avoid merge conflict on upstream distclean change
[sqlcipher.git] / src / select.c
blob7d0c5f8e5da8af21e096db59ecb883437319c5a8
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* 0: Not distinct. 1: DISTICT 2: DISTINCT and ORDER BY */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
72 ** Delete all the content of a Select structure. Deallocate the structure
73 ** itself depending on the value of bFree
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79 while( p ){
80 Select *pPrior = p->pPrior;
81 sqlite3ExprListDelete(db, p->pEList);
82 sqlite3SrcListDelete(db, p->pSrc);
83 sqlite3ExprDelete(db, p->pWhere);
84 sqlite3ExprListDelete(db, p->pGroupBy);
85 sqlite3ExprDelete(db, p->pHaving);
86 sqlite3ExprListDelete(db, p->pOrderBy);
87 sqlite3ExprDelete(db, p->pLimit);
88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91 sqlite3WindowListDelete(db, p->pWinDefn);
93 while( p->pWin ){
94 assert( p->pWin->ppThis==&p->pWin );
95 sqlite3WindowUnlinkFromSelect(p->pWin);
97 #endif
98 if( bFree ) sqlite3DbFreeNN(db, p);
99 p = pPrior;
100 bFree = 1;
105 ** Initialize a SelectDest structure.
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108 pDest->eDest = (u8)eDest;
109 pDest->iSDParm = iParm;
110 pDest->iSDParm2 = 0;
111 pDest->zAffSdst = 0;
112 pDest->iSdst = 0;
113 pDest->nSdst = 0;
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
121 Select *sqlite3SelectNew(
122 Parse *pParse, /* Parsing context */
123 ExprList *pEList, /* which columns to include in the result */
124 SrcList *pSrc, /* the FROM clause -- which tables to scan */
125 Expr *pWhere, /* the WHERE clause */
126 ExprList *pGroupBy, /* the GROUP BY clause */
127 Expr *pHaving, /* the HAVING clause */
128 ExprList *pOrderBy, /* the ORDER BY clause */
129 u32 selFlags, /* Flag parameters, such as SF_Distinct */
130 Expr *pLimit /* LIMIT value. NULL means not used */
132 Select *pNew, *pAllocated;
133 Select standin;
134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135 if( pNew==0 ){
136 assert( pParse->db->mallocFailed );
137 pNew = &standin;
139 if( pEList==0 ){
140 pEList = sqlite3ExprListAppend(pParse, 0,
141 sqlite3Expr(pParse->db,TK_ASTERISK,0));
143 pNew->pEList = pEList;
144 pNew->op = TK_SELECT;
145 pNew->selFlags = selFlags;
146 pNew->iLimit = 0;
147 pNew->iOffset = 0;
148 pNew->selId = ++pParse->nSelect;
149 pNew->addrOpenEphm[0] = -1;
150 pNew->addrOpenEphm[1] = -1;
151 pNew->nSelectRow = 0;
152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153 pNew->pSrc = pSrc;
154 pNew->pWhere = pWhere;
155 pNew->pGroupBy = pGroupBy;
156 pNew->pHaving = pHaving;
157 pNew->pOrderBy = pOrderBy;
158 pNew->pPrior = 0;
159 pNew->pNext = 0;
160 pNew->pLimit = pLimit;
161 pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163 pNew->pWin = 0;
164 pNew->pWinDefn = 0;
165 #endif
166 if( pParse->db->mallocFailed ) {
167 clearSelect(pParse->db, pNew, pNew!=&standin);
168 pAllocated = 0;
169 }else{
170 assert( pNew->pSrc!=0 || pParse->nErr>0 );
172 return pAllocated;
177 ** Delete the given Select structure and all of its substructures.
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
184 ** Return a pointer to the right-most SELECT statement in a compound.
186 static Select *findRightmost(Select *p){
187 while( p->pNext ) p = p->pNext;
188 return p;
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join. Return an integer constant that expresses that type
194 ** in terms of the following bit values:
196 ** JT_INNER
197 ** JT_CROSS
198 ** JT_OUTER
199 ** JT_NATURAL
200 ** JT_LEFT
201 ** JT_RIGHT
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
208 ** These are the valid join types:
211 ** pA pB pC Return Value
212 ** ------- ----- ----- ------------
213 ** CROSS - - JT_CROSS
214 ** INNER - - JT_INNER
215 ** LEFT - - JT_LEFT|JT_OUTER
216 ** LEFT OUTER - JT_LEFT|JT_OUTER
217 ** RIGHT - - JT_RIGHT|JT_OUTER
218 ** RIGHT OUTER - JT_RIGHT|JT_OUTER
219 ** FULL - - JT_LEFT|JT_RIGHT|JT_OUTER
220 ** FULL OUTER - JT_LEFT|JT_RIGHT|JT_OUTER
221 ** NATURAL INNER - JT_NATURAL|JT_INNER
222 ** NATURAL LEFT - JT_NATURAL|JT_LEFT|JT_OUTER
223 ** NATURAL LEFT OUTER JT_NATURAL|JT_LEFT|JT_OUTER
224 ** NATURAL RIGHT - JT_NATURAL|JT_RIGHT|JT_OUTER
225 ** NATURAL RIGHT OUTER JT_NATURAL|JT_RIGHT|JT_OUTER
226 ** NATURAL FULL - JT_NATURAL|JT_LEFT|JT_RIGHT
227 ** NATURAL FULL OUTER JT_NATRUAL|JT_LEFT|JT_RIGHT
229 ** To preserve historical compatibly, SQLite also accepts a variety
230 ** of other non-standard and in many cases non-sensical join types.
231 ** This routine makes as much sense at it can from the nonsense join
232 ** type and returns a result. Examples of accepted nonsense join types
233 ** include but are not limited to:
235 ** INNER CROSS JOIN -> same as JOIN
236 ** NATURAL CROSS JOIN -> same as NATURAL JOIN
237 ** OUTER LEFT JOIN -> same as LEFT JOIN
238 ** LEFT NATURAL JOIN -> same as NATURAL LEFT JOIN
239 ** LEFT RIGHT JOIN -> same as FULL JOIN
240 ** RIGHT OUTER FULL JOIN -> same as FULL JOIN
241 ** CROSS CROSS CROSS JOIN -> same as JOIN
243 ** The only restrictions on the join type name are:
245 ** * "INNER" cannot appear together with "OUTER", "LEFT", "RIGHT",
246 ** or "FULL".
248 ** * "CROSS" cannot appear together with "OUTER", "LEFT", "RIGHT,
249 ** or "FULL".
251 ** * If "OUTER" is present then there must also be one of
252 ** "LEFT", "RIGHT", or "FULL"
254 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
255 int jointype = 0;
256 Token *apAll[3];
257 Token *p;
258 /* 0123456789 123456789 123456789 123 */
259 static const char zKeyText[] = "naturaleftouterightfullinnercross";
260 static const struct {
261 u8 i; /* Beginning of keyword text in zKeyText[] */
262 u8 nChar; /* Length of the keyword in characters */
263 u8 code; /* Join type mask */
264 } aKeyword[] = {
265 /* (0) natural */ { 0, 7, JT_NATURAL },
266 /* (1) left */ { 6, 4, JT_LEFT|JT_OUTER },
267 /* (2) outer */ { 10, 5, JT_OUTER },
268 /* (3) right */ { 14, 5, JT_RIGHT|JT_OUTER },
269 /* (4) full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
270 /* (5) inner */ { 23, 5, JT_INNER },
271 /* (6) cross */ { 28, 5, JT_INNER|JT_CROSS },
273 int i, j;
274 apAll[0] = pA;
275 apAll[1] = pB;
276 apAll[2] = pC;
277 for(i=0; i<3 && apAll[i]; i++){
278 p = apAll[i];
279 for(j=0; j<ArraySize(aKeyword); j++){
280 if( p->n==aKeyword[j].nChar
281 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
282 jointype |= aKeyword[j].code;
283 break;
286 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
287 if( j>=ArraySize(aKeyword) ){
288 jointype |= JT_ERROR;
289 break;
293 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
294 (jointype & JT_ERROR)!=0 ||
295 (jointype & (JT_OUTER|JT_LEFT|JT_RIGHT))==JT_OUTER
297 const char *zSp1 = " ";
298 const char *zSp2 = " ";
299 if( pB==0 ){ zSp1++; }
300 if( pC==0 ){ zSp2++; }
301 sqlite3ErrorMsg(pParse, "unknown join type: "
302 "%T%s%T%s%T", pA, zSp1, pB, zSp2, pC);
303 jointype = JT_INNER;
305 return jointype;
309 ** Return the index of a column in a table. Return -1 if the column
310 ** is not contained in the table.
312 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
313 int i;
314 u8 h = sqlite3StrIHash(zCol);
315 Column *pCol;
316 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
317 if( pCol->hName==h && sqlite3StrICmp(pCol->zCnName, zCol)==0 ) return i;
319 return -1;
323 ** Mark a subquery result column as having been used.
325 void sqlite3SrcItemColumnUsed(SrcItem *pItem, int iCol){
326 assert( pItem!=0 );
327 assert( (int)pItem->fg.isNestedFrom == IsNestedFrom(pItem->pSelect) );
328 if( pItem->fg.isNestedFrom ){
329 ExprList *pResults;
330 assert( pItem->pSelect!=0 );
331 pResults = pItem->pSelect->pEList;
332 assert( pResults!=0 );
333 assert( iCol>=0 && iCol<pResults->nExpr );
334 pResults->a[iCol].fg.bUsed = 1;
339 ** Search the tables iStart..iEnd (inclusive) in pSrc, looking for a
340 ** table that has a column named zCol. The search is left-to-right.
341 ** The first match found is returned.
343 ** When found, set *piTab and *piCol to the table index and column index
344 ** of the matching column and return TRUE.
346 ** If not found, return FALSE.
348 static int tableAndColumnIndex(
349 SrcList *pSrc, /* Array of tables to search */
350 int iStart, /* First member of pSrc->a[] to check */
351 int iEnd, /* Last member of pSrc->a[] to check */
352 const char *zCol, /* Name of the column we are looking for */
353 int *piTab, /* Write index of pSrc->a[] here */
354 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
355 int bIgnoreHidden /* Ignore hidden columns */
357 int i; /* For looping over tables in pSrc */
358 int iCol; /* Index of column matching zCol */
360 assert( iEnd<pSrc->nSrc );
361 assert( iStart>=0 );
362 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
364 for(i=iStart; i<=iEnd; i++){
365 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
366 if( iCol>=0
367 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
369 if( piTab ){
370 sqlite3SrcItemColumnUsed(&pSrc->a[i], iCol);
371 *piTab = i;
372 *piCol = iCol;
374 return 1;
377 return 0;
381 ** Set the EP_OuterON property on all terms of the given expression.
382 ** And set the Expr.w.iJoin to iTable for every term in the
383 ** expression.
385 ** The EP_OuterON property is used on terms of an expression to tell
386 ** the OUTER JOIN processing logic that this term is part of the
387 ** join restriction specified in the ON or USING clause and not a part
388 ** of the more general WHERE clause. These terms are moved over to the
389 ** WHERE clause during join processing but we need to remember that they
390 ** originated in the ON or USING clause.
392 ** The Expr.w.iJoin tells the WHERE clause processing that the
393 ** expression depends on table w.iJoin even if that table is not
394 ** explicitly mentioned in the expression. That information is needed
395 ** for cases like this:
397 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
399 ** The where clause needs to defer the handling of the t1.x=5
400 ** term until after the t2 loop of the join. In that way, a
401 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
402 ** defer the handling of t1.x=5, it will be processed immediately
403 ** after the t1 loop and rows with t1.x!=5 will never appear in
404 ** the output, which is incorrect.
406 void sqlite3SetJoinExpr(Expr *p, int iTable, u32 joinFlag){
407 assert( joinFlag==EP_OuterON || joinFlag==EP_InnerON );
408 while( p ){
409 ExprSetProperty(p, joinFlag);
410 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
411 ExprSetVVAProperty(p, EP_NoReduce);
412 p->w.iJoin = iTable;
413 if( p->op==TK_FUNCTION ){
414 assert( ExprUseXList(p) );
415 if( p->x.pList ){
416 int i;
417 for(i=0; i<p->x.pList->nExpr; i++){
418 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable, joinFlag);
422 sqlite3SetJoinExpr(p->pLeft, iTable, joinFlag);
423 p = p->pRight;
427 /* Undo the work of sqlite3SetJoinExpr(). This is used when a LEFT JOIN
428 ** is simplified into an ordinary JOIN, and when an ON expression is
429 ** "pushed down" into the WHERE clause of a subquery.
431 ** Convert every term that is marked with EP_OuterON and w.iJoin==iTable into
432 ** an ordinary term that omits the EP_OuterON mark. Or if iTable<0, then
433 ** just clear every EP_OuterON and EP_InnerON mark from the expression tree.
435 ** If nullable is true, that means that Expr p might evaluate to NULL even
436 ** if it is a reference to a NOT NULL column. This can happen, for example,
437 ** if the table that p references is on the left side of a RIGHT JOIN.
438 ** If nullable is true, then take care to not remove the EP_CanBeNull bit.
439 ** See forum thread https://sqlite.org/forum/forumpost/b40696f50145d21c
441 static void unsetJoinExpr(Expr *p, int iTable, int nullable){
442 while( p ){
443 if( iTable<0 || (ExprHasProperty(p, EP_OuterON) && p->w.iJoin==iTable) ){
444 ExprClearProperty(p, EP_OuterON|EP_InnerON);
445 if( iTable>=0 ) ExprSetProperty(p, EP_InnerON);
447 if( p->op==TK_COLUMN && p->iTable==iTable && !nullable ){
448 ExprClearProperty(p, EP_CanBeNull);
450 if( p->op==TK_FUNCTION ){
451 assert( ExprUseXList(p) );
452 if( p->x.pList ){
453 int i;
454 for(i=0; i<p->x.pList->nExpr; i++){
455 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable, nullable);
459 unsetJoinExpr(p->pLeft, iTable, nullable);
460 p = p->pRight;
465 ** This routine processes the join information for a SELECT statement.
467 ** * A NATURAL join is converted into a USING join. After that, we
468 ** do not need to be concerned with NATURAL joins and we only have
469 ** think about USING joins.
471 ** * ON and USING clauses result in extra terms being added to the
472 ** WHERE clause to enforce the specified constraints. The extra
473 ** WHERE clause terms will be tagged with EP_OuterON or
474 ** EP_InnerON so that we know that they originated in ON/USING.
476 ** The terms of a FROM clause are contained in the Select.pSrc structure.
477 ** The left most table is the first entry in Select.pSrc. The right-most
478 ** table is the last entry. The join operator is held in the entry to
479 ** the right. Thus entry 1 contains the join operator for the join between
480 ** entries 0 and 1. Any ON or USING clauses associated with the join are
481 ** also attached to the right entry.
483 ** This routine returns the number of errors encountered.
485 static int sqlite3ProcessJoin(Parse *pParse, Select *p){
486 SrcList *pSrc; /* All tables in the FROM clause */
487 int i, j; /* Loop counters */
488 SrcItem *pLeft; /* Left table being joined */
489 SrcItem *pRight; /* Right table being joined */
491 pSrc = p->pSrc;
492 pLeft = &pSrc->a[0];
493 pRight = &pLeft[1];
494 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
495 Table *pRightTab = pRight->pTab;
496 u32 joinType;
498 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
499 joinType = (pRight->fg.jointype & JT_OUTER)!=0 ? EP_OuterON : EP_InnerON;
501 /* If this is a NATURAL join, synthesize an approprate USING clause
502 ** to specify which columns should be joined.
504 if( pRight->fg.jointype & JT_NATURAL ){
505 IdList *pUsing = 0;
506 if( pRight->fg.isUsing || pRight->u3.pOn ){
507 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
508 "an ON or USING clause", 0);
509 return 1;
511 for(j=0; j<pRightTab->nCol; j++){
512 char *zName; /* Name of column in the right table */
514 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
515 zName = pRightTab->aCol[j].zCnName;
516 if( tableAndColumnIndex(pSrc, 0, i, zName, 0, 0, 1) ){
517 pUsing = sqlite3IdListAppend(pParse, pUsing, 0);
518 if( pUsing ){
519 assert( pUsing->nId>0 );
520 assert( pUsing->a[pUsing->nId-1].zName==0 );
521 pUsing->a[pUsing->nId-1].zName = sqlite3DbStrDup(pParse->db, zName);
525 if( pUsing ){
526 pRight->fg.isUsing = 1;
527 pRight->fg.isSynthUsing = 1;
528 pRight->u3.pUsing = pUsing;
530 if( pParse->nErr ) return 1;
533 /* Create extra terms on the WHERE clause for each column named
534 ** in the USING clause. Example: If the two tables to be joined are
535 ** A and B and the USING clause names X, Y, and Z, then add this
536 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
537 ** Report an error if any column mentioned in the USING clause is
538 ** not contained in both tables to be joined.
540 if( pRight->fg.isUsing ){
541 IdList *pList = pRight->u3.pUsing;
542 sqlite3 *db = pParse->db;
543 assert( pList!=0 );
544 for(j=0; j<pList->nId; j++){
545 char *zName; /* Name of the term in the USING clause */
546 int iLeft; /* Table on the left with matching column name */
547 int iLeftCol; /* Column number of matching column on the left */
548 int iRightCol; /* Column number of matching column on the right */
549 Expr *pE1; /* Reference to the column on the LEFT of the join */
550 Expr *pE2; /* Reference to the column on the RIGHT of the join */
551 Expr *pEq; /* Equality constraint. pE1 == pE2 */
553 zName = pList->a[j].zName;
554 iRightCol = sqlite3ColumnIndex(pRightTab, zName);
555 if( iRightCol<0
556 || tableAndColumnIndex(pSrc, 0, i, zName, &iLeft, &iLeftCol,
557 pRight->fg.isSynthUsing)==0
559 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
560 "not present in both tables", zName);
561 return 1;
563 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
564 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
565 if( (pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
566 /* This branch runs if the query contains one or more RIGHT or FULL
567 ** JOINs. If only a single table on the left side of this join
568 ** contains the zName column, then this branch is a no-op.
