 Select *pSelect, /* A SELECT statement that will become the new view */
1693 int isTemp, /* TRUE for a TEMPORARY view */
1694 int noErr /* Suppress error messages if VIEW already exists */
1696 Table *p;
1697 int n;
1698 const char *z;
1699 Token sEnd;
1700 DbFixer sFix;
1701 Token *pName = 0;
1702 int iDb;
1703 sqlite3 *db = pParse->db;
1705 if( pParse->nVar>0 ){
1706 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1707 sqlite3SelectDelete(db, pSelect);
1708 return;
1710 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1711 p = pParse->pNewTable;
1712 if( p==0 || pParse->nErr ){
1713 sqlite3SelectDelete(db, pSelect);
1714 return;
1716 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1717 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1718 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1719 && sqlite3FixSelect(&sFix, pSelect)
1721 sqlite3SelectDelete(db, pSelect);
1722 return;
1725 /* Make a copy of the entire SELECT statement that defines the view.
1726 ** This will force all the Expr.token.z values to be dynamically
1727 ** allocated rather than point to the input string - which means that
1728 ** they will persist after the current sqlite3_exec() call returns.
1730 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1731 sqlite3SelectDelete(db, pSelect);
1732 if( db->mallocFailed ){
1733 return;
1735 if( !db->init.busy ){
1736 sqlite3ViewGetColumnNames(pParse, p);
1739 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
1740 ** the end.
1742 sEnd = pParse->sLastToken;
1743 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1744 sEnd.z += sEnd.n;
1746 sEnd.n = 0;
1747 n = (int)(sEnd.z - pBegin->z);
1748 z = pBegin->z;
1749 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1750 sEnd.z = &z[n-1];
1751 sEnd.n = 1;
1753 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1754 sqlite3EndTable(pParse, 0, &sEnd, 0);
1755 return;
1757 #endif /* SQLITE_OMIT_VIEW */
1759 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1761 ** The Table structure pTable is really a VIEW. Fill in the names of
1762 ** the columns of the view in the pTable structure. Return the number
1763 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
1765 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1766 Table *pSelTab; /* A fake table from which we get the result set */
1767 Select *pSel; /* Copy of the SELECT that implements the view */
1768 int nErr = 0; /* Number of errors encountered */
1769 int n; /* Temporarily holds the number of cursors assigned */
1770 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
1771 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1773 assert( pTable );
1775 #ifndef SQLITE_OMIT_VIRTUALTABLE
1776 if( sqlite3VtabCallConnect(pParse, pTable) ){
1777 return SQLITE_ERROR;
1779 if( IsVirtual(pTable) ) return 0;
1780 #endif
1782 #ifndef SQLITE_OMIT_VIEW
1783 /* A positive nCol means the columns names for this view are
1784 ** already known.
1786 if( pTable->nCol>0 ) return 0;
1788 /* A negative nCol is a special marker meaning that we are currently
1789 ** trying to compute the column names. If we enter this routine with
1790 ** a negative nCol, it means two or more views form a loop, like this:
1792 ** CREATE VIEW one AS SELECT * FROM two;
1793 ** CREATE VIEW two AS SELECT * FROM one;
1795 ** Actually, the error above is now caught prior to reaching this point.
1796 ** But the following test is still important as it does come up
1797 ** in the following:
1799 ** CREATE TABLE main.ex1(a);
1800 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1801 ** SELECT * FROM temp.ex1;
1803 if( pTable->nCol<0 ){
1804 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1805 return 1;
1807 assert( pTable->nCol>=0 );
1809 /* If we get this far, it means we need to compute the table names.
1810 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1811 ** "*" elements in the results set of the view and will assign cursors
1812 ** to the elements of the FROM clause. But we do not want these changes
1813 ** to be permanent. So the computation is done on a copy of the SELECT
1814 ** statement that defines the view.
1816 assert( pTable->pSelect );
1817 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1818 if( pSel ){
1819 u8 enableLookaside = db->lookaside.bEnabled;
1820 n = pParse->nTab;
1821 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1822 pTable->nCol = -1;
1823 db->lookaside.bEnabled = 0;
1824 #ifndef SQLITE_OMIT_AUTHORIZATION
1825 xAuth = db->xAuth;
1826 db->xAuth = 0;
1827 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1828 db->xAuth = xAuth;
1829 #else
1830 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1831 #endif
1832 db->lookaside.bEnabled = enableLookaside;
1833 pParse->nTab = n;
1834 if( pSelTab ){
1835 assert( pTable->aCol==0 );
1836 pTable->nCol = pSelTab->nCol;
1837 pTable->aCol = pSelTab->aCol;
1838 pSelTab->nCol = 0;
1839 pSelTab->aCol = 0;
1840 sqlite3DeleteTable(db, pSelTab);
1841 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
1842 pTable->pSchema->flags |= DB_UnresetViews;
1843 }else{
1844 pTable->nCol = 0;
1845 nErr++;
1847 sqlite3SelectDelete(db, pSel);
1848 } else {
1849 nErr++;
1851 #endif /* SQLITE_OMIT_VIEW */
1852 return nErr;
1854 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1856 #ifndef SQLITE_OMIT_VIEW
1858 ** Clear the column names from every VIEW in database idx.
1860 static void sqliteViewResetAll(sqlite3 *db, int idx){
1861 HashElem *i;
1862 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
1863 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1864 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1865 Table *pTab = sqliteHashData(i);
1866 if( pTab->pSelect ){
1867 sqliteDeleteColumnNames(db, pTab);
1868 pTab->aCol = 0;
1869 pTab->nCol = 0;
1872 DbClearProperty(db, idx, DB_UnresetViews);
1874 #else
1875 # define sqliteViewResetAll(A,B)
1876 #endif /* SQLITE_OMIT_VIEW */
1879 ** This function is called by the VDBE to adjust the internal schema
1880 ** used by SQLite when the btree layer moves a table root page. The
1881 ** root-page of a table or index in database iDb has changed from iFrom
1882 ** to iTo.
1884 ** Ticket #1728: The symbol table might still contain information
1885 ** on tables and/or indices that are the process of being deleted.
1886 ** If you are unlucky, one of those deleted indices or tables might
1887 ** have the same rootpage number as the real table or index that is
1888 ** being moved. So we cannot stop searching after the first match
1889 ** because the first match might be for one of the deleted indices
1890 ** or tables and not the table/index that is actually being moved.
1891 ** We must continue looping until all tables and indices with
1892 ** rootpage==iFrom have been converted to have a rootpage of iTo
1893 ** in order to be certain that we got the right one.
1895 #ifndef SQLITE_OMIT_AUTOVACUUM
1896 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
1897 HashElem *pElem;
1898 Hash *pHash;
1899 Db *pDb;
1901 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1902 pDb = &db->aDb[iDb];
1903 pHash = &pDb->pSchema->tblHash;
1904 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1905 Table *pTab = sqliteHashData(pElem);
1906 if( pTab->tnum==iFrom ){
1907 pTab->tnum = iTo;
1910 pHash = &pDb->pSchema->idxHash;
1911 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1912 Index *pIdx = sqliteHashData(pElem);
1913 if( pIdx->tnum==iFrom ){
1914 pIdx->tnum = iTo;
1918 #endif
1921 ** Write code to erase the table with root-page iTable from database iDb.
1922 ** Also write code to modify the sqlite_master table and internal schema
1923 ** if a root-page of another table is moved by the btree-layer whilst
1924 ** erasing iTable (this can happen with an auto-vacuum database).
1926 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1927 Vdbe *v = sqlite3GetVdbe(pParse);
1928 int r1 = sqlite3GetTempReg(pParse);
1929 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1930 sqlite3MayAbort(pParse);
1931 #ifndef SQLITE_OMIT_AUTOVACUUM
1932 /* OP_Destroy stores an in integer r1. If this integer
1933 ** is non-zero, then it is the root page number of a table moved to
1934 ** location iTable. The following code modifies the sqlite_master table to
1935 ** reflect this.
1937 ** The "#NNN" in the SQL is a special constant that means whatever value
1938 ** is in register NNN. See grammar rules associated with the TK_REGISTER
1939 ** token for additional information.
1941 sqlite3NestedParse(pParse,
1942 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1943 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1944 #endif
1945 sqlite3ReleaseTempReg(pParse, r1);
1949 ** Write VDBE code to erase table pTab and all associated indices on disk.
