4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements execution method of the
13 ** Virtual Database Engine (VDBE). A separate file ("vdbeaux.c")
14 ** handles housekeeping details such as creating and deleting
15 ** VDBE instances. This file is solely interested in executing
18 ** In the external interface, an "sqlite3_stmt*" is an opaque pointer
21 ** The SQL parser generates a program which is then executed by
22 ** the VDBE to do the work of the SQL statement. VDBE programs are
23 ** similar in form to assembly language. The program consists of
24 ** a linear sequence of operations. Each operation has an opcode
25 ** and 5 operands. Operands P1, P2, and P3 are integers. Operand P4
26 ** is a null-terminated string. Operand P5 is an unsigned character.
27 ** Few opcodes use all 5 operands.
29 ** Computation results are stored on a set of registers numbered beginning
30 ** with 1 and going up to Vdbe.nMem. Each register can store
31 ** either an integer, a null-terminated string, a floating point
32 ** number, or the SQL "NULL" value. An implicit conversion from one
33 ** type to the other occurs as necessary.
35 ** Most of the code in this file is taken up by the sqlite3VdbeExec()
36 ** function which does the work of interpreting a VDBE program.
37 ** But other routines are also provided to help in building up
38 ** a program instruction by instruction.
40 ** Various scripts scan this source file in order to generate HTML
41 ** documentation, headers files, or other derived files. The formatting
42 ** of the code in this file is, therefore, important. See other comments
43 ** in this file for details. If in doubt, do not deviate from existing
44 ** commenting and indentation practices when changing or adding code.
46 #include "sqliteInt.h"
50 ** Invoke this macro on memory cells just prior to changing the
51 ** value of the cell. This macro verifies that shallow copies are
55 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
57 # define memAboutToChange(P,M)
61 ** The following global variable is incremented every time a cursor
62 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
63 ** procedures use this information to make sure that indices are
64 ** working correctly. This variable has no function other than to
65 ** help verify the correct operation of the library.
68 int sqlite3_search_count
= 0;
72 ** When this global variable is positive, it gets decremented once before
73 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
74 ** field of the sqlite3 structure is set in order to simulate an interrupt.
76 ** This facility is used for testing purposes only. It does not function
77 ** in an ordinary build.
80 int sqlite3_interrupt_count
= 0;
84 ** The next global variable is incremented each type the OP_Sort opcode
85 ** is executed. The test procedures use this information to make sure that
86 ** sorting is occurring or not occurring at appropriate times. This variable
87 ** has no function other than to help verify the correct operation of the
91 int sqlite3_sort_count
= 0;
95 ** The next global variable records the size of the largest MEM_Blob
96 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
97 ** use this information to make sure that the zero-blob functionality
98 ** is working correctly. This variable has no function other than to
99 ** help verify the correct operation of the library.
102 int sqlite3_max_blobsize
= 0;
103 static void updateMaxBlobsize(Mem
*p
){
104 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
105 sqlite3_max_blobsize
= p
->n
;
111 ** The next global variable is incremented each type the OP_Found opcode
112 ** is executed. This is used to test whether or not the foreign key
113 ** operation implemented using OP_FkIsZero is working. This variable
114 ** has no function other than to help verify the correct operation of the
118 int sqlite3_found_count
= 0;
122 ** Test a register to see if it exceeds the current maximum blob size.
123 ** If it does, record the new maximum blob size.
125 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
126 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
128 # define UPDATE_MAX_BLOBSIZE(P)
132 ** Convert the given register into a string if it isn't one
133 ** already. Return non-zero if a malloc() fails.
135 #define Stringify(P, enc) \
136 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc)) \
140 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
141 ** a pointer to a dynamically allocated string where some other entity
142 ** is responsible for deallocating that string. Because the register
143 ** does not control the string, it might be deleted without the register
146 ** This routine converts an ephemeral string into a dynamically allocated
147 ** string that the register itself controls. In other words, it
148 ** converts an MEM_Ephem string into an MEM_Dyn string.
150 #define Deephemeralize(P) \
151 if( ((P)->flags&MEM_Ephem)!=0 \
152 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
154 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
155 #ifdef SQLITE_OMIT_MERGE_SORT
156 # define isSorter(x) 0
158 # define isSorter(x) ((x)->pSorter!=0)
162 ** Argument pMem points at a register that will be passed to a
163 ** user-defined function or returned to the user as the result of a query.
164 ** This routine sets the pMem->type variable used by the sqlite3_value_*()
167 void sqlite3VdbeMemStoreType(Mem
*pMem
){
168 int flags
= pMem
->flags
;
169 if( flags
& MEM_Null
){
170 pMem
->type
= SQLITE_NULL
;
172 else if( flags
& MEM_Int
){
173 pMem
->type
= SQLITE_INTEGER
;
175 else if( flags
& MEM_Real
){
176 pMem
->type
= SQLITE_FLOAT
;
178 else if( flags
& MEM_Str
){
179 pMem
->type
= SQLITE_TEXT
;
181 pMem
->type
= SQLITE_BLOB
;
186 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
187 ** if we run out of memory.
189 static VdbeCursor
*allocateCursor(
190 Vdbe
*p
, /* The virtual machine */
191 int iCur
, /* Index of the new VdbeCursor */
192 int nField
, /* Number of fields in the table or index */
193 int iDb
, /* Database the cursor belongs to, or -1 */
194 int isBtreeCursor
/* True for B-Tree. False for pseudo-table or vtab */
196 /* Find the memory cell that will be used to store the blob of memory
197 ** required for this VdbeCursor structure. It is convenient to use a
198 ** vdbe memory cell to manage the memory allocation required for a
199 ** VdbeCursor structure for the following reasons:
201 ** * Sometimes cursor numbers are used for a couple of different
202 ** purposes in a vdbe program. The different uses might require
203 ** different sized allocations. Memory cells provide growable
206 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
207 ** be freed lazily via the sqlite3_release_memory() API. This
208 ** minimizes the number of malloc calls made by the system.
210 ** Memory cells for cursors are allocated at the top of the address
211 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
212 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
214 Mem
*pMem
= &p
->aMem
[p
->nMem
-iCur
];
219 ROUND8(sizeof(VdbeCursor
)) +
220 (isBtreeCursor
?sqlite3BtreeCursorSize():0) +
221 2*nField
*sizeof(u32
);
223 assert( iCur
<p
->nCursor
);
224 if( p
->apCsr
[iCur
] ){
225 sqlite3VdbeFreeCursor(p
, p
->apCsr
[iCur
]);
228 if( SQLITE_OK
==sqlite3VdbeMemGrow(pMem
, nByte
, 0) ){
229 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->z
;
230 memset(pCx
, 0, sizeof(VdbeCursor
));
232 pCx
->nField
= nField
;
234 pCx
->aType
= (u32
*)&pMem
->z
[ROUND8(sizeof(VdbeCursor
))];
237 pCx
->pCursor
= (BtCursor
*)
238 &pMem
->z
[ROUND8(sizeof(VdbeCursor
))+2*nField
*sizeof(u32
)];
239 sqlite3BtreeCursorZero(pCx
->pCursor
);
246 ** Try to convert a value into a numeric representation if we can
247 ** do so without loss of information. In other words, if the string
248 ** looks like a number, convert it into a number. If it does not
249 ** look like a number, leave it alone.
251 static void applyNumericAffinity(Mem
*pRec
){
252 if( (pRec
->flags
& (MEM_Real
|MEM_Int
))==0 ){
256 if( (pRec
->flags
&MEM_Str
)==0 ) return;
257 if( sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
)==0 ) return;
258 if( 0==sqlite3Atoi64(pRec
->z
, &iValue
, pRec
->n
, enc
) ){
260 pRec
->flags
|= MEM_Int
;
263 pRec
->flags
|= MEM_Real
;
269 ** Processing is determine by the affinity parameter:
271 ** SQLITE_AFF_INTEGER:
273 ** SQLITE_AFF_NUMERIC:
274 ** Try to convert pRec to an integer representation or a
275 ** floating-point representation if an integer representation
276 ** is not possible. Note that the integer representation is
277 ** always preferred, even if the affinity is REAL, because
278 ** an integer representation is more space efficient on disk.
281 ** Convert pRec to a text representation.
284 ** No-op. pRec is unchanged.
286 static void applyAffinity(
287 Mem
*pRec
, /* The value to apply affinity to */
288 char affinity
, /* The affinity to be applied */
289 u8 enc
/* Use this text encoding */
291 if( affinity
==SQLITE_AFF_TEXT
){
292 /* Only attempt the conversion to TEXT if there is an integer or real
293 ** representation (blob and NULL do not get converted) but no string
296 if( 0==(pRec
->flags
&MEM_Str
) && (pRec
->flags
&(MEM_Real
|MEM_Int
)) ){
297 sqlite3VdbeMemStringify(pRec
, enc
);
299 pRec
->flags
&= ~(MEM_Real
|MEM_Int
);
300 }else if( affinity
!=SQLITE_AFF_NONE
){
301 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
302 || affinity
==SQLITE_AFF_NUMERIC
);
303 applyNumericAffinity(pRec
);
304 if( pRec
->flags
& MEM_Real
){
305 sqlite3VdbeIntegerAffinity(pRec
);
311 ** Try to convert the type of a function argument or a result column
312 ** into a numeric representation. Use either INTEGER or REAL whichever
313 ** is appropriate. But only do the conversion if it is possible without
314 ** loss of information and return the revised type of the argument.
316 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
317 Mem
*pMem
= (Mem
*)pVal
;
318 if( pMem
->type
==SQLITE_TEXT
){
319 applyNumericAffinity(pMem
);
320 sqlite3VdbeMemStoreType(pMem
);
326 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
327 ** not the internal Mem* type.
329 void sqlite3ValueApplyAffinity(
334 applyAffinity((Mem
*)pVal
, affinity
, enc
);
339 ** Write a nice string representation of the contents of cell pMem
340 ** into buffer zBuf, length nBuf.
342 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, char *zBuf
){
346 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
353 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
354 }else if( f
& MEM_Static
){
356 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
357 }else if( f
& MEM_Ephem
){
359 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
364 sqlite3_snprintf(100, zCsr
, "%c", c
);
365 zCsr
+= sqlite3Strlen30(zCsr
);
366 sqlite3_snprintf(100, zCsr
, "%d[", pMem
->n
);
367 zCsr
+= sqlite3Strlen30(zCsr
);
368 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
369 sqlite3_snprintf(100, zCsr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
370 zCsr
+= sqlite3Strlen30(zCsr
);
372 for(i
=0; i
<16 && i
<pMem
->n
; i
++){
374 if( z
<32 || z
>126 ) *zCsr
++ = '.';
378 sqlite3_snprintf(100, zCsr
, "]%s", encnames
[pMem
->enc
]);
379 zCsr
+= sqlite3Strlen30(zCsr
);
381 sqlite3_snprintf(100, zCsr
,"+%dz",pMem
->u
.nZero
);
382 zCsr
+= sqlite3Strlen30(zCsr
);
385 }else if( f
& MEM_Str
){
390 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
391 }else if( f
& MEM_Static
){
393 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
394 }else if( f
& MEM_Ephem
){
396 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
401 sqlite3_snprintf(100, &zBuf
[k
], "%d", pMem
->n
);
402 k
+= sqlite3Strlen30(&zBuf
[k
]);
404 for(j
=0; j
<15 && j
<pMem
->n
; j
++){
406 if( c
>=0x20 && c
<0x7f ){
413 sqlite3_snprintf(100,&zBuf
[k
], encnames
[pMem
->enc
]);
414 k
+= sqlite3Strlen30(&zBuf
[k
]);
422 ** Print the value of a register for tracing purposes:
424 static void memTracePrint(FILE *out
, Mem
*p
){
425 if( p
->flags
& MEM_Null
){
426 fprintf(out
, " NULL");
427 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
428 fprintf(out
, " si:%lld", p
->u
.i
);
429 }else if( p
->flags
& MEM_Int
){
430 fprintf(out
, " i:%lld", p
->u
.i
);
431 #ifndef SQLITE_OMIT_FLOATING_POINT
432 }else if( p
->flags
& MEM_Real
){
433 fprintf(out
, " r:%g", p
->r
);
435 }else if( p
->flags
& MEM_RowSet
){
436 fprintf(out
, " (rowset)");
439 sqlite3VdbeMemPrettyPrint(p
, zBuf
);
441 fprintf(out
, "%s", zBuf
);
444 static void registerTrace(FILE *out
, int iReg
, Mem
*p
){
445 fprintf(out
, "REG[%d] = ", iReg
);
446 memTracePrint(out
, p
);
452 # define REGISTER_TRACE(R,M) if(p->trace)registerTrace(p->trace,R,M)
454 # define REGISTER_TRACE(R,M)
461 ** hwtime.h contains inline assembler code for implementing
462 ** high-performance timing routines.
469 ** The CHECK_FOR_INTERRUPT macro defined here looks to see if the
470 ** sqlite3_interrupt() routine has been called. If it has been, then
471 ** processing of the VDBE program is interrupted.
473 ** This macro added to every instruction that does a jump in order to
474 ** implement a loop. This test used to be on every single instruction,
475 ** but that meant we more testing than we needed. By only testing the
476 ** flag on jump instructions, we get a (small) speed improvement.
478 #define CHECK_FOR_INTERRUPT \
479 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
484 ** This function is only called from within an assert() expression. It
485 ** checks that the sqlite3.nTransaction variable is correctly set to
486 ** the number of non-transaction savepoints currently in the
487 ** linked list starting at sqlite3.pSavepoint.
491 ** assert( checkSavepointCount(db) );
493 static int checkSavepointCount(sqlite3
*db
){
496 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
497 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
503 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
504 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
505 ** in memory obtained from sqlite3DbMalloc).
507 static void importVtabErrMsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
509 sqlite3DbFree(db
, p
->zErrMsg
);
510 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
511 sqlite3_free(pVtab
->zErrMsg
);
517 ** Execute as much of a VDBE program as we can then return.
519 ** sqlite3VdbeMakeReady() must be called before this routine in order to
520 ** close the program with a final OP_Halt and to set up the callbacks
521 ** and the error message pointer.
523 ** Whenever a row or result data is available, this routine will either
524 ** invoke the result callback (if there is one) or return with
527 ** If an attempt is made to open a locked database, then this routine
528 ** will either invoke the busy callback (if there is one) or it will
529 ** return SQLITE_BUSY.
531 ** If an error occurs, an error message is written to memory obtained
532 ** from sqlite3_malloc() and p->zErrMsg is made to point to that memory.
533 ** The error code is stored in p->rc and this routine returns SQLITE_ERROR.
535 ** If the callback ever returns non-zero, then the program exits
536 ** immediately. There will be no error message but the p->rc field is
537 ** set to SQLITE_ABORT and this routine will return SQLITE_ERROR.
539 ** A memory allocation error causes p->rc to be set to SQLITE_NOMEM and this
540 ** routine to return SQLITE_ERROR.
542 ** Other fatal errors return SQLITE_ERROR.
544 ** After this routine has finished, sqlite3VdbeFinalize() should be
545 ** used to clean up the mess that was left behind.
548 Vdbe
*p
/* The VDBE */
550 int pc
=0; /* The program counter */
551 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
552 Op
*pOp
; /* Current operation */
553 int rc
= SQLITE_OK
; /* Value to return */
554 sqlite3
*db
= p
->db
; /* The database */
555 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
556 u8 encoding
= ENC(db
); /* The database encoding */
557 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
558 int checkProgress
; /* True if progress callbacks are enabled */
559 int nProgressOps
= 0; /* Opcodes executed since progress callback. */
561 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
562 Mem
*pIn1
= 0; /* 1st input operand */
563 Mem
*pIn2
= 0; /* 2nd input operand */
564 Mem
*pIn3
= 0; /* 3rd input operand */
565 Mem
*pOut
= 0; /* Output operand */
566 int iCompare
= 0; /* Result of last OP_Compare operation */
567 int *aPermute
= 0; /* Permutation of columns for OP_Compare */
568 i64 lastRowid
= db
->lastRowid
; /* Saved value of the last insert ROWID */
570 u64 start
; /* CPU clock count at start of opcode */
571 int origPc
; /* Program counter at start of opcode */
573 /*** INSERT STACK UNION HERE ***/
575 assert( p
->magic
==VDBE_MAGIC_RUN
); /* sqlite3_step() verifies this */
577 if( p
->rc
==SQLITE_NOMEM
){
578 /* This happens if a malloc() inside a call to sqlite3_column_text() or
579 ** sqlite3_column_text16() failed. */
582 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
);
584 assert( p
->explain
==0 );
586 db
->busyHandler
.nBusy
= 0;
588 sqlite3VdbeIOTraceSql(p
);
589 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
590 checkProgress
= db
->xProgress
!=0;
593 sqlite3BeginBenignMalloc();
594 if( p
->pc
==0 && (p
->db
->flags
& SQLITE_VdbeListing
)!=0 ){
596 printf("VDBE Program Listing:\n");
597 sqlite3VdbePrintSql(p
);
598 for(i
=0; i
<p
->nOp
; i
++){
599 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
602 sqlite3EndBenignMalloc();
604 for(pc
=p
->pc
; rc
==SQLITE_OK
; pc
++){
605 assert( pc
>=0 && pc
<p
->nOp
);
606 if( db
->mallocFailed
) goto no_mem
;
609 start
= sqlite3Hwtime();
613 /* Only allow tracing if SQLITE_DEBUG is defined.
618 printf("VDBE Execution Trace:\n");
619 sqlite3VdbePrintSql(p
);
621 sqlite3VdbePrintOp(p
->trace
, pc
, pOp
);
626 /* Check to see if we need to simulate an interrupt. This only happens
627 ** if we have a special test build.
630 if( sqlite3_interrupt_count
>0 ){
631 sqlite3_interrupt_count
--;
632 if( sqlite3_interrupt_count
==0 ){
633 sqlite3_interrupt(db
);
638 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
639 /* Call the progress callback if it is configured and the required number
640 ** of VDBE ops have been executed (either since this invocation of
641 ** sqlite3VdbeExec() or since last time the progress callback was called).
642 ** If the progress callback returns non-zero, exit the virtual machine with
643 ** a return code SQLITE_ABORT.
646 if( db
->nProgressOps
==nProgressOps
){
648 prc
= db
->xProgress(db
->pProgressArg
);
650 rc
= SQLITE_INTERRUPT
;
651 goto vdbe_error_halt
;
659 /* On any opcode with the "out2-prerelase" tag, free any
660 ** external allocations out of mem[p2] and set mem[p2] to be
661 ** an undefined integer. Opcodes will either fill in the integer
662 ** value or convert mem[p2] to a different type.
664 assert( pOp
->opflags
==sqlite3OpcodeProperty
[pOp
->opcode
] );
665 if( pOp
->opflags
& OPFLG_OUT2_PRERELEASE
){
667 assert( pOp
->p2
<=p
->nMem
);
668 pOut
= &aMem
[pOp
->p2
];
669 memAboutToChange(p
, pOut
);
670 VdbeMemRelease(pOut
);
671 pOut
->flags
= MEM_Int
;
674 /* Sanity checking on other operands */
676 if( (pOp
->opflags
& OPFLG_IN1
)!=0 ){
678 assert( pOp
->p1
<=p
->nMem
);
679 assert( memIsValid(&aMem
[pOp
->p1
]) );
680 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
682 if( (pOp
->opflags
& OPFLG_IN2
)!=0 ){
684 assert( pOp
->p2
<=p
->nMem
);
685 assert( memIsValid(&aMem
[pOp
->p2
]) );
686 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
688 if( (pOp
->opflags
& OPFLG_IN3
)!=0 ){
690 assert( pOp
->p3
<=p
->nMem
);
691 assert( memIsValid(&aMem
[pOp
->p3
]) );
692 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
694 if( (pOp
->opflags
& OPFLG_OUT2
)!=0 ){
696 assert( pOp
->p2
<=p
->nMem
);
697 memAboutToChange(p
, &aMem
[pOp
->p2
]);
699 if( (pOp
->opflags
& OPFLG_OUT3
)!=0 ){
701 assert( pOp
->p3
<=p
->nMem
);
702 memAboutToChange(p
, &aMem
[pOp
->p3
]);
706 switch( pOp
->opcode
){
708 /*****************************************************************************
709 ** What follows is a massive switch statement where each case implements a
710 ** separate instruction in the virtual machine. If we follow the usual
711 ** indentation conventions, each case should be indented by 6 spaces. But
712 ** that is a lot of wasted space on the left margin. So the code within
713 ** the switch statement will break with convention and be flush-left. Another
714 ** big comment (similar to this one) will mark the point in the code where
715 ** we transition back to normal indentation.
717 ** The formatting of each case is important. The makefile for SQLite
718 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
719 ** file looking for lines that begin with "case OP_". The opcodes.h files
720 ** will be filled with #defines that give unique integer values to each
721 ** opcode and the opcodes.c file is filled with an array of strings where
722 ** each string is the symbolic name for the corresponding opcode. If the
723 ** case statement is followed by a comment of the form "/# same as ... #/"
724 ** that comment is used to determine the particular value of the opcode.
726 ** Other keywords in the comment that follows each case are used to
727 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
728 ** Keywords include: in1, in2, in3, out2_prerelease, out2, out3. See
729 ** the mkopcodeh.awk script for additional information.
731 ** Documentation about VDBE opcodes is generated by scanning this file
732 ** for lines of that contain "Opcode:". That line and all subsequent
733 ** comment lines are used in the generation of the opcode.html documentation
738 ** Formatting is important to scripts that scan this file.
739 ** Do not deviate from the formatting style currently in use.
741 *****************************************************************************/
743 /* Opcode: Goto * P2 * * *
745 ** An unconditional jump to address P2.
746 ** The next instruction executed will be
747 ** the one at index P2 from the beginning of
750 case OP_Goto
: { /* jump */
756 /* Opcode: Gosub P1 P2 * * *
758 ** Write the current address onto register P1
759 ** and then jump to address P2.
761 case OP_Gosub
: { /* jump */
762 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nMem
);
763 pIn1
= &aMem
[pOp
->p1
];
764 assert( (pIn1
->flags
& MEM_Dyn
)==0 );
765 memAboutToChange(p
, pIn1
);
766 pIn1
->flags
= MEM_Int
;
768 REGISTER_TRACE(pOp
->p1
, pIn1
);
773 /* Opcode: Return P1 * * * *
775 ** Jump to the next instruction after the address in register P1.
777 case OP_Return
: { /* in1 */
778 pIn1
= &aMem
[pOp
->p1
];
779 assert( pIn1
->flags
& MEM_Int
);
784 /* Opcode: Yield P1 * * * *
786 ** Swap the program counter with the value in register P1.
788 case OP_Yield
: { /* in1 */
790 pIn1
= &aMem
[pOp
->p1
];
791 assert( (pIn1
->flags
& MEM_Dyn
)==0 );
792 pIn1
->flags
= MEM_Int
;
793 pcDest
= (int)pIn1
->u
.i
;
795 REGISTER_TRACE(pOp
->p1
, pIn1
);
800 /* Opcode: HaltIfNull P1 P2 P3 P4 *
802 ** Check the value in register P3. If it is NULL then Halt using
803 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
804 ** value in register P3 is not NULL, then this routine is a no-op.
806 case OP_HaltIfNull
: { /* in3 */
807 pIn3
= &aMem
[pOp
->p3
];
808 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
809 /* Fall through into OP_Halt */
812 /* Opcode: Halt P1 P2 * P4 *
814 ** Exit immediately. All open cursors, etc are closed
817 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
818 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
819 ** For errors, it can be some other value. If P1!=0 then P2 will determine
820 ** whether or not to rollback the current transaction. Do not rollback
821 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
822 ** then back out all changes that have occurred during this execution of the
823 ** VDBE, but do not rollback the transaction.
825 ** If P4 is not null then it is an error message string.
827 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
828 ** every program. So a jump past the last instruction of the program
829 ** is the same as executing Halt.
