4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 ******************************************************************************
13 ** This file contains the VFS implementation for unix-like operating systems
14 ** include Linux, MacOSX, *BSD, QNX, VxWorks, AIX, HPUX, and others.
16 ** There are actually several different VFS implementations in this file.
17 ** The differences are in the way that file locking is done. The default
18 ** implementation uses Posix Advisory Locks. Alternative implementations
19 ** use flock(), dot-files, various proprietary locking schemas, or simply
20 ** skip locking all together.
22 ** This source file is organized into divisions where the logic for various
23 ** subfunctions is contained within the appropriate division. PLEASE
24 ** KEEP THE STRUCTURE OF THIS FILE INTACT. New code should be placed
25 ** in the correct division and should be clearly labeled.
27 ** The layout of divisions is as follows:
29 ** * General-purpose declarations and utility functions.
30 ** * Unique file ID logic used by VxWorks.
31 ** * Various locking primitive implementations (all except proxy locking):
32 ** + for Posix Advisory Locks
34 ** + for dot-file locks
35 ** + for flock() locking
36 ** + for named semaphore locks (VxWorks only)
37 ** + for AFP filesystem locks (MacOSX only)
38 ** * sqlite3_file methods not associated with locking.
39 ** * Definitions of sqlite3_io_methods objects for all locking
40 ** methods plus "finder" functions for each locking method.
41 ** * sqlite3_vfs method implementations.
42 ** * Locking primitives for the proxy uber-locking-method. (MacOSX only)
43 ** * Definitions of sqlite3_vfs objects for all locking methods
44 ** plus implementations of sqlite3_os_init() and sqlite3_os_end().
46 #include "sqliteInt.h"
47 #if SQLITE_OS_UNIX /* This file is used on unix only */
50 ** There are various methods for file locking used for concurrency
53 ** 1. POSIX locking (the default),
55 ** 3. Dot-file locking,
56 ** 4. flock() locking,
57 ** 5. AFP locking (OSX only),
58 ** 6. Named POSIX semaphores (VXWorks only),
59 ** 7. proxy locking. (OSX only)
61 ** Styles 4, 5, and 7 are only available of SQLITE_ENABLE_LOCKING_STYLE
62 ** is defined to 1. The SQLITE_ENABLE_LOCKING_STYLE also enables automatic
63 ** selection of the appropriate locking style based on the filesystem
64 ** where the database is located.
66 #if !defined(SQLITE_ENABLE_LOCKING_STYLE)
67 # if defined(__APPLE__)
68 # define SQLITE_ENABLE_LOCKING_STYLE 1
70 # define SQLITE_ENABLE_LOCKING_STYLE 0
74 /* Use pread() and pwrite() if they are available */
75 #if defined(__APPLE__)
77 # define HAVE_PWRITE 1
79 #if defined(HAVE_PREAD64) && defined(HAVE_PWRITE64)
81 # define USE_PREAD64 1
82 #elif defined(HAVE_PREAD) && defined(HAVE_PWRITE)
88 ** standard include files.
90 #include <sys/types.h>
93 #include <sys/ioctl.h>
98 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
99 # include <sys/mman.h>
102 #if SQLITE_ENABLE_LOCKING_STYLE
103 # include <sys/ioctl.h>
104 # include <sys/file.h>
105 # include <sys/param.h>
106 #endif /* SQLITE_ENABLE_LOCKING_STYLE */
109 ** Try to determine if gethostuuid() is available based on standard
110 ** macros. This might sometimes compute the wrong value for some
111 ** obscure platforms. For those cases, simply compile with one of
114 ** -DHAVE_GETHOSTUUID=0
115 ** -DHAVE_GETHOSTUUID=1
117 ** None if this matters except when building on Apple products with
118 ** -DSQLITE_ENABLE_LOCKING_STYLE.
120 #ifndef HAVE_GETHOSTUUID
121 # define HAVE_GETHOSTUUID 0
122 # if defined(__APPLE__) && ((__MAC_OS_X_VERSION_MIN_REQUIRED > 1050) || \
123 (__IPHONE_OS_VERSION_MIN_REQUIRED > 2000))
124 # if (!defined(TARGET_OS_EMBEDDED) || (TARGET_OS_EMBEDDED==0)) \
125 && (!defined(TARGET_IPHONE_SIMULATOR) || (TARGET_IPHONE_SIMULATOR==0))\
126 && (!defined(TARGET_OS_MACCATALYST) || (TARGET_OS_MACCATALYST==0))
127 # undef HAVE_GETHOSTUUID
128 # define HAVE_GETHOSTUUID 1
130 # warning "gethostuuid() is disabled."
137 # include <sys/ioctl.h>
138 # include <semaphore.h>
140 #endif /* OS_VXWORKS */
142 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
143 # include <sys/mount.h>
151 ** Allowed values of unixFile.fsFlags
153 #define SQLITE_FSFLAGS_IS_MSDOS 0x1
156 ** If we are to be thread-safe, include the pthreads header.
158 #if SQLITE_THREADSAFE
159 # include <pthread.h>
163 ** Default permissions when creating a new file
165 #ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
166 # define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
170 ** Default permissions when creating auto proxy dir
172 #ifndef SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
173 # define SQLITE_DEFAULT_PROXYDIR_PERMISSIONS 0755
177 ** Maximum supported path-length.
179 #define MAX_PATHNAME 512
182 ** Maximum supported symbolic links
184 #define SQLITE_MAX_SYMLINKS 100
186 /* Always cast the getpid() return type for compatibility with
187 ** kernel modules in VxWorks. */
188 #define osGetpid(X) (pid_t)getpid()
191 ** Only set the lastErrno if the error code is a real error and not
192 ** a normal expected return code of SQLITE_BUSY or SQLITE_OK
194 #define IS_LOCK_ERROR(x) ((x != SQLITE_OK) && (x != SQLITE_BUSY))
196 /* Forward references */
197 typedef struct unixShm unixShm
; /* Connection shared memory */
198 typedef struct unixShmNode unixShmNode
; /* Shared memory instance */
199 typedef struct unixInodeInfo unixInodeInfo
; /* An i-node */
200 typedef struct UnixUnusedFd UnixUnusedFd
; /* An unused file descriptor */
203 ** Sometimes, after a file handle is closed by SQLite, the file descriptor
204 ** cannot be closed immediately. In these cases, instances of the following
205 ** structure are used to store the file descriptor while waiting for an
206 ** opportunity to either close or reuse it.
208 struct UnixUnusedFd
{
209 int fd
; /* File descriptor to close */
210 int flags
; /* Flags this file descriptor was opened with */
211 UnixUnusedFd
*pNext
; /* Next unused file descriptor on same file */
215 ** The unixFile structure is subclass of sqlite3_file specific to the unix
216 ** VFS implementations.
218 typedef struct unixFile unixFile
;
220 sqlite3_io_methods
const *pMethod
; /* Always the first entry */
221 sqlite3_vfs
*pVfs
; /* The VFS that created this unixFile */
222 unixInodeInfo
*pInode
; /* Info about locks on this inode */
223 int h
; /* The file descriptor */
224 unsigned char eFileLock
; /* The type of lock held on this fd */
225 unsigned short int ctrlFlags
; /* Behavioral bits. UNIXFILE_* flags */
226 int lastErrno
; /* The unix errno from last I/O error */
227 void *lockingContext
; /* Locking style specific state */
228 UnixUnusedFd
*pPreallocatedUnused
; /* Pre-allocated UnixUnusedFd */
229 const char *zPath
; /* Name of the file */
230 unixShm
*pShm
; /* Shared memory segment information */
231 int szChunk
; /* Configured by FCNTL_CHUNK_SIZE */
232 #if SQLITE_MAX_MMAP_SIZE>0
233 int nFetchOut
; /* Number of outstanding xFetch refs */
234 sqlite3_int64 mmapSize
; /* Usable size of mapping at pMapRegion */
235 sqlite3_int64 mmapSizeActual
; /* Actual size of mapping at pMapRegion */
236 sqlite3_int64 mmapSizeMax
; /* Configured FCNTL_MMAP_SIZE value */
237 void *pMapRegion
; /* Memory mapped region */
239 int sectorSize
; /* Device sector size */
240 int deviceCharacteristics
; /* Precomputed device characteristics */
241 #if SQLITE_ENABLE_LOCKING_STYLE
242 int openFlags
; /* The flags specified at open() */
244 #if SQLITE_ENABLE_LOCKING_STYLE || defined(__APPLE__)
245 unsigned fsFlags
; /* cached details from statfs() */
247 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
248 unsigned iBusyTimeout
; /* Wait this many millisec on locks */
251 struct vxworksFileId
*pId
; /* Unique file ID */
254 /* The next group of variables are used to track whether or not the
255 ** transaction counter in bytes 24-27 of database files are updated
256 ** whenever any part of the database changes. An assertion fault will
257 ** occur if a file is updated without also updating the transaction
258 ** counter. This test is made to avoid new problems similar to the
259 ** one described by ticket #3584.
261 unsigned char transCntrChng
; /* True if the transaction counter changed */
262 unsigned char dbUpdate
; /* True if any part of database file changed */
263 unsigned char inNormalWrite
; /* True if in a normal write operation */
268 /* In test mode, increase the size of this structure a bit so that
269 ** it is larger than the struct CrashFile defined in test6.c.
275 /* This variable holds the process id (pid) from when the xRandomness()
276 ** method was called. If xOpen() is called from a different process id,
277 ** indicating that a fork() has occurred, the PRNG will be reset.
279 static pid_t randomnessPid
= 0;
282 ** Allowed values for the unixFile.ctrlFlags bitmask:
284 #define UNIXFILE_EXCL 0x01 /* Connections from one process only */
285 #define UNIXFILE_RDONLY 0x02 /* Connection is read only */
286 #define UNIXFILE_PERSIST_WAL 0x04 /* Persistent WAL mode */
287 #ifndef SQLITE_DISABLE_DIRSYNC
288 # define UNIXFILE_DIRSYNC 0x08 /* Directory sync needed */
290 # define UNIXFILE_DIRSYNC 0x00
292 #define UNIXFILE_PSOW 0x10 /* SQLITE_IOCAP_POWERSAFE_OVERWRITE */
293 #define UNIXFILE_DELETE 0x20 /* Delete on close */
294 #define UNIXFILE_URI 0x40 /* Filename might have query parameters */
295 #define UNIXFILE_NOLOCK 0x80 /* Do no file locking */
298 ** Include code that is common to all os_*.c files
300 #include "os_common.h"
303 ** Define various macros that are missing from some systems.
306 # define O_LARGEFILE 0
308 #ifdef SQLITE_DISABLE_LFS
310 # define O_LARGEFILE 0
313 # define O_NOFOLLOW 0
320 ** The threadid macro resolves to the thread-id or to 0. Used for
321 ** testing and debugging only.
323 #if SQLITE_THREADSAFE
324 #define threadid pthread_self()
330 ** HAVE_MREMAP defaults to true on Linux and false everywhere else.
332 #if !defined(HAVE_MREMAP)
333 # if defined(__linux__) && defined(_GNU_SOURCE)
334 # define HAVE_MREMAP 1
336 # define HAVE_MREMAP 0
341 ** Explicitly call the 64-bit version of lseek() on Android. Otherwise, lseek()
342 ** is the 32-bit version, even if _FILE_OFFSET_BITS=64 is defined.
345 # define lseek lseek64
350 ** Linux-specific IOCTL magic numbers used for controlling F2FS
352 #define F2FS_IOCTL_MAGIC 0xf5
353 #define F2FS_IOC_START_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 1)
354 #define F2FS_IOC_COMMIT_ATOMIC_WRITE _IO(F2FS_IOCTL_MAGIC, 2)
355 #define F2FS_IOC_START_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 3)
356 #define F2FS_IOC_ABORT_VOLATILE_WRITE _IO(F2FS_IOCTL_MAGIC, 5)
357 #define F2FS_IOC_GET_FEATURES _IOR(F2FS_IOCTL_MAGIC, 12, u32)
358 #define F2FS_FEATURE_ATOMIC_WRITE 0x0004
359 #endif /* __linux__ */
363 ** Different Unix systems declare open() in different ways. Same use
364 ** open(const char*,int,mode_t). Others use open(const char*,int,...).
365 ** The difference is important when using a pointer to the function.
367 ** The safest way to deal with the problem is to always use this wrapper
368 ** which always has the same well-defined interface.
370 static int posixOpen(const char *zFile
, int flags
, int mode
){
371 return open(zFile
, flags
, mode
);
374 /* Forward reference */
375 static int openDirectory(const char*, int*);
376 static int unixGetpagesize(void);
379 ** Many system calls are accessed through pointer-to-functions so that
380 ** they may be overridden at runtime to facilitate fault injection during
381 ** testing and sandboxing. The following array holds the names and pointers
382 ** to all overrideable system calls.
384 static struct unix_syscall
{
385 const char *zName
; /* Name of the system call */
386 sqlite3_syscall_ptr pCurrent
; /* Current value of the system call */
387 sqlite3_syscall_ptr pDefault
; /* Default value */
389 { "open", (sqlite3_syscall_ptr
)posixOpen
, 0 },
390 #define osOpen ((int(*)(const char*,int,int))aSyscall[0].pCurrent)
392 { "close", (sqlite3_syscall_ptr
)close
, 0 },
393 #define osClose ((int(*)(int))aSyscall[1].pCurrent)
395 { "access", (sqlite3_syscall_ptr
)access
, 0 },
396 #define osAccess ((int(*)(const char*,int))aSyscall[2].pCurrent)
398 { "getcwd", (sqlite3_syscall_ptr
)getcwd
, 0 },
399 #define osGetcwd ((char*(*)(char*,size_t))aSyscall[3].pCurrent)
401 { "stat", (sqlite3_syscall_ptr
)stat
, 0 },
402 #define osStat ((int(*)(const char*,struct stat*))aSyscall[4].pCurrent)
405 ** The DJGPP compiler environment looks mostly like Unix, but it
406 ** lacks the fcntl() system call. So redefine fcntl() to be something
407 ** that always succeeds. This means that locking does not occur under
408 ** DJGPP. But it is DOS - what did you expect?
412 #define osFstat(a,b,c) 0
414 { "fstat", (sqlite3_syscall_ptr
)fstat
, 0 },
415 #define osFstat ((int(*)(int,struct stat*))aSyscall[5].pCurrent)
418 { "ftruncate", (sqlite3_syscall_ptr
)ftruncate
, 0 },
419 #define osFtruncate ((int(*)(int,off_t))aSyscall[6].pCurrent)
421 { "fcntl", (sqlite3_syscall_ptr
)fcntl
, 0 },
422 #define osFcntl ((int(*)(int,int,...))aSyscall[7].pCurrent)
424 { "read", (sqlite3_syscall_ptr
)read
, 0 },
425 #define osRead ((ssize_t(*)(int,void*,size_t))aSyscall[8].pCurrent)
427 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
428 { "pread", (sqlite3_syscall_ptr
)pread
, 0 },
430 { "pread", (sqlite3_syscall_ptr
)0, 0 },
432 #define osPread ((ssize_t(*)(int,void*,size_t,off_t))aSyscall[9].pCurrent)
434 #if defined(USE_PREAD64)
435 { "pread64", (sqlite3_syscall_ptr
)pread64
, 0 },
437 { "pread64", (sqlite3_syscall_ptr
)0, 0 },
439 #define osPread64 ((ssize_t(*)(int,void*,size_t,off64_t))aSyscall[10].pCurrent)
441 { "write", (sqlite3_syscall_ptr
)write
, 0 },
442 #define osWrite ((ssize_t(*)(int,const void*,size_t))aSyscall[11].pCurrent)
444 #if defined(USE_PREAD) || SQLITE_ENABLE_LOCKING_STYLE
445 { "pwrite", (sqlite3_syscall_ptr
)pwrite
, 0 },
447 { "pwrite", (sqlite3_syscall_ptr
)0, 0 },
449 #define osPwrite ((ssize_t(*)(int,const void*,size_t,off_t))\
450 aSyscall[12].pCurrent)
452 #if defined(USE_PREAD64)
453 { "pwrite64", (sqlite3_syscall_ptr
)pwrite64
, 0 },
455 { "pwrite64", (sqlite3_syscall_ptr
)0, 0 },
457 #define osPwrite64 ((ssize_t(*)(int,const void*,size_t,off64_t))\
458 aSyscall[13].pCurrent)
460 { "fchmod", (sqlite3_syscall_ptr
)fchmod
, 0 },
461 #define osFchmod ((int(*)(int,mode_t))aSyscall[14].pCurrent)
463 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
464 { "fallocate", (sqlite3_syscall_ptr
)posix_fallocate
, 0 },
466 { "fallocate", (sqlite3_syscall_ptr
)0, 0 },
468 #define osFallocate ((int(*)(int,off_t,off_t))aSyscall[15].pCurrent)
470 { "unlink", (sqlite3_syscall_ptr
)unlink
, 0 },
471 #define osUnlink ((int(*)(const char*))aSyscall[16].pCurrent)
473 { "openDirectory", (sqlite3_syscall_ptr
)openDirectory
, 0 },
474 #define osOpenDirectory ((int(*)(const char*,int*))aSyscall[17].pCurrent)
476 { "mkdir", (sqlite3_syscall_ptr
)mkdir
, 0 },
477 #define osMkdir ((int(*)(const char*,mode_t))aSyscall[18].pCurrent)
479 { "rmdir", (sqlite3_syscall_ptr
)rmdir
, 0 },
480 #define osRmdir ((int(*)(const char*))aSyscall[19].pCurrent)
482 #if defined(HAVE_FCHOWN)
483 { "fchown", (sqlite3_syscall_ptr
)fchown
, 0 },
485 { "fchown", (sqlite3_syscall_ptr
)0, 0 },
487 #define osFchown ((int(*)(int,uid_t,gid_t))aSyscall[20].pCurrent)
489 #if defined(HAVE_FCHOWN)
490 { "geteuid", (sqlite3_syscall_ptr
)geteuid
, 0 },
492 { "geteuid", (sqlite3_syscall_ptr
)0, 0 },
494 #define osGeteuid ((uid_t(*)(void))aSyscall[21].pCurrent)
496 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
497 { "mmap", (sqlite3_syscall_ptr
)mmap
, 0 },
499 { "mmap", (sqlite3_syscall_ptr
)0, 0 },
501 #define osMmap ((void*(*)(void*,size_t,int,int,int,off_t))aSyscall[22].pCurrent)
503 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
504 { "munmap", (sqlite3_syscall_ptr
)munmap
, 0 },
506 { "munmap", (sqlite3_syscall_ptr
)0, 0 },
508 #define osMunmap ((int(*)(void*,size_t))aSyscall[23].pCurrent)
510 #if HAVE_MREMAP && (!defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0)
511 { "mremap", (sqlite3_syscall_ptr
)mremap
, 0 },
513 { "mremap", (sqlite3_syscall_ptr
)0, 0 },
515 #define osMremap ((void*(*)(void*,size_t,size_t,int,...))aSyscall[24].pCurrent)
517 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
518 { "getpagesize", (sqlite3_syscall_ptr
)unixGetpagesize
, 0 },
520 { "getpagesize", (sqlite3_syscall_ptr
)0, 0 },
522 #define osGetpagesize ((int(*)(void))aSyscall[25].pCurrent)
524 #if defined(HAVE_READLINK)
525 { "readlink", (sqlite3_syscall_ptr
)readlink
, 0 },
527 { "readlink", (sqlite3_syscall_ptr
)0, 0 },
529 #define osReadlink ((ssize_t(*)(const char*,char*,size_t))aSyscall[26].pCurrent)
531 #if defined(HAVE_LSTAT)
532 { "lstat", (sqlite3_syscall_ptr
)lstat
, 0 },
534 { "lstat", (sqlite3_syscall_ptr
)0, 0 },
536 #define osLstat ((int(*)(const char*,struct stat*))aSyscall[27].pCurrent)
538 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
540 { "ioctl", (sqlite3_syscall_ptr
)(int(*)(int, int, ...))ioctl
, 0 },
541 #define osIoctl ((int(*)(int,int,...))aSyscall[28].pCurrent)
543 { "ioctl", (sqlite3_syscall_ptr
)ioctl
, 0 },
544 #define osIoctl ((int(*)(int,unsigned long,...))aSyscall[28].pCurrent)
547 { "ioctl", (sqlite3_syscall_ptr
)0, 0 },
550 }; /* End of the overrideable system calls */
554 ** On some systems, calls to fchown() will trigger a message in a security
555 ** log if they come from non-root processes. So avoid calling fchown() if
556 ** we are not running as root.
558 static int robustFchown(int fd
, uid_t uid
, gid_t gid
){
559 #if defined(HAVE_FCHOWN)
560 return osGeteuid() ? 0 : osFchown(fd
,uid
,gid
);
567 ** This is the xSetSystemCall() method of sqlite3_vfs for all of the
568 ** "unix" VFSes. Return SQLITE_OK opon successfully updating the
569 ** system call pointer, or SQLITE_NOTFOUND if there is no configurable
570 ** system call named zName.
572 static int unixSetSystemCall(
573 sqlite3_vfs
*pNotUsed
, /* The VFS pointer. Not used */
574 const char *zName
, /* Name of system call to override */
575 sqlite3_syscall_ptr pNewFunc
/* Pointer to new system call value */
578 int rc
= SQLITE_NOTFOUND
;
580 UNUSED_PARAMETER(pNotUsed
);
582 /* If no zName is given, restore all system calls to their default
583 ** settings and return NULL
586 for(i
=0; i
<sizeof(aSyscall
)/sizeof(aSyscall
[0]); i
++){
587 if( aSyscall
[i
].pDefault
){
588 aSyscall
[i
].pCurrent
= aSyscall
[i
].pDefault
;
592 /* If zName is specified, operate on only the one system call
595 for(i
=0; i
<sizeof(aSyscall
)/sizeof(aSyscall
[0]); i
++){
596 if( strcmp(zName
, aSyscall
[i
].zName
)==0 ){
597 if( aSyscall
[i
].pDefault
==0 ){
598 aSyscall
[i
].pDefault
= aSyscall
[i
].pCurrent
;
601 if( pNewFunc
==0 ) pNewFunc
= aSyscall
[i
].pDefault
;
602 aSyscall
[i
].pCurrent
= pNewFunc
;
611 ** Return the value of a system call. Return NULL if zName is not a
612 ** recognized system call name. NULL is also returned if the system call
613 ** is currently undefined.
615 static sqlite3_syscall_ptr
unixGetSystemCall(
616 sqlite3_vfs
*pNotUsed
,
621 UNUSED_PARAMETER(pNotUsed
);
622 for(i
=0; i
<sizeof(aSyscall
)/sizeof(aSyscall
[0]); i
++){
623 if( strcmp(zName
, aSyscall
[i
].zName
)==0 ) return aSyscall
[i
].pCurrent
;
629 ** Return the name of the first system call after zName. If zName==NULL
630 ** then return the name of the first system call. Return NULL if zName
631 ** is the last system call or if zName is not the name of a valid
634 static const char *unixNextSystemCall(sqlite3_vfs
*p
, const char *zName
){
639 for(i
=0; i
<ArraySize(aSyscall
)-1; i
++){
640 if( strcmp(zName
, aSyscall
[i
].zName
)==0 ) break;
643 for(i
++; i
<ArraySize(aSyscall
); i
++){
644 if( aSyscall
[i
].pCurrent
!=0 ) return aSyscall
[i
].zName
;
650 ** Do not accept any file descriptor less than this value, in order to avoid
651 ** opening database file using file descriptors that are commonly used for
652 ** standard input, output, and error.
654 #ifndef SQLITE_MINIMUM_FILE_DESCRIPTOR
655 # define SQLITE_MINIMUM_FILE_DESCRIPTOR 3
659 ** Invoke open(). Do so multiple times, until it either succeeds or
660 ** fails for some reason other than EINTR.
662 ** If the file creation mode "m" is 0 then set it to the default for
663 ** SQLite. The default is SQLITE_DEFAULT_FILE_PERMISSIONS (normally
664 ** 0644) as modified by the system umask. If m is not 0, then
665 ** make the file creation mode be exactly m ignoring the umask.
667 ** The m parameter will be non-zero only when creating -wal, -journal,
668 ** and -shm files. We want those files to have *exactly* the same
669 ** permissions as their original database, unadulterated by the umask.
670 ** In that way, if a database file is -rw-rw-rw or -rw-rw-r-, and a
671 ** transaction crashes and leaves behind hot journals, then any
672 ** process that is able to write to the database will also be able to
673 ** recover the hot journals.
675 static int robust_open(const char *z
, int f
, mode_t m
){
677 mode_t m2
= m
? m
: SQLITE_DEFAULT_FILE_PERMISSIONS
;
679 #if defined(O_CLOEXEC)
680 fd
= osOpen(z
,f
|O_CLOEXEC
,m2
);
685 if( errno
==EINTR
) continue;
688 if( fd
>=SQLITE_MINIMUM_FILE_DESCRIPTOR
) break;
690 sqlite3_log(SQLITE_WARNING
,
691 "attempt to open \"%s\" as file descriptor %d", z
, fd
);
693 if( osOpen("/dev/null", O_RDONLY
, m
)<0 ) break;
698 if( osFstat(fd
, &statbuf
)==0
699 && statbuf
.st_size
==0
700 && (statbuf
.st_mode
&0777)!=m
705 #if defined(FD_CLOEXEC) && (!defined(O_CLOEXEC) || O_CLOEXEC==0)
706 osFcntl(fd
, F_SETFD
, osFcntl(fd
, F_GETFD
, 0) | FD_CLOEXEC
);
713 ** Helper functions to obtain and relinquish the global mutex. The
714 ** global mutex is used to protect the unixInodeInfo and
715 ** vxworksFileId objects used by this file, all of which may be
716 ** shared by multiple threads.
718 ** Function unixMutexHeld() is used to assert() that the global mutex
719 ** is held when required. This function is only used as part of assert()
723 ** assert( unixMutexHeld() );
726 ** To prevent deadlock, the global unixBigLock must must be acquired
727 ** before the unixInodeInfo.pLockMutex mutex, if both are held. It is
728 ** OK to get the pLockMutex without holding unixBigLock first, but if
729 ** that happens, the unixBigLock mutex must not be acquired until after
730 ** pLockMutex is released.
732 ** OK: enter(unixBigLock), enter(pLockInfo)
733 ** OK: enter(unixBigLock)
734 ** OK: enter(pLockInfo)
735 ** ERROR: enter(pLockInfo), enter(unixBigLock)
737 static sqlite3_mutex
*unixBigLock
= 0;
738 static void unixEnterMutex(void){
739 assert( sqlite3_mutex_notheld(unixBigLock
) ); /* Not a recursive mutex */
740 sqlite3_mutex_enter(unixBigLock
);
742 static void unixLeaveMutex(void){
743 assert( sqlite3_mutex_held(unixBigLock
) );
744 sqlite3_mutex_leave(unixBigLock
);
747 static int unixMutexHeld(void) {
748 return sqlite3_mutex_held(unixBigLock
);
753 #ifdef SQLITE_HAVE_OS_TRACE
755 ** Helper function for printing out trace information from debugging
756 ** binaries. This returns the string representation of the supplied
757 ** integer lock-type.
759 static const char *azFileLock(int eFileLock
){
761 case NO_LOCK
: return "NONE";
762 case SHARED_LOCK
: return "SHARED";
763 case RESERVED_LOCK
: return "RESERVED";
764 case PENDING_LOCK
: return "PENDING";
765 case EXCLUSIVE_LOCK
: return "EXCLUSIVE";
771 #ifdef SQLITE_LOCK_TRACE
773 ** Print out information about all locking operations.
775 ** This routine is used for troubleshooting locks on multithreaded
776 ** platforms. Enable by compiling with the -DSQLITE_LOCK_TRACE
777 ** command-line option on the compiler. This code is normally
780 static int lockTrace(int fd
, int op
, struct flock
*p
){
781 char *zOpName
, *zType
;
786 }else if( op
==F_SETLK
){
789 s
= osFcntl(fd
, op
, p
);
790 sqlite3DebugPrintf("fcntl unknown %d %d %d\n", fd
, op
, s
);
793 if( p
->l_type
==F_RDLCK
){
795 }else if( p
->l_type
==F_WRLCK
){
797 }else if( p
->l_type
==F_UNLCK
){
802 assert( p
->l_whence
==SEEK_SET
);
803 s
= osFcntl(fd
, op
, p
);
805 sqlite3DebugPrintf("fcntl %d %d %s %s %d %d %d %d\n",
806 threadid
, fd
, zOpName
, zType
, (int)p
->l_start
, (int)p
->l_len
,
808 if( s
==(-1) && op
==F_SETLK
&& (p
->l_type
==F_RDLCK
|| p
->l_type
==F_WRLCK
) ){
811 osFcntl(fd
, F_GETLK
, &l2
);
812 if( l2
.l_type
==F_RDLCK
){
814 }else if( l2
.l_type
==F_WRLCK
){
816 }else if( l2
.l_type
==F_UNLCK
){
821 sqlite3DebugPrintf("fcntl-failure-reason: %s %d %d %d\n",
822 zType
, (int)l2
.l_start
, (int)l2
.l_len
, (int)l2
.l_pid
);
828 #define osFcntl lockTrace
829 #endif /* SQLITE_LOCK_TRACE */
832 ** Retry ftruncate() calls that fail due to EINTR
834 ** All calls to ftruncate() within this file should be made through
835 ** this wrapper. On the Android platform, bypassing the logic below
836 ** could lead to a corrupt database.
838 static int robust_ftruncate(int h
, sqlite3_int64 sz
){
841 /* On Android, ftruncate() always uses 32-bit offsets, even if
842 ** _FILE_OFFSET_BITS=64 is defined. This means it is unsafe to attempt to
843 ** truncate a file to any size larger than 2GiB. Silently ignore any
845 if( sz
>(sqlite3_int64
)0x7FFFFFFF ){
849 do{ rc
= osFtruncate(h
,sz
); }while( rc
<0 && errno
==EINTR
);
854 ** This routine translates a standard POSIX errno code into something
855 ** useful to the clients of the sqlite3 functions. Specifically, it is
856 ** intended to translate a variety of "try again" errors into SQLITE_BUSY
857 ** and a variety of "please close the file descriptor NOW" errors into
860 ** Errors during initialization of locks, or file system support for locks,
861 ** should handle ENOLCK, ENOTSUP, EOPNOTSUPP separately.
863 static int sqliteErrorFromPosixError(int posixError
, int sqliteIOErr
) {
864 assert( (sqliteIOErr
== SQLITE_IOERR_LOCK
) ||
865 (sqliteIOErr
== SQLITE_IOERR_UNLOCK
) ||
866 (sqliteIOErr
== SQLITE_IOERR_RDLOCK
) ||
867 (sqliteIOErr
== SQLITE_IOERR_CHECKRESERVEDLOCK
) );
868 switch (posixError
) {
875 /* random NFS retry error, unless during file system support
876 * introspection, in which it actually means what it says */
888 /******************************************************************************
889 ****************** Begin Unique File ID Utility Used By VxWorks ***************
891 ** On most versions of unix, we can get a unique ID for a file by concatenating
892 ** the device number and the inode number. But this does not work on VxWorks.
893 ** On VxWorks, a unique file id must be based on the canonical filename.
895 ** A pointer to an instance of the following structure can be used as a
896 ** unique file ID in VxWorks. Each instance of this structure contains
897 ** a copy of the canonical filename. There is also a reference count.
898 ** The structure is reclaimed when the number of pointers to it drops to
901 ** There are never very many files open at one time and lookups are not
902 ** a performance-critical path, so it is sufficient to put these
903 ** structures on a linked list.
905 struct vxworksFileId
{
906 struct vxworksFileId
*pNext
; /* Next in a list of them all */
907 int nRef
; /* Number of references to this one */
908 int nName
; /* Length of the zCanonicalName[] string */
909 char *zCanonicalName
; /* Canonical filename */
914 ** All unique filenames are held on a linked list headed by this
917 static struct vxworksFileId
*vxworksFileList
= 0;
920 ** Simplify a filename into its canonical form
921 ** by making the following changes:
923 ** * removing any trailing and duplicate /
924 ** * convert /./ into just /
925 ** * convert /A/../ where A is any simple name into just /
927 ** Changes are made in-place. Return the new name length.
929 ** The original filename is in z[0..n-1]. Return the number of
930 ** characters in the simplified name.
932 static int vxworksSimplifyName(char *z
, int n
){
934 while( n
>1 && z
[n
-1]=='/' ){ n
--; }
935 for(i
=j
=0; i
<n
; i
++){
937 if( z
[i
+1]=='/' ) continue;
938 if( z
[i
+1]=='.' && i
+2<n
&& z
[i
+2]=='/' ){
942 if( z
[i
+1]=='.' && i
+3<n
&& z
[i
+2]=='.' && z
[i
+3]=='/' ){
943 while( j
>0 && z
[j
-1]!='/' ){ j
--; }
956 ** Find a unique file ID for the given absolute pathname. Return
957 ** a pointer to the vxworksFileId object. This pointer is the unique
960 ** The nRef field of the vxworksFileId object is incremented before
961 ** the object is returned. A new vxworksFileId object is created
962 ** and added to the global list if necessary.
964 ** If a memory allocation error occurs, return NULL.
966 static struct vxworksFileId
*vxworksFindFileId(const char *zAbsoluteName
){
967 struct vxworksFileId
*pNew
; /* search key and new file ID */
968 struct vxworksFileId
*pCandidate
; /* For looping over existing file IDs */
969 int n
; /* Length of zAbsoluteName string */
971 assert( zAbsoluteName
[0]=='/' );
972 n
= (int)strlen(zAbsoluteName
);
973 pNew
= sqlite3_malloc64( sizeof(*pNew
) + (n
+1) );
974 if( pNew
==0 ) return 0;
975 pNew
->zCanonicalName
= (char*)&pNew
[1];
976 memcpy(pNew
->zCanonicalName
, zAbsoluteName
, n
+1);
977 n
= vxworksSimplifyName(pNew
->zCanonicalName
, n
);
979 /* Search for an existing entry that matching the canonical name.
980 ** If found, increment the reference count and return a pointer to
981 ** the existing file ID.
984 for(pCandidate
=vxworksFileList
; pCandidate
; pCandidate
=pCandidate
->pNext
){
985 if( pCandidate
->nName
==n
986 && memcmp(pCandidate
->zCanonicalName
, pNew
->zCanonicalName
, n
)==0
995 /* No match was found. We will make a new file ID */
998 pNew
->pNext
= vxworksFileList
;
999 vxworksFileList
= pNew
;
1005 ** Decrement the reference count on a vxworksFileId object. Free
1006 ** the object when the reference count reaches zero.
1008 static void vxworksReleaseFileId(struct vxworksFileId
*pId
){
1010 assert( pId
->nRef
>0 );
1013 struct vxworksFileId
**pp
;
1014 for(pp
=&vxworksFileList
; *pp
&& *pp
!=pId
; pp
= &((*pp
)->pNext
)){}
1021 #endif /* OS_VXWORKS */
1022 /*************** End of Unique File ID Utility Used By VxWorks ****************
1023 ******************************************************************************/
1026 /******************************************************************************
1027 *************************** Posix Advisory Locking ****************************
1029 ** POSIX advisory locks are broken by design. ANSI STD 1003.1 (1996)
1030 ** section 6.5.2.2 lines 483 through 490 specify that when a process
1031 ** sets or clears a lock, that operation overrides any prior locks set
1032 ** by the same process. It does not explicitly say so, but this implies
1033 ** that it overrides locks set by the same process using a different
1034 ** file descriptor. Consider this test case:
1036 ** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
1037 ** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
1039 ** Suppose ./file1 and ./file2 are really the same file (because
1040 ** one is a hard or symbolic link to the other) then if you set
1041 ** an exclusive lock on fd1, then try to get an exclusive lock
1042 ** on fd2, it works. I would have expected the second lock to
1043 ** fail since there was already a lock on the file due to fd1.
1044 ** But not so. Since both locks came from the same process, the
1045 ** second overrides the first, even though they were on different
1046 ** file descriptors opened on different file names.
1048 ** This means that we cannot use POSIX locks to synchronize file access
1049 ** among competing threads of the same process. POSIX locks will work fine
1050 ** to synchronize access for threads in separate processes, but not
1051 ** threads within the same process.
1053 ** To work around the problem, SQLite has to manage file locks internally
1054 ** on its own. Whenever a new database is opened, we have to find the
1055 ** specific inode of the database file (the inode is determined by the
1056 ** st_dev and st_ino fields of the stat structure that fstat() fills in)
1057 ** and check for locks already existing on that inode. When locks are
1058 ** created or removed, we have to look at our own internal record of the
1059 ** locks to see if another thread has previously set a lock on that same
1062 ** (Aside: The use of inode numbers as unique IDs does not work on VxWorks.
1063 ** For VxWorks, we have to use the alternative unique ID system based on
1064 ** canonical filename and implemented in the previous division.)
1066 ** The sqlite3_file structure for POSIX is no longer just an integer file
1067 ** descriptor. It is now a structure that holds the integer file
1068 ** descriptor and a pointer to a structure that describes the internal
1069 ** locks on the corresponding inode. There is one locking structure
1070 ** per inode, so if the same inode is opened twice, both unixFile structures
1071 ** point to the same locking structure. The locking structure keeps
1072 ** a reference count (so we will know when to delete it) and a "cnt"
1073 ** field that tells us its internal lock status. cnt==0 means the
1074 ** file is unlocked. cnt==-1 means the file has an exclusive lock.