1950 ** Code to update the sqlite_master tables and internal schema definitions
1951 ** in case a root-page belonging to another table is moved by the btree layer
1952 ** is also added (this can happen with an auto-vacuum database).
1954 static void destroyTable(Parse *pParse, Table *pTab){
1955 #ifdef SQLITE_OMIT_AUTOVACUUM
1956 Index *pIdx;
1957 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1958 destroyRootPage(pParse, pTab->tnum, iDb);
1959 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1960 destroyRootPage(pParse, pIdx->tnum, iDb);
1962 #else
1963 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1964 ** is not defined), then it is important to call OP_Destroy on the
1965 ** table and index root-pages in order, starting with the numerically
1966 ** largest root-page number. This guarantees that none of the root-pages
1967 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1968 ** following were coded:
1970 ** OP_Destroy 4 0
1971 ** ...
1972 ** OP_Destroy 5 0
1974 ** and root page 5 happened to be the largest root-page number in the
1975 ** database, then root page 5 would be moved to page 4 by the
1976 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1977 ** a free-list page.
1979 int iTab = pTab->tnum;
1980 int iDestroyed = 0;
1982 while( 1 ){
1983 Index *pIdx;
1984 int iLargest = 0;
1986 if( iDestroyed==0 || iTab<iDestroyed ){
1987 iLargest = iTab;
1989 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1990 int iIdx = pIdx->tnum;
1991 assert( pIdx->pSchema==pTab->pSchema );
1992 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1993 iLargest = iIdx;
1996 if( iLargest==0 ){
1997 return;
1998 }else{
1999 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2000 destroyRootPage(pParse, iLargest, iDb);
2001 iDestroyed = iLargest;
2004 #endif
2008 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2009 ** after a DROP INDEX or DROP TABLE command.
2011 static void sqlite3ClearStatTables(
2012 Parse *pParse, /* The parsing context */
2013 int iDb, /* The database number */
2014 const char *zType, /* "idx" or "tbl" */
2015 const char *zName /* Name of index or table */
2017 int i;
2018 const char *zDbName = pParse->db->aDb[iDb].zName;
2019 for(i=1; i<=3; i++){
2020 char zTab[24];
2021 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2022 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2023 sqlite3NestedParse(pParse,
2024 "DELETE FROM %Q.%s WHERE %s=%Q",
2025 zDbName, zTab, zType, zName
2032 ** Generate code to drop a table.
2034 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2035 Vdbe *v;
2036 sqlite3 *db = pParse->db;
2037 Trigger *pTrigger;
2038 Db *pDb = &db->aDb[iDb];
2040 v = sqlite3GetVdbe(pParse);
2041 assert( v!=0 );
2042 sqlite3BeginWriteOperation(pParse, 1, iDb);
2044 #ifndef SQLITE_OMIT_VIRTUALTABLE
2045 if( IsVirtual(pTab) ){
2046 sqlite3VdbeAddOp0(v, OP_VBegin);
2048 #endif
2050 /* Drop all triggers associated with the table being dropped. Code
2051 ** is generated to remove entries from sqlite_master and/or
2052 ** sqlite_temp_master if required.
2054 pTrigger = sqlite3TriggerList(pParse, pTab);
2055 while( pTrigger ){
2056 assert( pTrigger->pSchema==pTab->pSchema ||
2057 pTrigger->pSchema==db->aDb[1].pSchema );
2058 sqlite3DropTriggerPtr(pParse, pTrigger);
2059 pTrigger = pTrigger->pNext;
2062 #ifndef SQLITE_OMIT_AUTOINCREMENT
2063 /* Remove any entries of the sqlite_sequence table associated with
2064 ** the table being dropped. This is done before the table is dropped
2065 ** at the btree level, in case the sqlite_sequence table needs to
2066 ** move as a result of the drop (can happen in auto-vacuum mode).
2068 if( pTab->tabFlags & TF_Autoincrement ){
2069 sqlite3NestedParse(pParse,
2070 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2071 pDb->zName, pTab->zName
2074 #endif
2076 /* Drop all SQLITE_MASTER table and index entries that refer to the
2077 ** table. The program name loops through the master table and deletes
2078 ** every row that refers to a table of the same name as the one being
2079 ** dropped. Triggers are handled seperately because a trigger can be
2080 ** created in the temp database that refers to a table in another
2081 ** database.
2083 sqlite3NestedParse(pParse,
2084 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2085 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2086 if( !isView && !IsVirtual(pTab) ){
2087 destroyTable(pParse, pTab);
2090 /* Remove the table entry from SQLite's internal schema and modify
2091 ** the schema cookie.
2093 if( IsVirtual(pTab) ){
2094 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2096 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2097 sqlite3ChangeCookie(pParse, iDb);
2098 sqliteViewResetAll(db, iDb);
2102 ** This routine is called to do the work of a DROP TABLE statement.
2103 ** pName is the name of the table to be dropped.
2105 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2106 Table *pTab;
2107 Vdbe *v;
2108 sqlite3 *db = pParse->db;
2109 int iDb;
2111 if( db->mallocFailed ){
2112 goto exit_drop_table;
2114 assert( pParse->nErr==0 );
2115 assert( pName->nSrc==1 );
2116 if( noErr ) db->suppressErr++;
2117 pTab = sqlite3LocateTable(pParse, isView,
2118 pName->a[0].zName, pName->a[0].zDatabase);
2119 if( noErr ) db->suppressErr--;
2121 if( pTab==0 ){
2122 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2123 goto exit_drop_table;
2125 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2126 assert( iDb>=0 && iDb<db->nDb );
2128 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2129 ** it is initialized.
2131 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2132 goto exit_drop_table;
2134 #ifndef SQLITE_OMIT_AUTHORIZATION
2136 int code;
2137 const char *zTab = SCHEMA_TABLE(iDb);
2138 const char *zDb = db->aDb[iDb].zName;
2139 const char *zArg2 = 0;
2140 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2141 goto exit_drop_table;
2143 if( isView ){
2144 if( !OMIT_TEMPDB && iDb==1 ){
2145 code = SQLITE_DROP_TEMP_VIEW;
2146 }else{
2147 code = SQLITE_DROP_VIEW;
2149 #ifndef SQLITE_OMIT_VIRTUALTABLE
2150 }else if( IsVirtual(pTab) ){
2151 code = SQLITE_DROP_VTABLE;
2152 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2153 #endif
2154 }else{
2155 if( !OMIT_TEMPDB && iDb==1 ){
2156 code = SQLITE_DROP_TEMP_TABLE;
2157 }else{
2158 code = SQLITE_DROP_TABLE;
2161 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2162 goto exit_drop_table;
2164 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2165 goto exit_drop_table;
2168 #endif
2169 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2170 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2171 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2172 goto exit_drop_table;
2175 #ifndef SQLITE_OMIT_VIEW
2176 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2177 ** on a table.
2179 if( isView && pTab->pSelect==0 ){
2180 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2181 goto exit_drop_table;
2183 if( !isView && pTab->pSelect ){
2184 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2185 goto exit_drop_table;
2187 #endif
2189 /* Generate code to remove the table from the master table
2190 ** on disk.
2192 v = sqlite3GetVdbe(pParse);
2193 if( v ){
2194 sqlite3BeginWriteOperation(pParse, 1, iDb);
2195 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2196 sqlite3FkDropTable(pParse, pName, pTab);
2197 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2200 exit_drop_table:
2201 sqlite3SrcListDelete(db, pName);
2205 ** This routine is called to create a new foreign key on the table
2206 ** currently under construction. pFromCol determines which columns
2207 ** in the current table point to the foreign key. If pFromCol==0 then
2208 ** connect the key to the last column inserted. pTo is the name of
2209 ** the table referred to. pToCol is a list of tables in the other
2210 ** pTo table that the foreign key points to. flags contains all
2211 ** information about the conflict resolution algorithms specified
2212 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2214 ** An FKey structure is created and added to the table currently
2215 ** under construction in the pParse->pNewTable field.