832 if( pOp
->p1
==SQLITE_OK
&& p
->pFrame
){
833 /* Halt the sub-program. Return control to the parent frame. */
834 VdbeFrame
*pFrame
= p
->pFrame
;
835 p
->pFrame
= pFrame
->pParent
;
837 sqlite3VdbeSetChanges(db
, p
->nChange
);
838 pc
= sqlite3VdbeFrameRestore(pFrame
);
839 lastRowid
= db
->lastRowid
;
840 if( pOp
->p2
==OE_Ignore
){
841 /* Instruction pc is the OP_Program that invoked the sub-program
842 ** currently being halted. If the p2 instruction of this OP_Halt
843 ** instruction is set to OE_Ignore, then the sub-program is throwing
844 ** an IGNORE exception. In this case jump to the address specified
845 ** as the p2 of the calling OP_Program. */
846 pc
= p
->aOp
[pc
].p2
-1;
854 p
->errorAction
= (u8
)pOp
->p2
;
857 assert( p
->rc
!=SQLITE_OK
);
858 sqlite3SetString(&p
->zErrMsg
, db
, "%s", pOp
->p4
.z
);
859 testcase( sqlite3GlobalConfig
.xLog
!=0 );
860 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pc
, p
->zSql
, pOp
->p4
.z
);
862 testcase( sqlite3GlobalConfig
.xLog
!=0 );
863 sqlite3_log(pOp
->p1
, "constraint failed at %d in [%s]", pc
, p
->zSql
);
865 rc
= sqlite3VdbeHalt(p
);
866 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
867 if( rc
==SQLITE_BUSY
){
868 p
->rc
= rc
= SQLITE_BUSY
;
870 assert( rc
==SQLITE_OK
|| p
->rc
==SQLITE_CONSTRAINT
);
871 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 );
872 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
877 /* Opcode: Integer P1 P2 * * *
879 ** The 32-bit integer value P1 is written into register P2.
881 case OP_Integer
: { /* out2-prerelease */
886 /* Opcode: Int64 * P2 * P4 *
888 ** P4 is a pointer to a 64-bit integer value.
889 ** Write that value into register P2.
891 case OP_Int64
: { /* out2-prerelease */
892 assert( pOp
->p4
.pI64
!=0 );
893 pOut
->u
.i
= *pOp
->p4
.pI64
;
897 #ifndef SQLITE_OMIT_FLOATING_POINT
898 /* Opcode: Real * P2 * P4 *
900 ** P4 is a pointer to a 64-bit floating point value.
901 ** Write that value into register P2.
903 case OP_Real
: { /* same as TK_FLOAT, out2-prerelease */
904 pOut
->flags
= MEM_Real
;
905 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
906 pOut
->r
= *pOp
->p4
.pReal
;
911 /* Opcode: String8 * P2 * P4 *
913 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
914 ** into an OP_String before it is executed for the first time.
916 case OP_String8
: { /* same as TK_STRING, out2-prerelease */
917 assert( pOp
->p4
.z
!=0 );
918 pOp
->opcode
= OP_String
;
919 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
921 #ifndef SQLITE_OMIT_UTF16
922 if( encoding
!=SQLITE_UTF8
){
923 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
924 if( rc
==SQLITE_TOOBIG
) goto too_big
;
925 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
926 assert( pOut
->zMalloc
==pOut
->z
);
927 assert( pOut
->flags
& MEM_Dyn
);
929 pOut
->flags
|= MEM_Static
;
930 pOut
->flags
&= ~MEM_Dyn
;
931 if( pOp
->p4type
==P4_DYNAMIC
){
932 sqlite3DbFree(db
, pOp
->p4
.z
);
934 pOp
->p4type
= P4_DYNAMIC
;
939 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
942 /* Fall through to the next case, OP_String */
945 /* Opcode: String P1 P2 * P4 *
947 ** The string value P4 of length P1 (bytes) is stored in register P2.
949 case OP_String
: { /* out2-prerelease */
950 assert( pOp
->p4
.z
!=0 );
951 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
954 pOut
->enc
= encoding
;
955 UPDATE_MAX_BLOBSIZE(pOut
);
959 /* Opcode: Null * P2 P3 * *
961 ** Write a NULL into registers P2. If P3 greater than P2, then also write
962 ** NULL into register P3 and ever register in between P2 and P3. If P3
963 ** is less than P2 (typically P3 is zero) then only register P2 is
966 case OP_Null
: { /* out2-prerelease */
968 cnt
= pOp
->p3
-pOp
->p2
;
969 assert( pOp
->p3
<=p
->nMem
);
970 pOut
->flags
= MEM_Null
;
973 memAboutToChange(p
, pOut
);
974 VdbeMemRelease(pOut
);
975 pOut
->flags
= MEM_Null
;
982 /* Opcode: Blob P1 P2 * P4
984 ** P4 points to a blob of data P1 bytes long. Store this
985 ** blob in register P2.
987 case OP_Blob
: { /* out2-prerelease */
988 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
989 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
990 pOut
->enc
= encoding
;
991 UPDATE_MAX_BLOBSIZE(pOut
);
995 /* Opcode: Variable P1 P2 * P4 *
997 ** Transfer the values of bound parameter P1 into register P2
999 ** If the parameter is named, then its name appears in P4 and P3==1.
1000 ** The P4 value is used by sqlite3_bind_parameter_name().
1002 case OP_Variable
: { /* out2-prerelease */
1003 Mem
*pVar
; /* Value being transferred */
1005 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1006 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==p
->azVar
[pOp
->p1
-1] );
1007 pVar
= &p
->aVar
[pOp
->p1
- 1];
1008 if( sqlite3VdbeMemTooBig(pVar
) ){
1011 sqlite3VdbeMemShallowCopy(pOut
, pVar
, MEM_Static
);
1012 UPDATE_MAX_BLOBSIZE(pOut
);
1016 /* Opcode: Move P1 P2 P3 * *
1018 ** Move the values in register P1..P1+P3-1 over into
1019 ** registers P2..P2+P3-1. Registers P1..P1+P1-1 are
1020 ** left holding a NULL. It is an error for register ranges
1021 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap.
1024 char *zMalloc
; /* Holding variable for allocated memory */
1025 int n
; /* Number of registers left to copy */
1026 int p1
; /* Register to copy from */
1027 int p2
; /* Register to copy to */
1032 assert( n
>0 && p1
>0 && p2
>0 );
1033 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1038 assert( pOut
<=&aMem
[p
->nMem
] );
1039 assert( pIn1
<=&aMem
[p
->nMem
] );
1040 assert( memIsValid(pIn1
) );
1041 memAboutToChange(p
, pOut
);
1042 zMalloc
= pOut
->zMalloc
;
1044 sqlite3VdbeMemMove(pOut
, pIn1
);
1046 if( pOut
->pScopyFrom
>=&aMem
[p1
] && pOut
->pScopyFrom
<&aMem
[p1
+pOp
->p3
] ){
1047 pOut
->pScopyFrom
+= p1
- pOp
->p2
;
1050 pIn1
->zMalloc
= zMalloc
;
1051 REGISTER_TRACE(p2
++, pOut
);
1058 /* Opcode: Copy P1 P2 * * *
1060 ** Make a copy of register P1 into register P2.
1062 ** This instruction makes a deep copy of the value. A duplicate
1063 ** is made of any string or blob constant. See also OP_SCopy.
1065 case OP_Copy
: { /* in1, out2 */
1066 pIn1
= &aMem
[pOp
->p1
];
1067 pOut
= &aMem
[pOp
->p2
];
1068 assert( pOut
!=pIn1
);
1069 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1070 Deephemeralize(pOut
);
1071 REGISTER_TRACE(pOp
->p2
, pOut
);
1075 /* Opcode: SCopy P1 P2 * * *
1077 ** Make a shallow copy of register P1 into register P2.
1079 ** This instruction makes a shallow copy of the value. If the value
1080 ** is a string or blob, then the copy is only a pointer to the
1081 ** original and hence if the original changes so will the copy.
1082 ** Worse, if the original is deallocated, the copy becomes invalid.
1083 ** Thus the program must guarantee that the original will not change
1084 ** during the lifetime of the copy. Use OP_Copy to make a complete
1087 case OP_SCopy
: { /* in1, out2 */
1088 pIn1
= &aMem
[pOp
->p1
];
1089 pOut
= &aMem
[pOp
->p2
];
1090 assert( pOut
!=pIn1
);
1091 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1093 if( pOut
->pScopyFrom
==0 ) pOut
->pScopyFrom
= pIn1
;
1095 REGISTER_TRACE(pOp
->p2
, pOut
);
1099 /* Opcode: ResultRow P1 P2 * * *
1101 ** The registers P1 through P1+P2-1 contain a single row of
1102 ** results. This opcode causes the sqlite3_step() call to terminate
1103 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1104 ** structure to provide access to the top P1 values as the result
1107 case OP_ResultRow
: {
1110 assert( p
->nResColumn
==pOp
->p2
);
1111 assert( pOp
->p1
>0 );
1112 assert( pOp
->p1
+pOp
->p2
<=p
->nMem
+1 );
1114 /* If this statement has violated immediate foreign key constraints, do
1115 ** not return the number of rows modified. And do not RELEASE the statement
1116 ** transaction. It needs to be rolled back. */
1117 if( SQLITE_OK
!=(rc
= sqlite3VdbeCheckFk(p
, 0)) ){
1118 assert( db
->flags
&SQLITE_CountRows
);
1119 assert( p
->usesStmtJournal
);
1123 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1124 ** DML statements invoke this opcode to return the number of rows
1125 ** modified to the user. This is the only way that a VM that
1126 ** opens a statement transaction may invoke this opcode.
1128 ** In case this is such a statement, close any statement transaction
1129 ** opened by this VM before returning control to the user. This is to
1130 ** ensure that statement-transactions are always nested, not overlapping.
1131 ** If the open statement-transaction is not closed here, then the user
1132 ** may step another VM that opens its own statement transaction. This
1133 ** may lead to overlapping statement transactions.
1135 ** The statement transaction is never a top-level transaction. Hence
1136 ** the RELEASE call below can never fail.
1138 assert( p
->iStatement
==0 || db
->flags
&SQLITE_CountRows
);
1139 rc
= sqlite3VdbeCloseStatement(p
, SAVEPOINT_RELEASE
);
1140 if( NEVER(rc
!=SQLITE_OK
) ){
1144 /* Invalidate all ephemeral cursor row caches */
1145 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1147 /* Make sure the results of the current row are \000 terminated
1148 ** and have an assigned type. The results are de-ephemeralized as
1151 pMem
= p
->pResultSet
= &aMem
[pOp
->p1
];
1152 for(i
=0; i
<pOp
->p2
; i
++){
1153 assert( memIsValid(&pMem
[i
]) );
1154 Deephemeralize(&pMem
[i
]);
1155 assert( (pMem
[i
].flags
& MEM_Ephem
)==0
1156 || (pMem
[i
].flags
& (MEM_Str
|MEM_Blob
))==0 );
1157 sqlite3VdbeMemNulTerminate(&pMem
[i
]);
1158 sqlite3VdbeMemStoreType(&pMem
[i
]);
1159 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1161 if( db
->mallocFailed
) goto no_mem
;
1163 /* Return SQLITE_ROW
1170 /* Opcode: Concat P1 P2 P3 * *
1172 ** Add the text in register P1 onto the end of the text in
1173 ** register P2 and store the result in register P3.
1174 ** If either the P1 or P2 text are NULL then store NULL in P3.
1178 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1179 ** if P3 is the same register as P2, the implementation is able
1180 ** to avoid a memcpy().
1182 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1185 pIn1
= &aMem
[pOp
->p1
];
1186 pIn2
= &aMem
[pOp
->p2
];
1187 pOut
= &aMem
[pOp
->p3
];
1188 assert( pIn1
!=pOut
);
1189 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1190 sqlite3VdbeMemSetNull(pOut
);
1193 if( ExpandBlob(pIn1
) || ExpandBlob(pIn2
) ) goto no_mem
;
1194 Stringify(pIn1
, encoding
);
1195 Stringify(pIn2
, encoding
);
1196 nByte
= pIn1
->n
+ pIn2
->n
;
1197 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1200 MemSetTypeFlag(pOut
, MEM_Str
);
1201 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1205 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1207 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1209 pOut
->z
[nByte
+1] = 0;
1210 pOut
->flags
|= MEM_Term
;
1211 pOut
->n
= (int)nByte
;
1212 pOut
->enc
= encoding
;
1213 UPDATE_MAX_BLOBSIZE(pOut
);
1217 /* Opcode: Add P1 P2 P3 * *
1219 ** Add the value in register P1 to the value in register P2
1220 ** and store the result in register P3.
1221 ** If either input is NULL, the result is NULL.
1223 /* Opcode: Multiply P1 P2 P3 * *
1226 ** Multiply the value in register P1 by the value in register P2
1227 ** and store the result in register P3.
1228 ** If either input is NULL, the result is NULL.
1230 /* Opcode: Subtract P1 P2 P3 * *
1232 ** Subtract the value in register P1 from the value in register P2
1233 ** and store the result in register P3.
1234 ** If either input is NULL, the result is NULL.
1236 /* Opcode: Divide P1 P2 P3 * *
1238 ** Divide the value in register P1 by the value in register P2
1239 ** and store the result in register P3 (P3=P2/P1). If the value in
1240 ** register P1 is zero, then the result is NULL. If either input is
1241 ** NULL, the result is NULL.
1243 /* Opcode: Remainder P1 P2 P3 * *
1245 ** Compute the remainder after integer division of the value in
1246 ** register P1 by the value in register P2 and store the result in P3.
1247 ** If the value in register P2 is zero the result is NULL.
1248 ** If either operand is NULL, the result is NULL.
1250 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1251 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1252 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1253 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1254 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1255 int flags
; /* Combined MEM_* flags from both inputs */
1256 i64 iA
; /* Integer value of left operand */
1257 i64 iB
; /* Integer value of right operand */
1258 double rA
; /* Real value of left operand */
1259 double rB
; /* Real value of right operand */
1261 pIn1
= &aMem
[pOp
->p1
];
1262 applyNumericAffinity(pIn1
);
1263 pIn2
= &aMem
[pOp
->p2
];
1264 applyNumericAffinity(pIn2
);
1265 pOut
= &aMem
[pOp
->p3
];
1266 flags
= pIn1
->flags
| pIn2
->flags
;
1267 if( (flags
& MEM_Null
)!=0 ) goto arithmetic_result_is_null
;
1268 if( (pIn1
->flags
& pIn2
->flags
& MEM_Int
)==MEM_Int
){
1271 switch( pOp
->opcode
){
1272 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1273 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1274 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1276 if( iA
==0 ) goto arithmetic_result_is_null
;
1277 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1282 if( iA
==0 ) goto arithmetic_result_is_null
;
1283 if( iA
==-1 ) iA
= 1;
1289 MemSetTypeFlag(pOut
, MEM_Int
);
1292 rA
= sqlite3VdbeRealValue(pIn1
);
1293 rB
= sqlite3VdbeRealValue(pIn2
);
1294 switch( pOp
->opcode
){
1295 case OP_Add
: rB
+= rA
; break;
1296 case OP_Subtract
: rB
-= rA
; break;
1297 case OP_Multiply
: rB
*= rA
; break;
1299 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1300 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1307 if( iA
==0 ) goto arithmetic_result_is_null
;
1308 if( iA
==-1 ) iA
= 1;
1309 rB
= (double)(iB
% iA
);
1313 #ifdef SQLITE_OMIT_FLOATING_POINT
1315 MemSetTypeFlag(pOut
, MEM_Int
);
1317 if( sqlite3IsNaN(rB
) ){
1318 goto arithmetic_result_is_null
;
1321 MemSetTypeFlag(pOut
, MEM_Real
);
1322 if( (flags
& MEM_Real
)==0 ){
1323 sqlite3VdbeIntegerAffinity(pOut
);
1329 arithmetic_result_is_null
:
1330 sqlite3VdbeMemSetNull(pOut
);
1334 /* Opcode: CollSeq P1 * * P4
1336 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1337 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1338 ** be returned. This is used by the built-in min(), max() and nullif()
1341 ** If P1 is not zero, then it is a register that a subsequent min() or
1342 ** max() aggregate will set to 1 if the current row is not the minimum or
1343 ** maximum. The P1 register is initialized to 0 by this instruction.
1345 ** The interface used by the implementation of the aforementioned functions
1346 ** to retrieve the collation sequence set by this opcode is not available
1347 ** publicly, only to user functions defined in func.c.
1350 assert( pOp
->p4type
==P4_COLLSEQ
);
1352 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1357 /* Opcode: Function P1 P2 P3 P4 P5
1359 ** Invoke a user function (P4 is a pointer to a Function structure that
1360 ** defines the function) with P5 arguments taken from register P2 and
1361 ** successors. The result of the function is stored in register P3.
1362 ** Register P3 must not be one of the function inputs.
1364 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1365 ** function was determined to be constant at compile time. If the first
1366 ** argument was constant then bit 0 of P1 is set. This is used to determine
1367 ** whether meta data associated with a user function argument using the
1368 ** sqlite3_set_auxdata() API may be safely retained until the next
1369 ** invocation of this opcode.
1371 ** See also: AggStep and AggFinal
1376 sqlite3_context ctx
;
1377 sqlite3_value
**apVal
;
1382 assert( apVal
|| n
==0 );
1383 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
1384 pOut
= &aMem
[pOp
->p3
];
1385 memAboutToChange(p
, pOut
);
1387 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=p
->nMem
+1) );
1388 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
1389 pArg
= &aMem
[pOp
->p2
];
1390 for(i
=0; i
<n
; i
++, pArg
++){
1391 assert( memIsValid(pArg
) );
1393 Deephemeralize(pArg
);
1394 sqlite3VdbeMemStoreType(pArg
);
1395 REGISTER_TRACE(pOp
->p2
+i
, pArg
);
1398 assert( pOp
->p4type
==P4_FUNCDEF
|| pOp
->p4type
==P4_VDBEFUNC
);
1399 if( pOp
->p4type
==P4_FUNCDEF
){
1400 ctx
.pFunc
= pOp
->p4
.pFunc
;
1403 ctx
.pVdbeFunc
= (VdbeFunc
*)pOp
->p4
.pVdbeFunc
;
1404 ctx
.pFunc
= ctx
.pVdbeFunc
->pFunc
;
1407 ctx
.s
.flags
= MEM_Null
;
1412 /* The output cell may already have a buffer allocated. Move
1413 ** the pointer to ctx.s so in case the user-function can use
1414 ** the already allocated buffer instead of allocating a new one.
1416 sqlite3VdbeMemMove(&ctx
.s
, pOut
);
1417 MemSetTypeFlag(&ctx
.s
, MEM_Null
);
1420 if( ctx
.pFunc
->flags
& SQLITE_FUNC_NEEDCOLL
){
1422 assert( pOp
[-1].p4type
==P4_COLLSEQ
);
1423 assert( pOp
[-1].opcode
==OP_CollSeq
);
1424 ctx
.pColl
= pOp
[-1].p4
.pColl
;
1426 db
->lastRowid
= lastRowid
;
1427 (*ctx
.pFunc
->xFunc
)(&ctx
, n
, apVal
); /* IMP: R-24505-23230 */
1428 lastRowid
= db
->lastRowid
;
1430 /* If any auxiliary data functions have been called by this user function,
1431 ** immediately call the destructor for any non-static values.
1433 if( ctx
.pVdbeFunc
){
1434 sqlite3VdbeDeleteAuxData(ctx
.pVdbeFunc
, pOp
->p1
);
1435 pOp
->p4
.pVdbeFunc
= ctx
.pVdbeFunc
;
1436 pOp
->p4type
= P4_VDBEFUNC
;
1439 if( db
->mallocFailed
){
1440 /* Even though a malloc() has failed, the implementation of the
1441 ** user function may have called an sqlite3_result_XXX() function
1442 ** to return a value. The following call releases any resources
1443 ** associated with such a value.
1445 sqlite3VdbeMemRelease(&ctx
.s
);
1449 /* If the function returned an error, throw an exception */
1451 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(&ctx
.s
));
1455 /* Copy the result of the function into register P3 */
1456 sqlite3VdbeChangeEncoding(&ctx
.s
, encoding
);
1457 sqlite3VdbeMemMove(pOut
, &ctx
.s
);
1458 if( sqlite3VdbeMemTooBig(pOut
) ){
1463 /* The app-defined function has done something that as caused this
1464 ** statement to expire. (Perhaps the function called sqlite3_exec()
1465 ** with a CREATE TABLE statement.)
1467 if( p
->expired
) rc
= SQLITE_ABORT
;
1470 REGISTER_TRACE(pOp
->p3
, pOut
);
1471 UPDATE_MAX_BLOBSIZE(pOut
);
1475 /* Opcode: BitAnd P1 P2 P3 * *
1477 ** Take the bit-wise AND of the values in register P1 and P2 and
1478 ** store the result in register P3.
1479 ** If either input is NULL, the result is NULL.
1481 /* Opcode: BitOr P1 P2 P3 * *
1483 ** Take the bit-wise OR of the values in register P1 and P2 and
1484 ** store the result in register P3.
1485 ** If either input is NULL, the result is NULL.
1487 /* Opcode: ShiftLeft P1 P2 P3 * *
1489 ** Shift the integer value in register P2 to the left by the
1490 ** number of bits specified by the integer in register P1.
1491 ** Store the result in register P3.
1492 ** If either input is NULL, the result is NULL.
1494 /* Opcode: ShiftRight P1 P2 P3 * *
1496 ** Shift the integer value in register P2 to the right by the
1497 ** number of bits specified by the integer in register P1.
1498 ** Store the result in register P3.
1499 ** If either input is NULL, the result is NULL.
1501 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1502 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1503 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1504 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1510 pIn1
= &aMem
[pOp
->p1
];
1511 pIn2
= &aMem
[pOp
->p2
];
1512 pOut
= &aMem
[pOp
->p3
];
1513 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1514 sqlite3VdbeMemSetNull(pOut
);
1517 iA
= sqlite3VdbeIntValue(pIn2
);
1518 iB
= sqlite3VdbeIntValue(pIn1
);
1520 if( op
==OP_BitAnd
){
1522 }else if( op
==OP_BitOr
){
1525 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1527 /* If shifting by a negative amount, shift in the other direction */
1529 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
1530 op
= 2*OP_ShiftLeft
+ 1 - op
;
1531 iB
= iB
>(-64) ? -iB
: 64;
1535 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
1537 memcpy(&uA
, &iA
, sizeof(uA
));
1538 if( op
==OP_ShiftLeft
){
1542 /* Sign-extend on a right shift of a negative number */
1543 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
1545 memcpy(&iA
, &uA
, sizeof(iA
));
1549 MemSetTypeFlag(pOut
, MEM_Int
);
1553 /* Opcode: AddImm P1 P2 * * *
1555 ** Add the constant P2 to the value in register P1.
1556 ** The result is always an integer.
1558 ** To force any register to be an integer, just add 0.
1560 case OP_AddImm
: { /* in1 */
1561 pIn1
= &aMem
[pOp
->p1
];
1562 memAboutToChange(p
, pIn1
);
1563 sqlite3VdbeMemIntegerify(pIn1
);
1564 pIn1
->u
.i
+= pOp
->p2
;
1568 /* Opcode: MustBeInt P1 P2 * * *
1570 ** Force the value in register P1 to be an integer. If the value
1571 ** in P1 is not an integer and cannot be converted into an integer
1572 ** without data loss, then jump immediately to P2, or if P2==0
1573 ** raise an SQLITE_MISMATCH exception.
1575 case OP_MustBeInt
: { /* jump, in1 */
1576 pIn1
= &aMem
[pOp
->p1
];
1577 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
1578 if( (pIn1
->flags
& MEM_Int
)==0 ){
1580 rc
= SQLITE_MISMATCH
;
1581 goto abort_due_to_error
;
1586 MemSetTypeFlag(pIn1
, MEM_Int
);
1591 #ifndef SQLITE_OMIT_FLOATING_POINT
1592 /* Opcode: RealAffinity P1 * * * *
1594 ** If register P1 holds an integer convert it to a real value.
1596 ** This opcode is used when extracting information from a column that
1597 ** has REAL affinity. Such column values may still be stored as
1598 ** integers, for space efficiency, but after extraction we want them
1599 ** to have only a real value.
1601 case OP_RealAffinity
: { /* in1 */
1602 pIn1
= &aMem
[pOp
->p1
];
1603 if( pIn1
->flags
& MEM_Int
){
1604 sqlite3VdbeMemRealify(pIn1
);
1610 #ifndef SQLITE_OMIT_CAST
1611 /* Opcode: ToText P1 * * * *
1613 ** Force the value in register P1 to be text.
1614 ** If the value is numeric, convert it to a string using the
1615 ** equivalent of printf(). Blob values are unchanged and
1616 ** are afterwards simply interpreted as text.
1618 ** A NULL value is not changed by this routine. It remains NULL.
