track 3.7.13
[sqlcipher.git] / src / vtab.c
blob0e082a05d9511abe6c233928ab08299da9f51f44
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
24 struct VtabCtx {
25 VTable *pVTable; /* The virtual table being constructed */
26 Table *pTab; /* The Table object to which the virtual table belongs */
30 ** The actual function that does the work of creating a new module.
31 ** This function implements the sqlite3_create_module() and
32 ** sqlite3_create_module_v2() interfaces.
34 static int createModule(
35 sqlite3 *db, /* Database in which module is registered */
36 const char *zName, /* Name assigned to this module */
37 const sqlite3_module *pModule, /* The definition of the module */
38 void *pAux, /* Context pointer for xCreate/xConnect */
39 void (*xDestroy)(void *) /* Module destructor function */
41 int rc = SQLITE_OK;
42 int nName;
44 sqlite3_mutex_enter(db->mutex);
45 nName = sqlite3Strlen30(zName);
46 if( sqlite3HashFind(&db->aModule, zName, nName) ){
47 rc = SQLITE_MISUSE_BKPT;
48 }else{
49 Module *pMod;
50 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1);
51 if( pMod ){
52 Module *pDel;
53 char *zCopy = (char *)(&pMod[1]);
54 memcpy(zCopy, zName, nName+1);
55 pMod->zName = zCopy;
56 pMod->pModule = pModule;
57 pMod->pAux = pAux;
58 pMod->xDestroy = xDestroy;
59 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,nName,(void*)pMod);
60 assert( pDel==0 || pDel==pMod );
61 if( pDel ){
62 db->mallocFailed = 1;
63 sqlite3DbFree(db, pDel);
67 rc = sqlite3ApiExit(db, rc);
68 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
70 sqlite3_mutex_leave(db->mutex);
71 return rc;
76 ** External API function used to create a new virtual-table module.
78 int sqlite3_create_module(
79 sqlite3 *db, /* Database in which module is registered */
80 const char *zName, /* Name assigned to this module */
81 const sqlite3_module *pModule, /* The definition of the module */
82 void *pAux /* Context pointer for xCreate/xConnect */
84 return createModule(db, zName, pModule, pAux, 0);
88 ** External API function used to create a new virtual-table module.
90 int sqlite3_create_module_v2(
91 sqlite3 *db, /* Database in which module is registered */
92 const char *zName, /* Name assigned to this module */
93 const sqlite3_module *pModule, /* The definition of the module */
94 void *pAux, /* Context pointer for xCreate/xConnect */
95 void (*xDestroy)(void *) /* Module destructor function */
97 return createModule(db, zName, pModule, pAux, xDestroy);
101 ** Lock the virtual table so that it cannot be disconnected.
102 ** Locks nest. Every lock should have a corresponding unlock.
103 ** If an unlock is omitted, resources leaks will occur.
105 ** If a disconnect is attempted while a virtual table is locked,
106 ** the disconnect is deferred until all locks have been removed.
108 void sqlite3VtabLock(VTable *pVTab){
109 pVTab->nRef++;
114 ** pTab is a pointer to a Table structure representing a virtual-table.
115 ** Return a pointer to the VTable object used by connection db to access
116 ** this virtual-table, if one has been created, or NULL otherwise.
118 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
119 VTable *pVtab;
120 assert( IsVirtual(pTab) );
121 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
122 return pVtab;
126 ** Decrement the ref-count on a virtual table object. When the ref-count
127 ** reaches zero, call the xDisconnect() method to delete the object.
129 void sqlite3VtabUnlock(VTable *pVTab){
130 sqlite3 *db = pVTab->db;
132 assert( db );
133 assert( pVTab->nRef>0 );
134 assert( sqlite3SafetyCheckOk(db) );
136 pVTab->nRef--;
137 if( pVTab->nRef==0 ){
138 sqlite3_vtab *p = pVTab->pVtab;
139 if( p ){
140 p->pModule->xDisconnect(p);
142 sqlite3DbFree(db, pVTab);
147 ** Table p is a virtual table. This function moves all elements in the
148 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated
149 ** database connections to be disconnected at the next opportunity.