2217 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2218 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2220 void sqlite3CreateForeignKey(
2221 Parse *pParse, /* Parsing context */
2222 ExprList *pFromCol, /* Columns in this table that point to other table */
2223 Token *pTo, /* Name of the other table */
2224 ExprList *pToCol, /* Columns in the other table */
2225 int flags /* Conflict resolution algorithms. */
2227 sqlite3 *db = pParse->db;
2228 #ifndef SQLITE_OMIT_FOREIGN_KEY
2229 FKey *pFKey = 0;
2230 FKey *pNextTo;
2231 Table *p = pParse->pNewTable;
2232 int nByte;
2233 int i;
2234 int nCol;
2235 char *z;
2237 assert( pTo!=0 );
2238 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2239 if( pFromCol==0 ){
2240 int iCol = p->nCol-1;
2241 if( NEVER(iCol<0) ) goto fk_end;
2242 if( pToCol && pToCol->nExpr!=1 ){
2243 sqlite3ErrorMsg(pParse, "foreign key on %s"
2244 " should reference only one column of table %T",
2245 p->aCol[iCol].zName, pTo);
2246 goto fk_end;
2248 nCol = 1;
2249 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2250 sqlite3ErrorMsg(pParse,
2251 "number of columns in foreign key does not match the number of "
2252 "columns in the referenced table");
2253 goto fk_end;
2254 }else{
2255 nCol = pFromCol->nExpr;
2257 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2258 if( pToCol ){
2259 for(i=0; i<pToCol->nExpr; i++){
2260 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2263 pFKey = sqlite3DbMallocZero(db, nByte );
2264 if( pFKey==0 ){
2265 goto fk_end;
2267 pFKey->pFrom = p;
2268 pFKey->pNextFrom = p->pFKey;
2269 z = (char*)&pFKey->aCol[nCol];
2270 pFKey->zTo = z;
2271 memcpy(z, pTo->z, pTo->n);
2272 z[pTo->n] = 0;
2273 sqlite3Dequote(z);
2274 z += pTo->n+1;
2275 pFKey->nCol = nCol;
2276 if( pFromCol==0 ){
2277 pFKey->aCol[0].iFrom = p->nCol-1;
2278 }else{
2279 for(i=0; i<nCol; i++){
2280 int j;
2281 for(j=0; j<p->nCol; j++){
2282 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2283 pFKey->aCol[i].iFrom = j;
2284 break;
2287 if( j>=p->nCol ){
2288 sqlite3ErrorMsg(pParse,
2289 "unknown column \"%s\" in foreign key definition",
2290 pFromCol->a[i].zName);
2291 goto fk_end;
2295 if( pToCol ){
2296 for(i=0; i<nCol; i++){
2297 int n = sqlite3Strlen30(pToCol->a[i].zName);
2298 pFKey->aCol[i].zCol = z;
2299 memcpy(z, pToCol->a[i].zName, n);
2300 z[n] = 0;
2301 z += n+1;
2304 pFKey->isDeferred = 0;
2305 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2306 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2308 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2309 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2310 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
2312 if( pNextTo==pFKey ){
2313 db->mallocFailed = 1;
2314 goto fk_end;
2316 if( pNextTo ){
2317 assert( pNextTo->pPrevTo==0 );
2318 pFKey->pNextTo = pNextTo;
2319 pNextTo->pPrevTo = pFKey;
2322 /* Link the foreign key to the table as the last step.
2324 p->pFKey = pFKey;
2325 pFKey = 0;
2327 fk_end:
2328 sqlite3DbFree(db, pFKey);
2329 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2330 sqlite3ExprListDelete(db, pFromCol);
2331 sqlite3ExprListDelete(db, pToCol);
2335 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2336 ** clause is seen as part of a foreign key definition. The isDeferred
2337 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2338 ** The behavior of the most recently created foreign key is adjusted
2339 ** accordingly.
2341 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2342 #ifndef SQLITE_OMIT_FOREIGN_KEY
2343 Table *pTab;
2344 FKey *pFKey;
2345 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2346 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2347 pFKey->isDeferred = (u8)isDeferred;
2348 #endif
2352 ** Generate code that will erase and refill index *pIdx. This is
2353 ** used to initialize a newly created index or to recompute the
2354 ** content of an index in response to a REINDEX command.
2356 ** if memRootPage is not negative, it means that the index is newly
2357 ** created. The register specified by memRootPage contains the
2358 ** root page number of the index. If memRootPage is negative, then
2359 ** the index already exists and must be cleared before being refilled and
2360 ** the root page number of the index is taken from pIndex->tnum.
2362 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2363 Table *pTab = pIndex->pTable; /* The table that is indexed */
2364 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2365 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2366 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2367 int addr1; /* Address of top of loop */
2368 int addr2; /* Address to jump to for next iteration */
2369 int tnum; /* Root page of index */
2370 Vdbe *v; /* Generate code into this virtual machine */
2371 KeyInfo *pKey; /* KeyInfo for index */
2372 #ifdef SQLITE_OMIT_MERGE_SORT
2373 int regIdxKey; /* Registers containing the index key */
2374 #endif
2375 int regRecord; /* Register holding assemblied index record */
2376 sqlite3 *db = pParse->db; /* The database connection */
2377 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2379 #ifndef SQLITE_OMIT_AUTHORIZATION
2380 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2381 db->aDb[iDb].zName ) ){
2382 return;
2384 #endif
2386 /* Require a write-lock on the table to perform this operation */
2387 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2389 v = sqlite3GetVdbe(pParse);
2390 if( v==0 ) return;
2391 if( memRootPage>=0 ){
2392 tnum = memRootPage;
2393 }else{
2394 tnum = pIndex->tnum;
2395 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2397 pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2398 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2399 (char *)pKey, P4_KEYINFO_HANDOFF);
2400 if( memRootPage>=0 ){
2401 sqlite3VdbeChangeP5(v, 1);
2404 #ifndef SQLITE_OMIT_MERGE_SORT
2405 /* Open the sorter cursor if we are to use one. */
2406 iSorter = pParse->nTab++;
2407 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, 0, (char*)pKey, P4_KEYINFO);
2408 #else
2409 iSorter = iTab;
2410 #endif
2412 /* Open the table. Loop through all rows of the table, inserting index
2413 ** records into the sorter. */
2414 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2415 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2416 regRecord = sqlite3GetTempReg(pParse);
2418 #ifndef SQLITE_OMIT_MERGE_SORT
2419 sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2420 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2421 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2422 sqlite3VdbeJumpHere(v, addr1);
2423 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0);
2424 if( pIndex->onError!=OE_None ){
2425 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2426 sqlite3VdbeAddOp2(v, OP_Goto, 0, j2);
2427 addr2 = sqlite3VdbeCurrentAddr(v);
2428 sqlite3VdbeAddOp3(v, OP_SorterCompare, iSorter, j2, regRecord);
2429 sqlite3HaltConstraint(
2430 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC
2432 }else{
2433 addr2 = sqlite3VdbeCurrentAddr(v);
2435 sqlite3VdbeAddOp2(v, OP_SorterData, iSorter, regRecord);
2436 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 1);
2437 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2438 #else
2439 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2440 addr2 = addr1 + 1;
2441 if( pIndex->onError!=OE_None ){
2442 const int regRowid = regIdxKey + pIndex->nColumn;
2443 const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2444 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2446 /* The registers accessed by the OP_IsUnique opcode were allocated
2447 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2448 ** call above. Just before that function was freed they were released
2449 ** (made available to the compiler for reuse) using
2450 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2451 ** opcode use the values stored within seems dangerous. However, since
2452 ** we can be sure that no other temp registers have been allocated
2453 ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2455 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2456 sqlite3HaltConstraint(
2457 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
2459 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2460 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2461 #endif
2462 sqlite3ReleaseTempReg(pParse, regRecord);
2463 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2);
2464 sqlite3VdbeJumpHere(v, addr1);
2466 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2467 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2468 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2472 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2473 ** and pTblList is the name of the table that is to be indexed. Both will
2474 ** be NULL for a primary key or an index that is created to satisfy a
2475 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2476 ** as the table to be indexed. pParse->pNewTable is a table that is
2477 ** currently being constructed by a CREATE TABLE statement.
2479 ** pList is a list of columns to be indexed. pList will be NULL if this
2480 ** is a primary key or unique-constraint on the most recent column added
2481 ** to the table currently under construction.
2483 ** If the index is created successfully, return a pointer to the new Index
2484 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2485 ** as the tables primary key (Index.autoIndex==2).