1620 case OP_ToText
: { /* same as TK_TO_TEXT, in1 */
1621 pIn1
= &aMem
[pOp
->p1
];
1622 memAboutToChange(p
, pIn1
);
1623 if( pIn1
->flags
& MEM_Null
) break;
1624 assert( MEM_Str
==(MEM_Blob
>>3) );
1625 pIn1
->flags
|= (pIn1
->flags
&MEM_Blob
)>>3;
1626 applyAffinity(pIn1
, SQLITE_AFF_TEXT
, encoding
);
1627 rc
= ExpandBlob(pIn1
);
1628 assert( pIn1
->flags
& MEM_Str
|| db
->mallocFailed
);
1629 pIn1
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_Blob
|MEM_Zero
);
1630 UPDATE_MAX_BLOBSIZE(pIn1
);
1634 /* Opcode: ToBlob P1 * * * *
1636 ** Force the value in register P1 to be a BLOB.
1637 ** If the value is numeric, convert it to a string first.
1638 ** Strings are simply reinterpreted as blobs with no change
1639 ** to the underlying data.
1641 ** A NULL value is not changed by this routine. It remains NULL.
1643 case OP_ToBlob
: { /* same as TK_TO_BLOB, in1 */
1644 pIn1
= &aMem
[pOp
->p1
];
1645 if( pIn1
->flags
& MEM_Null
) break;
1646 if( (pIn1
->flags
& MEM_Blob
)==0 ){
1647 applyAffinity(pIn1
, SQLITE_AFF_TEXT
, encoding
);
1648 assert( pIn1
->flags
& MEM_Str
|| db
->mallocFailed
);
1649 MemSetTypeFlag(pIn1
, MEM_Blob
);
1651 pIn1
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
1653 UPDATE_MAX_BLOBSIZE(pIn1
);
1657 /* Opcode: ToNumeric P1 * * * *
1659 ** Force the value in register P1 to be numeric (either an
1660 ** integer or a floating-point number.)
1661 ** If the value is text or blob, try to convert it to an using the
1662 ** equivalent of atoi() or atof() and store 0 if no such conversion
1665 ** A NULL value is not changed by this routine. It remains NULL.
1667 case OP_ToNumeric
: { /* same as TK_TO_NUMERIC, in1 */
1668 pIn1
= &aMem
[pOp
->p1
];
1669 sqlite3VdbeMemNumerify(pIn1
);
1672 #endif /* SQLITE_OMIT_CAST */
1674 /* Opcode: ToInt P1 * * * *
1676 ** Force the value in register P1 to be an integer. If
1677 ** The value is currently a real number, drop its fractional part.
1678 ** If the value is text or blob, try to convert it to an integer using the
1679 ** equivalent of atoi() and store 0 if no such conversion is possible.
1681 ** A NULL value is not changed by this routine. It remains NULL.
1683 case OP_ToInt
: { /* same as TK_TO_INT, in1 */
1684 pIn1
= &aMem
[pOp
->p1
];
1685 if( (pIn1
->flags
& MEM_Null
)==0 ){
1686 sqlite3VdbeMemIntegerify(pIn1
);
1691 #if !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT)
1692 /* Opcode: ToReal P1 * * * *
1694 ** Force the value in register P1 to be a floating point number.
1695 ** If The value is currently an integer, convert it.
1696 ** If the value is text or blob, try to convert it to an integer using the
1697 ** equivalent of atoi() and store 0.0 if no such conversion is possible.
1699 ** A NULL value is not changed by this routine. It remains NULL.
1701 case OP_ToReal
: { /* same as TK_TO_REAL, in1 */
1702 pIn1
= &aMem
[pOp
->p1
];
1703 memAboutToChange(p
, pIn1
);
1704 if( (pIn1
->flags
& MEM_Null
)==0 ){
1705 sqlite3VdbeMemRealify(pIn1
);
1709 #endif /* !defined(SQLITE_OMIT_CAST) && !defined(SQLITE_OMIT_FLOATING_POINT) */
1711 /* Opcode: Lt P1 P2 P3 P4 P5
1713 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1714 ** jump to address P2.
1716 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1717 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1718 ** bit is clear then fall through if either operand is NULL.
1720 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1721 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1722 ** to coerce both inputs according to this affinity before the
1723 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1724 ** affinity is used. Note that the affinity conversions are stored
1725 ** back into the input registers P1 and P3. So this opcode can cause
1726 ** persistent changes to registers P1 and P3.
1728 ** Once any conversions have taken place, and neither value is NULL,
1729 ** the values are compared. If both values are blobs then memcmp() is
1730 ** used to determine the results of the comparison. If both values
1731 ** are text, then the appropriate collating function specified in
1732 ** P4 is used to do the comparison. If P4 is not specified then
1733 ** memcmp() is used to compare text string. If both values are
1734 ** numeric, then a numeric comparison is used. If the two values
1735 ** are of different types, then numbers are considered less than
1736 ** strings and strings are considered less than blobs.
1738 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1739 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1741 /* Opcode: Ne P1 P2 P3 P4 P5
1743 ** This works just like the Lt opcode except that the jump is taken if
1744 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1745 ** additional information.
1747 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1748 ** true or false and is never NULL. If both operands are NULL then the result
1749 ** of comparison is false. If either operand is NULL then the result is true.
1750 ** If neither operand is NULL the result is the same as it would be if
1751 ** the SQLITE_NULLEQ flag were omitted from P5.
1753 /* Opcode: Eq P1 P2 P3 P4 P5
1755 ** This works just like the Lt opcode except that the jump is taken if
1756 ** the operands in registers P1 and P3 are equal.
1757 ** See the Lt opcode for additional information.
1759 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1760 ** true or false and is never NULL. If both operands are NULL then the result
1761 ** of comparison is true. If either operand is NULL then the result is false.
1762 ** If neither operand is NULL the result is the same as it would be if
1763 ** the SQLITE_NULLEQ flag were omitted from P5.
1765 /* Opcode: Le P1 P2 P3 P4 P5
1767 ** This works just like the Lt opcode except that the jump is taken if
1768 ** the content of register P3 is less than or equal to the content of
1769 ** register P1. See the Lt opcode for additional information.
1771 /* Opcode: Gt P1 P2 P3 P4 P5
1773 ** This works just like the Lt opcode except that the jump is taken if
1774 ** the content of register P3 is greater than the content of
1775 ** register P1. See the Lt opcode for additional information.
1777 /* Opcode: Ge P1 P2 P3 P4 P5
1779 ** This works just like the Lt opcode except that the jump is taken if
1780 ** the content of register P3 is greater than or equal to the content of
1781 ** register P1. See the Lt opcode for additional information.
1783 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
1784 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
1785 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
1786 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
1787 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
1788 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
1789 int res
; /* Result of the comparison of pIn1 against pIn3 */
1790 char affinity
; /* Affinity to use for comparison */
1791 u16 flags1
; /* Copy of initial value of pIn1->flags */
1792 u16 flags3
; /* Copy of initial value of pIn3->flags */
1794 pIn1
= &aMem
[pOp
->p1
];
1795 pIn3
= &aMem
[pOp
->p3
];
1796 flags1
= pIn1
->flags
;
1797 flags3
= pIn3
->flags
;
1798 if( (flags1
| flags3
)&MEM_Null
){
1799 /* One or both operands are NULL */
1800 if( pOp
->p5
& SQLITE_NULLEQ
){
1801 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1802 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1803 ** or not both operands are null.
1805 assert( pOp
->opcode
==OP_Eq
|| pOp
->opcode
==OP_Ne
);
1806 res
= (flags1
& flags3
& MEM_Null
)==0;
1808 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1809 ** then the result is always NULL.
1810 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1812 if( pOp
->p5
& SQLITE_STOREP2
){
1813 pOut
= &aMem
[pOp
->p2
];
1814 MemSetTypeFlag(pOut
, MEM_Null
);
1815 REGISTER_TRACE(pOp
->p2
, pOut
);
1816 }else if( pOp
->p5
& SQLITE_JUMPIFNULL
){
1822 /* Neither operand is NULL. Do a comparison. */
1823 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
1825 applyAffinity(pIn1
, affinity
, encoding
);
1826 applyAffinity(pIn3
, affinity
, encoding
);
1827 if( db
->mallocFailed
) goto no_mem
;
1830 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
1833 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
1835 switch( pOp
->opcode
){
1836 case OP_Eq
: res
= res
==0; break;
1837 case OP_Ne
: res
= res
!=0; break;
1838 case OP_Lt
: res
= res
<0; break;
1839 case OP_Le
: res
= res
<=0; break;
1840 case OP_Gt
: res
= res
>0; break;
1841 default: res
= res
>=0; break;
1844 if( pOp
->p5
& SQLITE_STOREP2
){
1845 pOut
= &aMem
[pOp
->p2
];
1846 memAboutToChange(p
, pOut
);
1847 MemSetTypeFlag(pOut
, MEM_Int
);
1849 REGISTER_TRACE(pOp
->p2
, pOut
);
1854 /* Undo any changes made by applyAffinity() to the input registers. */
1855 pIn1
->flags
= (pIn1
->flags
&~MEM_TypeMask
) | (flags1
&MEM_TypeMask
);
1856 pIn3
->flags
= (pIn3
->flags
&~MEM_TypeMask
) | (flags3
&MEM_TypeMask
);
1860 /* Opcode: Permutation * * * P4 *
1862 ** Set the permutation used by the OP_Compare operator to be the array
1863 ** of integers in P4.
1865 ** The permutation is only valid until the next OP_Permutation, OP_Compare,
1866 ** OP_Halt, or OP_ResultRow. Typically the OP_Permutation should occur
1867 ** immediately prior to the OP_Compare.
1869 case OP_Permutation
: {
1870 assert( pOp
->p4type
==P4_INTARRAY
);
1871 assert( pOp
->p4
.ai
);
1872 aPermute
= pOp
->p4
.ai
;
1876 /* Opcode: Compare P1 P2 P3 P4 *
1878 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
1879 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
1880 ** the comparison for use by the next OP_Jump instruct.
1882 ** P4 is a KeyInfo structure that defines collating sequences and sort
1883 ** orders for the comparison. The permutation applies to registers
1884 ** only. The KeyInfo elements are used sequentially.
1886 ** The comparison is a sort comparison, so NULLs compare equal,
1887 ** NULLs are less than numbers, numbers are less than strings,
1888 ** and strings are less than blobs.
1895 const KeyInfo
*pKeyInfo
;
1897 CollSeq
*pColl
; /* Collating sequence to use on this term */
1898 int bRev
; /* True for DESCENDING sort order */
1901 pKeyInfo
= pOp
->p4
.pKeyInfo
;
1903 assert( pKeyInfo
!=0 );
1909 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>mx
) mx
= aPermute
[k
];
1910 assert( p1
>0 && p1
+mx
<=p
->nMem
+1 );
1911 assert( p2
>0 && p2
+mx
<=p
->nMem
+1 );
1913 assert( p1
>0 && p1
+n
<=p
->nMem
+1 );
1914 assert( p2
>0 && p2
+n
<=p
->nMem
+1 );
1916 #endif /* SQLITE_DEBUG */
1918 idx
= aPermute
? aPermute
[i
] : i
;
1919 assert( memIsValid(&aMem
[p1
+idx
]) );
1920 assert( memIsValid(&aMem
[p2
+idx
]) );
1921 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
1922 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
1923 assert( i
<pKeyInfo
->nField
);
1924 pColl
= pKeyInfo
->aColl
[i
];
1925 bRev
= pKeyInfo
->aSortOrder
[i
];
1926 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
1928 if( bRev
) iCompare
= -iCompare
;
1936 /* Opcode: Jump P1 P2 P3 * *
1938 ** Jump to the instruction at address P1, P2, or P3 depending on whether
1939 ** in the most recent OP_Compare instruction the P1 vector was less than
1940 ** equal to, or greater than the P2 vector, respectively.
1942 case OP_Jump
: { /* jump */
1945 }else if( iCompare
==0 ){
1953 /* Opcode: And P1 P2 P3 * *
1955 ** Take the logical AND of the values in registers P1 and P2 and
1956 ** write the result into register P3.
1958 ** If either P1 or P2 is 0 (false) then the result is 0 even if
1959 ** the other input is NULL. A NULL and true or two NULLs give
1962 /* Opcode: Or P1 P2 P3 * *
1964 ** Take the logical OR of the values in register P1 and P2 and
1965 ** store the answer in register P3.
1967 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
1968 ** even if the other input is NULL. A NULL and false or two NULLs
1969 ** give a NULL output.
1971 case OP_And
: /* same as TK_AND, in1, in2, out3 */
1972 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
1973 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1974 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
1976 pIn1
= &aMem
[pOp
->p1
];
1977 if( pIn1
->flags
& MEM_Null
){
1980 v1
= sqlite3VdbeIntValue(pIn1
)!=0;
1982 pIn2
= &aMem
[pOp
->p2
];
1983 if( pIn2
->flags
& MEM_Null
){
1986 v2
= sqlite3VdbeIntValue(pIn2
)!=0;
1988 if( pOp
->opcode
==OP_And
){
1989 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
1990 v1
= and_logic
[v1
*3+v2
];
1992 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
1993 v1
= or_logic
[v1
*3+v2
];
1995 pOut
= &aMem
[pOp
->p3
];
1997 MemSetTypeFlag(pOut
, MEM_Null
);
2000 MemSetTypeFlag(pOut
, MEM_Int
);
2005 /* Opcode: Not P1 P2 * * *
2007 ** Interpret the value in register P1 as a boolean value. Store the
2008 ** boolean complement in register P2. If the value in register P1 is
2009 ** NULL, then a NULL is stored in P2.
2011 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2012 pIn1
= &aMem
[pOp
->p1
];
2013 pOut
= &aMem
[pOp
->p2
];
2014 if( pIn1
->flags
& MEM_Null
){
2015 sqlite3VdbeMemSetNull(pOut
);
2017 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeIntValue(pIn1
));
2022 /* Opcode: BitNot P1 P2 * * *
2024 ** Interpret the content of register P1 as an integer. Store the
2025 ** ones-complement of the P1 value into register P2. If P1 holds
2026 ** a NULL then store a NULL in P2.
2028 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2029 pIn1
= &aMem
[pOp
->p1
];
2030 pOut
= &aMem
[pOp
->p2
];
2031 if( pIn1
->flags
& MEM_Null
){
2032 sqlite3VdbeMemSetNull(pOut
);
2034 sqlite3VdbeMemSetInt64(pOut
, ~sqlite3VdbeIntValue(pIn1
));
2039 /* Opcode: Once P1 P2 * * *
2041 ** Check if OP_Once flag P1 is set. If so, jump to instruction P2. Otherwise,
2042 ** set the flag and fall through to the next instruction.
2044 ** See also: JumpOnce
2046 case OP_Once
: { /* jump */
2047 assert( pOp
->p1
<p
->nOnceFlag
);
2048 if( p
->aOnceFlag
[pOp
->p1
] ){
2051 p
->aOnceFlag
[pOp
->p1
] = 1;
2056 /* Opcode: If P1 P2 P3 * *
2058 ** Jump to P2 if the value in register P1 is true. The value
2059 ** is considered true if it is numeric and non-zero. If the value
2060 ** in P1 is NULL then take the jump if P3 is non-zero.
2062 /* Opcode: IfNot P1 P2 P3 * *
2064 ** Jump to P2 if the value in register P1 is False. The value
2065 ** is considered false if it has a numeric value of zero. If the value
2066 ** in P1 is NULL then take the jump if P3 is zero.
2068 case OP_If
: /* jump, in1 */
2069 case OP_IfNot
: { /* jump, in1 */
2071 pIn1
= &aMem
[pOp
->p1
];
2072 if( pIn1
->flags
& MEM_Null
){
2075 #ifdef SQLITE_OMIT_FLOATING_POINT
2076 c
= sqlite3VdbeIntValue(pIn1
)!=0;
2078 c
= sqlite3VdbeRealValue(pIn1
)!=0.0;
2080 if( pOp
->opcode
==OP_IfNot
) c
= !c
;
2088 /* Opcode: IsNull P1 P2 * * *
2090 ** Jump to P2 if the value in register P1 is NULL.
2092 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2093 pIn1
= &aMem
[pOp
->p1
];
2094 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2100 /* Opcode: NotNull P1 P2 * * *
2102 ** Jump to P2 if the value in register P1 is not NULL.
2104 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2105 pIn1
= &aMem
[pOp
->p1
];
2106 if( (pIn1
->flags
& MEM_Null
)==0 ){
2112 /* Opcode: Column P1 P2 P3 P4 P5
2114 ** Interpret the data that cursor P1 points to as a structure built using
2115 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2116 ** information about the format of the data.) Extract the P2-th column
2117 ** from this record. If there are less that (P2+1)
2118 ** values in the record, extract a NULL.
2120 ** The value extracted is stored in register P3.
2122 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2123 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2126 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2127 ** then the cache of the cursor is reset prior to extracting the column.
2128 ** The first OP_Column against a pseudo-table after the value of the content
2129 ** register has changed should have this bit set.
2131 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2132 ** the result is guaranteed to only be used as the argument of a length()
2133 ** or typeof() function, respectively. The loading of large blobs can be
2134 ** skipped for length() and all content loading can be skipped for typeof().
2137 u32 payloadSize
; /* Number of bytes in the record */
2138 i64 payloadSize64
; /* Number of bytes in the record */
2139 int p1
; /* P1 value of the opcode */
2140 int p2
; /* column number to retrieve */
2141 VdbeCursor
*pC
; /* The VDBE cursor */
2142 char *zRec
; /* Pointer to complete record-data */
2143 BtCursor
*pCrsr
; /* The BTree cursor */
2144 u32
*aType
; /* aType[i] holds the numeric type of the i-th column */
2145 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2146 int nField
; /* number of fields in the record */
2147 int len
; /* The length of the serialized data for the column */
2148 int i
; /* Loop counter */
2149 char *zData
; /* Part of the record being decoded */
2150 Mem
*pDest
; /* Where to write the extracted value */
2151 Mem sMem
; /* For storing the record being decoded */
2152 u8
*zIdx
; /* Index into header */
2153 u8
*zEndHdr
; /* Pointer to first byte after the header */
2154 u32 offset
; /* Offset into the data */
2155 u32 szField
; /* Number of bytes in the content of a field */
2156 int szHdr
; /* Size of the header size field at start of record */
2157 int avail
; /* Number of bytes of available data */
2158 u32 t
; /* A type code from the record header */
2159 Mem
*pReg
; /* PseudoTable input register */
2165 memset(&sMem
, 0, sizeof(sMem
));
2166 assert( p1
<p
->nCursor
);
2167 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
2168 pDest
= &aMem
[pOp
->p3
];
2169 memAboutToChange(p
, pDest
);
2172 /* This block sets the variable payloadSize to be the total number of
2173 ** bytes in the record.
2175 ** zRec is set to be the complete text of the record if it is available.
2176 ** The complete record text is always available for pseudo-tables
2177 ** If the record is stored in a cursor, the complete record text
2178 ** might be available in the pC->aRow cache. Or it might not be.
2179 ** If the data is unavailable, zRec is set to NULL.
2181 ** We also compute the number of columns in the record. For cursors,
2182 ** the number of columns is stored in the VdbeCursor.nField element.
2186 #ifndef SQLITE_OMIT_VIRTUALTABLE
2187 assert( pC
->pVtabCursor
==0 );
2189 pCrsr
= pC
->pCursor
;
2191 /* The record is stored in a B-Tree */
2192 rc
= sqlite3VdbeCursorMoveto(pC
);
2193 if( rc
) goto abort_due_to_error
;
2196 }else if( pC
->cacheStatus
==p
->cacheCtr
){
2197 payloadSize
= pC
->payloadSize
;
2198 zRec
= (char*)pC
->aRow
;
2199 }else if( pC
->isIndex
){
2200 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2201 VVA_ONLY(rc
=) sqlite3BtreeKeySize(pCrsr
, &payloadSize64
);
2202 assert( rc
==SQLITE_OK
); /* True because of CursorMoveto() call above */
2203 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2204 ** payload size, so it is impossible for payloadSize64 to be
2205 ** larger than 32 bits. */
2206 assert( (payloadSize64
& SQLITE_MAX_U32
)==(u64
)payloadSize64
);
2207 payloadSize
= (u32
)payloadSize64
;
2209 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2210 VVA_ONLY(rc
=) sqlite3BtreeDataSize(pCrsr
, &payloadSize
);
2211 assert( rc
==SQLITE_OK
); /* DataSize() cannot fail */
2213 }else if( ALWAYS(pC
->pseudoTableReg
>0) ){
2214 pReg
= &aMem
[pC
->pseudoTableReg
];
2215 assert( pReg
->flags
& MEM_Blob
);
2216 assert( memIsValid(pReg
) );
2217 payloadSize
= pReg
->n
;
2219 pC
->cacheStatus
= (pOp
->p5
&OPFLAG_CLEARCACHE
) ? CACHE_STALE
: p
->cacheCtr
;
2220 assert( payloadSize
==0 || zRec
!=0 );
2222 /* Consider the row to be NULL */
2226 /* If payloadSize is 0, then just store a NULL. This can happen because of
2227 ** nullRow or because of a corrupt database. */
2228 if( payloadSize
==0 ){
2229 MemSetTypeFlag(pDest
, MEM_Null
);
2232 assert( db
->aLimit
[SQLITE_LIMIT_LENGTH
]>=0 );
2233 if( payloadSize
> (u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2237 nField
= pC
->nField
;
2238 assert( p2
<nField
);
2240 /* Read and parse the table header. Store the results of the parse
2241 ** into the record header cache fields of the cursor.
2244 if( pC
->cacheStatus
==p
->cacheCtr
){
2245 aOffset
= pC
->aOffset
;
2249 pC
->aOffset
= aOffset
= &aType
[nField
];
2250 pC
->payloadSize
= payloadSize
;
2251 pC
->cacheStatus
= p
->cacheCtr
;
2253 /* Figure out how many bytes are in the header */
2258 zData
= (char*)sqlite3BtreeKeyFetch(pCrsr
, &avail
);
2260 zData
= (char*)sqlite3BtreeDataFetch(pCrsr
, &avail
);
2262 /* If KeyFetch()/DataFetch() managed to get the entire payload,
2263 ** save the payload in the pC->aRow cache. That will save us from
2264 ** having to make additional calls to fetch the content portion of
2268 if( payloadSize
<= (u32
)avail
){
2270 pC
->aRow
= (u8
*)zData
;
2275 /* The following assert is true in all cases except when
2276 ** the database file has been corrupted externally.
2277 ** assert( zRec!=0 || avail>=payloadSize || avail>=9 ); */
2278 szHdr
= getVarint32((u8
*)zData
, offset
);
2280 /* Make sure a corrupt database has not given us an oversize header.
2281 ** Do this now to avoid an oversize memory allocation.
2283 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2284 ** types use so much data space that there can only be 4096 and 32 of
2285 ** them, respectively. So the maximum header length results from a
2286 ** 3-byte type for each of the maximum of 32768 columns plus three
2287 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2289 if( offset
> 98307 ){
2290 rc
= SQLITE_CORRUPT_BKPT
;
2294 /* Compute in len the number of bytes of data we need to read in order
2295 ** to get nField type values. offset is an upper bound on this. But
2296 ** nField might be significantly less than the true number of columns
2297 ** in the table, and in that case, 5*nField+3 might be smaller than offset.
2298 ** We want to minimize len in order to limit the size of the memory
2299 ** allocation, especially if a corrupt database file has caused offset
2300 ** to be oversized. Offset is limited to 98307 above. But 98307 might
2301 ** still exceed Robson memory allocation limits on some configurations.
2302 ** On systems that cannot tolerate large memory allocations, nField*5+3
2303 ** will likely be much smaller since nField will likely be less than
2304 ** 20 or so. This insures that Robson memory allocation limits are
2305 ** not exceeded even for corrupt database files.
2308 if( len
> (int)offset
) len
= (int)offset
;
2310 /* The KeyFetch() or DataFetch() above are fast and will get the entire
2311 ** record header in most cases. But they will fail to get the complete
2312 ** record header if the record header does not fit on a single page
2313 ** in the B-Tree. When that happens, use sqlite3VdbeMemFromBtree() to
2314 ** acquire the complete header text.
2316 if( !zRec
&& avail
<len
){
2319 rc
= sqlite3VdbeMemFromBtree(pCrsr
, 0, len
, pC
->isIndex
, &sMem
);
2320 if( rc
!=SQLITE_OK
){
2325 zEndHdr
= (u8
*)&zData
[len
];
2326 zIdx
= (u8
*)&zData
[szHdr
];
2328 /* Scan the header and use it to fill in the aType[] and aOffset[]
2329 ** arrays. aType[i] will contain the type integer for the i-th
2330 ** column and aOffset[i] will contain the offset from the beginning
2331 ** of the record to the start of the data for the i-th column
2333 for(i
=0; i
<nField
; i
++){
2335 aOffset
[i
] = offset
;
2340 zIdx
+= sqlite3GetVarint32(zIdx
, &t
);
2343 szField
= sqlite3VdbeSerialTypeLen(t
);
2345 if( offset
<szField
){ /* True if offset overflows */
2346 zIdx
= &zEndHdr
[1]; /* Forces SQLITE_CORRUPT return below */
2350 /* If i is less that nField, then there are fewer fields in this
2351 ** record than SetNumColumns indicated there are columns in the
2352 ** table. Set the offset for any extra columns not present in
2353 ** the record to 0. This tells code below to store the default value
2354 ** for the column instead of deserializing a value from the record.