150 ** Except, if argument db is not NULL, then the entry associated with
151 ** connection db is left in the p->pVTable list.
153 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
154 VTable *pRet = 0;
155 VTable *pVTable = p->pVTable;
156 p->pVTable = 0;
158 /* Assert that the mutex (if any) associated with the BtShared database
159 ** that contains table p is held by the caller. See header comments
160 ** above function sqlite3VtabUnlockList() for an explanation of why
161 ** this makes it safe to access the sqlite3.pDisconnect list of any
162 ** database connection that may have an entry in the p->pVTable list.
164 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
166 while( pVTable ){
167 sqlite3 *db2 = pVTable->db;
168 VTable *pNext = pVTable->pNext;
169 assert( db2 );
170 if( db2==db ){
171 pRet = pVTable;
172 p->pVTable = pRet;
173 pRet->pNext = 0;
174 }else{
175 pVTable->pNext = db2->pDisconnect;
176 db2->pDisconnect = pVTable;
178 pVTable = pNext;
181 assert( !db || pRet );
182 return pRet;
186 ** Table *p is a virtual table. This function removes the VTable object
187 ** for table *p associated with database connection db from the linked
188 ** list in p->pVTab. It also decrements the VTable ref count. This is
189 ** used when closing database connection db to free all of its VTable
190 ** objects without disturbing the rest of the Schema object (which may
191 ** be being used by other shared-cache connections).
193 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
194 VTable **ppVTab;
196 assert( IsVirtual(p) );
197 assert( sqlite3BtreeHoldsAllMutexes(db) );
198 assert( sqlite3_mutex_held(db->mutex) );
200 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){
201 if( (*ppVTab)->db==db ){
202 VTable *pVTab = *ppVTab;
203 *ppVTab = pVTab->pNext;
204 sqlite3VtabUnlock(pVTab);
205 break;
212 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
214 ** This function may only be called when the mutexes associated with all
215 ** shared b-tree databases opened using connection db are held by the
216 ** caller. This is done to protect the sqlite3.pDisconnect list. The
217 ** sqlite3.pDisconnect list is accessed only as follows:
219 ** 1) By this function. In this case, all BtShared mutexes and the mutex
220 ** associated with the database handle itself must be held.
222 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
223 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
224 ** associated with the database the virtual table is stored in is held
225 ** or, if the virtual table is stored in a non-sharable database, then
226 ** the database handle mutex is held.
228 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
229 ** by multiple threads. It is thread-safe.
231 void sqlite3VtabUnlockList(sqlite3 *db){
232 VTable *p = db->pDisconnect;
233 db->pDisconnect = 0;
235 assert( sqlite3BtreeHoldsAllMutexes(db) );
236 assert( sqlite3_mutex_held(db->mutex) );
238 if( p ){
239 sqlite3ExpirePreparedStatements(db);
240 do {
241 VTable *pNext = p->pNext;
242 sqlite3VtabUnlock(p);
243 p = pNext;
244 }while( p );
249 ** Clear any and all virtual-table information from the Table record.
250 ** This routine is called, for example, just before deleting the Table
251 ** record.
253 ** Since it is a virtual-table, the Table structure contains a pointer
254 ** to the head of a linked list of VTable structures. Each VTable
255 ** structure is associated with a single sqlite3* user of the schema.
256 ** The reference count of the VTable structure associated with database
257 ** connection db is decremented immediately (which may lead to the
258 ** structure being xDisconnected and free). Any other VTable structures
259 ** in the list are moved to the sqlite3.pDisconnect list of the associated
260 ** database connection.
262 void sqlite3VtabClear(sqlite3 *db, Table *p){
263 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
264 if( p->azModuleArg ){
265 int i;
266 for(i=0; i<p->nModuleArg; i++){
267 sqlite3DbFree(db, p->azModuleArg[i]);
269 sqlite3DbFree(db, p->azModuleArg);
274 ** Add a new module argument to pTable->azModuleArg[].
275 ** The string is not copied - the pointer is stored. The
276 ** string will be freed automatically when the table is
277 ** deleted.