1075 ** cnt>0 means there are cnt shared locks on the file.
1077 ** Any attempt to lock or unlock a file first checks the locking
1078 ** structure. The fcntl() system call is only invoked to set a
1079 ** POSIX lock if the internal lock structure transitions between
1080 ** a locked and an unlocked state.
1082 ** But wait: there are yet more problems with POSIX advisory locks.
1084 ** If you close a file descriptor that points to a file that has locks,
1085 ** all locks on that file that are owned by the current process are
1086 ** released. To work around this problem, each unixInodeInfo object
1087 ** maintains a count of the number of pending locks on tha inode.
1088 ** When an attempt is made to close an unixFile, if there are
1089 ** other unixFile open on the same inode that are holding locks, the call
1090 ** to close() the file descriptor is deferred until all of the locks clear.
1091 ** The unixInodeInfo structure keeps a list of file descriptors that need to
1092 ** be closed and that list is walked (and cleared) when the last lock
1095 ** Yet another problem: LinuxThreads do not play well with posix locks.
1097 ** Many older versions of linux use the LinuxThreads library which is
1098 ** not posix compliant. Under LinuxThreads, a lock created by thread
1099 ** A cannot be modified or overridden by a different thread B.
1100 ** Only thread A can modify the lock. Locking behavior is correct
1101 ** if the appliation uses the newer Native Posix Thread Library (NPTL)
1102 ** on linux - with NPTL a lock created by thread A can override locks
1103 ** in thread B. But there is no way to know at compile-time which
1104 ** threading library is being used. So there is no way to know at
1105 ** compile-time whether or not thread A can override locks on thread B.
1106 ** One has to do a run-time check to discover the behavior of the
1109 ** SQLite used to support LinuxThreads. But support for LinuxThreads
1110 ** was dropped beginning with version 3.7.0. SQLite will still work with
1111 ** LinuxThreads provided that (1) there is no more than one connection
1112 ** per database file in the same process and (2) database connections
1113 ** do not move across threads.
1117 ** An instance of the following structure serves as the key used
1118 ** to locate a particular unixInodeInfo object.
1121 dev_t dev
; /* Device number */
1123 struct vxworksFileId
*pId
; /* Unique file ID for vxworks. */
1125 /* We are told that some versions of Android contain a bug that
1126 ** sizes ino_t at only 32-bits instead of 64-bits. (See
1127 ** https://android-review.googlesource.com/#/c/115351/3/dist/sqlite3.c)
1128 ** To work around this, always allocate 64-bits for the inode number.
1129 ** On small machines that only have 32-bit inodes, this wastes 4 bytes,
1130 ** but that should not be a big deal. */
1131 /* WAS: ino_t ino; */
1132 u64 ino
; /* Inode number */
1137 ** An instance of the following structure is allocated for each open
1140 ** A single inode can have multiple file descriptors, so each unixFile
1141 ** structure contains a pointer to an instance of this object and this
1142 ** object keeps a count of the number of unixFile pointing to it.
1146 ** (1) Only the pLockMutex mutex must be held in order to read or write
1147 ** any of the locking fields:
1148 ** nShared, nLock, eFileLock, bProcessLock, pUnused
1150 ** (2) When nRef>0, then the following fields are unchanging and can
1151 ** be read (but not written) without holding any mutex:
1152 ** fileId, pLockMutex
1154 ** (3) With the exceptions above, all the fields may only be read
1155 ** or written while holding the global unixBigLock mutex.
1157 ** Deadlock prevention: The global unixBigLock mutex may not
1158 ** be acquired while holding the pLockMutex mutex. If both unixBigLock
1159 ** and pLockMutex are needed, then unixBigLock must be acquired first.
1161 struct unixInodeInfo
{
1162 struct unixFileId fileId
; /* The lookup key */
1163 sqlite3_mutex
*pLockMutex
; /* Hold this mutex for... */
1164 int nShared
; /* Number of SHARED locks held */
1165 int nLock
; /* Number of outstanding file locks */
1166 unsigned char eFileLock
; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
1167 unsigned char bProcessLock
; /* An exclusive process lock is held */
1168 UnixUnusedFd
*pUnused
; /* Unused file descriptors to close */
1169 int nRef
; /* Number of pointers to this structure */
1170 unixShmNode
*pShmNode
; /* Shared memory associated with this inode */
1171 unixInodeInfo
*pNext
; /* List of all unixInodeInfo objects */
1172 unixInodeInfo
*pPrev
; /* .... doubly linked */
1173 #if SQLITE_ENABLE_LOCKING_STYLE
1174 unsigned long long sharedByte
; /* for AFP simulated shared lock */
1177 sem_t
*pSem
; /* Named POSIX semaphore */
1178 char aSemName
[MAX_PATHNAME
+2]; /* Name of that semaphore */
1183 ** A lists of all unixInodeInfo objects.
1185 ** Must hold unixBigLock in order to read or write this variable.
1187 static unixInodeInfo
*inodeList
= 0; /* All unixInodeInfo objects */
1191 ** True if the inode mutex (on the unixFile.pFileMutex field) is held, or not.
1192 ** This routine is used only within assert() to help verify correct mutex
1195 int unixFileMutexHeld(unixFile
*pFile
){
1196 assert( pFile
->pInode
);
1197 return sqlite3_mutex_held(pFile
->pInode
->pLockMutex
);
1199 int unixFileMutexNotheld(unixFile
*pFile
){
1200 assert( pFile
->pInode
);
1201 return sqlite3_mutex_notheld(pFile
->pInode
->pLockMutex
);
1207 ** This function - unixLogErrorAtLine(), is only ever called via the macro
1210 ** It is invoked after an error occurs in an OS function and errno has been
1211 ** set. It logs a message using sqlite3_log() containing the current value of
1212 ** errno and, if possible, the human-readable equivalent from strerror() or
1215 ** The first argument passed to the macro should be the error code that
1216 ** will be returned to SQLite (e.g. SQLITE_IOERR_DELETE, SQLITE_CANTOPEN).
1217 ** The two subsequent arguments should be the name of the OS function that
1218 ** failed (e.g. "unlink", "open") and the associated file-system path,
1221 #define unixLogError(a,b,c) unixLogErrorAtLine(a,b,c,__LINE__)
1222 static int unixLogErrorAtLine(
1223 int errcode
, /* SQLite error code */
1224 const char *zFunc
, /* Name of OS function that failed */
1225 const char *zPath
, /* File path associated with error */
1226 int iLine
/* Source line number where error occurred */
1228 char *zErr
; /* Message from strerror() or equivalent */
1229 int iErrno
= errno
; /* Saved syscall error number */
1231 /* If this is not a threadsafe build (SQLITE_THREADSAFE==0), then use
1232 ** the strerror() function to obtain the human-readable error message
1233 ** equivalent to errno. Otherwise, use strerror_r().
1235 #if SQLITE_THREADSAFE && defined(HAVE_STRERROR_R)
1237 memset(aErr
, 0, sizeof(aErr
));
1240 /* If STRERROR_R_CHAR_P (set by autoconf scripts) or __USE_GNU is defined,
1241 ** assume that the system provides the GNU version of strerror_r() that
1242 ** returns a pointer to a buffer containing the error message. That pointer
1243 ** may point to aErr[], or it may point to some static storage somewhere.
1244 ** Otherwise, assume that the system provides the POSIX version of
1245 ** strerror_r(), which always writes an error message into aErr[].
1247 ** If the code incorrectly assumes that it is the POSIX version that is
1248 ** available, the error message will often be an empty string. Not a
1249 ** huge problem. Incorrectly concluding that the GNU version is available
1250 ** could lead to a segfault though.
1252 #if defined(STRERROR_R_CHAR_P) || defined(__USE_GNU)
1255 strerror_r(iErrno
, aErr
, sizeof(aErr
)-1);
1257 #elif SQLITE_THREADSAFE
1258 /* This is a threadsafe build, but strerror_r() is not available. */
1261 /* Non-threadsafe build, use strerror(). */
1262 zErr
= strerror(iErrno
);
1265 if( zPath
==0 ) zPath
= "";
1266 sqlite3_log(errcode
,
1267 "os_unix.c:%d: (%d) %s(%s) - %s",
1268 iLine
, iErrno
, zFunc
, zPath
, zErr
1275 ** Close a file descriptor.
1277 ** We assume that close() almost always works, since it is only in a
1278 ** very sick application or on a very sick platform that it might fail.
1279 ** If it does fail, simply leak the file descriptor, but do log the
1282 ** Note that it is not safe to retry close() after EINTR since the
1283 ** file descriptor might have already been reused by another thread.
1284 ** So we don't even try to recover from an EINTR. Just log the error
1287 static void robust_close(unixFile
*pFile
, int h
, int lineno
){
1289 unixLogErrorAtLine(SQLITE_IOERR_CLOSE
, "close",
1290 pFile
? pFile
->zPath
: 0, lineno
);
1295 ** Set the pFile->lastErrno. Do this in a subroutine as that provides
1296 ** a convenient place to set a breakpoint.
1298 static void storeLastErrno(unixFile
*pFile
, int error
){
1299 pFile
->lastErrno
= error
;
1303 ** Close all file descriptors accumuated in the unixInodeInfo->pUnused list.
1305 static void closePendingFds(unixFile
*pFile
){
1306 unixInodeInfo
*pInode
= pFile
->pInode
;
1308 UnixUnusedFd
*pNext
;
1309 assert( unixFileMutexHeld(pFile
) );
1310 for(p
=pInode
->pUnused
; p
; p
=pNext
){
1312 robust_close(pFile
, p
->fd
, __LINE__
);
1315 pInode
->pUnused
= 0;
1319 ** Release a unixInodeInfo structure previously allocated by findInodeInfo().
1321 ** The global mutex must be held when this routine is called, but the mutex
1322 ** on the inode being deleted must NOT be held.
1324 static void releaseInodeInfo(unixFile
*pFile
){
1325 unixInodeInfo
*pInode
= pFile
->pInode
;
1326 assert( unixMutexHeld() );
1327 assert( unixFileMutexNotheld(pFile
) );
1328 if( ALWAYS(pInode
) ){
1330 if( pInode
->nRef
==0 ){
1331 assert( pInode
->pShmNode
==0 );
1332 sqlite3_mutex_enter(pInode
->pLockMutex
);
1333 closePendingFds(pFile
);
1334 sqlite3_mutex_leave(pInode
->pLockMutex
);
1335 if( pInode
->pPrev
){
1336 assert( pInode
->pPrev
->pNext
==pInode
);
1337 pInode
->pPrev
->pNext
= pInode
->pNext
;
1339 assert( inodeList
==pInode
);
1340 inodeList
= pInode
->pNext
;
1342 if( pInode
->pNext
){
1343 assert( pInode
->pNext
->pPrev
==pInode
);
1344 pInode
->pNext
->pPrev
= pInode
->pPrev
;
1346 sqlite3_mutex_free(pInode
->pLockMutex
);
1347 sqlite3_free(pInode
);
1353 ** Given a file descriptor, locate the unixInodeInfo object that
1354 ** describes that file descriptor. Create a new one if necessary. The
1355 ** return value might be uninitialized if an error occurs.
1357 ** The global mutex must held when calling this routine.
1359 ** Return an appropriate error code.
1361 static int findInodeInfo(
1362 unixFile
*pFile
, /* Unix file with file desc used in the key */
1363 unixInodeInfo
**ppInode
/* Return the unixInodeInfo object here */
1365 int rc
; /* System call return code */
1366 int fd
; /* The file descriptor for pFile */
1367 struct unixFileId fileId
; /* Lookup key for the unixInodeInfo */
1368 struct stat statbuf
; /* Low-level file information */
1369 unixInodeInfo
*pInode
= 0; /* Candidate unixInodeInfo object */
1371 assert( unixMutexHeld() );
1373 /* Get low-level information about the file that we can used to
1374 ** create a unique name for the file.
1377 rc
= osFstat(fd
, &statbuf
);
1379 storeLastErrno(pFile
, errno
);
1380 #if defined(EOVERFLOW) && defined(SQLITE_DISABLE_LFS)
1381 if( pFile
->lastErrno
==EOVERFLOW
) return SQLITE_NOLFS
;
1383 return SQLITE_IOERR
;
1387 /* On OS X on an msdos filesystem, the inode number is reported
1388 ** incorrectly for zero-size files. See ticket #3260. To work
1389 ** around this problem (we consider it a bug in OS X, not SQLite)
1390 ** we always increase the file size to 1 by writing a single byte
1391 ** prior to accessing the inode number. The one byte written is
1392 ** an ASCII 'S' character which also happens to be the first byte
1393 ** in the header of every SQLite database. In this way, if there
1394 ** is a race condition such that another thread has already populated
1395 ** the first page of the database, no damage is done.
1397 if( statbuf
.st_size
==0 && (pFile
->fsFlags
& SQLITE_FSFLAGS_IS_MSDOS
)!=0 ){
1398 do{ rc
= osWrite(fd
, "S", 1); }while( rc
<0 && errno
==EINTR
);
1400 storeLastErrno(pFile
, errno
);
1401 return SQLITE_IOERR
;
1403 rc
= osFstat(fd
, &statbuf
);
1405 storeLastErrno(pFile
, errno
);
1406 return SQLITE_IOERR
;
1411 memset(&fileId
, 0, sizeof(fileId
));
1412 fileId
.dev
= statbuf
.st_dev
;
1414 fileId
.pId
= pFile
->pId
;
1416 fileId
.ino
= (u64
)statbuf
.st_ino
;
1418 assert( unixMutexHeld() );
1420 while( pInode
&& memcmp(&fileId
, &pInode
->fileId
, sizeof(fileId
)) ){
1421 pInode
= pInode
->pNext
;
1424 pInode
= sqlite3_malloc64( sizeof(*pInode
) );
1426 return SQLITE_NOMEM_BKPT
;
1428 memset(pInode
, 0, sizeof(*pInode
));
1429 memcpy(&pInode
->fileId
, &fileId
, sizeof(fileId
));
1430 if( sqlite3GlobalConfig
.bCoreMutex
){
1431 pInode
->pLockMutex
= sqlite3_mutex_alloc(SQLITE_MUTEX_FAST
);
1432 if( pInode
->pLockMutex
==0 ){
1433 sqlite3_free(pInode
);
1434 return SQLITE_NOMEM_BKPT
;
1438 assert( unixMutexHeld() );
1439 pInode
->pNext
= inodeList
;
1441 if( inodeList
) inodeList
->pPrev
= pInode
;
1451 ** Return TRUE if pFile has been renamed or unlinked since it was first opened.
1453 static int fileHasMoved(unixFile
*pFile
){
1455 return pFile
->pInode
!=0 && pFile
->pId
!=pFile
->pInode
->fileId
.pId
;
1458 return pFile
->pInode
!=0 &&
1459 (osStat(pFile
->zPath
, &buf
)!=0
1460 || (u64
)buf
.st_ino
!=pFile
->pInode
->fileId
.ino
);
1466 ** Check a unixFile that is a database. Verify the following:
1468 ** (1) There is exactly one hard link on the file
1469 ** (2) The file is not a symbolic link
1470 ** (3) The file has not been renamed or unlinked
1472 ** Issue sqlite3_log(SQLITE_WARNING,...) messages if anything is not right.
1474 static void verifyDbFile(unixFile
*pFile
){
1478 /* These verifications occurs for the main database only */
1479 if( pFile
->ctrlFlags
& UNIXFILE_NOLOCK
) return;
1481 rc
= osFstat(pFile
->h
, &buf
);
1483 sqlite3_log(SQLITE_WARNING
, "cannot fstat db file %s", pFile
->zPath
);
1486 if( buf
.st_nlink
==0 ){
1487 sqlite3_log(SQLITE_WARNING
, "file unlinked while open: %s", pFile
->zPath
);
1490 if( buf
.st_nlink
>1 ){
1491 sqlite3_log(SQLITE_WARNING
, "multiple links to file: %s", pFile
->zPath
);
1494 if( fileHasMoved(pFile
) ){
1495 sqlite3_log(SQLITE_WARNING
, "file renamed while open: %s", pFile
->zPath
);
1502 ** This routine checks if there is a RESERVED lock held on the specified
1503 ** file by this or any other process. If such a lock is held, set *pResOut
1504 ** to a non-zero value otherwise *pResOut is set to zero. The return value
1505 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
1507 static int unixCheckReservedLock(sqlite3_file
*id
, int *pResOut
){
1510 unixFile
*pFile
= (unixFile
*)id
;
1512 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
1515 assert( pFile
->eFileLock
<=SHARED_LOCK
);
1516 sqlite3_mutex_enter(pFile
->pInode
->pLockMutex
);
1518 /* Check if a thread in this process holds such a lock */
1519 if( pFile
->pInode
->eFileLock
>SHARED_LOCK
){
1523 /* Otherwise see if some other process holds it.
1526 if( !reserved
&& !pFile
->pInode
->bProcessLock
){
1528 lock
.l_whence
= SEEK_SET
;
1529 lock
.l_start
= RESERVED_BYTE
;
1531 lock
.l_type
= F_WRLCK
;
1532 if( osFcntl(pFile
->h
, F_GETLK
, &lock
) ){
1533 rc
= SQLITE_IOERR_CHECKRESERVEDLOCK
;
1534 storeLastErrno(pFile
, errno
);
1535 } else if( lock
.l_type
!=F_UNLCK
){
1541 sqlite3_mutex_leave(pFile
->pInode
->pLockMutex
);
1542 OSTRACE(("TEST WR-LOCK %d %d %d (unix)\n", pFile
->h
, rc
, reserved
));
1544 *pResOut
= reserved
;
1548 /* Forward declaration*/
1549 static int unixSleep(sqlite3_vfs
*,int);
1552 ** Set a posix-advisory-lock.
1554 ** There are two versions of this routine. If compiled with
1555 ** SQLITE_ENABLE_SETLK_TIMEOUT then the routine has an extra parameter
1556 ** which is a pointer to a unixFile. If the unixFile->iBusyTimeout
1557 ** value is set, then it is the number of milliseconds to wait before
1558 ** failing the lock. The iBusyTimeout value is always reset back to
1559 ** zero on each call.
1561 ** If SQLITE_ENABLE_SETLK_TIMEOUT is not defined, then do a non-blocking
1562 ** attempt to set the lock.
1564 #ifndef SQLITE_ENABLE_SETLK_TIMEOUT
1565 # define osSetPosixAdvisoryLock(h,x,t) osFcntl(h,F_SETLK,x)
1567 static int osSetPosixAdvisoryLock(
1568 int h
, /* The file descriptor on which to take the lock */
1569 struct flock
*pLock
, /* The description of the lock */
1570 unixFile
*pFile
/* Structure holding timeout value */
1572 int tm
= pFile
->iBusyTimeout
;
1573 int rc
= osFcntl(h
,F_SETLK
,pLock
);
1574 while( rc
<0 && tm
>0 ){
1575 /* On systems that support some kind of blocking file lock with a timeout,
1576 ** make appropriate changes here to invoke that blocking file lock. On
1577 ** generic posix, however, there is no such API. So we simply try the
1578 ** lock once every millisecond until either the timeout expires, or until
1579 ** the lock is obtained. */
1581 rc
= osFcntl(h
,F_SETLK
,pLock
);
1586 #endif /* SQLITE_ENABLE_SETLK_TIMEOUT */
1590 ** Attempt to set a system-lock on the file pFile. The lock is
1591 ** described by pLock.
1593 ** If the pFile was opened read/write from unix-excl, then the only lock
1594 ** ever obtained is an exclusive lock, and it is obtained exactly once
1595 ** the first time any lock is attempted. All subsequent system locking
1596 ** operations become no-ops. Locking operations still happen internally,
1597 ** in order to coordinate access between separate database connections
1598 ** within this process, but all of that is handled in memory and the
1599 ** operating system does not participate.
1601 ** This function is a pass-through to fcntl(F_SETLK) if pFile is using
1602 ** any VFS other than "unix-excl" or if pFile is opened on "unix-excl"
1603 ** and is read-only.
1605 ** Zero is returned if the call completes successfully, or -1 if a call
1606 ** to fcntl() fails. In this case, errno is set appropriately (by fcntl()).
1608 static int unixFileLock(unixFile
*pFile
, struct flock
*pLock
){
1610 unixInodeInfo
*pInode
= pFile
->pInode
;
1611 assert( pInode
!=0 );
1612 assert( sqlite3_mutex_held(pInode
->pLockMutex
) );
1613 if( (pFile
->ctrlFlags
& (UNIXFILE_EXCL
|UNIXFILE_RDONLY
))==UNIXFILE_EXCL
){
1614 if( pInode
->bProcessLock
==0 ){
1616 assert( pInode
->nLock
==0 );
1617 lock
.l_whence
= SEEK_SET
;
1618 lock
.l_start
= SHARED_FIRST
;
1619 lock
.l_len
= SHARED_SIZE
;
1620 lock
.l_type
= F_WRLCK
;
1621 rc
= osSetPosixAdvisoryLock(pFile
->h
, &lock
, pFile
);
1622 if( rc
<0 ) return rc
;
1623 pInode
->bProcessLock
= 1;
1629 rc
= osSetPosixAdvisoryLock(pFile
->h
, pLock
, pFile
);
1635 ** Lock the file with the lock specified by parameter eFileLock - one
1636 ** of the following:
1639 ** (2) RESERVED_LOCK
1641 ** (4) EXCLUSIVE_LOCK
1643 ** Sometimes when requesting one lock state, additional lock states
1644 ** are inserted in between. The locking might fail on one of the later
1645 ** transitions leaving the lock state different from what it started but
1646 ** still short of its goal. The following chart shows the allowed
1647 ** transitions and the inserted intermediate states:
1649 ** UNLOCKED -> SHARED
1650 ** SHARED -> RESERVED
1651 ** SHARED -> (PENDING) -> EXCLUSIVE
1652 ** RESERVED -> (PENDING) -> EXCLUSIVE
1653 ** PENDING -> EXCLUSIVE
1655 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
1656 ** routine to lower a locking level.
1658 static int unixLock(sqlite3_file
*id
, int eFileLock
){
1659 /* The following describes the implementation of the various locks and
1660 ** lock transitions in terms of the POSIX advisory shared and exclusive
1661 ** lock primitives (called read-locks and write-locks below, to avoid
1662 ** confusion with SQLite lock names). The algorithms are complicated
1663 ** slightly in order to be compatible with Windows95 systems simultaneously
1664 ** accessing the same database file, in case that is ever required.
1666 ** Symbols defined in os.h indentify the 'pending byte' and the 'reserved
1667 ** byte', each single bytes at well known offsets, and the 'shared byte
1668 ** range', a range of 510 bytes at a well known offset.
1670 ** To obtain a SHARED lock, a read-lock is obtained on the 'pending
1671 ** byte'. If this is successful, 'shared byte range' is read-locked
1672 ** and the lock on the 'pending byte' released. (Legacy note: When
1673 ** SQLite was first developed, Windows95 systems were still very common,
1674 ** and Widnows95 lacks a shared-lock capability. So on Windows95, a
1675 ** single randomly selected by from the 'shared byte range' is locked.
1676 ** Windows95 is now pretty much extinct, but this work-around for the
1677 ** lack of shared-locks on Windows95 lives on, for backwards
1680 ** A process may only obtain a RESERVED lock after it has a SHARED lock.
1681 ** A RESERVED lock is implemented by grabbing a write-lock on the
1684 ** A process may only obtain a PENDING lock after it has obtained a
1685 ** SHARED lock. A PENDING lock is implemented by obtaining a write-lock
1686 ** on the 'pending byte'. This ensures that no new SHARED locks can be
1687 ** obtained, but existing SHARED locks are allowed to persist. A process
1688 ** does not have to obtain a RESERVED lock on the way to a PENDING lock.
1689 ** This property is used by the algorithm for rolling back a journal file
1692 ** An EXCLUSIVE lock, obtained after a PENDING lock is held, is
1693 ** implemented by obtaining a write-lock on the entire 'shared byte
1694 ** range'. Since all other locks require a read-lock on one of the bytes
1695 ** within this range, this ensures that no other locks are held on the
1699 unixFile
*pFile
= (unixFile
*)id
;
1700 unixInodeInfo
*pInode
;
1705 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (unix)\n", pFile
->h
,
1706 azFileLock(eFileLock
), azFileLock(pFile
->eFileLock
),
1707 azFileLock(pFile
->pInode
->eFileLock
), pFile
->pInode
->nShared
,
1710 /* If there is already a lock of this type or more restrictive on the
1711 ** unixFile, do nothing. Don't use the end_lock: exit path, as
1712 ** unixEnterMutex() hasn't been called yet.
1714 if( pFile
->eFileLock
>=eFileLock
){
1715 OSTRACE(("LOCK %d %s ok (already held) (unix)\n", pFile
->h
,
1716 azFileLock(eFileLock
)));
1720 /* Make sure the locking sequence is correct.
1721 ** (1) We never move from unlocked to anything higher than shared lock.
1722 ** (2) SQLite never explicitly requests a pendig lock.
1723 ** (3) A shared lock is always held when a reserve lock is requested.
1725 assert( pFile
->eFileLock
!=NO_LOCK
|| eFileLock
==SHARED_LOCK
);
1726 assert( eFileLock
!=PENDING_LOCK
);
1727 assert( eFileLock
!=RESERVED_LOCK
|| pFile
->eFileLock
==SHARED_LOCK
);
1729 /* This mutex is needed because pFile->pInode is shared across threads
1731 pInode
= pFile
->pInode
;
1732 sqlite3_mutex_enter(pInode
->pLockMutex
);
1734 /* If some thread using this PID has a lock via a different unixFile*
1735 ** handle that precludes the requested lock, return BUSY.
1737 if( (pFile
->eFileLock
!=pInode
->eFileLock
&&
1738 (pInode
->eFileLock
>=PENDING_LOCK
|| eFileLock
>SHARED_LOCK
))
1744 /* If a SHARED lock is requested, and some thread using this PID already
1745 ** has a SHARED or RESERVED lock, then increment reference counts and
1746 ** return SQLITE_OK.
1748 if( eFileLock
==SHARED_LOCK
&&
1749 (pInode
->eFileLock
==SHARED_LOCK
|| pInode
->eFileLock
==RESERVED_LOCK
) ){
1750 assert( eFileLock
==SHARED_LOCK
);
1751 assert( pFile
->eFileLock
==0 );
1752 assert( pInode
->nShared
>0 );
1753 pFile
->eFileLock
= SHARED_LOCK
;
1760 /* A PENDING lock is needed before acquiring a SHARED lock and before
1761 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
1765 lock
.l_whence
= SEEK_SET
;
1766 if( eFileLock
==SHARED_LOCK
1767 || (eFileLock
==EXCLUSIVE_LOCK
&& pFile
->eFileLock
<PENDING_LOCK
)
1769 lock
.l_type
= (eFileLock
==SHARED_LOCK
?F_RDLCK
:F_WRLCK
);
1770 lock
.l_start
= PENDING_BYTE
;
1771 if( unixFileLock(pFile
, &lock
) ){
1773 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
1774 if( rc
!=SQLITE_BUSY
){
1775 storeLastErrno(pFile
, tErrno
);
1782 /* If control gets to this point, then actually go ahead and make
1783 ** operating system calls for the specified lock.
1785 if( eFileLock
==SHARED_LOCK
){
1786 assert( pInode
->nShared
==0 );
1787 assert( pInode
->eFileLock
==0 );
1788 assert( rc
==SQLITE_OK
);
1790 /* Now get the read-lock */
1791 lock
.l_start
= SHARED_FIRST
;
1792 lock
.l_len
= SHARED_SIZE
;
1793 if( unixFileLock(pFile
, &lock
) ){
1795 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
1798 /* Drop the temporary PENDING lock */
1799 lock
.l_start
= PENDING_BYTE
;
1801 lock
.l_type
= F_UNLCK
;
1802 if( unixFileLock(pFile
, &lock
) && rc
==SQLITE_OK
){
1803 /* This could happen with a network mount */
1805 rc
= SQLITE_IOERR_UNLOCK
;
1809 if( rc
!=SQLITE_BUSY
){
1810 storeLastErrno(pFile
, tErrno
);
1814 pFile
->eFileLock
= SHARED_LOCK
;
1816 pInode
->nShared
= 1;
1818 }else if( eFileLock
==EXCLUSIVE_LOCK
&& pInode
->nShared
>1 ){
1819 /* We are trying for an exclusive lock but another thread in this
1820 ** same process is still holding a shared lock. */
1823 /* The request was for a RESERVED or EXCLUSIVE lock. It is
1824 ** assumed that there is a SHARED or greater lock on the file
1827 assert( 0!=pFile
->eFileLock
);
1828 lock
.l_type
= F_WRLCK
;
1830 assert( eFileLock
==RESERVED_LOCK
|| eFileLock
==EXCLUSIVE_LOCK
);
1831 if( eFileLock
==RESERVED_LOCK
){
1832 lock
.l_start
= RESERVED_BYTE
;
1835 lock
.l_start
= SHARED_FIRST
;
1836 lock
.l_len
= SHARED_SIZE
;
1839 if( unixFileLock(pFile
, &lock
) ){
1841 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
1842 if( rc
!=SQLITE_BUSY
){
1843 storeLastErrno(pFile
, tErrno
);
1850 /* Set up the transaction-counter change checking flags when
1851 ** transitioning from a SHARED to a RESERVED lock. The change
1852 ** from SHARED to RESERVED marks the beginning of a normal
1853 ** write operation (not a hot journal rollback).
1856 && pFile
->eFileLock
<=SHARED_LOCK
1857 && eFileLock
==RESERVED_LOCK
1859 pFile
->transCntrChng
= 0;
1860 pFile
->dbUpdate
= 0;
1861 pFile
->inNormalWrite
= 1;
1866 if( rc
==SQLITE_OK
){
1867 pFile
->eFileLock
= eFileLock
;
1868 pInode
->eFileLock
= eFileLock
;
1869 }else if( eFileLock
==EXCLUSIVE_LOCK
){
1870 pFile
->eFileLock
= PENDING_LOCK
;
1871 pInode
->eFileLock
= PENDING_LOCK
;
1875 sqlite3_mutex_leave(pInode
->pLockMutex
);
1876 OSTRACE(("LOCK %d %s %s (unix)\n", pFile
->h
, azFileLock(eFileLock
),
1877 rc
==SQLITE_OK
? "ok" : "failed"));
1882 ** Add the file descriptor used by file handle pFile to the corresponding
1885 static void setPendingFd(unixFile
*pFile
){
1886 unixInodeInfo
*pInode
= pFile
->pInode
;
1887 UnixUnusedFd
*p
= pFile
->pPreallocatedUnused
;
1888 assert( unixFileMutexHeld(pFile
) );
1889 p
->pNext
= pInode
->pUnused
;
1890 pInode
->pUnused
= p
;
1892 pFile
->pPreallocatedUnused
= 0;
1896 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
1897 ** must be either NO_LOCK or SHARED_LOCK.
1899 ** If the locking level of the file descriptor is already at or below
1900 ** the requested locking level, this routine is a no-op.
1902 ** If handleNFSUnlock is true, then on downgrading an EXCLUSIVE_LOCK to SHARED
1903 ** the byte range is divided into 2 parts and the first part is unlocked then
1904 ** set to a read lock, then the other part is simply unlocked. This works
1905 ** around a bug in BSD NFS lockd (also seen on MacOSX 10.3+) that fails to
1906 ** remove the write lock on a region when a read lock is set.
1908 static int posixUnlock(sqlite3_file
*id
, int eFileLock
, int handleNFSUnlock
){
1909 unixFile
*pFile
= (unixFile
*)id
;
1910 unixInodeInfo
*pInode
;
1915 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (unix)\n", pFile
->h
, eFileLock
,
1916 pFile
->eFileLock
, pFile
->pInode
->eFileLock
, pFile
->pInode
->nShared
,
1919 assert( eFileLock
<=SHARED_LOCK
);
1920 if( pFile
->eFileLock
<=eFileLock
){
1923 pInode
= pFile
->pInode
;
1924 sqlite3_mutex_enter(pInode
->pLockMutex
);
1925 assert( pInode
->nShared
!=0 );
1926 if( pFile
->eFileLock
>SHARED_LOCK
){
1927 assert( pInode
->eFileLock
==pFile
->eFileLock
);
1930 /* When reducing a lock such that other processes can start
1931 ** reading the database file again, make sure that the
1932 ** transaction counter was updated if any part of the database
1933 ** file changed. If the transaction counter is not updated,
1934 ** other connections to the same file might not realize that
1935 ** the file has changed and hence might not know to flush their
1936 ** cache. The use of a stale cache can lead to database corruption.
1938 pFile
->inNormalWrite
= 0;
1941 /* downgrading to a shared lock on NFS involves clearing the write lock
1942 ** before establishing the readlock - to avoid a race condition we downgrade
1943 ** the lock in 2 blocks, so that part of the range will be covered by a
1944 ** write lock until the rest is covered by a read lock:
1950 if( eFileLock
==SHARED_LOCK
){
1951 #if !defined(__APPLE__) || !SQLITE_ENABLE_LOCKING_STYLE
1952 (void)handleNFSUnlock
;
1953 assert( handleNFSUnlock
==0 );
1955 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
1956 if( handleNFSUnlock
){
1957 int tErrno
; /* Error code from system call errors */
1958 off_t divSize
= SHARED_SIZE
- 1;
1960 lock
.l_type
= F_UNLCK
;
1961 lock
.l_whence
= SEEK_SET
;
1962 lock
.l_start
= SHARED_FIRST
;
1963 lock
.l_len
= divSize
;
1964 if( unixFileLock(pFile
, &lock
)==(-1) ){
1966 rc
= SQLITE_IOERR_UNLOCK
;
1967 storeLastErrno(pFile
, tErrno
);
1970 lock
.l_type
= F_RDLCK
;
1971 lock
.l_whence
= SEEK_SET
;
1972 lock
.l_start
= SHARED_FIRST
;
1973 lock
.l_len
= divSize
;
1974 if( unixFileLock(pFile
, &lock
)==(-1) ){
1976 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_RDLOCK
);
1977 if( IS_LOCK_ERROR(rc
) ){
1978 storeLastErrno(pFile
, tErrno
);
1982 lock
.l_type
= F_UNLCK
;
1983 lock
.l_whence
= SEEK_SET
;
1984 lock
.l_start
= SHARED_FIRST
+divSize
;
1985 lock
.l_len
= SHARED_SIZE
-divSize
;
1986 if( unixFileLock(pFile
, &lock
)==(-1) ){
1988 rc
= SQLITE_IOERR_UNLOCK
;
1989 storeLastErrno(pFile
, tErrno
);
1993 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
1995 lock
.l_type
= F_RDLCK
;
1996 lock
.l_whence
= SEEK_SET
;
1997 lock
.l_start
= SHARED_FIRST
;
1998 lock
.l_len
= SHARED_SIZE
;
1999 if( unixFileLock(pFile
, &lock
) ){
2000 /* In theory, the call to unixFileLock() cannot fail because another
2001 ** process is holding an incompatible lock. If it does, this
2002 ** indicates that the other process is not following the locking
2003 ** protocol. If this happens, return SQLITE_IOERR_RDLOCK. Returning
2004 ** SQLITE_BUSY would confuse the upper layer (in practice it causes
2005 ** an assert to fail). */
2006 rc
= SQLITE_IOERR_RDLOCK
;
2007 storeLastErrno(pFile
, errno
);
2012 lock
.l_type
= F_UNLCK
;
2013 lock
.l_whence
= SEEK_SET
;
2014 lock
.l_start
= PENDING_BYTE
;
2015 lock
.l_len
= 2L; assert( PENDING_BYTE
+1==RESERVED_BYTE
);
2016 if( unixFileLock(pFile
, &lock
)==0 ){
2017 pInode
->eFileLock
= SHARED_LOCK
;
2019 rc
= SQLITE_IOERR_UNLOCK
;
2020 storeLastErrno(pFile
, errno
);
2024 if( eFileLock
==NO_LOCK
){
2025 /* Decrement the shared lock counter. Release the lock using an
2026 ** OS call only when all threads in this same process have released
2030 if( pInode
->nShared
==0 ){
2031 lock
.l_type
= F_UNLCK
;
2032 lock
.l_whence
= SEEK_SET
;
2033 lock
.l_start
= lock
.l_len
= 0L;
2034 if( unixFileLock(pFile
, &lock
)==0 ){
2035 pInode
->eFileLock
= NO_LOCK
;
2037 rc
= SQLITE_IOERR_UNLOCK
;
2038 storeLastErrno(pFile
, errno
);
2039 pInode
->eFileLock
= NO_LOCK
;
2040 pFile
->eFileLock
= NO_LOCK
;
2044 /* Decrement the count of locks against this same file. When the
2045 ** count reaches zero, close any other file descriptors whose close
2046 ** was deferred because of outstanding locks.
2049 assert( pInode
->nLock
>=0 );
2050 if( pInode
->nLock
==0 ) closePendingFds(pFile
);
2054 sqlite3_mutex_leave(pInode
->pLockMutex
);
2055 if( rc
==SQLITE_OK
){
2056 pFile
->eFileLock
= eFileLock
;
2062 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2063 ** must be either NO_LOCK or SHARED_LOCK.
2065 ** If the locking level of the file descriptor is already at or below
2066 ** the requested locking level, this routine is a no-op.