2359 sqlite3VdbeMemRelease(&sMem
);
2360 sMem
.flags
= MEM_Null
;
2362 /* If we have read more header data than was contained in the header,
2363 ** or if the end of the last field appears to be past the end of the
2364 ** record, or if the end of the last field appears to be before the end
2365 ** of the record (when all fields present), then we must be dealing
2366 ** with a corrupt database.
2368 if( (zIdx
> zEndHdr
) || (offset
> payloadSize
)
2369 || (zIdx
==zEndHdr
&& offset
!=payloadSize
) ){
2370 rc
= SQLITE_CORRUPT_BKPT
;
2375 /* Get the column information. If aOffset[p2] is non-zero, then
2376 ** deserialize the value from the record. If aOffset[p2] is zero,
2377 ** then there are not enough fields in the record to satisfy the
2378 ** request. In this case, set the value NULL or to P4 if P4 is
2379 ** a pointer to a Mem object.
2382 assert( rc
==SQLITE_OK
);
2384 /* This is the common case where the whole row fits on a single page */
2385 VdbeMemRelease(pDest
);
2386 sqlite3VdbeSerialGet((u8
*)&zRec
[aOffset
[p2
]], aType
[p2
], pDest
);
2388 /* This branch happens only when the row overflows onto multiple pages */
2390 if( (pOp
->p5
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
))!=0
2391 && ((t
>=12 && (t
&1)==0) || (pOp
->p5
& OPFLAG_TYPEOFARG
)!=0)
2393 /* Content is irrelevant for the typeof() function and for
2394 ** the length(X) function if X is a blob. So we might as well use
2395 ** bogus content rather than reading content from disk. NULL works
2396 ** for text and blob and whatever is in the payloadSize64 variable
2397 ** will work for everything else. */
2398 zData
= t
<12 ? (char*)&payloadSize64
: 0;
2400 len
= sqlite3VdbeSerialTypeLen(t
);
2401 sqlite3VdbeMemMove(&sMem
, pDest
);
2402 rc
= sqlite3VdbeMemFromBtree(pCrsr
, aOffset
[p2
], len
, pC
->isIndex
,
2404 if( rc
!=SQLITE_OK
){
2409 sqlite3VdbeSerialGet((u8
*)zData
, t
, pDest
);
2411 pDest
->enc
= encoding
;
2413 if( pOp
->p4type
==P4_MEM
){
2414 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
2416 MemSetTypeFlag(pDest
, MEM_Null
);
2420 /* If we dynamically allocated space to hold the data (in the
2421 ** sqlite3VdbeMemFromBtree() call above) then transfer control of that
2422 ** dynamically allocated space over to the pDest structure.
2423 ** This prevents a memory copy.
2426 assert( sMem
.z
==sMem
.zMalloc
);
2427 assert( !(pDest
->flags
& MEM_Dyn
) );
2428 assert( !(pDest
->flags
& (MEM_Blob
|MEM_Str
)) || pDest
->z
==sMem
.z
);
2429 pDest
->flags
&= ~(MEM_Ephem
|MEM_Static
);
2430 pDest
->flags
|= MEM_Term
;
2432 pDest
->zMalloc
= sMem
.zMalloc
;
2435 rc
= sqlite3VdbeMemMakeWriteable(pDest
);
2438 UPDATE_MAX_BLOBSIZE(pDest
);
2439 REGISTER_TRACE(pOp
->p3
, pDest
);
2443 /* Opcode: Affinity P1 P2 * P4 *
2445 ** Apply affinities to a range of P2 registers starting with P1.
2447 ** P4 is a string that is P2 characters long. The nth character of the
2448 ** string indicates the column affinity that should be used for the nth
2449 ** memory cell in the range.
2452 const char *zAffinity
; /* The affinity to be applied */
2453 char cAff
; /* A single character of affinity */
2455 zAffinity
= pOp
->p4
.z
;
2456 assert( zAffinity
!=0 );
2457 assert( zAffinity
[pOp
->p2
]==0 );
2458 pIn1
= &aMem
[pOp
->p1
];
2459 while( (cAff
= *(zAffinity
++))!=0 ){
2460 assert( pIn1
<= &p
->aMem
[p
->nMem
] );
2461 assert( memIsValid(pIn1
) );
2463 applyAffinity(pIn1
, cAff
, encoding
);
2469 /* Opcode: MakeRecord P1 P2 P3 P4 *
2471 ** Convert P2 registers beginning with P1 into the [record format]
2472 ** use as a data record in a database table or as a key
2473 ** in an index. The OP_Column opcode can decode the record later.
2475 ** P4 may be a string that is P2 characters long. The nth character of the
2476 ** string indicates the column affinity that should be used for the nth
2477 ** field of the index key.
2479 ** The mapping from character to affinity is given by the SQLITE_AFF_
2480 ** macros defined in sqliteInt.h.
2482 ** If P4 is NULL then all index fields have the affinity NONE.
2484 case OP_MakeRecord
: {
2485 u8
*zNewRecord
; /* A buffer to hold the data for the new record */
2486 Mem
*pRec
; /* The new record */
2487 u64 nData
; /* Number of bytes of data space */
2488 int nHdr
; /* Number of bytes of header space */
2489 i64 nByte
; /* Data space required for this record */
2490 int nZero
; /* Number of zero bytes at the end of the record */
2491 int nVarint
; /* Number of bytes in a varint */
2492 u32 serial_type
; /* Type field */
2493 Mem
*pData0
; /* First field to be combined into the record */
2494 Mem
*pLast
; /* Last field of the record */
2495 int nField
; /* Number of fields in the record */
2496 char *zAffinity
; /* The affinity string for the record */
2497 int file_format
; /* File format to use for encoding */
2498 int i
; /* Space used in zNewRecord[] */
2499 int len
; /* Length of a field */
2501 /* Assuming the record contains N fields, the record format looks
2504 ** ------------------------------------------------------------------------
2505 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2506 ** ------------------------------------------------------------------------
2508 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2511 ** Each type field is a varint representing the serial type of the
2512 ** corresponding data element (see sqlite3VdbeSerialType()). The
2513 ** hdr-size field is also a varint which is the offset from the beginning
2514 ** of the record to data0.
2516 nData
= 0; /* Number of bytes of data space */
2517 nHdr
= 0; /* Number of bytes of header space */
2518 nZero
= 0; /* Number of zero bytes at the end of the record */
2520 zAffinity
= pOp
->p4
.z
;
2521 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=p
->nMem
+1 );
2522 pData0
= &aMem
[nField
];
2524 pLast
= &pData0
[nField
-1];
2525 file_format
= p
->minWriteFileFormat
;
2527 /* Identify the output register */
2528 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
2529 pOut
= &aMem
[pOp
->p3
];
2530 memAboutToChange(p
, pOut
);
2532 /* Loop through the elements that will make up the record to figure
2533 ** out how much space is required for the new record.
2535 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){
2536 assert( memIsValid(pRec
) );
2538 applyAffinity(pRec
, zAffinity
[pRec
-pData0
], encoding
);
2540 if( pRec
->flags
&MEM_Zero
&& pRec
->n
>0 ){
2541 sqlite3VdbeMemExpandBlob(pRec
);
2543 serial_type
= sqlite3VdbeSerialType(pRec
, file_format
);
2544 len
= sqlite3VdbeSerialTypeLen(serial_type
);
2546 nHdr
+= sqlite3VarintLen(serial_type
);
2547 if( pRec
->flags
& MEM_Zero
){
2548 /* Only pure zero-filled BLOBs can be input to this Opcode.
2549 ** We do not allow blobs with a prefix and a zero-filled tail. */
2550 nZero
+= pRec
->u
.nZero
;
2556 /* Add the initial header varint and total the size */
2557 nHdr
+= nVarint
= sqlite3VarintLen(nHdr
);
2558 if( nVarint
<sqlite3VarintLen(nHdr
) ){
2561 nByte
= nHdr
+nData
-nZero
;
2562 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
2566 /* Make sure the output register has a buffer large enough to store
2567 ** the new record. The output register (pOp->p3) is not allowed to
2568 ** be one of the input registers (because the following call to
2569 ** sqlite3VdbeMemGrow() could clobber the value before it is used).
2571 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
, 0) ){
2574 zNewRecord
= (u8
*)pOut
->z
;
2576 /* Write the record */
2577 i
= putVarint32(zNewRecord
, nHdr
);
2578 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){
2579 serial_type
= sqlite3VdbeSerialType(pRec
, file_format
);
2580 i
+= putVarint32(&zNewRecord
[i
], serial_type
); /* serial type */
2582 for(pRec
=pData0
; pRec
<=pLast
; pRec
++){ /* serial data */
2583 i
+= sqlite3VdbeSerialPut(&zNewRecord
[i
], (int)(nByte
-i
), pRec
,file_format
);
2587 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
2588 pOut
->n
= (int)nByte
;
2589 pOut
->flags
= MEM_Blob
| MEM_Dyn
;
2592 pOut
->u
.nZero
= nZero
;
2593 pOut
->flags
|= MEM_Zero
;
2595 pOut
->enc
= SQLITE_UTF8
; /* In case the blob is ever converted to text */
2596 REGISTER_TRACE(pOp
->p3
, pOut
);
2597 UPDATE_MAX_BLOBSIZE(pOut
);
2601 /* Opcode: Count P1 P2 * * *
2603 ** Store the number of entries (an integer value) in the table or index
2604 ** opened by cursor P1 in register P2
2606 #ifndef SQLITE_OMIT_BTREECOUNT
2607 case OP_Count
: { /* out2-prerelease */
2611 pCrsr
= p
->apCsr
[pOp
->p1
]->pCursor
;
2612 if( ALWAYS(pCrsr
) ){
2613 rc
= sqlite3BtreeCount(pCrsr
, &nEntry
);
2622 /* Opcode: Savepoint P1 * * P4 *
2624 ** Open, release or rollback the savepoint named by parameter P4, depending
2625 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2626 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2628 case OP_Savepoint
: {
2629 int p1
; /* Value of P1 operand */
2630 char *zName
; /* Name of savepoint */
2633 Savepoint
*pSavepoint
;
2641 /* Assert that the p1 parameter is valid. Also that if there is no open
2642 ** transaction, then there cannot be any savepoints.
2644 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
2645 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
2646 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
2647 assert( checkSavepointCount(db
) );
2649 if( p1
==SAVEPOINT_BEGIN
){
2650 if( db
->writeVdbeCnt
>0 ){
2651 /* A new savepoint cannot be created if there are active write
2652 ** statements (i.e. open read/write incremental blob handles).
2654 sqlite3SetString(&p
->zErrMsg
, db
, "cannot open savepoint - "
2655 "SQL statements in progress");
2658 nName
= sqlite3Strlen30(zName
);
2660 #ifndef SQLITE_OMIT_VIRTUALTABLE
2661 /* This call is Ok even if this savepoint is actually a transaction
2662 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2663 ** If this is a transaction savepoint being opened, it is guaranteed
2664 ** that the db->aVTrans[] array is empty. */
2665 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
2666 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
2667 db
->nStatement
+db
->nSavepoint
);
2668 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2671 /* Create a new savepoint structure. */
2672 pNew
= sqlite3DbMallocRaw(db
, sizeof(Savepoint
)+nName
+1);
2674 pNew
->zName
= (char *)&pNew
[1];
2675 memcpy(pNew
->zName
, zName
, nName
+1);
2677 /* If there is no open transaction, then mark this as a special
2678 ** "transaction savepoint". */
2679 if( db
->autoCommit
){
2681 db
->isTransactionSavepoint
= 1;
2686 /* Link the new savepoint into the database handle's list. */
2687 pNew
->pNext
= db
->pSavepoint
;
2688 db
->pSavepoint
= pNew
;
2689 pNew
->nDeferredCons
= db
->nDeferredCons
;
2695 /* Find the named savepoint. If there is no such savepoint, then an
2696 ** an error is returned to the user. */
2698 pSavepoint
= db
->pSavepoint
;
2699 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
2700 pSavepoint
= pSavepoint
->pNext
2705 sqlite3SetString(&p
->zErrMsg
, db
, "no such savepoint: %s", zName
);
2707 }else if( db
->writeVdbeCnt
>0 && p1
==SAVEPOINT_RELEASE
){
2708 /* It is not possible to release (commit) a savepoint if there are
2709 ** active write statements.
2711 sqlite3SetString(&p
->zErrMsg
, db
,
2712 "cannot release savepoint - SQL statements in progress"
2717 /* Determine whether or not this is a transaction savepoint. If so,
2718 ** and this is a RELEASE command, then the current transaction
2721 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
2722 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
2723 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
2727 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
2730 p
->rc
= rc
= SQLITE_BUSY
;
2733 db
->isTransactionSavepoint
= 0;
2736 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
2737 if( p1
==SAVEPOINT_ROLLBACK
){
2738 for(ii
=0; ii
<db
->nDb
; ii
++){
2739 sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
, SQLITE_ABORT
);
2742 for(ii
=0; ii
<db
->nDb
; ii
++){
2743 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
2744 if( rc
!=SQLITE_OK
){
2745 goto abort_due_to_error
;
2748 if( p1
==SAVEPOINT_ROLLBACK
&& (db
->flags
&SQLITE_InternChanges
)!=0 ){
2749 sqlite3ExpirePreparedStatements(db
);
2750 sqlite3ResetAllSchemasOfConnection(db
);
2751 db
->flags
= (db
->flags
| SQLITE_InternChanges
);
2755 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2756 ** savepoints nested inside of the savepoint being operated on. */
2757 while( db
->pSavepoint
!=pSavepoint
){
2758 pTmp
= db
->pSavepoint
;
2759 db
->pSavepoint
= pTmp
->pNext
;
2760 sqlite3DbFree(db
, pTmp
);
2764 /* If it is a RELEASE, then destroy the savepoint being operated on
2765 ** too. If it is a ROLLBACK TO, then set the number of deferred
2766 ** constraint violations present in the database to the value stored
2767 ** when the savepoint was created. */
2768 if( p1
==SAVEPOINT_RELEASE
){
2769 assert( pSavepoint
==db
->pSavepoint
);
2770 db
->pSavepoint
= pSavepoint
->pNext
;
2771 sqlite3DbFree(db
, pSavepoint
);
2772 if( !isTransaction
){
2776 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
2779 if( !isTransaction
){
2780 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
2781 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2789 /* Opcode: AutoCommit P1 P2 * * *
2791 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2792 ** back any currently active btree transactions. If there are any active
2793 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2794 ** there are active writing VMs or active VMs that use shared cache.
2796 ** This instruction causes the VM to halt.
2798 case OP_AutoCommit
: {
2799 int desiredAutoCommit
;
2803 desiredAutoCommit
= pOp
->p1
;
2804 iRollback
= pOp
->p2
;
2805 turnOnAC
= desiredAutoCommit
&& !db
->autoCommit
;
2806 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
2807 assert( desiredAutoCommit
==1 || iRollback
==0 );
2808 assert( db
->activeVdbeCnt
>0 ); /* At least this one VM is active */
2811 if( turnOnAC
&& iRollback
&& db
->activeVdbeCnt
>1 ){
2812 /* If this instruction implements a ROLLBACK and other VMs are
2813 ** still running, and a transaction is active, return an error indicating
2814 ** that the other VMs must complete first.
2816 sqlite3SetString(&p
->zErrMsg
, db
, "cannot rollback transaction - "
2817 "SQL statements in progress");
2821 if( turnOnAC
&& !iRollback
&& db
->writeVdbeCnt
>0 ){
2822 /* If this instruction implements a COMMIT and other VMs are writing
2823 ** return an error indicating that the other VMs must complete first.
2825 sqlite3SetString(&p
->zErrMsg
, db
, "cannot commit transaction - "
2826 "SQL statements in progress");
2828 }else if( desiredAutoCommit
!=db
->autoCommit
){
2830 assert( desiredAutoCommit
==1 );
2831 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
2833 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
2836 db
->autoCommit
= (u8
)desiredAutoCommit
;
2837 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
2839 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
2840 p
->rc
= rc
= SQLITE_BUSY
;
2844 assert( db
->nStatement
==0 );
2845 sqlite3CloseSavepoints(db
);
2846 if( p
->rc
==SQLITE_OK
){
2853 sqlite3SetString(&p
->zErrMsg
, db
,
2854 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
2855 (iRollback
)?"cannot rollback - no transaction is active":
2856 "cannot commit - no transaction is active"));
2863 /* Opcode: Transaction P1 P2 * * *
2865 ** Begin a transaction. The transaction ends when a Commit or Rollback
2866 ** opcode is encountered. Depending on the ON CONFLICT setting, the
2867 ** transaction might also be rolled back if an error is encountered.
2869 ** P1 is the index of the database file on which the transaction is
2870 ** started. Index 0 is the main database file and index 1 is the
2871 ** file used for temporary tables. Indices of 2 or more are used for
2872 ** attached databases.
2874 ** If P2 is non-zero, then a write-transaction is started. A RESERVED lock is
2875 ** obtained on the database file when a write-transaction is started. No
2876 ** other process can start another write transaction while this transaction is
2877 ** underway. Starting a write transaction also creates a rollback journal. A
2878 ** write transaction must be started before any changes can be made to the
2879 ** database. If P2 is 2 or greater then an EXCLUSIVE lock is also obtained
2882 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
2883 ** true (this flag is set if the Vdbe may modify more than one row and may
2884 ** throw an ABORT exception), a statement transaction may also be opened.
2885 ** More specifically, a statement transaction is opened iff the database
2886 ** connection is currently not in autocommit mode, or if there are other
2887 ** active statements. A statement transaction allows the changes made by this
2888 ** VDBE to be rolled back after an error without having to roll back the
2889 ** entire transaction. If no error is encountered, the statement transaction
2890 ** will automatically commit when the VDBE halts.
2892 ** If P2 is zero, then a read-lock is obtained on the database file.
2894 case OP_Transaction
: {
2897 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
2898 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
2899 pBt
= db
->aDb
[pOp
->p1
].pBt
;
2902 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
);
2903 if( rc
==SQLITE_BUSY
){
2905 p
->rc
= rc
= SQLITE_BUSY
;
2908 if( rc
!=SQLITE_OK
){
2909 goto abort_due_to_error
;
2912 if( pOp
->p2
&& p
->usesStmtJournal
2913 && (db
->autoCommit
==0 || db
->activeVdbeCnt
>1)
2915 assert( sqlite3BtreeIsInTrans(pBt
) );
2916 if( p
->iStatement
==0 ){
2917 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
2919 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
2922 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
2923 if( rc
==SQLITE_OK
){
2924 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
2927 /* Store the current value of the database handles deferred constraint
2928 ** counter. If the statement transaction needs to be rolled back,
2929 ** the value of this counter needs to be restored too. */
2930 p
->nStmtDefCons
= db
->nDeferredCons
;
2936 /* Opcode: ReadCookie P1 P2 P3 * *
2938 ** Read cookie number P3 from database P1 and write it into register P2.
2939 ** P3==1 is the schema version. P3==2 is the database format.
2940 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
2941 ** the main database file and P1==1 is the database file used to store
2942 ** temporary tables.
2944 ** There must be a read-lock on the database (either a transaction
2945 ** must be started or there must be an open cursor) before
2946 ** executing this instruction.
2948 case OP_ReadCookie
: { /* out2-prerelease */
2955 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
2956 assert( iDb
>=0 && iDb
<db
->nDb
);
2957 assert( db
->aDb
[iDb
].pBt
!=0 );
2958 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
2960 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
2965 /* Opcode: SetCookie P1 P2 P3 * *
2967 ** Write the content of register P3 (interpreted as an integer)
2968 ** into cookie number P2 of database P1. P2==1 is the schema version.
2969 ** P2==2 is the database format. P2==3 is the recommended pager cache
2970 ** size, and so forth. P1==0 is the main database file and P1==1 is the
2971 ** database file used to store temporary tables.
2973 ** A transaction must be started before executing this opcode.
2975 case OP_SetCookie
: { /* in3 */
2977 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
2978 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
2979 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
2980 pDb
= &db
->aDb
[pOp
->p1
];
2981 assert( pDb
->pBt
!=0 );
2982 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
2983 pIn3
= &aMem
[pOp
->p3
];
2984 sqlite3VdbeMemIntegerify(pIn3
);
2985 /* See note about index shifting on OP_ReadCookie */
2986 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, (int)pIn3
->u
.i
);
2987 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
2988 /* When the schema cookie changes, record the new cookie internally */
2989 pDb
->pSchema
->schema_cookie
= (int)pIn3
->u
.i
;
2990 db
->flags
|= SQLITE_InternChanges
;
2991 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
2992 /* Record changes in the file format */
2993 pDb
->pSchema
->file_format
= (u8
)pIn3
->u
.i
;
2996 /* Invalidate all prepared statements whenever the TEMP database
2997 ** schema is changed. Ticket #1644 */
2998 sqlite3ExpirePreparedStatements(db
);
3004 /* Opcode: VerifyCookie P1 P2 P3 * *
3006 ** Check the value of global database parameter number 0 (the
3007 ** schema version) and make sure it is equal to P2 and that the
3008 ** generation counter on the local schema parse equals P3.
3010 ** P1 is the database number which is 0 for the main database file
3011 ** and 1 for the file holding temporary tables and some higher number
3012 ** for auxiliary databases.
3014 ** The cookie changes its value whenever the database schema changes.
3015 ** This operation is used to detect when that the cookie has changed
3016 ** and that the current process needs to reread the schema.
3018 ** Either a transaction needs to have been started or an OP_Open needs
3019 ** to be executed (to establish a read lock) before this opcode is
3022 case OP_VerifyCookie
: {
3027 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3028 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
3029 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
3030 pBt
= db
->aDb
[pOp
->p1
].pBt
;
3032 sqlite3BtreeGetMeta(pBt
, BTREE_SCHEMA_VERSION
, (u32
*)&iMeta
);
3033 iGen
= db
->aDb
[pOp
->p1
].pSchema
->iGeneration
;
3037 if( iMeta
!=pOp
->p2
|| iGen
!=pOp
->p3
){
3038 sqlite3DbFree(db
, p
->zErrMsg
);
3039 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
3040 /* If the schema-cookie from the database file matches the cookie
3041 ** stored with the in-memory representation of the schema, do
3042 ** not reload the schema from the database file.
3044 ** If virtual-tables are in use, this is not just an optimization.
3045 ** Often, v-tables store their data in other SQLite tables, which
3046 ** are queried from within xNext() and other v-table methods using
3047 ** prepared queries. If such a query is out-of-date, we do not want to
3048 ** discard the database schema, as the user code implementing the
3049 ** v-table would have to be ready for the sqlite3_vtab structure itself
3050 ** to be invalidated whenever sqlite3_step() is called from within
3051 ** a v-table method.
3053 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
3054 sqlite3ResetOneSchema(db
, pOp
->p1
);
3063 /* Opcode: OpenRead P1 P2 P3 P4 P5
3065 ** Open a read-only cursor for the database table whose root page is
3066 ** P2 in a database file. The database file is determined by P3.
3067 ** P3==0 means the main database, P3==1 means the database used for
3068 ** temporary tables, and P3>1 means used the corresponding attached
3069 ** database. Give the new cursor an identifier of P1. The P1
3070 ** values need not be contiguous but all P1 values should be small integers.
3071 ** It is an error for P1 to be negative.
3073 ** If P5!=0 then use the content of register P2 as the root page, not
3074 ** the value of P2 itself.
3076 ** There will be a read lock on the database whenever there is an
3077 ** open cursor. If the database was unlocked prior to this instruction
3078 ** then a read lock is acquired as part of this instruction. A read
3079 ** lock allows other processes to read the database but prohibits
3080 ** any other process from modifying the database. The read lock is
3081 ** released when all cursors are closed. If this instruction attempts
3082 ** to get a read lock but fails, the script terminates with an
3083 ** SQLITE_BUSY error code.
3085 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3086 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3087 ** structure, then said structure defines the content and collating
3088 ** sequence of the index being opened. Otherwise, if P4 is an integer
3089 ** value, it is set to the number of columns in the table.
3091 ** See also OpenWrite.