2487 Index *sqlite3CreateIndex(
2488 Parse *pParse, /* All information about this parse */
2489 Token *pName1, /* First part of index name. May be NULL */
2490 Token *pName2, /* Second part of index name. May be NULL */
2491 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2492 ExprList *pList, /* A list of columns to be indexed */
2493 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2494 Token *pStart, /* The CREATE token that begins this statement */
2495 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
2496 int sortOrder, /* Sort order of primary key when pList==NULL */
2497 int ifNotExist /* Omit error if index already exists */
2499 Index *pRet = 0; /* Pointer to return */
2500 Table *pTab = 0; /* Table to be indexed */
2501 Index *pIndex = 0; /* The index to be created */
2502 char *zName = 0; /* Name of the index */
2503 int nName; /* Number of characters in zName */
2504 int i, j;
2505 Token nullId; /* Fake token for an empty ID list */
2506 DbFixer sFix; /* For assigning database names to pTable */
2507 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2508 sqlite3 *db = pParse->db;
2509 Db *pDb; /* The specific table containing the indexed database */
2510 int iDb; /* Index of the database that is being written */
2511 Token *pName = 0; /* Unqualified name of the index to create */
2512 struct ExprList_item *pListItem; /* For looping over pList */
2513 int nCol;
2514 int nExtra = 0;
2515 char *zExtra;
2517 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2518 assert( pParse->nErr==0 ); /* Never called with prior errors */
2519 if( db->mallocFailed || IN_DECLARE_VTAB ){
2520 goto exit_create_index;
2522 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2523 goto exit_create_index;
2527 ** Find the table that is to be indexed. Return early if not found.
2529 if( pTblName!=0 ){
2531 /* Use the two-part index name to determine the database
2532 ** to search for the table. 'Fix' the table name to this db
2533 ** before looking up the table.
2535 assert( pName1 && pName2 );
2536 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2537 if( iDb<0 ) goto exit_create_index;
2538 assert( pName && pName->z );
2540 #ifndef SQLITE_OMIT_TEMPDB
2541 /* If the index name was unqualified, check if the the table
2542 ** is a temp table. If so, set the database to 1. Do not do this
2543 ** if initialising a database schema.
2545 if( !db->init.busy ){
2546 pTab = sqlite3SrcListLookup(pParse, pTblName);
2547 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2548 iDb = 1;
2551 #endif
2553 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2554 sqlite3FixSrcList(&sFix, pTblName)
2556 /* Because the parser constructs pTblName from a single identifier,
2557 ** sqlite3FixSrcList can never fail. */
2558 assert(0);
2560 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2561 pTblName->a[0].zDatabase);
2562 if( !pTab || db->mallocFailed ) goto exit_create_index;
2563 assert( db->aDb[iDb].pSchema==pTab->pSchema );
2564 }else{
2565 assert( pName==0 );
2566 assert( pStart==0 );
2567 pTab = pParse->pNewTable;
2568 if( !pTab ) goto exit_create_index;
2569 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2571 pDb = &db->aDb[iDb];
2573 assert( pTab!=0 );
2574 assert( pParse->nErr==0 );
2575 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2576 && memcmp(&pTab->zName[7],"altertab_",9)!=0 ){
2577 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2578 goto exit_create_index;
2580 #ifndef SQLITE_OMIT_VIEW
2581 if( pTab->pSelect ){
2582 sqlite3ErrorMsg(pParse, "views may not be indexed");
2583 goto exit_create_index;
2585 #endif
2586 #ifndef SQLITE_OMIT_VIRTUALTABLE
2587 if( IsVirtual(pTab) ){
2588 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2589 goto exit_create_index;
2591 #endif
2594 ** Find the name of the index. Make sure there is not already another
2595 ** index or table with the same name.
2597 ** Exception: If we are reading the names of permanent indices from the
2598 ** sqlite_master table (because some other process changed the schema) and
2599 ** one of the index names collides with the name of a temporary table or
2600 ** index, then we will continue to process this index.
2602 ** If pName==0 it means that we are
2603 ** dealing with a primary key or UNIQUE constraint. We have to invent our
2604 ** own name.
2606 if( pName ){
2607 zName = sqlite3NameFromToken(db, pName);
2608 if( zName==0 ) goto exit_create_index;
2609 assert( pName->z!=0 );
2610 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2611 goto exit_create_index;
2613 if( !db->init.busy ){
2614 if( sqlite3FindTable(db, zName, 0)!=0 ){
2615 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2616 goto exit_create_index;
2619 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2620 if( !ifNotExist ){
2621 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2622 }else{
2623 assert( !db->init.busy );
2624 sqlite3CodeVerifySchema(pParse, iDb);
2626 goto exit_create_index;
2628 }else{
2629 int n;
2630 Index *pLoop;
2631 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2632 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2633 if( zName==0 ){
2634 goto exit_create_index;
2638 /* Check for authorization to create an index.
2640 #ifndef SQLITE_OMIT_AUTHORIZATION
2642 const char *zDb = pDb->zName;
2643 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2644 goto exit_create_index;
2646 i = SQLITE_CREATE_INDEX;
2647 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2648 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2649 goto exit_create_index;
2652 #endif
2654 /* If pList==0, it means this routine was called to make a primary
2655 ** key out of the last column added to the table under construction.
2656 ** So create a fake list to simulate this.
2658 if( pList==0 ){
2659 nullId.z = pTab->aCol[pTab->nCol-1].zName;
2660 nullId.n = sqlite3Strlen30((char*)nullId.z);
2661 pList = sqlite3ExprListAppend(pParse, 0, 0);
2662 if( pList==0 ) goto exit_create_index;
2663 sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2664 pList->a[0].sortOrder = (u8)sortOrder;
2667 /* Figure out how many bytes of space are required to store explicitly
2668 ** specified collation sequence names.
2670 for(i=0; i<pList->nExpr; i++){
2671 Expr *pExpr = pList->a[i].pExpr;
2672 if( pExpr ){
2673 CollSeq *pColl = pExpr->pColl;
2674 /* Either pColl!=0 or there was an OOM failure. But if an OOM
2675 ** failure we have quit before reaching this point. */
2676 if( ALWAYS(pColl) ){
2677 nExtra += (1 + sqlite3Strlen30(pColl->zName));
2683 ** Allocate the index structure.
2685 nName = sqlite3Strlen30(zName);
2686 nCol = pList->nExpr;
2687 pIndex = sqlite3DbMallocZero(db,
2688 ROUND8(sizeof(Index)) + /* Index structure */
2689 ROUND8(sizeof(tRowcnt)*(nCol+1)) + /* Index.aiRowEst */
2690 sizeof(char *)*nCol + /* Index.azColl */
2691 sizeof(int)*nCol + /* Index.aiColumn */
2692 sizeof(u8)*nCol + /* Index.aSortOrder */
2693 nName + 1 + /* Index.zName */
2694 nExtra /* Collation sequence names */
2696 if( db->mallocFailed ){
2697 goto exit_create_index;
2699 zExtra = (char*)pIndex;
2700 pIndex->aiRowEst = (tRowcnt*)&zExtra[ROUND8(sizeof(Index))];
2701 pIndex->azColl = (char**)
2702 ((char*)pIndex->aiRowEst + ROUND8(sizeof(tRowcnt)*nCol+1));
2703 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowEst) );
2704 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
2705 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2706 pIndex->aSortOrder = (u8 *)(&pIndex->aiColumn[nCol]);
2707 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2708 zExtra = (char *)(&pIndex->zName[nName+1]);
2709 memcpy(pIndex->zName, zName, nName+1);
2710 pIndex->pTable = pTab;
2711 pIndex->nColumn = pList->nExpr;
2712 pIndex->onError = (u8)onError;
2713 pIndex->autoIndex = (u8)(pName==0);
2714 pIndex->pSchema = db->aDb[iDb].pSchema;
2715 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2717 /* Check to see if we should honor DESC requests on index columns
2719 if( pDb->pSchema->file_format>=4 ){
2720 sortOrderMask = -1; /* Honor DESC */
2721 }else{
2722 sortOrderMask = 0; /* Ignore DESC */
2725 /* Scan the names of the columns of the table to be indexed and
2726 ** load the column indices into the Index structure. Report an error
2727 ** if any column is not found.
2729 ** TODO: Add a test to make sure that the same column is not named
2730 ** more than once within the same index. Only the first instance of
2731 ** the column will ever be used by the optimizer. Note that using the
2732 ** same column more than once cannot be an error because that would
2733 ** break backwards compatibility - it needs to be a warning.