2068 static int unixUnlock(sqlite3_file
*id
, int eFileLock
){
2069 #if SQLITE_MAX_MMAP_SIZE>0
2070 assert( eFileLock
==SHARED_LOCK
|| ((unixFile
*)id
)->nFetchOut
==0 );
2072 return posixUnlock(id
, eFileLock
, 0);
2075 #if SQLITE_MAX_MMAP_SIZE>0
2076 static int unixMapfile(unixFile
*pFd
, i64 nByte
);
2077 static void unixUnmapfile(unixFile
*pFd
);
2081 ** This function performs the parts of the "close file" operation
2082 ** common to all locking schemes. It closes the directory and file
2083 ** handles, if they are valid, and sets all fields of the unixFile
2086 ** It is *not* necessary to hold the mutex when this routine is called,
2087 ** even on VxWorks. A mutex will be acquired on VxWorks by the
2088 ** vxworksReleaseFileId() routine.
2090 static int closeUnixFile(sqlite3_file
*id
){
2091 unixFile
*pFile
= (unixFile
*)id
;
2092 #if SQLITE_MAX_MMAP_SIZE>0
2093 unixUnmapfile(pFile
);
2096 robust_close(pFile
, pFile
->h
, __LINE__
);
2101 if( pFile
->ctrlFlags
& UNIXFILE_DELETE
){
2102 osUnlink(pFile
->pId
->zCanonicalName
);
2104 vxworksReleaseFileId(pFile
->pId
);
2108 #ifdef SQLITE_UNLINK_AFTER_CLOSE
2109 if( pFile
->ctrlFlags
& UNIXFILE_DELETE
){
2110 osUnlink(pFile
->zPath
);
2111 sqlite3_free(*(char**)&pFile
->zPath
);
2115 OSTRACE(("CLOSE %-3d\n", pFile
->h
));
2117 sqlite3_free(pFile
->pPreallocatedUnused
);
2118 memset(pFile
, 0, sizeof(unixFile
));
2125 static int unixClose(sqlite3_file
*id
){
2127 unixFile
*pFile
= (unixFile
*)id
;
2128 unixInodeInfo
*pInode
= pFile
->pInode
;
2130 assert( pInode
!=0 );
2131 verifyDbFile(pFile
);
2132 unixUnlock(id
, NO_LOCK
);
2133 assert( unixFileMutexNotheld(pFile
) );
2136 /* unixFile.pInode is always valid here. Otherwise, a different close
2137 ** routine (e.g. nolockClose()) would be called instead.
2139 assert( pFile
->pInode
->nLock
>0 || pFile
->pInode
->bProcessLock
==0 );
2140 sqlite3_mutex_enter(pInode
->pLockMutex
);
2141 if( pInode
->nLock
){
2142 /* If there are outstanding locks, do not actually close the file just
2143 ** yet because that would clear those locks. Instead, add the file
2144 ** descriptor to pInode->pUnused list. It will be automatically closed
2145 ** when the last lock is cleared.
2147 setPendingFd(pFile
);
2149 sqlite3_mutex_leave(pInode
->pLockMutex
);
2150 releaseInodeInfo(pFile
);
2151 assert( pFile
->pShm
==0 );
2152 rc
= closeUnixFile(id
);
2157 /************** End of the posix advisory lock implementation *****************
2158 ******************************************************************************/
2160 /******************************************************************************
2161 ****************************** No-op Locking **********************************
2163 ** Of the various locking implementations available, this is by far the
2164 ** simplest: locking is ignored. No attempt is made to lock the database
2165 ** file for reading or writing.
2167 ** This locking mode is appropriate for use on read-only databases
2168 ** (ex: databases that are burned into CD-ROM, for example.) It can
2169 ** also be used if the application employs some external mechanism to
2170 ** prevent simultaneous access of the same database by two or more
2171 ** database connections. But there is a serious risk of database
2172 ** corruption if this locking mode is used in situations where multiple
2173 ** database connections are accessing the same database file at the same
2174 ** time and one or more of those connections are writing.
2177 static int nolockCheckReservedLock(sqlite3_file
*NotUsed
, int *pResOut
){
2178 UNUSED_PARAMETER(NotUsed
);
2182 static int nolockLock(sqlite3_file
*NotUsed
, int NotUsed2
){
2183 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
2186 static int nolockUnlock(sqlite3_file
*NotUsed
, int NotUsed2
){
2187 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
2194 static int nolockClose(sqlite3_file
*id
) {
2195 return closeUnixFile(id
);
2198 /******************* End of the no-op lock implementation *********************
2199 ******************************************************************************/
2201 /******************************************************************************
2202 ************************* Begin dot-file Locking ******************************
2204 ** The dotfile locking implementation uses the existence of separate lock
2205 ** files (really a directory) to control access to the database. This works
2206 ** on just about every filesystem imaginable. But there are serious downsides:
2208 ** (1) There is zero concurrency. A single reader blocks all other
2209 ** connections from reading or writing the database.
2211 ** (2) An application crash or power loss can leave stale lock files
2212 ** sitting around that need to be cleared manually.
2214 ** Nevertheless, a dotlock is an appropriate locking mode for use if no
2215 ** other locking strategy is available.
2217 ** Dotfile locking works by creating a subdirectory in the same directory as
2218 ** the database and with the same name but with a ".lock" extension added.
2219 ** The existence of a lock directory implies an EXCLUSIVE lock. All other
2220 ** lock types (SHARED, RESERVED, PENDING) are mapped into EXCLUSIVE.
2224 ** The file suffix added to the data base filename in order to create the
2227 #define DOTLOCK_SUFFIX ".lock"
2230 ** This routine checks if there is a RESERVED lock held on the specified
2231 ** file by this or any other process. If such a lock is held, set *pResOut
2232 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2233 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2235 ** In dotfile locking, either a lock exists or it does not. So in this
2236 ** variation of CheckReservedLock(), *pResOut is set to true if any lock
2237 ** is held on the file and false if the file is unlocked.
2239 static int dotlockCheckReservedLock(sqlite3_file
*id
, int *pResOut
) {
2242 unixFile
*pFile
= (unixFile
*)id
;
2244 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
2247 reserved
= osAccess((const char*)pFile
->lockingContext
, 0)==0;
2248 OSTRACE(("TEST WR-LOCK %d %d %d (dotlock)\n", pFile
->h
, rc
, reserved
));
2249 *pResOut
= reserved
;
2254 ** Lock the file with the lock specified by parameter eFileLock - one
2255 ** of the following:
2258 ** (2) RESERVED_LOCK
2260 ** (4) EXCLUSIVE_LOCK
2262 ** Sometimes when requesting one lock state, additional lock states
2263 ** are inserted in between. The locking might fail on one of the later
2264 ** transitions leaving the lock state different from what it started but
2265 ** still short of its goal. The following chart shows the allowed
2266 ** transitions and the inserted intermediate states:
2268 ** UNLOCKED -> SHARED
2269 ** SHARED -> RESERVED
2270 ** SHARED -> (PENDING) -> EXCLUSIVE
2271 ** RESERVED -> (PENDING) -> EXCLUSIVE
2272 ** PENDING -> EXCLUSIVE
2274 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2275 ** routine to lower a locking level.
2277 ** With dotfile locking, we really only support state (4): EXCLUSIVE.
2278 ** But we track the other locking levels internally.
2280 static int dotlockLock(sqlite3_file
*id
, int eFileLock
) {
2281 unixFile
*pFile
= (unixFile
*)id
;
2282 char *zLockFile
= (char *)pFile
->lockingContext
;
2286 /* If we have any lock, then the lock file already exists. All we have
2287 ** to do is adjust our internal record of the lock level.
2289 if( pFile
->eFileLock
> NO_LOCK
){
2290 pFile
->eFileLock
= eFileLock
;
2291 /* Always update the timestamp on the old file */
2293 utime(zLockFile
, NULL
);
2295 utimes(zLockFile
, NULL
);
2300 /* grab an exclusive lock */
2301 rc
= osMkdir(zLockFile
, 0777);
2303 /* failed to open/create the lock directory */
2305 if( EEXIST
== tErrno
){
2308 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
2309 if( rc
!=SQLITE_BUSY
){
2310 storeLastErrno(pFile
, tErrno
);
2316 /* got it, set the type and return ok */
2317 pFile
->eFileLock
= eFileLock
;
2322 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2323 ** must be either NO_LOCK or SHARED_LOCK.
2325 ** If the locking level of the file descriptor is already at or below
2326 ** the requested locking level, this routine is a no-op.
2328 ** When the locking level reaches NO_LOCK, delete the lock file.
2330 static int dotlockUnlock(sqlite3_file
*id
, int eFileLock
) {
2331 unixFile
*pFile
= (unixFile
*)id
;
2332 char *zLockFile
= (char *)pFile
->lockingContext
;
2336 OSTRACE(("UNLOCK %d %d was %d pid=%d (dotlock)\n", pFile
->h
, eFileLock
,
2337 pFile
->eFileLock
, osGetpid(0)));
2338 assert( eFileLock
<=SHARED_LOCK
);
2340 /* no-op if possible */
2341 if( pFile
->eFileLock
==eFileLock
){
2345 /* To downgrade to shared, simply update our internal notion of the
2346 ** lock state. No need to mess with the file on disk.
2348 if( eFileLock
==SHARED_LOCK
){
2349 pFile
->eFileLock
= SHARED_LOCK
;
2353 /* To fully unlock the database, delete the lock file */
2354 assert( eFileLock
==NO_LOCK
);
2355 rc
= osRmdir(zLockFile
);
2358 if( tErrno
==ENOENT
){
2361 rc
= SQLITE_IOERR_UNLOCK
;
2362 storeLastErrno(pFile
, tErrno
);
2366 pFile
->eFileLock
= NO_LOCK
;
2371 ** Close a file. Make sure the lock has been released before closing.
2373 static int dotlockClose(sqlite3_file
*id
) {
2374 unixFile
*pFile
= (unixFile
*)id
;
2376 dotlockUnlock(id
, NO_LOCK
);
2377 sqlite3_free(pFile
->lockingContext
);
2378 return closeUnixFile(id
);
2380 /****************** End of the dot-file lock implementation *******************
2381 ******************************************************************************/
2383 /******************************************************************************
2384 ************************** Begin flock Locking ********************************
2386 ** Use the flock() system call to do file locking.
2388 ** flock() locking is like dot-file locking in that the various
2389 ** fine-grain locking levels supported by SQLite are collapsed into
2390 ** a single exclusive lock. In other words, SHARED, RESERVED, and
2391 ** PENDING locks are the same thing as an EXCLUSIVE lock. SQLite
2392 ** still works when you do this, but concurrency is reduced since
2393 ** only a single process can be reading the database at a time.
2395 ** Omit this section if SQLITE_ENABLE_LOCKING_STYLE is turned off
2397 #if SQLITE_ENABLE_LOCKING_STYLE
2400 ** Retry flock() calls that fail with EINTR
2403 static int robust_flock(int fd
, int op
){
2405 do{ rc
= flock(fd
,op
); }while( rc
<0 && errno
==EINTR
);
2409 # define robust_flock(a,b) flock(a,b)
2414 ** This routine checks if there is a RESERVED lock held on the specified
2415 ** file by this or any other process. If such a lock is held, set *pResOut
2416 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2417 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2419 static int flockCheckReservedLock(sqlite3_file
*id
, int *pResOut
){
2422 unixFile
*pFile
= (unixFile
*)id
;
2424 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
2428 /* Check if a thread in this process holds such a lock */
2429 if( pFile
->eFileLock
>SHARED_LOCK
){
2433 /* Otherwise see if some other process holds it. */
2435 /* attempt to get the lock */
2436 int lrc
= robust_flock(pFile
->h
, LOCK_EX
| LOCK_NB
);
2438 /* got the lock, unlock it */
2439 lrc
= robust_flock(pFile
->h
, LOCK_UN
);
2442 /* unlock failed with an error */
2443 lrc
= SQLITE_IOERR_UNLOCK
;
2444 storeLastErrno(pFile
, tErrno
);
2450 /* someone else might have it reserved */
2451 lrc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
2452 if( IS_LOCK_ERROR(lrc
) ){
2453 storeLastErrno(pFile
, tErrno
);
2458 OSTRACE(("TEST WR-LOCK %d %d %d (flock)\n", pFile
->h
, rc
, reserved
));
2460 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2461 if( (rc
& 0xff) == SQLITE_IOERR
){
2465 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2466 *pResOut
= reserved
;
2471 ** Lock the file with the lock specified by parameter eFileLock - one
2472 ** of the following:
2475 ** (2) RESERVED_LOCK
2477 ** (4) EXCLUSIVE_LOCK
2479 ** Sometimes when requesting one lock state, additional lock states
2480 ** are inserted in between. The locking might fail on one of the later
2481 ** transitions leaving the lock state different from what it started but
2482 ** still short of its goal. The following chart shows the allowed
2483 ** transitions and the inserted intermediate states:
2485 ** UNLOCKED -> SHARED
2486 ** SHARED -> RESERVED
2487 ** SHARED -> (PENDING) -> EXCLUSIVE
2488 ** RESERVED -> (PENDING) -> EXCLUSIVE
2489 ** PENDING -> EXCLUSIVE
2491 ** flock() only really support EXCLUSIVE locks. We track intermediate
2492 ** lock states in the sqlite3_file structure, but all locks SHARED or
2493 ** above are really EXCLUSIVE locks and exclude all other processes from
2496 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2497 ** routine to lower a locking level.
2499 static int flockLock(sqlite3_file
*id
, int eFileLock
) {
2501 unixFile
*pFile
= (unixFile
*)id
;
2505 /* if we already have a lock, it is exclusive.
2506 ** Just adjust level and punt on outta here. */
2507 if (pFile
->eFileLock
> NO_LOCK
) {
2508 pFile
->eFileLock
= eFileLock
;
2512 /* grab an exclusive lock */
2514 if (robust_flock(pFile
->h
, LOCK_EX
| LOCK_NB
)) {
2516 /* didn't get, must be busy */
2517 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_LOCK
);
2518 if( IS_LOCK_ERROR(rc
) ){
2519 storeLastErrno(pFile
, tErrno
);
2522 /* got it, set the type and return ok */
2523 pFile
->eFileLock
= eFileLock
;
2525 OSTRACE(("LOCK %d %s %s (flock)\n", pFile
->h
, azFileLock(eFileLock
),
2526 rc
==SQLITE_OK
? "ok" : "failed"));
2527 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2528 if( (rc
& 0xff) == SQLITE_IOERR
){
2531 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2537 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2538 ** must be either NO_LOCK or SHARED_LOCK.
2540 ** If the locking level of the file descriptor is already at or below
2541 ** the requested locking level, this routine is a no-op.
2543 static int flockUnlock(sqlite3_file
*id
, int eFileLock
) {
2544 unixFile
*pFile
= (unixFile
*)id
;
2547 OSTRACE(("UNLOCK %d %d was %d pid=%d (flock)\n", pFile
->h
, eFileLock
,
2548 pFile
->eFileLock
, osGetpid(0)));
2549 assert( eFileLock
<=SHARED_LOCK
);
2551 /* no-op if possible */
2552 if( pFile
->eFileLock
==eFileLock
){
2556 /* shared can just be set because we always have an exclusive */
2557 if (eFileLock
==SHARED_LOCK
) {
2558 pFile
->eFileLock
= eFileLock
;
2562 /* no, really, unlock. */
2563 if( robust_flock(pFile
->h
, LOCK_UN
) ){
2564 #ifdef SQLITE_IGNORE_FLOCK_LOCK_ERRORS
2566 #endif /* SQLITE_IGNORE_FLOCK_LOCK_ERRORS */
2567 return SQLITE_IOERR_UNLOCK
;
2569 pFile
->eFileLock
= NO_LOCK
;
2577 static int flockClose(sqlite3_file
*id
) {
2579 flockUnlock(id
, NO_LOCK
);
2580 return closeUnixFile(id
);
2583 #endif /* SQLITE_ENABLE_LOCKING_STYLE && !OS_VXWORK */
2585 /******************* End of the flock lock implementation *********************
2586 ******************************************************************************/
2588 /******************************************************************************
2589 ************************ Begin Named Semaphore Locking ************************
2591 ** Named semaphore locking is only supported on VxWorks.
2593 ** Semaphore locking is like dot-lock and flock in that it really only
2594 ** supports EXCLUSIVE locking. Only a single process can read or write
2595 ** the database file at a time. This reduces potential concurrency, but
2596 ** makes the lock implementation much easier.
2601 ** This routine checks if there is a RESERVED lock held on the specified
2602 ** file by this or any other process. If such a lock is held, set *pResOut
2603 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2604 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2606 static int semXCheckReservedLock(sqlite3_file
*id
, int *pResOut
) {
2609 unixFile
*pFile
= (unixFile
*)id
;
2611 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
2615 /* Check if a thread in this process holds such a lock */
2616 if( pFile
->eFileLock
>SHARED_LOCK
){
2620 /* Otherwise see if some other process holds it. */
2622 sem_t
*pSem
= pFile
->pInode
->pSem
;
2624 if( sem_trywait(pSem
)==-1 ){
2626 if( EAGAIN
!= tErrno
){
2627 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_CHECKRESERVEDLOCK
);
2628 storeLastErrno(pFile
, tErrno
);
2630 /* someone else has the lock when we are in NO_LOCK */
2631 reserved
= (pFile
->eFileLock
< SHARED_LOCK
);
2634 /* we could have it if we want it */
2638 OSTRACE(("TEST WR-LOCK %d %d %d (sem)\n", pFile
->h
, rc
, reserved
));
2640 *pResOut
= reserved
;
2645 ** Lock the file with the lock specified by parameter eFileLock - one
2646 ** of the following:
2649 ** (2) RESERVED_LOCK
2651 ** (4) EXCLUSIVE_LOCK
2653 ** Sometimes when requesting one lock state, additional lock states
2654 ** are inserted in between. The locking might fail on one of the later
2655 ** transitions leaving the lock state different from what it started but
2656 ** still short of its goal. The following chart shows the allowed
2657 ** transitions and the inserted intermediate states:
2659 ** UNLOCKED -> SHARED
2660 ** SHARED -> RESERVED
2661 ** SHARED -> (PENDING) -> EXCLUSIVE
2662 ** RESERVED -> (PENDING) -> EXCLUSIVE
2663 ** PENDING -> EXCLUSIVE
2665 ** Semaphore locks only really support EXCLUSIVE locks. We track intermediate
2666 ** lock states in the sqlite3_file structure, but all locks SHARED or
2667 ** above are really EXCLUSIVE locks and exclude all other processes from
2670 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2671 ** routine to lower a locking level.
2673 static int semXLock(sqlite3_file
*id
, int eFileLock
) {
2674 unixFile
*pFile
= (unixFile
*)id
;
2675 sem_t
*pSem
= pFile
->pInode
->pSem
;
2678 /* if we already have a lock, it is exclusive.
2679 ** Just adjust level and punt on outta here. */
2680 if (pFile
->eFileLock
> NO_LOCK
) {
2681 pFile
->eFileLock
= eFileLock
;
2686 /* lock semaphore now but bail out when already locked. */
2687 if( sem_trywait(pSem
)==-1 ){
2692 /* got it, set the type and return ok */
2693 pFile
->eFileLock
= eFileLock
;
2700 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
2701 ** must be either NO_LOCK or SHARED_LOCK.
2703 ** If the locking level of the file descriptor is already at or below
2704 ** the requested locking level, this routine is a no-op.
2706 static int semXUnlock(sqlite3_file
*id
, int eFileLock
) {
2707 unixFile
*pFile
= (unixFile
*)id
;
2708 sem_t
*pSem
= pFile
->pInode
->pSem
;
2712 OSTRACE(("UNLOCK %d %d was %d pid=%d (sem)\n", pFile
->h
, eFileLock
,
2713 pFile
->eFileLock
, osGetpid(0)));
2714 assert( eFileLock
<=SHARED_LOCK
);
2716 /* no-op if possible */
2717 if( pFile
->eFileLock
==eFileLock
){
2721 /* shared can just be set because we always have an exclusive */
2722 if (eFileLock
==SHARED_LOCK
) {
2723 pFile
->eFileLock
= eFileLock
;
2727 /* no, really unlock. */
2728 if ( sem_post(pSem
)==-1 ) {
2729 int rc
, tErrno
= errno
;
2730 rc
= sqliteErrorFromPosixError(tErrno
, SQLITE_IOERR_UNLOCK
);
2731 if( IS_LOCK_ERROR(rc
) ){
2732 storeLastErrno(pFile
, tErrno
);
2736 pFile
->eFileLock
= NO_LOCK
;
2743 static int semXClose(sqlite3_file
*id
) {
2745 unixFile
*pFile
= (unixFile
*)id
;
2746 semXUnlock(id
, NO_LOCK
);
2748 assert( unixFileMutexNotheld(pFile
) );
2750 releaseInodeInfo(pFile
);
2757 #endif /* OS_VXWORKS */
2759 ** Named semaphore locking is only available on VxWorks.
2761 *************** End of the named semaphore lock implementation ****************
2762 ******************************************************************************/
2765 /******************************************************************************
2766 *************************** Begin AFP Locking *********************************
2768 ** AFP is the Apple Filing Protocol. AFP is a network filesystem found
2769 ** on Apple Macintosh computers - both OS9 and OSX.
2771 ** Third-party implementations of AFP are available. But this code here
2772 ** only works on OSX.
2775 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
2777 ** The afpLockingContext structure contains all afp lock specific state
2779 typedef struct afpLockingContext afpLockingContext
;
2780 struct afpLockingContext
{
2782 const char *dbPath
; /* Name of the open file */
2785 struct ByteRangeLockPB2
2787 unsigned long long offset
; /* offset to first byte to lock */
2788 unsigned long long length
; /* nbr of bytes to lock */
2789 unsigned long long retRangeStart
; /* nbr of 1st byte locked if successful */
2790 unsigned char unLockFlag
; /* 1 = unlock, 0 = lock */
2791 unsigned char startEndFlag
; /* 1=rel to end of fork, 0=rel to start */
2792 int fd
; /* file desc to assoc this lock with */
2795 #define afpfsByteRangeLock2FSCTL _IOWR('z', 23, struct ByteRangeLockPB2)
2798 ** This is a utility for setting or clearing a bit-range lock on an
2801 ** Return SQLITE_OK on success, SQLITE_BUSY on failure.
2803 static int afpSetLock(
2804 const char *path
, /* Name of the file to be locked or unlocked */
2805 unixFile
*pFile
, /* Open file descriptor on path */
2806 unsigned long long offset
, /* First byte to be locked */
2807 unsigned long long length
, /* Number of bytes to lock */
2808 int setLockFlag
/* True to set lock. False to clear lock */
2810 struct ByteRangeLockPB2 pb
;
2813 pb
.unLockFlag
= setLockFlag
? 0 : 1;
2814 pb
.startEndFlag
= 0;
2819 OSTRACE(("AFPSETLOCK [%s] for %d%s in range %llx:%llx\n",
2820 (setLockFlag
?"ON":"OFF"), pFile
->h
, (pb
.fd
==-1?"[testval-1]":""),
2822 err
= fsctl(path
, afpfsByteRangeLock2FSCTL
, &pb
, 0);
2826 OSTRACE(("AFPSETLOCK failed to fsctl() '%s' %d %s\n",
2827 path
, tErrno
, strerror(tErrno
)));
2828 #ifdef SQLITE_IGNORE_AFP_LOCK_ERRORS
2831 rc
= sqliteErrorFromPosixError(tErrno
,
2832 setLockFlag
? SQLITE_IOERR_LOCK
: SQLITE_IOERR_UNLOCK
);
2833 #endif /* SQLITE_IGNORE_AFP_LOCK_ERRORS */
2834 if( IS_LOCK_ERROR(rc
) ){
2835 storeLastErrno(pFile
, tErrno
);
2844 ** This routine checks if there is a RESERVED lock held on the specified
2845 ** file by this or any other process. If such a lock is held, set *pResOut
2846 ** to a non-zero value otherwise *pResOut is set to zero. The return value
2847 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
2849 static int afpCheckReservedLock(sqlite3_file
*id
, int *pResOut
){
2852 unixFile
*pFile
= (unixFile
*)id
;
2853 afpLockingContext
*context
;
2855 SimulateIOError( return SQLITE_IOERR_CHECKRESERVEDLOCK
; );
2858 context
= (afpLockingContext
*) pFile
->lockingContext
;
2859 if( context
->reserved
){
2863 sqlite3_mutex_enter(pFile
->pInode
->pLockMutex
);
2864 /* Check if a thread in this process holds such a lock */
2865 if( pFile
->pInode
->eFileLock
>SHARED_LOCK
){
2869 /* Otherwise see if some other process holds it.
2872 /* lock the RESERVED byte */
2873 int lrc
= afpSetLock(context
->dbPath
, pFile
, RESERVED_BYTE
, 1,1);
2874 if( SQLITE_OK
==lrc
){
2875 /* if we succeeded in taking the reserved lock, unlock it to restore
2876 ** the original state */
2877 lrc
= afpSetLock(context
->dbPath
, pFile
, RESERVED_BYTE
, 1, 0);
2879 /* if we failed to get the lock then someone else must have it */
2882 if( IS_LOCK_ERROR(lrc
) ){
2887 sqlite3_mutex_leave(pFile
->pInode
->pLockMutex
);
2888 OSTRACE(("TEST WR-LOCK %d %d %d (afp)\n", pFile
->h
, rc
, reserved
));
2890 *pResOut
= reserved
;
2895 ** Lock the file with the lock specified by parameter eFileLock - one
2896 ** of the following:
2899 ** (2) RESERVED_LOCK
2901 ** (4) EXCLUSIVE_LOCK
2903 ** Sometimes when requesting one lock state, additional lock states
2904 ** are inserted in between. The locking might fail on one of the later
2905 ** transitions leaving the lock state different from what it started but
2906 ** still short of its goal. The following chart shows the allowed
2907 ** transitions and the inserted intermediate states:
2909 ** UNLOCKED -> SHARED
2910 ** SHARED -> RESERVED
2911 ** SHARED -> (PENDING) -> EXCLUSIVE
2912 ** RESERVED -> (PENDING) -> EXCLUSIVE
2913 ** PENDING -> EXCLUSIVE
2915 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
2916 ** routine to lower a locking level.
2918 static int afpLock(sqlite3_file
*id
, int eFileLock
){
2920 unixFile
*pFile
= (unixFile
*)id
;
2921 unixInodeInfo
*pInode
= pFile
->pInode
;
2922 afpLockingContext
*context
= (afpLockingContext
*) pFile
->lockingContext
;
2925 OSTRACE(("LOCK %d %s was %s(%s,%d) pid=%d (afp)\n", pFile
->h
,
2926 azFileLock(eFileLock
), azFileLock(pFile
->eFileLock
),
2927 azFileLock(pInode
->eFileLock
), pInode
->nShared
, osGetpid(0)));
2929 /* If there is already a lock of this type or more restrictive on the
2930 ** unixFile, do nothing. Don't use the afp_end_lock: exit path, as
2931 ** unixEnterMutex() hasn't been called yet.
2933 if( pFile
->eFileLock
>=eFileLock
){
2934 OSTRACE(("LOCK %d %s ok (already held) (afp)\n", pFile
->h
,
2935 azFileLock(eFileLock
)));
2939 /* Make sure the locking sequence is correct
2940 ** (1) We never move from unlocked to anything higher than shared lock.
2941 ** (2) SQLite never explicitly requests a pendig lock.
2942 ** (3) A shared lock is always held when a reserve lock is requested.
2944 assert( pFile
->eFileLock
!=NO_LOCK
|| eFileLock
==SHARED_LOCK
);
2945 assert( eFileLock
!=PENDING_LOCK
);
2946 assert( eFileLock
!=RESERVED_LOCK
|| pFile
->eFileLock
==SHARED_LOCK
);
2948 /* This mutex is needed because pFile->pInode is shared across threads
2950 pInode
= pFile
->pInode
;
2951 sqlite3_mutex_enter(pInode
->pLockMutex
);
2953 /* If some thread using this PID has a lock via a different unixFile*
2954 ** handle that precludes the requested lock, return BUSY.
2956 if( (pFile
->eFileLock
!=pInode
->eFileLock
&&
2957 (pInode
->eFileLock
>=PENDING_LOCK
|| eFileLock
>SHARED_LOCK
))
2963 /* If a SHARED lock is requested, and some thread using this PID already
2964 ** has a SHARED or RESERVED lock, then increment reference counts and
2965 ** return SQLITE_OK.
2967 if( eFileLock
==SHARED_LOCK
&&
2968 (pInode
->eFileLock
==SHARED_LOCK
|| pInode
->eFileLock
==RESERVED_LOCK
) ){
2969 assert( eFileLock
==SHARED_LOCK
);
2970 assert( pFile
->eFileLock
==0 );
2971 assert( pInode
->nShared
>0 );
2972 pFile
->eFileLock
= SHARED_LOCK
;
2978 /* A PENDING lock is needed before acquiring a SHARED lock and before
2979 ** acquiring an EXCLUSIVE lock. For the SHARED lock, the PENDING will
2982 if( eFileLock
==SHARED_LOCK
2983 || (eFileLock
==EXCLUSIVE_LOCK
&& pFile
->eFileLock
<PENDING_LOCK
)
2986 failed
= afpSetLock(context
->dbPath
, pFile
, PENDING_BYTE
, 1, 1);
2993 /* If control gets to this point, then actually go ahead and make
2994 ** operating system calls for the specified lock.
2996 if( eFileLock
==SHARED_LOCK
){
2997 int lrc1
, lrc2
, lrc1Errno
= 0;
3000 assert( pInode
->nShared
==0 );
3001 assert( pInode
->eFileLock
==0 );
3003 mask
= (sizeof(long)==8) ? LARGEST_INT64
: 0x7fffffff;
3004 /* Now get the read-lock SHARED_LOCK */
3005 /* note that the quality of the randomness doesn't matter that much */
3007 pInode
->sharedByte
= (lk
& mask
)%(SHARED_SIZE
- 1);
3008 lrc1
= afpSetLock(context
->dbPath
, pFile
,
3009 SHARED_FIRST
+pInode
->sharedByte
, 1, 1);
3010 if( IS_LOCK_ERROR(lrc1
) ){
3011 lrc1Errno
= pFile
->lastErrno
;
3013 /* Drop the temporary PENDING lock */
3014 lrc2
= afpSetLock(context
->dbPath
, pFile
, PENDING_BYTE
, 1, 0);
3016 if( IS_LOCK_ERROR(lrc1
) ) {
3017 storeLastErrno(pFile
, lrc1Errno
);
3020 } else if( IS_LOCK_ERROR(lrc2
) ){
3023 } else if( lrc1
!= SQLITE_OK
) {
3026 pFile
->eFileLock
= SHARED_LOCK
;
3028 pInode
->nShared
= 1;
3030 }else if( eFileLock
==EXCLUSIVE_LOCK
&& pInode
->nShared
>1 ){
3031 /* We are trying for an exclusive lock but another thread in this
3032 ** same process is still holding a shared lock. */
3035 /* The request was for a RESERVED or EXCLUSIVE lock. It is
3036 ** assumed that there is a SHARED or greater lock on the file
3040 assert( 0!=pFile
->eFileLock
);
3041 if (eFileLock
>= RESERVED_LOCK
&& pFile
->eFileLock
< RESERVED_LOCK
) {
3042 /* Acquire a RESERVED lock */
3043 failed
= afpSetLock(context
->dbPath
, pFile
, RESERVED_BYTE
, 1,1);
3045 context
->reserved
= 1;
3048 if (!failed
&& eFileLock
== EXCLUSIVE_LOCK
) {
3049 /* Acquire an EXCLUSIVE lock */
3051 /* Remove the shared lock before trying the range. we'll need to
3052 ** reestablish the shared lock if we can't get the afpUnlock
3054 if( !(failed
= afpSetLock(context
->dbPath
, pFile
, SHARED_FIRST
+
3055 pInode
->sharedByte
, 1, 0)) ){
3056 int failed2
= SQLITE_OK
;
3057 /* now attemmpt to get the exclusive lock range */
3058 failed
= afpSetLock(context
->dbPath
, pFile
, SHARED_FIRST
,
3060 if( failed
&& (failed2
= afpSetLock(context
->dbPath
, pFile
,
3061 SHARED_FIRST
+ pInode
->sharedByte
, 1, 1)) ){
3062 /* Can't reestablish the shared lock. Sqlite can't deal, this is
3063 ** a critical I/O error
3065 rc
= ((failed
& 0xff) == SQLITE_IOERR
) ? failed2
:
3078 if( rc
==SQLITE_OK
){
3079 pFile
->eFileLock
= eFileLock
;
3080 pInode
->eFileLock
= eFileLock
;
3081 }else if( eFileLock
==EXCLUSIVE_LOCK
){
3082 pFile
->eFileLock
= PENDING_LOCK
;
3083 pInode
->eFileLock
= PENDING_LOCK
;
3087 sqlite3_mutex_leave(pInode
->pLockMutex
);
3088 OSTRACE(("LOCK %d %s %s (afp)\n", pFile
->h
, azFileLock(eFileLock
),
3089 rc
==SQLITE_OK
? "ok" : "failed"));
3094 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
3095 ** must be either NO_LOCK or SHARED_LOCK.
3097 ** If the locking level of the file descriptor is already at or below
3098 ** the requested locking level, this routine is a no-op.
3100 static int afpUnlock(sqlite3_file
*id
, int eFileLock
) {
3102 unixFile
*pFile
= (unixFile
*)id
;
3103 unixInodeInfo
*pInode
;
3104 afpLockingContext
*context
= (afpLockingContext
*) pFile
->lockingContext
;
3111 OSTRACE(("UNLOCK %d %d was %d(%d,%d) pid=%d (afp)\n", pFile
->h
, eFileLock
,
3112 pFile
->eFileLock
, pFile
->pInode
->eFileLock
, pFile
->pInode
->nShared
,
3115 assert( eFileLock
<=SHARED_LOCK
);
3116 if( pFile
->eFileLock
<=eFileLock
){
3119 pInode
= pFile
->pInode
;
3120 sqlite3_mutex_enter(pInode
->pLockMutex
);
3121 assert( pInode
->nShared
!=0 );
3122 if( pFile
->eFileLock
>SHARED_LOCK
){
3123 assert( pInode
->eFileLock
==pFile
->eFileLock
);
3124 SimulateIOErrorBenign(1);
3125 SimulateIOError( h
=(-1) )
3126 SimulateIOErrorBenign(0);
3129 /* When reducing a lock such that other processes can start
3130 ** reading the database file again, make sure that the
3131 ** transaction counter was updated if any part of the database
3132 ** file changed. If the transaction counter is not updated,
3133 ** other connections to the same file might not realize that
3134 ** the file has changed and hence might not know to flush their
3135 ** cache. The use of a stale cache can lead to database corruption.
3137 assert( pFile
->inNormalWrite
==0
3138 || pFile
->dbUpdate
==0
3139 || pFile
->transCntrChng
==1 );
3140 pFile
->inNormalWrite
= 0;
3143 if( pFile
->eFileLock
==EXCLUSIVE_LOCK
){
3144 rc
= afpSetLock(context
->dbPath
, pFile
, SHARED_FIRST
, SHARED_SIZE
, 0);
3145 if( rc
==SQLITE_OK
&& (eFileLock
==SHARED_LOCK
|| pInode
->nShared
>1) ){
3146 /* only re-establish the shared lock if necessary */
3147 int sharedLockByte
= SHARED_FIRST
+pInode
->sharedByte
;
3148 rc
= afpSetLock(context
->dbPath
, pFile
, sharedLockByte
, 1, 1);
3153 if( rc
==SQLITE_OK
&& pFile
->eFileLock
>=PENDING_LOCK
){
3154 rc
= afpSetLock(context
->dbPath
, pFile
, PENDING_BYTE
, 1, 0);
3156 if( rc
==SQLITE_OK
&& pFile
->eFileLock
>=RESERVED_LOCK
&& context
->reserved
){
3157 rc
= afpSetLock(context
->dbPath
, pFile
, RESERVED_BYTE
, 1, 0);
3159 context
->reserved
= 0;
3162 if( rc
==SQLITE_OK
&& (eFileLock
==SHARED_LOCK
|| pInode
->nShared
>1)){
3163 pInode
->eFileLock
= SHARED_LOCK
;
3166 if( rc
==SQLITE_OK
&& eFileLock
==NO_LOCK
){
3168 /* Decrement the shared lock counter. Release the lock using an
3169 ** OS call only when all threads in this same process have released
3172 unsigned long long sharedLockByte
= SHARED_FIRST
+pInode
->sharedByte
;
3174 if( pInode
->nShared
==0 ){
3175 SimulateIOErrorBenign(1);
3176 SimulateIOError( h
=(-1) )
3177 SimulateIOErrorBenign(0);
3179 rc
= afpSetLock(context
->dbPath
, pFile
, sharedLockByte
, 1, 0);
3182 pInode
->eFileLock
= NO_LOCK
;
3183 pFile
->eFileLock
= NO_LOCK
;
3186 if( rc
==SQLITE_OK
){
3188 assert( pInode
->nLock
>=0 );
3189 if( pInode
->nLock
==0 ) closePendingFds(pFile
);
3193 sqlite3_mutex_leave(pInode
->pLockMutex
);
3194 if( rc
==SQLITE_OK
){
3195 pFile
->eFileLock
= eFileLock
;
3201 ** Close a file & cleanup AFP specific locking context
3203 static int afpClose(sqlite3_file
*id
) {
3205 unixFile
*pFile
= (unixFile
*)id
;
3207 afpUnlock(id
, NO_LOCK
);
3208 assert( unixFileMutexNotheld(pFile
) );
3210 if( pFile
->pInode
){
3211 unixInodeInfo
*pInode
= pFile
->pInode
;
3212 sqlite3_mutex_enter(pInode
->pLockMutex
);
3213 if( pInode
->nLock
){
3214 /* If there are outstanding locks, do not actually close the file just
3215 ** yet because that would clear those locks. Instead, add the file
3216 ** descriptor to pInode->aPending. It will be automatically closed when
3217 ** the last lock is cleared.