3093 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3095 ** Open a read/write cursor named P1 on the table or index whose root
3096 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3099 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3100 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3101 ** structure, then said structure defines the content and collating
3102 ** sequence of the index being opened. Otherwise, if P4 is an integer
3103 ** value, it is set to the number of columns in the table, or to the
3104 ** largest index of any column of the table that is actually used.
3106 ** This instruction works just like OpenRead except that it opens the cursor
3107 ** in read/write mode. For a given table, there can be one or more read-only
3108 ** cursors or a single read/write cursor but not both.
3110 ** See also OpenRead.
3113 case OP_OpenWrite
: {
3132 assert( iDb
>=0 && iDb
<db
->nDb
);
3133 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
3134 pDb
= &db
->aDb
[iDb
];
3137 if( pOp
->opcode
==OP_OpenWrite
){
3139 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3140 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
3141 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
3148 assert( p2
<=p
->nMem
);
3150 assert( memIsValid(pIn2
) );
3151 assert( (pIn2
->flags
& MEM_Int
)!=0 );
3152 sqlite3VdbeMemIntegerify(pIn2
);
3153 p2
= (int)pIn2
->u
.i
;
3154 /* The p2 value always comes from a prior OP_CreateTable opcode and
3155 ** that opcode will always set the p2 value to 2 or more or else fail.
3156 ** If there were a failure, the prepared statement would have halted
3157 ** before reaching this instruction. */
3159 rc
= SQLITE_CORRUPT_BKPT
;
3160 goto abort_due_to_error
;
3163 if( pOp
->p4type
==P4_KEYINFO
){
3164 pKeyInfo
= pOp
->p4
.pKeyInfo
;
3165 pKeyInfo
->enc
= ENC(p
->db
);
3166 nField
= pKeyInfo
->nField
+1;
3167 }else if( pOp
->p4type
==P4_INT32
){
3170 assert( pOp
->p1
>=0 );
3171 pCur
= allocateCursor(p
, pOp
->p1
, nField
, iDb
, 1);
3172 if( pCur
==0 ) goto no_mem
;
3174 pCur
->isOrdered
= 1;
3175 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->pCursor
);
3176 pCur
->pKeyInfo
= pKeyInfo
;
3178 /* Since it performs no memory allocation or IO, the only value that
3179 ** sqlite3BtreeCursor() may return is SQLITE_OK. */
3180 assert( rc
==SQLITE_OK
);
3182 /* Set the VdbeCursor.isTable and isIndex variables. Previous versions of
3183 ** SQLite used to check if the root-page flags were sane at this point
3184 ** and report database corruption if they were not, but this check has
3185 ** since moved into the btree layer. */
3186 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
3187 pCur
->isIndex
= !pCur
->isTable
;
3191 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3193 ** Open a new cursor P1 to a transient table.
3194 ** The cursor is always opened read/write even if
3195 ** the main database is read-only. The ephemeral
3196 ** table is deleted automatically when the cursor is closed.
3198 ** P2 is the number of columns in the ephemeral table.
3199 ** The cursor points to a BTree table if P4==0 and to a BTree index
3200 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3201 ** that defines the format of keys in the index.
3203 ** This opcode was once called OpenTemp. But that created
3204 ** confusion because the term "temp table", might refer either
3205 ** to a TEMP table at the SQL level, or to a table opened by
3206 ** this opcode. Then this opcode was call OpenVirtual. But
3207 ** that created confusion with the whole virtual-table idea.
3209 ** The P5 parameter can be a mask of the BTREE_* flags defined
3210 ** in btree.h. These flags control aspects of the operation of
3211 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3212 ** added automatically.
3214 /* Opcode: OpenAutoindex P1 P2 * P4 *
3216 ** This opcode works the same as OP_OpenEphemeral. It has a
3217 ** different name to distinguish its use. Tables created using
3218 ** by this opcode will be used for automatically created transient
3219 ** indices in joins.
3221 case OP_OpenAutoindex
:
3222 case OP_OpenEphemeral
: {
3224 static const int vfsFlags
=
3225 SQLITE_OPEN_READWRITE
|
3226 SQLITE_OPEN_CREATE
|
3227 SQLITE_OPEN_EXCLUSIVE
|
3228 SQLITE_OPEN_DELETEONCLOSE
|
3229 SQLITE_OPEN_TRANSIENT_DB
;
3231 assert( pOp
->p1
>=0 );
3232 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, 1);
3233 if( pCx
==0 ) goto no_mem
;
3235 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->pBt
,
3236 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
, vfsFlags
);
3237 if( rc
==SQLITE_OK
){
3238 rc
= sqlite3BtreeBeginTrans(pCx
->pBt
, 1);
3240 if( rc
==SQLITE_OK
){
3241 /* If a transient index is required, create it by calling
3242 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3243 ** opening it. If a transient table is required, just use the
3244 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3246 if( pOp
->p4
.pKeyInfo
){
3248 assert( pOp
->p4type
==P4_KEYINFO
);
3249 rc
= sqlite3BtreeCreateTable(pCx
->pBt
, &pgno
, BTREE_BLOBKEY
| pOp
->p5
);
3250 if( rc
==SQLITE_OK
){
3251 assert( pgno
==MASTER_ROOT
+1 );
3252 rc
= sqlite3BtreeCursor(pCx
->pBt
, pgno
, 1,
3253 (KeyInfo
*)pOp
->p4
.z
, pCx
->pCursor
);
3254 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
3255 pCx
->pKeyInfo
->enc
= ENC(p
->db
);
3259 rc
= sqlite3BtreeCursor(pCx
->pBt
, MASTER_ROOT
, 1, 0, pCx
->pCursor
);
3263 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
3264 pCx
->isIndex
= !pCx
->isTable
;
3268 /* Opcode: OpenSorter P1 P2 * P4 *
3270 ** This opcode works like OP_OpenEphemeral except that it opens
3271 ** a transient index that is specifically designed to sort large
3272 ** tables using an external merge-sort algorithm.
3274 case OP_SorterOpen
: {
3276 #ifndef SQLITE_OMIT_MERGE_SORT
3277 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, -1, 1);
3278 if( pCx
==0 ) goto no_mem
;
3279 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
3280 pCx
->pKeyInfo
->enc
= ENC(p
->db
);
3282 rc
= sqlite3VdbeSorterInit(db
, pCx
);
3284 pOp
->opcode
= OP_OpenEphemeral
;
3290 /* Opcode: OpenPseudo P1 P2 P3 * *
3292 ** Open a new cursor that points to a fake table that contains a single
3293 ** row of data. The content of that one row in the content of memory
3294 ** register P2. In other words, cursor P1 becomes an alias for the
3295 ** MEM_Blob content contained in register P2.
3297 ** A pseudo-table created by this opcode is used to hold a single
3298 ** row output from the sorter so that the row can be decomposed into
3299 ** individual columns using the OP_Column opcode. The OP_Column opcode
3300 ** is the only cursor opcode that works with a pseudo-table.
3302 ** P3 is the number of fields in the records that will be stored by
3303 ** the pseudo-table.
3305 case OP_OpenPseudo
: {
3308 assert( pOp
->p1
>=0 );
3309 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, -1, 0);
3310 if( pCx
==0 ) goto no_mem
;
3312 pCx
->pseudoTableReg
= pOp
->p2
;
3318 /* Opcode: Close P1 * * * *
3320 ** Close a cursor previously opened as P1. If P1 is not
3321 ** currently open, this instruction is a no-op.
3324 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3325 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
3326 p
->apCsr
[pOp
->p1
] = 0;
3330 /* Opcode: SeekGe P1 P2 P3 P4 *
3332 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3333 ** use the value in register P3 as the key. If cursor P1 refers
3334 ** to an SQL index, then P3 is the first in an array of P4 registers
3335 ** that are used as an unpacked index key.
3337 ** Reposition cursor P1 so that it points to the smallest entry that
3338 ** is greater than or equal to the key value. If there are no records
3339 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3341 ** See also: Found, NotFound, Distinct, SeekLt, SeekGt, SeekLe
3343 /* Opcode: SeekGt P1 P2 P3 P4 *
3345 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3346 ** use the value in register P3 as a key. If cursor P1 refers
3347 ** to an SQL index, then P3 is the first in an array of P4 registers
3348 ** that are used as an unpacked index key.
3350 ** Reposition cursor P1 so that it points to the smallest entry that
3351 ** is greater than the key value. If there are no records greater than
3352 ** the key and P2 is not zero, then jump to P2.
3354 ** See also: Found, NotFound, Distinct, SeekLt, SeekGe, SeekLe
3356 /* Opcode: SeekLt P1 P2 P3 P4 *
3358 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3359 ** use the value in register P3 as a key. If cursor P1 refers
3360 ** to an SQL index, then P3 is the first in an array of P4 registers
3361 ** that are used as an unpacked index key.
3363 ** Reposition cursor P1 so that it points to the largest entry that
3364 ** is less than the key value. If there are no records less than
3365 ** the key and P2 is not zero, then jump to P2.
3367 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLe
3369 /* Opcode: SeekLe P1 P2 P3 P4 *
3371 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3372 ** use the value in register P3 as a key. If cursor P1 refers
3373 ** to an SQL index, then P3 is the first in an array of P4 registers
3374 ** that are used as an unpacked index key.
3376 ** Reposition cursor P1 so that it points to the largest entry that
3377 ** is less than or equal to the key value. If there are no records
3378 ** less than or equal to the key and P2 is not zero, then jump to P2.
3380 ** See also: Found, NotFound, Distinct, SeekGt, SeekGe, SeekLt
3382 case OP_SeekLt
: /* jump, in3 */
3383 case OP_SeekLe
: /* jump, in3 */
3384 case OP_SeekGe
: /* jump, in3 */
3385 case OP_SeekGt
: { /* jump, in3 */
3391 i64 iKey
; /* The rowid we are to seek to */
3393 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3394 assert( pOp
->p2
!=0 );
3395 pC
= p
->apCsr
[pOp
->p1
];
3397 assert( pC
->pseudoTableReg
==0 );
3398 assert( OP_SeekLe
== OP_SeekLt
+1 );
3399 assert( OP_SeekGe
== OP_SeekLt
+2 );
3400 assert( OP_SeekGt
== OP_SeekLt
+3 );
3401 assert( pC
->isOrdered
);
3402 if( ALWAYS(pC
->pCursor
!=0) ){
3406 /* The input value in P3 might be of any type: integer, real, string,
3407 ** blob, or NULL. But it needs to be an integer before we can do
3408 ** the seek, so covert it. */
3409 pIn3
= &aMem
[pOp
->p3
];
3410 applyNumericAffinity(pIn3
);
3411 iKey
= sqlite3VdbeIntValue(pIn3
);
3412 pC
->rowidIsValid
= 0;
3414 /* If the P3 value could not be converted into an integer without
3415 ** loss of information, then special processing is required... */
3416 if( (pIn3
->flags
& MEM_Int
)==0 ){
3417 if( (pIn3
->flags
& MEM_Real
)==0 ){
3418 /* If the P3 value cannot be converted into any kind of a number,
3419 ** then the seek is not possible, so jump to P2 */
3423 /* If we reach this point, then the P3 value must be a floating
3425 assert( (pIn3
->flags
& MEM_Real
)!=0 );
3427 if( iKey
==SMALLEST_INT64
&& (pIn3
->r
<(double)iKey
|| pIn3
->r
>0) ){
3428 /* The P3 value is too large in magnitude to be expressed as an
3432 if( oc
>=OP_SeekGe
){ assert( oc
==OP_SeekGe
|| oc
==OP_SeekGt
);
3433 rc
= sqlite3BtreeFirst(pC
->pCursor
, &res
);
3434 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3437 if( oc
<=OP_SeekLe
){ assert( oc
==OP_SeekLt
|| oc
==OP_SeekLe
);
3438 rc
= sqlite3BtreeLast(pC
->pCursor
, &res
);
3439 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3446 }else if( oc
==OP_SeekLt
|| oc
==OP_SeekGe
){
3447 /* Use the ceiling() function to convert real->int */
3448 if( pIn3
->r
> (double)iKey
) iKey
++;
3450 /* Use the floor() function to convert real->int */
3451 assert( oc
==OP_SeekLe
|| oc
==OP_SeekGt
);
3452 if( pIn3
->r
< (double)iKey
) iKey
--;
3455 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, 0, (u64
)iKey
, 0, &res
);
3456 if( rc
!=SQLITE_OK
){
3457 goto abort_due_to_error
;
3460 pC
->rowidIsValid
= 1;
3461 pC
->lastRowid
= iKey
;
3465 assert( pOp
->p4type
==P4_INT32
);
3467 r
.pKeyInfo
= pC
->pKeyInfo
;
3468 r
.nField
= (u16
)nField
;
3470 /* The next line of code computes as follows, only faster:
3471 ** if( oc==OP_SeekGt || oc==OP_SeekLe ){
3472 ** r.flags = UNPACKED_INCRKEY;
3477 r
.flags
= (u16
)(UNPACKED_INCRKEY
* (1 & (oc
- OP_SeekLt
)));
3478 assert( oc
!=OP_SeekGt
|| r
.flags
==UNPACKED_INCRKEY
);
3479 assert( oc
!=OP_SeekLe
|| r
.flags
==UNPACKED_INCRKEY
);
3480 assert( oc
!=OP_SeekGe
|| r
.flags
==0 );
3481 assert( oc
!=OP_SeekLt
|| r
.flags
==0 );
3483 r
.aMem
= &aMem
[pOp
->p3
];
3485 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3488 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, &r
, 0, 0, &res
);
3489 if( rc
!=SQLITE_OK
){
3490 goto abort_due_to_error
;
3492 pC
->rowidIsValid
= 0;
3494 pC
->deferredMoveto
= 0;
3495 pC
->cacheStatus
= CACHE_STALE
;
3497 sqlite3_search_count
++;
3499 if( oc
>=OP_SeekGe
){ assert( oc
==OP_SeekGe
|| oc
==OP_SeekGt
);
3500 if( res
<0 || (res
==0 && oc
==OP_SeekGt
) ){
3501 rc
= sqlite3BtreeNext(pC
->pCursor
, &res
);
3502 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3503 pC
->rowidIsValid
= 0;
3508 assert( oc
==OP_SeekLt
|| oc
==OP_SeekLe
);
3509 if( res
>0 || (res
==0 && oc
==OP_SeekLt
) ){
3510 rc
= sqlite3BtreePrevious(pC
->pCursor
, &res
);
3511 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3512 pC
->rowidIsValid
= 0;
3514 /* res might be negative because the table is empty. Check to
3515 ** see if this is the case.
3517 res
= sqlite3BtreeEof(pC
->pCursor
);
3520 assert( pOp
->p2
>0 );
3525 /* This happens when attempting to open the sqlite3_master table
3526 ** for read access returns SQLITE_EMPTY. In this case always
3527 ** take the jump (since there are no records in the table).
3534 /* Opcode: Seek P1 P2 * * *
3536 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3537 ** for P1 to move so that it points to the rowid given by P2.
3539 ** This is actually a deferred seek. Nothing actually happens until
3540 ** the cursor is used to read a record. That way, if no reads
3541 ** occur, no unnecessary I/O happens.
3543 case OP_Seek
: { /* in2 */
3546 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3547 pC
= p
->apCsr
[pOp
->p1
];
3549 if( ALWAYS(pC
->pCursor
!=0) ){
3550 assert( pC
->isTable
);
3552 pIn2
= &aMem
[pOp
->p2
];
3553 pC
->movetoTarget
= sqlite3VdbeIntValue(pIn2
);
3554 pC
->rowidIsValid
= 0;
3555 pC
->deferredMoveto
= 1;
3561 /* Opcode: Found P1 P2 P3 P4 *
3563 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3564 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3567 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3568 ** is a prefix of any entry in P1 then a jump is made to P2 and
3569 ** P1 is left pointing at the matching entry.
3571 /* Opcode: NotFound P1 P2 P3 P4 *
3573 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3574 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3577 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3578 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3579 ** does contain an entry whose prefix matches the P3/P4 record then control
3580 ** falls through to the next instruction and P1 is left pointing at the
3583 ** See also: Found, NotExists, IsUnique
3585 case OP_NotFound
: /* jump, in3 */
3586 case OP_Found
: { /* jump, in3 */
3591 UnpackedRecord
*pIdxKey
;
3593 char aTempRec
[ROUND8(sizeof(UnpackedRecord
)) + sizeof(Mem
)*3 + 7];
3596 sqlite3_found_count
++;
3600 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3601 assert( pOp
->p4type
==P4_INT32
);
3602 pC
= p
->apCsr
[pOp
->p1
];
3604 pIn3
= &aMem
[pOp
->p3
];
3605 if( ALWAYS(pC
->pCursor
!=0) ){
3607 assert( pC
->isTable
==0 );
3609 r
.pKeyInfo
= pC
->pKeyInfo
;
3610 r
.nField
= (u16
)pOp
->p4
.i
;
3613 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3615 r
.flags
= UNPACKED_PREFIX_MATCH
;
3618 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(
3619 pC
->pKeyInfo
, aTempRec
, sizeof(aTempRec
), &pFree
3621 if( pIdxKey
==0 ) goto no_mem
;
3622 assert( pIn3
->flags
& MEM_Blob
);
3623 assert( (pIn3
->flags
& MEM_Zero
)==0 ); /* zeroblobs already expanded */
3624 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, pIn3
->n
, pIn3
->z
, pIdxKey
);
3625 pIdxKey
->flags
|= UNPACKED_PREFIX_MATCH
;
3627 rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, pIdxKey
, 0, 0, &res
);
3629 sqlite3DbFree(db
, pFree
);
3631 if( rc
!=SQLITE_OK
){
3634 alreadyExists
= (res
==0);
3635 pC
->deferredMoveto
= 0;
3636 pC
->cacheStatus
= CACHE_STALE
;
3638 if( pOp
->opcode
==OP_Found
){
3639 if( alreadyExists
) pc
= pOp
->p2
- 1;
3641 if( !alreadyExists
) pc
= pOp
->p2
- 1;
3646 /* Opcode: IsUnique P1 P2 P3 P4 *
3648 ** Cursor P1 is open on an index b-tree - that is to say, a btree which
3649 ** no data and where the key are records generated by OP_MakeRecord with
3650 ** the list field being the integer ROWID of the entry that the index
3653 ** The P3 register contains an integer record number. Call this record
3654 ** number R. Register P4 is the first in a set of N contiguous registers
3655 ** that make up an unpacked index key that can be used with cursor P1.
3656 ** The value of N can be inferred from the cursor. N includes the rowid
3657 ** value appended to the end of the index record. This rowid value may
3658 ** or may not be the same as R.
3660 ** If any of the N registers beginning with register P4 contains a NULL
3661 ** value, jump immediately to P2.
3663 ** Otherwise, this instruction checks if cursor P1 contains an entry
3664 ** where the first (N-1) fields match but the rowid value at the end
3665 ** of the index entry is not R. If there is no such entry, control jumps
3666 ** to instruction P2. Otherwise, the rowid of the conflicting index
3667 ** entry is copied to register P3 and control falls through to the next
3670 ** See also: NotFound, NotExists, Found
3672 case OP_IsUnique
: { /* jump, in3 */
3678 UnpackedRecord r
; /* B-Tree index search key */
3679 i64 R
; /* Rowid stored in register P3 */
3681 pIn3
= &aMem
[pOp
->p3
];
3682 aMx
= &aMem
[pOp
->p4
.i
];
3683 /* Assert that the values of parameters P1 and P4 are in range. */
3684 assert( pOp
->p4type
==P4_INT32
);
3685 assert( pOp
->p4
.i
>0 && pOp
->p4
.i
<=p
->nMem
);
3686 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3688 /* Find the index cursor. */
3689 pCx
= p
->apCsr
[pOp
->p1
];
3690 assert( pCx
->deferredMoveto
==0 );
3691 pCx
->seekResult
= 0;
3692 pCx
->cacheStatus
= CACHE_STALE
;
3693 pCrsr
= pCx
->pCursor
;
3695 /* If any of the values are NULL, take the jump. */
3696 nField
= pCx
->pKeyInfo
->nField
;
3697 for(ii
=0; ii
<nField
; ii
++){
3698 if( aMx
[ii
].flags
& MEM_Null
){
3704 assert( (aMx
[nField
].flags
& MEM_Null
)==0 );
3707 /* Populate the index search key. */
3708 r
.pKeyInfo
= pCx
->pKeyInfo
;
3709 r
.nField
= nField
+ 1;
3710 r
.flags
= UNPACKED_PREFIX_SEARCH
;
3713 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
3716 /* Extract the value of R from register P3. */
3717 sqlite3VdbeMemIntegerify(pIn3
);
3720 /* Search the B-Tree index. If no conflicting record is found, jump
3721 ** to P2. Otherwise, copy the rowid of the conflicting record to
3722 ** register P3 and fall through to the next instruction. */
3723 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, &r
, 0, 0, &pCx
->seekResult
);
3724 if( (r
.flags
& UNPACKED_PREFIX_SEARCH
) || r
.rowid
==R
){
3727 pIn3
->u
.i
= r
.rowid
;
3733 /* Opcode: NotExists P1 P2 P3 * *
3735 ** Use the content of register P3 as an integer key. If a record
3736 ** with that key does not exist in table of P1, then jump to P2.
3737 ** If the record does exist, then fall through. The cursor is left
3738 ** pointing to the record if it exists.
3740 ** The difference between this operation and NotFound is that this
3741 ** operation assumes the key is an integer and that P1 is a table whereas
3742 ** NotFound assumes key is a blob constructed from MakeRecord and
3745 ** See also: Found, NotFound, IsUnique
3747 case OP_NotExists
: { /* jump, in3 */
3753 pIn3
= &aMem
[pOp
->p3
];
3754 assert( pIn3
->flags
& MEM_Int
);
3755 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3756 pC
= p
->apCsr
[pOp
->p1
];
3758 assert( pC
->isTable
);
3759 assert( pC
->pseudoTableReg
==0 );
3760 pCrsr
= pC
->pCursor
;
3761 if( ALWAYS(pCrsr
!=0) ){
3764 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, 0, iKey
, 0, &res
);
3765 pC
->lastRowid
= pIn3
->u
.i
;
3766 pC
->rowidIsValid
= res
==0 ?1:0;
3768 pC
->cacheStatus
= CACHE_STALE
;
3769 pC
->deferredMoveto
= 0;
3772 assert( pC
->rowidIsValid
==0 );
3774 pC
->seekResult
= res
;
3776 /* This happens when an attempt to open a read cursor on the
3777 ** sqlite_master table returns SQLITE_EMPTY.
3780 assert( pC
->rowidIsValid
==0 );
3786 /* Opcode: Sequence P1 P2 * * *
3788 ** Find the next available sequence number for cursor P1.
3789 ** Write the sequence number into register P2.
3790 ** The sequence number on the cursor is incremented after this
3793 case OP_Sequence
: { /* out2-prerelease */
3794 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3795 assert( p
->apCsr
[pOp
->p1
]!=0 );
3796 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
3801 /* Opcode: NewRowid P1 P2 P3 * *
3803 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
3804 ** The record number is not previously used as a key in the database
3805 ** table that cursor P1 points to. The new record number is written
3806 ** written to register P2.
3808 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
3809 ** the largest previously generated record number. No new record numbers are
3810 ** allowed to be less than this value. When this value reaches its maximum,
3811 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
3812 ** generated record number. This P3 mechanism is used to help implement the
3813 ** AUTOINCREMENT feature.
3815 case OP_NewRowid
: { /* out2-prerelease */
3816 i64 v
; /* The new rowid */
3817 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
3818 int res
; /* Result of an sqlite3BtreeLast() */
3819 int cnt
; /* Counter to limit the number of searches */
3820 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
3821 VdbeFrame
*pFrame
; /* Root frame of VDBE */
3825 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
3826 pC
= p
->apCsr
[pOp
->p1
];
3828 if( NEVER(pC
->pCursor
==0) ){
3829 /* The zero initialization above is all that is needed */
3831 /* The next rowid or record number (different terms for the same
3832 ** thing) is obtained in a two-step algorithm.
3834 ** First we attempt to find the largest existing rowid and add one
3835 ** to that. But if the largest existing rowid is already the maximum
3836 ** positive integer, we have to fall through to the second
3837 ** probabilistic algorithm
3839 ** The second algorithm is to select a rowid at random and see if
3840 ** it already exists in the table. If it does not exist, we have
3841 ** succeeded. If the random rowid does exist, we select a new one
3842 ** and try again, up to 100 times.
3844 assert( pC
->isTable
);
3846 #ifdef SQLITE_32BIT_ROWID
3847 # define MAX_ROWID 0x7fffffff
3849 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
3850 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
3851 ** to provide the constant while making all compilers happy.