569 ** But if there are two or more tables on the left side
570 ** of the join, construct a coalesce() function that gathers all
571 ** such tables. Raise an error if more than one of those references
572 ** to zName is not also within a prior USING clause.
574 ** We really ought to raise an error if there are two or more
575 ** non-USING references to zName on the left of an INNER or LEFT
576 ** JOIN. But older versions of SQLite do not do that, so we avoid
577 ** adding a new error so as to not break legacy applications.
579 ExprList *pFuncArgs = 0; /* Arguments to the coalesce() */
580 static const Token tkCoalesce = { "coalesce", 8 };
581 while( tableAndColumnIndex(pSrc, iLeft+1, i, zName, &iLeft, &iLeftCol,
582 pRight->fg.isSynthUsing)!=0 ){
583 if( pSrc->a[iLeft].fg.isUsing==0
584 || sqlite3IdListIndex(pSrc->a[iLeft].u3.pUsing, zName)<0
586 sqlite3ErrorMsg(pParse, "ambiguous reference to %s in USING()",
587 zName);
588 break;
590 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
591 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iLeftCol);
592 sqlite3SrcItemColumnUsed(&pSrc->a[iLeft], iLeftCol);
594 if( pFuncArgs ){
595 pFuncArgs = sqlite3ExprListAppend(pParse, pFuncArgs, pE1);
596 pE1 = sqlite3ExprFunction(pParse, pFuncArgs, &tkCoalesce, 0);
599 pE2 = sqlite3CreateColumnExpr(db, pSrc, i+1, iRightCol);
600 sqlite3SrcItemColumnUsed(pRight, iRightCol);
601 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
602 assert( pE2!=0 || pEq==0 );
603 if( pEq ){
604 ExprSetProperty(pEq, joinType);
605 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
606 ExprSetVVAProperty(pEq, EP_NoReduce);
607 pEq->w.iJoin = pE2->iTable;
609 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pEq);
613 /* Add the ON clause to the end of the WHERE clause, connected by
614 ** an AND operator.
616 else if( pRight->u3.pOn ){
617 sqlite3SetJoinExpr(pRight->u3.pOn, pRight->iCursor, joinType);
618 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->u3.pOn);
619 pRight->u3.pOn = 0;
620 pRight->fg.isOn = 1;
623 return 0;
627 ** An instance of this object holds information (beyond pParse and pSelect)
628 ** needed to load the next result row that is to be added to the sorter.
630 typedef struct RowLoadInfo RowLoadInfo;
631 struct RowLoadInfo {
632 int regResult; /* Store results in array of registers here */
633 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
634 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
635 ExprList *pExtra; /* Extra columns needed by sorter refs */
636 int regExtraResult; /* Where to load the extra columns */
637 #endif
641 ** This routine does the work of loading query data into an array of
642 ** registers so that it can be added to the sorter.
644 static void innerLoopLoadRow(
645 Parse *pParse, /* Statement under construction */
646 Select *pSelect, /* The query being coded */
647 RowLoadInfo *pInfo /* Info needed to complete the row load */
649 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
650 0, pInfo->ecelFlags);
651 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
652 if( pInfo->pExtra ){
653 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
654 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
656 #endif
660 ** Code the OP_MakeRecord instruction that generates the entry to be
661 ** added into the sorter.
663 ** Return the register in which the result is stored.
665 static int makeSorterRecord(
666 Parse *pParse,
667 SortCtx *pSort,
668 Select *pSelect,
669 int regBase,
670 int nBase
672 int nOBSat = pSort->nOBSat;
673 Vdbe *v = pParse->pVdbe;
674 int regOut = ++pParse->nMem;
675 if( pSort->pDeferredRowLoad ){
676 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
678 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
679 return regOut;
683 ** Generate code that will push the record in registers regData
684 ** through regData+nData-1 onto the sorter.
686 static void pushOntoSorter(
687 Parse *pParse, /* Parser context */
688 SortCtx *pSort, /* Information about the ORDER BY clause */
689 Select *pSelect, /* The whole SELECT statement */
690 int regData, /* First register holding data to be sorted */
691 int regOrigData, /* First register holding data before packing */
692 int nData, /* Number of elements in the regData data array */
693 int nPrefixReg /* No. of reg prior to regData available for use */
695 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
696 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
697 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
698 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
699 int regBase; /* Regs for sorter record */
700 int regRecord = 0; /* Assembled sorter record */
701 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
702 int op; /* Opcode to add sorter record to sorter */
703 int iLimit; /* LIMIT counter */
704 int iSkip = 0; /* End of the sorter insert loop */
706 assert( bSeq==0 || bSeq==1 );
708 /* Three cases:
709 ** (1) The data to be sorted has already been packed into a Record
710 ** by a prior OP_MakeRecord. In this case nData==1 and regData
711 ** will be completely unrelated to regOrigData.
712 ** (2) All output columns are included in the sort record. In that
713 ** case regData==regOrigData.
714 ** (3) Some output columns are omitted from the sort record due to
715 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
716 ** SQLITE_ECEL_OMITREF optimization, or due to the
717 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
718 ** regOrigData is 0 to prevent this routine from trying to copy
719 ** values that might not yet exist.
721 assert( nData==1 || regData==regOrigData || regOrigData==0 );
723 if( nPrefixReg ){
724 assert( nPrefixReg==nExpr+bSeq );
725 regBase = regData - nPrefixReg;
726 }else{
727 regBase = pParse->nMem + 1;
728 pParse->nMem += nBase;
730 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
731 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
732 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
733 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
734 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
735 if( bSeq ){
736 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
738 if( nPrefixReg==0 && nData>0 ){
739 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
741 if( nOBSat>0 ){
742 int regPrevKey; /* The first nOBSat columns of the previous row */
743 int addrFirst; /* Address of the OP_IfNot opcode */
744 int addrJmp; /* Address of the OP_Jump opcode */
745 VdbeOp *pOp; /* Opcode that opens the sorter */
746 int nKey; /* Number of sorting key columns, including OP_Sequence */
747 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
749 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
750 regPrevKey = pParse->nMem+1;
751 pParse->nMem += pSort->nOBSat;
752 nKey = nExpr - pSort->nOBSat + bSeq;
753 if( bSeq ){
754 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
755 }else{
756 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
758 VdbeCoverage(v);
759 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
760 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
761 if( pParse->db->mallocFailed ) return;
762 pOp->p2 = nKey + nData;
763 pKI = pOp->p4.pKeyInfo;
764 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
765 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
766 testcase( pKI->nAllField > pKI->nKeyField+2 );
767 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
768 pKI->nAllField-pKI->nKeyField-1);
769 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
770 addrJmp = sqlite3VdbeCurrentAddr(v);
771 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
772 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
773 pSort->regReturn = ++pParse->nMem;
774 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
775 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
776 if( iLimit ){
777 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
778 VdbeCoverage(v);
780 sqlite3VdbeJumpHere(v, addrFirst);
781 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
782 sqlite3VdbeJumpHere(v, addrJmp);
784 if( iLimit ){
785 /* At this point the values for the new sorter entry are stored
786 ** in an array of registers. They need to be composed into a record
787 ** and inserted into the sorter if either (a) there are currently
788 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
789 ** the largest record currently in the sorter. If (b) is true and there
790 ** are already LIMIT+OFFSET items in the sorter, delete the largest
791 ** entry before inserting the new one. This way there are never more
792 ** than LIMIT+OFFSET items in the sorter.
794 ** If the new record does not need to be inserted into the sorter,
795 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
796 ** value is not zero, then it is a label of where to jump. Otherwise,
797 ** just bypass the row insert logic. See the header comment on the
798 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
800 int iCsr = pSort->iECursor;
801 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
802 VdbeCoverage(v);
803 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
804 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
805 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
806 VdbeCoverage(v);
807 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
809 if( regRecord==0 ){
810 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
812 if( pSort->sortFlags & SORTFLAG_UseSorter ){
813 op = OP_SorterInsert;
814 }else{
815 op = OP_IdxInsert;
817 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
818 regBase+nOBSat, nBase-nOBSat);
819 if( iSkip ){
820 sqlite3VdbeChangeP2(v, iSkip,
821 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
826 ** Add code to implement the OFFSET
828 static void codeOffset(
829 Vdbe *v, /* Generate code into this VM */
830 int iOffset, /* Register holding the offset counter */
831 int iContinue /* Jump here to skip the current record */
833 if( iOffset>0 ){
834 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
835 VdbeComment((v, "OFFSET"));
840 ** Add code that will check to make sure the array of registers starting at
841 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
842 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
843 ** are available. Which is used depends on the value of parameter eTnctType,
844 ** as follows:
846 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
847 ** Build an ephemeral table that contains all entries seen before and
848 ** skip entries which have been seen before.
850 ** Parameter iTab is the cursor number of an ephemeral table that must
851 ** be opened before the VM code generated by this routine is executed.
852 ** The ephemeral cursor table is queried for a record identical to the
853 ** record formed by the current array of registers. If one is found,
854 ** jump to VM address addrRepeat. Otherwise, insert a new record into
855 ** the ephemeral cursor and proceed.
857 ** The returned value in this case is a copy of parameter iTab.
859 ** WHERE_DISTINCT_ORDERED:
860 ** In this case rows are being delivered sorted order. The ephermal
861 ** table is not required. Instead, the current set of values
862 ** is compared against previous row. If they match, the new row
863 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
864 ** the VM program proceeds with processing the new row.
866 ** The returned value in this case is the register number of the first
867 ** in an array of registers used to store the previous result row so that
868 ** it can be compared to the next. The caller must ensure that this
869 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
870 ** will take care of this initialization.)
872 ** WHERE_DISTINCT_UNIQUE:
873 ** In this case it has already been determined that the rows are distinct.
874 ** No special action is required. The return value is zero.
876 ** Parameter pEList is the list of expressions used to generated the
877 ** contents of each row. It is used by this routine to determine (a)
878 ** how many elements there are in the array of registers and (b) the
879 ** collation sequences that should be used for the comparisons if
880 ** eTnctType is WHERE_DISTINCT_ORDERED.
882 static int codeDistinct(
883 Parse *pParse, /* Parsing and code generating context */
884 int eTnctType, /* WHERE_DISTINCT_* value */
885 int iTab, /* A sorting index used to test for distinctness */
886 int addrRepeat, /* Jump to here if not distinct */
887 ExprList *pEList, /* Expression for each element */
888 int regElem /* First element */
890 int iRet = 0;
891 int nResultCol = pEList->nExpr;
892 Vdbe *v = pParse->pVdbe;
894 switch( eTnctType ){
895 case WHERE_DISTINCT_ORDERED: {
896 int i;
897 int iJump; /* Jump destination */
898 int regPrev; /* Previous row content */
900 /* Allocate space for the previous row */
901 iRet = regPrev = pParse->nMem+1;
902 pParse->nMem += nResultCol;
904 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
905 for(i=0; i<nResultCol; i++){
906 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
907 if( i<nResultCol-1 ){
908 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
909 VdbeCoverage(v);
910 }else{
911 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
912 VdbeCoverage(v);
914 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
915 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
917 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
918 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
919 break;
922 case WHERE_DISTINCT_UNIQUE: {
923 /* nothing to do */
924 break;
927 default: {
928 int r1 = sqlite3GetTempReg(pParse);
929 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
930 VdbeCoverage(v);
931 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
932 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
933 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
934 sqlite3ReleaseTempReg(pParse, r1);
935 iRet = iTab;
936 break;
940 return iRet;
944 ** This routine runs after codeDistinct(). It makes necessary
945 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
946 ** routine made use of. This processing must be done separately since
947 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
948 ** laid down.
950 ** WHERE_DISTINCT_NOOP:
951 ** WHERE_DISTINCT_UNORDERED:
953 ** No adjustments necessary. This function is a no-op.
955 ** WHERE_DISTINCT_UNIQUE:
957 ** The ephemeral table is not needed. So change the
958 ** OP_OpenEphemeral opcode into an OP_Noop.
960 ** WHERE_DISTINCT_ORDERED:
962 ** The ephemeral table is not needed. But we do need register
963 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
964 ** into an OP_Null on the iVal register.
966 static void fixDistinctOpenEph(
967 Parse *pParse, /* Parsing and code generating context */
968 int eTnctType, /* WHERE_DISTINCT_* value */
969 int iVal, /* Value returned by codeDistinct() */
970 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
972 if( pParse->nErr==0
973 && (eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED)
975 Vdbe *v = pParse->pVdbe;
976 sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
977 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
978 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
980 if( eTnctType==WHERE_DISTINCT_ORDERED ){
981 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
982 ** bit on the first register of the previous value. This will cause the
983 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
984 ** the loop even if the first row is all NULLs. */
985 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
986 pOp->opcode = OP_Null;
987 pOp->p1 = 1;
988 pOp->p2 = iVal;
993 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
995 ** This function is called as part of inner-loop generation for a SELECT
996 ** statement with an ORDER BY that is not optimized by an index. It
997 ** determines the expressions, if any, that the sorter-reference
998 ** optimization should be used for. The sorter-reference optimization
999 ** is used for SELECT queries like:
1001 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
1003 ** If the optimization is used for expression "bigblob", then instead of
1004 ** storing values read from that column in the sorter records, the PK of
1005 ** the row from table t1 is stored instead. Then, as records are extracted from
1006 ** the sorter to return to the user, the required value of bigblob is
1007 ** retrieved directly from table t1. If the values are very large, this
1008 ** can be more efficient than storing them directly in the sorter records.
1010 ** The ExprList_item.fg.bSorterRef flag is set for each expression in pEList
1011 ** for which the sorter-reference optimization should be enabled.
1012 ** Additionally, the pSort->aDefer[] array is populated with entries
1013 ** for all cursors required to evaluate all selected expressions. Finally.
1014 ** output variable (*ppExtra) is set to an expression list containing
1015 ** expressions for all extra PK values that should be stored in the
1016 ** sorter records.
1018 static void selectExprDefer(
1019 Parse *pParse, /* Leave any error here */
1020 SortCtx *pSort, /* Sorter context */
1021 ExprList *pEList, /* Expressions destined for sorter */
1022 ExprList **ppExtra /* Expressions to append to sorter record */
1024 int i;
1025 int nDefer = 0;
1026 ExprList *pExtra = 0;
1027 for(i=0; i<pEList->nExpr; i++){
1028 struct ExprList_item *pItem = &pEList->a[i];
1029 if( pItem->u.x.iOrderByCol==0 ){
1030 Expr *pExpr = pItem->pExpr;
1031 Table *pTab;
1032 if( pExpr->op==TK_COLUMN
1033 && pExpr->iColumn>=0
1034 && ALWAYS( ExprUseYTab(pExpr) )
1035 && (pTab = pExpr->y.pTab)!=0
1036 && IsOrdinaryTable(pTab)
1037 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)!=0
1039 int j;
1040 for(j=0; j<nDefer; j++){
1041 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
1043 if( j==nDefer ){
1044 if( nDefer==ArraySize(pSort->aDefer) ){
1045 continue;
1046 }else{
1047 int nKey = 1;
1048 int k;
1049 Index *pPk = 0;
1050 if( !HasRowid(pTab) ){
1051 pPk = sqlite3PrimaryKeyIndex(pTab);
1052 nKey = pPk->nKeyCol;
1054 for(k=0; k<nKey; k++){
1055 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
1056 if( pNew ){
1057 pNew->iTable = pExpr->iTable;
1058 assert( ExprUseYTab(pNew) );
1059 pNew->y.pTab = pExpr->y.pTab;
1060 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
1061 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
1064 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
1065 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
1066 pSort->aDefer[nDefer].nKey = nKey;
1067 nDefer++;
1070 pItem->fg.bSorterRef = 1;
1074 pSort->nDefer = (u8)nDefer;
1075 *ppExtra = pExtra;
1077 #endif
1080 ** This routine generates the code for the inside of the inner loop
1081 ** of a SELECT.
1083 ** If srcTab is negative, then the p->pEList expressions
1084 ** are evaluated in order to get the data for this row. If srcTab is
1085 ** zero or more, then data is pulled from srcTab and p->pEList is used only
1086 ** to get the number of columns and the collation sequence for each column.
1088 static void selectInnerLoop(
1089 Parse *pParse, /* The parser context */
1090 Select *p, /* The complete select statement being coded */
1091 int srcTab, /* Pull data from this table if non-negative */
1092 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
1093 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
1094 SelectDest *pDest, /* How to dispose of the results */
1095 int iContinue, /* Jump here to continue with next row */
1096 int iBreak /* Jump here to break out of the inner loop */
1098 Vdbe *v = pParse->pVdbe;
1099 int i;
1100 int hasDistinct; /* True if the DISTINCT keyword is present */
1101 int eDest = pDest->eDest; /* How to dispose of results */
1102 int iParm = pDest->iSDParm; /* First argument to disposal method */
1103 int nResultCol; /* Number of result columns */
1104 int nPrefixReg = 0; /* Number of extra registers before regResult */
1105 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
1107 /* Usually, regResult is the first cell in an array of memory cells
1108 ** containing the current result row. In this case regOrig is set to the
1109 ** same value. However, if the results are being sent to the sorter, the
1110 ** values for any expressions that are also part of the sort-key are omitted
1111 ** from this array. In this case regOrig is set to zero. */
1112 int regResult; /* Start of memory holding current results */
1113 int regOrig; /* Start of memory holding full result (or 0) */
1115 assert( v );
1116 assert( p->pEList!=0 );
1117 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1118 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1119 if( pSort==0 && !hasDistinct ){
1120 assert( iContinue!=0 );
1121 codeOffset(v, p->iOffset, iContinue);
1124 /* Pull the requested columns.