3219 setPendingFd(pFile
);
3221 sqlite3_mutex_leave(pInode
->pLockMutex
);
3223 releaseInodeInfo(pFile
);
3224 sqlite3_free(pFile
->lockingContext
);
3225 rc
= closeUnixFile(id
);
3230 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3232 ** The code above is the AFP lock implementation. The code is specific
3233 ** to MacOSX and does not work on other unix platforms. No alternative
3234 ** is available. If you don't compile for a mac, then the "unix-afp"
3235 ** VFS is not available.
3237 ********************* End of the AFP lock implementation **********************
3238 ******************************************************************************/
3240 /******************************************************************************
3241 *************************** Begin NFS Locking ********************************/
3243 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
3245 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
3246 ** must be either NO_LOCK or SHARED_LOCK.
3248 ** If the locking level of the file descriptor is already at or below
3249 ** the requested locking level, this routine is a no-op.
3251 static int nfsUnlock(sqlite3_file
*id
, int eFileLock
){
3252 return posixUnlock(id
, eFileLock
, 1);
3255 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
3257 ** The code above is the NFS lock implementation. The code is specific
3258 ** to MacOSX and does not work on other unix platforms. No alternative
3261 ********************* End of the NFS lock implementation **********************
3262 ******************************************************************************/
3264 /******************************************************************************
3265 **************** Non-locking sqlite3_file methods *****************************
3267 ** The next division contains implementations for all methods of the
3268 ** sqlite3_file object other than the locking methods. The locking
3269 ** methods were defined in divisions above (one locking method per
3270 ** division). Those methods that are common to all locking modes
3271 ** are gather together into this division.
3275 ** Seek to the offset passed as the second argument, then read cnt
3276 ** bytes into pBuf. Return the number of bytes actually read.
3278 ** NB: If you define USE_PREAD or USE_PREAD64, then it might also
3279 ** be necessary to define _XOPEN_SOURCE to be 500. This varies from
3280 ** one system to another. Since SQLite does not define USE_PREAD
3281 ** in any form by default, we will not attempt to define _XOPEN_SOURCE.
3282 ** See tickets #2741 and #2681.
3284 ** To avoid stomping the errno value on a failed read the lastErrno value
3285 ** is set before returning.
3287 static int seekAndRead(unixFile
*id
, sqlite3_int64 offset
, void *pBuf
, int cnt
){
3290 #if (!defined(USE_PREAD) && !defined(USE_PREAD64))
3294 assert( cnt
==(cnt
&0x1ffff) );
3297 #if defined(USE_PREAD)
3298 got
= osPread(id
->h
, pBuf
, cnt
, offset
);
3299 SimulateIOError( got
= -1 );
3300 #elif defined(USE_PREAD64)
3301 got
= osPread64(id
->h
, pBuf
, cnt
, offset
);
3302 SimulateIOError( got
= -1 );
3304 newOffset
= lseek(id
->h
, offset
, SEEK_SET
);
3305 SimulateIOError( newOffset
= -1 );
3307 storeLastErrno((unixFile
*)id
, errno
);
3310 got
= osRead(id
->h
, pBuf
, cnt
);
3312 if( got
==cnt
) break;
3314 if( errno
==EINTR
){ got
= 1; continue; }
3316 storeLastErrno((unixFile
*)id
, errno
);
3322 pBuf
= (void*)(got
+ (char*)pBuf
);
3326 OSTRACE(("READ %-3d %5d %7lld %llu\n",
3327 id
->h
, got
+prior
, offset
-prior
, TIMER_ELAPSED
));
3332 ** Read data from a file into a buffer. Return SQLITE_OK if all
3333 ** bytes were read successfully and SQLITE_IOERR if anything goes
3336 static int unixRead(
3340 sqlite3_int64 offset
3342 unixFile
*pFile
= (unixFile
*)id
;
3345 assert( offset
>=0 );
3348 /* If this is a database file (not a journal, super-journal or temp
3349 ** file), the bytes in the locking range should never be read or written. */
3351 assert( pFile
->pPreallocatedUnused
==0
3352 || offset
>=PENDING_BYTE
+512
3353 || offset
+amt
<=PENDING_BYTE
3357 #if SQLITE_MAX_MMAP_SIZE>0
3358 /* Deal with as much of this read request as possible by transfering
3359 ** data from the memory mapping using memcpy(). */
3360 if( offset
<pFile
->mmapSize
){
3361 if( offset
+amt
<= pFile
->mmapSize
){
3362 memcpy(pBuf
, &((u8
*)(pFile
->pMapRegion
))[offset
], amt
);
3365 int nCopy
= pFile
->mmapSize
- offset
;
3366 memcpy(pBuf
, &((u8
*)(pFile
->pMapRegion
))[offset
], nCopy
);
3367 pBuf
= &((u8
*)pBuf
)[nCopy
];
3374 got
= seekAndRead(pFile
, offset
, pBuf
, amt
);
3378 /* pFile->lastErrno has been set by seekAndRead().
3379 ** Usually we return SQLITE_IOERR_READ here, though for some
3380 ** kinds of errors we return SQLITE_IOERR_CORRUPTFS. The
3381 ** SQLITE_IOERR_CORRUPTFS will be converted into SQLITE_CORRUPT
3382 ** prior to returning to the application by the sqlite3ApiExit()
3385 switch( pFile
->lastErrno
){
3394 return SQLITE_IOERR_CORRUPTFS
;
3396 return SQLITE_IOERR_READ
;
3398 storeLastErrno(pFile
, 0); /* not a system error */
3399 /* Unread parts of the buffer must be zero-filled */
3400 memset(&((char*)pBuf
)[got
], 0, amt
-got
);
3401 return SQLITE_IOERR_SHORT_READ
;
3406 ** Attempt to seek the file-descriptor passed as the first argument to
3407 ** absolute offset iOff, then attempt to write nBuf bytes of data from
3408 ** pBuf to it. If an error occurs, return -1 and set *piErrno. Otherwise,
3409 ** return the actual number of bytes written (which may be less than
3412 static int seekAndWriteFd(
3413 int fd
, /* File descriptor to write to */
3414 i64 iOff
, /* File offset to begin writing at */
3415 const void *pBuf
, /* Copy data from this buffer to the file */
3416 int nBuf
, /* Size of buffer pBuf in bytes */
3417 int *piErrno
/* OUT: Error number if error occurs */
3419 int rc
= 0; /* Value returned by system call */
3421 assert( nBuf
==(nBuf
&0x1ffff) );
3423 assert( piErrno
!=0 );
3427 #if defined(USE_PREAD)
3428 do{ rc
= (int)osPwrite(fd
, pBuf
, nBuf
, iOff
); }while( rc
<0 && errno
==EINTR
);
3429 #elif defined(USE_PREAD64)
3430 do{ rc
= (int)osPwrite64(fd
, pBuf
, nBuf
, iOff
);}while( rc
<0 && errno
==EINTR
);
3433 i64 iSeek
= lseek(fd
, iOff
, SEEK_SET
);
3434 SimulateIOError( iSeek
= -1 );
3439 rc
= osWrite(fd
, pBuf
, nBuf
);
3440 }while( rc
<0 && errno
==EINTR
);
3444 OSTRACE(("WRITE %-3d %5d %7lld %llu\n", fd
, rc
, iOff
, TIMER_ELAPSED
));
3446 if( rc
<0 ) *piErrno
= errno
;
3452 ** Seek to the offset in id->offset then read cnt bytes into pBuf.
3453 ** Return the number of bytes actually read. Update the offset.
3455 ** To avoid stomping the errno value on a failed write the lastErrno value
3456 ** is set before returning.
3458 static int seekAndWrite(unixFile
*id
, i64 offset
, const void *pBuf
, int cnt
){
3459 return seekAndWriteFd(id
->h
, offset
, pBuf
, cnt
, &id
->lastErrno
);
3464 ** Write data from a buffer into a file. Return SQLITE_OK on success
3465 ** or some other error code on failure.
3467 static int unixWrite(
3471 sqlite3_int64 offset
3473 unixFile
*pFile
= (unixFile
*)id
;
3478 /* If this is a database file (not a journal, super-journal or temp
3479 ** file), the bytes in the locking range should never be read or written. */
3481 assert( pFile
->pPreallocatedUnused
==0
3482 || offset
>=PENDING_BYTE
+512
3483 || offset
+amt
<=PENDING_BYTE
3488 /* If we are doing a normal write to a database file (as opposed to
3489 ** doing a hot-journal rollback or a write to some file other than a
3490 ** normal database file) then record the fact that the database
3491 ** has changed. If the transaction counter is modified, record that
3494 if( pFile
->inNormalWrite
){
3495 pFile
->dbUpdate
= 1; /* The database has been modified */
3496 if( offset
<=24 && offset
+amt
>=27 ){
3499 SimulateIOErrorBenign(1);
3500 rc
= seekAndRead(pFile
, 24, oldCntr
, 4);
3501 SimulateIOErrorBenign(0);
3502 if( rc
!=4 || memcmp(oldCntr
, &((char*)pBuf
)[24-offset
], 4)!=0 ){
3503 pFile
->transCntrChng
= 1; /* The transaction counter has changed */
3509 #if defined(SQLITE_MMAP_READWRITE) && SQLITE_MAX_MMAP_SIZE>0
3510 /* Deal with as much of this write request as possible by transfering
3511 ** data from the memory mapping using memcpy(). */
3512 if( offset
<pFile
->mmapSize
){
3513 if( offset
+amt
<= pFile
->mmapSize
){
3514 memcpy(&((u8
*)(pFile
->pMapRegion
))[offset
], pBuf
, amt
);
3517 int nCopy
= pFile
->mmapSize
- offset
;
3518 memcpy(&((u8
*)(pFile
->pMapRegion
))[offset
], pBuf
, nCopy
);
3519 pBuf
= &((u8
*)pBuf
)[nCopy
];
3526 while( (wrote
= seekAndWrite(pFile
, offset
, pBuf
, amt
))<amt
&& wrote
>0 ){
3529 pBuf
= &((char*)pBuf
)[wrote
];
3531 SimulateIOError(( wrote
=(-1), amt
=1 ));
3532 SimulateDiskfullError(( wrote
=0, amt
=1 ));
3535 if( wrote
<0 && pFile
->lastErrno
!=ENOSPC
){
3536 /* lastErrno set by seekAndWrite */
3537 return SQLITE_IOERR_WRITE
;
3539 storeLastErrno(pFile
, 0); /* not a system error */
3549 ** Count the number of fullsyncs and normal syncs. This is used to test
3550 ** that syncs and fullsyncs are occurring at the right times.
3552 int sqlite3_sync_count
= 0;
3553 int sqlite3_fullsync_count
= 0;
3557 ** We do not trust systems to provide a working fdatasync(). Some do.
3558 ** Others do no. To be safe, we will stick with the (slightly slower)
3559 ** fsync(). If you know that your system does support fdatasync() correctly,
3560 ** then simply compile with -Dfdatasync=fdatasync or -DHAVE_FDATASYNC
3562 #if !defined(fdatasync) && !HAVE_FDATASYNC
3563 # define fdatasync fsync
3567 ** Define HAVE_FULLFSYNC to 0 or 1 depending on whether or not
3568 ** the F_FULLFSYNC macro is defined. F_FULLFSYNC is currently
3569 ** only available on Mac OS X. But that could change.
3572 # define HAVE_FULLFSYNC 1
3574 # define HAVE_FULLFSYNC 0
3579 ** The fsync() system call does not work as advertised on many
3580 ** unix systems. The following procedure is an attempt to make
3583 ** The SQLITE_NO_SYNC macro disables all fsync()s. This is useful
3584 ** for testing when we want to run through the test suite quickly.
3585 ** You are strongly advised *not* to deploy with SQLITE_NO_SYNC
3586 ** enabled, however, since with SQLITE_NO_SYNC enabled, an OS crash
3587 ** or power failure will likely corrupt the database file.
3589 ** SQLite sets the dataOnly flag if the size of the file is unchanged.
3590 ** The idea behind dataOnly is that it should only write the file content
3591 ** to disk, not the inode. We only set dataOnly if the file size is
3592 ** unchanged since the file size is part of the inode. However,
3593 ** Ted Ts'o tells us that fdatasync() will also write the inode if the
3594 ** file size has changed. The only real difference between fdatasync()
3595 ** and fsync(), Ted tells us, is that fdatasync() will not flush the
3596 ** inode if the mtime or owner or other inode attributes have changed.
3597 ** We only care about the file size, not the other file attributes, so
3598 ** as far as SQLite is concerned, an fdatasync() is always adequate.
3599 ** So, we always use fdatasync() if it is available, regardless of
3600 ** the value of the dataOnly flag.
3602 static int full_fsync(int fd
, int fullSync
, int dataOnly
){
3605 /* The following "ifdef/elif/else/" block has the same structure as
3606 ** the one below. It is replicated here solely to avoid cluttering
3607 ** up the real code with the UNUSED_PARAMETER() macros.
3609 #ifdef SQLITE_NO_SYNC
3610 UNUSED_PARAMETER(fd
);
3611 UNUSED_PARAMETER(fullSync
);
3612 UNUSED_PARAMETER(dataOnly
);
3613 #elif HAVE_FULLFSYNC
3614 UNUSED_PARAMETER(dataOnly
);
3616 UNUSED_PARAMETER(fullSync
);
3617 UNUSED_PARAMETER(dataOnly
);
3620 /* Record the number of times that we do a normal fsync() and
3621 ** FULLSYNC. This is used during testing to verify that this procedure
3622 ** gets called with the correct arguments.
3625 if( fullSync
) sqlite3_fullsync_count
++;
3626 sqlite3_sync_count
++;
3629 /* If we compiled with the SQLITE_NO_SYNC flag, then syncing is a
3630 ** no-op. But go ahead and call fstat() to validate the file
3631 ** descriptor as we need a method to provoke a failure during
3632 ** coverate testing.
3634 #ifdef SQLITE_NO_SYNC
3637 rc
= osFstat(fd
, &buf
);
3639 #elif HAVE_FULLFSYNC
3641 rc
= osFcntl(fd
, F_FULLFSYNC
, 0);
3645 /* If the FULLFSYNC failed, fall back to attempting an fsync().
3646 ** It shouldn't be possible for fullfsync to fail on the local
3647 ** file system (on OSX), so failure indicates that FULLFSYNC
3648 ** isn't supported for this file system. So, attempt an fsync
3649 ** and (for now) ignore the overhead of a superfluous fcntl call.
3650 ** It'd be better to detect fullfsync support once and avoid
3651 ** the fcntl call every time sync is called.
3653 if( rc
) rc
= fsync(fd
);
3655 #elif defined(__APPLE__)
3656 /* fdatasync() on HFS+ doesn't yet flush the file size if it changed correctly
3657 ** so currently we default to the macro that redefines fdatasync to fsync
3663 if( rc
==-1 && errno
==ENOTSUP
){
3666 #endif /* OS_VXWORKS */
3667 #endif /* ifdef SQLITE_NO_SYNC elif HAVE_FULLFSYNC */
3669 if( OS_VXWORKS
&& rc
!= -1 ){
3676 ** Open a file descriptor to the directory containing file zFilename.
3677 ** If successful, *pFd is set to the opened file descriptor and
3678 ** SQLITE_OK is returned. If an error occurs, either SQLITE_NOMEM
3679 ** or SQLITE_CANTOPEN is returned and *pFd is set to an undefined
3682 ** The directory file descriptor is used for only one thing - to
3683 ** fsync() a directory to make sure file creation and deletion events
3684 ** are flushed to disk. Such fsyncs are not needed on newer
3685 ** journaling filesystems, but are required on older filesystems.
3687 ** This routine can be overridden using the xSetSysCall interface.
3688 ** The ability to override this routine was added in support of the
3689 ** chromium sandbox. Opening a directory is a security risk (we are
3690 ** told) so making it overrideable allows the chromium sandbox to
3691 ** replace this routine with a harmless no-op. To make this routine
3692 ** a no-op, replace it with a stub that returns SQLITE_OK but leaves
3693 ** *pFd set to a negative number.
3695 ** If SQLITE_OK is returned, the caller is responsible for closing
3696 ** the file descriptor *pFd using close().
3698 static int openDirectory(const char *zFilename
, int *pFd
){
3701 char zDirname
[MAX_PATHNAME
+1];
3703 sqlite3_snprintf(MAX_PATHNAME
, zDirname
, "%s", zFilename
);
3704 for(ii
=(int)strlen(zDirname
); ii
>0 && zDirname
[ii
]!='/'; ii
--);
3706 zDirname
[ii
] = '\0';
3708 if( zDirname
[0]!='/' ) zDirname
[0] = '.';
3711 fd
= robust_open(zDirname
, O_RDONLY
|O_BINARY
, 0);
3713 OSTRACE(("OPENDIR %-3d %s\n", fd
, zDirname
));
3716 if( fd
>=0 ) return SQLITE_OK
;
3717 return unixLogError(SQLITE_CANTOPEN_BKPT
, "openDirectory", zDirname
);
3721 ** Make sure all writes to a particular file are committed to disk.
3723 ** If dataOnly==0 then both the file itself and its metadata (file
3724 ** size, access time, etc) are synced. If dataOnly!=0 then only the
3725 ** file data is synced.
3727 ** Under Unix, also make sure that the directory entry for the file
3728 ** has been created by fsync-ing the directory that contains the file.
3729 ** If we do not do this and we encounter a power failure, the directory
3730 ** entry for the journal might not exist after we reboot. The next
3731 ** SQLite to access the file will not know that the journal exists (because
3732 ** the directory entry for the journal was never created) and the transaction
3733 ** will not roll back - possibly leading to database corruption.
3735 static int unixSync(sqlite3_file
*id
, int flags
){
3737 unixFile
*pFile
= (unixFile
*)id
;
3739 int isDataOnly
= (flags
&SQLITE_SYNC_DATAONLY
);
3740 int isFullsync
= (flags
&0x0F)==SQLITE_SYNC_FULL
;
3742 /* Check that one of SQLITE_SYNC_NORMAL or FULL was passed */
3743 assert((flags
&0x0F)==SQLITE_SYNC_NORMAL
3744 || (flags
&0x0F)==SQLITE_SYNC_FULL
3747 /* Unix cannot, but some systems may return SQLITE_FULL from here. This
3748 ** line is to test that doing so does not cause any problems.
3750 SimulateDiskfullError( return SQLITE_FULL
);
3753 OSTRACE(("SYNC %-3d\n", pFile
->h
));
3754 rc
= full_fsync(pFile
->h
, isFullsync
, isDataOnly
);
3755 SimulateIOError( rc
=1 );
3757 storeLastErrno(pFile
, errno
);
3758 return unixLogError(SQLITE_IOERR_FSYNC
, "full_fsync", pFile
->zPath
);
3761 /* Also fsync the directory containing the file if the DIRSYNC flag
3762 ** is set. This is a one-time occurrence. Many systems (examples: AIX)
3763 ** are unable to fsync a directory, so ignore errors on the fsync.
3765 if( pFile
->ctrlFlags
& UNIXFILE_DIRSYNC
){
3767 OSTRACE(("DIRSYNC %s (have_fullfsync=%d fullsync=%d)\n", pFile
->zPath
,
3768 HAVE_FULLFSYNC
, isFullsync
));
3769 rc
= osOpenDirectory(pFile
->zPath
, &dirfd
);
3770 if( rc
==SQLITE_OK
){
3771 full_fsync(dirfd
, 0, 0);
3772 robust_close(pFile
, dirfd
, __LINE__
);
3774 assert( rc
==SQLITE_CANTOPEN
);
3777 pFile
->ctrlFlags
&= ~UNIXFILE_DIRSYNC
;
3783 ** Truncate an open file to a specified size
3785 static int unixTruncate(sqlite3_file
*id
, i64 nByte
){
3786 unixFile
*pFile
= (unixFile
*)id
;
3789 SimulateIOError( return SQLITE_IOERR_TRUNCATE
);
3791 /* If the user has configured a chunk-size for this file, truncate the
3792 ** file so that it consists of an integer number of chunks (i.e. the
3793 ** actual file size after the operation may be larger than the requested
3796 if( pFile
->szChunk
>0 ){
3797 nByte
= ((nByte
+ pFile
->szChunk
- 1)/pFile
->szChunk
) * pFile
->szChunk
;
3800 rc
= robust_ftruncate(pFile
->h
, nByte
);
3802 storeLastErrno(pFile
, errno
);
3803 return unixLogError(SQLITE_IOERR_TRUNCATE
, "ftruncate", pFile
->zPath
);
3806 /* If we are doing a normal write to a database file (as opposed to
3807 ** doing a hot-journal rollback or a write to some file other than a
3808 ** normal database file) and we truncate the file to zero length,
3809 ** that effectively updates the change counter. This might happen
3810 ** when restoring a database using the backup API from a zero-length
3813 if( pFile
->inNormalWrite
&& nByte
==0 ){
3814 pFile
->transCntrChng
= 1;
3818 #if SQLITE_MAX_MMAP_SIZE>0
3819 /* If the file was just truncated to a size smaller than the currently
3820 ** mapped region, reduce the effective mapping size as well. SQLite will
3821 ** use read() and write() to access data beyond this point from now on.
3823 if( nByte
<pFile
->mmapSize
){
3824 pFile
->mmapSize
= nByte
;
3833 ** Determine the current size of a file in bytes
3835 static int unixFileSize(sqlite3_file
*id
, i64
*pSize
){
3839 rc
= osFstat(((unixFile
*)id
)->h
, &buf
);
3840 SimulateIOError( rc
=1 );
3842 storeLastErrno((unixFile
*)id
, errno
);
3843 return SQLITE_IOERR_FSTAT
;
3845 *pSize
= buf
.st_size
;
3847 /* When opening a zero-size database, the findInodeInfo() procedure
3848 ** writes a single byte into that file in order to work around a bug
3849 ** in the OS-X msdos filesystem. In order to avoid problems with upper
3850 ** layers, we need to report this file size as zero even though it is
3851 ** really 1. Ticket #3260.
3853 if( *pSize
==1 ) *pSize
= 0;
3859 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
3861 ** Handler for proxy-locking file-control verbs. Defined below in the
3862 ** proxying locking division.
3864 static int proxyFileControl(sqlite3_file
*,int,void*);
3868 ** This function is called to handle the SQLITE_FCNTL_SIZE_HINT
3869 ** file-control operation. Enlarge the database to nBytes in size
3870 ** (rounded up to the next chunk-size). If the database is already
3871 ** nBytes or larger, this routine is a no-op.
3873 static int fcntlSizeHint(unixFile
*pFile
, i64 nByte
){
3874 if( pFile
->szChunk
>0 ){
3875 i64 nSize
; /* Required file size */
3876 struct stat buf
; /* Used to hold return values of fstat() */
3878 if( osFstat(pFile
->h
, &buf
) ){
3879 return SQLITE_IOERR_FSTAT
;
3882 nSize
= ((nByte
+pFile
->szChunk
-1) / pFile
->szChunk
) * pFile
->szChunk
;
3883 if( nSize
>(i64
)buf
.st_size
){
3885 #if defined(HAVE_POSIX_FALLOCATE) && HAVE_POSIX_FALLOCATE
3886 /* The code below is handling the return value of osFallocate()
3887 ** correctly. posix_fallocate() is defined to "returns zero on success,
3888 ** or an error number on failure". See the manpage for details. */
3891 err
= osFallocate(pFile
->h
, buf
.st_size
, nSize
-buf
.st_size
);
3892 }while( err
==EINTR
);
3893 if( err
&& err
!=EINVAL
) return SQLITE_IOERR_WRITE
;
3895 /* If the OS does not have posix_fallocate(), fake it. Write a
3896 ** single byte to the last byte in each block that falls entirely
3897 ** within the extended region. Then, if required, a single byte
3898 ** at offset (nSize-1), to set the size of the file correctly.
3899 ** This is a similar technique to that used by glibc on systems
3900 ** that do not have a real fallocate() call.
3902 int nBlk
= buf
.st_blksize
; /* File-system block size */
3903 int nWrite
= 0; /* Number of bytes written by seekAndWrite */
3904 i64 iWrite
; /* Next offset to write to */
3906 iWrite
= (buf
.st_size
/nBlk
)*nBlk
+ nBlk
- 1;
3907 assert( iWrite
>=buf
.st_size
);
3908 assert( ((iWrite
+1)%nBlk
)==0 );
3909 for(/*no-op*/; iWrite
<nSize
+nBlk
-1; iWrite
+=nBlk
){
3910 if( iWrite
>=nSize
) iWrite
= nSize
- 1;
3911 nWrite
= seekAndWrite(pFile
, iWrite
, "", 1);
3912 if( nWrite
!=1 ) return SQLITE_IOERR_WRITE
;
3918 #if SQLITE_MAX_MMAP_SIZE>0
3919 if( pFile
->mmapSizeMax
>0 && nByte
>pFile
->mmapSize
){
3921 if( pFile
->szChunk
<=0 ){
3922 if( robust_ftruncate(pFile
->h
, nByte
) ){
3923 storeLastErrno(pFile
, errno
);
3924 return unixLogError(SQLITE_IOERR_TRUNCATE
, "ftruncate", pFile
->zPath
);
3928 rc
= unixMapfile(pFile
, nByte
);
3937 ** If *pArg is initially negative then this is a query. Set *pArg to
3938 ** 1 or 0 depending on whether or not bit mask of pFile->ctrlFlags is set.
3940 ** If *pArg is 0 or 1, then clear or set the mask bit of pFile->ctrlFlags.
3942 static void unixModeBit(unixFile
*pFile
, unsigned char mask
, int *pArg
){
3944 *pArg
= (pFile
->ctrlFlags
& mask
)!=0;
3945 }else if( (*pArg
)==0 ){
3946 pFile
->ctrlFlags
&= ~mask
;
3948 pFile
->ctrlFlags
|= mask
;
3952 /* Forward declaration */
3953 static int unixGetTempname(int nBuf
, char *zBuf
);
3954 #ifndef SQLITE_OMIT_WAL
3955 static int unixFcntlExternalReader(unixFile
*, int*);
3959 ** Information and control of an open file handle.
3961 static int unixFileControl(sqlite3_file
*id
, int op
, void *pArg
){
3962 unixFile
*pFile
= (unixFile
*)id
;
3964 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
3965 case SQLITE_FCNTL_BEGIN_ATOMIC_WRITE
: {
3966 int rc
= osIoctl(pFile
->h
, F2FS_IOC_START_ATOMIC_WRITE
);
3967 return rc
? SQLITE_IOERR_BEGIN_ATOMIC
: SQLITE_OK
;
3969 case SQLITE_FCNTL_COMMIT_ATOMIC_WRITE
: {
3970 int rc
= osIoctl(pFile
->h
, F2FS_IOC_COMMIT_ATOMIC_WRITE
);
3971 return rc
? SQLITE_IOERR_COMMIT_ATOMIC
: SQLITE_OK
;
3973 case SQLITE_FCNTL_ROLLBACK_ATOMIC_WRITE
: {
3974 int rc
= osIoctl(pFile
->h
, F2FS_IOC_ABORT_VOLATILE_WRITE
);
3975 return rc
? SQLITE_IOERR_ROLLBACK_ATOMIC
: SQLITE_OK
;
3977 #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
3979 case SQLITE_FCNTL_LOCKSTATE
: {
3980 *(int*)pArg
= pFile
->eFileLock
;
3983 case SQLITE_FCNTL_LAST_ERRNO
: {
3984 *(int*)pArg
= pFile
->lastErrno
;
3987 case SQLITE_FCNTL_CHUNK_SIZE
: {
3988 pFile
->szChunk
= *(int *)pArg
;
3991 case SQLITE_FCNTL_SIZE_HINT
: {
3993 SimulateIOErrorBenign(1);
3994 rc
= fcntlSizeHint(pFile
, *(i64
*)pArg
);
3995 SimulateIOErrorBenign(0);
3998 case SQLITE_FCNTL_PERSIST_WAL
: {
3999 unixModeBit(pFile
, UNIXFILE_PERSIST_WAL
, (int*)pArg
);
4002 case SQLITE_FCNTL_POWERSAFE_OVERWRITE
: {
4003 unixModeBit(pFile
, UNIXFILE_PSOW
, (int*)pArg
);
4006 case SQLITE_FCNTL_VFSNAME
: {
4007 *(char**)pArg
= sqlite3_mprintf("%s", pFile
->pVfs
->zName
);
4010 case SQLITE_FCNTL_TEMPFILENAME
: {
4011 char *zTFile
= sqlite3_malloc64( pFile
->pVfs
->mxPathname
);
4013 unixGetTempname(pFile
->pVfs
->mxPathname
, zTFile
);
4014 *(char**)pArg
= zTFile
;
4018 case SQLITE_FCNTL_HAS_MOVED
: {
4019 *(int*)pArg
= fileHasMoved(pFile
);
4022 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
4023 case SQLITE_FCNTL_LOCK_TIMEOUT
: {
4024 int iOld
= pFile
->iBusyTimeout
;
4025 pFile
->iBusyTimeout
= *(int*)pArg
;
4030 #if SQLITE_MAX_MMAP_SIZE>0
4031 case SQLITE_FCNTL_MMAP_SIZE
: {
4032 i64 newLimit
= *(i64
*)pArg
;
4034 if( newLimit
>sqlite3GlobalConfig
.mxMmap
){
4035 newLimit
= sqlite3GlobalConfig
.mxMmap
;
4038 /* The value of newLimit may be eventually cast to (size_t) and passed
4039 ** to mmap(). Restrict its value to 2GB if (size_t) is not at least a
4041 if( newLimit
>0 && sizeof(size_t)<8 ){
4042 newLimit
= (newLimit
& 0x7FFFFFFF);
4045 *(i64
*)pArg
= pFile
->mmapSizeMax
;
4046 if( newLimit
>=0 && newLimit
!=pFile
->mmapSizeMax
&& pFile
->nFetchOut
==0 ){
4047 pFile
->mmapSizeMax
= newLimit
;
4048 if( pFile
->mmapSize
>0 ){
4049 unixUnmapfile(pFile
);
4050 rc
= unixMapfile(pFile
, -1);
4057 /* The pager calls this method to signal that it has done
4058 ** a rollback and that the database is therefore unchanged and
4059 ** it hence it is OK for the transaction change counter to be
4062 case SQLITE_FCNTL_DB_UNCHANGED
: {
4063 ((unixFile
*)id
)->dbUpdate
= 0;
4067 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
4068 case SQLITE_FCNTL_SET_LOCKPROXYFILE
:
4069 case SQLITE_FCNTL_GET_LOCKPROXYFILE
: {
4070 return proxyFileControl(id
,op
,pArg
);
4072 #endif /* SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__) */
4074 case SQLITE_FCNTL_EXTERNAL_READER
: {
4075 #ifndef SQLITE_OMIT_WAL
4076 return unixFcntlExternalReader((unixFile
*)id
, (int*)pArg
);
4083 return SQLITE_NOTFOUND
;
4087 ** If pFd->sectorSize is non-zero when this function is called, it is a
4088 ** no-op. Otherwise, the values of pFd->sectorSize and
4089 ** pFd->deviceCharacteristics are set according to the file-system
4092 ** There are two versions of this function. One for QNX and one for all
4096 static void setDeviceCharacteristics(unixFile
*pFd
){
4097 assert( pFd
->deviceCharacteristics
==0 || pFd
->sectorSize
!=0 );
4098 if( pFd
->sectorSize
==0 ){
4099 #if defined(__linux__) && defined(SQLITE_ENABLE_BATCH_ATOMIC_WRITE)
4103 /* Check for support for F2FS atomic batch writes. */
4104 res
= osIoctl(pFd
->h
, F2FS_IOC_GET_FEATURES
, &f
);
4105 if( res
==0 && (f
& F2FS_FEATURE_ATOMIC_WRITE
) ){
4106 pFd
->deviceCharacteristics
= SQLITE_IOCAP_BATCH_ATOMIC
;
4108 #endif /* __linux__ && SQLITE_ENABLE_BATCH_ATOMIC_WRITE */
4110 /* Set the POWERSAFE_OVERWRITE flag if requested. */
4111 if( pFd
->ctrlFlags
& UNIXFILE_PSOW
){
4112 pFd
->deviceCharacteristics
|= SQLITE_IOCAP_POWERSAFE_OVERWRITE
;
4115 pFd
->sectorSize
= SQLITE_DEFAULT_SECTOR_SIZE
;
4119 #include <sys/dcmd_blk.h>
4120 #include <sys/statvfs.h>
4121 static void setDeviceCharacteristics(unixFile
*pFile
){
4122 if( pFile
->sectorSize
== 0 ){
4123 struct statvfs fsInfo
;
4125 /* Set defaults for non-supported filesystems */
4126 pFile
->sectorSize
= SQLITE_DEFAULT_SECTOR_SIZE
;
4127 pFile
->deviceCharacteristics
= 0;
4128 if( fstatvfs(pFile
->h
, &fsInfo
) == -1 ) {
4132 if( !strcmp(fsInfo
.f_basetype
, "tmp") ) {
4133 pFile
->sectorSize
= fsInfo
.f_bsize
;
4134 pFile
->deviceCharacteristics
=
4135 SQLITE_IOCAP_ATOMIC4K
| /* All ram filesystem writes are atomic */
4136 SQLITE_IOCAP_SAFE_APPEND
| /* growing the file does not occur until
4137 ** the write succeeds */
4138 SQLITE_IOCAP_SEQUENTIAL
| /* The ram filesystem has no write behind
4139 ** so it is ordered */
4141 }else if( strstr(fsInfo
.f_basetype
, "etfs") ){
4142 pFile
->sectorSize
= fsInfo
.f_bsize
;
4143 pFile
->deviceCharacteristics
=
4144 /* etfs cluster size writes are atomic */
4145 (pFile
->sectorSize
/ 512 * SQLITE_IOCAP_ATOMIC512
) |
4146 SQLITE_IOCAP_SAFE_APPEND
| /* growing the file does not occur until
4147 ** the write succeeds */
4148 SQLITE_IOCAP_SEQUENTIAL
| /* The ram filesystem has no write behind
4149 ** so it is ordered */
4151 }else if( !strcmp(fsInfo
.f_basetype
, "qnx6") ){
4152 pFile
->sectorSize
= fsInfo
.f_bsize
;
4153 pFile
->deviceCharacteristics
=
4154 SQLITE_IOCAP_ATOMIC
| /* All filesystem writes are atomic */
4155 SQLITE_IOCAP_SAFE_APPEND
| /* growing the file does not occur until
4156 ** the write succeeds */
4157 SQLITE_IOCAP_SEQUENTIAL
| /* The ram filesystem has no write behind
4158 ** so it is ordered */
4160 }else if( !strcmp(fsInfo
.f_basetype
, "qnx4") ){
4161 pFile
->sectorSize
= fsInfo
.f_bsize
;
4162 pFile
->deviceCharacteristics
=
4163 /* full bitset of atomics from max sector size and smaller */
4164 ((pFile
->sectorSize
/ 512 * SQLITE_IOCAP_ATOMIC512
) << 1) - 2 |
4165 SQLITE_IOCAP_SEQUENTIAL
| /* The ram filesystem has no write behind
4166 ** so it is ordered */
4168 }else if( strstr(fsInfo
.f_basetype
, "dos") ){
4169 pFile
->sectorSize
= fsInfo
.f_bsize
;
4170 pFile
->deviceCharacteristics
=
4171 /* full bitset of atomics from max sector size and smaller */
4172 ((pFile
->sectorSize
/ 512 * SQLITE_IOCAP_ATOMIC512
) << 1) - 2 |
4173 SQLITE_IOCAP_SEQUENTIAL
| /* The ram filesystem has no write behind
4174 ** so it is ordered */
4177 pFile
->deviceCharacteristics
=
4178 SQLITE_IOCAP_ATOMIC512
| /* blocks are atomic */
4179 SQLITE_IOCAP_SAFE_APPEND
| /* growing the file does not occur until
4180 ** the write succeeds */
4184 /* Last chance verification. If the sector size isn't a multiple of 512
4185 ** then it isn't valid.*/
4186 if( pFile
->sectorSize
% 512 != 0 ){
4187 pFile
->deviceCharacteristics
= 0;
4188 pFile
->sectorSize
= SQLITE_DEFAULT_SECTOR_SIZE
;
4194 ** Return the sector size in bytes of the underlying block device for
4195 ** the specified file. This is almost always 512 bytes, but may be
4196 ** larger for some devices.
4198 ** SQLite code assumes this function cannot fail. It also assumes that
4199 ** if two files are created in the same file-system directory (i.e.
4200 ** a database and its journal file) that the sector size will be the
4203 static int unixSectorSize(sqlite3_file
*id
){
4204 unixFile
*pFd
= (unixFile
*)id
;
4205 setDeviceCharacteristics(pFd
);
4206 return pFd
->sectorSize
;
4210 ** Return the device characteristics for the file.
4212 ** This VFS is set up to return SQLITE_IOCAP_POWERSAFE_OVERWRITE by default.