3853 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
3856 if( !pC
->useRandomRowid
){
3857 v
= sqlite3BtreeGetCachedRowid(pC
->pCursor
);
3859 rc
= sqlite3BtreeLast(pC
->pCursor
, &res
);
3860 if( rc
!=SQLITE_OK
){
3861 goto abort_due_to_error
;
3864 v
= 1; /* IMP: R-61914-48074 */
3866 assert( sqlite3BtreeCursorIsValid(pC
->pCursor
) );
3867 rc
= sqlite3BtreeKeySize(pC
->pCursor
, &v
);
3868 assert( rc
==SQLITE_OK
); /* Cannot fail following BtreeLast() */
3870 pC
->useRandomRowid
= 1;
3872 v
++; /* IMP: R-29538-34987 */
3877 #ifndef SQLITE_OMIT_AUTOINCREMENT
3879 /* Assert that P3 is a valid memory cell. */
3880 assert( pOp
->p3
>0 );
3882 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
3883 /* Assert that P3 is a valid memory cell. */
3884 assert( pOp
->p3
<=pFrame
->nMem
);
3885 pMem
= &pFrame
->aMem
[pOp
->p3
];
3887 /* Assert that P3 is a valid memory cell. */
3888 assert( pOp
->p3
<=p
->nMem
);
3889 pMem
= &aMem
[pOp
->p3
];
3890 memAboutToChange(p
, pMem
);
3892 assert( memIsValid(pMem
) );
3894 REGISTER_TRACE(pOp
->p3
, pMem
);
3895 sqlite3VdbeMemIntegerify(pMem
);
3896 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
3897 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
3898 rc
= SQLITE_FULL
; /* IMP: R-12275-61338 */
3899 goto abort_due_to_error
;
3901 if( v
<pMem
->u
.i
+1 ){
3908 sqlite3BtreeSetCachedRowid(pC
->pCursor
, v
<MAX_ROWID
? v
+1 : 0);
3910 if( pC
->useRandomRowid
){
3911 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
3912 ** largest possible integer (9223372036854775807) then the database
3913 ** engine starts picking positive candidate ROWIDs at random until
3914 ** it finds one that is not previously used. */
3915 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
3916 ** an AUTOINCREMENT table. */
3917 /* on the first attempt, simply do one more than previous */
3919 v
&= (MAX_ROWID
>>1); /* ensure doesn't go negative */
3920 v
++; /* ensure non-zero */
3922 while( ((rc
= sqlite3BtreeMovetoUnpacked(pC
->pCursor
, 0, (u64
)v
,
3923 0, &res
))==SQLITE_OK
)
3926 /* collision - try another random rowid */
3927 sqlite3_randomness(sizeof(v
), &v
);
3929 /* try "small" random rowids for the initial attempts */
3932 v
&= (MAX_ROWID
>>1); /* ensure doesn't go negative */
3934 v
++; /* ensure non-zero */
3936 if( rc
==SQLITE_OK
&& res
==0 ){
3937 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
3938 goto abort_due_to_error
;
3940 assert( v
>0 ); /* EV: R-40812-03570 */
3942 pC
->rowidIsValid
= 0;
3943 pC
->deferredMoveto
= 0;
3944 pC
->cacheStatus
= CACHE_STALE
;
3950 /* Opcode: Insert P1 P2 P3 P4 P5
3952 ** Write an entry into the table of cursor P1. A new entry is
3953 ** created if it doesn't already exist or the data for an existing
3954 ** entry is overwritten. The data is the value MEM_Blob stored in register
3955 ** number P2. The key is stored in register P3. The key must
3958 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
3959 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
3960 ** then rowid is stored for subsequent return by the
3961 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
3963 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
3964 ** the last seek operation (OP_NotExists) was a success, then this
3965 ** operation will not attempt to find the appropriate row before doing
3966 ** the insert but will instead overwrite the row that the cursor is
3967 ** currently pointing to. Presumably, the prior OP_NotExists opcode
3968 ** has already positioned the cursor correctly. This is an optimization
3969 ** that boosts performance by avoiding redundant seeks.
3971 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
3972 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
3973 ** is part of an INSERT operation. The difference is only important to
3976 ** Parameter P4 may point to a string containing the table-name, or
3977 ** may be NULL. If it is not NULL, then the update-hook
3978 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
3980 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
3981 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
3982 ** and register P2 becomes ephemeral. If the cursor is changed, the
3983 ** value of register P2 will then change. Make sure this does not
3984 ** cause any problems.)
3986 ** This instruction only works on tables. The equivalent instruction
3987 ** for indices is OP_IdxInsert.
3989 /* Opcode: InsertInt P1 P2 P3 P4 P5
3991 ** This works exactly like OP_Insert except that the key is the
3992 ** integer value P3, not the value of the integer stored in register P3.
3995 case OP_InsertInt
: {
3996 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
3997 Mem
*pKey
; /* MEM cell holding key for the record */
3998 i64 iKey
; /* The integer ROWID or key for the record to be inserted */
3999 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
4000 int nZero
; /* Number of zero-bytes to append */
4001 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4002 const char *zDb
; /* database name - used by the update hook */
4003 const char *zTbl
; /* Table name - used by the opdate hook */
4004 int op
; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4006 pData
= &aMem
[pOp
->p2
];
4007 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4008 assert( memIsValid(pData
) );
4009 pC
= p
->apCsr
[pOp
->p1
];
4011 assert( pC
->pCursor
!=0 );
4012 assert( pC
->pseudoTableReg
==0 );
4013 assert( pC
->isTable
);
4014 REGISTER_TRACE(pOp
->p2
, pData
);
4016 if( pOp
->opcode
==OP_Insert
){
4017 pKey
= &aMem
[pOp
->p3
];
4018 assert( pKey
->flags
& MEM_Int
);
4019 assert( memIsValid(pKey
) );
4020 REGISTER_TRACE(pOp
->p3
, pKey
);
4023 assert( pOp
->opcode
==OP_InsertInt
);
4027 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
4028 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= lastRowid
= iKey
;
4029 if( pData
->flags
& MEM_Null
){
4033 assert( pData
->flags
& (MEM_Blob
|MEM_Str
) );
4035 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
4036 if( pData
->flags
& MEM_Zero
){
4037 nZero
= pData
->u
.nZero
;
4041 sqlite3BtreeSetCachedRowid(pC
->pCursor
, 0);
4042 rc
= sqlite3BtreeInsert(pC
->pCursor
, 0, iKey
,
4043 pData
->z
, pData
->n
, nZero
,
4044 pOp
->p5
& OPFLAG_APPEND
, seekResult
4046 pC
->rowidIsValid
= 0;
4047 pC
->deferredMoveto
= 0;
4048 pC
->cacheStatus
= CACHE_STALE
;
4050 /* Invoke the update-hook if required. */
4051 if( rc
==SQLITE_OK
&& db
->xUpdateCallback
&& pOp
->p4
.z
){
4052 zDb
= db
->aDb
[pC
->iDb
].zName
;
4054 op
= ((pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
);
4055 assert( pC
->isTable
);
4056 db
->xUpdateCallback(db
->pUpdateArg
, op
, zDb
, zTbl
, iKey
);
4057 assert( pC
->iDb
>=0 );
4062 /* Opcode: Delete P1 P2 * P4 *
4064 ** Delete the record at which the P1 cursor is currently pointing.
4066 ** The cursor will be left pointing at either the next or the previous
4067 ** record in the table. If it is left pointing at the next record, then
4068 ** the next Next instruction will be a no-op. Hence it is OK to delete
4069 ** a record from within an Next loop.
4071 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4072 ** incremented (otherwise not).
4074 ** P1 must not be pseudo-table. It has to be a real table with
4077 ** If P4 is not NULL, then it is the name of the table that P1 is
4078 ** pointing to. The update hook will be invoked, if it exists.
4079 ** If P4 is not NULL then the P1 cursor must have been positioned
4080 ** using OP_NotFound prior to invoking this opcode.
4087 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4088 pC
= p
->apCsr
[pOp
->p1
];
4090 assert( pC
->pCursor
!=0 ); /* Only valid for real tables, no pseudotables */
4092 /* If the update-hook will be invoked, set iKey to the rowid of the
4093 ** row being deleted.
4095 if( db
->xUpdateCallback
&& pOp
->p4
.z
){
4096 assert( pC
->isTable
);
4097 assert( pC
->rowidIsValid
); /* lastRowid set by previous OP_NotFound */
4098 iKey
= pC
->lastRowid
;
4101 /* The OP_Delete opcode always follows an OP_NotExists or OP_Last or
4102 ** OP_Column on the same table without any intervening operations that
4103 ** might move or invalidate the cursor. Hence cursor pC is always pointing
4104 ** to the row to be deleted and the sqlite3VdbeCursorMoveto() operation
4105 ** below is always a no-op and cannot fail. We will run it anyhow, though,
4106 ** to guard against future changes to the code generator.
4108 assert( pC
->deferredMoveto
==0 );
4109 rc
= sqlite3VdbeCursorMoveto(pC
);
4110 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
4112 sqlite3BtreeSetCachedRowid(pC
->pCursor
, 0);
4113 rc
= sqlite3BtreeDelete(pC
->pCursor
);
4114 pC
->cacheStatus
= CACHE_STALE
;
4116 /* Invoke the update-hook if required. */
4117 if( rc
==SQLITE_OK
&& db
->xUpdateCallback
&& pOp
->p4
.z
){
4118 const char *zDb
= db
->aDb
[pC
->iDb
].zName
;
4119 const char *zTbl
= pOp
->p4
.z
;
4120 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, zTbl
, iKey
);
4121 assert( pC
->iDb
>=0 );
4123 if( pOp
->p2
& OPFLAG_NCHANGE
) p
->nChange
++;
4126 /* Opcode: ResetCount * * * * *
4128 ** The value of the change counter is copied to the database handle
4129 ** change counter (returned by subsequent calls to sqlite3_changes()).
4130 ** Then the VMs internal change counter resets to 0.
4131 ** This is used by trigger programs.
4133 case OP_ResetCount
: {
4134 sqlite3VdbeSetChanges(db
, p
->nChange
);
4139 /* Opcode: SorterCompare P1 P2 P3
4141 ** P1 is a sorter cursor. This instruction compares the record blob in
4142 ** register P3 with the entry that the sorter cursor currently points to.
4143 ** If, excluding the rowid fields at the end, the two records are a match,
4144 ** fall through to the next instruction. Otherwise, jump to instruction P2.
4146 case OP_SorterCompare
: {
4150 pC
= p
->apCsr
[pOp
->p1
];
4151 assert( isSorter(pC
) );
4152 pIn3
= &aMem
[pOp
->p3
];
4153 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, &res
);
4160 /* Opcode: SorterData P1 P2 * * *
4162 ** Write into register P2 the current sorter data for sorter cursor P1.
4164 case OP_SorterData
: {
4166 #ifndef SQLITE_OMIT_MERGE_SORT
4167 pOut
= &aMem
[pOp
->p2
];
4168 pC
= p
->apCsr
[pOp
->p1
];
4169 assert( pC
->isSorter
);
4170 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
4172 pOp
->opcode
= OP_RowKey
;
4178 /* Opcode: RowData P1 P2 * * *
4180 ** Write into register P2 the complete row data for cursor P1.
4181 ** There is no interpretation of the data.
4182 ** It is just copied onto the P2 register exactly as
4183 ** it is found in the database file.
4185 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4186 ** of a real table, not a pseudo-table.
4188 /* Opcode: RowKey P1 P2 * * *
4190 ** Write into register P2 the complete row key for cursor P1.
4191 ** There is no interpretation of the data.
4192 ** The key is copied onto the P3 register exactly as
4193 ** it is found in the database file.
4195 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4196 ** of a real table, not a pseudo-table.
4205 pOut
= &aMem
[pOp
->p2
];
4206 memAboutToChange(p
, pOut
);
4208 /* Note that RowKey and RowData are really exactly the same instruction */
4209 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4210 pC
= p
->apCsr
[pOp
->p1
];
4211 assert( pC
->isSorter
==0 );
4212 assert( pC
->isTable
|| pOp
->opcode
!=OP_RowData
);
4213 assert( pC
->isIndex
|| pOp
->opcode
==OP_RowData
);
4215 assert( pC
->nullRow
==0 );
4216 assert( pC
->pseudoTableReg
==0 );
4217 assert( pC
->pCursor
!=0 );
4218 pCrsr
= pC
->pCursor
;
4219 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
4221 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4222 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4223 ** the cursor. Hence the following sqlite3VdbeCursorMoveto() call is always
4224 ** a no-op and can never fail. But we leave it in place as a safety.
4226 assert( pC
->deferredMoveto
==0 );
4227 rc
= sqlite3VdbeCursorMoveto(pC
);
4228 if( NEVER(rc
!=SQLITE_OK
) ) goto abort_due_to_error
;
4231 assert( !pC
->isTable
);
4232 VVA_ONLY(rc
=) sqlite3BtreeKeySize(pCrsr
, &n64
);
4233 assert( rc
==SQLITE_OK
); /* True because of CursorMoveto() call above */
4234 if( n64
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4239 VVA_ONLY(rc
=) sqlite3BtreeDataSize(pCrsr
, &n
);
4240 assert( rc
==SQLITE_OK
); /* DataSize() cannot fail */
4241 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
4245 if( sqlite3VdbeMemGrow(pOut
, n
, 0) ){
4249 MemSetTypeFlag(pOut
, MEM_Blob
);
4251 rc
= sqlite3BtreeKey(pCrsr
, 0, n
, pOut
->z
);
4253 rc
= sqlite3BtreeData(pCrsr
, 0, n
, pOut
->z
);
4255 pOut
->enc
= SQLITE_UTF8
; /* In case the blob is ever cast to text */
4256 UPDATE_MAX_BLOBSIZE(pOut
);
4260 /* Opcode: Rowid P1 P2 * * *
4262 ** Store in register P2 an integer which is the key of the table entry that
4263 ** P1 is currently point to.
4265 ** P1 can be either an ordinary table or a virtual table. There used to
4266 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4267 ** one opcode now works for both table types.
4269 case OP_Rowid
: { /* out2-prerelease */
4272 sqlite3_vtab
*pVtab
;
4273 const sqlite3_module
*pModule
;
4275 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4276 pC
= p
->apCsr
[pOp
->p1
];
4278 assert( pC
->pseudoTableReg
==0 );
4280 pOut
->flags
= MEM_Null
;
4282 }else if( pC
->deferredMoveto
){
4283 v
= pC
->movetoTarget
;
4284 #ifndef SQLITE_OMIT_VIRTUALTABLE
4285 }else if( pC
->pVtabCursor
){
4286 pVtab
= pC
->pVtabCursor
->pVtab
;
4287 pModule
= pVtab
->pModule
;
4288 assert( pModule
->xRowid
);
4289 rc
= pModule
->xRowid(pC
->pVtabCursor
, &v
);
4290 importVtabErrMsg(p
, pVtab
);
4291 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4293 assert( pC
->pCursor
!=0 );
4294 rc
= sqlite3VdbeCursorMoveto(pC
);
4295 if( rc
) goto abort_due_to_error
;
4296 if( pC
->rowidIsValid
){
4299 rc
= sqlite3BtreeKeySize(pC
->pCursor
, &v
);
4300 assert( rc
==SQLITE_OK
); /* Always so because of CursorMoveto() above */
4307 /* Opcode: NullRow P1 * * * *
4309 ** Move the cursor P1 to a null row. Any OP_Column operations
4310 ** that occur while the cursor is on the null row will always
4316 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4317 pC
= p
->apCsr
[pOp
->p1
];
4320 pC
->rowidIsValid
= 0;
4321 assert( pC
->pCursor
|| pC
->pVtabCursor
);
4323 sqlite3BtreeClearCursor(pC
->pCursor
);
4328 /* Opcode: Last P1 P2 * * *
4330 ** The next use of the Rowid or Column or Next instruction for P1
4331 ** will refer to the last entry in the database table or index.
4332 ** If the table or index is empty and P2>0, then jump immediately to P2.
4333 ** If P2 is 0 or if the table or index is not empty, fall through
4334 ** to the following instruction.
4336 case OP_Last
: { /* jump */
4341 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4342 pC
= p
->apCsr
[pOp
->p1
];
4344 pCrsr
= pC
->pCursor
;
4346 if( ALWAYS(pCrsr
!=0) ){
4347 rc
= sqlite3BtreeLast(pCrsr
, &res
);
4349 pC
->nullRow
= (u8
)res
;
4350 pC
->deferredMoveto
= 0;
4351 pC
->rowidIsValid
= 0;
4352 pC
->cacheStatus
= CACHE_STALE
;
4353 if( pOp
->p2
>0 && res
){
4360 /* Opcode: Sort P1 P2 * * *
4362 ** This opcode does exactly the same thing as OP_Rewind except that
4363 ** it increments an undocumented global variable used for testing.
4365 ** Sorting is accomplished by writing records into a sorting index,
4366 ** then rewinding that index and playing it back from beginning to
4367 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4368 ** rewinding so that the global variable will be incremented and
4369 ** regression tests can determine whether or not the optimizer is
4370 ** correctly optimizing out sorts.
4372 case OP_SorterSort
: /* jump */
4373 #ifdef SQLITE_OMIT_MERGE_SORT
4374 pOp
->opcode
= OP_Sort
;
4376 case OP_Sort
: { /* jump */
4378 sqlite3_sort_count
++;
4379 sqlite3_search_count
--;
4381 p
->aCounter
[SQLITE_STMTSTATUS_SORT
-1]++;
4382 /* Fall through into OP_Rewind */
4384 /* Opcode: Rewind P1 P2 * * *
4386 ** The next use of the Rowid or Column or Next instruction for P1
4387 ** will refer to the first entry in the database table or index.
4388 ** If the table or index is empty and P2>0, then jump immediately to P2.
4389 ** If P2 is 0 or if the table or index is not empty, fall through
4390 ** to the following instruction.
4392 case OP_Rewind
: { /* jump */
4397 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4398 pC
= p
->apCsr
[pOp
->p1
];
4400 assert( pC
->isSorter
==(pOp
->opcode
==OP_SorterSort
) );
4403 rc
= sqlite3VdbeSorterRewind(db
, pC
, &res
);
4405 pCrsr
= pC
->pCursor
;
4407 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
4408 pC
->atFirst
= res
==0 ?1:0;
4409 pC
->deferredMoveto
= 0;
4410 pC
->cacheStatus
= CACHE_STALE
;
4411 pC
->rowidIsValid
= 0;
4413 pC
->nullRow
= (u8
)res
;
4414 assert( pOp
->p2
>0 && pOp
->p2
<p
->nOp
);
4421 /* Opcode: Next P1 P2 * P4 P5
4423 ** Advance cursor P1 so that it points to the next key/data pair in its
4424 ** table or index. If there are no more key/value pairs then fall through
4425 ** to the following instruction. But if the cursor advance was successful,
4426 ** jump immediately to P2.
4428 ** The P1 cursor must be for a real table, not a pseudo-table.
4430 ** P4 is always of type P4_ADVANCE. The function pointer points to
4431 ** sqlite3BtreeNext().
4433 ** If P5 is positive and the jump is taken, then event counter
4434 ** number P5-1 in the prepared statement is incremented.
4438 /* Opcode: Prev P1 P2 * * P5
4440 ** Back up cursor P1 so that it points to the previous key/data pair in its
4441 ** table or index. If there is no previous key/value pairs then fall through
4442 ** to the following instruction. But if the cursor backup was successful,
4443 ** jump immediately to P2.
4445 ** The P1 cursor must be for a real table, not a pseudo-table.
4447 ** P4 is always of type P4_ADVANCE. The function pointer points to
4448 ** sqlite3BtreePrevious().
4450 ** If P5 is positive and the jump is taken, then event counter
4451 ** number P5-1 in the prepared statement is incremented.
4453 case OP_SorterNext
: /* jump */
4454 #ifdef SQLITE_OMIT_MERGE_SORT
4455 pOp
->opcode
= OP_Next
;
4457 case OP_Prev
: /* jump */
4458 case OP_Next
: { /* jump */
4462 CHECK_FOR_INTERRUPT
;
4463 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4464 assert( pOp
->p5
<=ArraySize(p
->aCounter
) );
4465 pC
= p
->apCsr
[pOp
->p1
];
4467 break; /* See ticket #2273 */
4469 assert( pC
->isSorter
==(pOp
->opcode
==OP_SorterNext
) );
4471 assert( pOp
->opcode
==OP_SorterNext
);
4472 rc
= sqlite3VdbeSorterNext(db
, pC
, &res
);
4475 assert( pC
->deferredMoveto
==0 );
4476 assert( pC
->pCursor
);
4477 assert( pOp
->opcode
!=OP_Next
|| pOp
->p4
.xAdvance
==sqlite3BtreeNext
);
4478 assert( pOp
->opcode
!=OP_Prev
|| pOp
->p4
.xAdvance
==sqlite3BtreePrevious
);
4479 rc
= pOp
->p4
.xAdvance(pC
->pCursor
, &res
);
4481 pC
->nullRow
= (u8
)res
;
4482 pC
->cacheStatus
= CACHE_STALE
;
4485 if( pOp
->p5
) p
->aCounter
[pOp
->p5
-1]++;
4487 sqlite3_search_count
++;
4490 pC
->rowidIsValid
= 0;
4494 /* Opcode: IdxInsert P1 P2 P3 * P5
4496 ** Register P2 holds an SQL index key made using the
4497 ** MakeRecord instructions. This opcode writes that key
4498 ** into the index P1. Data for the entry is nil.
4500 ** P3 is a flag that provides a hint to the b-tree layer that this
4501 ** insert is likely to be an append.
4503 ** This instruction only works for indices. The equivalent instruction
4504 ** for tables is OP_Insert.
4506 case OP_SorterInsert
: /* in2 */
4507 #ifdef SQLITE_OMIT_MERGE_SORT
4508 pOp
->opcode
= OP_IdxInsert
;
4510 case OP_IdxInsert
: { /* in2 */
4516 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4517 pC
= p
->apCsr
[pOp
->p1
];
4519 assert( pC
->isSorter
==(pOp
->opcode
==OP_SorterInsert
) );
4520 pIn2
= &aMem
[pOp
->p2
];
4521 assert( pIn2
->flags
& MEM_Blob
);
4522 pCrsr
= pC
->pCursor
;
4523 if( ALWAYS(pCrsr
!=0) ){
4524 assert( pC
->isTable
==0 );
4525 rc
= ExpandBlob(pIn2
);
4526 if( rc
==SQLITE_OK
){
4528 rc
= sqlite3VdbeSorterWrite(db
, pC
, pIn2
);
4532 rc
= sqlite3BtreeInsert(pCrsr
, zKey
, nKey
, "", 0, 0, pOp
->p3
,
4533 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
4535 assert( pC
->deferredMoveto
==0 );
4536 pC
->cacheStatus
= CACHE_STALE
;
4543 /* Opcode: IdxDelete P1 P2 P3 * *
4545 ** The content of P3 registers starting at register P2 form
4546 ** an unpacked index key. This opcode removes that entry from the
4547 ** index opened by cursor P1.
4549 case OP_IdxDelete
: {
4555 assert( pOp
->p3
>0 );
4556 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=p
->nMem
+1 );
4557 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4558 pC
= p
->apCsr
[pOp
->p1
];
4560 pCrsr
= pC
->pCursor
;
4561 if( ALWAYS(pCrsr
!=0) ){
4562 r
.pKeyInfo
= pC
->pKeyInfo
;
4563 r
.nField
= (u16
)pOp
->p3
;
4565 r
.aMem
= &aMem
[pOp
->p2
];
4567 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4569 rc
= sqlite3BtreeMovetoUnpacked(pCrsr
, &r
, 0, 0, &res
);
4570 if( rc
==SQLITE_OK
&& res
==0 ){
4571 rc
= sqlite3BtreeDelete(pCrsr
);
4573 assert( pC
->deferredMoveto
==0 );
4574 pC
->cacheStatus
= CACHE_STALE
;
4579 /* Opcode: IdxRowid P1 P2 * * *
4581 ** Write into register P2 an integer which is the last entry in the record at
4582 ** the end of the index key pointed to by cursor P1. This integer should be
4583 ** the rowid of the table entry to which this index entry points.
4585 ** See also: Rowid, MakeRecord.