1126 nResultCol = p->pEList->nExpr;
1128 if( pDest->iSdst==0 ){
1129 if( pSort ){
1130 nPrefixReg = pSort->pOrderBy->nExpr;
1131 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1132 pParse->nMem += nPrefixReg;
1134 pDest->iSdst = pParse->nMem+1;
1135 pParse->nMem += nResultCol;
1136 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1137 /* This is an error condition that can result, for example, when a SELECT
1138 ** on the right-hand side of an INSERT contains more result columns than
1139 ** there are columns in the table on the left. The error will be caught
1140 ** and reported later. But we need to make sure enough memory is allocated
1141 ** to avoid other spurious errors in the meantime. */
1142 pParse->nMem += nResultCol;
1144 pDest->nSdst = nResultCol;
1145 regOrig = regResult = pDest->iSdst;
1146 if( srcTab>=0 ){
1147 for(i=0; i<nResultCol; i++){
1148 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1149 VdbeComment((v, "%s", p->pEList->a[i].zEName));
1151 }else if( eDest!=SRT_Exists ){
1152 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1153 ExprList *pExtra = 0;
1154 #endif
1155 /* If the destination is an EXISTS(...) expression, the actual
1156 ** values returned by the SELECT are not required.
1158 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1159 ExprList *pEList;
1160 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1161 ecelFlags = SQLITE_ECEL_DUP;
1162 }else{
1163 ecelFlags = 0;
1165 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1166 /* For each expression in p->pEList that is a copy of an expression in
1167 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1168 ** iOrderByCol value to one more than the index of the ORDER BY
1169 ** expression within the sort-key that pushOntoSorter() will generate.
1170 ** This allows the p->pEList field to be omitted from the sorted record,
1171 ** saving space and CPU cycles. */
1172 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1174 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1175 int j;
1176 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1177 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1180 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1181 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1182 if( pExtra && pParse->db->mallocFailed==0 ){
1183 /* If there are any extra PK columns to add to the sorter records,
1184 ** allocate extra memory cells and adjust the OpenEphemeral
1185 ** instruction to account for the larger records. This is only
1186 ** required if there are one or more WITHOUT ROWID tables with
1187 ** composite primary keys in the SortCtx.aDefer[] array. */
1188 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1189 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1190 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1191 pParse->nMem += pExtra->nExpr;
1193 #endif
1195 /* Adjust nResultCol to account for columns that are omitted
1196 ** from the sorter by the optimizations in this branch */
1197 pEList = p->pEList;
1198 for(i=0; i<pEList->nExpr; i++){
1199 if( pEList->a[i].u.x.iOrderByCol>0
1200 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1201 || pEList->a[i].fg.bSorterRef
1202 #endif
1204 nResultCol--;
1205 regOrig = 0;
1209 testcase( regOrig );
1210 testcase( eDest==SRT_Set );
1211 testcase( eDest==SRT_Mem );
1212 testcase( eDest==SRT_Coroutine );
1213 testcase( eDest==SRT_Output );
1214 assert( eDest==SRT_Set || eDest==SRT_Mem
1215 || eDest==SRT_Coroutine || eDest==SRT_Output
1216 || eDest==SRT_Upfrom );
1218 sRowLoadInfo.regResult = regResult;
1219 sRowLoadInfo.ecelFlags = ecelFlags;
1220 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1221 sRowLoadInfo.pExtra = pExtra;
1222 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1223 if( pExtra ) nResultCol += pExtra->nExpr;
1224 #endif
1225 if( p->iLimit
1226 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1227 && nPrefixReg>0
1229 assert( pSort!=0 );
1230 assert( hasDistinct==0 );
1231 pSort->pDeferredRowLoad = &sRowLoadInfo;
1232 regOrig = 0;
1233 }else{
1234 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1238 /* If the DISTINCT keyword was present on the SELECT statement
1239 ** and this row has been seen before, then do not make this row
1240 ** part of the result.
1242 if( hasDistinct ){
1243 int eType = pDistinct->eTnctType;
1244 int iTab = pDistinct->tabTnct;
1245 assert( nResultCol==p->pEList->nExpr );
1246 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1247 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1248 if( pSort==0 ){
1249 codeOffset(v, p->iOffset, iContinue);
1253 switch( eDest ){
1254 /* In this mode, write each query result to the key of the temporary
1255 ** table iParm.
1257 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1258 case SRT_Union: {
1259 int r1;
1260 r1 = sqlite3GetTempReg(pParse);
1261 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1262 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1263 sqlite3ReleaseTempReg(pParse, r1);
1264 break;
1267 /* Construct a record from the query result, but instead of
1268 ** saving that record, use it as a key to delete elements from
1269 ** the temporary table iParm.
1271 case SRT_Except: {
1272 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1273 break;
1275 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1277 /* Store the result as data using a unique key.
1279 case SRT_Fifo:
1280 case SRT_DistFifo:
1281 case SRT_Table:
1282 case SRT_EphemTab: {
1283 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1284 testcase( eDest==SRT_Table );
1285 testcase( eDest==SRT_EphemTab );
1286 testcase( eDest==SRT_Fifo );
1287 testcase( eDest==SRT_DistFifo );
1288 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1289 #ifndef SQLITE_OMIT_CTE
1290 if( eDest==SRT_DistFifo ){
1291 /* If the destination is DistFifo, then cursor (iParm+1) is open
1292 ** on an ephemeral index. If the current row is already present
1293 ** in the index, do not write it to the output. If not, add the
1294 ** current row to the index and proceed with writing it to the
1295 ** output table as well. */
1296 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1297 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1298 VdbeCoverage(v);
1299 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1300 assert( pSort==0 );
1302 #endif
1303 if( pSort ){
1304 assert( regResult==regOrig );
1305 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1306 }else{
1307 int r2 = sqlite3GetTempReg(pParse);
1308 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1309 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1310 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1311 sqlite3ReleaseTempReg(pParse, r2);
1313 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1314 break;
1317 case SRT_Upfrom: {
1318 if( pSort ){
1319 pushOntoSorter(
1320 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1321 }else{
1322 int i2 = pDest->iSDParm2;
1323 int r1 = sqlite3GetTempReg(pParse);
1325 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1326 ** might still be trying to return one row, because that is what
1327 ** aggregates do. Don't record that empty row in the output table. */
1328 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1330 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1331 regResult+(i2<0), nResultCol-(i2<0), r1);
1332 if( i2<0 ){
1333 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1334 }else{
1335 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1338 break;
1341 #ifndef SQLITE_OMIT_SUBQUERY
1342 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1343 ** then there should be a single item on the stack. Write this
1344 ** item into the set table with bogus data.
1346 case SRT_Set: {
1347 if( pSort ){
1348 /* At first glance you would think we could optimize out the
1349 ** ORDER BY in this case since the order of entries in the set
1350 ** does not matter. But there might be a LIMIT clause, in which
1351 ** case the order does matter */
1352 pushOntoSorter(
1353 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1354 }else{
1355 int r1 = sqlite3GetTempReg(pParse);
1356 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1357 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1358 r1, pDest->zAffSdst, nResultCol);
1359 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1360 sqlite3ReleaseTempReg(pParse, r1);
1362 break;
1366 /* If any row exist in the result set, record that fact and abort.
1368 case SRT_Exists: {
1369 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1370 /* The LIMIT clause will terminate the loop for us */
1371 break;
1374 /* If this is a scalar select that is part of an expression, then
1375 ** store the results in the appropriate memory cell or array of
1376 ** memory cells and break out of the scan loop.
1378 case SRT_Mem: {
1379 if( pSort ){
1380 assert( nResultCol<=pDest->nSdst );
1381 pushOntoSorter(
1382 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1383 }else{
1384 assert( nResultCol==pDest->nSdst );
1385 assert( regResult==iParm );
1386 /* The LIMIT clause will jump out of the loop for us */
1388 break;
1390 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1392 case SRT_Coroutine: /* Send data to a co-routine */
1393 case SRT_Output: { /* Return the results */
1394 testcase( eDest==SRT_Coroutine );
1395 testcase( eDest==SRT_Output );
1396 if( pSort ){
1397 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1398 nPrefixReg);
1399 }else if( eDest==SRT_Coroutine ){
1400 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1401 }else{
1402 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1404 break;
1407 #ifndef SQLITE_OMIT_CTE
1408 /* Write the results into a priority queue that is order according to
1409 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1410 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1411 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1412 ** final OP_Sequence column. The last column is the record as a blob.
1414 case SRT_DistQueue:
1415 case SRT_Queue: {
1416 int nKey;
1417 int r1, r2, r3;
1418 int addrTest = 0;
1419 ExprList *pSO;
1420 pSO = pDest->pOrderBy;
1421 assert( pSO );
1422 nKey = pSO->nExpr;
1423 r1 = sqlite3GetTempReg(pParse);
1424 r2 = sqlite3GetTempRange(pParse, nKey+2);
1425 r3 = r2+nKey+1;
1426 if( eDest==SRT_DistQueue ){
1427 /* If the destination is DistQueue, then cursor (iParm+1) is open
1428 ** on a second ephemeral index that holds all values every previously
1429 ** added to the queue. */
1430 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1431 regResult, nResultCol);
1432 VdbeCoverage(v);
1434 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1435 if( eDest==SRT_DistQueue ){
1436 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1437 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1439 for(i=0; i<nKey; i++){
1440 sqlite3VdbeAddOp2(v, OP_SCopy,
1441 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1442 r2+i);
1444 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1445 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1446 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1447 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1448 sqlite3ReleaseTempReg(pParse, r1);
1449 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1450 break;
1452 #endif /* SQLITE_OMIT_CTE */
1456 #if !defined(SQLITE_OMIT_TRIGGER)
1457 /* Discard the results. This is used for SELECT statements inside
1458 ** the body of a TRIGGER. The purpose of such selects is to call
1459 ** user-defined functions that have side effects. We do not care
1460 ** about the actual results of the select.
1462 default: {
1463 assert( eDest==SRT_Discard );
1464 break;
1466 #endif
1469 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1470 ** there is a sorter, in which case the sorter has already limited
1471 ** the output for us.
1473 if( pSort==0 && p->iLimit ){
1474 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1479 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1480 ** X extra columns.
1482 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1483 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1484 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1485 if( p ){
1486 p->aSortFlags = (u8*)&p->aColl[N+X];
1487 p->nKeyField = (u16)N;
1488 p->nAllField = (u16)(N+X);
1489 p->enc = ENC(db);
1490 p->db = db;
1491 p->nRef = 1;
1492 memset(&p[1], 0, nExtra);
1493 }else{
1494 return (KeyInfo*)sqlite3OomFault(db);
1496 return p;
1500 ** Deallocate a KeyInfo object
1502 void sqlite3KeyInfoUnref(KeyInfo *p){
1503 if( p ){
1504 assert( p->nRef>0 );
1505 p->nRef--;
1506 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1511 ** Make a new pointer to a KeyInfo object
1513 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1514 if( p ){
1515 assert( p->nRef>0 );
1516 p->nRef++;
1518 return p;
1521 #ifdef SQLITE_DEBUG
1523 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1524 ** can only be changed if this is just a single reference to the object.
1526 ** This routine is used only inside of assert() statements.
1528 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1529 #endif /* SQLITE_DEBUG */
1532 ** Given an expression list, generate a KeyInfo structure that records
1533 ** the collating sequence for each expression in that expression list.
1535 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1536 ** KeyInfo structure is appropriate for initializing a virtual index to
1537 ** implement that clause. If the ExprList is the result set of a SELECT
1538 ** then the KeyInfo structure is appropriate for initializing a virtual
1539 ** index to implement a DISTINCT test.
1541 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1542 ** function is responsible for seeing that this structure is eventually
1543 ** freed.
1545 KeyInfo *sqlite3KeyInfoFromExprList(
1546 Parse *pParse, /* Parsing context */
1547 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1548 int iStart, /* Begin with this column of pList */
1549 int nExtra /* Add this many extra columns to the end */
1551 int nExpr;
1552 KeyInfo *pInfo;
1553 struct ExprList_item *pItem;
1554 sqlite3 *db = pParse->db;
1555 int i;
1557 nExpr = pList->nExpr;
1558 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1559 if( pInfo ){
1560 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1561 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1562 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1563 pInfo->aSortFlags[i-iStart] = pItem->fg.sortFlags;
1566 return pInfo;
1570 ** Name of the connection operator, used for error messages.
1572 const char *sqlite3SelectOpName(int id){
1573 char *z;
1574 switch( id ){
1575 case TK_ALL: z = "UNION ALL"; break;
1576 case TK_INTERSECT: z = "INTERSECT"; break;
1577 case TK_EXCEPT: z = "EXCEPT"; break;
1578 default: z = "UNION"; break;
1580 return z;
1583 #ifndef SQLITE_OMIT_EXPLAIN
1585 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1586 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1587 ** where the caption is of the form:
1589 ** "USE TEMP B-TREE FOR xxx"
1591 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1592 ** is determined by the zUsage argument.
1594 static void explainTempTable(Parse *pParse, const char *zUsage){
1595 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1599 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1600 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1601 ** in sqlite3Select() to assign values to structure member variables that
1602 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1603 ** code with #ifndef directives.
1605 # define explainSetInteger(a, b) a = b
1607 #else
1608 /* No-op versions of the explainXXX() functions and macros. */
1609 # define explainTempTable(y,z)
1610 # define explainSetInteger(y,z)
1611 #endif
1615 ** If the inner loop was generated using a non-null pOrderBy argument,
1616 ** then the results were placed in a sorter. After the loop is terminated
1617 ** we need to run the sorter and output the results. The following
1618 ** routine generates the code needed to do that.
1620 static void generateSortTail(
1621 Parse *pParse, /* Parsing context */
1622 Select *p, /* The SELECT statement */
1623 SortCtx *pSort, /* Information on the ORDER BY clause */
1624 int nColumn, /* Number of columns of data */
1625 SelectDest *pDest /* Write the sorted results here */
1627 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1628 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1629 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1630 int addr; /* Top of output loop. Jump for Next. */
1631 int addrOnce = 0;
1632 int iTab;
1633 ExprList *pOrderBy = pSort->pOrderBy;
1634 int eDest = pDest->eDest;
1635 int iParm = pDest->iSDParm;
1636 int regRow;
1637 int regRowid;
1638 int iCol;
1639 int nKey; /* Number of key columns in sorter record */
1640 int iSortTab; /* Sorter cursor to read from */
1641 int i;
1642 int bSeq; /* True if sorter record includes seq. no. */
1643 int nRefKey = 0;
1644 struct ExprList_item *aOutEx = p->pEList->a;
1646 assert( addrBreak<0 );
1647 if( pSort->labelBkOut ){
1648 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1649 sqlite3VdbeGoto(v, addrBreak);
1650 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1653 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1654 /* Open any cursors needed for sorter-reference expressions */
1655 for(i=0; i<pSort->nDefer; i++){
1656 Table *pTab = pSort->aDefer[i].pTab;
1657 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1658 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1659 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1661 #endif
1663 iTab = pSort->iECursor;
1664 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1665 if( eDest==SRT_Mem && p->iOffset ){
1666 sqlite3VdbeAddOp2(v, OP_Null, 0, pDest->iSdst);
1668 regRowid = 0;
1669 regRow = pDest->iSdst;
1670 }else{
1671 regRowid = sqlite3GetTempReg(pParse);
1672 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1673 regRow = sqlite3GetTempReg(pParse);
1674 nColumn = 0;
1675 }else{
1676 regRow = sqlite3GetTempRange(pParse, nColumn);
1679 nKey = pOrderBy->nExpr - pSort->nOBSat;
1680 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1681 int regSortOut = ++pParse->nMem;
1682 iSortTab = pParse->nTab++;
1683 if( pSort->labelBkOut ){
1684 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1686 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1687 nKey+1+nColumn+nRefKey);
1688 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1689 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1690 VdbeCoverage(v);
1691 codeOffset(v, p->iOffset, addrContinue);
1692 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1693 bSeq = 0;
1694 }else{
1695 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1696 codeOffset(v, p->iOffset, addrContinue);
1697 iSortTab = iTab;
1698 bSeq = 1;
1700 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1701 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1702 if( aOutEx[i].fg.bSorterRef ) continue;
1703 #endif
1704 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1706 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1707 if( pSort->nDefer ){
1708 int iKey = iCol+1;
1709 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1711 for(i=0; i<pSort->nDefer; i++){
1712 int iCsr = pSort->aDefer[i].iCsr;
1713 Table *pTab = pSort->aDefer[i].pTab;
1714 int nKey = pSort->aDefer[i].nKey;
1716 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1717 if( HasRowid(pTab) ){
1718 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1719 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1720 sqlite3VdbeCurrentAddr(v)+1, regKey);
1721 }else{
1722 int k;
1723 int iJmp;
1724 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1725 for(k=0; k<nKey; k++){
1726 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1728 iJmp = sqlite3VdbeCurrentAddr(v);
1729 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1730 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1731 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1734 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1736 #endif
1737 for(i=nColumn-1; i>=0; i--){
1738 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1739 if( aOutEx[i].fg.bSorterRef ){
1740 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1741 }else
1742 #endif
1744 int iRead;
1745 if( aOutEx[i].u.x.iOrderByCol ){
1746 iRead = aOutEx[i].u.x.iOrderByCol-1;
1747 }else{
1748 iRead = iCol--;
1750 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1751 VdbeComment((v, "%s", aOutEx[i].zEName));
1754 switch( eDest ){
1755 case SRT_Table:
1756 case SRT_EphemTab: {
1757 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1758 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1759 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1760 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1761 break;
1763 #ifndef SQLITE_OMIT_SUBQUERY
1764 case SRT_Set: {
1765 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1766 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1767 pDest->zAffSdst, nColumn);
1768 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1769 break;
1771 case SRT_Mem: {
1772 /* The LIMIT clause will terminate the loop for us */
1773 break;
1775 #endif
1776 case SRT_Upfrom: {
1777 int i2 = pDest->iSDParm2;
1778 int r1 = sqlite3GetTempReg(pParse);
1779 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1780 if( i2<0 ){
1781 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1782 }else{
1783 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1785 break;
1787 default: {
1788 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1789 testcase( eDest==SRT_Output );
1790 testcase( eDest==SRT_Coroutine );
1791 if( eDest==SRT_Output ){
1792 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1793 }else{
1794 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1796 break;
1799 if( regRowid ){
1800 if( eDest==SRT_Set ){
1801 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1802 }else{
1803 sqlite3ReleaseTempReg(pParse, regRow);
1805 sqlite3ReleaseTempReg(pParse, regRowid);
1807 /* The bottom of the loop
1809 sqlite3VdbeResolveLabel(v, addrContinue);
1810 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1811 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1812 }else{
1813 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1815 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1816 sqlite3VdbeResolveLabel(v, addrBreak);
1820 ** Return a pointer to a string containing the 'declaration type' of the
1821 ** expression pExpr. The string may be treated as static by the caller.