4213 ** However, that choice is controversial since technically the underlying
4214 ** file system does not always provide powersafe overwrites. (In other
4215 ** words, after a power-loss event, parts of the file that were never
4216 ** written might end up being altered.) However, non-PSOW behavior is very,
4217 ** very rare. And asserting PSOW makes a large reduction in the amount
4218 ** of required I/O for journaling, since a lot of padding is eliminated.
4219 ** Hence, while POWERSAFE_OVERWRITE is on by default, there is a file-control
4220 ** available to turn it off and URI query parameter available to turn it off.
4222 static int unixDeviceCharacteristics(sqlite3_file
*id
){
4223 unixFile
*pFd
= (unixFile
*)id
;
4224 setDeviceCharacteristics(pFd
);
4225 return pFd
->deviceCharacteristics
;
4228 #if !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0
4231 ** Return the system page size.
4233 ** This function should not be called directly by other code in this file.
4234 ** Instead, it should be called via macro osGetpagesize().
4236 static int unixGetpagesize(void){
4239 #elif defined(_BSD_SOURCE)
4240 return getpagesize();
4242 return (int)sysconf(_SC_PAGESIZE
);
4246 #endif /* !defined(SQLITE_OMIT_WAL) || SQLITE_MAX_MMAP_SIZE>0 */
4248 #ifndef SQLITE_OMIT_WAL
4251 ** Object used to represent an shared memory buffer.
4253 ** When multiple threads all reference the same wal-index, each thread
4254 ** has its own unixShm object, but they all point to a single instance
4255 ** of this unixShmNode object. In other words, each wal-index is opened
4256 ** only once per process.
4258 ** Each unixShmNode object is connected to a single unixInodeInfo object.
4259 ** We could coalesce this object into unixInodeInfo, but that would mean
4260 ** every open file that does not use shared memory (in other words, most
4261 ** open files) would have to carry around this extra information. So
4262 ** the unixInodeInfo object contains a pointer to this unixShmNode object
4263 ** and the unixShmNode object is created only when needed.
4265 ** unixMutexHeld() must be true when creating or destroying
4266 ** this object or while reading or writing the following fields:
4270 ** The following fields are read-only after the object is created:
4275 ** Either unixShmNode.pShmMutex must be held or unixShmNode.nRef==0 and
4276 ** unixMutexHeld() is true when reading or writing any other field
4277 ** in this structure.
4279 struct unixShmNode
{
4280 unixInodeInfo
*pInode
; /* unixInodeInfo that owns this SHM node */
4281 sqlite3_mutex
*pShmMutex
; /* Mutex to access this object */
4282 char *zFilename
; /* Name of the mmapped file */
4283 int hShm
; /* Open file descriptor */
4284 int szRegion
; /* Size of shared-memory regions */
4285 u16 nRegion
; /* Size of array apRegion */
4286 u8 isReadonly
; /* True if read-only */
4287 u8 isUnlocked
; /* True if no DMS lock held */
4288 char **apRegion
; /* Array of mapped shared-memory regions */
4289 int nRef
; /* Number of unixShm objects pointing to this */
4290 unixShm
*pFirst
; /* All unixShm objects pointing to this */
4291 int aLock
[SQLITE_SHM_NLOCK
]; /* # shared locks on slot, -1==excl lock */
4293 u8 exclMask
; /* Mask of exclusive locks held */
4294 u8 sharedMask
; /* Mask of shared locks held */
4295 u8 nextShmId
; /* Next available unixShm.id value */
4300 ** Structure used internally by this VFS to record the state of an
4301 ** open shared memory connection.
4303 ** The following fields are initialized when this object is created and
4304 ** are read-only thereafter:
4309 ** All other fields are read/write. The unixShm.pShmNode->pShmMutex must
4310 ** be held while accessing any read/write fields.
4313 unixShmNode
*pShmNode
; /* The underlying unixShmNode object */
4314 unixShm
*pNext
; /* Next unixShm with the same unixShmNode */
4315 u8 hasMutex
; /* True if holding the unixShmNode->pShmMutex */
4316 u8 id
; /* Id of this connection within its unixShmNode */
4317 u16 sharedMask
; /* Mask of shared locks held */
4318 u16 exclMask
; /* Mask of exclusive locks held */
4322 ** Constants used for locking
4324 #define UNIX_SHM_BASE ((22+SQLITE_SHM_NLOCK)*4) /* first lock byte */
4325 #define UNIX_SHM_DMS (UNIX_SHM_BASE+SQLITE_SHM_NLOCK) /* deadman switch */
4328 ** Use F_GETLK to check whether or not there are any readers with open
4329 ** wal-mode transactions in other processes on database file pFile. If
4330 ** no error occurs, return SQLITE_OK and set (*piOut) to 1 if there are
4331 ** such transactions, or 0 otherwise. If an error occurs, return an
4332 ** SQLite error code. The final value of *piOut is undefined in this
4335 static int unixFcntlExternalReader(unixFile
*pFile
, int *piOut
){
4339 unixShmNode
*pShmNode
= pFile
->pShm
->pShmNode
;
4342 memset(&f
, 0, sizeof(f
));
4344 f
.l_whence
= SEEK_SET
;
4345 f
.l_start
= UNIX_SHM_BASE
+ 3;
4346 f
.l_len
= SQLITE_SHM_NLOCK
- 3;
4348 sqlite3_mutex_enter(pShmNode
->pShmMutex
);
4349 if( osFcntl(pShmNode
->hShm
, F_GETLK
, &f
)<0 ){
4350 rc
= SQLITE_IOERR_LOCK
;
4352 *piOut
= (f
.l_type
!=F_UNLCK
);
4354 sqlite3_mutex_leave(pShmNode
->pShmMutex
);
4362 ** Apply posix advisory locks for all bytes from ofst through ofst+n-1.
4364 ** Locks block if the mask is exactly UNIX_SHM_C and are non-blocking
4367 static int unixShmSystemLock(
4368 unixFile
*pFile
, /* Open connection to the WAL file */
4369 int lockType
, /* F_UNLCK, F_RDLCK, or F_WRLCK */
4370 int ofst
, /* First byte of the locking range */
4371 int n
/* Number of bytes to lock */
4373 unixShmNode
*pShmNode
; /* Apply locks to this open shared-memory segment */
4374 struct flock f
; /* The posix advisory locking structure */
4375 int rc
= SQLITE_OK
; /* Result code form fcntl() */
4377 /* Access to the unixShmNode object is serialized by the caller */
4378 pShmNode
= pFile
->pInode
->pShmNode
;
4379 assert( pShmNode
->nRef
==0 || sqlite3_mutex_held(pShmNode
->pShmMutex
) );
4380 assert( pShmNode
->nRef
>0 || unixMutexHeld() );
4382 /* Shared locks never span more than one byte */
4383 assert( n
==1 || lockType
!=F_RDLCK
);
4385 /* Locks are within range */
4386 assert( n
>=1 && n
<=SQLITE_SHM_NLOCK
);
4388 if( pShmNode
->hShm
>=0 ){
4390 /* Initialize the locking parameters */
4391 f
.l_type
= lockType
;
4392 f
.l_whence
= SEEK_SET
;
4395 res
= osSetPosixAdvisoryLock(pShmNode
->hShm
, &f
, pFile
);
4397 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
4398 rc
= (pFile
->iBusyTimeout
? SQLITE_BUSY_TIMEOUT
: SQLITE_BUSY
);
4405 /* Update the global lock state and do debug tracing */
4408 OSTRACE(("SHM-LOCK "));
4409 mask
= ofst
>31 ? 0xffff : (1<<(ofst
+n
)) - (1<<ofst
);
4410 if( rc
==SQLITE_OK
){
4411 if( lockType
==F_UNLCK
){
4412 OSTRACE(("unlock %d ok", ofst
));
4413 pShmNode
->exclMask
&= ~mask
;
4414 pShmNode
->sharedMask
&= ~mask
;
4415 }else if( lockType
==F_RDLCK
){
4416 OSTRACE(("read-lock %d ok", ofst
));
4417 pShmNode
->exclMask
&= ~mask
;
4418 pShmNode
->sharedMask
|= mask
;
4420 assert( lockType
==F_WRLCK
);
4421 OSTRACE(("write-lock %d ok", ofst
));
4422 pShmNode
->exclMask
|= mask
;
4423 pShmNode
->sharedMask
&= ~mask
;
4426 if( lockType
==F_UNLCK
){
4427 OSTRACE(("unlock %d failed", ofst
));
4428 }else if( lockType
==F_RDLCK
){
4429 OSTRACE(("read-lock failed"));
4431 assert( lockType
==F_WRLCK
);
4432 OSTRACE(("write-lock %d failed", ofst
));
4435 OSTRACE((" - afterwards %03x,%03x\n",
4436 pShmNode
->sharedMask
, pShmNode
->exclMask
));
4444 ** Return the minimum number of 32KB shm regions that should be mapped at
4445 ** a time, assuming that each mapping must be an integer multiple of the
4446 ** current system page-size.
4448 ** Usually, this is 1. The exception seems to be systems that are configured
4449 ** to use 64KB pages - in this case each mapping must cover at least two
4452 static int unixShmRegionPerMap(void){
4453 int shmsz
= 32*1024; /* SHM region size */
4454 int pgsz
= osGetpagesize(); /* System page size */
4455 assert( ((pgsz
-1)&pgsz
)==0 ); /* Page size must be a power of 2 */
4456 if( pgsz
<shmsz
) return 1;
4461 ** Purge the unixShmNodeList list of all entries with unixShmNode.nRef==0.
4463 ** This is not a VFS shared-memory method; it is a utility function called
4464 ** by VFS shared-memory methods.
4466 static void unixShmPurge(unixFile
*pFd
){
4467 unixShmNode
*p
= pFd
->pInode
->pShmNode
;
4468 assert( unixMutexHeld() );
4469 if( p
&& ALWAYS(p
->nRef
==0) ){
4470 int nShmPerMap
= unixShmRegionPerMap();
4472 assert( p
->pInode
==pFd
->pInode
);
4473 sqlite3_mutex_free(p
->pShmMutex
);
4474 for(i
=0; i
<p
->nRegion
; i
+=nShmPerMap
){
4476 osMunmap(p
->apRegion
[i
], p
->szRegion
);
4478 sqlite3_free(p
->apRegion
[i
]);
4481 sqlite3_free(p
->apRegion
);
4483 robust_close(pFd
, p
->hShm
, __LINE__
);
4486 p
->pInode
->pShmNode
= 0;
4492 ** The DMS lock has not yet been taken on shm file pShmNode. Attempt to
4493 ** take it now. Return SQLITE_OK if successful, or an SQLite error
4496 ** If the DMS cannot be locked because this is a readonly_shm=1
4497 ** connection and no other process already holds a lock, return
4498 ** SQLITE_READONLY_CANTINIT and set pShmNode->isUnlocked=1.
4500 static int unixLockSharedMemory(unixFile
*pDbFd
, unixShmNode
*pShmNode
){
4504 /* Use F_GETLK to determine the locks other processes are holding
4505 ** on the DMS byte. If it indicates that another process is holding
4506 ** a SHARED lock, then this process may also take a SHARED lock
4507 ** and proceed with opening the *-shm file.
4509 ** Or, if no other process is holding any lock, then this process
4510 ** is the first to open it. In this case take an EXCLUSIVE lock on the
4511 ** DMS byte and truncate the *-shm file to zero bytes in size. Then
4512 ** downgrade to a SHARED lock on the DMS byte.
4514 ** If another process is holding an EXCLUSIVE lock on the DMS byte,
4515 ** return SQLITE_BUSY to the caller (it will try again). An earlier
4516 ** version of this code attempted the SHARED lock at this point. But
4517 ** this introduced a subtle race condition: if the process holding
4518 ** EXCLUSIVE failed just before truncating the *-shm file, then this
4519 ** process might open and use the *-shm file without truncating it.
4520 ** And if the *-shm file has been corrupted by a power failure or
4521 ** system crash, the database itself may also become corrupt. */
4522 lock
.l_whence
= SEEK_SET
;
4523 lock
.l_start
= UNIX_SHM_DMS
;
4525 lock
.l_type
= F_WRLCK
;
4526 if( osFcntl(pShmNode
->hShm
, F_GETLK
, &lock
)!=0 ) {
4527 rc
= SQLITE_IOERR_LOCK
;
4528 }else if( lock
.l_type
==F_UNLCK
){
4529 if( pShmNode
->isReadonly
){
4530 pShmNode
->isUnlocked
= 1;
4531 rc
= SQLITE_READONLY_CANTINIT
;
4533 rc
= unixShmSystemLock(pDbFd
, F_WRLCK
, UNIX_SHM_DMS
, 1);
4534 /* The first connection to attach must truncate the -shm file. We
4535 ** truncate to 3 bytes (an arbitrary small number, less than the
4536 ** -shm header size) rather than 0 as a system debugging aid, to
4537 ** help detect if a -shm file truncation is legitimate or is the work
4538 ** or a rogue process. */
4539 if( rc
==SQLITE_OK
&& robust_ftruncate(pShmNode
->hShm
, 3) ){
4540 rc
= unixLogError(SQLITE_IOERR_SHMOPEN
,"ftruncate",pShmNode
->zFilename
);
4543 }else if( lock
.l_type
==F_WRLCK
){
4547 if( rc
==SQLITE_OK
){
4548 assert( lock
.l_type
==F_UNLCK
|| lock
.l_type
==F_RDLCK
);
4549 rc
= unixShmSystemLock(pDbFd
, F_RDLCK
, UNIX_SHM_DMS
, 1);
4555 ** Open a shared-memory area associated with open database file pDbFd.
4556 ** This particular implementation uses mmapped files.
4558 ** The file used to implement shared-memory is in the same directory
4559 ** as the open database file and has the same name as the open database
4560 ** file with the "-shm" suffix added. For example, if the database file
4561 ** is "/home/user1/config.db" then the file that is created and mmapped
4562 ** for shared memory will be called "/home/user1/config.db-shm".
4564 ** Another approach to is to use files in /dev/shm or /dev/tmp or an
4565 ** some other tmpfs mount. But if a file in a different directory
4566 ** from the database file is used, then differing access permissions
4567 ** or a chroot() might cause two different processes on the same
4568 ** database to end up using different files for shared memory -
4569 ** meaning that their memory would not really be shared - resulting
4570 ** in database corruption. Nevertheless, this tmpfs file usage
4571 ** can be enabled at compile-time using -DSQLITE_SHM_DIRECTORY="/dev/shm"
4572 ** or the equivalent. The use of the SQLITE_SHM_DIRECTORY compile-time
4573 ** option results in an incompatible build of SQLite; builds of SQLite
4574 ** that with differing SQLITE_SHM_DIRECTORY settings attempt to use the
4575 ** same database file at the same time, database corruption will likely
4576 ** result. The SQLITE_SHM_DIRECTORY compile-time option is considered
4577 ** "unsupported" and may go away in a future SQLite release.
4579 ** When opening a new shared-memory file, if no other instances of that
4580 ** file are currently open, in this process or in other processes, then
4581 ** the file must be truncated to zero length or have its header cleared.
4583 ** If the original database file (pDbFd) is using the "unix-excl" VFS
4584 ** that means that an exclusive lock is held on the database file and
4585 ** that no other processes are able to read or write the database. In
4586 ** that case, we do not really need shared memory. No shared memory
4587 ** file is created. The shared memory will be simulated with heap memory.
4589 static int unixOpenSharedMemory(unixFile
*pDbFd
){
4590 struct unixShm
*p
= 0; /* The connection to be opened */
4591 struct unixShmNode
*pShmNode
; /* The underlying mmapped file */
4592 int rc
= SQLITE_OK
; /* Result code */
4593 unixInodeInfo
*pInode
; /* The inode of fd */
4594 char *zShm
; /* Name of the file used for SHM */
4595 int nShmFilename
; /* Size of the SHM filename in bytes */
4597 /* Allocate space for the new unixShm object. */
4598 p
= sqlite3_malloc64( sizeof(*p
) );
4599 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
4600 memset(p
, 0, sizeof(*p
));
4601 assert( pDbFd
->pShm
==0 );
4603 /* Check to see if a unixShmNode object already exists. Reuse an existing
4604 ** one if present. Create a new one if necessary.
4606 assert( unixFileMutexNotheld(pDbFd
) );
4608 pInode
= pDbFd
->pInode
;
4609 pShmNode
= pInode
->pShmNode
;
4611 struct stat sStat
; /* fstat() info for database file */
4612 #ifndef SQLITE_SHM_DIRECTORY
4613 const char *zBasePath
= pDbFd
->zPath
;
4616 /* Call fstat() to figure out the permissions on the database file. If
4617 ** a new *-shm file is created, an attempt will be made to create it
4618 ** with the same permissions.
4620 if( osFstat(pDbFd
->h
, &sStat
) ){
4621 rc
= SQLITE_IOERR_FSTAT
;
4625 #ifdef SQLITE_SHM_DIRECTORY
4626 nShmFilename
= sizeof(SQLITE_SHM_DIRECTORY
) + 31;
4628 nShmFilename
= 6 + (int)strlen(zBasePath
);
4630 pShmNode
= sqlite3_malloc64( sizeof(*pShmNode
) + nShmFilename
);
4632 rc
= SQLITE_NOMEM_BKPT
;
4635 memset(pShmNode
, 0, sizeof(*pShmNode
)+nShmFilename
);
4636 zShm
= pShmNode
->zFilename
= (char*)&pShmNode
[1];
4637 #ifdef SQLITE_SHM_DIRECTORY
4638 sqlite3_snprintf(nShmFilename
, zShm
,
4639 SQLITE_SHM_DIRECTORY
"/sqlite-shm-%x-%x",
4640 (u32
)sStat
.st_ino
, (u32
)sStat
.st_dev
);
4642 sqlite3_snprintf(nShmFilename
, zShm
, "%s-shm", zBasePath
);
4643 sqlite3FileSuffix3(pDbFd
->zPath
, zShm
);
4645 pShmNode
->hShm
= -1;
4646 pDbFd
->pInode
->pShmNode
= pShmNode
;
4647 pShmNode
->pInode
= pDbFd
->pInode
;
4648 if( sqlite3GlobalConfig
.bCoreMutex
){
4649 pShmNode
->pShmMutex
= sqlite3_mutex_alloc(SQLITE_MUTEX_FAST
);
4650 if( pShmNode
->pShmMutex
==0 ){
4651 rc
= SQLITE_NOMEM_BKPT
;
4656 if( pInode
->bProcessLock
==0 ){
4657 if( 0==sqlite3_uri_boolean(pDbFd
->zPath
, "readonly_shm", 0) ){
4658 pShmNode
->hShm
= robust_open(zShm
, O_RDWR
|O_CREAT
|O_NOFOLLOW
,
4659 (sStat
.st_mode
&0777));
4661 if( pShmNode
->hShm
<0 ){
4662 pShmNode
->hShm
= robust_open(zShm
, O_RDONLY
|O_NOFOLLOW
,
4663 (sStat
.st_mode
&0777));
4664 if( pShmNode
->hShm
<0 ){
4665 rc
= unixLogError(SQLITE_CANTOPEN_BKPT
, "open", zShm
);
4668 pShmNode
->isReadonly
= 1;
4671 /* If this process is running as root, make sure that the SHM file
4672 ** is owned by the same user that owns the original database. Otherwise,
4673 ** the original owner will not be able to connect.
4675 robustFchown(pShmNode
->hShm
, sStat
.st_uid
, sStat
.st_gid
);
4677 rc
= unixLockSharedMemory(pDbFd
, pShmNode
);
4678 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_READONLY_CANTINIT
) goto shm_open_err
;
4682 /* Make the new connection a child of the unixShmNode */
4683 p
->pShmNode
= pShmNode
;
4685 p
->id
= pShmNode
->nextShmId
++;
4691 /* The reference count on pShmNode has already been incremented under
4692 ** the cover of the unixEnterMutex() mutex and the pointer from the
4693 ** new (struct unixShm) object to the pShmNode has been set. All that is
4694 ** left to do is to link the new object into the linked list starting
4695 ** at pShmNode->pFirst. This must be done while holding the
4696 ** pShmNode->pShmMutex.
4698 sqlite3_mutex_enter(pShmNode
->pShmMutex
);
4699 p
->pNext
= pShmNode
->pFirst
;
4700 pShmNode
->pFirst
= p
;
4701 sqlite3_mutex_leave(pShmNode
->pShmMutex
);
4704 /* Jump here on any error */
4706 unixShmPurge(pDbFd
); /* This call frees pShmNode if required */
4713 ** This function is called to obtain a pointer to region iRegion of the
4714 ** shared-memory associated with the database file fd. Shared-memory regions
4715 ** are numbered starting from zero. Each shared-memory region is szRegion
4718 ** If an error occurs, an error code is returned and *pp is set to NULL.
4720 ** Otherwise, if the bExtend parameter is 0 and the requested shared-memory
4721 ** region has not been allocated (by any client, including one running in a
4722 ** separate process), then *pp is set to NULL and SQLITE_OK returned. If
4723 ** bExtend is non-zero and the requested shared-memory region has not yet
4724 ** been allocated, it is allocated by this function.
4726 ** If the shared-memory region has already been allocated or is allocated by
4727 ** this call as described above, then it is mapped into this processes
4728 ** address space (if it is not already), *pp is set to point to the mapped
4729 ** memory and SQLITE_OK returned.
4731 static int unixShmMap(
4732 sqlite3_file
*fd
, /* Handle open on database file */
4733 int iRegion
, /* Region to retrieve */
4734 int szRegion
, /* Size of regions */
4735 int bExtend
, /* True to extend file if necessary */
4736 void volatile **pp
/* OUT: Mapped memory */
4738 unixFile
*pDbFd
= (unixFile
*)fd
;
4740 unixShmNode
*pShmNode
;
4742 int nShmPerMap
= unixShmRegionPerMap();
4745 /* If the shared-memory file has not yet been opened, open it now. */
4746 if( pDbFd
->pShm
==0 ){
4747 rc
= unixOpenSharedMemory(pDbFd
);
4748 if( rc
!=SQLITE_OK
) return rc
;
4752 pShmNode
= p
->pShmNode
;
4753 sqlite3_mutex_enter(pShmNode
->pShmMutex
);
4754 if( pShmNode
->isUnlocked
){
4755 rc
= unixLockSharedMemory(pDbFd
, pShmNode
);
4756 if( rc
!=SQLITE_OK
) goto shmpage_out
;
4757 pShmNode
->isUnlocked
= 0;
4759 assert( szRegion
==pShmNode
->szRegion
|| pShmNode
->nRegion
==0 );
4760 assert( pShmNode
->pInode
==pDbFd
->pInode
);
4761 assert( pShmNode
->hShm
>=0 || pDbFd
->pInode
->bProcessLock
==1 );
4762 assert( pShmNode
->hShm
<0 || pDbFd
->pInode
->bProcessLock
==0 );
4764 /* Minimum number of regions required to be mapped. */
4765 nReqRegion
= ((iRegion
+nShmPerMap
) / nShmPerMap
) * nShmPerMap
;
4767 if( pShmNode
->nRegion
<nReqRegion
){
4768 char **apNew
; /* New apRegion[] array */
4769 int nByte
= nReqRegion
*szRegion
; /* Minimum required file size */
4770 struct stat sStat
; /* Used by fstat() */
4772 pShmNode
->szRegion
= szRegion
;
4774 if( pShmNode
->hShm
>=0 ){
4775 /* The requested region is not mapped into this processes address space.
4776 ** Check to see if it has been allocated (i.e. if the wal-index file is
4777 ** large enough to contain the requested region).
4779 if( osFstat(pShmNode
->hShm
, &sStat
) ){
4780 rc
= SQLITE_IOERR_SHMSIZE
;
4784 if( sStat
.st_size
<nByte
){
4785 /* The requested memory region does not exist. If bExtend is set to
4786 ** false, exit early. *pp will be set to NULL and SQLITE_OK returned.
4792 /* Alternatively, if bExtend is true, extend the file. Do this by
4793 ** writing a single byte to the end of each (OS) page being
4794 ** allocated or extended. Technically, we need only write to the
4795 ** last page in order to extend the file. But writing to all new
4796 ** pages forces the OS to allocate them immediately, which reduces
4797 ** the chances of SIGBUS while accessing the mapped region later on.
4800 static const int pgsz
= 4096;
4803 /* Write to the last byte of each newly allocated or extended page */
4804 assert( (nByte
% pgsz
)==0 );
4805 for(iPg
=(sStat
.st_size
/pgsz
); iPg
<(nByte
/pgsz
); iPg
++){
4807 if( seekAndWriteFd(pShmNode
->hShm
, iPg
*pgsz
+ pgsz
-1,"",1,&x
)!=1 ){
4808 const char *zFile
= pShmNode
->zFilename
;
4809 rc
= unixLogError(SQLITE_IOERR_SHMSIZE
, "write", zFile
);
4817 /* Map the requested memory region into this processes address space. */
4818 apNew
= (char **)sqlite3_realloc(
4819 pShmNode
->apRegion
, nReqRegion
*sizeof(char *)
4822 rc
= SQLITE_IOERR_NOMEM_BKPT
;
4825 pShmNode
->apRegion
= apNew
;
4826 while( pShmNode
->nRegion
<nReqRegion
){
4827 int nMap
= szRegion
*nShmPerMap
;
4830 if( pShmNode
->hShm
>=0 ){
4831 pMem
= osMmap(0, nMap
,
4832 pShmNode
->isReadonly
? PROT_READ
: PROT_READ
|PROT_WRITE
,
4833 MAP_SHARED
, pShmNode
->hShm
, szRegion
*(i64
)pShmNode
->nRegion
4835 if( pMem
==MAP_FAILED
){
4836 rc
= unixLogError(SQLITE_IOERR_SHMMAP
, "mmap", pShmNode
->zFilename
);
4840 pMem
= sqlite3_malloc64(nMap
);
4842 rc
= SQLITE_NOMEM_BKPT
;
4845 memset(pMem
, 0, nMap
);
4848 for(i
=0; i
<nShmPerMap
; i
++){
4849 pShmNode
->apRegion
[pShmNode
->nRegion
+i
] = &((char*)pMem
)[szRegion
*i
];
4851 pShmNode
->nRegion
+= nShmPerMap
;
4856 if( pShmNode
->nRegion
>iRegion
){
4857 *pp
= pShmNode
->apRegion
[iRegion
];
4861 if( pShmNode
->isReadonly
&& rc
==SQLITE_OK
) rc
= SQLITE_READONLY
;
4862 sqlite3_mutex_leave(pShmNode
->pShmMutex
);
4867 ** Check that the pShmNode->aLock[] array comports with the locking bitmasks
4868 ** held by each client. Return true if it does, or false otherwise. This
4869 ** is to be used in an assert(). e.g.
4871 ** assert( assertLockingArrayOk(pShmNode) );
4874 static int assertLockingArrayOk(unixShmNode
*pShmNode
){
4876 int aLock
[SQLITE_SHM_NLOCK
];
4877 assert( sqlite3_mutex_held(pShmNode
->pShmMutex
) );
4879 memset(aLock
, 0, sizeof(aLock
));
4880 for(pX
=pShmNode
->pFirst
; pX
; pX
=pX
->pNext
){
4882 for(i
=0; i
<SQLITE_SHM_NLOCK
; i
++){
4883 if( pX
->exclMask
& (1<<i
) ){
4884 assert( aLock
[i
]==0 );
4886 }else if( pX
->sharedMask
& (1<<i
) ){
4887 assert( aLock
[i
]>=0 );
4893 assert( 0==memcmp(pShmNode
->aLock
, aLock
, sizeof(aLock
)) );
4894 return (memcmp(pShmNode
->aLock
, aLock
, sizeof(aLock
))==0);
4899 ** Change the lock state for a shared-memory segment.
4901 ** Note that the relationship between SHAREd and EXCLUSIVE locks is a little
4902 ** different here than in posix. In xShmLock(), one can go from unlocked
4903 ** to shared and back or from unlocked to exclusive and back. But one may
4904 ** not go from shared to exclusive or from exclusive to shared.
4906 static int unixShmLock(
4907 sqlite3_file
*fd
, /* Database file holding the shared memory */
4908 int ofst
, /* First lock to acquire or release */
4909 int n
, /* Number of locks to acquire or release */
4910 int flags
/* What to do with the lock */
4912 unixFile
*pDbFd
= (unixFile
*)fd
; /* Connection holding shared memory */
4913 unixShm
*p
= pDbFd
->pShm
; /* The shared memory being locked */
4914 unixShmNode
*pShmNode
= p
->pShmNode
; /* The underlying file iNode */
4915 int rc
= SQLITE_OK
; /* Result code */
4916 u16 mask
; /* Mask of locks to take or release */
4917 int *aLock
= pShmNode
->aLock
;
4919 assert( pShmNode
==pDbFd
->pInode
->pShmNode
);
4920 assert( pShmNode
->pInode
==pDbFd
->pInode
);
4921 assert( ofst
>=0 && ofst
+n
<=SQLITE_SHM_NLOCK
);
4923 assert( flags
==(SQLITE_SHM_LOCK
| SQLITE_SHM_SHARED
)
4924 || flags
==(SQLITE_SHM_LOCK
| SQLITE_SHM_EXCLUSIVE
)
4925 || flags
==(SQLITE_SHM_UNLOCK
| SQLITE_SHM_SHARED
)
4926 || flags
==(SQLITE_SHM_UNLOCK
| SQLITE_SHM_EXCLUSIVE
) );
4927 assert( n
==1 || (flags
& SQLITE_SHM_EXCLUSIVE
)!=0 );
4928 assert( pShmNode
->hShm
>=0 || pDbFd
->pInode
->bProcessLock
==1 );
4929 assert( pShmNode
->hShm
<0 || pDbFd
->pInode
->bProcessLock
==0 );
4931 /* Check that, if this to be a blocking lock, no locks that occur later
4932 ** in the following list than the lock being obtained are already held:
4934 ** 1. Checkpointer lock (ofst==1).
4935 ** 2. Write lock (ofst==0).
4936 ** 3. Read locks (ofst>=3 && ofst<SQLITE_SHM_NLOCK).
4938 ** In other words, if this is a blocking lock, none of the locks that
4939 ** occur later in the above list than the lock being obtained may be
4942 ** It is not permitted to block on the RECOVER lock.
4944 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
4945 assert( (flags
& SQLITE_SHM_UNLOCK
) || pDbFd
->iBusyTimeout
==0 || (
4946 (ofst
!=2) /* not RECOVER */
4947 && (ofst
!=1 || (p
->exclMask
|p
->sharedMask
)==0)
4948 && (ofst
!=0 || (p
->exclMask
|p
->sharedMask
)<3)
4949 && (ofst
<3 || (p
->exclMask
|p
->sharedMask
)<(1<<ofst
))
4953 mask
= (1<<(ofst
+n
)) - (1<<ofst
);
4954 assert( n
>1 || mask
==(1<<ofst
) );
4955 sqlite3_mutex_enter(pShmNode
->pShmMutex
);
4956 assert( assertLockingArrayOk(pShmNode
) );
4957 if( flags
& SQLITE_SHM_UNLOCK
){
4958 if( (p
->exclMask
|p
->sharedMask
) & mask
){
4962 for(ii
=ofst
; ii
<ofst
+n
; ii
++){
4963 if( aLock
[ii
]>((p
->sharedMask
& (1<<ii
)) ? 1 : 0) ){
4969 rc
= unixShmSystemLock(pDbFd
, F_UNLCK
, ofst
+UNIX_SHM_BASE
, n
);
4970 if( rc
==SQLITE_OK
){
4971 memset(&aLock
[ofst
], 0, sizeof(int)*n
);
4973 }else if( ALWAYS(p
->sharedMask
& (1<<ofst
)) ){
4974 assert( n
==1 && aLock
[ofst
]>1 );
4978 /* Undo the local locks */
4979 if( rc
==SQLITE_OK
){
4980 p
->exclMask
&= ~mask
;
4981 p
->sharedMask
&= ~mask
;
4984 }else if( flags
& SQLITE_SHM_SHARED
){
4986 assert( (p
->exclMask
& (1<<ofst
))==0 );
4987 if( (p
->sharedMask
& mask
)==0 ){
4988 if( aLock
[ofst
]<0 ){
4990 }else if( aLock
[ofst
]==0 ){
4991 rc
= unixShmSystemLock(pDbFd
, F_RDLCK
, ofst
+UNIX_SHM_BASE
, n
);
4994 /* Get the local shared locks */
4995 if( rc
==SQLITE_OK
){
4996 p
->sharedMask
|= mask
;
5001 /* Make sure no sibling connections hold locks that will block this
5002 ** lock. If any do, return SQLITE_BUSY right away. */
5004 for(ii
=ofst
; ii
<ofst
+n
; ii
++){
5005 assert( (p
->sharedMask
& mask
)==0 );
5006 if( ALWAYS((p
->exclMask
& (1<<ii
))==0) && aLock
[ii
] ){
5012 /* Get the exclusive locks at the system level. Then if successful
5013 ** also update the in-memory values. */
5014 if( rc
==SQLITE_OK
){
5015 rc
= unixShmSystemLock(pDbFd
, F_WRLCK
, ofst
+UNIX_SHM_BASE
, n
);
5016 if( rc
==SQLITE_OK
){
5017 assert( (p
->sharedMask
& mask
)==0 );
5018 p
->exclMask
|= mask
;
5019 for(ii
=ofst
; ii
<ofst
+n
; ii
++){
5025 assert( assertLockingArrayOk(pShmNode
) );
5026 sqlite3_mutex_leave(pShmNode
->pShmMutex
);
5027 OSTRACE(("SHM-LOCK shmid-%d, pid-%d got %03x,%03x\n",
5028 p
->id
, osGetpid(0), p
->sharedMask
, p
->exclMask
));
5033 ** Implement a memory barrier or memory fence on shared memory.
5035 ** All loads and stores begun before the barrier must complete before
5036 ** any load or store begun after the barrier.
5038 static void unixShmBarrier(
5039 sqlite3_file
*fd
/* Database file holding the shared memory */
5041 UNUSED_PARAMETER(fd
);
5042 sqlite3MemoryBarrier(); /* compiler-defined memory barrier */
5043 assert( fd
->pMethods
->xLock
==nolockLock
5044 || unixFileMutexNotheld((unixFile
*)fd
)
5046 unixEnterMutex(); /* Also mutex, for redundancy */
5051 ** Close a connection to shared-memory. Delete the underlying
5052 ** storage if deleteFlag is true.
5054 ** If there is no shared memory associated with the connection then this
5055 ** routine is a harmless no-op.
5057 static int unixShmUnmap(
5058 sqlite3_file
*fd
, /* The underlying database file */
5059 int deleteFlag
/* Delete shared-memory if true */
5061 unixShm
*p
; /* The connection to be closed */
5062 unixShmNode
*pShmNode
; /* The underlying shared-memory file */
5063 unixShm
**pp
; /* For looping over sibling connections */
5064 unixFile
*pDbFd
; /* The underlying database file */
5066 pDbFd
= (unixFile
*)fd
;
5068 if( p
==0 ) return SQLITE_OK
;
5069 pShmNode
= p
->pShmNode
;
5071 assert( pShmNode
==pDbFd
->pInode
->pShmNode
);
5072 assert( pShmNode
->pInode
==pDbFd
->pInode
);
5074 /* Remove connection p from the set of connections associated
5076 sqlite3_mutex_enter(pShmNode
->pShmMutex
);
5077 for(pp
=&pShmNode
->pFirst
; (*pp
)!=p
; pp
= &(*pp
)->pNext
){}
5080 /* Free the connection p */
5083 sqlite3_mutex_leave(pShmNode
->pShmMutex
);
5085 /* If pShmNode->nRef has reached 0, then close the underlying
5086 ** shared-memory file, too */
5087 assert( unixFileMutexNotheld(pDbFd
) );
5089 assert( pShmNode
->nRef
>0 );
5091 if( pShmNode
->nRef
==0 ){
5092 if( deleteFlag
&& pShmNode
->hShm
>=0 ){
5093 osUnlink(pShmNode
->zFilename
);
5095 unixShmPurge(pDbFd
);
5104 # define unixShmMap 0
5105 # define unixShmLock 0
5106 # define unixShmBarrier 0
5107 # define unixShmUnmap 0
5108 #endif /* #ifndef SQLITE_OMIT_WAL */
5110 #if SQLITE_MAX_MMAP_SIZE>0
5112 ** If it is currently memory mapped, unmap file pFd.
5114 static void unixUnmapfile(unixFile
*pFd
){
5115 assert( pFd
->nFetchOut
==0 );
5116 if( pFd
->pMapRegion
){
5117 osMunmap(pFd
->pMapRegion
, pFd
->mmapSizeActual
);
5118 pFd
->pMapRegion
= 0;
5120 pFd
->mmapSizeActual
= 0;
5125 ** Attempt to set the size of the memory mapping maintained by file
5126 ** descriptor pFd to nNew bytes. Any existing mapping is discarded.