4587 case OP_IdxRowid
: { /* out2-prerelease */
4592 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4593 pC
= p
->apCsr
[pOp
->p1
];
4595 pCrsr
= pC
->pCursor
;
4596 pOut
->flags
= MEM_Null
;
4597 if( ALWAYS(pCrsr
!=0) ){
4598 rc
= sqlite3VdbeCursorMoveto(pC
);
4599 if( NEVER(rc
) ) goto abort_due_to_error
;
4600 assert( pC
->deferredMoveto
==0 );
4601 assert( pC
->isTable
==0 );
4603 rc
= sqlite3VdbeIdxRowid(db
, pCrsr
, &rowid
);
4604 if( rc
!=SQLITE_OK
){
4605 goto abort_due_to_error
;
4608 pOut
->flags
= MEM_Int
;
4614 /* Opcode: IdxGE P1 P2 P3 P4 P5
4616 ** The P4 register values beginning with P3 form an unpacked index
4617 ** key that omits the ROWID. Compare this key value against the index
4618 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4620 ** If the P1 index entry is greater than or equal to the key value
4621 ** then jump to P2. Otherwise fall through to the next instruction.
4623 ** If P5 is non-zero then the key value is increased by an epsilon
4624 ** prior to the comparison. This make the opcode work like IdxGT except
4625 ** that if the key from register P3 is a prefix of the key in the cursor,
4626 ** the result is false whereas it would be true with IdxGT.
4628 /* Opcode: IdxLT P1 P2 P3 P4 P5
4630 ** The P4 register values beginning with P3 form an unpacked index
4631 ** key that omits the ROWID. Compare this key value against the index
4632 ** that P1 is currently pointing to, ignoring the ROWID on the P1 index.
4634 ** If the P1 index entry is less than the key value then jump to P2.
4635 ** Otherwise fall through to the next instruction.
4637 ** If P5 is non-zero then the key value is increased by an epsilon prior
4638 ** to the comparison. This makes the opcode work like IdxLE.
4640 case OP_IdxLT
: /* jump */
4641 case OP_IdxGE
: { /* jump */
4646 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4647 pC
= p
->apCsr
[pOp
->p1
];
4649 assert( pC
->isOrdered
);
4650 if( ALWAYS(pC
->pCursor
!=0) ){
4651 assert( pC
->deferredMoveto
==0 );
4652 assert( pOp
->p5
==0 || pOp
->p5
==1 );
4653 assert( pOp
->p4type
==P4_INT32
);
4654 r
.pKeyInfo
= pC
->pKeyInfo
;
4655 r
.nField
= (u16
)pOp
->p4
.i
;
4657 r
.flags
= UNPACKED_INCRKEY
| UNPACKED_PREFIX_MATCH
;
4659 r
.flags
= UNPACKED_PREFIX_MATCH
;
4661 r
.aMem
= &aMem
[pOp
->p3
];
4663 { int i
; for(i
=0; i
<r
.nField
; i
++) assert( memIsValid(&r
.aMem
[i
]) ); }
4665 rc
= sqlite3VdbeIdxKeyCompare(pC
, &r
, &res
);
4666 if( pOp
->opcode
==OP_IdxLT
){
4669 assert( pOp
->opcode
==OP_IdxGE
);
4679 /* Opcode: Destroy P1 P2 P3 * *
4681 ** Delete an entire database table or index whose root page in the database
4682 ** file is given by P1.
4684 ** The table being destroyed is in the main database file if P3==0. If
4685 ** P3==1 then the table to be clear is in the auxiliary database file
4686 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4688 ** If AUTOVACUUM is enabled then it is possible that another root page
4689 ** might be moved into the newly deleted root page in order to keep all
4690 ** root pages contiguous at the beginning of the database. The former
4691 ** value of the root page that moved - its value before the move occurred -
4692 ** is stored in register P2. If no page
4693 ** movement was required (because the table being dropped was already
4694 ** the last one in the database) then a zero is stored in register P2.
4695 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
4699 case OP_Destroy
: { /* out2-prerelease */
4704 #ifndef SQLITE_OMIT_VIRTUALTABLE
4706 for(pVdbe
=db
->pVdbe
; pVdbe
; pVdbe
= pVdbe
->pNext
){
4707 if( pVdbe
->magic
==VDBE_MAGIC_RUN
&& pVdbe
->inVtabMethod
<2 && pVdbe
->pc
>=0 ){
4712 iCnt
= db
->activeVdbeCnt
;
4714 pOut
->flags
= MEM_Null
;
4717 p
->errorAction
= OE_Abort
;
4721 assert( (p
->btreeMask
& (((yDbMask
)1)<<iDb
))!=0 );
4722 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
4723 pOut
->flags
= MEM_Int
;
4725 #ifndef SQLITE_OMIT_AUTOVACUUM
4726 if( rc
==SQLITE_OK
&& iMoved
!=0 ){
4727 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
4728 /* All OP_Destroy operations occur on the same btree */
4729 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
4730 resetSchemaOnFault
= iDb
+1;
4737 /* Opcode: Clear P1 P2 P3
4739 ** Delete all contents of the database table or index whose root page
4740 ** in the database file is given by P1. But, unlike Destroy, do not
4741 ** remove the table or index from the database file.
4743 ** The table being clear is in the main database file if P2==0. If
4744 ** P2==1 then the table to be clear is in the auxiliary database file
4745 ** that is used to store tables create using CREATE TEMPORARY TABLE.
4747 ** If the P3 value is non-zero, then the table referred to must be an
4748 ** intkey table (an SQL table, not an index). In this case the row change
4749 ** count is incremented by the number of rows in the table being cleared.
4750 ** If P3 is greater than zero, then the value stored in register P3 is
4751 ** also incremented by the number of rows in the table being cleared.
4753 ** See also: Destroy
4759 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p2
))!=0 );
4760 rc
= sqlite3BtreeClearTable(
4761 db
->aDb
[pOp
->p2
].pBt
, pOp
->p1
, (pOp
->p3
? &nChange
: 0)
4764 p
->nChange
+= nChange
;
4766 assert( memIsValid(&aMem
[pOp
->p3
]) );
4767 memAboutToChange(p
, &aMem
[pOp
->p3
]);
4768 aMem
[pOp
->p3
].u
.i
+= nChange
;
4774 /* Opcode: CreateTable P1 P2 * * *
4776 ** Allocate a new table in the main database file if P1==0 or in the
4777 ** auxiliary database file if P1==1 or in an attached database if
4778 ** P1>1. Write the root page number of the new table into
4781 ** The difference between a table and an index is this: A table must
4782 ** have a 4-byte integer key and can have arbitrary data. An index
4783 ** has an arbitrary key but no data.
4785 ** See also: CreateIndex
4787 /* Opcode: CreateIndex P1 P2 * * *
4789 ** Allocate a new index in the main database file if P1==0 or in the
4790 ** auxiliary database file if P1==1 or in an attached database if
4791 ** P1>1. Write the root page number of the new table into
4794 ** See documentation on OP_CreateTable for additional information.
4796 case OP_CreateIndex
: /* out2-prerelease */
4797 case OP_CreateTable
: { /* out2-prerelease */
4803 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4804 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
4805 pDb
= &db
->aDb
[pOp
->p1
];
4806 assert( pDb
->pBt
!=0 );
4807 if( pOp
->opcode
==OP_CreateTable
){
4808 /* flags = BTREE_INTKEY; */
4809 flags
= BTREE_INTKEY
;
4811 flags
= BTREE_BLOBKEY
;
4813 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, flags
);
4818 /* Opcode: ParseSchema P1 * * P4 *
4820 ** Read and parse all entries from the SQLITE_MASTER table of database P1
4821 ** that match the WHERE clause P4.
4823 ** This opcode invokes the parser to create a new virtual machine,
4824 ** then runs the new virtual machine. It is thus a re-entrant opcode.
4826 case OP_ParseSchema
: {
4828 const char *zMaster
;
4832 /* Any prepared statement that invokes this opcode will hold mutexes
4833 ** on every btree. This is a prerequisite for invoking
4834 ** sqlite3InitCallback().
4837 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
4838 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
4843 assert( iDb
>=0 && iDb
<db
->nDb
);
4844 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
) );
4845 /* Used to be a conditional */ {
4846 zMaster
= SCHEMA_TABLE(iDb
);
4848 initData
.iDb
= pOp
->p1
;
4849 initData
.pzErrMsg
= &p
->zErrMsg
;
4850 zSql
= sqlite3MPrintf(db
,
4851 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
4852 db
->aDb
[iDb
].zName
, zMaster
, pOp
->p4
.z
);
4856 assert( db
->init
.busy
==0 );
4858 initData
.rc
= SQLITE_OK
;
4859 assert( !db
->mallocFailed
);
4860 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
4861 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
4862 sqlite3DbFree(db
, zSql
);
4866 if( rc
) sqlite3ResetAllSchemasOfConnection(db
);
4867 if( rc
==SQLITE_NOMEM
){
4873 #if !defined(SQLITE_OMIT_ANALYZE)
4874 /* Opcode: LoadAnalysis P1 * * * *
4876 ** Read the sqlite_stat1 table for database P1 and load the content
4877 ** of that table into the internal index hash table. This will cause
4878 ** the analysis to be used when preparing all subsequent queries.
4880 case OP_LoadAnalysis
: {
4881 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4882 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
4885 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
4887 /* Opcode: DropTable P1 * * P4 *
4889 ** Remove the internal (in-memory) data structures that describe
4890 ** the table named P4 in database P1. This is called after a table
4891 ** is dropped in order to keep the internal representation of the
4892 ** schema consistent with what is on disk.
4894 case OP_DropTable
: {
4895 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
4899 /* Opcode: DropIndex P1 * * P4 *
4901 ** Remove the internal (in-memory) data structures that describe
4902 ** the index named P4 in database P1. This is called after an index
4903 ** is dropped in order to keep the internal representation of the
4904 ** schema consistent with what is on disk.
4906 case OP_DropIndex
: {
4907 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
4911 /* Opcode: DropTrigger P1 * * P4 *
4913 ** Remove the internal (in-memory) data structures that describe
4914 ** the trigger named P4 in database P1. This is called after a trigger
4915 ** is dropped in order to keep the internal representation of the
4916 ** schema consistent with what is on disk.
4918 case OP_DropTrigger
: {
4919 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
4924 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
4925 /* Opcode: IntegrityCk P1 P2 P3 * P5
4927 ** Do an analysis of the currently open database. Store in
4928 ** register P1 the text of an error message describing any problems.
4929 ** If no problems are found, store a NULL in register P1.
4931 ** The register P3 contains the maximum number of allowed errors.
4932 ** At most reg(P3) errors will be reported.
4933 ** In other words, the analysis stops as soon as reg(P1) errors are
4934 ** seen. Reg(P1) is updated with the number of errors remaining.
4936 ** The root page numbers of all tables in the database are integer
4937 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
4940 ** If P5 is not zero, the check is done on the auxiliary database
4941 ** file, not the main database file.
4943 ** This opcode is used to implement the integrity_check pragma.
4945 case OP_IntegrityCk
: {
4946 int nRoot
; /* Number of tables to check. (Number of root pages.) */
4947 int *aRoot
; /* Array of rootpage numbers for tables to be checked */
4948 int j
; /* Loop counter */
4949 int nErr
; /* Number of errors reported */
4950 char *z
; /* Text of the error report */
4951 Mem
*pnErr
; /* Register keeping track of errors remaining */
4955 aRoot
= sqlite3DbMallocRaw(db
, sizeof(int)*(nRoot
+1) );
4956 if( aRoot
==0 ) goto no_mem
;
4957 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
4958 pnErr
= &aMem
[pOp
->p3
];
4959 assert( (pnErr
->flags
& MEM_Int
)!=0 );
4960 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
4961 pIn1
= &aMem
[pOp
->p1
];
4962 for(j
=0; j
<nRoot
; j
++){
4963 aRoot
[j
] = (int)sqlite3VdbeIntValue(&pIn1
[j
]);
4966 assert( pOp
->p5
<db
->nDb
);
4967 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p5
))!=0 );
4968 z
= sqlite3BtreeIntegrityCheck(db
->aDb
[pOp
->p5
].pBt
, aRoot
, nRoot
,
4969 (int)pnErr
->u
.i
, &nErr
);
4970 sqlite3DbFree(db
, aRoot
);
4972 sqlite3VdbeMemSetNull(pIn1
);
4978 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
4980 UPDATE_MAX_BLOBSIZE(pIn1
);
4981 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
4984 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
4986 /* Opcode: RowSetAdd P1 P2 * * *
4988 ** Insert the integer value held by register P2 into a boolean index
4989 ** held in register P1.
4991 ** An assertion fails if P2 is not an integer.
4993 case OP_RowSetAdd
: { /* in1, in2 */
4994 pIn1
= &aMem
[pOp
->p1
];
4995 pIn2
= &aMem
[pOp
->p2
];
4996 assert( (pIn2
->flags
& MEM_Int
)!=0 );
4997 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
4998 sqlite3VdbeMemSetRowSet(pIn1
);
4999 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
5001 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn2
->u
.i
);
5005 /* Opcode: RowSetRead P1 P2 P3 * *
5007 ** Extract the smallest value from boolean index P1 and put that value into
5008 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5009 ** unchanged and jump to instruction P2.
5011 case OP_RowSetRead
: { /* jump, in1, out3 */
5013 CHECK_FOR_INTERRUPT
;
5014 pIn1
= &aMem
[pOp
->p1
];
5015 if( (pIn1
->flags
& MEM_RowSet
)==0
5016 || sqlite3RowSetNext(pIn1
->u
.pRowSet
, &val
)==0
5018 /* The boolean index is empty */
5019 sqlite3VdbeMemSetNull(pIn1
);
5022 /* A value was pulled from the index */
5023 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
5028 /* Opcode: RowSetTest P1 P2 P3 P4
5030 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5031 ** contains a RowSet object and that RowSet object contains
5032 ** the value held in P3, jump to register P2. Otherwise, insert the
5033 ** integer in P3 into the RowSet and continue on to the
5036 ** The RowSet object is optimized for the case where successive sets
5037 ** of integers, where each set contains no duplicates. Each set
5038 ** of values is identified by a unique P4 value. The first set
5039 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5040 ** non-negative. For non-negative values of P4 only the lower 4
5041 ** bits are significant.
5043 ** This allows optimizations: (a) when P4==0 there is no need to test
5044 ** the rowset object for P3, as it is guaranteed not to contain it,
5045 ** (b) when P4==-1 there is no need to insert the value, as it will
5046 ** never be tested for, and (c) when a value that is part of set X is
5047 ** inserted, there is no need to search to see if the same value was
5048 ** previously inserted as part of set X (only if it was previously
5049 ** inserted as part of some other set).
5051 case OP_RowSetTest
: { /* jump, in1, in3 */
5055 pIn1
= &aMem
[pOp
->p1
];
5056 pIn3
= &aMem
[pOp
->p3
];
5058 assert( pIn3
->flags
&MEM_Int
);
5060 /* If there is anything other than a rowset object in memory cell P1,
5061 ** delete it now and initialize P1 with an empty rowset
5063 if( (pIn1
->flags
& MEM_RowSet
)==0 ){
5064 sqlite3VdbeMemSetRowSet(pIn1
);
5065 if( (pIn1
->flags
& MEM_RowSet
)==0 ) goto no_mem
;
5068 assert( pOp
->p4type
==P4_INT32
);
5069 assert( iSet
==-1 || iSet
>=0 );
5071 exists
= sqlite3RowSetTest(pIn1
->u
.pRowSet
,
5072 (u8
)(iSet
>=0 ? iSet
& 0xf : 0xff),
5080 sqlite3RowSetInsert(pIn1
->u
.pRowSet
, pIn3
->u
.i
);
5086 #ifndef SQLITE_OMIT_TRIGGER
5088 /* Opcode: Program P1 P2 P3 P4 *
5090 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5092 ** P1 contains the address of the memory cell that contains the first memory
5093 ** cell in an array of values used as arguments to the sub-program. P2
5094 ** contains the address to jump to if the sub-program throws an IGNORE
5095 ** exception using the RAISE() function. Register P3 contains the address
5096 ** of a memory cell in this (the parent) VM that is used to allocate the
5097 ** memory required by the sub-vdbe at runtime.
5099 ** P4 is a pointer to the VM containing the trigger program.
5101 case OP_Program
: { /* jump */
5102 int nMem
; /* Number of memory registers for sub-program */
5103 int nByte
; /* Bytes of runtime space required for sub-program */
5104 Mem
*pRt
; /* Register to allocate runtime space */
5105 Mem
*pMem
; /* Used to iterate through memory cells */
5106 Mem
*pEnd
; /* Last memory cell in new array */
5107 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
5108 SubProgram
*pProgram
; /* Sub-program to execute */
5109 void *t
; /* Token identifying trigger */
5111 pProgram
= pOp
->p4
.pProgram
;
5112 pRt
= &aMem
[pOp
->p3
];
5113 assert( pProgram
->nOp
>0 );
5115 /* If the p5 flag is clear, then recursive invocation of triggers is
5116 ** disabled for backwards compatibility (p5 is set if this sub-program
5117 ** is really a trigger, not a foreign key action, and the flag set
5118 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5120 ** It is recursive invocation of triggers, at the SQL level, that is
5121 ** disabled. In some cases a single trigger may generate more than one
5122 ** SubProgram (if the trigger may be executed with more than one different
5123 ** ON CONFLICT algorithm). SubProgram structures associated with a
5124 ** single trigger all have the same value for the SubProgram.token
5127 t
= pProgram
->token
;
5128 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
5132 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
5134 sqlite3SetString(&p
->zErrMsg
, db
, "too many levels of trigger recursion");
5138 /* Register pRt is used to store the memory required to save the state
5139 ** of the current program, and the memory required at runtime to execute
5140 ** the trigger program. If this trigger has been fired before, then pRt
5141 ** is already allocated. Otherwise, it must be initialized. */
5142 if( (pRt
->flags
&MEM_Frame
)==0 ){
5143 /* SubProgram.nMem is set to the number of memory cells used by the
5144 ** program stored in SubProgram.aOp. As well as these, one memory
5145 ** cell is required for each cursor used by the program. Set local
5146 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5148 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
5149 nByte
= ROUND8(sizeof(VdbeFrame
))
5150 + nMem
* sizeof(Mem
)
5151 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
5152 + pProgram
->nOnce
* sizeof(u8
);
5153 pFrame
= sqlite3DbMallocZero(db
, nByte
);
5157 sqlite3VdbeMemRelease(pRt
);
5158 pRt
->flags
= MEM_Frame
;
5159 pRt
->u
.pFrame
= pFrame
;
5162 pFrame
->nChildMem
= nMem
;
5163 pFrame
->nChildCsr
= pProgram
->nCsr
;
5165 pFrame
->aMem
= p
->aMem
;
5166 pFrame
->nMem
= p
->nMem
;
5167 pFrame
->apCsr
= p
->apCsr
;
5168 pFrame
->nCursor
= p
->nCursor
;
5169 pFrame
->aOp
= p
->aOp
;
5170 pFrame
->nOp
= p
->nOp
;
5171 pFrame
->token
= pProgram
->token
;
5172 pFrame
->aOnceFlag
= p
->aOnceFlag
;
5173 pFrame
->nOnceFlag
= p
->nOnceFlag
;
5175 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
5176 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
5177 pMem
->flags
= MEM_Invalid
;
5181 pFrame
= pRt
->u
.pFrame
;
5182 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
);
5183 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
5184 assert( pc
==pFrame
->pc
);
5188 pFrame
->pParent
= p
->pFrame
;
5189 pFrame
->lastRowid
= lastRowid
;
5190 pFrame
->nChange
= p
->nChange
;
5193 p
->aMem
= aMem
= &VdbeFrameMem(pFrame
)[-1];
5194 p
->nMem
= pFrame
->nChildMem
;
5195 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
5196 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
+1];
5197 p
->aOp
= aOp
= pProgram
->aOp
;
5198 p
->nOp
= pProgram
->nOp
;
5199 p
->aOnceFlag
= (u8
*)&p
->apCsr
[p
->nCursor
];
5200 p
->nOnceFlag
= pProgram
->nOnce
;
5202 memset(p
->aOnceFlag
, 0, p
->nOnceFlag
);
5207 /* Opcode: Param P1 P2 * * *
5209 ** This opcode is only ever present in sub-programs called via the
5210 ** OP_Program instruction. Copy a value currently stored in a memory
5211 ** cell of the calling (parent) frame to cell P2 in the current frames
5212 ** address space. This is used by trigger programs to access the new.*
5213 ** and old.* values.
5215 ** The address of the cell in the parent frame is determined by adding
5216 ** the value of the P1 argument to the value of the P1 argument to the
5217 ** calling OP_Program instruction.
5219 case OP_Param
: { /* out2-prerelease */
5223 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
5224 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
5228 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5230 #ifndef SQLITE_OMIT_FOREIGN_KEY
5231 /* Opcode: FkCounter P1 P2 * * *
5233 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5234 ** If P1 is non-zero, the database constraint counter is incremented
5235 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5236 ** statement counter is incremented (immediate foreign key constraints).
5238 case OP_FkCounter
: {
5240 db
->nDeferredCons
+= pOp
->p2
;
5242 p
->nFkConstraint
+= pOp
->p2
;
5247 /* Opcode: FkIfZero P1 P2 * * *
5249 ** This opcode tests if a foreign key constraint-counter is currently zero.
5250 ** If so, jump to instruction P2. Otherwise, fall through to the next
5253 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5254 ** is zero (the one that counts deferred constraint violations). If P1 is
5255 ** zero, the jump is taken if the statement constraint-counter is zero
5256 ** (immediate foreign key constraint violations).
5258 case OP_FkIfZero
: { /* jump */
5260 if( db
->nDeferredCons
==0 ) pc
= pOp
->p2
-1;
5262 if( p
->nFkConstraint
==0 ) pc
= pOp
->p2
-1;
5266 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5268 #ifndef SQLITE_OMIT_AUTOINCREMENT
5269 /* Opcode: MemMax P1 P2 * * *
5271 ** P1 is a register in the root frame of this VM (the root frame is
5272 ** different from the current frame if this instruction is being executed
5273 ** within a sub-program). Set the value of register P1 to the maximum of
5274 ** its current value and the value in register P2.
5276 ** This instruction throws an error if the memory cell is not initially
5279 case OP_MemMax
: { /* in2 */
5283 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5284 pIn1
= &pFrame
->aMem
[pOp
->p1
];
5286 pIn1
= &aMem
[pOp
->p1
];
5288 assert( memIsValid(pIn1
) );
5289 sqlite3VdbeMemIntegerify(pIn1
);
5290 pIn2
= &aMem
[pOp
->p2
];
5291 sqlite3VdbeMemIntegerify(pIn2
);
5292 if( pIn1
->u
.i
<pIn2
->u
.i
){
5293 pIn1
->u
.i
= pIn2
->u
.i
;
5297 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5299 /* Opcode: IfPos P1 P2 * * *
5301 ** If the value of register P1 is 1 or greater, jump to P2.
5303 ** It is illegal to use this instruction on a register that does
5304 ** not contain an integer. An assertion fault will result if you try.
5306 case OP_IfPos
: { /* jump, in1 */
5307 pIn1
= &aMem
[pOp
->p1
];
5308 assert( pIn1
->flags
&MEM_Int
);
5315 /* Opcode: IfNeg P1 P2 * * *
5317 ** If the value of register P1 is less than zero, jump to P2.
5319 ** It is illegal to use this instruction on a register that does
5320 ** not contain an integer. An assertion fault will result if you try.
5322 case OP_IfNeg
: { /* jump, in1 */
5323 pIn1
= &aMem
[pOp
->p1
];
5324 assert( pIn1
->flags
&MEM_Int
);
5331 /* Opcode: IfZero P1 P2 P3 * *
5333 ** The register P1 must contain an integer. Add literal P3 to the
5334 ** value in register P1. If the result is exactly 0, jump to P2.
5336 ** It is illegal to use this instruction on a register that does
5337 ** not contain an integer. An assertion fault will result if you try.
5339 case OP_IfZero
: { /* jump, in1 */
5340 pIn1
= &aMem
[pOp
->p1
];
5341 assert( pIn1
->flags
&MEM_Int
);
5342 pIn1
->u
.i
+= pOp
->p3
;
5349 /* Opcode: AggStep * P2 P3 P4 P5
5351 ** Execute the step function for an aggregate. The
5352 ** function has P5 arguments. P4 is a pointer to the FuncDef
5353 ** structure that specifies the function. Use register
5354 ** P3 as the accumulator.