2735 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2736 const char *zColName = pListItem->zName;
2737 Column *pTabCol;
2738 int requestedSortOrder;
2739 char *zColl; /* Collation sequence name */
2741 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2742 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2744 if( j>=pTab->nCol ){
2745 sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2746 pTab->zName, zColName);
2747 pParse->checkSchema = 1;
2748 goto exit_create_index;
2750 pIndex->aiColumn[i] = j;
2751 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of
2752 ** the way the "idxlist" non-terminal is constructed by the parser,
2753 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2754 ** must exist or else there must have been an OOM error. But if there
2755 ** was an OOM error, we would never reach this point. */
2756 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2757 int nColl;
2758 zColl = pListItem->pExpr->pColl->zName;
2759 nColl = sqlite3Strlen30(zColl) + 1;
2760 assert( nExtra>=nColl );
2761 memcpy(zExtra, zColl, nColl);
2762 zColl = zExtra;
2763 zExtra += nColl;
2764 nExtra -= nColl;
2765 }else{
2766 zColl = pTab->aCol[j].zColl;
2767 if( !zColl ){
2768 zColl = "BINARY";
2771 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2772 goto exit_create_index;
2774 pIndex->azColl[i] = zColl;
2775 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2776 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2778 sqlite3DefaultRowEst(pIndex);
2780 if( pTab==pParse->pNewTable ){
2781 /* This routine has been called to create an automatic index as a
2782 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2783 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2784 ** i.e. one of:
2786 ** CREATE TABLE t(x PRIMARY KEY, y);
2787 ** CREATE TABLE t(x, y, UNIQUE(x, y));
2789 ** Either way, check to see if the table already has such an index. If
2790 ** so, don't bother creating this one. This only applies to
2791 ** automatically created indices. Users can do as they wish with
2792 ** explicit indices.
2794 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2795 ** (and thus suppressing the second one) even if they have different
2796 ** sort orders.
2798 ** If there are different collating sequences or if the columns of
2799 ** the constraint occur in different orders, then the constraints are
2800 ** considered distinct and both result in separate indices.
2802 Index *pIdx;
2803 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2804 int k;
2805 assert( pIdx->onError!=OE_None );
2806 assert( pIdx->autoIndex );
2807 assert( pIndex->onError!=OE_None );
2809 if( pIdx->nColumn!=pIndex->nColumn ) continue;
2810 for(k=0; k<pIdx->nColumn; k++){
2811 const char *z1;
2812 const char *z2;
2813 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2814 z1 = pIdx->azColl[k];
2815 z2 = pIndex->azColl[k];
2816 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2818 if( k==pIdx->nColumn ){
2819 if( pIdx->onError!=pIndex->onError ){
2820 /* This constraint creates the same index as a previous
2821 ** constraint specified somewhere in the CREATE TABLE statement.
2822 ** However the ON CONFLICT clauses are different. If both this
2823 ** constraint and the previous equivalent constraint have explicit
2824 ** ON CONFLICT clauses this is an error. Otherwise, use the
2825 ** explicitly specified behaviour for the index.
2827 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2828 sqlite3ErrorMsg(pParse,
2829 "conflicting ON CONFLICT clauses specified", 0);
2831 if( pIdx->onError==OE_Default ){
2832 pIdx->onError = pIndex->onError;
2835 goto exit_create_index;
2840 /* Link the new Index structure to its table and to the other
2841 ** in-memory database structures.
2843 if( db->init.busy ){
2844 Index *p;
2845 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
2846 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2847 pIndex->zName, sqlite3Strlen30(pIndex->zName),
2848 pIndex);
2849 if( p ){
2850 assert( p==pIndex ); /* Malloc must have failed */
2851 db->mallocFailed = 1;
2852 goto exit_create_index;
2854 db->flags |= SQLITE_InternChanges;
2855 if( pTblName!=0 ){
2856 pIndex->tnum = db->init.newTnum;
2860 /* If the db->init.busy is 0 then create the index on disk. This
2861 ** involves writing the index into the master table and filling in the
2862 ** index with the current table contents.
2864 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2865 ** command. db->init.busy is 1 when a database is opened and
2866 ** CREATE INDEX statements are read out of the master table. In
2867 ** the latter case the index already exists on disk, which is why
2868 ** we don't want to recreate it.
2870 ** If pTblName==0 it means this index is generated as a primary key
2871 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
2872 ** has just been created, it contains no data and the index initialization
2873 ** step can be skipped.
2875 else{ /* if( db->init.busy==0 ) */
2876 Vdbe *v;
2877 char *zStmt;
2878 int iMem = ++pParse->nMem;
2880 v = sqlite3GetVdbe(pParse);
2881 if( v==0 ) goto exit_create_index;
2884 /* Create the rootpage for the index
2886 sqlite3BeginWriteOperation(pParse, 1, iDb);
2887 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2889 /* Gather the complete text of the CREATE INDEX statement into
2890 ** the zStmt variable
2892 if( pStart ){
2893 assert( pEnd!=0 );
2894 /* A named index with an explicit CREATE INDEX statement */
2895 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2896 onError==OE_None ? "" : " UNIQUE",
2897 (int)(pEnd->z - pName->z) + 1,
2898 pName->z);
2899 }else{
2900 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2901 /* zStmt = sqlite3MPrintf(""); */
2902 zStmt = 0;
2905 /* Add an entry in sqlite_master for this index
2907 sqlite3NestedParse(pParse,
2908 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2909 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2910 pIndex->zName,
2911 pTab->zName,
2912 iMem,
2913 zStmt
2915 sqlite3DbFree(db, zStmt);
2917 /* Fill the index with data and reparse the schema. Code an OP_Expire
2918 ** to invalidate all pre-compiled statements.
2920 if( pTblName ){
2921 sqlite3RefillIndex(pParse, pIndex, iMem);
2922 sqlite3ChangeCookie(pParse, iDb);
2923 sqlite3VdbeAddParseSchemaOp(v, iDb,
2924 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
2925 sqlite3VdbeAddOp1(v, OP_Expire, 0);
2929 /* When adding an index to the list of indices for a table, make
2930 ** sure all indices labeled OE_Replace come after all those labeled
2931 ** OE_Ignore. This is necessary for the correct constraint check
2932 ** processing (in sqlite3GenerateConstraintChecks()) as part of
2933 ** UPDATE and INSERT statements.
2935 if( db->init.busy || pTblName==0 ){
2936 if( onError!=OE_Replace || pTab->pIndex==0
2937 || pTab->pIndex->onError==OE_Replace){
2938 pIndex->pNext = pTab->pIndex;
2939 pTab->pIndex = pIndex;
2940 }else{
2941 Index *pOther = pTab->pIndex;
2942 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2943 pOther = pOther->pNext;
2945 pIndex->pNext = pOther->pNext;
2946 pOther->pNext = pIndex;
2948 pRet = pIndex;
2949 pIndex = 0;
2952 /* Clean up before exiting */
2953 exit_create_index:
2954 if( pIndex ){
2955 sqlite3DbFree(db, pIndex->zColAff);
2956 sqlite3DbFree(db, pIndex);
2958 sqlite3ExprListDelete(db, pList);
2959 sqlite3SrcListDelete(db, pTblName);
2960 sqlite3DbFree(db, zName);
2961 return pRet;
2965 ** Fill the Index.aiRowEst[] array with default information - information
2966 ** to be used when we have not run the ANALYZE command.
2968 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2969 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
2970 ** number of rows in the table that match any particular value of the
2971 ** first column of the index. aiRowEst[2] is an estimate of the number
2972 ** of rows that match any particular combiniation of the first 2 columns
2973 ** of the index. And so forth. It must always be the case that
2975 ** aiRowEst[N]<=aiRowEst[N-1]
2976 ** aiRowEst[N]>=1
2978 ** Apart from that, we have little to go on besides intuition as to
2979 ** how aiRowEst[] should be initialized. The numbers generated here
2980 ** are based on typical values found in actual indices.
2982 void sqlite3DefaultRowEst(Index *pIdx){
2983 tRowcnt *a = pIdx->aiRowEst;
2984 int i;
2985 tRowcnt n;
2986 assert( a!=0 );
2987 a[0] = pIdx->pTable->nRowEst;
2988 if( a[0]<10 ) a[0] = 10;
2989 n = 10;
2990 for(i=1; i<=pIdx->nColumn; i++){
2991 a[i] = n;
2992 if( n>5 ) n--;
2994 if( pIdx->onError!=OE_None ){
2995 a[pIdx->nColumn] = 1;
3000 ** This routine will drop an existing named index. This routine
3001 ** implements the DROP INDEX statement.