5128 ** If successful, this function sets the following variables:
5130 ** unixFile.pMapRegion
5131 ** unixFile.mmapSize
5132 ** unixFile.mmapSizeActual
5134 ** If unsuccessful, an error message is logged via sqlite3_log() and
5135 ** the three variables above are zeroed. In this case SQLite should
5136 ** continue accessing the database using the xRead() and xWrite()
5139 static void unixRemapfile(
5140 unixFile
*pFd
, /* File descriptor object */
5141 i64 nNew
/* Required mapping size */
5143 const char *zErr
= "mmap";
5144 int h
= pFd
->h
; /* File descriptor open on db file */
5145 u8
*pOrig
= (u8
*)pFd
->pMapRegion
; /* Pointer to current file mapping */
5146 i64 nOrig
= pFd
->mmapSizeActual
; /* Size of pOrig region in bytes */
5147 u8
*pNew
= 0; /* Location of new mapping */
5148 int flags
= PROT_READ
; /* Flags to pass to mmap() */
5150 assert( pFd
->nFetchOut
==0 );
5151 assert( nNew
>pFd
->mmapSize
);
5152 assert( nNew
<=pFd
->mmapSizeMax
);
5154 assert( pFd
->mmapSizeActual
>=pFd
->mmapSize
);
5155 assert( MAP_FAILED
!=0 );
5157 #ifdef SQLITE_MMAP_READWRITE
5158 if( (pFd
->ctrlFlags
& UNIXFILE_RDONLY
)==0 ) flags
|= PROT_WRITE
;
5163 i64 nReuse
= pFd
->mmapSize
;
5165 const int szSyspage
= osGetpagesize();
5166 i64 nReuse
= (pFd
->mmapSize
& ~(szSyspage
-1));
5168 u8
*pReq
= &pOrig
[nReuse
];
5170 /* Unmap any pages of the existing mapping that cannot be reused. */
5171 if( nReuse
!=nOrig
){
5172 osMunmap(pReq
, nOrig
-nReuse
);
5176 pNew
= osMremap(pOrig
, nReuse
, nNew
, MREMAP_MAYMOVE
);
5179 pNew
= osMmap(pReq
, nNew
-nReuse
, flags
, MAP_SHARED
, h
, nReuse
);
5180 if( pNew
!=MAP_FAILED
){
5182 osMunmap(pNew
, nNew
- nReuse
);
5190 /* The attempt to extend the existing mapping failed. Free it. */
5191 if( pNew
==MAP_FAILED
|| pNew
==0 ){
5192 osMunmap(pOrig
, nReuse
);
5196 /* If pNew is still NULL, try to create an entirely new mapping. */
5198 pNew
= osMmap(0, nNew
, flags
, MAP_SHARED
, h
, 0);
5201 if( pNew
==MAP_FAILED
){
5204 unixLogError(SQLITE_OK
, zErr
, pFd
->zPath
);
5206 /* If the mmap() above failed, assume that all subsequent mmap() calls
5207 ** will probably fail too. Fall back to using xRead/xWrite exclusively
5209 pFd
->mmapSizeMax
= 0;
5211 pFd
->pMapRegion
= (void *)pNew
;
5212 pFd
->mmapSize
= pFd
->mmapSizeActual
= nNew
;
5216 ** Memory map or remap the file opened by file-descriptor pFd (if the file
5217 ** is already mapped, the existing mapping is replaced by the new). Or, if
5218 ** there already exists a mapping for this file, and there are still
5219 ** outstanding xFetch() references to it, this function is a no-op.
5221 ** If parameter nByte is non-negative, then it is the requested size of
5222 ** the mapping to create. Otherwise, if nByte is less than zero, then the
5223 ** requested size is the size of the file on disk. The actual size of the
5224 ** created mapping is either the requested size or the value configured
5225 ** using SQLITE_FCNTL_MMAP_LIMIT, whichever is smaller.
5227 ** SQLITE_OK is returned if no error occurs (even if the mapping is not
5228 ** recreated as a result of outstanding references) or an SQLite error
5231 static int unixMapfile(unixFile
*pFd
, i64 nMap
){
5232 assert( nMap
>=0 || pFd
->nFetchOut
==0 );
5233 assert( nMap
>0 || (pFd
->mmapSize
==0 && pFd
->pMapRegion
==0) );
5234 if( pFd
->nFetchOut
>0 ) return SQLITE_OK
;
5237 struct stat statbuf
; /* Low-level file information */
5238 if( osFstat(pFd
->h
, &statbuf
) ){
5239 return SQLITE_IOERR_FSTAT
;
5241 nMap
= statbuf
.st_size
;
5243 if( nMap
>pFd
->mmapSizeMax
){
5244 nMap
= pFd
->mmapSizeMax
;
5247 assert( nMap
>0 || (pFd
->mmapSize
==0 && pFd
->pMapRegion
==0) );
5248 if( nMap
!=pFd
->mmapSize
){
5249 unixRemapfile(pFd
, nMap
);
5254 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
5257 ** If possible, return a pointer to a mapping of file fd starting at offset
5258 ** iOff. The mapping must be valid for at least nAmt bytes.
5260 ** If such a pointer can be obtained, store it in *pp and return SQLITE_OK.
5261 ** Or, if one cannot but no error occurs, set *pp to 0 and return SQLITE_OK.
5262 ** Finally, if an error does occur, return an SQLite error code. The final
5263 ** value of *pp is undefined in this case.
5265 ** If this function does return a pointer, the caller must eventually
5266 ** release the reference by calling unixUnfetch().
5268 static int unixFetch(sqlite3_file
*fd
, i64 iOff
, int nAmt
, void **pp
){
5269 #if SQLITE_MAX_MMAP_SIZE>0
5270 unixFile
*pFd
= (unixFile
*)fd
; /* The underlying database file */
5274 #if SQLITE_MAX_MMAP_SIZE>0
5275 if( pFd
->mmapSizeMax
>0 ){
5276 if( pFd
->pMapRegion
==0 ){
5277 int rc
= unixMapfile(pFd
, -1);
5278 if( rc
!=SQLITE_OK
) return rc
;
5280 if( pFd
->mmapSize
>= iOff
+nAmt
){
5281 *pp
= &((u8
*)pFd
->pMapRegion
)[iOff
];
5290 ** If the third argument is non-NULL, then this function releases a
5291 ** reference obtained by an earlier call to unixFetch(). The second
5292 ** argument passed to this function must be the same as the corresponding
5293 ** argument that was passed to the unixFetch() invocation.
5295 ** Or, if the third argument is NULL, then this function is being called
5296 ** to inform the VFS layer that, according to POSIX, any existing mapping
5297 ** may now be invalid and should be unmapped.
5299 static int unixUnfetch(sqlite3_file
*fd
, i64 iOff
, void *p
){
5300 #if SQLITE_MAX_MMAP_SIZE>0
5301 unixFile
*pFd
= (unixFile
*)fd
; /* The underlying database file */
5302 UNUSED_PARAMETER(iOff
);
5304 /* If p==0 (unmap the entire file) then there must be no outstanding
5305 ** xFetch references. Or, if p!=0 (meaning it is an xFetch reference),
5306 ** then there must be at least one outstanding. */
5307 assert( (p
==0)==(pFd
->nFetchOut
==0) );
5309 /* If p!=0, it must match the iOff value. */
5310 assert( p
==0 || p
==&((u8
*)pFd
->pMapRegion
)[iOff
] );
5318 assert( pFd
->nFetchOut
>=0 );
5320 UNUSED_PARAMETER(fd
);
5321 UNUSED_PARAMETER(p
);
5322 UNUSED_PARAMETER(iOff
);
5328 ** Here ends the implementation of all sqlite3_file methods.
5330 ********************** End sqlite3_file Methods *******************************
5331 ******************************************************************************/
5334 ** This division contains definitions of sqlite3_io_methods objects that
5335 ** implement various file locking strategies. It also contains definitions
5336 ** of "finder" functions. A finder-function is used to locate the appropriate
5337 ** sqlite3_io_methods object for a particular database file. The pAppData
5338 ** field of the sqlite3_vfs VFS objects are initialized to be pointers to
5339 ** the correct finder-function for that VFS.
5341 ** Most finder functions return a pointer to a fixed sqlite3_io_methods
5342 ** object. The only interesting finder-function is autolockIoFinder, which
5343 ** looks at the filesystem type and tries to guess the best locking
5344 ** strategy from that.
5346 ** For finder-function F, two objects are created:
5348 ** (1) The real finder-function named "FImpt()".
5350 ** (2) A constant pointer to this function named just "F".
5353 ** A pointer to the F pointer is used as the pAppData value for VFS
5354 ** objects. We have to do this instead of letting pAppData point
5355 ** directly at the finder-function since C90 rules prevent a void*
5356 ** from be cast into a function pointer.
5359 ** Each instance of this macro generates two objects:
5361 ** * A constant sqlite3_io_methods object call METHOD that has locking
5362 ** methods CLOSE, LOCK, UNLOCK, CKRESLOCK.
5364 ** * An I/O method finder function called FINDER that returns a pointer
5365 ** to the METHOD object in the previous bullet.
5367 #define IOMETHODS(FINDER,METHOD,VERSION,CLOSE,LOCK,UNLOCK,CKLOCK,SHMMAP) \
5368 static const sqlite3_io_methods METHOD = { \
5369 VERSION, /* iVersion */ \
5370 CLOSE, /* xClose */ \
5371 unixRead, /* xRead */ \
5372 unixWrite, /* xWrite */ \
5373 unixTruncate, /* xTruncate */ \
5374 unixSync, /* xSync */ \
5375 unixFileSize, /* xFileSize */ \
5377 UNLOCK, /* xUnlock */ \
5378 CKLOCK, /* xCheckReservedLock */ \
5379 unixFileControl, /* xFileControl */ \
5380 unixSectorSize, /* xSectorSize */ \
5381 unixDeviceCharacteristics, /* xDeviceCapabilities */ \
5382 SHMMAP, /* xShmMap */ \
5383 unixShmLock, /* xShmLock */ \
5384 unixShmBarrier, /* xShmBarrier */ \
5385 unixShmUnmap, /* xShmUnmap */ \
5386 unixFetch, /* xFetch */ \
5387 unixUnfetch, /* xUnfetch */ \
5389 static const sqlite3_io_methods *FINDER##Impl(const char *z, unixFile *p){ \
5390 UNUSED_PARAMETER(z); UNUSED_PARAMETER(p); \
5393 static const sqlite3_io_methods *(*const FINDER)(const char*,unixFile *p) \
5397 ** Here are all of the sqlite3_io_methods objects for each of the
5398 ** locking strategies. Functions that return pointers to these methods
5399 ** are also created.
5402 posixIoFinder
, /* Finder function name */
5403 posixIoMethods
, /* sqlite3_io_methods object name */
5404 3, /* shared memory and mmap are enabled */
5405 unixClose
, /* xClose method */
5406 unixLock
, /* xLock method */
5407 unixUnlock
, /* xUnlock method */
5408 unixCheckReservedLock
, /* xCheckReservedLock method */
5409 unixShmMap
/* xShmMap method */
5412 nolockIoFinder
, /* Finder function name */
5413 nolockIoMethods
, /* sqlite3_io_methods object name */
5414 3, /* shared memory and mmap are enabled */
5415 nolockClose
, /* xClose method */
5416 nolockLock
, /* xLock method */
5417 nolockUnlock
, /* xUnlock method */
5418 nolockCheckReservedLock
, /* xCheckReservedLock method */
5419 0 /* xShmMap method */
5422 dotlockIoFinder
, /* Finder function name */
5423 dotlockIoMethods
, /* sqlite3_io_methods object name */
5424 1, /* shared memory is disabled */
5425 dotlockClose
, /* xClose method */
5426 dotlockLock
, /* xLock method */
5427 dotlockUnlock
, /* xUnlock method */
5428 dotlockCheckReservedLock
, /* xCheckReservedLock method */
5429 0 /* xShmMap method */
5432 #if SQLITE_ENABLE_LOCKING_STYLE
5434 flockIoFinder
, /* Finder function name */
5435 flockIoMethods
, /* sqlite3_io_methods object name */
5436 1, /* shared memory is disabled */
5437 flockClose
, /* xClose method */
5438 flockLock
, /* xLock method */
5439 flockUnlock
, /* xUnlock method */
5440 flockCheckReservedLock
, /* xCheckReservedLock method */
5441 0 /* xShmMap method */
5447 semIoFinder
, /* Finder function name */
5448 semIoMethods
, /* sqlite3_io_methods object name */
5449 1, /* shared memory is disabled */
5450 semXClose
, /* xClose method */
5451 semXLock
, /* xLock method */
5452 semXUnlock
, /* xUnlock method */
5453 semXCheckReservedLock
, /* xCheckReservedLock method */
5454 0 /* xShmMap method */
5458 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5460 afpIoFinder
, /* Finder function name */
5461 afpIoMethods
, /* sqlite3_io_methods object name */
5462 1, /* shared memory is disabled */
5463 afpClose
, /* xClose method */
5464 afpLock
, /* xLock method */
5465 afpUnlock
, /* xUnlock method */
5466 afpCheckReservedLock
, /* xCheckReservedLock method */
5467 0 /* xShmMap method */
5472 ** The proxy locking method is a "super-method" in the sense that it
5473 ** opens secondary file descriptors for the conch and lock files and
5474 ** it uses proxy, dot-file, AFP, and flock() locking methods on those
5475 ** secondary files. For this reason, the division that implements
5476 ** proxy locking is located much further down in the file. But we need
5477 ** to go ahead and define the sqlite3_io_methods and finder function
5478 ** for proxy locking here. So we forward declare the I/O methods.
5480 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5481 static int proxyClose(sqlite3_file
*);
5482 static int proxyLock(sqlite3_file
*, int);
5483 static int proxyUnlock(sqlite3_file
*, int);
5484 static int proxyCheckReservedLock(sqlite3_file
*, int*);
5486 proxyIoFinder
, /* Finder function name */
5487 proxyIoMethods
, /* sqlite3_io_methods object name */
5488 1, /* shared memory is disabled */
5489 proxyClose
, /* xClose method */
5490 proxyLock
, /* xLock method */
5491 proxyUnlock
, /* xUnlock method */
5492 proxyCheckReservedLock
, /* xCheckReservedLock method */
5493 0 /* xShmMap method */
5497 /* nfs lockd on OSX 10.3+ doesn't clear write locks when a read lock is set */
5498 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5500 nfsIoFinder
, /* Finder function name */
5501 nfsIoMethods
, /* sqlite3_io_methods object name */
5502 1, /* shared memory is disabled */
5503 unixClose
, /* xClose method */
5504 unixLock
, /* xLock method */
5505 nfsUnlock
, /* xUnlock method */
5506 unixCheckReservedLock
, /* xCheckReservedLock method */
5507 0 /* xShmMap method */
5511 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5513 ** This "finder" function attempts to determine the best locking strategy
5514 ** for the database file "filePath". It then returns the sqlite3_io_methods
5515 ** object that implements that strategy.
5517 ** This is for MacOSX only.
5519 static const sqlite3_io_methods
*autolockIoFinderImpl(
5520 const char *filePath
, /* name of the database file */
5521 unixFile
*pNew
/* open file object for the database file */
5523 static const struct Mapping
{
5524 const char *zFilesystem
; /* Filesystem type name */
5525 const sqlite3_io_methods
*pMethods
; /* Appropriate locking method */
5527 { "hfs", &posixIoMethods
},
5528 { "ufs", &posixIoMethods
},
5529 { "afpfs", &afpIoMethods
},
5530 { "smbfs", &afpIoMethods
},
5531 { "webdav", &nolockIoMethods
},
5535 struct statfs fsInfo
;
5536 struct flock lockInfo
;
5539 /* If filePath==NULL that means we are dealing with a transient file
5540 ** that does not need to be locked. */
5541 return &nolockIoMethods
;
5543 if( statfs(filePath
, &fsInfo
) != -1 ){
5544 if( fsInfo
.f_flags
& MNT_RDONLY
){
5545 return &nolockIoMethods
;
5547 for(i
=0; aMap
[i
].zFilesystem
; i
++){
5548 if( strcmp(fsInfo
.f_fstypename
, aMap
[i
].zFilesystem
)==0 ){
5549 return aMap
[i
].pMethods
;
5554 /* Default case. Handles, amongst others, "nfs".
5555 ** Test byte-range lock using fcntl(). If the call succeeds,
5556 ** assume that the file-system supports POSIX style locks.
5559 lockInfo
.l_start
= 0;
5560 lockInfo
.l_whence
= SEEK_SET
;
5561 lockInfo
.l_type
= F_RDLCK
;
5562 if( osFcntl(pNew
->h
, F_GETLK
, &lockInfo
)!=-1 ) {
5563 if( strcmp(fsInfo
.f_fstypename
, "nfs")==0 ){
5564 return &nfsIoMethods
;
5566 return &posixIoMethods
;
5569 return &dotlockIoMethods
;
5572 static const sqlite3_io_methods
5573 *(*const autolockIoFinder
)(const char*,unixFile
*) = autolockIoFinderImpl
;
5575 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
5579 ** This "finder" function for VxWorks checks to see if posix advisory
5580 ** locking works. If it does, then that is what is used. If it does not
5581 ** work, then fallback to named semaphore locking.
5583 static const sqlite3_io_methods
*vxworksIoFinderImpl(
5584 const char *filePath
, /* name of the database file */
5585 unixFile
*pNew
/* the open file object */
5587 struct flock lockInfo
;
5590 /* If filePath==NULL that means we are dealing with a transient file
5591 ** that does not need to be locked. */
5592 return &nolockIoMethods
;
5595 /* Test if fcntl() is supported and use POSIX style locks.
5596 ** Otherwise fall back to the named semaphore method.
5599 lockInfo
.l_start
= 0;
5600 lockInfo
.l_whence
= SEEK_SET
;
5601 lockInfo
.l_type
= F_RDLCK
;
5602 if( osFcntl(pNew
->h
, F_GETLK
, &lockInfo
)!=-1 ) {
5603 return &posixIoMethods
;
5605 return &semIoMethods
;
5608 static const sqlite3_io_methods
5609 *(*const vxworksIoFinder
)(const char*,unixFile
*) = vxworksIoFinderImpl
;
5611 #endif /* OS_VXWORKS */
5614 ** An abstract type for a pointer to an IO method finder function:
5616 typedef const sqlite3_io_methods
*(*finder_type
)(const char*,unixFile
*);
5619 /****************************************************************************
5620 **************************** sqlite3_vfs methods ****************************
5622 ** This division contains the implementation of methods on the
5623 ** sqlite3_vfs object.
5627 ** Initialize the contents of the unixFile structure pointed to by pId.
5629 static int fillInUnixFile(
5630 sqlite3_vfs
*pVfs
, /* Pointer to vfs object */
5631 int h
, /* Open file descriptor of file being opened */
5632 sqlite3_file
*pId
, /* Write to the unixFile structure here */
5633 const char *zFilename
, /* Name of the file being opened */
5634 int ctrlFlags
/* Zero or more UNIXFILE_* values */
5636 const sqlite3_io_methods
*pLockingStyle
;
5637 unixFile
*pNew
= (unixFile
*)pId
;
5640 assert( pNew
->pInode
==NULL
);
5642 /* No locking occurs in temporary files */
5643 assert( zFilename
!=0 || (ctrlFlags
& UNIXFILE_NOLOCK
)!=0 );
5645 OSTRACE(("OPEN %-3d %s\n", h
, zFilename
));
5648 pNew
->zPath
= zFilename
;
5649 pNew
->ctrlFlags
= (u8
)ctrlFlags
;
5650 #if SQLITE_MAX_MMAP_SIZE>0
5651 pNew
->mmapSizeMax
= sqlite3GlobalConfig
.szMmap
;
5653 if( sqlite3_uri_boolean(((ctrlFlags
& UNIXFILE_URI
) ? zFilename
: 0),
5654 "psow", SQLITE_POWERSAFE_OVERWRITE
) ){
5655 pNew
->ctrlFlags
|= UNIXFILE_PSOW
;
5657 if( strcmp(pVfs
->zName
,"unix-excl")==0 ){
5658 pNew
->ctrlFlags
|= UNIXFILE_EXCL
;
5662 pNew
->pId
= vxworksFindFileId(zFilename
);
5664 ctrlFlags
|= UNIXFILE_NOLOCK
;
5665 rc
= SQLITE_NOMEM_BKPT
;
5669 if( ctrlFlags
& UNIXFILE_NOLOCK
){
5670 pLockingStyle
= &nolockIoMethods
;
5672 pLockingStyle
= (**(finder_type
*)pVfs
->pAppData
)(zFilename
, pNew
);
5673 #if SQLITE_ENABLE_LOCKING_STYLE
5674 /* Cache zFilename in the locking context (AFP and dotlock override) for
5675 ** proxyLock activation is possible (remote proxy is based on db name)
5676 ** zFilename remains valid until file is closed, to support */
5677 pNew
->lockingContext
= (void*)zFilename
;
5681 if( pLockingStyle
== &posixIoMethods
5682 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
5683 || pLockingStyle
== &nfsIoMethods
5687 rc
= findInodeInfo(pNew
, &pNew
->pInode
);
5688 if( rc
!=SQLITE_OK
){
5689 /* If an error occurred in findInodeInfo(), close the file descriptor
5690 ** immediately, before releasing the mutex. findInodeInfo() may fail
5691 ** in two scenarios:
5693 ** (a) A call to fstat() failed.
5694 ** (b) A malloc failed.
5696 ** Scenario (b) may only occur if the process is holding no other
5697 ** file descriptors open on the same file. If there were other file
5698 ** descriptors on this file, then no malloc would be required by
5699 ** findInodeInfo(). If this is the case, it is quite safe to close
5700 ** handle h - as it is guaranteed that no posix locks will be released
5703 ** If scenario (a) caused the error then things are not so safe. The
5704 ** implicit assumption here is that if fstat() fails, things are in
5705 ** such bad shape that dropping a lock or two doesn't matter much.
5707 robust_close(pNew
, h
, __LINE__
);
5713 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5714 else if( pLockingStyle
== &afpIoMethods
){
5715 /* AFP locking uses the file path so it needs to be included in
5716 ** the afpLockingContext.
5718 afpLockingContext
*pCtx
;
5719 pNew
->lockingContext
= pCtx
= sqlite3_malloc64( sizeof(*pCtx
) );
5721 rc
= SQLITE_NOMEM_BKPT
;
5723 /* NB: zFilename exists and remains valid until the file is closed
5724 ** according to requirement F11141. So we do not need to make a
5725 ** copy of the filename. */
5726 pCtx
->dbPath
= zFilename
;
5730 rc
= findInodeInfo(pNew
, &pNew
->pInode
);
5731 if( rc
!=SQLITE_OK
){
5732 sqlite3_free(pNew
->lockingContext
);
5733 robust_close(pNew
, h
, __LINE__
);
5741 else if( pLockingStyle
== &dotlockIoMethods
){
5742 /* Dotfile locking uses the file path so it needs to be included in
5743 ** the dotlockLockingContext
5747 assert( zFilename
!=0 );
5748 nFilename
= (int)strlen(zFilename
) + 6;
5749 zLockFile
= (char *)sqlite3_malloc64(nFilename
);
5751 rc
= SQLITE_NOMEM_BKPT
;
5753 sqlite3_snprintf(nFilename
, zLockFile
, "%s" DOTLOCK_SUFFIX
, zFilename
);
5755 pNew
->lockingContext
= zLockFile
;
5759 else if( pLockingStyle
== &semIoMethods
){
5760 /* Named semaphore locking uses the file path so it needs to be
5761 ** included in the semLockingContext
5764 rc
= findInodeInfo(pNew
, &pNew
->pInode
);
5765 if( (rc
==SQLITE_OK
) && (pNew
->pInode
->pSem
==NULL
) ){
5766 char *zSemName
= pNew
->pInode
->aSemName
;
5768 sqlite3_snprintf(MAX_PATHNAME
, zSemName
, "/%s.sem",
5769 pNew
->pId
->zCanonicalName
);
5770 for( n
=1; zSemName
[n
]; n
++ )
5771 if( zSemName
[n
]=='/' ) zSemName
[n
] = '_';
5772 pNew
->pInode
->pSem
= sem_open(zSemName
, O_CREAT
, 0666, 1);
5773 if( pNew
->pInode
->pSem
== SEM_FAILED
){
5774 rc
= SQLITE_NOMEM_BKPT
;
5775 pNew
->pInode
->aSemName
[0] = '\0';
5782 storeLastErrno(pNew
, 0);
5784 if( rc
!=SQLITE_OK
){
5785 if( h
>=0 ) robust_close(pNew
, h
, __LINE__
);
5787 osUnlink(zFilename
);
5788 pNew
->ctrlFlags
|= UNIXFILE_DELETE
;
5791 if( rc
!=SQLITE_OK
){
5792 if( h
>=0 ) robust_close(pNew
, h
, __LINE__
);
5794 pId
->pMethods
= pLockingStyle
;
5802 ** Directories to consider for temp files.
5804 static const char *azTempDirs
[] = {
5814 ** Initialize first two members of azTempDirs[] array.
5816 static void unixTempFileInit(void){
5817 azTempDirs
[0] = getenv("SQLITE_TMPDIR");
5818 azTempDirs
[1] = getenv("TMPDIR");
5822 ** Return the name of a directory in which to put temporary files.
5823 ** If no suitable temporary file directory can be found, return NULL.
5825 static const char *unixTempFileDir(void){
5828 const char *zDir
= sqlite3_temp_directory
;
5832 && osStat(zDir
, &buf
)==0
5833 && S_ISDIR(buf
.st_mode
)
5834 && osAccess(zDir
, 03)==0
5838 if( i
>=sizeof(azTempDirs
)/sizeof(azTempDirs
[0]) ) break;
5839 zDir
= azTempDirs
[i
++];
5845 ** Create a temporary file name in zBuf. zBuf must be allocated
5846 ** by the calling process and must be big enough to hold at least
5847 ** pVfs->mxPathname bytes.
5849 static int unixGetTempname(int nBuf
, char *zBuf
){
5853 /* It's odd to simulate an io-error here, but really this is just
5854 ** using the io-error infrastructure to test that SQLite handles this
5855 ** function failing.
5858 SimulateIOError( return SQLITE_IOERR
);
5860 zDir
= unixTempFileDir();
5861 if( zDir
==0 ) return SQLITE_IOERR_GETTEMPPATH
;
5864 sqlite3_randomness(sizeof(r
), &r
);
5867 sqlite3_snprintf(nBuf
, zBuf
, "%s/"SQLITE_TEMP_FILE_PREFIX
"%llx%c",
5869 if( zBuf
[nBuf
-2]!=0 || (iLimit
++)>10 ) return SQLITE_ERROR
;
5870 }while( osAccess(zBuf
,0)==0 );
5874 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
5876 ** Routine to transform a unixFile into a proxy-locking unixFile.
5877 ** Implementation in the proxy-lock division, but used by unixOpen()
5878 ** if SQLITE_PREFER_PROXY_LOCKING is defined.
5880 static int proxyTransformUnixFile(unixFile
*, const char*);
5884 ** Search for an unused file descriptor that was opened on the database
5885 ** file (not a journal or super-journal file) identified by pathname
5886 ** zPath with SQLITE_OPEN_XXX flags matching those passed as the second
5887 ** argument to this function.
5889 ** Such a file descriptor may exist if a database connection was closed
5890 ** but the associated file descriptor could not be closed because some
5891 ** other file descriptor open on the same file is holding a file-lock.
5892 ** Refer to comments in the unixClose() function and the lengthy comment
5893 ** describing "Posix Advisory Locking" at the start of this file for
5894 ** further details. Also, ticket #4018.
5896 ** If a suitable file descriptor is found, then it is returned. If no
5897 ** such file descriptor is located, -1 is returned.
5899 static UnixUnusedFd
*findReusableFd(const char *zPath
, int flags
){
5900 UnixUnusedFd
*pUnused
= 0;
5902 /* Do not search for an unused file descriptor on vxworks. Not because
5903 ** vxworks would not benefit from the change (it might, we're not sure),
5904 ** but because no way to test it is currently available. It is better
5905 ** not to risk breaking vxworks support for the sake of such an obscure
5908 struct stat sStat
; /* Results of stat() call */
5912 /* A stat() call may fail for various reasons. If this happens, it is
5913 ** almost certain that an open() call on the same path will also fail.
5914 ** For this reason, if an error occurs in the stat() call here, it is
5915 ** ignored and -1 is returned. The caller will try to open a new file
5916 ** descriptor on the same path, fail, and return an error to SQLite.
5918 ** Even if a subsequent open() call does succeed, the consequences of
5919 ** not searching for a reusable file descriptor are not dire. */
5920 if( inodeList
!=0 && 0==osStat(zPath
, &sStat
) ){
5921 unixInodeInfo
*pInode
;
5924 while( pInode
&& (pInode
->fileId
.dev
!=sStat
.st_dev
5925 || pInode
->fileId
.ino
!=(u64
)sStat
.st_ino
) ){
5926 pInode
= pInode
->pNext
;
5930 assert( sqlite3_mutex_notheld(pInode
->pLockMutex
) );
5931 sqlite3_mutex_enter(pInode
->pLockMutex
);
5932 flags
&= (SQLITE_OPEN_READONLY
|SQLITE_OPEN_READWRITE
);
5933 for(pp
=&pInode
->pUnused
; *pp
&& (*pp
)->flags
!=flags
; pp
=&((*pp
)->pNext
));
5936 *pp
= pUnused
->pNext
;
5938 sqlite3_mutex_leave(pInode
->pLockMutex
);
5942 #endif /* if !OS_VXWORKS */
5947 ** Find the mode, uid and gid of file zFile.
5949 static int getFileMode(
5950 const char *zFile
, /* File name */
5951 mode_t
*pMode
, /* OUT: Permissions of zFile */
5952 uid_t
*pUid
, /* OUT: uid of zFile. */
5953 gid_t
*pGid
/* OUT: gid of zFile. */
5955 struct stat sStat
; /* Output of stat() on database file */
5957 if( 0==osStat(zFile
, &sStat
) ){
5958 *pMode
= sStat
.st_mode
& 0777;
5959 *pUid
= sStat
.st_uid
;
5960 *pGid
= sStat
.st_gid
;
5962 rc
= SQLITE_IOERR_FSTAT
;
5968 ** This function is called by unixOpen() to determine the unix permissions
5969 ** to create new files with. If no error occurs, then SQLITE_OK is returned
5970 ** and a value suitable for passing as the third argument to open(2) is
5971 ** written to *pMode. If an IO error occurs, an SQLite error code is
5972 ** returned and the value of *pMode is not modified.
5974 ** In most cases, this routine sets *pMode to 0, which will become
5975 ** an indication to robust_open() to create the file using
5976 ** SQLITE_DEFAULT_FILE_PERMISSIONS adjusted by the umask.
5977 ** But if the file being opened is a WAL or regular journal file, then
5978 ** this function queries the file-system for the permissions on the
5979 ** corresponding database file and sets *pMode to this value. Whenever
5980 ** possible, WAL and journal files are created using the same permissions
5981 ** as the associated database file.
5983 ** If the SQLITE_ENABLE_8_3_NAMES option is enabled, then the
5984 ** original filename is unavailable. But 8_3_NAMES is only used for
5985 ** FAT filesystems and permissions do not matter there, so just use
5986 ** the default permissions. In 8_3_NAMES mode, leave *pMode set to zero.
5988 static int findCreateFileMode(
5989 const char *zPath
, /* Path of file (possibly) being created */
5990 int flags
, /* Flags passed as 4th argument to xOpen() */
5991 mode_t
*pMode
, /* OUT: Permissions to open file with */
5992 uid_t
*pUid
, /* OUT: uid to set on the file */
5993 gid_t
*pGid
/* OUT: gid to set on the file */
5995 int rc
= SQLITE_OK
; /* Return Code */
5999 if( flags
& (SQLITE_OPEN_WAL
|SQLITE_OPEN_MAIN_JOURNAL
) ){
6000 char zDb
[MAX_PATHNAME
+1]; /* Database file path */
6001 int nDb
; /* Number of valid bytes in zDb */
6003 /* zPath is a path to a WAL or journal file. The following block derives
6004 ** the path to the associated database file from zPath. This block handles
6005 ** the following naming conventions:
6007 ** "<path to db>-journal"
6008 ** "<path to db>-wal"
6009 ** "<path to db>-journalNN"
6010 ** "<path to db>-walNN"
6012 ** where NN is a decimal number. The NN naming schemes are
6013 ** used by the test_multiplex.c module.
6015 nDb
= sqlite3Strlen30(zPath
) - 1;
6016 while( zPath
[nDb
]!='-' ){
6017 /* In normal operation, the journal file name will always contain
6018 ** a '-' character. However in 8+3 filename mode, or if a corrupt
6019 ** rollback journal specifies a super-journal with a goofy name, then
6020 ** the '-' might be missing. */
6021 if( nDb
==0 || zPath
[nDb
]=='.' ) return SQLITE_OK
;
6024 memcpy(zDb
, zPath
, nDb
);
6027 rc
= getFileMode(zDb
, pMode
, pUid
, pGid
);
6028 }else if( flags
& SQLITE_OPEN_DELETEONCLOSE
){
6030 }else if( flags
& SQLITE_OPEN_URI
){
6031 /* If this is a main database file and the file was opened using a URI
6032 ** filename, check for the "modeof" parameter. If present, interpret
6033 ** its value as a filename and try to copy the mode, uid and gid from
6035 const char *z
= sqlite3_uri_parameter(zPath
, "modeof");
6037 rc
= getFileMode(z
, pMode
, pUid
, pGid
);
6044 ** Open the file zPath.
6046 ** Previously, the SQLite OS layer used three functions in place of this
6049 ** sqlite3OsOpenReadWrite();
6050 ** sqlite3OsOpenReadOnly();
6051 ** sqlite3OsOpenExclusive();
6053 ** These calls correspond to the following combinations of flags:
6055 ** ReadWrite() -> (READWRITE | CREATE)
6056 ** ReadOnly() -> (READONLY)
6057 ** OpenExclusive() -> (READWRITE | CREATE | EXCLUSIVE)
6059 ** The old OpenExclusive() accepted a boolean argument - "delFlag". If
6060 ** true, the file was configured to be automatically deleted when the
6061 ** file handle closed. To achieve the same effect using this new
6062 ** interface, add the DELETEONCLOSE flag to those specified above for
6065 static int unixOpen(
6066 sqlite3_vfs
*pVfs
, /* The VFS for which this is the xOpen method */
6067 const char *zPath
, /* Pathname of file to be opened */
6068 sqlite3_file
*pFile
, /* The file descriptor to be filled in */
6069 int flags
, /* Input flags to control the opening */
6070 int *pOutFlags
/* Output flags returned to SQLite core */
6072 unixFile
*p
= (unixFile
*)pFile
;
6073 int fd
= -1; /* File descriptor returned by open() */
6074 int openFlags
= 0; /* Flags to pass to open() */
6075 int eType
= flags
&0x0FFF00; /* Type of file to open */
6076 int noLock
; /* True to omit locking primitives */
6077 int rc
= SQLITE_OK
; /* Function Return Code */
6078 int ctrlFlags
= 0; /* UNIXFILE_* flags */
6080 int isExclusive
= (flags
& SQLITE_OPEN_EXCLUSIVE
);
6081 int isDelete
= (flags
& SQLITE_OPEN_DELETEONCLOSE
);
6082 int isCreate
= (flags
& SQLITE_OPEN_CREATE
);
6083 int isReadonly
= (flags
& SQLITE_OPEN_READONLY
);
6084 int isReadWrite
= (flags
& SQLITE_OPEN_READWRITE
);
6085 #if SQLITE_ENABLE_LOCKING_STYLE
6086 int isAutoProxy
= (flags
& SQLITE_OPEN_AUTOPROXY
);
6088 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
6089 struct statfs fsInfo
;
6092 /* If creating a super- or main-file journal, this function will open
6093 ** a file-descriptor on the directory too. The first time unixSync()
6094 ** is called the directory file descriptor will be fsync()ed and close()d.
6096 int isNewJrnl
= (isCreate
&& (
6097 eType
==SQLITE_OPEN_SUPER_JOURNAL
6098 || eType
==SQLITE_OPEN_MAIN_JOURNAL
6099 || eType
==SQLITE_OPEN_WAL
6102 /* If argument zPath is a NULL pointer, this function is required to open
6103 ** a temporary file. Use this buffer to store the file name in.
6105 char zTmpname
[MAX_PATHNAME
+2];
6106 const char *zName
= zPath
;
6108 /* Check the following statements are true:
6110 ** (a) Exactly one of the READWRITE and READONLY flags must be set, and
6111 ** (b) if CREATE is set, then READWRITE must also be set, and
6112 ** (c) if EXCLUSIVE is set, then CREATE must also be set.
6113 ** (d) if DELETEONCLOSE is set, then CREATE must also be set.