1823 ** Also try to estimate the size of the returned value and return that
1824 ** result in *pEstWidth.
1826 ** The declaration type is the exact datatype definition extracted from the
1827 ** original CREATE TABLE statement if the expression is a column. The
1828 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1829 ** is considered a column can be complex in the presence of subqueries. The
1830 ** result-set expression in all of the following SELECT statements is
1831 ** considered a column by this function.
1833 ** SELECT col FROM tbl;
1834 ** SELECT (SELECT col FROM tbl;
1835 ** SELECT (SELECT col FROM tbl);
1836 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1838 ** The declaration type for any expression other than a column is NULL.
1840 ** This routine has either 3 or 6 parameters depending on whether or not
1841 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1843 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1844 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1845 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1846 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1847 #endif
1848 static const char *columnTypeImpl(
1849 NameContext *pNC,
1850 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1851 Expr *pExpr
1852 #else
1853 Expr *pExpr,
1854 const char **pzOrigDb,
1855 const char **pzOrigTab,
1856 const char **pzOrigCol
1857 #endif
1859 char const *zType = 0;
1860 int j;
1861 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1862 char const *zOrigDb = 0;
1863 char const *zOrigTab = 0;
1864 char const *zOrigCol = 0;
1865 #endif
1867 assert( pExpr!=0 );
1868 assert( pNC->pSrcList!=0 );
1869 switch( pExpr->op ){
1870 case TK_COLUMN: {
1871 /* The expression is a column. Locate the table the column is being
1872 ** extracted from in NameContext.pSrcList. This table may be real
1873 ** database table or a subquery.
1875 Table *pTab = 0; /* Table structure column is extracted from */
1876 Select *pS = 0; /* Select the column is extracted from */
1877 int iCol = pExpr->iColumn; /* Index of column in pTab */
1878 while( pNC && !pTab ){
1879 SrcList *pTabList = pNC->pSrcList;
1880 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1881 if( j<pTabList->nSrc ){
1882 pTab = pTabList->a[j].pTab;
1883 pS = pTabList->a[j].pSelect;
1884 }else{
1885 pNC = pNC->pNext;
1889 if( pTab==0 ){
1890 /* At one time, code such as "SELECT new.x" within a trigger would
1891 ** cause this condition to run. Since then, we have restructured how
1892 ** trigger code is generated and so this condition is no longer
1893 ** possible. However, it can still be true for statements like
1894 ** the following:
1896 ** CREATE TABLE t1(col INTEGER);
1897 ** SELECT (SELECT t1.col) FROM FROM t1;
1899 ** when columnType() is called on the expression "t1.col" in the
1900 ** sub-select. In this case, set the column type to NULL, even
1901 ** though it should really be "INTEGER".
1903 ** This is not a problem, as the column type of "t1.col" is never
1904 ** used. When columnType() is called on the expression
1905 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1906 ** branch below. */
1907 break;
1910 assert( pTab && ExprUseYTab(pExpr) && pExpr->y.pTab==pTab );
1911 if( pS ){
1912 /* The "table" is actually a sub-select or a view in the FROM clause
1913 ** of the SELECT statement. Return the declaration type and origin
1914 ** data for the result-set column of the sub-select.
1916 if( iCol<pS->pEList->nExpr
1917 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1918 && iCol>=0
1919 #else
1920 && ALWAYS(iCol>=0)
1921 #endif
1923 /* If iCol is less than zero, then the expression requests the
1924 ** rowid of the sub-select or view. This expression is legal (see
1925 ** test case misc2.2.2) - it always evaluates to NULL.
1927 NameContext sNC;
1928 Expr *p = pS->pEList->a[iCol].pExpr;
1929 sNC.pSrcList = pS->pSrc;
1930 sNC.pNext = pNC;
1931 sNC.pParse = pNC->pParse;
1932 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1934 }else{
1935 /* A real table or a CTE table */
1936 assert( !pS );
1937 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1938 if( iCol<0 ) iCol = pTab->iPKey;
1939 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1940 if( iCol<0 ){
1941 zType = "INTEGER";
1942 zOrigCol = "rowid";
1943 }else{
1944 zOrigCol = pTab->aCol[iCol].zCnName;
1945 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1947 zOrigTab = pTab->zName;
1948 if( pNC->pParse && pTab->pSchema ){
1949 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1950 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1952 #else
1953 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1954 if( iCol<0 ){
1955 zType = "INTEGER";
1956 }else{
1957 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1959 #endif
1961 break;
1963 #ifndef SQLITE_OMIT_SUBQUERY
1964 case TK_SELECT: {
1965 /* The expression is a sub-select. Return the declaration type and
1966 ** origin info for the single column in the result set of the SELECT
1967 ** statement.
1969 NameContext sNC;
1970 Select *pS;
1971 Expr *p;
1972 assert( ExprUseXSelect(pExpr) );
1973 pS = pExpr->x.pSelect;
1974 p = pS->pEList->a[0].pExpr;
1975 sNC.pSrcList = pS->pSrc;
1976 sNC.pNext = pNC;
1977 sNC.pParse = pNC->pParse;
1978 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1979 break;
1981 #endif
1984 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1985 if( pzOrigDb ){
1986 assert( pzOrigTab && pzOrigCol );
1987 *pzOrigDb = zOrigDb;
1988 *pzOrigTab = zOrigTab;
1989 *pzOrigCol = zOrigCol;
1991 #endif
1992 return zType;
1996 ** Generate code that will tell the VDBE the declaration types of columns
1997 ** in the result set.
1999 static void generateColumnTypes(
2000 Parse *pParse, /* Parser context */
2001 SrcList *pTabList, /* List of tables */
2002 ExprList *pEList /* Expressions defining the result set */
2004 #ifndef SQLITE_OMIT_DECLTYPE
2005 Vdbe *v = pParse->pVdbe;
2006 int i;
2007 NameContext sNC;
2008 sNC.pSrcList = pTabList;
2009 sNC.pParse = pParse;
2010 sNC.pNext = 0;
2011 for(i=0; i<pEList->nExpr; i++){
2012 Expr *p = pEList->a[i].pExpr;
2013 const char *zType;
2014 #ifdef SQLITE_ENABLE_COLUMN_METADATA
2015 const char *zOrigDb = 0;
2016 const char *zOrigTab = 0;
2017 const char *zOrigCol = 0;
2018 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
2020 /* The vdbe must make its own copy of the column-type and other
2021 ** column specific strings, in case the schema is reset before this
2022 ** virtual machine is deleted.
2024 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
2025 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
2026 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
2027 #else
2028 zType = columnType(&sNC, p, 0, 0, 0);
2029 #endif
2030 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
2032 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
2037 ** Compute the column names for a SELECT statement.
2039 ** The only guarantee that SQLite makes about column names is that if the
2040 ** column has an AS clause assigning it a name, that will be the name used.
2041 ** That is the only documented guarantee. However, countless applications
2042 ** developed over the years have made baseless assumptions about column names
2043 ** and will break if those assumptions changes. Hence, use extreme caution
2044 ** when modifying this routine to avoid breaking legacy.
2046 ** See Also: sqlite3ColumnsFromExprList()
2048 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
2049 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
2050 ** applications should operate this way. Nevertheless, we need to support the
2051 ** other modes for legacy:
2053 ** short=OFF, full=OFF: Column name is the text of the expression has it
2054 ** originally appears in the SELECT statement. In
2055 ** other words, the zSpan of the result expression.
2057 ** short=ON, full=OFF: (This is the default setting). If the result
2058 ** refers directly to a table column, then the
2059 ** result column name is just the table column
2060 ** name: COLUMN. Otherwise use zSpan.
2062 ** full=ON, short=ANY: If the result refers directly to a table column,
2063 ** then the result column name with the table name
2064 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
2066 void sqlite3GenerateColumnNames(
2067 Parse *pParse, /* Parser context */
2068 Select *pSelect /* Generate column names for this SELECT statement */
2070 Vdbe *v = pParse->pVdbe;
2071 int i;
2072 Table *pTab;
2073 SrcList *pTabList;
2074 ExprList *pEList;
2075 sqlite3 *db = pParse->db;
2076 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
2077 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
2079 #ifndef SQLITE_OMIT_EXPLAIN
2080 /* If this is an EXPLAIN, skip this step */
2081 if( pParse->explain ){
2082 return;
2084 #endif
2086 if( pParse->colNamesSet ) return;
2087 /* Column names are determined by the left-most term of a compound select */
2088 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2089 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
2090 pTabList = pSelect->pSrc;
2091 pEList = pSelect->pEList;
2092 assert( v!=0 );
2093 assert( pTabList!=0 );
2094 pParse->colNamesSet = 1;
2095 fullName = (db->flags & SQLITE_FullColNames)!=0;
2096 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
2097 sqlite3VdbeSetNumCols(v, pEList->nExpr);
2098 for(i=0; i<pEList->nExpr; i++){
2099 Expr *p = pEList->a[i].pExpr;
2101 assert( p!=0 );
2102 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
2103 assert( p->op!=TK_COLUMN
2104 || (ExprUseYTab(p) && p->y.pTab!=0) ); /* Covering idx not yet coded */
2105 if( pEList->a[i].zEName && pEList->a[i].fg.eEName==ENAME_NAME ){
2106 /* An AS clause always takes first priority */
2107 char *zName = pEList->a[i].zEName;
2108 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2109 }else if( srcName && p->op==TK_COLUMN ){
2110 char *zCol;
2111 int iCol = p->iColumn;
2112 pTab = p->y.pTab;
2113 assert( pTab!=0 );
2114 if( iCol<0 ) iCol = pTab->iPKey;
2115 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2116 if( iCol<0 ){
2117 zCol = "rowid";
2118 }else{
2119 zCol = pTab->aCol[iCol].zCnName;
2121 if( fullName ){
2122 char *zName = 0;
2123 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2124 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2125 }else{
2126 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2128 }else{
2129 const char *z = pEList->a[i].zEName;
2130 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2131 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2134 generateColumnTypes(pParse, pTabList, pEList);
2138 ** Given an expression list (which is really the list of expressions
2139 ** that form the result set of a SELECT statement) compute appropriate
2140 ** column names for a table that would hold the expression list.
2142 ** All column names will be unique.
2144 ** Only the column names are computed. Column.zType, Column.zColl,
2145 ** and other fields of Column are zeroed.
2147 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2148 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2150 ** The only guarantee that SQLite makes about column names is that if the
2151 ** column has an AS clause assigning it a name, that will be the name used.
2152 ** That is the only documented guarantee. However, countless applications
2153 ** developed over the years have made baseless assumptions about column names
2154 ** and will break if those assumptions changes. Hence, use extreme caution
2155 ** when modifying this routine to avoid breaking legacy.
2157 ** See Also: sqlite3GenerateColumnNames()
2159 int sqlite3ColumnsFromExprList(
2160 Parse *pParse, /* Parsing context */
2161 ExprList *pEList, /* Expr list from which to derive column names */
2162 i16 *pnCol, /* Write the number of columns here */
2163 Column **paCol /* Write the new column list here */
2165 sqlite3 *db = pParse->db; /* Database connection */
2166 int i, j; /* Loop counters */
2167 u32 cnt; /* Index added to make the name unique */
2168 Column *aCol, *pCol; /* For looping over result columns */
2169 int nCol; /* Number of columns in the result set */
2170 char *zName; /* Column name */
2171 int nName; /* Size of name in zName[] */
2172 Hash ht; /* Hash table of column names */
2173 Table *pTab;
2175 sqlite3HashInit(&ht);
2176 if( pEList ){
2177 nCol = pEList->nExpr;
2178 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2179 testcase( aCol==0 );
2180 if( NEVER(nCol>32767) ) nCol = 32767;
2181 }else{
2182 nCol = 0;
2183 aCol = 0;
2185 assert( nCol==(i16)nCol );
2186 *pnCol = nCol;
2187 *paCol = aCol;
2189 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2190 struct ExprList_item *pX = &pEList->a[i];
2191 struct ExprList_item *pCollide;
2192 /* Get an appropriate name for the column
2194 if( (zName = pX->zEName)!=0 && pX->fg.eEName==ENAME_NAME ){
2195 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2196 }else{
2197 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pX->pExpr);
2198 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2199 pColExpr = pColExpr->pRight;
2200 assert( pColExpr!=0 );
2202 if( pColExpr->op==TK_COLUMN
2203 && ALWAYS( ExprUseYTab(pColExpr) )
2204 && ALWAYS( pColExpr->y.pTab!=0 )
2206 /* For columns use the column name name */
2207 int iCol = pColExpr->iColumn;
2208 pTab = pColExpr->y.pTab;
2209 if( iCol<0 ) iCol = pTab->iPKey;
2210 zName = iCol>=0 ? pTab->aCol[iCol].zCnName : "rowid";
2211 }else if( pColExpr->op==TK_ID ){
2212 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2213 zName = pColExpr->u.zToken;
2214 }else{
2215 /* Use the original text of the column expression as its name */
2216 assert( zName==pX->zEName ); /* pointer comparison intended */
2219 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2220 zName = sqlite3DbStrDup(db, zName);
2221 }else{
2222 zName = sqlite3MPrintf(db,"column%d",i+1);
2225 /* Make sure the column name is unique. If the name is not unique,
2226 ** append an integer to the name so that it becomes unique.
2228 cnt = 0;
2229 while( zName && (pCollide = sqlite3HashFind(&ht, zName))!=0 ){
2230 if( pCollide->fg.bUsingTerm ){
2231 pCol->colFlags |= COLFLAG_NOEXPAND;
2233 nName = sqlite3Strlen30(zName);
2234 if( nName>0 ){
2235 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2236 if( zName[j]==':' ) nName = j;
2238 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2239 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2241 pCol->zCnName = zName;
2242 pCol->hName = sqlite3StrIHash(zName);
2243 if( pX->fg.bNoExpand ){
2244 pCol->colFlags |= COLFLAG_NOEXPAND;
2246 sqlite3ColumnPropertiesFromName(0, pCol);
2247 if( zName && sqlite3HashInsert(&ht, zName, pX)==pX ){
2248 sqlite3OomFault(db);
2251 sqlite3HashClear(&ht);
2252 if( db->mallocFailed ){
2253 for(j=0; j<i; j++){
2254 sqlite3DbFree(db, aCol[j].zCnName);
2256 sqlite3DbFree(db, aCol);
2257 *paCol = 0;
2258 *pnCol = 0;
2259 return SQLITE_NOMEM_BKPT;
2261 return SQLITE_OK;
2265 ** Add type and collation information to a column list based on
2266 ** a SELECT statement.
2268 ** The column list presumably came from selectColumnNamesFromExprList().
2269 ** The column list has only names, not types or collations. This
2270 ** routine goes through and adds the types and collations.
2272 ** This routine requires that all identifiers in the SELECT
2273 ** statement be resolved.
2275 void sqlite3SelectAddColumnTypeAndCollation(
2276 Parse *pParse, /* Parsing contexts */
2277 Table *pTab, /* Add column type information to this table */
2278 Select *pSelect, /* SELECT used to determine types and collations */
2279 char aff /* Default affinity for columns */
2281 sqlite3 *db = pParse->db;
2282 NameContext sNC;
2283 Column *pCol;
2284 CollSeq *pColl;
2285 int i;
2286 Expr *p;
2287 struct ExprList_item *a;
2289 assert( pSelect!=0 );
2290 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2291 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2292 if( db->mallocFailed ) return;
2293 memset(&sNC, 0, sizeof(sNC));
2294 sNC.pSrcList = pSelect->pSrc;
2295 a = pSelect->pEList->a;
2296 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2297 const char *zType;
2298 i64 n, m;
2299 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2300 p = a[i].pExpr;
2301 zType = columnType(&sNC, p, 0, 0, 0);
2302 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2303 pCol->affinity = sqlite3ExprAffinity(p);
2304 if( zType ){
2305 m = sqlite3Strlen30(zType);
2306 n = sqlite3Strlen30(pCol->zCnName);
2307 pCol->zCnName = sqlite3DbReallocOrFree(db, pCol->zCnName, n+m+2);
2308 if( pCol->zCnName ){
2309 memcpy(&pCol->zCnName[n+1], zType, m+1);
2310 pCol->colFlags |= COLFLAG_HASTYPE;
2311 }else{
2312 testcase( pCol->colFlags & COLFLAG_HASTYPE );
2313 pCol->colFlags &= ~(COLFLAG_HASTYPE|COLFLAG_HASCOLL);
2316 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2317 pColl = sqlite3ExprCollSeq(pParse, p);
2318 if( pColl ){
2319 assert( pTab->pIndex==0 );
2320 sqlite3ColumnSetColl(db, pCol, pColl->zName);
2323 pTab->szTabRow = 1; /* Any non-zero value works */
2327 ** Given a SELECT statement, generate a Table structure that describes
2328 ** the result set of that SELECT.
2330 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2331 Table *pTab;
2332 sqlite3 *db = pParse->db;
2333 u64 savedFlags;
2335 savedFlags = db->flags;
2336 db->flags &= ~(u64)SQLITE_FullColNames;
2337 db->flags |= SQLITE_ShortColNames;
2338 sqlite3SelectPrep(pParse, pSelect, 0);
2339 db->flags = savedFlags;
2340 if( pParse->nErr ) return 0;
2341 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2342 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2343 if( pTab==0 ){
2344 return 0;
2346 pTab->nTabRef = 1;
2347 pTab->zName = 0;
2348 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2349 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2350 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2351 pTab->iPKey = -1;
2352 if( db->mallocFailed ){
2353 sqlite3DeleteTable(db, pTab);
2354 return 0;
2356 return pTab;
2360 ** Get a VDBE for the given parser context. Create a new one if necessary.