279 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){
280 int i = pTable->nModuleArg++;
281 int nBytes = sizeof(char *)*(1+pTable->nModuleArg);
282 char **azModuleArg;
283 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes);
284 if( azModuleArg==0 ){
285 int j;
286 for(j=0; j<i; j++){
287 sqlite3DbFree(db, pTable->azModuleArg[j]);
289 sqlite3DbFree(db, zArg);
290 sqlite3DbFree(db, pTable->azModuleArg);
291 pTable->nModuleArg = 0;
292 }else{
293 azModuleArg[i] = zArg;
294 azModuleArg[i+1] = 0;
296 pTable->azModuleArg = azModuleArg;
300 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
301 ** statement. The module name has been parsed, but the optional list
302 ** of parameters that follow the module name are still pending.
304 void sqlite3VtabBeginParse(
305 Parse *pParse, /* Parsing context */
306 Token *pName1, /* Name of new table, or database name */
307 Token *pName2, /* Name of new table or NULL */
308 Token *pModuleName, /* Name of the module for the virtual table */
309 int ifNotExists /* No error if the table already exists */
311 int iDb; /* The database the table is being created in */
312 Table *pTable; /* The new virtual table */
313 sqlite3 *db; /* Database connection */
315 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
316 pTable = pParse->pNewTable;
317 if( pTable==0 ) return;
318 assert( 0==pTable->pIndex );
320 db = pParse->db;
321 iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
322 assert( iDb>=0 );
324 pTable->tabFlags |= TF_Virtual;
325 pTable->nModuleArg = 0;
326 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName));
327 addModuleArgument(db, pTable, sqlite3DbStrDup(db, db->aDb[iDb].zName));
328 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName));
329 pParse->sNameToken.n = (int)(&pModuleName->z[pModuleName->n] - pName1->z);
331 #ifndef SQLITE_OMIT_AUTHORIZATION
332 /* Creating a virtual table invokes the authorization callback twice.
333 ** The first invocation, to obtain permission to INSERT a row into the
334 ** sqlite_master table, has already been made by sqlite3StartTable().
335 ** The second call, to obtain permission to create the table, is made now.
337 if( pTable->azModuleArg ){
338 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
339 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName);
341 #endif
345 ** This routine takes the module argument that has been accumulating
346 ** in pParse->zArg[] and appends it to the list of arguments on the
347 ** virtual table currently under construction in pParse->pTable.
349 static void addArgumentToVtab(Parse *pParse){
350 if( pParse->sArg.z && pParse->pNewTable ){
351 const char *z = (const char*)pParse->sArg.z;
352 int n = pParse->sArg.n;
353 sqlite3 *db = pParse->db;
354 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
359 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
360 ** has been completely parsed.
362 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
363 Table *pTab = pParse->pNewTable; /* The table being constructed */
364 sqlite3 *db = pParse->db; /* The database connection */
366 if( pTab==0 ) return;
367 addArgumentToVtab(pParse);
368 pParse->sArg.z = 0;
369 if( pTab->nModuleArg<1 ) return;
371 /* If the CREATE VIRTUAL TABLE statement is being entered for the
372 ** first time (in other words if the virtual table is actually being
373 ** created now instead of just being read out of sqlite_master) then
374 ** do additional initialization work and store the statement text
375 ** in the sqlite_master table.
377 if( !db->init.busy ){
378 char *zStmt;
379 char *zWhere;
380 int iDb;
381 Vdbe *v;
383 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
384 if( pEnd ){
385 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
387 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
389 /* A slot for the record has already been allocated in the
390 ** SQLITE_MASTER table. We just need to update that slot with all
391 ** the information we've collected.
393 ** The VM register number pParse->regRowid holds the rowid of an
394 ** entry in the sqlite_master table tht was created for this vtab
395 ** by sqlite3StartTable().