3003 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3004 Index *pIndex;
3005 Vdbe *v;
3006 sqlite3 *db = pParse->db;
3007 int iDb;
3009 assert( pParse->nErr==0 ); /* Never called with prior errors */
3010 if( db->mallocFailed ){
3011 goto exit_drop_index;
3013 assert( pName->nSrc==1 );
3014 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3015 goto exit_drop_index;
3017 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3018 if( pIndex==0 ){
3019 if( !ifExists ){
3020 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3021 }else{
3022 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3024 pParse->checkSchema = 1;
3025 goto exit_drop_index;
3027 if( pIndex->autoIndex ){
3028 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3029 "or PRIMARY KEY constraint cannot be dropped", 0);
3030 goto exit_drop_index;
3032 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3033 #ifndef SQLITE_OMIT_AUTHORIZATION
3035 int code = SQLITE_DROP_INDEX;
3036 Table *pTab = pIndex->pTable;
3037 const char *zDb = db->aDb[iDb].zName;
3038 const char *zTab = SCHEMA_TABLE(iDb);
3039 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3040 goto exit_drop_index;
3042 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3043 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3044 goto exit_drop_index;
3047 #endif
3049 /* Generate code to remove the index and from the master table */
3050 v = sqlite3GetVdbe(pParse);
3051 if( v ){
3052 sqlite3BeginWriteOperation(pParse, 1, iDb);
3053 sqlite3NestedParse(pParse,
3054 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3055 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3057 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3058 sqlite3ChangeCookie(pParse, iDb);
3059 destroyRootPage(pParse, pIndex->tnum, iDb);
3060 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3063 exit_drop_index:
3064 sqlite3SrcListDelete(db, pName);
3068 ** pArray is a pointer to an array of objects. Each object in the
3069 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3070 ** to extend the array so that there is space for a new object at the end.
3072 ** When this function is called, *pnEntry contains the current size of
3073 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3074 ** in total).
3076 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3077 ** space allocated for the new object is zeroed, *pnEntry updated to
3078 ** reflect the new size of the array and a pointer to the new allocation
3079 ** returned. *pIdx is set to the index of the new array entry in this case.
3081 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3082 ** unchanged and a copy of pArray returned.
3084 void *sqlite3ArrayAllocate(
3085 sqlite3 *db, /* Connection to notify of malloc failures */
3086 void *pArray, /* Array of objects. Might be reallocated */
3087 int szEntry, /* Size of each object in the array */
3088 int *pnEntry, /* Number of objects currently in use */
3089 int *pIdx /* Write the index of a new slot here */
3091 char *z;
3092 int n = *pnEntry;
3093 if( (n & (n-1))==0 ){
3094 int sz = (n==0) ? 1 : 2*n;
3095 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3096 if( pNew==0 ){
3097 *pIdx = -1;
3098 return pArray;
3100 pArray = pNew;
3102 z = (char*)pArray;
3103 memset(&z[n * szEntry], 0, szEntry);
3104 *pIdx = n;
3105 ++*pnEntry;
3106 return pArray;
3110 ** Append a new element to the given IdList. Create a new IdList if
3111 ** need be.
3113 ** A new IdList is returned, or NULL if malloc() fails.
3115 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3116 int i;
3117 if( pList==0 ){
3118 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3119 if( pList==0 ) return 0;
3121 pList->a = sqlite3ArrayAllocate(
3123 pList->a,
3124 sizeof(pList->a[0]),
3125 &pList->nId,
3128 if( i<0 ){
3129 sqlite3IdListDelete(db, pList);
3130 return 0;
3132 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3133 return pList;
3137 ** Delete an IdList.
3139 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3140 int i;
3141 if( pList==0 ) return;
3142 for(i=0; i<pList->nId; i++){
3143 sqlite3DbFree(db, pList->a[i].zName);
3145 sqlite3DbFree(db, pList->a);
3146 sqlite3DbFree(db, pList);
3150 ** Return the index in pList of the identifier named zId. Return -1
3151 ** if not found.
3153 int sqlite3IdListIndex(IdList *pList, const char *zName){
3154 int i;
3155 if( pList==0 ) return -1;
3156 for(i=0; i<pList->nId; i++){
3157 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3159 return -1;
3163 ** Expand the space allocated for the given SrcList object by
3164 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3165 ** New slots are zeroed.
3167 ** For example, suppose a SrcList initially contains two entries: A,B.
3168 ** To append 3 new entries onto the end, do this:
3170 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3172 ** After the call above it would contain: A, B, nil, nil, nil.
3173 ** If the iStart argument had been 1 instead of 2, then the result
3174 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3175 ** the iStart value would be 0. The result then would
3176 ** be: nil, nil, nil, A, B.
3178 ** If a memory allocation fails the SrcList is unchanged. The
3179 ** db->mallocFailed flag will be set to true.
3181 SrcList *sqlite3SrcListEnlarge(
3182 sqlite3 *db, /* Database connection to notify of OOM errors */
3183 SrcList *pSrc, /* The SrcList to be enlarged */
3184 int nExtra, /* Number of new slots to add to pSrc->a[] */
3185 int iStart /* Index in pSrc->a[] of first new slot */
3187 int i;
3189 /* Sanity checking on calling parameters */
3190 assert( iStart>=0 );
3191 assert( nExtra>=1 );
3192 assert( pSrc!=0 );
3193 assert( iStart<=pSrc->nSrc );
3195 /* Allocate additional space if needed */
3196 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3197 SrcList *pNew;
3198 int nAlloc = pSrc->nSrc+nExtra;
3199 int nGot;
3200 pNew = sqlite3DbRealloc(db, pSrc,
3201 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3202 if( pNew==0 ){
3203 assert( db->mallocFailed );
3204 return pSrc;
3206 pSrc = pNew;
3207 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3208 pSrc->nAlloc = (u16)nGot;
3211 /* Move existing slots that come after the newly inserted slots
3212 ** out of the way */
3213 for(i=pSrc->nSrc-1; i>=iStart; i--){
3214 pSrc->a[i+nExtra] = pSrc->a[i];
3216 pSrc->nSrc += (i16)nExtra;
3218 /* Zero the newly allocated slots */
3219 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3220 for(i=iStart; i<iStart+nExtra; i++){
3221 pSrc->a[i].iCursor = -1;
3224 /* Return a pointer to the enlarged SrcList */
3225 return pSrc;
3230 ** Append a new table name to the given SrcList. Create a new SrcList if
3231 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3233 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3234 ** SrcList might be the same as the SrcList that was input or it might be
3235 ** a new one. If an OOM error does occurs, then the prior value of pList
3236 ** that is input to this routine is automatically freed.
3238 ** If pDatabase is not null, it means that the table has an optional
3239 ** database name prefix. Like this: "database.table". The pDatabase
3240 ** points to the table name and the pTable points to the database name.
3241 ** The SrcList.a[].zName field is filled with the table name which might
3242 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3243 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3244 ** or with NULL if no database is specified.
3246 ** In other words, if call like this:
3248 ** sqlite3SrcListAppend(D,A,B,0);
3250 ** Then B is a table name and the database name is unspecified. If called
3251 ** like this:
3253 ** sqlite3SrcListAppend(D,A,B,C);
3255 ** Then C is the table name and B is the database name. If C is defined
3256 ** then so is B. In other words, we never have a case where:
3258 ** sqlite3SrcListAppend(D,A,0,C);
3260 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3261 ** before being added to the SrcList.
3263 SrcList *sqlite3SrcListAppend(
3264 sqlite3 *db, /* Connection to notify of malloc failures */
3265 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3266 Token *pTable, /* Table to append */
3267 Token *pDatabase /* Database of the table */
3269 struct SrcList_item *pItem;
3270 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3271 if( pList==0 ){
3272 pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3273 if( pList==0 ) return 0;
3274 pList->nAlloc = 1;
3276 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3277 if( db->mallocFailed ){
3278 sqlite3SrcListDelete(db, pList);
3279 return 0;
3281 pItem = &pList->a[pList->nSrc-1];
3282 if( pDatabase && pDatabase->z==0 ){
3283 pDatabase = 0;
3285 if( pDatabase ){
3286 Token *pTemp = pDatabase;
3287 pDatabase = pTable;
3288 pTable = pTemp;
3290 pItem->zName = sqlite3NameFromToken(db, pTable);
3291 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3292 return pList;
3296 ** Assign VdbeCursor index numbers to all tables in a SrcList
3298 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3299 int i;
3300 struct SrcList_item *pItem;
3301 assert(pList || pParse->db->mallocFailed );
3302 if( pList ){
3303 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3304 if( pItem->iCursor>=0 ) break;
3305 pItem->iCursor = pParse->nTab++;
3306 if( pItem->pSelect ){
3307 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3314 ** Delete an entire SrcList including all its substructure.