2361 ** If an error occurs, return NULL and leave a message in pParse.
2363 Vdbe *sqlite3GetVdbe(Parse *pParse){
2364 if( pParse->pVdbe ){
2365 return pParse->pVdbe;
2367 if( pParse->pToplevel==0
2368 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2370 pParse->okConstFactor = 1;
2372 return sqlite3VdbeCreate(pParse);
2377 ** Compute the iLimit and iOffset fields of the SELECT based on the
2378 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2379 ** that appear in the original SQL statement after the LIMIT and OFFSET
2380 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2381 ** are the integer memory register numbers for counters used to compute
2382 ** the limit and offset. If there is no limit and/or offset, then
2383 ** iLimit and iOffset are negative.
2385 ** This routine changes the values of iLimit and iOffset only if
2386 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2387 ** and iOffset should have been preset to appropriate default values (zero)
2388 ** prior to calling this routine.
2390 ** The iOffset register (if it exists) is initialized to the value
2391 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2392 ** iOffset+1 is initialized to LIMIT+OFFSET.
2394 ** Only if pLimit->pLeft!=0 do the limit registers get
2395 ** redefined. The UNION ALL operator uses this property to force
2396 ** the reuse of the same limit and offset registers across multiple
2397 ** SELECT statements.
2399 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2400 Vdbe *v = 0;
2401 int iLimit = 0;
2402 int iOffset;
2403 int n;
2404 Expr *pLimit = p->pLimit;
2406 if( p->iLimit ) return;
2409 ** "LIMIT -1" always shows all rows. There is some
2410 ** controversy about what the correct behavior should be.
2411 ** The current implementation interprets "LIMIT 0" to mean
2412 ** no rows.
2414 if( pLimit ){
2415 assert( pLimit->op==TK_LIMIT );
2416 assert( pLimit->pLeft!=0 );
2417 p->iLimit = iLimit = ++pParse->nMem;
2418 v = sqlite3GetVdbe(pParse);
2419 assert( v!=0 );
2420 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2421 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2422 VdbeComment((v, "LIMIT counter"));
2423 if( n==0 ){
2424 sqlite3VdbeGoto(v, iBreak);
2425 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2426 p->nSelectRow = sqlite3LogEst((u64)n);
2427 p->selFlags |= SF_FixedLimit;
2429 }else{
2430 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2431 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2432 VdbeComment((v, "LIMIT counter"));
2433 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2435 if( pLimit->pRight ){
2436 p->iOffset = iOffset = ++pParse->nMem;
2437 pParse->nMem++; /* Allocate an extra register for limit+offset */
2438 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2439 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2440 VdbeComment((v, "OFFSET counter"));
2441 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2442 VdbeComment((v, "LIMIT+OFFSET"));
2447 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2449 ** Return the appropriate collating sequence for the iCol-th column of
2450 ** the result set for the compound-select statement "p". Return NULL if
2451 ** the column has no default collating sequence.
2453 ** The collating sequence for the compound select is taken from the
2454 ** left-most term of the select that has a collating sequence.
2456 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2457 CollSeq *pRet;
2458 if( p->pPrior ){
2459 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2460 }else{
2461 pRet = 0;
2463 assert( iCol>=0 );
2464 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2465 ** have been thrown during name resolution and we would not have gotten
2466 ** this far */
2467 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2468 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2470 return pRet;
2474 ** The select statement passed as the second parameter is a compound SELECT
2475 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2476 ** structure suitable for implementing the ORDER BY.
2478 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2479 ** function is responsible for ensuring that this structure is eventually
2480 ** freed.
2482 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2483 ExprList *pOrderBy = p->pOrderBy;
2484 int nOrderBy = ALWAYS(pOrderBy!=0) ? pOrderBy->nExpr : 0;
2485 sqlite3 *db = pParse->db;
2486 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2487 if( pRet ){
2488 int i;
2489 for(i=0; i<nOrderBy; i++){
2490 struct ExprList_item *pItem = &pOrderBy->a[i];
2491 Expr *pTerm = pItem->pExpr;
2492 CollSeq *pColl;
2494 if( pTerm->flags & EP_Collate ){
2495 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2496 }else{
2497 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2498 if( pColl==0 ) pColl = db->pDfltColl;
2499 pOrderBy->a[i].pExpr =
2500 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2502 assert( sqlite3KeyInfoIsWriteable(pRet) );
2503 pRet->aColl[i] = pColl;
2504 pRet->aSortFlags[i] = pOrderBy->a[i].fg.sortFlags;
2508 return pRet;
2511 #ifndef SQLITE_OMIT_CTE
2513 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2514 ** query of the form:
2516 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2517 ** \___________/ \_______________/
2518 ** p->pPrior p
2521 ** There is exactly one reference to the recursive-table in the FROM clause
2522 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2524 ** The setup-query runs once to generate an initial set of rows that go
2525 ** into a Queue table. Rows are extracted from the Queue table one by
2526 ** one. Each row extracted from Queue is output to pDest. Then the single
2527 ** extracted row (now in the iCurrent table) becomes the content of the
2528 ** recursive-table for a recursive-query run. The output of the recursive-query
2529 ** is added back into the Queue table. Then another row is extracted from Queue
2530 ** and the iteration continues until the Queue table is empty.
2532 ** If the compound query operator is UNION then no duplicate rows are ever
2533 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2534 ** that have ever been inserted into Queue and causes duplicates to be
2535 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2537 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2538 ** ORDER BY order and the first entry is extracted for each cycle. Without
2539 ** an ORDER BY, the Queue table is just a FIFO.
2541 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2542 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2543 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2544 ** with a positive value, then the first OFFSET outputs are discarded rather
2545 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2546 ** rows have been skipped.
2548 static void generateWithRecursiveQuery(
2549 Parse *pParse, /* Parsing context */
2550 Select *p, /* The recursive SELECT to be coded */
2551 SelectDest *pDest /* What to do with query results */
2553 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2554 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2555 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2556 Select *pSetup; /* The setup query */
2557 Select *pFirstRec; /* Left-most recursive term */
2558 int addrTop; /* Top of the loop */
2559 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2560 int iCurrent = 0; /* The Current table */
2561 int regCurrent; /* Register holding Current table */
2562 int iQueue; /* The Queue table */
2563 int iDistinct = 0; /* To ensure unique results if UNION */
2564 int eDest = SRT_Fifo; /* How to write to Queue */
2565 SelectDest destQueue; /* SelectDest targetting the Queue table */
2566 int i; /* Loop counter */
2567 int rc; /* Result code */
2568 ExprList *pOrderBy; /* The ORDER BY clause */
2569 Expr *pLimit; /* Saved LIMIT and OFFSET */
2570 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2572 #ifndef SQLITE_OMIT_WINDOWFUNC
2573 if( p->pWin ){
2574 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2575 return;
2577 #endif
2579 /* Obtain authorization to do a recursive query */
2580 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2582 /* Process the LIMIT and OFFSET clauses, if they exist */
2583 addrBreak = sqlite3VdbeMakeLabel(pParse);
2584 p->nSelectRow = 320; /* 4 billion rows */
2585 computeLimitRegisters(pParse, p, addrBreak);
2586 pLimit = p->pLimit;
2587 regLimit = p->iLimit;
2588 regOffset = p->iOffset;
2589 p->pLimit = 0;
2590 p->iLimit = p->iOffset = 0;
2591 pOrderBy = p->pOrderBy;
2593 /* Locate the cursor number of the Current table */
2594 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2595 if( pSrc->a[i].fg.isRecursive ){
2596 iCurrent = pSrc->a[i].iCursor;
2597 break;
2601 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2602 ** the Distinct table must be exactly one greater than Queue in order
2603 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2604 iQueue = pParse->nTab++;
2605 if( p->op==TK_UNION ){
2606 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2607 iDistinct = pParse->nTab++;
2608 }else{
2609 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2611 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2613 /* Allocate cursors for Current, Queue, and Distinct. */
2614 regCurrent = ++pParse->nMem;
2615 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2616 if( pOrderBy ){
2617 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2618 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2619 (char*)pKeyInfo, P4_KEYINFO);
2620 destQueue.pOrderBy = pOrderBy;
2621 }else{
2622 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2624 VdbeComment((v, "Queue table"));
2625 if( iDistinct ){
2626 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2627 p->selFlags |= SF_UsesEphemeral;
2630 /* Detach the ORDER BY clause from the compound SELECT */
2631 p->pOrderBy = 0;
2633 /* Figure out how many elements of the compound SELECT are part of the
2634 ** recursive query. Make sure no recursive elements use aggregate
2635 ** functions. Mark the recursive elements as UNION ALL even if they
2636 ** are really UNION because the distinctness will be enforced by the
2637 ** iDistinct table. pFirstRec is left pointing to the left-most
2638 ** recursive term of the CTE.
2640 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2641 if( pFirstRec->selFlags & SF_Aggregate ){
2642 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2643 goto end_of_recursive_query;
2645 pFirstRec->op = TK_ALL;
2646 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2649 /* Store the results of the setup-query in Queue. */
2650 pSetup = pFirstRec->pPrior;
2651 pSetup->pNext = 0;
2652 ExplainQueryPlan((pParse, 1, "SETUP"));
2653 rc = sqlite3Select(pParse, pSetup, &destQueue);
2654 pSetup->pNext = p;
2655 if( rc ) goto end_of_recursive_query;
2657 /* Find the next row in the Queue and output that row */
2658 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2660 /* Transfer the next row in Queue over to Current */
2661 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2662 if( pOrderBy ){
2663 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2664 }else{
2665 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2667 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2669 /* Output the single row in Current */
2670 addrCont = sqlite3VdbeMakeLabel(pParse);
2671 codeOffset(v, regOffset, addrCont);
2672 selectInnerLoop(pParse, p, iCurrent,
2673 0, 0, pDest, addrCont, addrBreak);
2674 if( regLimit ){
2675 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2676 VdbeCoverage(v);
2678 sqlite3VdbeResolveLabel(v, addrCont);
2680 /* Execute the recursive SELECT taking the single row in Current as
2681 ** the value for the recursive-table. Store the results in the Queue.
2683 pFirstRec->pPrior = 0;
2684 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2685 sqlite3Select(pParse, p, &destQueue);
2686 assert( pFirstRec->pPrior==0 );
2687 pFirstRec->pPrior = pSetup;
2689 /* Keep running the loop until the Queue is empty */
2690 sqlite3VdbeGoto(v, addrTop);
2691 sqlite3VdbeResolveLabel(v, addrBreak);
2693 end_of_recursive_query:
2694 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2695 p->pOrderBy = pOrderBy;
2696 p->pLimit = pLimit;
2697 return;
2699 #endif /* SQLITE_OMIT_CTE */
2701 /* Forward references */
2702 static int multiSelectOrderBy(
2703 Parse *pParse, /* Parsing context */
2704 Select *p, /* The right-most of SELECTs to be coded */
2705 SelectDest *pDest /* What to do with query results */
2709 ** Handle the special case of a compound-select that originates from a
2710 ** VALUES clause. By handling this as a special case, we avoid deep
2711 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2712 ** on a VALUES clause.
2714 ** Because the Select object originates from a VALUES clause:
2715 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2716 ** (2) All terms are UNION ALL
2717 ** (3) There is no ORDER BY clause
2719 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2720 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2721 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2722 ** Since the limit is exactly 1, we only need to evaluate the left-most VALUES.
2724 static int multiSelectValues(
2725 Parse *pParse, /* Parsing context */
2726 Select *p, /* The right-most of SELECTs to be coded */
2727 SelectDest *pDest /* What to do with query results */
2729 int nRow = 1;
2730 int rc = 0;
2731 int bShowAll = p->pLimit==0;
2732 assert( p->selFlags & SF_MultiValue );
2734 assert( p->selFlags & SF_Values );
2735 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2736 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2737 #ifndef SQLITE_OMIT_WINDOWFUNC
2738 if( p->pWin ) return -1;
2739 #endif
2740 if( p->pPrior==0 ) break;
2741 assert( p->pPrior->pNext==p );
2742 p = p->pPrior;
2743 nRow += bShowAll;
2744 }while(1);
2745 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2746 nRow==1 ? "" : "S"));
2747 while( p ){
2748 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2749 if( !bShowAll ) break;
2750 p->nSelectRow = nRow;
2751 p = p->pNext;
2753 return rc;
2757 ** Return true if the SELECT statement which is known to be the recursive
2758 ** part of a recursive CTE still has its anchor terms attached. If the
2759 ** anchor terms have already been removed, then return false.
2761 static int hasAnchor(Select *p){
2762 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2763 return p!=0;
2767 ** This routine is called to process a compound query form from
2768 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2769 ** INTERSECT
2771 ** "p" points to the right-most of the two queries. the query on the
2772 ** left is p->pPrior. The left query could also be a compound query
2773 ** in which case this routine will be called recursively.
2775 ** The results of the total query are to be written into a destination
2776 ** of type eDest with parameter iParm.
2778 ** Example 1: Consider a three-way compound SQL statement.
2780 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2782 ** This statement is parsed up as follows:
2784 ** SELECT c FROM t3
2785 ** |
2786 ** `-----> SELECT b FROM t2
2787 ** |
2788 ** `------> SELECT a FROM t1
2790 ** The arrows in the diagram above represent the Select.pPrior pointer.
2791 ** So if this routine is called with p equal to the t3 query, then
2792 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2794 ** Notice that because of the way SQLite parses compound SELECTs, the
2795 ** individual selects always group from left to right.
2797 static int multiSelect(
2798 Parse *pParse, /* Parsing context */
2799 Select *p, /* The right-most of SELECTs to be coded */
2800 SelectDest *pDest /* What to do with query results */
2802 int rc = SQLITE_OK; /* Success code from a subroutine */
2803 Select *pPrior; /* Another SELECT immediately to our left */
2804 Vdbe *v; /* Generate code to this VDBE */
2805 SelectDest dest; /* Alternative data destination */
2806 Select *pDelete = 0; /* Chain of simple selects to delete */
2807 sqlite3 *db; /* Database connection */
2809 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2810 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2812 assert( p && p->pPrior ); /* Calling function guarantees this much */
2813 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2814 assert( p->selFlags & SF_Compound );
2815 db = pParse->db;
2816 pPrior = p->pPrior;
2817 dest = *pDest;
2818 assert( pPrior->pOrderBy==0 );
2819 assert( pPrior->pLimit==0 );
2821 v = sqlite3GetVdbe(pParse);
2822 assert( v!=0 ); /* The VDBE already created by calling function */
2824 /* Create the destination temporary table if necessary
2826 if( dest.eDest==SRT_EphemTab ){
2827 assert( p->pEList );
2828 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2829 dest.eDest = SRT_Table;
2832 /* Special handling for a compound-select that originates as a VALUES clause.
2834 if( p->selFlags & SF_MultiValue ){
2835 rc = multiSelectValues(pParse, p, &dest);
2836 if( rc>=0 ) goto multi_select_end;
2837 rc = SQLITE_OK;
2840 /* Make sure all SELECTs in the statement have the same number of elements
2841 ** in their result sets.
2843 assert( p->pEList && pPrior->pEList );
2844 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2846 #ifndef SQLITE_OMIT_CTE
2847 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2848 generateWithRecursiveQuery(pParse, p, &dest);
2849 }else
2850 #endif
2852 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2854 if( p->pOrderBy ){
2855 return multiSelectOrderBy(pParse, p, pDest);
2856 }else{
2858 #ifndef SQLITE_OMIT_EXPLAIN
2859 if( pPrior->pPrior==0 ){
2860 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2861 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2863 #endif
2865 /* Generate code for the left and right SELECT statements.
2867 switch( p->op ){
2868 case TK_ALL: {
2869 int addr = 0;
2870 int nLimit = 0; /* Initialize to suppress harmless compiler warning */
2871 assert( !pPrior->pLimit );
2872 pPrior->iLimit = p->iLimit;
2873 pPrior->iOffset = p->iOffset;
2874 pPrior->pLimit = p->pLimit;
2875 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2876 rc = sqlite3Select(pParse, pPrior, &dest);
2877 pPrior->pLimit = 0;
2878 if( rc ){
2879 goto multi_select_end;
2881 p->pPrior = 0;
2882 p->iLimit = pPrior->iLimit;
2883 p->iOffset = pPrior->iOffset;
2884 if( p->iLimit ){
2885 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2886 VdbeComment((v, "Jump ahead if LIMIT reached"));
2887 if( p->iOffset ){
2888 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2889 p->iLimit, p->iOffset+1, p->iOffset);
2892 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2893 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2894 rc = sqlite3Select(pParse, p, &dest);
2895 testcase( rc!=SQLITE_OK );
2896 pDelete = p->pPrior;
2897 p->pPrior = pPrior;
2898 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2899 if( p->pLimit
2900 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2901 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2903 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2905 if( addr ){
2906 sqlite3VdbeJumpHere(v, addr);
2908 break;
2910 case TK_EXCEPT:
2911 case TK_UNION: {
2912 int unionTab; /* Cursor number of the temp table holding result */
2913 u8 op = 0; /* One of the SRT_ operations to apply to self */
2914 int priorOp; /* The SRT_ operation to apply to prior selects */
2915 Expr *pLimit; /* Saved values of p->nLimit */
2916 int addr;
2917 SelectDest uniondest;
2919 testcase( p->op==TK_EXCEPT );
2920 testcase( p->op==TK_UNION );
2921 priorOp = SRT_Union;
2922 if( dest.eDest==priorOp ){
2923 /* We can reuse a temporary table generated by a SELECT to our
2924 ** right.
2926 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2927 unionTab = dest.iSDParm;
2928 }else{
2929 /* We will need to create our own temporary table to hold the
2930 ** intermediate results.