397 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
398 sqlite3NestedParse(pParse,
399 "UPDATE %Q.%s "
400 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
401 "WHERE rowid=#%d",
402 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
403 pTab->zName,
404 pTab->zName,
405 zStmt,
406 pParse->regRowid
408 sqlite3DbFree(db, zStmt);
409 v = sqlite3GetVdbe(pParse);
410 sqlite3ChangeCookie(pParse, iDb);
412 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0);
413 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName);
414 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere);
415 sqlite3VdbeAddOp4(v, OP_VCreate, iDb, 0, 0,
416 pTab->zName, sqlite3Strlen30(pTab->zName) + 1);
419 /* If we are rereading the sqlite_master table create the in-memory
420 ** record of the table. The xConnect() method is not called until
421 ** the first time the virtual table is used in an SQL statement. This
422 ** allows a schema that contains virtual tables to be loaded before
423 ** the required virtual table implementations are registered. */
424 else {
425 Table *pOld;
426 Schema *pSchema = pTab->pSchema;
427 const char *zName = pTab->zName;
428 int nName = sqlite3Strlen30(zName);
429 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) );
430 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, nName, pTab);
431 if( pOld ){
432 db->mallocFailed = 1;
433 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
434 return;
436 pParse->pNewTable = 0;
441 ** The parser calls this routine when it sees the first token
442 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
444 void sqlite3VtabArgInit(Parse *pParse){
445 addArgumentToVtab(pParse);
446 pParse->sArg.z = 0;
447 pParse->sArg.n = 0;
451 ** The parser calls this routine for each token after the first token
452 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
454 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
455 Token *pArg = &pParse->sArg;
456 if( pArg->z==0 ){
457 pArg->z = p->z;
458 pArg->n = p->n;
459 }else{
460 assert(pArg->z < p->z);
461 pArg->n = (int)(&p->z[p->n] - pArg->z);
466 ** Invoke a virtual table constructor (either xCreate or xConnect). The
467 ** pointer to the function to invoke is passed as the fourth parameter
468 ** to this procedure.
470 static int vtabCallConstructor(
471 sqlite3 *db,
472 Table *pTab,
473 Module *pMod,
474 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
475 char **pzErr
477 VtabCtx sCtx, *pPriorCtx;
478 VTable *pVTable;
479 int rc;
480 const char *const*azArg = (const char *const*)pTab->azModuleArg;
481 int nArg = pTab->nModuleArg;
482 char *zErr = 0;
483 char *zModuleName = sqlite3MPrintf(db, "%s", pTab->zName);
485 if( !zModuleName ){
486 return SQLITE_NOMEM;
489 pVTable = sqlite3DbMallocZero(db, sizeof(VTable));
490 if( !pVTable ){
491 sqlite3DbFree(db, zModuleName);
492 return SQLITE_NOMEM;
494 pVTable->db = db;
495 pVTable->pMod = pMod;
497 /* Invoke the virtual table constructor */
498 assert( &db->pVtabCtx );
499 assert( xConstruct );
500 sCtx.pTab = pTab;
501 sCtx.pVTable = pVTable;
502 pPriorCtx = db->pVtabCtx;
503 db->pVtabCtx = &sCtx;
504 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
505 db->pVtabCtx = pPriorCtx;
506 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1;
508 if( SQLITE_OK!=rc ){
509 if( zErr==0 ){
510 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
511 }else {
512 *pzErr = sqlite3MPrintf(db, "%s", zErr);
513 sqlite3_free(zErr);
515 sqlite3DbFree(db, pVTable);
516 }else if( ALWAYS(pVTable->pVtab) ){
517 /* Justification of ALWAYS(): A correct vtab constructor must allocate
518 ** the sqlite3_vtab object if successful. */
519 pVTable->pVtab->pModule = pMod->pModule;
520 pVTable->nRef = 1;
521 if( sCtx.pTab ){
522 const char *zFormat = "vtable constructor did not declare schema: %s";
523 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
524 sqlite3VtabUnlock(pVTable);
525 rc = SQLITE_ERROR;
526 }else{
527 int iCol;
528 /* If everything went according to plan, link the new VTable structure
529 ** into the linked list headed by pTab->pVTable. Then loop through the
530 ** columns of the table to see if any of them contain the token "hidden".