6115 assert((isReadonly
==0 || isReadWrite
==0) && (isReadWrite
|| isReadonly
));
6116 assert(isCreate
==0 || isReadWrite
);
6117 assert(isExclusive
==0 || isCreate
);
6118 assert(isDelete
==0 || isCreate
);
6120 /* The main DB, main journal, WAL file and super-journal are never
6121 ** automatically deleted. Nor are they ever temporary files. */
6122 assert( (!isDelete
&& zName
) || eType
!=SQLITE_OPEN_MAIN_DB
);
6123 assert( (!isDelete
&& zName
) || eType
!=SQLITE_OPEN_MAIN_JOURNAL
);
6124 assert( (!isDelete
&& zName
) || eType
!=SQLITE_OPEN_SUPER_JOURNAL
);
6125 assert( (!isDelete
&& zName
) || eType
!=SQLITE_OPEN_WAL
);
6127 /* Assert that the upper layer has set one of the "file-type" flags. */
6128 assert( eType
==SQLITE_OPEN_MAIN_DB
|| eType
==SQLITE_OPEN_TEMP_DB
6129 || eType
==SQLITE_OPEN_MAIN_JOURNAL
|| eType
==SQLITE_OPEN_TEMP_JOURNAL
6130 || eType
==SQLITE_OPEN_SUBJOURNAL
|| eType
==SQLITE_OPEN_SUPER_JOURNAL
6131 || eType
==SQLITE_OPEN_TRANSIENT_DB
|| eType
==SQLITE_OPEN_WAL
6134 /* Detect a pid change and reset the PRNG. There is a race condition
6135 ** here such that two or more threads all trying to open databases at
6136 ** the same instant might all reset the PRNG. But multiple resets
6139 if( randomnessPid
!=osGetpid(0) ){
6140 randomnessPid
= osGetpid(0);
6141 sqlite3_randomness(0,0);
6143 memset(p
, 0, sizeof(unixFile
));
6145 #ifdef SQLITE_ASSERT_NO_FILES
6146 /* Applications that never read or write a persistent disk files */
6150 if( eType
==SQLITE_OPEN_MAIN_DB
){
6151 UnixUnusedFd
*pUnused
;
6152 pUnused
= findReusableFd(zName
, flags
);
6156 pUnused
= sqlite3_malloc64(sizeof(*pUnused
));
6158 return SQLITE_NOMEM_BKPT
;
6161 p
->pPreallocatedUnused
= pUnused
;
6163 /* Database filenames are double-zero terminated if they are not
6164 ** URIs with parameters. Hence, they can always be passed into
6165 ** sqlite3_uri_parameter(). */
6166 assert( (flags
& SQLITE_OPEN_URI
) || zName
[strlen(zName
)+1]==0 );
6169 /* If zName is NULL, the upper layer is requesting a temp file. */
6170 assert(isDelete
&& !isNewJrnl
);
6171 rc
= unixGetTempname(pVfs
->mxPathname
, zTmpname
);
6172 if( rc
!=SQLITE_OK
){
6177 /* Generated temporary filenames are always double-zero terminated
6178 ** for use by sqlite3_uri_parameter(). */
6179 assert( zName
[strlen(zName
)+1]==0 );
6182 /* Determine the value of the flags parameter passed to POSIX function
6183 ** open(). These must be calculated even if open() is not called, as
6184 ** they may be stored as part of the file handle and used by the
6185 ** 'conch file' locking functions later on. */
6186 if( isReadonly
) openFlags
|= O_RDONLY
;
6187 if( isReadWrite
) openFlags
|= O_RDWR
;
6188 if( isCreate
) openFlags
|= O_CREAT
;
6189 if( isExclusive
) openFlags
|= (O_EXCL
|O_NOFOLLOW
);
6190 openFlags
|= (O_LARGEFILE
|O_BINARY
|O_NOFOLLOW
);
6193 mode_t openMode
; /* Permissions to create file with */
6194 uid_t uid
; /* Userid for the file */
6195 gid_t gid
; /* Groupid for the file */
6196 rc
= findCreateFileMode(zName
, flags
, &openMode
, &uid
, &gid
);
6197 if( rc
!=SQLITE_OK
){
6198 assert( !p
->pPreallocatedUnused
);
6199 assert( eType
==SQLITE_OPEN_WAL
|| eType
==SQLITE_OPEN_MAIN_JOURNAL
);
6202 fd
= robust_open(zName
, openFlags
, openMode
);
6203 OSTRACE(("OPENX %-3d %s 0%o\n", fd
, zName
, openFlags
));
6204 assert( !isExclusive
|| (openFlags
& O_CREAT
)!=0 );
6206 if( isNewJrnl
&& errno
==EACCES
&& osAccess(zName
, F_OK
) ){
6207 /* If unable to create a journal because the directory is not
6208 ** writable, change the error code to indicate that. */
6209 rc
= SQLITE_READONLY_DIRECTORY
;
6210 }else if( errno
!=EISDIR
&& isReadWrite
){
6211 /* Failed to open the file for read/write access. Try read-only. */
6212 flags
&= ~(SQLITE_OPEN_READWRITE
|SQLITE_OPEN_CREATE
);
6213 openFlags
&= ~(O_RDWR
|O_CREAT
);
6214 flags
|= SQLITE_OPEN_READONLY
;
6215 openFlags
|= O_RDONLY
;
6217 fd
= robust_open(zName
, openFlags
, openMode
);
6221 int rc2
= unixLogError(SQLITE_CANTOPEN_BKPT
, "open", zName
);
6222 if( rc
==SQLITE_OK
) rc
= rc2
;
6226 /* The owner of the rollback journal or WAL file should always be the
6227 ** same as the owner of the database file. Try to ensure that this is
6228 ** the case. The chown() system call will be a no-op if the current
6229 ** process lacks root privileges, be we should at least try. Without
6230 ** this step, if a root process opens a database file, it can leave
6231 ** behinds a journal/WAL that is owned by root and hence make the
6232 ** database inaccessible to unprivileged processes.
6234 ** If openMode==0, then that means uid and gid are not set correctly
6235 ** (probably because SQLite is configured to use 8+3 filename mode) and
6236 ** in that case we do not want to attempt the chown().
6238 if( openMode
&& (flags
& (SQLITE_OPEN_WAL
|SQLITE_OPEN_MAIN_JOURNAL
))!=0 ){
6239 robustFchown(fd
, uid
, gid
);
6247 if( p
->pPreallocatedUnused
){
6248 p
->pPreallocatedUnused
->fd
= fd
;
6249 p
->pPreallocatedUnused
->flags
=
6250 flags
& (SQLITE_OPEN_READONLY
|SQLITE_OPEN_READWRITE
);
6256 #elif defined(SQLITE_UNLINK_AFTER_CLOSE)
6257 zPath
= sqlite3_mprintf("%s", zName
);
6259 robust_close(p
, fd
, __LINE__
);
6260 return SQLITE_NOMEM_BKPT
;
6266 #if SQLITE_ENABLE_LOCKING_STYLE
6268 p
->openFlags
= openFlags
;
6272 #if defined(__APPLE__) || SQLITE_ENABLE_LOCKING_STYLE
6273 if( fstatfs(fd
, &fsInfo
) == -1 ){
6274 storeLastErrno(p
, errno
);
6275 robust_close(p
, fd
, __LINE__
);
6276 return SQLITE_IOERR_ACCESS
;
6278 if (0 == strncmp("msdos", fsInfo
.f_fstypename
, 5)) {
6279 ((unixFile
*)pFile
)->fsFlags
|= SQLITE_FSFLAGS_IS_MSDOS
;
6281 if (0 == strncmp("exfat", fsInfo
.f_fstypename
, 5)) {
6282 ((unixFile
*)pFile
)->fsFlags
|= SQLITE_FSFLAGS_IS_MSDOS
;
6286 /* Set up appropriate ctrlFlags */
6287 if( isDelete
) ctrlFlags
|= UNIXFILE_DELETE
;
6288 if( isReadonly
) ctrlFlags
|= UNIXFILE_RDONLY
;
6289 noLock
= eType
!=SQLITE_OPEN_MAIN_DB
;
6290 if( noLock
) ctrlFlags
|= UNIXFILE_NOLOCK
;
6291 if( isNewJrnl
) ctrlFlags
|= UNIXFILE_DIRSYNC
;
6292 if( flags
& SQLITE_OPEN_URI
) ctrlFlags
|= UNIXFILE_URI
;
6294 #if SQLITE_ENABLE_LOCKING_STYLE
6295 #if SQLITE_PREFER_PROXY_LOCKING
6298 if( isAutoProxy
&& (zPath
!=NULL
) && (!noLock
) && pVfs
->xOpen
){
6299 char *envforce
= getenv("SQLITE_FORCE_PROXY_LOCKING");
6302 /* SQLITE_FORCE_PROXY_LOCKING==1 means force always use proxy, 0 means
6303 ** never use proxy, NULL means use proxy for non-local files only. */
6304 if( envforce
!=NULL
){
6305 useProxy
= atoi(envforce
)>0;
6307 useProxy
= !(fsInfo
.f_flags
&MNT_LOCAL
);
6310 rc
= fillInUnixFile(pVfs
, fd
, pFile
, zPath
, ctrlFlags
);
6311 if( rc
==SQLITE_OK
){
6312 rc
= proxyTransformUnixFile((unixFile
*)pFile
, ":auto:");
6313 if( rc
!=SQLITE_OK
){
6314 /* Use unixClose to clean up the resources added in fillInUnixFile
6315 ** and clear all the structure's references. Specifically,
6316 ** pFile->pMethods will be NULL so sqlite3OsClose will be a no-op
6327 assert( zPath
==0 || zPath
[0]=='/'
6328 || eType
==SQLITE_OPEN_SUPER_JOURNAL
|| eType
==SQLITE_OPEN_MAIN_JOURNAL
6330 rc
= fillInUnixFile(pVfs
, fd
, pFile
, zPath
, ctrlFlags
);
6333 if( rc
!=SQLITE_OK
){
6334 sqlite3_free(p
->pPreallocatedUnused
);
6341 ** Delete the file at zPath. If the dirSync argument is true, fsync()
6342 ** the directory after deleting the file.
6344 static int unixDelete(
6345 sqlite3_vfs
*NotUsed
, /* VFS containing this as the xDelete method */
6346 const char *zPath
, /* Name of file to be deleted */
6347 int dirSync
/* If true, fsync() directory after deleting file */
6350 UNUSED_PARAMETER(NotUsed
);
6351 SimulateIOError(return SQLITE_IOERR_DELETE
);
6352 if( osUnlink(zPath
)==(-1) ){
6355 || osAccess(zPath
,0)!=0
6358 rc
= SQLITE_IOERR_DELETE_NOENT
;
6360 rc
= unixLogError(SQLITE_IOERR_DELETE
, "unlink", zPath
);
6364 #ifndef SQLITE_DISABLE_DIRSYNC
6365 if( (dirSync
& 1)!=0 ){
6367 rc
= osOpenDirectory(zPath
, &fd
);
6368 if( rc
==SQLITE_OK
){
6369 if( full_fsync(fd
,0,0) ){
6370 rc
= unixLogError(SQLITE_IOERR_DIR_FSYNC
, "fsync", zPath
);
6372 robust_close(0, fd
, __LINE__
);
6374 assert( rc
==SQLITE_CANTOPEN
);
6383 ** Test the existence of or access permissions of file zPath. The
6384 ** test performed depends on the value of flags:
6386 ** SQLITE_ACCESS_EXISTS: Return 1 if the file exists
6387 ** SQLITE_ACCESS_READWRITE: Return 1 if the file is read and writable.
6388 ** SQLITE_ACCESS_READONLY: Return 1 if the file is readable.
6390 ** Otherwise return 0.
6392 static int unixAccess(
6393 sqlite3_vfs
*NotUsed
, /* The VFS containing this xAccess method */
6394 const char *zPath
, /* Path of the file to examine */
6395 int flags
, /* What do we want to learn about the zPath file? */
6396 int *pResOut
/* Write result boolean here */
6398 UNUSED_PARAMETER(NotUsed
);
6399 SimulateIOError( return SQLITE_IOERR_ACCESS
; );
6400 assert( pResOut
!=0 );
6402 /* The spec says there are three possible values for flags. But only
6403 ** two of them are actually used */
6404 assert( flags
==SQLITE_ACCESS_EXISTS
|| flags
==SQLITE_ACCESS_READWRITE
);
6406 if( flags
==SQLITE_ACCESS_EXISTS
){
6408 *pResOut
= 0==osStat(zPath
, &buf
) &&
6409 (!S_ISREG(buf
.st_mode
) || buf
.st_size
>0);
6411 *pResOut
= osAccess(zPath
, W_OK
|R_OK
)==0;
6417 ** If the last component of the pathname in z[0]..z[j-1] is something
6418 ** other than ".." then back it out and return true. If the last
6419 ** component is empty or if it is ".." then return false.
6421 static int unixBackupDir(const char *z
, int *pJ
){
6424 if( j
<=0 ) return 0;
6425 for(i
=j
-1; i
>0 && z
[i
-1]!='/'; i
--){}
6426 if( i
==0 ) return 0;
6427 if( z
[i
]=='.' && i
==j
-2 && z
[i
+1]=='.' ) return 0;
6433 ** Convert a relative pathname into a full pathname. Also
6434 ** simplify the pathname as follows:
6436 ** Remove all instances of /./
6437 ** Remove all isntances of /X/../ for any X
6439 static int mkFullPathname(
6440 const char *zPath
, /* Input path */
6441 char *zOut
, /* Output buffer */
6442 int nOut
/* Allocated size of buffer zOut */
6444 int nPath
= sqlite3Strlen30(zPath
);
6447 if( zPath
[0]!='/' ){
6448 if( osGetcwd(zOut
, nOut
-2)==0 ){
6449 return unixLogError(SQLITE_CANTOPEN_BKPT
, "getcwd", zPath
);
6451 iOff
= sqlite3Strlen30(zOut
);
6454 if( (iOff
+nPath
+1)>nOut
){
6455 /* SQLite assumes that xFullPathname() nul-terminates the output buffer
6456 ** even if it returns an error. */
6458 return SQLITE_CANTOPEN_BKPT
;
6460 sqlite3_snprintf(nOut
-iOff
, &zOut
[iOff
], "%s", zPath
);
6462 /* Remove duplicate '/' characters. Except, two // at the beginning
6463 ** of a pathname is allowed since this is important on windows. */
6464 for(i
=j
=1; zOut
[i
]; i
++){
6465 zOut
[j
++] = zOut
[i
];
6466 while( zOut
[i
]=='/' && zOut
[i
+1]=='/' ) i
++;
6470 assert( zOut
[0]=='/' );
6471 for(i
=j
=0; zOut
[i
]; i
++){
6473 /* Skip over internal "/." directory components */
6474 if( zOut
[i
+1]=='.' && zOut
[i
+2]=='/' ){
6479 /* If this is a "/.." directory component then back out the
6480 ** previous term of the directory if it is something other than "..".
6485 && unixBackupDir(zOut
, &j
)
6491 if( ALWAYS(j
>=0) ) zOut
[j
] = zOut
[i
];
6494 if( NEVER(j
==0) ) zOut
[j
++] = '/';
6500 ** Turn a relative pathname into a full pathname. The relative path
6501 ** is stored as a nul-terminated string in the buffer pointed to by
6504 ** zOut points to a buffer of at least sqlite3_vfs.mxPathname bytes
6505 ** (in this case, MAX_PATHNAME bytes). The full-path is written to
6506 ** this buffer before returning.
6508 static int unixFullPathname(
6509 sqlite3_vfs
*pVfs
, /* Pointer to vfs object */
6510 const char *zPath
, /* Possibly relative input path */
6511 int nOut
, /* Size of output buffer in bytes */
6512 char *zOut
/* Output buffer */
6514 #if !defined(HAVE_READLINK) || !defined(HAVE_LSTAT)
6515 return mkFullPathname(zPath
, zOut
, nOut
);
6519 int nLink
= 0; /* Number of symbolic links followed so far */
6520 const char *zIn
= zPath
; /* Input path for each iteration of loop */
6523 assert( pVfs
->mxPathname
==MAX_PATHNAME
);
6524 UNUSED_PARAMETER(pVfs
);
6526 /* It's odd to simulate an io-error here, but really this is just
6527 ** using the io-error infrastructure to test that SQLite handles this
6528 ** function failing. This function could fail if, for example, the
6529 ** current working directory has been unlinked.
6531 SimulateIOError( return SQLITE_ERROR
);
6535 /* Call stat() on path zIn. Set bLink to true if the path is a symbolic
6536 ** link, or false otherwise. */
6539 if( osLstat(zIn
, &buf
)!=0 ){
6540 if( errno
!=ENOENT
){
6541 rc
= unixLogError(SQLITE_CANTOPEN_BKPT
, "lstat", zIn
);
6544 bLink
= S_ISLNK(buf
.st_mode
);
6550 zDel
= sqlite3_malloc(nOut
);
6551 if( zDel
==0 ) rc
= SQLITE_NOMEM_BKPT
;
6552 }else if( nLink
>=SQLITE_MAX_SYMLINKS
){
6553 rc
= SQLITE_CANTOPEN_BKPT
;
6556 if( rc
==SQLITE_OK
){
6557 nByte
= osReadlink(zIn
, zDel
, nOut
-1);
6559 rc
= unixLogError(SQLITE_CANTOPEN_BKPT
, "readlink", zIn
);
6563 for(n
= sqlite3Strlen30(zIn
); n
>0 && zIn
[n
-1]!='/'; n
--);
6564 if( nByte
+n
+1>nOut
){
6565 rc
= SQLITE_CANTOPEN_BKPT
;
6567 memmove(&zDel
[n
], zDel
, nByte
+1);
6568 memcpy(zDel
, zIn
, n
);
6579 assert( rc
!=SQLITE_OK
|| zIn
!=zOut
|| zIn
[0]=='/' );
6580 if( rc
==SQLITE_OK
&& zIn
!=zOut
){
6581 rc
= mkFullPathname(zIn
, zOut
, nOut
);
6583 if( bLink
==0 ) break;
6585 }while( rc
==SQLITE_OK
);
6588 if( rc
==SQLITE_OK
&& nLink
) rc
= SQLITE_OK_SYMLINK
;
6590 #endif /* HAVE_READLINK && HAVE_LSTAT */
6594 #ifndef SQLITE_OMIT_LOAD_EXTENSION
6596 ** Interfaces for opening a shared library, finding entry points
6597 ** within the shared library, and closing the shared library.
6600 static void *unixDlOpen(sqlite3_vfs
*NotUsed
, const char *zFilename
){
6601 UNUSED_PARAMETER(NotUsed
);
6602 return dlopen(zFilename
, RTLD_NOW
| RTLD_GLOBAL
);
6606 ** SQLite calls this function immediately after a call to unixDlSym() or
6607 ** unixDlOpen() fails (returns a null pointer). If a more detailed error
6608 ** message is available, it is written to zBufOut. If no error message
6609 ** is available, zBufOut is left unmodified and SQLite uses a default
6612 static void unixDlError(sqlite3_vfs
*NotUsed
, int nBuf
, char *zBufOut
){
6614 UNUSED_PARAMETER(NotUsed
);
6618 sqlite3_snprintf(nBuf
, zBufOut
, "%s", zErr
);
6622 static void (*unixDlSym(sqlite3_vfs
*NotUsed
, void *p
, const char*zSym
))(void){
6624 ** GCC with -pedantic-errors says that C90 does not allow a void* to be
6625 ** cast into a pointer to a function. And yet the library dlsym() routine
6626 ** returns a void* which is really a pointer to a function. So how do we
6627 ** use dlsym() with -pedantic-errors?
6629 ** Variable x below is defined to be a pointer to a function taking
6630 ** parameters void* and const char* and returning a pointer to a function.
6631 ** We initialize x by assigning it a pointer to the dlsym() function.
6632 ** (That assignment requires a cast.) Then we call the function that
6635 ** This work-around is unlikely to work correctly on any system where
6636 ** you really cannot cast a function pointer into void*. But then, on the
6637 ** other hand, dlsym() will not work on such a system either, so we have
6638 ** not really lost anything.
6640 void (*(*x
)(void*,const char*))(void);
6641 UNUSED_PARAMETER(NotUsed
);
6642 x
= (void(*(*)(void*,const char*))(void))dlsym
;
6643 return (*x
)(p
, zSym
);
6645 static void unixDlClose(sqlite3_vfs
*NotUsed
, void *pHandle
){
6646 UNUSED_PARAMETER(NotUsed
);
6649 #else /* if SQLITE_OMIT_LOAD_EXTENSION is defined: */
6650 #define unixDlOpen 0
6651 #define unixDlError 0
6653 #define unixDlClose 0
6657 ** Write nBuf bytes of random data to the supplied buffer zBuf.
6659 static int unixRandomness(sqlite3_vfs
*NotUsed
, int nBuf
, char *zBuf
){
6660 UNUSED_PARAMETER(NotUsed
);
6661 assert((size_t)nBuf
>=(sizeof(time_t)+sizeof(int)));
6663 /* We have to initialize zBuf to prevent valgrind from reporting
6664 ** errors. The reports issued by valgrind are incorrect - we would
6665 ** prefer that the randomness be increased by making use of the
6666 ** uninitialized space in zBuf - but valgrind errors tend to worry
6667 ** some users. Rather than argue, it seems easier just to initialize
6668 ** the whole array and silence valgrind, even if that means less randomness
6669 ** in the random seed.
6671 ** When testing, initializing zBuf[] to zero is all we do. That means
6672 ** that we always use the same random number sequence. This makes the
6673 ** tests repeatable.
6675 memset(zBuf
, 0, nBuf
);
6676 randomnessPid
= osGetpid(0);
6677 #if !defined(SQLITE_TEST) && !defined(SQLITE_OMIT_RANDOMNESS)
6680 fd
= robust_open("/dev/urandom", O_RDONLY
, 0);
6684 memcpy(zBuf
, &t
, sizeof(t
));
6685 memcpy(&zBuf
[sizeof(t
)], &randomnessPid
, sizeof(randomnessPid
));
6686 assert( sizeof(t
)+sizeof(randomnessPid
)<=(size_t)nBuf
);
6687 nBuf
= sizeof(t
) + sizeof(randomnessPid
);
6689 do{ got
= osRead(fd
, zBuf
, nBuf
); }while( got
<0 && errno
==EINTR
);
6690 robust_close(0, fd
, __LINE__
);
6699 ** Sleep for a little while. Return the amount of time slept.
6700 ** The argument is the number of microseconds we want to sleep.
6701 ** The return value is the number of microseconds of sleep actually
6702 ** requested from the underlying operating system, a number which
6703 ** might be greater than or equal to the argument, but not less
6704 ** than the argument.
6706 static int unixSleep(sqlite3_vfs
*NotUsed
, int microseconds
){
6710 sp
.tv_sec
= microseconds
/ 1000000;
6711 sp
.tv_nsec
= (microseconds
% 1000000) * 1000;
6712 nanosleep(&sp
, NULL
);
6713 UNUSED_PARAMETER(NotUsed
);
6714 return microseconds
;
6715 #elif defined(HAVE_USLEEP) && HAVE_USLEEP
6716 if( microseconds
>=1000000 ) sleep(microseconds
/1000000);
6717 if( microseconds
%1000000 ) usleep(microseconds
%1000000);
6718 UNUSED_PARAMETER(NotUsed
);
6719 return microseconds
;
6721 int seconds
= (microseconds
+999999)/1000000;
6723 UNUSED_PARAMETER(NotUsed
);
6724 return seconds
*1000000;
6729 ** The following variable, if set to a non-zero value, is interpreted as
6730 ** the number of seconds since 1970 and is used to set the result of
6731 ** sqlite3OsCurrentTime() during testing.
6734 int sqlite3_current_time
= 0; /* Fake system time in seconds since 1970. */
6738 ** Find the current time (in Universal Coordinated Time). Write into *piNow
6739 ** the current time and date as a Julian Day number times 86_400_000. In
6740 ** other words, write into *piNow the number of milliseconds since the Julian
6741 ** epoch of noon in Greenwich on November 24, 4714 B.C according to the
6742 ** proleptic Gregorian calendar.
6744 ** On success, return SQLITE_OK. Return SQLITE_ERROR if the time and date
6747 static int unixCurrentTimeInt64(sqlite3_vfs
*NotUsed
, sqlite3_int64
*piNow
){
6748 static const sqlite3_int64 unixEpoch
= 24405875*(sqlite3_int64
)8640000;
6750 #if defined(NO_GETTOD)
6753 *piNow
= ((sqlite3_int64
)t
)*1000 + unixEpoch
;
6755 struct timespec sNow
;
6756 clock_gettime(CLOCK_REALTIME
, &sNow
);
6757 *piNow
= unixEpoch
+ 1000*(sqlite3_int64
)sNow
.tv_sec
+ sNow
.tv_nsec
/1000000;
6759 struct timeval sNow
;
6760 (void)gettimeofday(&sNow
, 0); /* Cannot fail given valid arguments */
6761 *piNow
= unixEpoch
+ 1000*(sqlite3_int64
)sNow
.tv_sec
+ sNow
.tv_usec
/1000;
6765 if( sqlite3_current_time
){
6766 *piNow
= 1000*(sqlite3_int64
)sqlite3_current_time
+ unixEpoch
;
6769 UNUSED_PARAMETER(NotUsed
);
6773 #ifndef SQLITE_OMIT_DEPRECATED
6775 ** Find the current time (in Universal Coordinated Time). Write the
6776 ** current time and date as a Julian Day number into *prNow and
6777 ** return 0. Return 1 if the time and date cannot be found.
6779 static int unixCurrentTime(sqlite3_vfs
*NotUsed
, double *prNow
){
6780 sqlite3_int64 i
= 0;
6782 UNUSED_PARAMETER(NotUsed
);
6783 rc
= unixCurrentTimeInt64(0, &i
);
6784 *prNow
= i
/86400000.0;
6788 # define unixCurrentTime 0
6792 ** The xGetLastError() method is designed to return a better
6793 ** low-level error message when operating-system problems come up
6794 ** during SQLite operation. Only the integer return code is currently
6797 static int unixGetLastError(sqlite3_vfs
*NotUsed
, int NotUsed2
, char *NotUsed3
){
6798 UNUSED_PARAMETER(NotUsed
);
6799 UNUSED_PARAMETER(NotUsed2
);
6800 UNUSED_PARAMETER(NotUsed3
);
6806 ************************ End of sqlite3_vfs methods ***************************
6807 ******************************************************************************/
6809 /******************************************************************************
6810 ************************** Begin Proxy Locking ********************************
6812 ** Proxy locking is a "uber-locking-method" in this sense: It uses the
6813 ** other locking methods on secondary lock files. Proxy locking is a
6814 ** meta-layer over top of the primitive locking implemented above. For
6815 ** this reason, the division that implements of proxy locking is deferred
6816 ** until late in the file (here) after all of the other I/O methods have
6817 ** been defined - so that the primitive locking methods are available
6818 ** as services to help with the implementation of proxy locking.
6822 ** The default locking schemes in SQLite use byte-range locks on the
6823 ** database file to coordinate safe, concurrent access by multiple readers
6824 ** and writers [http://sqlite.org/lockingv3.html]. The five file locking
6825 ** states (UNLOCKED, PENDING, SHARED, RESERVED, EXCLUSIVE) are implemented
6826 ** as POSIX read & write locks over fixed set of locations (via fsctl),
6827 ** on AFP and SMB only exclusive byte-range locks are available via fsctl
6828 ** with _IOWR('z', 23, struct ByteRangeLockPB2) to track the same 5 states.
6829 ** To simulate a F_RDLCK on the shared range, on AFP a randomly selected
6830 ** address in the shared range is taken for a SHARED lock, the entire
6831 ** shared range is taken for an EXCLUSIVE lock):
6833 ** PENDING_BYTE 0x40000000
6834 ** RESERVED_BYTE 0x40000001
6835 ** SHARED_RANGE 0x40000002 -> 0x40000200
6837 ** This works well on the local file system, but shows a nearly 100x
6838 ** slowdown in read performance on AFP because the AFP client disables
6839 ** the read cache when byte-range locks are present. Enabling the read
6840 ** cache exposes a cache coherency problem that is present on all OS X
6841 ** supported network file systems. NFS and AFP both observe the
6842 ** close-to-open semantics for ensuring cache coherency
6843 ** [http://nfs.sourceforge.net/#faq_a8], which does not effectively
6844 ** address the requirements for concurrent database access by multiple
6845 ** readers and writers
6846 ** [http://www.nabble.com/SQLite-on-NFS-cache-coherency-td15655701.html].
6848 ** To address the performance and cache coherency issues, proxy file locking
6849 ** changes the way database access is controlled by limiting access to a
6850 ** single host at a time and moving file locks off of the database file
6851 ** and onto a proxy file on the local file system.
6854 ** Using proxy locks
6855 ** -----------------
6859 ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_SET_LOCKPROXYFILE,
6860 ** <proxy_path> | ":auto:");
6861 ** sqlite3_file_control(db, dbname, SQLITE_FCNTL_GET_LOCKPROXYFILE,
6867 ** PRAGMA [database.]lock_proxy_file=<proxy_path> | :auto:
6868 ** PRAGMA [database.]lock_proxy_file
6870 ** Specifying ":auto:" means that if there is a conch file with a matching
6871 ** host ID in it, the proxy path in the conch file will be used, otherwise
6872 ** a proxy path based on the user's temp dir
6873 ** (via confstr(_CS_DARWIN_USER_TEMP_DIR,...)) will be used and the
6874 ** actual proxy file name is generated from the name and path of the
6875 ** database file. For example:
6877 ** For database path "/Users/me/foo.db"
6878 ** The lock path will be "<tmpdir>/sqliteplocks/_Users_me_foo.db:auto:")
6880 ** Once a lock proxy is configured for a database connection, it can not
6881 ** be removed, however it may be switched to a different proxy path via
6882 ** the above APIs (assuming the conch file is not being held by another
6883 ** connection or process).
6886 ** How proxy locking works
6887 ** -----------------------
6889 ** Proxy file locking relies primarily on two new supporting files:
6891 ** * conch file to limit access to the database file to a single host
6894 ** * proxy file to act as a proxy for the advisory locks normally
6895 ** taken on the database
6897 ** The conch file - to use a proxy file, sqlite must first "hold the conch"
6898 ** by taking an sqlite-style shared lock on the conch file, reading the
6899 ** contents and comparing the host's unique host ID (see below) and lock
6900 ** proxy path against the values stored in the conch. The conch file is
6901 ** stored in the same directory as the database file and the file name
6902 ** is patterned after the database file name as ".<databasename>-conch".
6903 ** If the conch file does not exist, or its contents do not match the
6904 ** host ID and/or proxy path, then the lock is escalated to an exclusive
6905 ** lock and the conch file contents is updated with the host ID and proxy
6906 ** path and the lock is downgraded to a shared lock again. If the conch
6907 ** is held by another process (with a shared lock), the exclusive lock
6908 ** will fail and SQLITE_BUSY is returned.
6910 ** The proxy file - a single-byte file used for all advisory file locks
6911 ** normally taken on the database file. This allows for safe sharing
6912 ** of the database file for multiple readers and writers on the same
6913 ** host (the conch ensures that they all use the same local lock file).
6915 ** Requesting the lock proxy does not immediately take the conch, it is
6916 ** only taken when the first request to lock database file is made.
6917 ** This matches the semantics of the traditional locking behavior, where
6918 ** opening a connection to a database file does not take a lock on it.
6919 ** The shared lock and an open file descriptor are maintained until
6920 ** the connection to the database is closed.
6922 ** The proxy file and the lock file are never deleted so they only need
6923 ** to be created the first time they are used.
6925 ** Configuration options
6926 ** ---------------------
6928 ** SQLITE_PREFER_PROXY_LOCKING
6930 ** Database files accessed on non-local file systems are
6931 ** automatically configured for proxy locking, lock files are
6932 ** named automatically using the same logic as
6933 ** PRAGMA lock_proxy_file=":auto:"
6935 ** SQLITE_PROXY_DEBUG
6937 ** Enables the logging of error messages during host id file
6938 ** retrieval and creation
6942 ** Overrides the default directory used for lock proxy files that
6943 ** are named automatically via the ":auto:" setting
6945 ** SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
6947 ** Permissions to use when creating a directory for storing the
6948 ** lock proxy files, only used when LOCKPROXYDIR is not set.
6951 ** As mentioned above, when compiled with SQLITE_PREFER_PROXY_LOCKING,
6952 ** setting the environment variable SQLITE_FORCE_PROXY_LOCKING to 1 will
6953 ** force proxy locking to be used for every database file opened, and 0
6954 ** will force automatic proxy locking to be disabled for all database
6955 ** files (explicitly calling the SQLITE_FCNTL_SET_LOCKPROXYFILE pragma or
6956 ** sqlite_file_control API is not affected by SQLITE_FORCE_PROXY_LOCKING).
6960 ** Proxy locking is only available on MacOSX
6962 #if defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE
6965 ** The proxyLockingContext has the path and file structures for the remote
6966 ** and local proxy files in it
6968 typedef struct proxyLockingContext proxyLockingContext
;
6969 struct proxyLockingContext
{
6970 unixFile
*conchFile
; /* Open conch file */
6971 char *conchFilePath
; /* Name of the conch file */
6972 unixFile
*lockProxy
; /* Open proxy lock file */
6973 char *lockProxyPath
; /* Name of the proxy lock file */
6974 char *dbPath
; /* Name of the open file */
6975 int conchHeld
; /* 1 if the conch is held, -1 if lockless */
6976 int nFails
; /* Number of conch taking failures */
6977 void *oldLockingContext
; /* Original lockingcontext to restore on close */
6978 sqlite3_io_methods
const *pOldMethod
; /* Original I/O methods for close */
6982 ** The proxy lock file path for the database at dbPath is written into lPath,
6983 ** which must point to valid, writable memory large enough for a maxLen length
6986 static int proxyGetLockPath(const char *dbPath
, char *lPath
, size_t maxLen
){
6992 len
= strlcpy(lPath
, LOCKPROXYDIR
, maxLen
);
6994 # ifdef _CS_DARWIN_USER_TEMP_DIR
6996 if( !confstr(_CS_DARWIN_USER_TEMP_DIR
, lPath
, maxLen
) ){
6997 OSTRACE(("GETLOCKPATH failed %s errno=%d pid=%d\n",
6998 lPath
, errno
, osGetpid(0)));
6999 return SQLITE_IOERR_LOCK
;
7001 len
= strlcat(lPath
, "sqliteplocks", maxLen
);
7004 len
= strlcpy(lPath
, "/tmp/", maxLen
);
7008 if( lPath
[len
-1]!='/' ){
7009 len
= strlcat(lPath
, "/", maxLen
);
7012 /* transform the db path to a unique cache name */
7013 dbLen
= (int)strlen(dbPath
);
7014 for( i
=0; i
<dbLen
&& (i
+len
+7)<(int)maxLen
; i
++){
7016 lPath
[i
+len
] = (c
=='/')?'_':c
;
7019 strlcat(lPath
, ":auto:", maxLen
);
7020 OSTRACE(("GETLOCKPATH proxy lock path=%s pid=%d\n", lPath
, osGetpid(0)));
7025 ** Creates the lock file and any missing directories in lockPath
7027 static int proxyCreateLockPath(const char *lockPath
){
7029 char buf
[MAXPATHLEN
];
7032 assert(lockPath
!=NULL
);
7033 /* try to create all the intermediate directories */
7034 len
= (int)strlen(lockPath
);
7035 buf
[0] = lockPath
[0];
7036 for( i
=1; i
<len
; i
++ ){
7037 if( lockPath
[i
] == '/' && (i
- start
> 0) ){
7038 /* only mkdir if leaf dir != "." or "/" or ".." */
7039 if( i
-start
>2 || (i
-start
==1 && buf
[start
] != '.' && buf
[start
] != '/')
7040 || (i
-start
==2 && buf
[start
] != '.' && buf
[start
+1] != '.') ){
7042 if( osMkdir(buf
, SQLITE_DEFAULT_PROXYDIR_PERMISSIONS
) ){
7045 OSTRACE(("CREATELOCKPATH FAILED creating %s, "
7046 "'%s' proxy lock path=%s pid=%d\n",
7047 buf
, strerror(err
), lockPath
, osGetpid(0)));
7054 buf
[i
] = lockPath
[i
];
7056 OSTRACE(("CREATELOCKPATH proxy lock path=%s pid=%d\n",lockPath
,osGetpid(0)));
7061 ** Create a new VFS file descriptor (stored in memory obtained from
7062 ** sqlite3_malloc) and open the file named "path" in the file descriptor.
7064 ** The caller is responsible not only for closing the file descriptor
7065 ** but also for freeing the memory associated with the file descriptor.
7067 static int proxyCreateUnixFile(
7068 const char *path
, /* path for the new unixFile */
7069 unixFile
**ppFile
, /* unixFile created and returned by ref */
7070 int islockfile
/* if non zero missing dirs will be created */
7075 int openFlags
= O_RDWR
| O_CREAT
| O_NOFOLLOW
;
7076 sqlite3_vfs dummyVfs
;
7078 UnixUnusedFd
*pUnused
= NULL
;
7080 /* 1. first try to open/create the file
7081 ** 2. if that fails, and this is a lock file (not-conch), try creating
7082 ** the parent directories and then try again.
7083 ** 3. if that fails, try to open the file read-only
7084 ** otherwise return BUSY (if lock file) or CANTOPEN for the conch file
7086 pUnused
= findReusableFd(path
, openFlags
);
7090 pUnused
= sqlite3_malloc64(sizeof(*pUnused
));
7092 return SQLITE_NOMEM_BKPT
;
7096 fd
= robust_open(path
, openFlags
, 0);
7098 if( fd
<0 && errno
==ENOENT
&& islockfile
){
7099 if( proxyCreateLockPath(path
) == SQLITE_OK
){
7100 fd
= robust_open(path
, openFlags
, 0);
7105 openFlags
= O_RDONLY
| O_NOFOLLOW
;
7106 fd
= robust_open(path
, openFlags
, 0);
7117 return SQLITE_IOERR_LOCK
; /* even though it is the conch */
7119 return SQLITE_CANTOPEN_BKPT
;
7123 pNew
= (unixFile
*)sqlite3_malloc64(sizeof(*pNew
));
7125 rc
= SQLITE_NOMEM_BKPT
;
7126 goto end_create_proxy
;
7128 memset(pNew
, 0, sizeof(unixFile
));
7129 pNew
->openFlags
= openFlags
;
7130 memset(&dummyVfs
, 0, sizeof(dummyVfs
));
7131 dummyVfs
.pAppData
= (void*)&autolockIoFinder
;
7132 dummyVfs
.zName
= "dummy";
7134 pUnused
->flags
= openFlags
;
7135 pNew
->pPreallocatedUnused
= pUnused
;
7137 rc
= fillInUnixFile(&dummyVfs
, fd
, (sqlite3_file
*)pNew
, path
, 0);
7138 if( rc
==SQLITE_OK
){
7143 robust_close(pNew
, fd
, __LINE__
);
7145 sqlite3_free(pUnused
);
7150 /* simulate multiple hosts by creating unique hostid file paths */
7151 int sqlite3_hostid_num
= 0;
7154 #define PROXY_HOSTIDLEN 16 /* conch file host id length */
7156 #if HAVE_GETHOSTUUID
7157 /* Not always defined in the headers as it ought to be */
7158 extern int gethostuuid(uuid_t id
, const struct timespec
*wait
);
7161 /* get the host ID via gethostuuid(), pHostID must point to PROXY_HOSTIDLEN
7162 ** bytes of writable memory.