5356 ** The P5 arguments are taken from register P2 and its
5364 sqlite3_context ctx
;
5365 sqlite3_value
**apVal
;
5369 pRec
= &aMem
[pOp
->p2
];
5371 assert( apVal
|| n
==0 );
5372 for(i
=0; i
<n
; i
++, pRec
++){
5373 assert( memIsValid(pRec
) );
5375 memAboutToChange(p
, pRec
);
5376 sqlite3VdbeMemStoreType(pRec
);
5378 ctx
.pFunc
= pOp
->p4
.pFunc
;
5379 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
5380 ctx
.pMem
= pMem
= &aMem
[pOp
->p3
];
5382 ctx
.s
.flags
= MEM_Null
;
5390 if( ctx
.pFunc
->flags
& SQLITE_FUNC_NEEDCOLL
){
5391 assert( pOp
>p
->aOp
);
5392 assert( pOp
[-1].p4type
==P4_COLLSEQ
);
5393 assert( pOp
[-1].opcode
==OP_CollSeq
);
5394 ctx
.pColl
= pOp
[-1].p4
.pColl
;
5396 (ctx
.pFunc
->xStep
)(&ctx
, n
, apVal
); /* IMP: R-24505-23230 */
5398 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(&ctx
.s
));
5402 assert( pOp
[-1].opcode
==OP_CollSeq
);
5404 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
5407 sqlite3VdbeMemRelease(&ctx
.s
);
5412 /* Opcode: AggFinal P1 P2 * P4 *
5414 ** Execute the finalizer function for an aggregate. P1 is
5415 ** the memory location that is the accumulator for the aggregate.
5417 ** P2 is the number of arguments that the step function takes and
5418 ** P4 is a pointer to the FuncDef for this function. The P2
5419 ** argument is not used by this opcode. It is only there to disambiguate
5420 ** functions that can take varying numbers of arguments. The
5421 ** P4 argument is only needed for the degenerate case where
5422 ** the step function was not previously called.
5426 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nMem
);
5427 pMem
= &aMem
[pOp
->p1
];
5428 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
5429 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
5431 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3_value_text(pMem
));
5433 sqlite3VdbeChangeEncoding(pMem
, encoding
);
5434 UPDATE_MAX_BLOBSIZE(pMem
);
5435 if( sqlite3VdbeMemTooBig(pMem
) ){
5441 #ifndef SQLITE_OMIT_WAL
5442 /* Opcode: Checkpoint P1 P2 P3 * *
5444 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5445 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL
5446 ** or RESTART. Write 1 or 0 into mem[P3] if the checkpoint returns
5447 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5448 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5449 ** in the WAL that have been checkpointed after the checkpoint
5450 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5451 ** mem[P3+2] are initialized to -1.
5453 case OP_Checkpoint
: {
5454 int i
; /* Loop counter */
5455 int aRes
[3]; /* Results */
5456 Mem
*pMem
; /* Write results here */
5459 aRes
[1] = aRes
[2] = -1;
5460 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
5461 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
5462 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
5464 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
5465 if( rc
==SQLITE_BUSY
){
5469 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
5470 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
5476 #ifndef SQLITE_OMIT_PRAGMA
5477 /* Opcode: JournalMode P1 P2 P3 * P5
5479 ** Change the journal mode of database P1 to P3. P3 must be one of the
5480 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5481 ** modes (delete, truncate, persist, off and memory), this is a simple
5482 ** operation. No IO is required.
5484 ** If changing into or out of WAL mode the procedure is more complicated.
5486 ** Write a string containing the final journal-mode to register P2.
5488 case OP_JournalMode
: { /* out2-prerelease */
5489 Btree
*pBt
; /* Btree to change journal mode of */
5490 Pager
*pPager
; /* Pager associated with pBt */
5491 int eNew
; /* New journal mode */
5492 int eOld
; /* The old journal mode */
5493 const char *zFilename
; /* Name of database file for pPager */
5496 assert( eNew
==PAGER_JOURNALMODE_DELETE
5497 || eNew
==PAGER_JOURNALMODE_TRUNCATE
5498 || eNew
==PAGER_JOURNALMODE_PERSIST
5499 || eNew
==PAGER_JOURNALMODE_OFF
5500 || eNew
==PAGER_JOURNALMODE_MEMORY
5501 || eNew
==PAGER_JOURNALMODE_WAL
5502 || eNew
==PAGER_JOURNALMODE_QUERY
5504 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5506 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5507 pPager
= sqlite3BtreePager(pBt
);
5508 eOld
= sqlite3PagerGetJournalMode(pPager
);
5509 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
5510 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
5512 #ifndef SQLITE_OMIT_WAL
5513 zFilename
= sqlite3PagerFilename(pPager
, 1);
5515 /* Do not allow a transition to journal_mode=WAL for a database
5516 ** in temporary storage or if the VFS does not support shared memory
5518 if( eNew
==PAGER_JOURNALMODE_WAL
5519 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
5520 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
5526 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
5528 if( !db
->autoCommit
|| db
->activeVdbeCnt
>1 ){
5530 sqlite3SetString(&p
->zErrMsg
, db
,
5531 "cannot change %s wal mode from within a transaction",
5532 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
5537 if( eOld
==PAGER_JOURNALMODE_WAL
){
5538 /* If leaving WAL mode, close the log file. If successful, the call
5539 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
5540 ** file. An EXCLUSIVE lock may still be held on the database file
5541 ** after a successful return.
5543 rc
= sqlite3PagerCloseWal(pPager
);
5544 if( rc
==SQLITE_OK
){
5545 sqlite3PagerSetJournalMode(pPager
, eNew
);
5547 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
5548 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
5549 ** as an intermediate */
5550 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
5553 /* Open a transaction on the database file. Regardless of the journal
5554 ** mode, this transaction always uses a rollback journal.
5556 assert( sqlite3BtreeIsInTrans(pBt
)==0 );
5557 if( rc
==SQLITE_OK
){
5558 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
5562 #endif /* ifndef SQLITE_OMIT_WAL */
5567 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
5569 pOut
= &aMem
[pOp
->p2
];
5570 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
5571 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
5572 pOut
->n
= sqlite3Strlen30(pOut
->z
);
5573 pOut
->enc
= SQLITE_UTF8
;
5574 sqlite3VdbeChangeEncoding(pOut
, encoding
);
5577 #endif /* SQLITE_OMIT_PRAGMA */
5579 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
5580 /* Opcode: Vacuum * * * * *
5582 ** Vacuum the entire database. This opcode will cause other virtual
5583 ** machines to be created and run. It may not be called from within
5587 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
);
5592 #if !defined(SQLITE_OMIT_AUTOVACUUM)
5593 /* Opcode: IncrVacuum P1 P2 * * *
5595 ** Perform a single step of the incremental vacuum procedure on
5596 ** the P1 database. If the vacuum has finished, jump to instruction
5597 ** P2. Otherwise, fall through to the next instruction.
5599 case OP_IncrVacuum
: { /* jump */
5602 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
5603 assert( (p
->btreeMask
& (((yDbMask
)1)<<pOp
->p1
))!=0 );
5604 pBt
= db
->aDb
[pOp
->p1
].pBt
;
5605 rc
= sqlite3BtreeIncrVacuum(pBt
);
5606 if( rc
==SQLITE_DONE
){
5614 /* Opcode: Expire P1 * * * *
5616 ** Cause precompiled statements to become expired. An expired statement
5617 ** fails with an error code of SQLITE_SCHEMA if it is ever executed
5618 ** (via sqlite3_step()).
5620 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
5621 ** then only the currently executing statement is affected.
5625 sqlite3ExpirePreparedStatements(db
);
5632 #ifndef SQLITE_OMIT_SHARED_CACHE
5633 /* Opcode: TableLock P1 P2 P3 P4 *
5635 ** Obtain a lock on a particular table. This instruction is only used when
5636 ** the shared-cache feature is enabled.
5638 ** P1 is the index of the database in sqlite3.aDb[] of the database
5639 ** on which the lock is acquired. A readlock is obtained if P3==0 or
5640 ** a write lock if P3==1.
5642 ** P2 contains the root-page of the table to lock.
5644 ** P4 contains a pointer to the name of the table being locked. This is only
5645 ** used to generate an error message if the lock cannot be obtained.
5647 case OP_TableLock
: {
5648 u8 isWriteLock
= (u8
)pOp
->p3
;
5649 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommitted
) ){
5651 assert( p1
>=0 && p1
<db
->nDb
);
5652 assert( (p
->btreeMask
& (((yDbMask
)1)<<p1
))!=0 );
5653 assert( isWriteLock
==0 || isWriteLock
==1 );
5654 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
5655 if( (rc
&0xFF)==SQLITE_LOCKED
){
5656 const char *z
= pOp
->p4
.z
;
5657 sqlite3SetString(&p
->zErrMsg
, db
, "database table is locked: %s", z
);
5662 #endif /* SQLITE_OMIT_SHARED_CACHE */
5664 #ifndef SQLITE_OMIT_VIRTUALTABLE
5665 /* Opcode: VBegin * * * P4 *
5667 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
5668 ** xBegin method for that table.
5670 ** Also, whether or not P4 is set, check that this is not being called from
5671 ** within a callback to a virtual table xSync() method. If it is, the error
5672 ** code will be set to SQLITE_LOCKED.
5676 pVTab
= pOp
->p4
.pVtab
;
5677 rc
= sqlite3VtabBegin(db
, pVTab
);
5678 if( pVTab
) importVtabErrMsg(p
, pVTab
->pVtab
);
5681 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5683 #ifndef SQLITE_OMIT_VIRTUALTABLE
5684 /* Opcode: VCreate P1 * * P4 *
5686 ** P4 is the name of a virtual table in database P1. Call the xCreate method
5690 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, pOp
->p4
.z
, &p
->zErrMsg
);
5693 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5695 #ifndef SQLITE_OMIT_VIRTUALTABLE
5696 /* Opcode: VDestroy P1 * * P4 *
5698 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
5702 p
->inVtabMethod
= 2;
5703 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
5704 p
->inVtabMethod
= 0;
5707 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5709 #ifndef SQLITE_OMIT_VIRTUALTABLE
5710 /* Opcode: VOpen P1 * * P4 *
5712 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5713 ** P1 is a cursor number. This opcode opens a cursor to the virtual
5714 ** table and stores that cursor in P1.
5718 sqlite3_vtab_cursor
*pVtabCursor
;
5719 sqlite3_vtab
*pVtab
;
5720 sqlite3_module
*pModule
;
5724 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5725 pModule
= (sqlite3_module
*)pVtab
->pModule
;
5726 assert(pVtab
&& pModule
);
5727 rc
= pModule
->xOpen(pVtab
, &pVtabCursor
);
5728 importVtabErrMsg(p
, pVtab
);
5729 if( SQLITE_OK
==rc
){
5730 /* Initialize sqlite3_vtab_cursor base class */
5731 pVtabCursor
->pVtab
= pVtab
;
5733 /* Initialise vdbe cursor object */
5734 pCur
= allocateCursor(p
, pOp
->p1
, 0, -1, 0);
5736 pCur
->pVtabCursor
= pVtabCursor
;
5737 pCur
->pModule
= pVtabCursor
->pVtab
->pModule
;
5739 db
->mallocFailed
= 1;
5740 pModule
->xClose(pVtabCursor
);
5745 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5747 #ifndef SQLITE_OMIT_VIRTUALTABLE
5748 /* Opcode: VFilter P1 P2 P3 P4 *
5750 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
5751 ** the filtered result set is empty.
5753 ** P4 is either NULL or a string that was generated by the xBestIndex
5754 ** method of the module. The interpretation of the P4 string is left
5755 ** to the module implementation.
5757 ** This opcode invokes the xFilter method on the virtual table specified
5758 ** by P1. The integer query plan parameter to xFilter is stored in register
5759 ** P3. Register P3+1 stores the argc parameter to be passed to the
5760 ** xFilter method. Registers P3+2..P3+1+argc are the argc
5761 ** additional parameters which are passed to
5762 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
5764 ** A jump is made to P2 if the result set after filtering would be empty.
5766 case OP_VFilter
: { /* jump */
5769 const sqlite3_module
*pModule
;
5772 sqlite3_vtab_cursor
*pVtabCursor
;
5773 sqlite3_vtab
*pVtab
;
5779 pQuery
= &aMem
[pOp
->p3
];
5781 pCur
= p
->apCsr
[pOp
->p1
];
5782 assert( memIsValid(pQuery
) );
5783 REGISTER_TRACE(pOp
->p3
, pQuery
);
5784 assert( pCur
->pVtabCursor
);
5785 pVtabCursor
= pCur
->pVtabCursor
;
5786 pVtab
= pVtabCursor
->pVtab
;
5787 pModule
= pVtab
->pModule
;
5789 /* Grab the index number and argc parameters */
5790 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
5791 nArg
= (int)pArgc
->u
.i
;
5792 iQuery
= (int)pQuery
->u
.i
;
5794 /* Invoke the xFilter method */
5798 for(i
= 0; i
<nArg
; i
++){
5799 apArg
[i
] = &pArgc
[i
+1];
5800 sqlite3VdbeMemStoreType(apArg
[i
]);
5803 p
->inVtabMethod
= 1;
5804 rc
= pModule
->xFilter(pVtabCursor
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
5805 p
->inVtabMethod
= 0;
5806 importVtabErrMsg(p
, pVtab
);
5807 if( rc
==SQLITE_OK
){
5808 res
= pModule
->xEof(pVtabCursor
);
5819 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5821 #ifndef SQLITE_OMIT_VIRTUALTABLE
5822 /* Opcode: VColumn P1 P2 P3 * *
5824 ** Store the value of the P2-th column of
5825 ** the row of the virtual-table that the
5826 ** P1 cursor is pointing to into register P3.
5829 sqlite3_vtab
*pVtab
;
5830 const sqlite3_module
*pModule
;
5832 sqlite3_context sContext
;
5834 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
5835 assert( pCur
->pVtabCursor
);
5836 assert( pOp
->p3
>0 && pOp
->p3
<=p
->nMem
);
5837 pDest
= &aMem
[pOp
->p3
];
5838 memAboutToChange(p
, pDest
);
5839 if( pCur
->nullRow
){
5840 sqlite3VdbeMemSetNull(pDest
);
5843 pVtab
= pCur
->pVtabCursor
->pVtab
;
5844 pModule
= pVtab
->pModule
;
5845 assert( pModule
->xColumn
);
5846 memset(&sContext
, 0, sizeof(sContext
));
5848 /* The output cell may already have a buffer allocated. Move
5849 ** the current contents to sContext.s so in case the user-function
5850 ** can use the already allocated buffer instead of allocating a
5853 sqlite3VdbeMemMove(&sContext
.s
, pDest
);
5854 MemSetTypeFlag(&sContext
.s
, MEM_Null
);
5856 rc
= pModule
->xColumn(pCur
->pVtabCursor
, &sContext
, pOp
->p2
);
5857 importVtabErrMsg(p
, pVtab
);
5858 if( sContext
.isError
){
5859 rc
= sContext
.isError
;
5862 /* Copy the result of the function to the P3 register. We
5863 ** do this regardless of whether or not an error occurred to ensure any
5864 ** dynamic allocation in sContext.s (a Mem struct) is released.
5866 sqlite3VdbeChangeEncoding(&sContext
.s
, encoding
);
5867 sqlite3VdbeMemMove(pDest
, &sContext
.s
);
5868 REGISTER_TRACE(pOp
->p3
, pDest
);
5869 UPDATE_MAX_BLOBSIZE(pDest
);
5871 if( sqlite3VdbeMemTooBig(pDest
) ){
5876 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5878 #ifndef SQLITE_OMIT_VIRTUALTABLE
5879 /* Opcode: VNext P1 P2 * * *
5881 ** Advance virtual table P1 to the next row in its result set and
5882 ** jump to instruction P2. Or, if the virtual table has reached
5883 ** the end of its result set, then fall through to the next instruction.
5885 case OP_VNext
: { /* jump */
5886 sqlite3_vtab
*pVtab
;
5887 const sqlite3_module
*pModule
;
5892 pCur
= p
->apCsr
[pOp
->p1
];
5893 assert( pCur
->pVtabCursor
);
5894 if( pCur
->nullRow
){
5897 pVtab
= pCur
->pVtabCursor
->pVtab
;
5898 pModule
= pVtab
->pModule
;
5899 assert( pModule
->xNext
);
5901 /* Invoke the xNext() method of the module. There is no way for the
5902 ** underlying implementation to return an error if one occurs during
5903 ** xNext(). Instead, if an error occurs, true is returned (indicating that
5904 ** data is available) and the error code returned when xColumn or
5905 ** some other method is next invoked on the save virtual table cursor.
5907 p
->inVtabMethod
= 1;
5908 rc
= pModule
->xNext(pCur
->pVtabCursor
);
5909 p
->inVtabMethod
= 0;
5910 importVtabErrMsg(p
, pVtab
);
5911 if( rc
==SQLITE_OK
){
5912 res
= pModule
->xEof(pCur
->pVtabCursor
);
5916 /* If there is data, jump to P2 */
5921 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5923 #ifndef SQLITE_OMIT_VIRTUALTABLE
5924 /* Opcode: VRename P1 * * P4 *
5926 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5927 ** This opcode invokes the corresponding xRename method. The value
5928 ** in register P1 is passed as the zName argument to the xRename method.
5931 sqlite3_vtab
*pVtab
;
5934 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5935 pName
= &aMem
[pOp
->p1
];
5936 assert( pVtab
->pModule
->xRename
);
5937 assert( memIsValid(pName
) );
5938 REGISTER_TRACE(pOp
->p1
, pName
);
5939 assert( pName
->flags
& MEM_Str
);
5940 testcase( pName
->enc
==SQLITE_UTF8
);
5941 testcase( pName
->enc
==SQLITE_UTF16BE
);
5942 testcase( pName
->enc
==SQLITE_UTF16LE
);
5943 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
5944 if( rc
==SQLITE_OK
){
5945 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
5946 importVtabErrMsg(p
, pVtab
);
5953 #ifndef SQLITE_OMIT_VIRTUALTABLE
5954 /* Opcode: VUpdate P1 P2 P3 P4 *
5956 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
5957 ** This opcode invokes the corresponding xUpdate method. P2 values
5958 ** are contiguous memory cells starting at P3 to pass to the xUpdate
5959 ** invocation. The value in register (P3+P2-1) corresponds to the
5960 ** p2th element of the argv array passed to xUpdate.
5962 ** The xUpdate method will do a DELETE or an INSERT or both.
5963 ** The argv[0] element (which corresponds to memory cell P3)
5964 ** is the rowid of a row to delete. If argv[0] is NULL then no
5965 ** deletion occurs. The argv[1] element is the rowid of the new
5966 ** row. This can be NULL to have the virtual table select the new
5967 ** rowid for itself. The subsequent elements in the array are
5968 ** the values of columns in the new row.
5970 ** If P2==1 then no insert is performed. argv[0] is the rowid of
5973 ** P1 is a boolean flag. If it is set to true and the xUpdate call
5974 ** is successful, then the value returned by sqlite3_last_insert_rowid()
5975 ** is set to the value of the rowid for the row just inserted.
5978 sqlite3_vtab
*pVtab
;
5979 sqlite3_module
*pModule
;
5986 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
5987 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
5989 pVtab
= pOp
->p4
.pVtab
->pVtab
;
5990 pModule
= (sqlite3_module
*)pVtab
->pModule
;
5992 assert( pOp
->p4type
==P4_VTAB
);
5993 if( ALWAYS(pModule
->xUpdate
) ){
5994 u8 vtabOnConflict
= db
->vtabOnConflict
;
5996 pX
= &aMem
[pOp
->p3
];
5997 for(i
=0; i
<nArg
; i
++){
5998 assert( memIsValid(pX
) );
5999 memAboutToChange(p
, pX
);
6000 sqlite3VdbeMemStoreType(pX
);
6004 db
->vtabOnConflict
= pOp
->p5
;
6005 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
6006 db
->vtabOnConflict
= vtabOnConflict
;
6007 importVtabErrMsg(p
, pVtab
);
6008 if( rc
==SQLITE_OK
&& pOp
->p1
){
6009 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
6010 db
->lastRowid
= lastRowid
= rowid
;
6012 if( rc
==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
6013 if( pOp
->p5
==OE_Ignore
){
6016 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
6024 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6026 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6027 /* Opcode: Pagecount P1 P2 * * *
6029 ** Write the current number of pages in database P1 to memory cell P2.
6031 case OP_Pagecount
: { /* out2-prerelease */
6032 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
6038 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6039 /* Opcode: MaxPgcnt P1 P2 P3 * *
6041 ** Try to set the maximum page count for database P1 to the value in P3.
6042 ** Do not let the maximum page count fall below the current page count and
6043 ** do not change the maximum page count value if P3==0.
6045 ** Store the maximum page count after the change in register P2.
6047 case OP_MaxPgcnt
: { /* out2-prerelease */
6048 unsigned int newMax
;
6051 pBt
= db
->aDb
[pOp
->p1
].pBt
;
6054 newMax
= sqlite3BtreeLastPage(pBt
);
6055 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
6057 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
6063 #ifndef SQLITE_OMIT_TRACE
6064 /* Opcode: Trace * * * P4 *
6066 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6067 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6073 if( db
->xTrace
&& (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0 ){
6074 z
= sqlite3VdbeExpandSql(p
, zTrace
);
6075 db
->xTrace(db
->pTraceArg
, z
);
6076 sqlite3DbFree(db
, z
);
6079 if( (db
->flags
& SQLITE_SqlTrace
)!=0
6080 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
6082 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
6084 #endif /* SQLITE_DEBUG */
6090 /* Opcode: Noop * * * * *
6092 ** Do nothing. This instruction is often useful as a jump
6096 ** The magic Explain opcode are only inserted when explain==2 (which
6097 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6098 ** This opcode records information from the optimizer. It is the
6099 ** the same as a no-op. This opcodesnever appears in a real VM program.
6101 default: { /* This is really OP_Noop and OP_Explain */
6102 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
6106 /*****************************************************************************
6107 ** The cases of the switch statement above this line should all be indented
6108 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6109 ** readability. From this point on down, the normal indentation rules are
6111 *****************************************************************************/
6116 u64 elapsed
= sqlite3Hwtime() - start
;
6117 pOp
->cycles
+= elapsed
;
6120 fprintf(stdout
, "%10llu ", elapsed
);
6121 sqlite3VdbePrintOp(stdout
, origPc
, &aOp
[origPc
]);
6126 /* The following code adds nothing to the actual functionality
6127 ** of the program. It is only here for testing and debugging.
6128 ** On the other hand, it does burn CPU cycles every time through
6129 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6132 assert( pc
>=-1 && pc
<p
->nOp
);
6136 if( rc
!=0 ) fprintf(p
->trace
,"rc=%d\n",rc
);
6137 if( pOp
->opflags
& (OPFLG_OUT2_PRERELEASE
|OPFLG_OUT2
) ){
6138 registerTrace(p
->trace
, pOp
->p2
, &aMem
[pOp
->p2
]);
6140 if( pOp
->opflags
& OPFLG_OUT3
){
6141 registerTrace(p
->trace
, pOp
->p3
, &aMem
[pOp
->p3
]);
6144 #endif /* SQLITE_DEBUG */
6146 } /* The end of the for(;;) loop the loops through opcodes */
6148 /* If we reach this point, it means that execution is finished with
6149 ** an error of some kind.
6154 testcase( sqlite3GlobalConfig
.xLog
!=0 );
6155 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
6156 pc
, p
->zSql
, p
->zErrMsg
);
6158 if( rc
==SQLITE_IOERR_NOMEM
) db
->mallocFailed
= 1;
6160 if( resetSchemaOnFault
>0 ){
6161 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
6164 /* This is the only way out of this procedure. We have to
6165 ** release the mutexes on btrees that were acquired at the
6168 db
->lastRowid
= lastRowid
;
6169 sqlite3VdbeLeave(p
);
6172 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6176 sqlite3SetString(&p
->zErrMsg
, db
, "string or blob too big");
6178 goto vdbe_error_halt
;
6180 /* Jump to here if a malloc() fails.
6183 db
->mallocFailed
= 1;
6184 sqlite3SetString(&p
->zErrMsg
, db
, "out of memory");
6186 goto vdbe_error_halt
;
6188 /* Jump to here for any other kind of fatal error. The "rc" variable
6189 ** should hold the error number.
6192 assert( p
->zErrMsg
==0 );
6193 if( db
->mallocFailed
) rc
= SQLITE_NOMEM
;
6194 if( rc
!=SQLITE_IOERR_NOMEM
){
6195 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3ErrStr(rc
));
6197 goto vdbe_error_halt
;
6199 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6202 abort_due_to_interrupt
:
6203 assert( db
->u1
.isInterrupted
);
6204 rc
= SQLITE_INTERRUPT
;
6206 sqlite3SetString(&p
->zErrMsg
, db
, "%s", sqlite3ErrStr(rc
));
6207 goto vdbe_error_halt
;