531 ** If so, set the Column.isHidden flag and remove the token from
532 ** the type string. */
533 pVTable->pNext = pTab->pVTable;
534 pTab->pVTable = pVTable;
536 for(iCol=0; iCol<pTab->nCol; iCol++){
537 char *zType = pTab->aCol[iCol].zType;
538 int nType;
539 int i = 0;
540 if( !zType ) continue;
541 nType = sqlite3Strlen30(zType);
542 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){
543 for(i=0; i<nType; i++){
544 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7))
545 && (zType[i+7]=='\0' || zType[i+7]==' ')
547 i++;
548 break;
552 if( i<nType ){
553 int j;
554 int nDel = 6 + (zType[i+6] ? 1 : 0);
555 for(j=i; (j+nDel)<=nType; j++){
556 zType[j] = zType[j+nDel];
558 if( zType[i]=='\0' && i>0 ){
559 assert(zType[i-1]==' ');
560 zType[i-1] = '\0';
562 pTab->aCol[iCol].isHidden = 1;
568 sqlite3DbFree(db, zModuleName);
569 return rc;
573 ** This function is invoked by the parser to call the xConnect() method
574 ** of the virtual table pTab. If an error occurs, an error code is returned
575 ** and an error left in pParse.
577 ** This call is a no-op if table pTab is not a virtual table.
579 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
580 sqlite3 *db = pParse->db;
581 const char *zMod;
582 Module *pMod;
583 int rc;
585 assert( pTab );
586 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){
587 return SQLITE_OK;
590 /* Locate the required virtual table module */
591 zMod = pTab->azModuleArg[0];
592 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
594 if( !pMod ){
595 const char *zModule = pTab->azModuleArg[0];
596 sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
597 rc = SQLITE_ERROR;
598 }else{
599 char *zErr = 0;
600 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
601 if( rc!=SQLITE_OK ){
602 sqlite3ErrorMsg(pParse, "%s", zErr);
604 sqlite3DbFree(db, zErr);
607 return rc;
610 ** Grow the db->aVTrans[] array so that there is room for at least one
611 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
613 static int growVTrans(sqlite3 *db){
614 const int ARRAY_INCR = 5;
616 /* Grow the sqlite3.aVTrans array if required */
617 if( (db->nVTrans%ARRAY_INCR)==0 ){
618 VTable **aVTrans;
619 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR);
620 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
621 if( !aVTrans ){
622 return SQLITE_NOMEM;
624 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
625 db->aVTrans = aVTrans;
628 return SQLITE_OK;
632 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
633 ** have already been reserved using growVTrans().
635 static void addToVTrans(sqlite3 *db, VTable *pVTab){
636 /* Add pVtab to the end of sqlite3.aVTrans */
637 db->aVTrans[db->nVTrans++] = pVTab;
638 sqlite3VtabLock(pVTab);
642 ** This function is invoked by the vdbe to call the xCreate method
643 ** of the virtual table named zTab in database iDb.
645 ** If an error occurs, *pzErr is set to point an an English language
646 ** description of the error and an SQLITE_XXX error code is returned.
647 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
649 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
650 int rc = SQLITE_OK;
651 Table *pTab;
652 Module *pMod;
653 const char *zMod;
655 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
656 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable );
658 /* Locate the required virtual table module */
659 zMod = pTab->azModuleArg[0];
660 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod, sqlite3Strlen30(zMod));
662 /* If the module has been registered and includes a Create method,
663 ** invoke it now. If the module has not been registered, return an
664 ** error. Otherwise, do nothing.
666 if( !pMod ){
667 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
668 rc = SQLITE_ERROR;
669 }else{
670 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
673 /* Justification of ALWAYS(): The xConstructor method is required to
674 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
675 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
676 rc = growVTrans(db);
677 if( rc==SQLITE_OK ){
678 addToVTrans(db, sqlite3GetVTable(db, pTab));
682 return rc;
686 ** This function is used to set the schema of a virtual table. It is only
687 ** valid to call this function from within the xCreate() or xConnect() of a
688 ** virtual table module.