7164 static int proxyGetHostID(unsigned char *pHostID
, int *pError
){
7165 assert(PROXY_HOSTIDLEN
== sizeof(uuid_t
));
7166 memset(pHostID
, 0, PROXY_HOSTIDLEN
);
7167 #if HAVE_GETHOSTUUID
7169 struct timespec timeout
= {1, 0}; /* 1 sec timeout */
7170 if( gethostuuid(pHostID
, &timeout
) ){
7175 return SQLITE_IOERR
;
7179 UNUSED_PARAMETER(pError
);
7182 /* simulate multiple hosts by creating unique hostid file paths */
7183 if( sqlite3_hostid_num
!= 0){
7184 pHostID
[0] = (char)(pHostID
[0] + (char)(sqlite3_hostid_num
& 0xFF));
7191 /* The conch file contains the header, host id and lock file path
7193 #define PROXY_CONCHVERSION 2 /* 1-byte header, 16-byte host id, path */
7194 #define PROXY_HEADERLEN 1 /* conch file header length */
7195 #define PROXY_PATHINDEX (PROXY_HEADERLEN+PROXY_HOSTIDLEN)
7196 #define PROXY_MAXCONCHLEN (PROXY_HEADERLEN+PROXY_HOSTIDLEN+MAXPATHLEN)
7199 ** Takes an open conch file, copies the contents to a new path and then moves
7200 ** it back. The newly created file's file descriptor is assigned to the
7201 ** conch file structure and finally the original conch file descriptor is
7202 ** closed. Returns zero if successful.
7204 static int proxyBreakConchLock(unixFile
*pFile
, uuid_t myHostID
){
7205 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7206 unixFile
*conchFile
= pCtx
->conchFile
;
7207 char tPath
[MAXPATHLEN
];
7208 char buf
[PROXY_MAXCONCHLEN
];
7209 char *cPath
= pCtx
->conchFilePath
;
7212 char errmsg
[64] = "";
7215 UNUSED_PARAMETER(myHostID
);
7217 /* create a new path by replace the trailing '-conch' with '-break' */
7218 pathLen
= strlcpy(tPath
, cPath
, MAXPATHLEN
);
7219 if( pathLen
>MAXPATHLEN
|| pathLen
<6 ||
7220 (strlcpy(&tPath
[pathLen
-5], "break", 6) != 5) ){
7221 sqlite3_snprintf(sizeof(errmsg
),errmsg
,"path error (len %d)",(int)pathLen
);
7224 /* read the conch content */
7225 readLen
= osPread(conchFile
->h
, buf
, PROXY_MAXCONCHLEN
, 0);
7226 if( readLen
<PROXY_PATHINDEX
){
7227 sqlite3_snprintf(sizeof(errmsg
),errmsg
,"read error (len %d)",(int)readLen
);
7230 /* write it out to the temporary break file */
7231 fd
= robust_open(tPath
, (O_RDWR
|O_CREAT
|O_EXCL
|O_NOFOLLOW
), 0);
7233 sqlite3_snprintf(sizeof(errmsg
), errmsg
, "create failed (%d)", errno
);
7236 if( osPwrite(fd
, buf
, readLen
, 0) != (ssize_t
)readLen
){
7237 sqlite3_snprintf(sizeof(errmsg
), errmsg
, "write failed (%d)", errno
);
7240 if( rename(tPath
, cPath
) ){
7241 sqlite3_snprintf(sizeof(errmsg
), errmsg
, "rename failed (%d)", errno
);
7245 fprintf(stderr
, "broke stale lock on %s\n", cPath
);
7246 robust_close(pFile
, conchFile
->h
, __LINE__
);
7248 conchFile
->openFlags
= O_RDWR
| O_CREAT
;
7254 robust_close(pFile
, fd
, __LINE__
);
7256 fprintf(stderr
, "failed to break stale lock on %s, %s\n", cPath
, errmsg
);
7261 /* Take the requested lock on the conch file and break a stale lock if the
7264 static int proxyConchLock(unixFile
*pFile
, uuid_t myHostID
, int lockType
){
7265 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7266 unixFile
*conchFile
= pCtx
->conchFile
;
7269 struct timespec conchModTime
;
7271 memset(&conchModTime
, 0, sizeof(conchModTime
));
7273 rc
= conchFile
->pMethod
->xLock((sqlite3_file
*)conchFile
, lockType
);
7275 if( rc
==SQLITE_BUSY
){
7276 /* If the lock failed (busy):
7277 * 1st try: get the mod time of the conch, wait 0.5s and try again.
7278 * 2nd try: fail if the mod time changed or host id is different, wait
7279 * 10 sec and try again
7280 * 3rd try: break the lock unless the mod time has changed.
7283 if( osFstat(conchFile
->h
, &buf
) ){
7284 storeLastErrno(pFile
, errno
);
7285 return SQLITE_IOERR_LOCK
;
7289 conchModTime
= buf
.st_mtimespec
;
7290 unixSleep(0,500000); /* wait 0.5 sec and try the lock again*/
7295 if( conchModTime
.tv_sec
!= buf
.st_mtimespec
.tv_sec
||
7296 conchModTime
.tv_nsec
!= buf
.st_mtimespec
.tv_nsec
){
7301 char tBuf
[PROXY_MAXCONCHLEN
];
7302 int len
= osPread(conchFile
->h
, tBuf
, PROXY_MAXCONCHLEN
, 0);
7304 storeLastErrno(pFile
, errno
);
7305 return SQLITE_IOERR_LOCK
;
7307 if( len
>PROXY_PATHINDEX
&& tBuf
[0]==(char)PROXY_CONCHVERSION
){
7308 /* don't break the lock if the host id doesn't match */
7309 if( 0!=memcmp(&tBuf
[PROXY_HEADERLEN
], myHostID
, PROXY_HOSTIDLEN
) ){
7313 /* don't break the lock on short read or a version mismatch */
7316 unixSleep(0,10000000); /* wait 10 sec and try the lock again */
7320 assert( nTries
==3 );
7321 if( 0==proxyBreakConchLock(pFile
, myHostID
) ){
7323 if( lockType
==EXCLUSIVE_LOCK
){
7324 rc
= conchFile
->pMethod
->xLock((sqlite3_file
*)conchFile
, SHARED_LOCK
);
7327 rc
= conchFile
->pMethod
->xLock((sqlite3_file
*)conchFile
, lockType
);
7331 } while( rc
==SQLITE_BUSY
&& nTries
<3 );
7336 /* Takes the conch by taking a shared lock and read the contents conch, if
7337 ** lockPath is non-NULL, the host ID and lock file path must match. A NULL
7338 ** lockPath means that the lockPath in the conch file will be used if the
7339 ** host IDs match, or a new lock path will be generated automatically
7340 ** and written to the conch file.
7342 static int proxyTakeConch(unixFile
*pFile
){
7343 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7345 if( pCtx
->conchHeld
!=0 ){
7348 unixFile
*conchFile
= pCtx
->conchFile
;
7351 char readBuf
[PROXY_MAXCONCHLEN
];
7352 char lockPath
[MAXPATHLEN
];
7353 char *tempLockPath
= NULL
;
7355 int createConch
= 0;
7356 int hostIdMatch
= 0;
7358 int tryOldLockPath
= 0;
7359 int forceNewLockPath
= 0;
7361 OSTRACE(("TAKECONCH %d for %s pid=%d\n", conchFile
->h
,
7362 (pCtx
->lockProxyPath
? pCtx
->lockProxyPath
: ":auto:"),
7365 rc
= proxyGetHostID(myHostID
, &pError
);
7366 if( (rc
&0xff)==SQLITE_IOERR
){
7367 storeLastErrno(pFile
, pError
);
7370 rc
= proxyConchLock(pFile
, myHostID
, SHARED_LOCK
);
7371 if( rc
!=SQLITE_OK
){
7374 /* read the existing conch file */
7375 readLen
= seekAndRead((unixFile
*)conchFile
, 0, readBuf
, PROXY_MAXCONCHLEN
);
7377 /* I/O error: lastErrno set by seekAndRead */
7378 storeLastErrno(pFile
, conchFile
->lastErrno
);
7379 rc
= SQLITE_IOERR_READ
;
7381 }else if( readLen
<=(PROXY_HEADERLEN
+PROXY_HOSTIDLEN
) ||
7382 readBuf
[0]!=(char)PROXY_CONCHVERSION
){
7383 /* a short read or version format mismatch means we need to create a new
7388 /* if the host id matches and the lock path already exists in the conch
7389 ** we'll try to use the path there, if we can't open that path, we'll
7390 ** retry with a new auto-generated path
7392 do { /* in case we need to try again for an :auto: named lock file */
7394 if( !createConch
&& !forceNewLockPath
){
7395 hostIdMatch
= !memcmp(&readBuf
[PROXY_HEADERLEN
], myHostID
,
7397 /* if the conch has data compare the contents */
7398 if( !pCtx
->lockProxyPath
){
7399 /* for auto-named local lock file, just check the host ID and we'll
7400 ** use the local lock file path that's already in there
7403 size_t pathLen
= (readLen
- PROXY_PATHINDEX
);
7405 if( pathLen
>=MAXPATHLEN
){
7406 pathLen
=MAXPATHLEN
-1;
7408 memcpy(lockPath
, &readBuf
[PROXY_PATHINDEX
], pathLen
);
7409 lockPath
[pathLen
] = 0;
7410 tempLockPath
= lockPath
;
7412 /* create a copy of the lock path if the conch is taken */
7415 }else if( hostIdMatch
7416 && !strncmp(pCtx
->lockProxyPath
, &readBuf
[PROXY_PATHINDEX
],
7417 readLen
-PROXY_PATHINDEX
)
7419 /* conch host and lock path match */
7424 /* if the conch isn't writable and doesn't match, we can't take it */
7425 if( (conchFile
->openFlags
&O_RDWR
) == 0 ){
7430 /* either the conch didn't match or we need to create a new one */
7431 if( !pCtx
->lockProxyPath
){
7432 proxyGetLockPath(pCtx
->dbPath
, lockPath
, MAXPATHLEN
);
7433 tempLockPath
= lockPath
;
7434 /* create a copy of the lock path _only_ if the conch is taken */
7437 /* update conch with host and path (this will fail if other process
7438 ** has a shared lock already), if the host id matches, use the big
7441 futimes(conchFile
->h
, NULL
);
7442 if( hostIdMatch
&& !createConch
){
7443 if( conchFile
->pInode
&& conchFile
->pInode
->nShared
>1 ){
7444 /* We are trying for an exclusive lock but another thread in this
7445 ** same process is still holding a shared lock. */
7448 rc
= proxyConchLock(pFile
, myHostID
, EXCLUSIVE_LOCK
);
7451 rc
= proxyConchLock(pFile
, myHostID
, EXCLUSIVE_LOCK
);
7453 if( rc
==SQLITE_OK
){
7454 char writeBuffer
[PROXY_MAXCONCHLEN
];
7457 writeBuffer
[0] = (char)PROXY_CONCHVERSION
;
7458 memcpy(&writeBuffer
[PROXY_HEADERLEN
], myHostID
, PROXY_HOSTIDLEN
);
7459 if( pCtx
->lockProxyPath
!=NULL
){
7460 strlcpy(&writeBuffer
[PROXY_PATHINDEX
], pCtx
->lockProxyPath
,
7463 strlcpy(&writeBuffer
[PROXY_PATHINDEX
], tempLockPath
, MAXPATHLEN
);
7465 writeSize
= PROXY_PATHINDEX
+ strlen(&writeBuffer
[PROXY_PATHINDEX
]);
7466 robust_ftruncate(conchFile
->h
, writeSize
);
7467 rc
= unixWrite((sqlite3_file
*)conchFile
, writeBuffer
, writeSize
, 0);
7468 full_fsync(conchFile
->h
,0,0);
7469 /* If we created a new conch file (not just updated the contents of a
7470 ** valid conch file), try to match the permissions of the database
7472 if( rc
==SQLITE_OK
&& createConch
){
7474 int err
= osFstat(pFile
->h
, &buf
);
7476 mode_t cmode
= buf
.st_mode
&(S_IRUSR
|S_IWUSR
| S_IRGRP
|S_IWGRP
|
7478 /* try to match the database file R/W permissions, ignore failure */
7479 #ifndef SQLITE_PROXY_DEBUG
7480 osFchmod(conchFile
->h
, cmode
);
7483 rc
= osFchmod(conchFile
->h
, cmode
);
7484 }while( rc
==(-1) && errno
==EINTR
);
7487 fprintf(stderr
, "fchmod %o FAILED with %d %s\n",
7488 cmode
, code
, strerror(code
));
7490 fprintf(stderr
, "fchmod %o SUCCEDED\n",cmode
);
7494 fprintf(stderr
, "STAT FAILED[%d] with %d %s\n",
7495 err
, code
, strerror(code
));
7500 conchFile
->pMethod
->xUnlock((sqlite3_file
*)conchFile
, SHARED_LOCK
);
7503 OSTRACE(("TRANSPROXY: CLOSE %d\n", pFile
->h
));
7504 if( rc
==SQLITE_OK
&& pFile
->openFlags
){
7507 robust_close(pFile
, pFile
->h
, __LINE__
);
7510 fd
= robust_open(pCtx
->dbPath
, pFile
->openFlags
, 0);
7511 OSTRACE(("TRANSPROXY: OPEN %d\n", fd
));
7515 rc
=SQLITE_CANTOPEN_BKPT
; /* SQLITE_BUSY? proxyTakeConch called
7519 if( rc
==SQLITE_OK
&& !pCtx
->lockProxy
){
7520 char *path
= tempLockPath
? tempLockPath
: pCtx
->lockProxyPath
;
7521 rc
= proxyCreateUnixFile(path
, &pCtx
->lockProxy
, 1);
7522 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_NOMEM
&& tryOldLockPath
){
7523 /* we couldn't create the proxy lock file with the old lock file path
7524 ** so try again via auto-naming
7526 forceNewLockPath
= 1;
7528 continue; /* go back to the do {} while start point, try again */
7531 if( rc
==SQLITE_OK
){
7532 /* Need to make a copy of path if we extracted the value
7533 ** from the conch file or the path was allocated on the stack
7536 pCtx
->lockProxyPath
= sqlite3DbStrDup(0, tempLockPath
);
7537 if( !pCtx
->lockProxyPath
){
7538 rc
= SQLITE_NOMEM_BKPT
;
7542 if( rc
==SQLITE_OK
){
7543 pCtx
->conchHeld
= 1;
7545 if( pCtx
->lockProxy
->pMethod
== &afpIoMethods
){
7546 afpLockingContext
*afpCtx
;
7547 afpCtx
= (afpLockingContext
*)pCtx
->lockProxy
->lockingContext
;
7548 afpCtx
->dbPath
= pCtx
->lockProxyPath
;
7551 conchFile
->pMethod
->xUnlock((sqlite3_file
*)conchFile
, NO_LOCK
);
7553 OSTRACE(("TAKECONCH %d %s\n", conchFile
->h
,
7554 rc
==SQLITE_OK
?"ok":"failed"));
7556 } while (1); /* in case we need to retry the :auto: lock file -
7557 ** we should never get here except via the 'continue' call. */
7562 ** If pFile holds a lock on a conch file, then release that lock.
7564 static int proxyReleaseConch(unixFile
*pFile
){
7565 int rc
= SQLITE_OK
; /* Subroutine return code */
7566 proxyLockingContext
*pCtx
; /* The locking context for the proxy lock */
7567 unixFile
*conchFile
; /* Name of the conch file */
7569 pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7570 conchFile
= pCtx
->conchFile
;
7571 OSTRACE(("RELEASECONCH %d for %s pid=%d\n", conchFile
->h
,
7572 (pCtx
->lockProxyPath
? pCtx
->lockProxyPath
: ":auto:"),
7574 if( pCtx
->conchHeld
>0 ){
7575 rc
= conchFile
->pMethod
->xUnlock((sqlite3_file
*)conchFile
, NO_LOCK
);
7577 pCtx
->conchHeld
= 0;
7578 OSTRACE(("RELEASECONCH %d %s\n", conchFile
->h
,
7579 (rc
==SQLITE_OK
? "ok" : "failed")));
7584 ** Given the name of a database file, compute the name of its conch file.
7585 ** Store the conch filename in memory obtained from sqlite3_malloc64().
7586 ** Make *pConchPath point to the new name. Return SQLITE_OK on success
7587 ** or SQLITE_NOMEM if unable to obtain memory.
7589 ** The caller is responsible for ensuring that the allocated memory
7590 ** space is eventually freed.
7592 ** *pConchPath is set to NULL if a memory allocation error occurs.
7594 static int proxyCreateConchPathname(char *dbPath
, char **pConchPath
){
7595 int i
; /* Loop counter */
7596 int len
= (int)strlen(dbPath
); /* Length of database filename - dbPath */
7597 char *conchPath
; /* buffer in which to construct conch name */
7599 /* Allocate space for the conch filename and initialize the name to
7600 ** the name of the original database file. */
7601 *pConchPath
= conchPath
= (char *)sqlite3_malloc64(len
+ 8);
7603 return SQLITE_NOMEM_BKPT
;
7605 memcpy(conchPath
, dbPath
, len
+1);
7607 /* now insert a "." before the last / character */
7608 for( i
=(len
-1); i
>=0; i
-- ){
7609 if( conchPath
[i
]=='/' ){
7616 conchPath
[i
+1]=dbPath
[i
];
7620 /* append the "-conch" suffix to the file */
7621 memcpy(&conchPath
[i
+1], "-conch", 7);
7622 assert( (int)strlen(conchPath
) == len
+7 );
7628 /* Takes a fully configured proxy locking-style unix file and switches
7629 ** the local lock file path
7631 static int switchLockProxyPath(unixFile
*pFile
, const char *path
) {
7632 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7633 char *oldPath
= pCtx
->lockProxyPath
;
7636 if( pFile
->eFileLock
!=NO_LOCK
){
7640 /* nothing to do if the path is NULL, :auto: or matches the existing path */
7641 if( !path
|| path
[0]=='\0' || !strcmp(path
, ":auto:") ||
7642 (oldPath
&& !strncmp(oldPath
, path
, MAXPATHLEN
)) ){
7645 unixFile
*lockProxy
= pCtx
->lockProxy
;
7646 pCtx
->lockProxy
=NULL
;
7647 pCtx
->conchHeld
= 0;
7648 if( lockProxy
!=NULL
){
7649 rc
=lockProxy
->pMethod
->xClose((sqlite3_file
*)lockProxy
);
7651 sqlite3_free(lockProxy
);
7653 sqlite3_free(oldPath
);
7654 pCtx
->lockProxyPath
= sqlite3DbStrDup(0, path
);
7661 ** pFile is a file that has been opened by a prior xOpen call. dbPath
7662 ** is a string buffer at least MAXPATHLEN+1 characters in size.
7664 ** This routine find the filename associated with pFile and writes it
7667 static int proxyGetDbPathForUnixFile(unixFile
*pFile
, char *dbPath
){
7668 #if defined(__APPLE__)
7669 if( pFile
->pMethod
== &afpIoMethods
){
7670 /* afp style keeps a reference to the db path in the filePath field
7672 assert( (int)strlen((char*)pFile
->lockingContext
)<=MAXPATHLEN
);
7673 strlcpy(dbPath
, ((afpLockingContext
*)pFile
->lockingContext
)->dbPath
,
7677 if( pFile
->pMethod
== &dotlockIoMethods
){
7678 /* dot lock style uses the locking context to store the dot lock
7680 int len
= strlen((char *)pFile
->lockingContext
) - strlen(DOTLOCK_SUFFIX
);
7681 memcpy(dbPath
, (char *)pFile
->lockingContext
, len
+ 1);
7683 /* all other styles use the locking context to store the db file path */
7684 assert( strlen((char*)pFile
->lockingContext
)<=MAXPATHLEN
);
7685 strlcpy(dbPath
, (char *)pFile
->lockingContext
, MAXPATHLEN
);
7691 ** Takes an already filled in unix file and alters it so all file locking
7692 ** will be performed on the local proxy lock file. The following fields
7693 ** are preserved in the locking context so that they can be restored and
7694 ** the unix structure properly cleaned up at close time:
7698 static int proxyTransformUnixFile(unixFile
*pFile
, const char *path
) {
7699 proxyLockingContext
*pCtx
;
7700 char dbPath
[MAXPATHLEN
+1]; /* Name of the database file */
7701 char *lockPath
=NULL
;
7704 if( pFile
->eFileLock
!=NO_LOCK
){
7707 proxyGetDbPathForUnixFile(pFile
, dbPath
);
7708 if( !path
|| path
[0]=='\0' || !strcmp(path
, ":auto:") ){
7711 lockPath
=(char *)path
;
7714 OSTRACE(("TRANSPROXY %d for %s pid=%d\n", pFile
->h
,
7715 (lockPath
? lockPath
: ":auto:"), osGetpid(0)));
7717 pCtx
= sqlite3_malloc64( sizeof(*pCtx
) );
7719 return SQLITE_NOMEM_BKPT
;
7721 memset(pCtx
, 0, sizeof(*pCtx
));
7723 rc
= proxyCreateConchPathname(dbPath
, &pCtx
->conchFilePath
);
7724 if( rc
==SQLITE_OK
){
7725 rc
= proxyCreateUnixFile(pCtx
->conchFilePath
, &pCtx
->conchFile
, 0);
7726 if( rc
==SQLITE_CANTOPEN
&& ((pFile
->openFlags
&O_RDWR
) == 0) ){
7727 /* if (a) the open flags are not O_RDWR, (b) the conch isn't there, and
7728 ** (c) the file system is read-only, then enable no-locking access.
7729 ** Ugh, since O_RDONLY==0x0000 we test for !O_RDWR since unixOpen asserts
7730 ** that openFlags will have only one of O_RDONLY or O_RDWR.
7732 struct statfs fsInfo
;
7733 struct stat conchInfo
;
7736 if( osStat(pCtx
->conchFilePath
, &conchInfo
) == -1 ) {
7738 if( (err
==ENOENT
) && (statfs(dbPath
, &fsInfo
) != -1) ){
7739 goLockless
= (fsInfo
.f_flags
&MNT_RDONLY
) == MNT_RDONLY
;
7743 pCtx
->conchHeld
= -1; /* read only FS/ lockless */
7748 if( rc
==SQLITE_OK
&& lockPath
){
7749 pCtx
->lockProxyPath
= sqlite3DbStrDup(0, lockPath
);
7752 if( rc
==SQLITE_OK
){
7753 pCtx
->dbPath
= sqlite3DbStrDup(0, dbPath
);
7754 if( pCtx
->dbPath
==NULL
){
7755 rc
= SQLITE_NOMEM_BKPT
;
7758 if( rc
==SQLITE_OK
){
7759 /* all memory is allocated, proxys are created and assigned,
7760 ** switch the locking context and pMethod then return.
7762 pCtx
->oldLockingContext
= pFile
->lockingContext
;
7763 pFile
->lockingContext
= pCtx
;
7764 pCtx
->pOldMethod
= pFile
->pMethod
;
7765 pFile
->pMethod
= &proxyIoMethods
;
7767 if( pCtx
->conchFile
){
7768 pCtx
->conchFile
->pMethod
->xClose((sqlite3_file
*)pCtx
->conchFile
);
7769 sqlite3_free(pCtx
->conchFile
);
7771 sqlite3DbFree(0, pCtx
->lockProxyPath
);
7772 sqlite3_free(pCtx
->conchFilePath
);
7775 OSTRACE(("TRANSPROXY %d %s\n", pFile
->h
,
7776 (rc
==SQLITE_OK
? "ok" : "failed")));
7782 ** This routine handles sqlite3_file_control() calls that are specific
7783 ** to proxy locking.
7785 static int proxyFileControl(sqlite3_file
*id
, int op
, void *pArg
){
7787 case SQLITE_FCNTL_GET_LOCKPROXYFILE
: {
7788 unixFile
*pFile
= (unixFile
*)id
;
7789 if( pFile
->pMethod
== &proxyIoMethods
){
7790 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7791 proxyTakeConch(pFile
);
7792 if( pCtx
->lockProxyPath
){
7793 *(const char **)pArg
= pCtx
->lockProxyPath
;
7795 *(const char **)pArg
= ":auto: (not held)";
7798 *(const char **)pArg
= NULL
;
7802 case SQLITE_FCNTL_SET_LOCKPROXYFILE
: {
7803 unixFile
*pFile
= (unixFile
*)id
;
7805 int isProxyStyle
= (pFile
->pMethod
== &proxyIoMethods
);
7806 if( pArg
==NULL
|| (const char *)pArg
==0 ){
7808 /* turn off proxy locking - not supported. If support is added for
7809 ** switching proxy locking mode off then it will need to fail if
7810 ** the journal mode is WAL mode.
7812 rc
= SQLITE_ERROR
/*SQLITE_PROTOCOL? SQLITE_MISUSE?*/;
7814 /* turn off proxy locking - already off - NOOP */
7818 const char *proxyPath
= (const char *)pArg
;
7820 proxyLockingContext
*pCtx
=
7821 (proxyLockingContext
*)pFile
->lockingContext
;
7822 if( !strcmp(pArg
, ":auto:")
7823 || (pCtx
->lockProxyPath
&&
7824 !strncmp(pCtx
->lockProxyPath
, proxyPath
, MAXPATHLEN
))
7828 rc
= switchLockProxyPath(pFile
, proxyPath
);
7831 /* turn on proxy file locking */
7832 rc
= proxyTransformUnixFile(pFile
, proxyPath
);
7838 assert( 0 ); /* The call assures that only valid opcodes are sent */
7841 /*NOTREACHED*/ assert(0);
7842 return SQLITE_ERROR
;
7846 ** Within this division (the proxying locking implementation) the procedures
7847 ** above this point are all utilities. The lock-related methods of the
7848 ** proxy-locking sqlite3_io_method object follow.
7853 ** This routine checks if there is a RESERVED lock held on the specified
7854 ** file by this or any other process. If such a lock is held, set *pResOut
7855 ** to a non-zero value otherwise *pResOut is set to zero. The return value
7856 ** is set to SQLITE_OK unless an I/O error occurs during lock checking.
7858 static int proxyCheckReservedLock(sqlite3_file
*id
, int *pResOut
) {
7859 unixFile
*pFile
= (unixFile
*)id
;
7860 int rc
= proxyTakeConch(pFile
);
7861 if( rc
==SQLITE_OK
){
7862 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7863 if( pCtx
->conchHeld
>0 ){
7864 unixFile
*proxy
= pCtx
->lockProxy
;
7865 return proxy
->pMethod
->xCheckReservedLock((sqlite3_file
*)proxy
, pResOut
);
7866 }else{ /* conchHeld < 0 is lockless */
7874 ** Lock the file with the lock specified by parameter eFileLock - one
7875 ** of the following:
7878 ** (2) RESERVED_LOCK
7880 ** (4) EXCLUSIVE_LOCK
7882 ** Sometimes when requesting one lock state, additional lock states
7883 ** are inserted in between. The locking might fail on one of the later
7884 ** transitions leaving the lock state different from what it started but
7885 ** still short of its goal. The following chart shows the allowed
7886 ** transitions and the inserted intermediate states:
7888 ** UNLOCKED -> SHARED
7889 ** SHARED -> RESERVED
7890 ** SHARED -> (PENDING) -> EXCLUSIVE
7891 ** RESERVED -> (PENDING) -> EXCLUSIVE
7892 ** PENDING -> EXCLUSIVE
7894 ** This routine will only increase a lock. Use the sqlite3OsUnlock()
7895 ** routine to lower a locking level.
7897 static int proxyLock(sqlite3_file
*id
, int eFileLock
) {
7898 unixFile
*pFile
= (unixFile
*)id
;
7899 int rc
= proxyTakeConch(pFile
);
7900 if( rc
==SQLITE_OK
){
7901 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7902 if( pCtx
->conchHeld
>0 ){
7903 unixFile
*proxy
= pCtx
->lockProxy
;
7904 rc
= proxy
->pMethod
->xLock((sqlite3_file
*)proxy
, eFileLock
);
7905 pFile
->eFileLock
= proxy
->eFileLock
;
7907 /* conchHeld < 0 is lockless */
7915 ** Lower the locking level on file descriptor pFile to eFileLock. eFileLock
7916 ** must be either NO_LOCK or SHARED_LOCK.
7918 ** If the locking level of the file descriptor is already at or below
7919 ** the requested locking level, this routine is a no-op.
7921 static int proxyUnlock(sqlite3_file
*id
, int eFileLock
) {
7922 unixFile
*pFile
= (unixFile
*)id
;
7923 int rc
= proxyTakeConch(pFile
);
7924 if( rc
==SQLITE_OK
){
7925 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7926 if( pCtx
->conchHeld
>0 ){
7927 unixFile
*proxy
= pCtx
->lockProxy
;
7928 rc
= proxy
->pMethod
->xUnlock((sqlite3_file
*)proxy
, eFileLock
);
7929 pFile
->eFileLock
= proxy
->eFileLock
;
7931 /* conchHeld < 0 is lockless */
7938 ** Close a file that uses proxy locks.
7940 static int proxyClose(sqlite3_file
*id
) {
7942 unixFile
*pFile
= (unixFile
*)id
;
7943 proxyLockingContext
*pCtx
= (proxyLockingContext
*)pFile
->lockingContext
;
7944 unixFile
*lockProxy
= pCtx
->lockProxy
;
7945 unixFile
*conchFile
= pCtx
->conchFile
;
7949 rc
= lockProxy
->pMethod
->xUnlock((sqlite3_file
*)lockProxy
, NO_LOCK
);
7951 rc
= lockProxy
->pMethod
->xClose((sqlite3_file
*)lockProxy
);
7953 sqlite3_free(lockProxy
);
7954 pCtx
->lockProxy
= 0;
7957 if( pCtx
->conchHeld
){
7958 rc
= proxyReleaseConch(pFile
);
7961 rc
= conchFile
->pMethod
->xClose((sqlite3_file
*)conchFile
);
7963 sqlite3_free(conchFile
);
7965 sqlite3DbFree(0, pCtx
->lockProxyPath
);
7966 sqlite3_free(pCtx
->conchFilePath
);
7967 sqlite3DbFree(0, pCtx
->dbPath
);
7968 /* restore the original locking context and pMethod then close it */
7969 pFile
->lockingContext
= pCtx
->oldLockingContext
;
7970 pFile
->pMethod
= pCtx
->pOldMethod
;
7972 return pFile
->pMethod
->xClose(id
);
7979 #endif /* defined(__APPLE__) && SQLITE_ENABLE_LOCKING_STYLE */
7981 ** The proxy locking style is intended for use with AFP filesystems.
7982 ** And since AFP is only supported on MacOSX, the proxy locking is also
7983 ** restricted to MacOSX.
7986 ******************* End of the proxy lock implementation **********************
7987 ******************************************************************************/
7990 ** Initialize the operating system interface.
7992 ** This routine registers all VFS implementations for unix-like operating
7993 ** systems. This routine, and the sqlite3_os_end() routine that follows,
7994 ** should be the only routines in this file that are visible from other
7997 ** This routine is called once during SQLite initialization and by a
7998 ** single thread. The memory allocation and mutex subsystems have not
7999 ** necessarily been initialized when this routine is called, and so they
8000 ** should not be used.
8002 int sqlite3_os_init(void){
8004 ** The following macro defines an initializer for an sqlite3_vfs object.
8005 ** The name of the VFS is NAME. The pAppData is a pointer to a pointer
8006 ** to the "finder" function. (pAppData is a pointer to a pointer because
8007 ** silly C90 rules prohibit a void* from being cast to a function pointer
8008 ** and so we have to go through the intermediate pointer to avoid problems
8009 ** when compiling with -pedantic-errors on GCC.)
8011 ** The FINDER parameter to this macro is the name of the pointer to the
8012 ** finder-function. The finder-function returns a pointer to the
8013 ** sqlite_io_methods object that implements the desired locking
8014 ** behaviors. See the division above that contains the IOMETHODS
8015 ** macro for addition information on finder-functions.
8017 ** Most finders simply return a pointer to a fixed sqlite3_io_methods
8018 ** object. But the "autolockIoFinder" available on MacOSX does a little
8019 ** more than that; it looks at the filesystem type that hosts the
8020 ** database file and tries to choose an locking method appropriate for
8021 ** that filesystem time.
8023 #define UNIXVFS(VFSNAME, FINDER) { \
8025 sizeof(unixFile), /* szOsFile */ \
8026 MAX_PATHNAME, /* mxPathname */ \
8028 VFSNAME, /* zName */ \
8029 (void*)&FINDER, /* pAppData */ \
8030 unixOpen, /* xOpen */ \
8031 unixDelete, /* xDelete */ \
8032 unixAccess, /* xAccess */ \
8033 unixFullPathname, /* xFullPathname */ \
8034 unixDlOpen, /* xDlOpen */ \
8035 unixDlError, /* xDlError */ \
8036 unixDlSym, /* xDlSym */ \
8037 unixDlClose, /* xDlClose */ \
8038 unixRandomness, /* xRandomness */ \
8039 unixSleep, /* xSleep */ \
8040 unixCurrentTime, /* xCurrentTime */ \
8041 unixGetLastError, /* xGetLastError */ \
8042 unixCurrentTimeInt64, /* xCurrentTimeInt64 */ \
8043 unixSetSystemCall, /* xSetSystemCall */ \
8044 unixGetSystemCall, /* xGetSystemCall */ \
8045 unixNextSystemCall, /* xNextSystemCall */ \
8049 ** All default VFSes for unix are contained in the following array.
8051 ** Note that the sqlite3_vfs.pNext field of the VFS object is modified
8052 ** by the SQLite core when the VFS is registered. So the following
8053 ** array cannot be const.
8055 static sqlite3_vfs aVfs
[] = {
8056 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
8057 UNIXVFS("unix", autolockIoFinder
),
8059 UNIXVFS("unix", vxworksIoFinder
),
8061 UNIXVFS("unix", posixIoFinder
),
8063 UNIXVFS("unix-none", nolockIoFinder
),
8064 UNIXVFS("unix-dotfile", dotlockIoFinder
),
8065 UNIXVFS("unix-excl", posixIoFinder
),
8067 UNIXVFS("unix-namedsem", semIoFinder
),
8069 #if SQLITE_ENABLE_LOCKING_STYLE || OS_VXWORKS
8070 UNIXVFS("unix-posix", posixIoFinder
),
8072 #if SQLITE_ENABLE_LOCKING_STYLE
8073 UNIXVFS("unix-flock", flockIoFinder
),
8075 #if SQLITE_ENABLE_LOCKING_STYLE && defined(__APPLE__)
8076 UNIXVFS("unix-afp", afpIoFinder
),
8077 UNIXVFS("unix-nfs", nfsIoFinder
),
8078 UNIXVFS("unix-proxy", proxyIoFinder
),
8081 unsigned int i
; /* Loop counter */
8083 /* Double-check that the aSyscall[] array has been constructed
8084 ** correctly. See ticket [bb3a86e890c8e96ab] */
8085 assert( ArraySize(aSyscall
)==29 );
8087 /* Register all VFSes defined in the aVfs[] array */
8088 for(i
=0; i
<(sizeof(aVfs
)/sizeof(sqlite3_vfs
)); i
++){
8089 sqlite3_vfs_register(&aVfs
[i
], i
==0);
8091 unixBigLock
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_VFS1
);
8093 #ifndef SQLITE_OMIT_WAL
8094 /* Validate lock assumptions */
8095 assert( SQLITE_SHM_NLOCK
==8 ); /* Number of available locks */
8096 assert( UNIX_SHM_BASE
==120 ); /* Start of locking area */
8098 ** WRITE UNIX_SHM_BASE 120
8099 ** CKPT UNIX_SHM_BASE+1 121
8100 ** RECOVER UNIX_SHM_BASE+2 122
8101 ** READ-0 UNIX_SHM_BASE+3 123
8102 ** READ-1 UNIX_SHM_BASE+4 124
8103 ** READ-2 UNIX_SHM_BASE+5 125
8104 ** READ-3 UNIX_SHM_BASE+6 126
8105 ** READ-4 UNIX_SHM_BASE+7 127
8106 ** DMS UNIX_SHM_BASE+8 128
8108 assert( UNIX_SHM_DMS
==128 ); /* Byte offset of the deadman-switch */
8111 /* Initialize temp file dir array. */
8118 ** Shutdown the operating system interface.
8120 ** Some operating systems might need to do some cleanup in this routine,
8121 ** to release dynamically allocated objects. But not on unix.
8122 ** This routine is a no-op for unix.
8124 int sqlite3_os_end(void){
8129 #endif /* SQLITE_OS_UNIX */