2932 unionTab = pParse->nTab++;
2933 assert( p->pOrderBy==0 );
2934 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2935 assert( p->addrOpenEphm[0] == -1 );
2936 p->addrOpenEphm[0] = addr;
2937 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2938 assert( p->pEList );
2942 /* Code the SELECT statements to our left
2944 assert( !pPrior->pOrderBy );
2945 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2946 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2947 rc = sqlite3Select(pParse, pPrior, &uniondest);
2948 if( rc ){
2949 goto multi_select_end;
2952 /* Code the current SELECT statement
2954 if( p->op==TK_EXCEPT ){
2955 op = SRT_Except;
2956 }else{
2957 assert( p->op==TK_UNION );
2958 op = SRT_Union;
2960 p->pPrior = 0;
2961 pLimit = p->pLimit;
2962 p->pLimit = 0;
2963 uniondest.eDest = op;
2964 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2965 sqlite3SelectOpName(p->op)));
2966 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2967 rc = sqlite3Select(pParse, p, &uniondest);
2968 testcase( rc!=SQLITE_OK );
2969 assert( p->pOrderBy==0 );
2970 pDelete = p->pPrior;
2971 p->pPrior = pPrior;
2972 p->pOrderBy = 0;
2973 if( p->op==TK_UNION ){
2974 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2976 sqlite3ExprDelete(db, p->pLimit);
2977 p->pLimit = pLimit;
2978 p->iLimit = 0;
2979 p->iOffset = 0;
2981 /* Convert the data in the temporary table into whatever form
2982 ** it is that we currently need.
2984 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2985 assert( p->pEList || db->mallocFailed );
2986 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2987 int iCont, iBreak, iStart;
2988 iBreak = sqlite3VdbeMakeLabel(pParse);
2989 iCont = sqlite3VdbeMakeLabel(pParse);
2990 computeLimitRegisters(pParse, p, iBreak);
2991 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2992 iStart = sqlite3VdbeCurrentAddr(v);
2993 selectInnerLoop(pParse, p, unionTab,
2994 0, 0, &dest, iCont, iBreak);
2995 sqlite3VdbeResolveLabel(v, iCont);
2996 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2997 sqlite3VdbeResolveLabel(v, iBreak);
2998 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
3000 break;
3002 default: assert( p->op==TK_INTERSECT ); {
3003 int tab1, tab2;
3004 int iCont, iBreak, iStart;
3005 Expr *pLimit;
3006 int addr;
3007 SelectDest intersectdest;
3008 int r1;
3010 /* INTERSECT is different from the others since it requires
3011 ** two temporary tables. Hence it has its own case. Begin
3012 ** by allocating the tables we will need.
3014 tab1 = pParse->nTab++;
3015 tab2 = pParse->nTab++;
3016 assert( p->pOrderBy==0 );
3018 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
3019 assert( p->addrOpenEphm[0] == -1 );
3020 p->addrOpenEphm[0] = addr;
3021 findRightmost(p)->selFlags |= SF_UsesEphemeral;
3022 assert( p->pEList );
3024 /* Code the SELECTs to our left into temporary table "tab1".
3026 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
3027 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
3028 rc = sqlite3Select(pParse, pPrior, &intersectdest);
3029 if( rc ){
3030 goto multi_select_end;
3033 /* Code the current SELECT into temporary table "tab2"
3035 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
3036 assert( p->addrOpenEphm[1] == -1 );
3037 p->addrOpenEphm[1] = addr;
3038 p->pPrior = 0;
3039 pLimit = p->pLimit;
3040 p->pLimit = 0;
3041 intersectdest.iSDParm = tab2;
3042 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
3043 sqlite3SelectOpName(p->op)));
3044 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
3045 rc = sqlite3Select(pParse, p, &intersectdest);
3046 testcase( rc!=SQLITE_OK );
3047 pDelete = p->pPrior;
3048 p->pPrior = pPrior;
3049 if( p->nSelectRow>pPrior->nSelectRow ){
3050 p->nSelectRow = pPrior->nSelectRow;
3052 sqlite3ExprDelete(db, p->pLimit);
3053 p->pLimit = pLimit;
3055 /* Generate code to take the intersection of the two temporary
3056 ** tables.
3058 if( rc ) break;
3059 assert( p->pEList );
3060 iBreak = sqlite3VdbeMakeLabel(pParse);
3061 iCont = sqlite3VdbeMakeLabel(pParse);
3062 computeLimitRegisters(pParse, p, iBreak);
3063 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
3064 r1 = sqlite3GetTempReg(pParse);
3065 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
3066 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
3067 VdbeCoverage(v);
3068 sqlite3ReleaseTempReg(pParse, r1);
3069 selectInnerLoop(pParse, p, tab1,
3070 0, 0, &dest, iCont, iBreak);
3071 sqlite3VdbeResolveLabel(v, iCont);
3072 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
3073 sqlite3VdbeResolveLabel(v, iBreak);
3074 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
3075 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
3076 break;
3080 #ifndef SQLITE_OMIT_EXPLAIN
3081 if( p->pNext==0 ){
3082 ExplainQueryPlanPop(pParse);
3084 #endif
3086 if( pParse->nErr ) goto multi_select_end;
3088 /* Compute collating sequences used by
3089 ** temporary tables needed to implement the compound select.
3090 ** Attach the KeyInfo structure to all temporary tables.
3092 ** This section is run by the right-most SELECT statement only.
3093 ** SELECT statements to the left always skip this part. The right-most
3094 ** SELECT might also skip this part if it has no ORDER BY clause and
3095 ** no temp tables are required.
3097 if( p->selFlags & SF_UsesEphemeral ){
3098 int i; /* Loop counter */
3099 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
3100 Select *pLoop; /* For looping through SELECT statements */
3101 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
3102 int nCol; /* Number of columns in result set */
3104 assert( p->pNext==0 );
3105 assert( p->pEList!=0 );
3106 nCol = p->pEList->nExpr;
3107 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
3108 if( !pKeyInfo ){
3109 rc = SQLITE_NOMEM_BKPT;
3110 goto multi_select_end;
3112 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
3113 *apColl = multiSelectCollSeq(pParse, p, i);
3114 if( 0==*apColl ){
3115 *apColl = db->pDfltColl;
3119 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
3120 for(i=0; i<2; i++){
3121 int addr = pLoop->addrOpenEphm[i];
3122 if( addr<0 ){
3123 /* If [0] is unused then [1] is also unused. So we can
3124 ** always safely abort as soon as the first unused slot is found */
3125 assert( pLoop->addrOpenEphm[1]<0 );
3126 break;
3128 sqlite3VdbeChangeP2(v, addr, nCol);
3129 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3130 P4_KEYINFO);
3131 pLoop->addrOpenEphm[i] = -1;
3134 sqlite3KeyInfoUnref(pKeyInfo);
3137 multi_select_end:
3138 pDest->iSdst = dest.iSdst;
3139 pDest->nSdst = dest.nSdst;
3140 if( pDelete ){
3141 sqlite3ParserAddCleanup(pParse,
3142 (void(*)(sqlite3*,void*))sqlite3SelectDelete,
3143 pDelete);
3145 return rc;
3147 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3150 ** Error message for when two or more terms of a compound select have different
3151 ** size result sets.
3153 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3154 if( p->selFlags & SF_Values ){
3155 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3156 }else{
3157 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3158 " do not have the same number of result columns",
3159 sqlite3SelectOpName(p->op));
3164 ** Code an output subroutine for a coroutine implementation of a
3165 ** SELECT statment.
3167 ** The data to be output is contained in pIn->iSdst. There are
3168 ** pIn->nSdst columns to be output. pDest is where the output should
3169 ** be sent.
3171 ** regReturn is the number of the register holding the subroutine
3172 ** return address.
3174 ** If regPrev>0 then it is the first register in a vector that
3175 ** records the previous output. mem[regPrev] is a flag that is false
3176 ** if there has been no previous output. If regPrev>0 then code is
3177 ** generated to suppress duplicates. pKeyInfo is used for comparing
3178 ** keys.
3180 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3181 ** iBreak.
3183 static int generateOutputSubroutine(
3184 Parse *pParse, /* Parsing context */
3185 Select *p, /* The SELECT statement */
3186 SelectDest *pIn, /* Coroutine supplying data */
3187 SelectDest *pDest, /* Where to send the data */
3188 int regReturn, /* The return address register */
3189 int regPrev, /* Previous result register. No uniqueness if 0 */
3190 KeyInfo *pKeyInfo, /* For comparing with previous entry */
3191 int iBreak /* Jump here if we hit the LIMIT */
3193 Vdbe *v = pParse->pVdbe;
3194 int iContinue;
3195 int addr;
3197 addr = sqlite3VdbeCurrentAddr(v);
3198 iContinue = sqlite3VdbeMakeLabel(pParse);
3200 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3202 if( regPrev ){
3203 int addr1, addr2;
3204 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3205 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3206 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3207 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3208 sqlite3VdbeJumpHere(v, addr1);
3209 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3210 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3212 if( pParse->db->mallocFailed ) return 0;
3214 /* Suppress the first OFFSET entries if there is an OFFSET clause
3216 codeOffset(v, p->iOffset, iContinue);
3218 assert( pDest->eDest!=SRT_Exists );
3219 assert( pDest->eDest!=SRT_Table );
3220 switch( pDest->eDest ){
3221 /* Store the result as data using a unique key.
3223 case SRT_EphemTab: {
3224 int r1 = sqlite3GetTempReg(pParse);
3225 int r2 = sqlite3GetTempReg(pParse);
3226 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3227 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3228 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3229 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3230 sqlite3ReleaseTempReg(pParse, r2);
3231 sqlite3ReleaseTempReg(pParse, r1);
3232 break;
3235 #ifndef SQLITE_OMIT_SUBQUERY
3236 /* If we are creating a set for an "expr IN (SELECT ...)".
3238 case SRT_Set: {
3239 int r1;
3240 testcase( pIn->nSdst>1 );
3241 r1 = sqlite3GetTempReg(pParse);
3242 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3243 r1, pDest->zAffSdst, pIn->nSdst);
3244 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3245 pIn->iSdst, pIn->nSdst);
3246 sqlite3ReleaseTempReg(pParse, r1);
3247 break;
3250 /* If this is a scalar select that is part of an expression, then
3251 ** store the results in the appropriate memory cell and break out
3252 ** of the scan loop. Note that the select might return multiple columns
3253 ** if it is the RHS of a row-value IN operator.
3255 case SRT_Mem: {
3256 testcase( pIn->nSdst>1 );
3257 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3258 /* The LIMIT clause will jump out of the loop for us */
3259 break;
3261 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3263 /* The results are stored in a sequence of registers
3264 ** starting at pDest->iSdst. Then the co-routine yields.
3266 case SRT_Coroutine: {
3267 if( pDest->iSdst==0 ){
3268 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3269 pDest->nSdst = pIn->nSdst;
3271 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3272 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3273 break;
3276 /* If none of the above, then the result destination must be
3277 ** SRT_Output. This routine is never called with any other
3278 ** destination other than the ones handled above or SRT_Output.
3280 ** For SRT_Output, results are stored in a sequence of registers.
3281 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3282 ** return the next row of result.
3284 default: {
3285 assert( pDest->eDest==SRT_Output );
3286 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3287 break;
3291 /* Jump to the end of the loop if the LIMIT is reached.
3293 if( p->iLimit ){
3294 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3297 /* Generate the subroutine return
3299 sqlite3VdbeResolveLabel(v, iContinue);
3300 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3302 return addr;
3306 ** Alternative compound select code generator for cases when there
3307 ** is an ORDER BY clause.
3309 ** We assume a query of the following form:
3311 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3313 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3314 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3315 ** co-routines. Then run the co-routines in parallel and merge the results
3316 ** into the output. In addition to the two coroutines (called selectA and
3317 ** selectB) there are 7 subroutines:
3319 ** outA: Move the output of the selectA coroutine into the output
3320 ** of the compound query.
3322 ** outB: Move the output of the selectB coroutine into the output
3323 ** of the compound query. (Only generated for UNION and
3324 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3325 ** appears only in B.)
3327 ** AltB: Called when there is data from both coroutines and A<B.
3329 ** AeqB: Called when there is data from both coroutines and A==B.
3331 ** AgtB: Called when there is data from both coroutines and A>B.
3333 ** EofA: Called when data is exhausted from selectA.
3335 ** EofB: Called when data is exhausted from selectB.
3337 ** The implementation of the latter five subroutines depend on which
3338 ** <operator> is used:
3341 ** UNION ALL UNION EXCEPT INTERSECT
3342 ** ------------- ----------------- -------------- -----------------
3343 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3345 ** AeqB: outA, nextA nextA nextA outA, nextA
3347 ** AgtB: outB, nextB outB, nextB nextB nextB
3349 ** EofA: outB, nextB outB, nextB halt halt
3351 ** EofB: outA, nextA outA, nextA outA, nextA halt
3353 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3354 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3355 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3356 ** following nextX causes a jump to the end of the select processing.
3358 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3359 ** within the output subroutine. The regPrev register set holds the previously
3360 ** output value. A comparison is made against this value and the output
3361 ** is skipped if the next results would be the same as the previous.
3363 ** The implementation plan is to implement the two coroutines and seven
3364 ** subroutines first, then put the control logic at the bottom. Like this:
3366 ** goto Init
3367 ** coA: coroutine for left query (A)
3368 ** coB: coroutine for right query (B)
3369 ** outA: output one row of A
3370 ** outB: output one row of B (UNION and UNION ALL only)
3371 ** EofA: ...
3372 ** EofB: ...
3373 ** AltB: ...
3374 ** AeqB: ...
3375 ** AgtB: ...
3376 ** Init: initialize coroutine registers
3377 ** yield coA
3378 ** if eof(A) goto EofA
3379 ** yield coB
3380 ** if eof(B) goto EofB
3381 ** Cmpr: Compare A, B
3382 ** Jump AltB, AeqB, AgtB
3383 ** End: ...
3385 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3386 ** actually called using Gosub and they do not Return. EofA and EofB loop
3387 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3388 ** and AgtB jump to either L2 or to one of EofA or EofB.
3390 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3391 static int multiSelectOrderBy(
3392 Parse *pParse, /* Parsing context */
3393 Select *p, /* The right-most of SELECTs to be coded */
3394 SelectDest *pDest /* What to do with query results */
3396 int i, j; /* Loop counters */
3397 Select *pPrior; /* Another SELECT immediately to our left */
3398 Select *pSplit; /* Left-most SELECT in the right-hand group */
3399 int nSelect; /* Number of SELECT statements in the compound */
3400 Vdbe *v; /* Generate code to this VDBE */
3401 SelectDest destA; /* Destination for coroutine A */
3402 SelectDest destB; /* Destination for coroutine B */
3403 int regAddrA; /* Address register for select-A coroutine */
3404 int regAddrB; /* Address register for select-B coroutine */
3405 int addrSelectA; /* Address of the select-A coroutine */
3406 int addrSelectB; /* Address of the select-B coroutine */
3407 int regOutA; /* Address register for the output-A subroutine */
3408 int regOutB; /* Address register for the output-B subroutine */
3409 int addrOutA; /* Address of the output-A subroutine */
3410 int addrOutB = 0; /* Address of the output-B subroutine */
3411 int addrEofA; /* Address of the select-A-exhausted subroutine */
3412 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3413 int addrEofB; /* Address of the select-B-exhausted subroutine */
3414 int addrAltB; /* Address of the A<B subroutine */
3415 int addrAeqB; /* Address of the A==B subroutine */
3416 int addrAgtB; /* Address of the A>B subroutine */
3417 int regLimitA; /* Limit register for select-A */
3418 int regLimitB; /* Limit register for select-A */
3419 int regPrev; /* A range of registers to hold previous output */
3420 int savedLimit; /* Saved value of p->iLimit */
3421 int savedOffset; /* Saved value of p->iOffset */
3422 int labelCmpr; /* Label for the start of the merge algorithm */
3423 int labelEnd; /* Label for the end of the overall SELECT stmt */
3424 int addr1; /* Jump instructions that get retargetted */
3425 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3426 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3427 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3428 sqlite3 *db; /* Database connection */
3429 ExprList *pOrderBy; /* The ORDER BY clause */
3430 int nOrderBy; /* Number of terms in the ORDER BY clause */
3431 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3433 assert( p->pOrderBy!=0 );
3434 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3435 db = pParse->db;
3436 v = pParse->pVdbe;
3437 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3438 labelEnd = sqlite3VdbeMakeLabel(pParse);
3439 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3442 /* Patch up the ORDER BY clause
3444 op = p->op;
3445 assert( p->pPrior->pOrderBy==0 );
3446 pOrderBy = p->pOrderBy;
3447 assert( pOrderBy );
3448 nOrderBy = pOrderBy->nExpr;
3450 /* For operators other than UNION ALL we have to make sure that
3451 ** the ORDER BY clause covers every term of the result set. Add
3452 ** terms to the ORDER BY clause as necessary.
3454 if( op!=TK_ALL ){
3455 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3456 struct ExprList_item *pItem;
3457 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3458 assert( pItem!=0 );
3459 assert( pItem->u.x.iOrderByCol>0 );
3460 if( pItem->u.x.iOrderByCol==i ) break;
3462 if( j==nOrderBy ){
3463 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3464 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3465 pNew->flags |= EP_IntValue;
3466 pNew->u.iValue = i;
3467 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3468 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3473 /* Compute the comparison permutation and keyinfo that is used with
3474 ** the permutation used to determine if the next
3475 ** row of results comes from selectA or selectB. Also add explicit
3476 ** collations to the ORDER BY clause terms so that when the subqueries
3477 ** to the right and the left are evaluated, they use the correct
3478 ** collation.