690 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
691 Parse *pParse;
693 int rc = SQLITE_OK;
694 Table *pTab;
695 char *zErr = 0;
697 sqlite3_mutex_enter(db->mutex);
698 if( !db->pVtabCtx || !(pTab = db->pVtabCtx->pTab) ){
699 sqlite3Error(db, SQLITE_MISUSE, 0);
700 sqlite3_mutex_leave(db->mutex);
701 return SQLITE_MISUSE_BKPT;
703 assert( (pTab->tabFlags & TF_Virtual)!=0 );
705 pParse = sqlite3StackAllocZero(db, sizeof(*pParse));
706 if( pParse==0 ){
707 rc = SQLITE_NOMEM;
708 }else{
709 pParse->declareVtab = 1;
710 pParse->db = db;
711 pParse->nQueryLoop = 1;
713 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr)
714 && pParse->pNewTable
715 && !db->mallocFailed
716 && !pParse->pNewTable->pSelect
717 && (pParse->pNewTable->tabFlags & TF_Virtual)==0
719 if( !pTab->aCol ){
720 pTab->aCol = pParse->pNewTable->aCol;
721 pTab->nCol = pParse->pNewTable->nCol;
722 pParse->pNewTable->nCol = 0;
723 pParse->pNewTable->aCol = 0;
725 db->pVtabCtx->pTab = 0;
726 }else{
727 sqlite3Error(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr);
728 sqlite3DbFree(db, zErr);
729 rc = SQLITE_ERROR;
731 pParse->declareVtab = 0;
733 if( pParse->pVdbe ){
734 sqlite3VdbeFinalize(pParse->pVdbe);
736 sqlite3DeleteTable(db, pParse->pNewTable);
737 sqlite3StackFree(db, pParse);
740 assert( (rc&0xff)==rc );
741 rc = sqlite3ApiExit(db, rc);
742 sqlite3_mutex_leave(db->mutex);
743 return rc;
747 ** This function is invoked by the vdbe to call the xDestroy method
748 ** of the virtual table named zTab in database iDb. This occurs
749 ** when a DROP TABLE is mentioned.
751 ** This call is a no-op if zTab is not a virtual table.
753 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
754 int rc = SQLITE_OK;
755 Table *pTab;
757 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName);
758 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){
759 VTable *p = vtabDisconnectAll(db, pTab);
761 assert( rc==SQLITE_OK );
762 rc = p->pMod->pModule->xDestroy(p->pVtab);
764 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
765 if( rc==SQLITE_OK ){
766 assert( pTab->pVTable==p && p->pNext==0 );
767 p->pVtab = 0;
768 pTab->pVTable = 0;
769 sqlite3VtabUnlock(p);
773 return rc;
777 ** This function invokes either the xRollback or xCommit method
778 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
779 ** called is identified by the second argument, "offset", which is
780 ** the offset of the method to call in the sqlite3_module structure.
782 ** The array is cleared after invoking the callbacks.
784 static void callFinaliser(sqlite3 *db, int offset){
785 int i;
786 if( db->aVTrans ){
787 for(i=0; i<db->nVTrans; i++){
788 VTable *pVTab = db->aVTrans[i];
789 sqlite3_vtab *p = pVTab->pVtab;
790 if( p ){
791 int (*x)(sqlite3_vtab *);
792 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
793 if( x ) x(p);
795 pVTab->iSavepoint = 0;
796 sqlite3VtabUnlock(pVTab);
798 sqlite3DbFree(db, db->aVTrans);
799 db->nVTrans = 0;
800 db->aVTrans = 0;
805 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
806 ** array. Return the error code for the first error that occurs, or
807 ** SQLITE_OK if all xSync operations are successful.
809 ** Set *pzErrmsg to point to a buffer that should be released using
810 ** sqlite3DbFree() containing an error message, if one is available.
812 int sqlite3VtabSync(sqlite3 *db, char **pzErrmsg){
813 int i;
814 int rc = SQLITE_OK;
815 VTable **aVTrans = db->aVTrans;
817 db->aVTrans = 0;
818 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
819 int (*x)(sqlite3_vtab *);
820 sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
821 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
822 rc = x(pVtab);
823 sqlite3DbFree(db, *pzErrmsg);
824 *pzErrmsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
825 sqlite3_free(pVtab->zErrMsg);
828 db->aVTrans = aVTrans;
829 return rc;
833 ** Invoke the xRollback method of all virtual tables in the
834 ** sqlite3.aVTrans array. Then clear the array itself.