3316 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3317 int i;
3318 struct SrcList_item *pItem;
3319 if( pList==0 ) return;
3320 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3321 sqlite3DbFree(db, pItem->zDatabase);
3322 sqlite3DbFree(db, pItem->zName);
3323 sqlite3DbFree(db, pItem->zAlias);
3324 sqlite3DbFree(db, pItem->zIndex);
3325 sqlite3DeleteTable(db, pItem->pTab);
3326 sqlite3SelectDelete(db, pItem->pSelect);
3327 sqlite3ExprDelete(db, pItem->pOn);
3328 sqlite3IdListDelete(db, pItem->pUsing);
3330 sqlite3DbFree(db, pList);
3334 ** This routine is called by the parser to add a new term to the
3335 ** end of a growing FROM clause. The "p" parameter is the part of
3336 ** the FROM clause that has already been constructed. "p" is NULL
3337 ** if this is the first term of the FROM clause. pTable and pDatabase
3338 ** are the name of the table and database named in the FROM clause term.
3339 ** pDatabase is NULL if the database name qualifier is missing - the
3340 ** usual case. If the term has a alias, then pAlias points to the
3341 ** alias token. If the term is a subquery, then pSubquery is the
3342 ** SELECT statement that the subquery encodes. The pTable and
3343 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3344 ** parameters are the content of the ON and USING clauses.
3346 ** Return a new SrcList which encodes is the FROM with the new
3347 ** term added.
3349 SrcList *sqlite3SrcListAppendFromTerm(
3350 Parse *pParse, /* Parsing context */
3351 SrcList *p, /* The left part of the FROM clause already seen */
3352 Token *pTable, /* Name of the table to add to the FROM clause */
3353 Token *pDatabase, /* Name of the database containing pTable */
3354 Token *pAlias, /* The right-hand side of the AS subexpression */
3355 Select *pSubquery, /* A subquery used in place of a table name */
3356 Expr *pOn, /* The ON clause of a join */
3357 IdList *pUsing /* The USING clause of a join */
3359 struct SrcList_item *pItem;
3360 sqlite3 *db = pParse->db;
3361 if( !p && (pOn || pUsing) ){
3362 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3363 (pOn ? "ON" : "USING")
3365 goto append_from_error;
3367 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3368 if( p==0 || NEVER(p->nSrc==0) ){
3369 goto append_from_error;
3371 pItem = &p->a[p->nSrc-1];
3372 assert( pAlias!=0 );
3373 if( pAlias->n ){
3374 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3376 pItem->pSelect = pSubquery;
3377 pItem->pOn = pOn;
3378 pItem->pUsing = pUsing;
3379 return p;
3381 append_from_error:
3382 assert( p==0 );
3383 sqlite3ExprDelete(db, pOn);
3384 sqlite3IdListDelete(db, pUsing);
3385 sqlite3SelectDelete(db, pSubquery);
3386 return 0;
3390 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3391 ** element of the source-list passed as the second argument.
3393 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3394 assert( pIndexedBy!=0 );
3395 if( p && ALWAYS(p->nSrc>0) ){
3396 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3397 assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3398 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3399 /* A "NOT INDEXED" clause was supplied. See parse.y
3400 ** construct "indexed_opt" for details. */
3401 pItem->notIndexed = 1;
3402 }else{
3403 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3409 ** When building up a FROM clause in the parser, the join operator
3410 ** is initially attached to the left operand. But the code generator
3411 ** expects the join operator to be on the right operand. This routine
3412 ** Shifts all join operators from left to right for an entire FROM
3413 ** clause.
3415 ** Example: Suppose the join is like this:
3417 ** A natural cross join B
3419 ** The operator is "natural cross join". The A and B operands are stored
3420 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3421 ** operator with A. This routine shifts that operator over to B.
3423 void sqlite3SrcListShiftJoinType(SrcList *p){
3424 if( p ){
3425 int i;
3426 assert( p->a || p->nSrc==0 );
3427 for(i=p->nSrc-1; i>0; i--){
3428 p->a[i].jointype = p->a[i-1].jointype;
3430 p->a[0].jointype = 0;
3435 ** Begin a transaction
3437 void sqlite3BeginTransaction(Parse *pParse, int type){
3438 sqlite3 *db;
3439 Vdbe *v;
3440 int i;
3442 assert( pParse!=0 );
3443 db = pParse->db;
3444 assert( db!=0 );
3445 /* if( db->aDb[0].pBt==0 ) return; */
3446 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3447 return;
3449 v = sqlite3GetVdbe(pParse);
3450 if( !v ) return;
3451 if( type!=TK_DEFERRED ){
3452 for(i=0; i<db->nDb; i++){
3453 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3454 sqlite3VdbeUsesBtree(v, i);
3457 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3461 ** Commit a transaction
3463 void sqlite3CommitTransaction(Parse *pParse){
3464 Vdbe *v;
3466 assert( pParse!=0 );
3467 assert( pParse->db!=0 );
3468 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3469 return;
3471 v = sqlite3GetVdbe(pParse);
3472 if( v ){
3473 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3478 ** Rollback a transaction
3480 void sqlite3RollbackTransaction(Parse *pParse){
3481 Vdbe *v;
3483 assert( pParse!=0 );
3484 assert( pParse->db!=0 );
3485 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3486 return;
3488 v = sqlite3GetVdbe(pParse);
3489 if( v ){
3490 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3495 ** This function is called by the parser when it parses a command to create,
3496 ** release or rollback an SQL savepoint.
3498 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3499 char *zName = sqlite3NameFromToken(pParse->db, pName);
3500 if( zName ){
3501 Vdbe *v = sqlite3GetVdbe(pParse);
3502 #ifndef SQLITE_OMIT_AUTHORIZATION
3503 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3504 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3505 #endif
3506 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3507 sqlite3DbFree(pParse->db, zName);
3508 return;
3510 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3515 ** Make sure the TEMP database is open and available for use. Return
3516 ** the number of errors. Leave any error messages in the pParse structure.
3518 int sqlite3OpenTempDatabase(Parse *pParse){
3519 sqlite3 *db = pParse->db;
3520 if( db->aDb[1].pBt==0 && !pParse->explain ){
3521 int rc;
3522 Btree *pBt;
3523 static const int flags =
3524 SQLITE_OPEN_READWRITE |
3525 SQLITE_OPEN_CREATE |
3526 SQLITE_OPEN_EXCLUSIVE |
3527 SQLITE_OPEN_DELETEONCLOSE |
3528 SQLITE_OPEN_TEMP_DB;
3530 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
3531 if( rc!=SQLITE_OK ){
3532 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3533 "file for storing temporary tables");
3534 pParse->rc = rc;
3535 return 1;
3537 db->aDb[1].pBt = pBt;
3538 assert( db->aDb[1].pSchema );
3539 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3540 db->mallocFailed = 1;
3541 return 1;
3544 return 0;
3548 ** Generate VDBE code that will verify the schema cookie and start
3549 ** a read-transaction for all named database files.
3551 ** It is important that all schema cookies be verified and all
3552 ** read transactions be started before anything else happens in
3553 ** the VDBE program. But this routine can be called after much other
3554 ** code has been generated. So here is what we do:
3556 ** The first time this routine is called, we code an OP_Goto that
3557 ** will jump to a subroutine at the end of the program. Then we
3558 ** record every database that needs its schema verified in the
3559 ** pParse->cookieMask field. Later, after all other code has been
3560 ** generated, the subroutine that does the cookie verifications and
3561 ** starts the transactions will be coded and the OP_Goto P2 value
3562 ** will be made to point to that subroutine. The generation of the
3563 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3565 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3566 ** schema on any databases. This can be used to position the OP_Goto
3567 ** early in the code, before we know if any database tables will be used.