3480 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3481 if( aPermute ){
3482 struct ExprList_item *pItem;
3483 aPermute[0] = nOrderBy;
3484 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3485 assert( pItem!=0 );
3486 assert( pItem->u.x.iOrderByCol>0 );
3487 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3488 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3490 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3491 }else{
3492 pKeyMerge = 0;
3495 /* Allocate a range of temporary registers and the KeyInfo needed
3496 ** for the logic that removes duplicate result rows when the
3497 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3499 if( op==TK_ALL ){
3500 regPrev = 0;
3501 }else{
3502 int nExpr = p->pEList->nExpr;
3503 assert( nOrderBy>=nExpr || db->mallocFailed );
3504 regPrev = pParse->nMem+1;
3505 pParse->nMem += nExpr+1;
3506 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3507 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3508 if( pKeyDup ){
3509 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3510 for(i=0; i<nExpr; i++){
3511 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3512 pKeyDup->aSortFlags[i] = 0;
3517 /* Separate the left and the right query from one another
3519 nSelect = 1;
3520 if( (op==TK_ALL || op==TK_UNION)
3521 && OptimizationEnabled(db, SQLITE_BalancedMerge)
3523 for(pSplit=p; pSplit->pPrior!=0 && pSplit->op==op; pSplit=pSplit->pPrior){
3524 nSelect++;
3525 assert( pSplit->pPrior->pNext==pSplit );
3528 if( nSelect<=3 ){
3529 pSplit = p;
3530 }else{
3531 pSplit = p;
3532 for(i=2; i<nSelect; i+=2){ pSplit = pSplit->pPrior; }
3534 pPrior = pSplit->pPrior;
3535 assert( pPrior!=0 );
3536 pSplit->pPrior = 0;
3537 pPrior->pNext = 0;
3538 assert( p->pOrderBy == pOrderBy );
3539 assert( pOrderBy!=0 || db->mallocFailed );
3540 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3541 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3542 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3544 /* Compute the limit registers */
3545 computeLimitRegisters(pParse, p, labelEnd);
3546 if( p->iLimit && op==TK_ALL ){
3547 regLimitA = ++pParse->nMem;
3548 regLimitB = ++pParse->nMem;
3549 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3550 regLimitA);
3551 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3552 }else{
3553 regLimitA = regLimitB = 0;
3555 sqlite3ExprDelete(db, p->pLimit);
3556 p->pLimit = 0;
3558 regAddrA = ++pParse->nMem;
3559 regAddrB = ++pParse->nMem;
3560 regOutA = ++pParse->nMem;
3561 regOutB = ++pParse->nMem;
3562 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3563 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3565 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3567 /* Generate a coroutine to evaluate the SELECT statement to the
3568 ** left of the compound operator - the "A" select.
3570 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3571 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3572 VdbeComment((v, "left SELECT"));
3573 pPrior->iLimit = regLimitA;
3574 ExplainQueryPlan((pParse, 1, "LEFT"));
3575 sqlite3Select(pParse, pPrior, &destA);
3576 sqlite3VdbeEndCoroutine(v, regAddrA);
3577 sqlite3VdbeJumpHere(v, addr1);
3579 /* Generate a coroutine to evaluate the SELECT statement on
3580 ** the right - the "B" select
3582 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3583 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3584 VdbeComment((v, "right SELECT"));
3585 savedLimit = p->iLimit;
3586 savedOffset = p->iOffset;
3587 p->iLimit = regLimitB;
3588 p->iOffset = 0;
3589 ExplainQueryPlan((pParse, 1, "RIGHT"));
3590 sqlite3Select(pParse, p, &destB);
3591 p->iLimit = savedLimit;
3592 p->iOffset = savedOffset;
3593 sqlite3VdbeEndCoroutine(v, regAddrB);
3595 /* Generate a subroutine that outputs the current row of the A
3596 ** select as the next output row of the compound select.
3598 VdbeNoopComment((v, "Output routine for A"));
3599 addrOutA = generateOutputSubroutine(pParse,
3600 p, &destA, pDest, regOutA,
3601 regPrev, pKeyDup, labelEnd);
3603 /* Generate a subroutine that outputs the current row of the B
3604 ** select as the next output row of the compound select.
3606 if( op==TK_ALL || op==TK_UNION ){
3607 VdbeNoopComment((v, "Output routine for B"));
3608 addrOutB = generateOutputSubroutine(pParse,
3609 p, &destB, pDest, regOutB,
3610 regPrev, pKeyDup, labelEnd);
3612 sqlite3KeyInfoUnref(pKeyDup);
3614 /* Generate a subroutine to run when the results from select A
3615 ** are exhausted and only data in select B remains.
3617 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3618 addrEofA_noB = addrEofA = labelEnd;
3619 }else{
3620 VdbeNoopComment((v, "eof-A subroutine"));
3621 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3622 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3623 VdbeCoverage(v);
3624 sqlite3VdbeGoto(v, addrEofA);
3625 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3628 /* Generate a subroutine to run when the results from select B
3629 ** are exhausted and only data in select A remains.
3631 if( op==TK_INTERSECT ){
3632 addrEofB = addrEofA;
3633 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3634 }else{
3635 VdbeNoopComment((v, "eof-B subroutine"));
3636 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3637 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3638 sqlite3VdbeGoto(v, addrEofB);
3641 /* Generate code to handle the case of A<B
3643 VdbeNoopComment((v, "A-lt-B subroutine"));
3644 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3645 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3646 sqlite3VdbeGoto(v, labelCmpr);
3648 /* Generate code to handle the case of A==B
3650 if( op==TK_ALL ){
3651 addrAeqB = addrAltB;
3652 }else if( op==TK_INTERSECT ){
3653 addrAeqB = addrAltB;
3654 addrAltB++;
3655 }else{
3656 VdbeNoopComment((v, "A-eq-B subroutine"));
3657 addrAeqB =
3658 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3659 sqlite3VdbeGoto(v, labelCmpr);
3662 /* Generate code to handle the case of A>B
3664 VdbeNoopComment((v, "A-gt-B subroutine"));
3665 addrAgtB = sqlite3VdbeCurrentAddr(v);
3666 if( op==TK_ALL || op==TK_UNION ){
3667 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3669 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3670 sqlite3VdbeGoto(v, labelCmpr);
3672 /* This code runs once to initialize everything.
3674 sqlite3VdbeJumpHere(v, addr1);
3675 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3676 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3678 /* Implement the main merge loop
3680 sqlite3VdbeResolveLabel(v, labelCmpr);
3681 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3682 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3683 (char*)pKeyMerge, P4_KEYINFO);
3684 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3685 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3687 /* Jump to the this point in order to terminate the query.
3689 sqlite3VdbeResolveLabel(v, labelEnd);
3691 /* Reassembly the compound query so that it will be freed correctly
3692 ** by the calling function */
3693 if( pSplit->pPrior ){
3694 sqlite3SelectDelete(db, pSplit->pPrior);
3696 pSplit->pPrior = pPrior;
3697 pPrior->pNext = pSplit;
3698 sqlite3ExprListDelete(db, pPrior->pOrderBy);
3699 pPrior->pOrderBy = 0;
3701 /*** TBD: Insert subroutine calls to close cursors on incomplete
3702 **** subqueries ****/
3703 ExplainQueryPlanPop(pParse);
3704 return pParse->nErr!=0;
3706 #endif
3708 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3710 /* An instance of the SubstContext object describes an substitution edit
3711 ** to be performed on a parse tree.
3713 ** All references to columns in table iTable are to be replaced by corresponding
3714 ** expressions in pEList.
3716 ** ## About "isOuterJoin":
3718 ** The isOuterJoin column indicates that the replacement will occur into a
3719 ** position in the parent that NULL-able due to an OUTER JOIN. Either the
3720 ** target slot in the parent is the right operand of a LEFT JOIN, or one of
3721 ** the left operands of a RIGHT JOIN. In either case, we need to potentially
3722 ** bypass the substituted expression with OP_IfNullRow.
3724 ** Suppose the original expression integer constant. Even though the table
3725 ** has the nullRow flag set, because the expression is an integer constant,
3726 ** it will not be NULLed out. So instead, we insert an OP_IfNullRow opcode
3727 ** that checks to see if the nullRow flag is set on the table. If the nullRow
3728 ** flag is set, then the value in the register is set to NULL and the original
3729 ** expression is bypassed. If the nullRow flag is not set, then the original
3730 ** expression runs to populate the register.
3732 ** Example where this is needed:
3734 ** CREATE TABLE t1(a INTEGER PRIMARY KEY, b INT);
3735 ** CREATE TABLE t2(x INT UNIQUE);
3737 ** SELECT a,b,m,x FROM t1 LEFT JOIN (SELECT 59 AS m,x FROM t2) ON b=x;
3739 ** When the subquery on the right side of the LEFT JOIN is flattened, we
3740 ** have to add OP_IfNullRow in front of the OP_Integer that implements the
3741 ** "m" value of the subquery so that a NULL will be loaded instead of 59
3742 ** when processing a non-matched row of the left.
3744 typedef struct SubstContext {
3745 Parse *pParse; /* The parsing context */
3746 int iTable; /* Replace references to this table */
3747 int iNewTable; /* New table number */
3748 int isOuterJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3749 ExprList *pEList; /* Replacement expressions */
3750 } SubstContext;
3752 /* Forward Declarations */
3753 static void substExprList(SubstContext*, ExprList*);
3754 static void substSelect(SubstContext*, Select*, int);
3757 ** Scan through the expression pExpr. Replace every reference to
3758 ** a column in table number iTable with a copy of the iColumn-th
3759 ** entry in pEList. (But leave references to the ROWID column
3760 ** unchanged.)
3762 ** This routine is part of the flattening procedure. A subquery
3763 ** whose result set is defined by pEList appears as entry in the
3764 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3765 ** FORM clause entry is iTable. This routine makes the necessary
3766 ** changes to pExpr so that it refers directly to the source table
3767 ** of the subquery rather the result set of the subquery.
3769 static Expr *substExpr(
3770 SubstContext *pSubst, /* Description of the substitution */
3771 Expr *pExpr /* Expr in which substitution occurs */
3773 if( pExpr==0 ) return 0;
3774 if( ExprHasProperty(pExpr, EP_OuterON|EP_InnerON)
3775 && pExpr->w.iJoin==pSubst->iTable
3777 testcase( ExprHasProperty(pExpr, EP_InnerON) );
3778 pExpr->w.iJoin = pSubst->iNewTable;
3780 if( pExpr->op==TK_COLUMN
3781 && pExpr->iTable==pSubst->iTable
3782 && !ExprHasProperty(pExpr, EP_FixedCol)
3784 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3785 if( pExpr->iColumn<0 ){
3786 pExpr->op = TK_NULL;
3787 }else
3788 #endif
3790 Expr *pNew;
3791 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3792 Expr ifNullRow;
3793 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3794 assert( pExpr->pRight==0 );
3795 if( sqlite3ExprIsVector(pCopy) ){
3796 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3797 }else{
3798 sqlite3 *db = pSubst->pParse->db;
3799 if( pSubst->isOuterJoin && pCopy->op!=TK_COLUMN ){
3800 memset(&ifNullRow, 0, sizeof(ifNullRow));
3801 ifNullRow.op = TK_IF_NULL_ROW;
3802 ifNullRow.pLeft = pCopy;
3803 ifNullRow.iTable = pSubst->iNewTable;
3804 ifNullRow.flags = EP_IfNullRow;
3805 pCopy = &ifNullRow;
3807 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3808 pNew = sqlite3ExprDup(db, pCopy, 0);
3809 if( db->mallocFailed ){
3810 sqlite3ExprDelete(db, pNew);
3811 return pExpr;
3813 if( pSubst->isOuterJoin ){
3814 ExprSetProperty(pNew, EP_CanBeNull);
3816 if( ExprHasProperty(pExpr,EP_OuterON|EP_InnerON) ){
3817 sqlite3SetJoinExpr(pNew, pExpr->w.iJoin,
3818 pExpr->flags & (EP_OuterON|EP_InnerON));
3820 sqlite3ExprDelete(db, pExpr);
3821 pExpr = pNew;
3822 if( pExpr->op==TK_TRUEFALSE ){
3823 pExpr->u.iValue = sqlite3ExprTruthValue(pExpr);
3824 pExpr->op = TK_INTEGER;
3825 ExprSetProperty(pExpr, EP_IntValue);
3828 /* Ensure that the expression now has an implicit collation sequence,
3829 ** just as it did when it was a column of a view or sub-query. */
3830 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3831 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3832 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3833 (pColl ? pColl->zName : "BINARY")
3836 ExprClearProperty(pExpr, EP_Collate);
3839 }else{
3840 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3841 pExpr->iTable = pSubst->iNewTable;
3843 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3844 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3845 if( ExprUseXSelect(pExpr) ){
3846 substSelect(pSubst, pExpr->x.pSelect, 1);
3847 }else{
3848 substExprList(pSubst, pExpr->x.pList);
3850 #ifndef SQLITE_OMIT_WINDOWFUNC
3851 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3852 Window *pWin = pExpr->y.pWin;
3853 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3854 substExprList(pSubst, pWin->pPartition);
3855 substExprList(pSubst, pWin->pOrderBy);
3857 #endif
3859 return pExpr;
3861 static void substExprList(
3862 SubstContext *pSubst, /* Description of the substitution */
3863 ExprList *pList /* List to scan and in which to make substitutes */
3865 int i;
3866 if( pList==0 ) return;
3867 for(i=0; i<pList->nExpr; i++){
3868 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3871 static void substSelect(
3872 SubstContext *pSubst, /* Description of the substitution */
3873 Select *p, /* SELECT statement in which to make substitutions */
3874 int doPrior /* Do substitutes on p->pPrior too */
3876 SrcList *pSrc;
3877 SrcItem *pItem;
3878 int i;
3879 if( !p ) return;
3881 substExprList(pSubst, p->pEList);
3882 substExprList(pSubst, p->pGroupBy);
3883 substExprList(pSubst, p->pOrderBy);
3884 p->pHaving = substExpr(pSubst, p->pHaving);
3885 p->pWhere = substExpr(pSubst, p->pWhere);
3886 pSrc = p->pSrc;
3887 assert( pSrc!=0 );
3888 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3889 substSelect(pSubst, pItem->pSelect, 1);
3890 if( pItem->fg.isTabFunc ){
3891 substExprList(pSubst, pItem->u1.pFuncArg);
3894 }while( doPrior && (p = p->pPrior)!=0 );
3896 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3898 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3900 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3901 ** clause of that SELECT.
3903 ** This routine scans the entire SELECT statement and recomputes the
3904 ** pSrcItem->colUsed mask.
3906 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3907 SrcItem *pItem;
3908 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3909 pItem = pWalker->u.pSrcItem;
3910 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3911 if( pExpr->iColumn<0 ) return WRC_Continue;
3912 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3913 return WRC_Continue;
3915 static void recomputeColumnsUsed(
3916 Select *pSelect, /* The complete SELECT statement */
3917 SrcItem *pSrcItem /* Which FROM clause item to recompute */
3919 Walker w;
3920 if( NEVER(pSrcItem->pTab==0) ) return;
3921 memset(&w, 0, sizeof(w));
3922 w.xExprCallback = recomputeColumnsUsedExpr;
3923 w.xSelectCallback = sqlite3SelectWalkNoop;
3924 w.u.pSrcItem = pSrcItem;
3925 pSrcItem->colUsed = 0;
3926 sqlite3WalkSelect(&w, pSelect);
3928 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3930 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3932 ** Assign new cursor numbers to each of the items in pSrc. For each
3933 ** new cursor number assigned, set an entry in the aCsrMap[] array
3934 ** to map the old cursor number to the new:
3936 ** aCsrMap[iOld+1] = iNew;
3938 ** The array is guaranteed by the caller to be large enough for all
3939 ** existing cursor numbers in pSrc. aCsrMap[0] is the array size.
3941 ** If pSrc contains any sub-selects, call this routine recursively
3942 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3944 static void srclistRenumberCursors(
3945 Parse *pParse, /* Parse context */
3946 int *aCsrMap, /* Array to store cursor mappings in */
3947 SrcList *pSrc, /* FROM clause to renumber */
3948 int iExcept /* FROM clause item to skip */
3950 int i;
3951 SrcItem *pItem;
3952 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3953 if( i!=iExcept ){
3954 Select *p;
3955 assert( pItem->iCursor < aCsrMap[0] );
3956 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor+1]==0 ){
3957 aCsrMap[pItem->iCursor+1] = pParse->nTab++;
3959 pItem->iCursor = aCsrMap[pItem->iCursor+1];
3960 for(p=pItem->pSelect; p; p=p->pPrior){
3961 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3968 ** *piCursor is a cursor number. Change it if it needs to be mapped.
3970 static void renumberCursorDoMapping(Walker *pWalker, int *piCursor){
3971 int *aCsrMap = pWalker->u.aiCol;
3972 int iCsr = *piCursor;
3973 if( iCsr < aCsrMap[0] && aCsrMap[iCsr+1]>0 ){
3974 *piCursor = aCsrMap[iCsr+1];
3979 ** Expression walker callback used by renumberCursors() to update
3980 ** Expr objects to match newly assigned cursor numbers.
3982 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3983 int op = pExpr->op;
3984 if( op==TK_COLUMN || op==TK_IF_NULL_ROW ){
3985 renumberCursorDoMapping(pWalker, &pExpr->iTable);
3987 if( ExprHasProperty(pExpr, EP_OuterON) ){
3988 renumberCursorDoMapping(pWalker, &pExpr->w.iJoin);
3990 return WRC_Continue;
3994 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3995 ** of the SELECT statement passed as the second argument, and to each
3996 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3997 ** Except, do not assign a new cursor number to the iExcept'th element in
3998 ** the FROM clause of (*p). Update all expressions and other references
3999 ** to refer to the new cursor numbers.
4001 ** Argument aCsrMap is an array that may be used for temporary working
4002 ** space. Two guarantees are made by the caller:
4004 ** * the array is larger than the largest cursor number used within the
4005 ** select statement passed as an argument, and
4007 ** * the array entries for all cursor numbers that do *not* appear in
4008 ** FROM clauses of the select statement as described above are
4009 ** initialized to zero.
4011 static void renumberCursors(
4012 Parse *pParse, /* Parse context */
4013 Select *p, /* Select to renumber cursors within */
4014 int iExcept, /* FROM clause item to skip */
4015 int *aCsrMap /* Working space */
4017 Walker w;
4018 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
4019 memset(&w, 0, sizeof(w));
4020 w.u.aiCol = aCsrMap;
4021 w.xExprCallback = renumberCursorsCb;
4022 w.xSelectCallback = sqlite3SelectWalkNoop;
4023 sqlite3WalkSelect(&w, p);
4025 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4027 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4029 ** This routine attempts to flatten subqueries as a performance optimization.