836 int sqlite3VtabRollback(sqlite3 *db){
837 callFinaliser(db, offsetof(sqlite3_module,xRollback));
838 return SQLITE_OK;
842 ** Invoke the xCommit method of all virtual tables in the
843 ** sqlite3.aVTrans array. Then clear the array itself.
845 int sqlite3VtabCommit(sqlite3 *db){
846 callFinaliser(db, offsetof(sqlite3_module,xCommit));
847 return SQLITE_OK;
851 ** If the virtual table pVtab supports the transaction interface
852 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
853 ** not currently open, invoke the xBegin method now.
855 ** If the xBegin call is successful, place the sqlite3_vtab pointer
856 ** in the sqlite3.aVTrans array.
858 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
859 int rc = SQLITE_OK;
860 const sqlite3_module *pModule;
862 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
863 ** than zero, then this function is being called from within a
864 ** virtual module xSync() callback. It is illegal to write to
865 ** virtual module tables in this case, so return SQLITE_LOCKED.
867 if( sqlite3VtabInSync(db) ){
868 return SQLITE_LOCKED;
870 if( !pVTab ){
871 return SQLITE_OK;
873 pModule = pVTab->pVtab->pModule;
875 if( pModule->xBegin ){
876 int i;
878 /* If pVtab is already in the aVTrans array, return early */
879 for(i=0; i<db->nVTrans; i++){
880 if( db->aVTrans[i]==pVTab ){
881 return SQLITE_OK;
885 /* Invoke the xBegin method. If successful, add the vtab to the
886 ** sqlite3.aVTrans[] array. */
887 rc = growVTrans(db);
888 if( rc==SQLITE_OK ){
889 rc = pModule->xBegin(pVTab->pVtab);
890 if( rc==SQLITE_OK ){
891 addToVTrans(db, pVTab);
895 return rc;
899 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
900 ** virtual tables that currently have an open transaction. Pass iSavepoint
901 ** as the second argument to the virtual table method invoked.
903 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
904 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
905 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
906 ** an open transaction is invoked.
908 ** If any virtual table method returns an error code other than SQLITE_OK,
909 ** processing is abandoned and the error returned to the caller of this
910 ** function immediately. If all calls to virtual table methods are successful,
911 ** SQLITE_OK is returned.
913 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
914 int rc = SQLITE_OK;
916 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
917 assert( iSavepoint>=0 );
918 if( db->aVTrans ){
919 int i;
920 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
921 VTable *pVTab = db->aVTrans[i];
922 const sqlite3_module *pMod = pVTab->pMod->pModule;
923 if( pVTab->pVtab && pMod->iVersion>=2 ){
924 int (*xMethod)(sqlite3_vtab *, int);
925 switch( op ){
926 case SAVEPOINT_BEGIN:
927 xMethod = pMod->xSavepoint;
928 pVTab->iSavepoint = iSavepoint+1;
929 break;
930 case SAVEPOINT_ROLLBACK:
931 xMethod = pMod->xRollbackTo;
932 break;
933 default:
934 xMethod = pMod->xRelease;
935 break;
937 if( xMethod && pVTab->iSavepoint>iSavepoint ){
938 rc = xMethod(pVTab->pVtab, iSavepoint);
943 return rc;
947 ** The first parameter (pDef) is a function implementation. The
948 ** second parameter (pExpr) is the first argument to this function.
949 ** If pExpr is a column in a virtual table, then let the virtual
950 ** table implementation have an opportunity to overload the function.
952 ** This routine is used to allow virtual table implementations to
953 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
955 ** Return either the pDef argument (indicating no change) or a
956 ** new FuncDef structure that is marked as ephemeral using the
957 ** SQLITE_FUNC_EPHEM flag.