3569 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3570 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3572 if( pToplevel->cookieGoto==0 ){
3573 Vdbe *v = sqlite3GetVdbe(pToplevel);
3574 if( v==0 ) return; /* This only happens if there was a prior error */
3575 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3577 if( iDb>=0 ){
3578 sqlite3 *db = pToplevel->db;
3579 yDbMask mask;
3581 assert( iDb<db->nDb );
3582 assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3583 assert( iDb<SQLITE_MAX_ATTACHED+2 );
3584 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3585 mask = ((yDbMask)1)<<iDb;
3586 if( (pToplevel->cookieMask & mask)==0 ){
3587 pToplevel->cookieMask |= mask;
3588 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3589 if( !OMIT_TEMPDB && iDb==1 ){
3590 sqlite3OpenTempDatabase(pToplevel);
3597 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3598 ** attached database. Otherwise, invoke it for the database named zDb only.
3600 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
3601 sqlite3 *db = pParse->db;
3602 int i;
3603 for(i=0; i<db->nDb; i++){
3604 Db *pDb = &db->aDb[i];
3605 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
3606 sqlite3CodeVerifySchema(pParse, i);
3612 ** Generate VDBE code that prepares for doing an operation that
3613 ** might change the database.
3615 ** This routine starts a new transaction if we are not already within
3616 ** a transaction. If we are already within a transaction, then a checkpoint
3617 ** is set if the setStatement parameter is true. A checkpoint should
3618 ** be set for operations that might fail (due to a constraint) part of
3619 ** the way through and which will need to undo some writes without having to
3620 ** rollback the whole transaction. For operations where all constraints
3621 ** can be checked before any changes are made to the database, it is never
3622 ** necessary to undo a write and the checkpoint should not be set.
3624 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3625 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3626 sqlite3CodeVerifySchema(pParse, iDb);
3627 pToplevel->writeMask |= ((yDbMask)1)<<iDb;
3628 pToplevel->isMultiWrite |= setStatement;
3632 ** Indicate that the statement currently under construction might write
3633 ** more than one entry (example: deleting one row then inserting another,
3634 ** inserting multiple rows in a table, or inserting a row and index entries.)
3635 ** If an abort occurs after some of these writes have completed, then it will
3636 ** be necessary to undo the completed writes.
3638 void sqlite3MultiWrite(Parse *pParse){
3639 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3640 pToplevel->isMultiWrite = 1;
3644 ** The code generator calls this routine if is discovers that it is
3645 ** possible to abort a statement prior to completion. In order to
3646 ** perform this abort without corrupting the database, we need to make
3647 ** sure that the statement is protected by a statement transaction.
3649 ** Technically, we only need to set the mayAbort flag if the
3650 ** isMultiWrite flag was previously set. There is a time dependency
3651 ** such that the abort must occur after the multiwrite. This makes
3652 ** some statements involving the REPLACE conflict resolution algorithm
3653 ** go a little faster. But taking advantage of this time dependency
3654 ** makes it more difficult to prove that the code is correct (in
3655 ** particular, it prevents us from writing an effective
3656 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3657 ** to take the safe route and skip the optimization.
3659 void sqlite3MayAbort(Parse *pParse){
3660 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3661 pToplevel->mayAbort = 1;
3665 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3666 ** error. The onError parameter determines which (if any) of the statement
3667 ** and/or current transaction is rolled back.
3669 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
3670 Vdbe *v = sqlite3GetVdbe(pParse);
3671 if( onError==OE_Abort ){
3672 sqlite3MayAbort(pParse);
3674 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
3678 ** Check to see if pIndex uses the collating sequence pColl. Return
3679 ** true if it does and false if it does not.
3681 #ifndef SQLITE_OMIT_REINDEX
3682 static int collationMatch(const char *zColl, Index *pIndex){
3683 int i;
3684 assert( zColl!=0 );
3685 for(i=0; i<pIndex->nColumn; i++){
3686 const char *z = pIndex->azColl[i];
3687 assert( z!=0 );
3688 if( 0==sqlite3StrICmp(z, zColl) ){
3689 return 1;
3692 return 0;
3694 #endif
3697 ** Recompute all indices of pTab that use the collating sequence pColl.
3698 ** If pColl==0 then recompute all indices of pTab.
3700 #ifndef SQLITE_OMIT_REINDEX
3701 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3702 Index *pIndex; /* An index associated with pTab */
3704 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3705 if( zColl==0 || collationMatch(zColl, pIndex) ){
3706 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3707 sqlite3BeginWriteOperation(pParse, 0, iDb);
3708 sqlite3RefillIndex(pParse, pIndex, -1);
3712 #endif
3715 ** Recompute all indices of all tables in all databases where the
3716 ** indices use the collating sequence pColl. If pColl==0 then recompute
3717 ** all indices everywhere.
3719 #ifndef SQLITE_OMIT_REINDEX
3720 static void reindexDatabases(Parse *pParse, char const *zColl){
3721 Db *pDb; /* A single database */
3722 int iDb; /* The database index number */
3723 sqlite3 *db = pParse->db; /* The database connection */
3724 HashElem *k; /* For looping over tables in pDb */
3725 Table *pTab; /* A table in the database */
3727 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
3728 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3729 assert( pDb!=0 );
3730 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
3731 pTab = (Table*)sqliteHashData(k);
3732 reindexTable(pParse, pTab, zColl);
3736 #endif
3739 ** Generate code for the REINDEX command.
3741 ** REINDEX -- 1
3742 ** REINDEX <collation> -- 2
3743 ** REINDEX ?<database>.?<tablename> -- 3
3744 ** REINDEX ?<database>.?<indexname> -- 4
3746 ** Form 1 causes all indices in all attached databases to be rebuilt.
3747 ** Form 2 rebuilds all indices in all databases that use the named
3748 ** collating function. Forms 3 and 4 rebuild the named index or all
3749 ** indices associated with the named table.
3751 #ifndef SQLITE_OMIT_REINDEX
3752 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3753 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
3754 char *z; /* Name of a table or index */
3755 const char *zDb; /* Name of the database */
3756 Table *pTab; /* A table in the database */
3757 Index *pIndex; /* An index associated with pTab */
3758 int iDb; /* The database index number */
3759 sqlite3 *db = pParse->db; /* The database connection */
3760 Token *pObjName; /* Name of the table or index to be reindexed */
3762 /* Read the database schema. If an error occurs, leave an error message
3763 ** and code in pParse and return NULL. */
3764 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3765 return;
3768 if( pName1==0 ){
3769 reindexDatabases(pParse, 0);
3770 return;
3771 }else if( NEVER(pName2==0) || pName2->z==0 ){
3772 char *zColl;
3773 assert( pName1->z );
3774 zColl = sqlite3NameFromToken(pParse->db, pName1);
3775 if( !zColl ) return;
3776 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3777 if( pColl ){
3778 reindexDatabases(pParse, zColl);
3779 sqlite3DbFree(db, zColl);
3780 return;
3782 sqlite3DbFree(db, zColl);
3784 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3785 if( iDb<0 ) return;
3786 z = sqlite3NameFromToken(db, pObjName);
3787 if( z==0 ) return;
3788 zDb = db->aDb[iDb].zName;
3789 pTab = sqlite3FindTable(db, z, zDb);
3790 if( pTab ){
3791 reindexTable(pParse, pTab, 0);
3792 sqlite3DbFree(db, z);
3793 return;
3795 pIndex = sqlite3FindIndex(db, z, zDb);
3796 sqlite3DbFree(db, z);
3797 if( pIndex ){
3798 sqlite3BeginWriteOperation(pParse, 0, iDb);
3799 sqlite3RefillIndex(pParse, pIndex, -1);
3800 return;
3802 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3804 #endif
3807 ** Return a dynamicly allocated KeyInfo structure that can be used
3808 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3810 ** If successful, a pointer to the new structure is returned. In this case
3811 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3812 ** pointer. If an error occurs (out of memory or missing collation
3813 ** sequence), NULL is returned and the state of pParse updated to reflect
3814 ** the error.
3816 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3817 int i;
3818 int nCol = pIdx->nColumn;
3819 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3820 sqlite3 *db = pParse->db;
3821 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3823 if( pKey ){
3824 pKey->db = pParse->db;
3825 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3826 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3827 for(i=0; i<nCol; i++){
3828 char *zColl = pIdx->azColl[i];
3829 assert( zColl );
3830 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3831 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3833 pKey->nField = (u16)nCol;
3836 if( pParse->nErr ){
3837 sqlite3DbFree(db, pKey);
3838 pKey = 0;
3840 return pKey;