959 FuncDef *sqlite3VtabOverloadFunction(
960 sqlite3 *db, /* Database connection for reporting malloc problems */
961 FuncDef *pDef, /* Function to possibly overload */
962 int nArg, /* Number of arguments to the function */
963 Expr *pExpr /* First argument to the function */
965 Table *pTab;
966 sqlite3_vtab *pVtab;
967 sqlite3_module *pMod;
968 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
969 void *pArg = 0;
970 FuncDef *pNew;
971 int rc = 0;
972 char *zLowerName;
973 unsigned char *z;
976 /* Check to see the left operand is a column in a virtual table */
977 if( NEVER(pExpr==0) ) return pDef;
978 if( pExpr->op!=TK_COLUMN ) return pDef;
979 pTab = pExpr->pTab;
980 if( NEVER(pTab==0) ) return pDef;
981 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef;
982 pVtab = sqlite3GetVTable(db, pTab)->pVtab;
983 assert( pVtab!=0 );
984 assert( pVtab->pModule!=0 );
985 pMod = (sqlite3_module *)pVtab->pModule;
986 if( pMod->xFindFunction==0 ) return pDef;
988 /* Call the xFindFunction method on the virtual table implementation
989 ** to see if the implementation wants to overload this function
991 zLowerName = sqlite3DbStrDup(db, pDef->zName);
992 if( zLowerName ){
993 for(z=(unsigned char*)zLowerName; *z; z++){
994 *z = sqlite3UpperToLower[*z];
996 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg);
997 sqlite3DbFree(db, zLowerName);
999 if( rc==0 ){
1000 return pDef;
1003 /* Create a new ephemeral function definition for the overloaded
1004 ** function */
1005 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1006 + sqlite3Strlen30(pDef->zName) + 1);
1007 if( pNew==0 ){
1008 return pDef;
1010 *pNew = *pDef;
1011 pNew->zName = (char *)&pNew[1];
1012 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1013 pNew->xFunc = xFunc;
1014 pNew->pUserData = pArg;
1015 pNew->flags |= SQLITE_FUNC_EPHEM;
1016 return pNew;
1020 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1021 ** array so that an OP_VBegin will get generated for it. Add pTab to the
1022 ** array if it is missing. If pTab is already in the array, this routine
1023 ** is a no-op.
1025 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1026 Parse *pToplevel = sqlite3ParseToplevel(pParse);
1027 int i, n;
1028 Table **apVtabLock;
1030 assert( IsVirtual(pTab) );
1031 for(i=0; i<pToplevel->nVtabLock; i++){
1032 if( pTab==pToplevel->apVtabLock[i] ) return;
1034 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1035 apVtabLock = sqlite3_realloc(pToplevel->apVtabLock, n);
1036 if( apVtabLock ){
1037 pToplevel->apVtabLock = apVtabLock;
1038 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1039 }else{
1040 pToplevel->db->mallocFailed = 1;
1045 ** Return the ON CONFLICT resolution mode in effect for the virtual
1046 ** table update operation currently in progress.
1048 ** The results of this routine are undefined unless it is called from
1049 ** within an xUpdate method.
1051 int sqlite3_vtab_on_conflict(sqlite3 *db){
1052 static const unsigned char aMap[] = {
1053 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1055 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1056 assert( OE_Ignore==4 && OE_Replace==5 );
1057 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1058 return (int)aMap[db->vtabOnConflict-1];
1062 ** Call from within the xCreate() or xConnect() methods to provide
1063 ** the SQLite core with additional information about the behavior
1064 ** of the virtual table being implemented.
1066 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1067 va_list ap;
1068 int rc = SQLITE_OK;
1070 sqlite3_mutex_enter(db->mutex);
1072 va_start(ap, op);
1073 switch( op ){
1074 case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1075 VtabCtx *p = db->pVtabCtx;
1076 if( !p ){
1077 rc = SQLITE_MISUSE_BKPT;
1078 }else{
1079 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 );
1080 p->pVTable->bConstraint = (u8)va_arg(ap, int);
1082 break;
1084 default:
1085 rc = SQLITE_MISUSE_BKPT;
1086 break;
1088 va_end(ap);
1090 if( rc!=SQLITE_OK ) sqlite3Error(db, rc, 0);
1091 sqlite3_mutex_leave(db->mutex);
1092 return rc;
1095 #endif /* SQLITE_OMIT_VIRTUALTABLE */