4030 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
4032 ** To understand the concept of flattening, consider the following
4033 ** query:
4035 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
4037 ** The default way of implementing this query is to execute the
4038 ** subquery first and store the results in a temporary table, then
4039 ** run the outer query on that temporary table. This requires two
4040 ** passes over the data. Furthermore, because the temporary table
4041 ** has no indices, the WHERE clause on the outer query cannot be
4042 ** optimized.
4044 ** This routine attempts to rewrite queries such as the above into
4045 ** a single flat select, like this:
4047 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
4049 ** The code generated for this simplification gives the same result
4050 ** but only has to scan the data once. And because indices might
4051 ** exist on the table t1, a complete scan of the data might be
4052 ** avoided.
4054 ** Flattening is subject to the following constraints:
4056 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4057 ** The subquery and the outer query cannot both be aggregates.
4059 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4060 ** (2) If the subquery is an aggregate then
4061 ** (2a) the outer query must not be a join and
4062 ** (2b) the outer query must not use subqueries
4063 ** other than the one FROM-clause subquery that is a candidate
4064 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
4065 ** from 2015-02-09.)
4067 ** (3) If the subquery is the right operand of a LEFT JOIN then
4068 ** (3a) the subquery may not be a join and
4069 ** (3b) the FROM clause of the subquery may not contain a virtual
4070 ** table and
4071 ** (3c) the outer query may not be an aggregate.
4072 ** (3d) the outer query may not be DISTINCT.
4073 ** See also (26) for restrictions on RIGHT JOIN.
4075 ** (4) The subquery can not be DISTINCT.
4077 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
4078 ** sub-queries that were excluded from this optimization. Restriction
4079 ** (4) has since been expanded to exclude all DISTINCT subqueries.
4081 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4082 ** If the subquery is aggregate, the outer query may not be DISTINCT.
4084 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
4085 ** A FROM clause, consider adding a FROM clause with the special
4086 ** table sqlite_once that consists of a single row containing a
4087 ** single NULL.
4089 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
4091 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
4093 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
4094 ** accidently carried the comment forward until 2014-09-15. Original
4095 ** constraint: "If the subquery is aggregate then the outer query
4096 ** may not use LIMIT."
4098 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
4100 ** (**) Not implemented. Subsumed into restriction (3). Was previously
4101 ** a separate restriction deriving from ticket #350.
4103 ** (13) The subquery and outer query may not both use LIMIT.
4105 ** (14) The subquery may not use OFFSET.
4107 ** (15) If the outer query is part of a compound select, then the
4108 ** subquery may not use LIMIT.
4109 ** (See ticket #2339 and ticket [02a8e81d44]).
4111 ** (16) If the outer query is aggregate, then the subquery may not
4112 ** use ORDER BY. (Ticket #2942) This used to not matter
4113 ** until we introduced the group_concat() function.
4115 ** (17) If the subquery is a compound select, then
4116 ** (17a) all compound operators must be a UNION ALL, and
4117 ** (17b) no terms within the subquery compound may be aggregate
4118 ** or DISTINCT, and
4119 ** (17c) every term within the subquery compound must have a FROM clause
4120 ** (17d) the outer query may not be
4121 ** (17d1) aggregate, or
4122 ** (17d2) DISTINCT
4123 ** (17e) the subquery may not contain window functions, and
4124 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
4125 ** (17g) either the subquery is the first element of the outer
4126 ** query or there are no RIGHT or FULL JOINs in any arm
4127 ** of the subquery. (This is a duplicate of condition (27b).)
4129 ** The parent and sub-query may contain WHERE clauses. Subject to
4130 ** rules (11), (13) and (14), they may also contain ORDER BY,
4131 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
4132 ** operator other than UNION ALL because all the other compound
4133 ** operators have an implied DISTINCT which is disallowed by
4134 ** restriction (4).
4136 ** Also, each component of the sub-query must return the same number
4137 ** of result columns. This is actually a requirement for any compound
4138 ** SELECT statement, but all the code here does is make sure that no
4139 ** such (illegal) sub-query is flattened. The caller will detect the
4140 ** syntax error and return a detailed message.
4142 ** (18) If the sub-query is a compound select, then all terms of the
4143 ** ORDER BY clause of the parent must be copies of a term returned
4144 ** by the parent query.
4146 ** (19) If the subquery uses LIMIT then the outer query may not
4147 ** have a WHERE clause.
4149 ** (20) If the sub-query is a compound select, then it must not use
4150 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
4151 ** somewhat by saying that the terms of the ORDER BY clause must
4152 ** appear as unmodified result columns in the outer query. But we
4153 ** have other optimizations in mind to deal with that case.
4155 ** (21) If the subquery uses LIMIT then the outer query may not be
4156 ** DISTINCT. (See ticket [752e1646fc]).
4158 ** (22) The subquery may not be a recursive CTE.
4160 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
4161 ** a compound query. This restriction is because transforming the
4162 ** parent to a compound query confuses the code that handles
4163 ** recursive queries in multiSelect().
4165 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
4166 ** The subquery may not be an aggregate that uses the built-in min() or
4167 ** or max() functions. (Without this restriction, a query like:
4168 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
4169 ** return the value X for which Y was maximal.)
4171 ** (25) If either the subquery or the parent query contains a window
4172 ** function in the select list or ORDER BY clause, flattening
4173 ** is not attempted.
4175 ** (26) The subquery may not be the right operand of a RIGHT JOIN.
4176 ** See also (3) for restrictions on LEFT JOIN.
4178 ** (27) The subquery may not contain a FULL or RIGHT JOIN unless it
4179 ** is the first element of the parent query. This must be the
4180 ** the case if:
4181 ** (27a) the subquery is not compound query, and
4182 ** (27b) the subquery is a compound query and the RIGHT JOIN occurs
4183 ** in any arm of the compound query. (See also (17g).)
4185 ** (28) The subquery is not a MATERIALIZED CTE.
4187 ** (29) Either the subquery is not the right-hand operand of a join with an
4188 ** ON or USING clause nor the right-hand operand of a NATURAL JOIN, or
4189 ** the right-most table within the FROM clause of the subquery
4190 ** is not part of an outer join.
4193 ** In this routine, the "p" parameter is a pointer to the outer query.
4194 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
4195 ** uses aggregates.
4197 ** If flattening is not attempted, this routine is a no-op and returns 0.
4198 ** If flattening is attempted this routine returns 1.
4200 ** All of the expression analysis must occur on both the outer query and
4201 ** the subquery before this routine runs.
4203 static int flattenSubquery(
4204 Parse *pParse, /* Parsing context */
4205 Select *p, /* The parent or outer SELECT statement */
4206 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
4207 int isAgg /* True if outer SELECT uses aggregate functions */
4209 const char *zSavedAuthContext = pParse->zAuthContext;
4210 Select *pParent; /* Current UNION ALL term of the other query */
4211 Select *pSub; /* The inner query or "subquery" */
4212 Select *pSub1; /* Pointer to the rightmost select in sub-query */
4213 SrcList *pSrc; /* The FROM clause of the outer query */
4214 SrcList *pSubSrc; /* The FROM clause of the subquery */
4215 int iParent; /* VDBE cursor number of the pSub result set temp table */
4216 int iNewParent = -1;/* Replacement table for iParent */
4217 int isOuterJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4218 int i; /* Loop counter */
4219 Expr *pWhere; /* The WHERE clause */
4220 SrcItem *pSubitem; /* The subquery */
4221 sqlite3 *db = pParse->db;
4222 Walker w; /* Walker to persist agginfo data */
4223 int *aCsrMap = 0;
4225 /* Check to see if flattening is permitted. Return 0 if not.
4227 assert( p!=0 );
4228 assert( p->pPrior==0 );
4229 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4230 pSrc = p->pSrc;
4231 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4232 pSubitem = &pSrc->a[iFrom];
4233 iParent = pSubitem->iCursor;
4234 pSub = pSubitem->pSelect;
4235 assert( pSub!=0 );
4237 #ifndef SQLITE_OMIT_WINDOWFUNC
4238 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
4239 #endif
4241 pSubSrc = pSub->pSrc;
4242 assert( pSubSrc );
4243 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4244 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4245 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4246 ** became arbitrary expressions, we were forced to add restrictions (13)
4247 ** and (14). */
4248 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
4249 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
4250 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4251 return 0; /* Restriction (15) */
4253 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
4254 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
4255 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4256 return 0; /* Restrictions (8)(9) */
4258 if( p->pOrderBy && pSub->pOrderBy ){
4259 return 0; /* Restriction (11) */
4261 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
4262 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
4263 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4264 return 0; /* Restriction (21) */
4266 if( pSub->selFlags & (SF_Recursive) ){
4267 return 0; /* Restrictions (22) */
4271 ** If the subquery is the right operand of a LEFT JOIN, then the
4272 ** subquery may not be a join itself (3a). Example of why this is not
4273 ** allowed:
4275 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4277 ** If we flatten the above, we would get
4279 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4281 ** which is not at all the same thing.
4283 ** If the subquery is the right operand of a LEFT JOIN, then the outer
4284 ** query cannot be an aggregate. (3c) This is an artifact of the way
4285 ** aggregates are processed - there is no mechanism to determine if
4286 ** the LEFT JOIN table should be all-NULL.
4288 ** See also tickets #306, #350, and #3300.
4290 if( (pSubitem->fg.jointype & (JT_OUTER|JT_LTORJ))!=0 ){
4291 if( pSubSrc->nSrc>1 /* (3a) */
4292 || isAgg /* (3c) */
4293 || IsVirtual(pSubSrc->a[0].pTab) /* (3b) */
4294 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
4295 || (pSubitem->fg.jointype & JT_RIGHT)!=0 /* (26) */
4297 return 0;
4299 isOuterJoin = 1;
4301 #ifdef SQLITE_EXTRA_IFNULLROW
4302 else if( iFrom>0 && !isAgg ){
4303 /* Setting isOuterJoin to -1 causes OP_IfNullRow opcodes to be generated for
4304 ** every reference to any result column from subquery in a join, even
4305 ** though they are not necessary. This will stress-test the OP_IfNullRow
4306 ** opcode. */
4307 isOuterJoin = -1;
4309 #endif
4311 assert( pSubSrc->nSrc>0 ); /* True by restriction (7) */
4312 if( iFrom>0 && (pSubSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4313 return 0; /* Restriction (27a) */
4315 if( pSubitem->fg.isCte && pSubitem->u2.pCteUse->eM10d==M10d_Yes ){
4316 return 0; /* (28) */
4319 /* Restriction (29):
4321 ** We do not want two constraints on the same term of the flattened
4322 ** query where one constraint has EP_InnerON and the other is EP_OuterON.
4323 ** To prevent this, one or the other of the following conditions must be
4324 ** false:
4326 ** (29a) The right-most entry in the FROM clause of the subquery
4327 ** must not be part of an outer join.
4329 ** (29b) The subquery itself must not be the right operand of a
4330 ** NATURAL join or a join that as an ON or USING clause.
4332 ** These conditions are sufficient to keep an EP_OuterON from being
4333 ** flattened into an EP_InnerON. Restrictions (3a) and (27a) prevent
4334 ** an EP_InnerON from being flattened into an EP_OuterON.
4336 if( pSubSrc->nSrc>=2
4337 && (pSubSrc->a[pSubSrc->nSrc-1].fg.jointype & JT_OUTER)!=0
4339 if( (pSubitem->fg.jointype & JT_NATURAL)!=0
4340 || pSubitem->fg.isUsing
4341 || NEVER(pSubitem->u3.pOn!=0) /* ON clause already shifted into WHERE */
4342 || pSubitem->fg.isOn
4344 return 0;
4348 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4349 ** use only the UNION ALL operator. And none of the simple select queries
4350 ** that make up the compound SELECT are allowed to be aggregate or distinct
4351 ** queries.
4353 if( pSub->pPrior ){
4354 if( pSub->pOrderBy ){
4355 return 0; /* Restriction (20) */
4357 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isOuterJoin>0 ){
4358 return 0; /* (17d1), (17d2), or (17f) */
4360 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4361 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4362 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4363 assert( pSub->pSrc!=0 );
4364 assert( (pSub->selFlags & SF_Recursive)==0 );
4365 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4366 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
4367 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
4368 || pSub1->pSrc->nSrc<1 /* (17c) */
4369 #ifndef SQLITE_OMIT_WINDOWFUNC
4370 || pSub1->pWin /* (17e) */
4371 #endif
4373 return 0;
4375 if( iFrom>0 && (pSub1->pSrc->a[0].fg.jointype & JT_LTORJ)!=0 ){
4376 /* Without this restriction, the JT_LTORJ flag would end up being
4377 ** omitted on left-hand tables of the right join that is being
4378 ** flattened. */
4379 return 0; /* Restrictions (17g), (27b) */
4381 testcase( pSub1->pSrc->nSrc>1 );
4384 /* Restriction (18). */
4385 if( p->pOrderBy ){
4386 int ii;
4387 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4388 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4392 /* Restriction (23) */
4393 if( (p->selFlags & SF_Recursive) ) return 0;
4395 if( pSrc->nSrc>1 ){
4396 if( pParse->nSelect>500 ) return 0;
4397 if( OptimizationDisabled(db, SQLITE_FlttnUnionAll) ) return 0;
4398 aCsrMap = sqlite3DbMallocZero(db, ((i64)pParse->nTab+1)*sizeof(int));
4399 if( aCsrMap ) aCsrMap[0] = pParse->nTab;
4403 /***** If we reach this point, flattening is permitted. *****/
4404 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4405 pSub->selId, pSub, iFrom));
4407 /* Authorize the subquery */
4408 pParse->zAuthContext = pSubitem->zName;
4409 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4410 testcase( i==SQLITE_DENY );
4411 pParse->zAuthContext = zSavedAuthContext;
4413 /* Delete the transient structures associated with thesubquery */
4414 pSub1 = pSubitem->pSelect;
4415 sqlite3DbFree(db, pSubitem->zDatabase);
4416 sqlite3DbFree(db, pSubitem->zName);
4417 sqlite3DbFree(db, pSubitem->zAlias);
4418 pSubitem->zDatabase = 0;
4419 pSubitem->zName = 0;
4420 pSubitem->zAlias = 0;
4421 pSubitem->pSelect = 0;
4422 assert( pSubitem->fg.isUsing!=0 || pSubitem->u3.pOn==0 );
4424 /* If the sub-query is a compound SELECT statement, then (by restrictions
4425 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4426 ** be of the form:
4428 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4430 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4431 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4432 ** OFFSET clauses and joins them to the left-hand-side of the original
4433 ** using UNION ALL operators. In this case N is the number of simple
4434 ** select statements in the compound sub-query.
4436 ** Example:
4438 ** SELECT a+1 FROM (
4439 ** SELECT x FROM tab
4440 ** UNION ALL
4441 ** SELECT y FROM tab
4442 ** UNION ALL
4443 ** SELECT abs(z*2) FROM tab2
4444 ** ) WHERE a!=5 ORDER BY 1
4446 ** Transformed into:
4448 ** SELECT x+1 FROM tab WHERE x+1!=5
4449 ** UNION ALL
4450 ** SELECT y+1 FROM tab WHERE y+1!=5
4451 ** UNION ALL
4452 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4453 ** ORDER BY 1
4455 ** We call this the "compound-subquery flattening".
4457 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4458 Select *pNew;
4459 ExprList *pOrderBy = p->pOrderBy;
4460 Expr *pLimit = p->pLimit;
4461 Select *pPrior = p->pPrior;
4462 Table *pItemTab = pSubitem->pTab;
4463 pSubitem->pTab = 0;
4464 p->pOrderBy = 0;
4465 p->pPrior = 0;
4466 p->pLimit = 0;
4467 pNew = sqlite3SelectDup(db, p, 0);
4468 p->pLimit = pLimit;
4469 p->pOrderBy = pOrderBy;
4470 p->op = TK_ALL;
4471 pSubitem->pTab = pItemTab;
4472 if( pNew==0 ){
4473 p->pPrior = pPrior;
4474 }else{
4475 pNew->selId = ++pParse->nSelect;
4476 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4477 renumberCursors(pParse, pNew, iFrom, aCsrMap);
4479 pNew->pPrior = pPrior;
4480 if( pPrior ) pPrior->pNext = pNew;
4481 pNew->pNext = p;
4482 p->pPrior = pNew;
4483 SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4484 " creates %u as peer\n",pNew->selId));
4486 assert( pSubitem->pSelect==0 );
4488 sqlite3DbFree(db, aCsrMap);
4489 if( db->mallocFailed ){
4490 pSubitem->pSelect = pSub1;
4491 return 1;
4494 /* Defer deleting the Table object associated with the
4495 ** subquery until code generation is
4496 ** complete, since there may still exist Expr.pTab entries that
4497 ** refer to the subquery even after flattening. Ticket #3346.
4499 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4501 if( ALWAYS(pSubitem->pTab!=0) ){
4502 Table *pTabToDel = pSubitem->pTab;
4503 if( pTabToDel->nTabRef==1 ){
4504 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4505 sqlite3ParserAddCleanup(pToplevel,
4506 (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4507 pTabToDel);
4508 testcase( pToplevel->earlyCleanup );
4509 }else{
4510 pTabToDel->nTabRef--;
4512 pSubitem->pTab = 0;
4515 /* The following loop runs once for each term in a compound-subquery
4516 ** flattening (as described above). If we are doing a different kind
4517 ** of flattening - a flattening other than a compound-subquery flattening -
4518 ** then this loop only runs once.
4520 ** This loop moves all of the FROM elements of the subquery into the
4521 ** the FROM clause of the outer query. Before doing this, remember
4522 ** the cursor number for the original outer query FROM element in
4523 ** iParent. The iParent cursor will never be used. Subsequent code
4524 ** will scan expressions looking for iParent references and replace
4525 ** those references with expressions that resolve to the subquery FROM
4526 ** elements we are now copying in.
4528 pSub = pSub1;
4529 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4530 int nSubSrc;
4531 u8 jointype = 0;
4532 u8 ltorj = pSrc->a[iFrom].fg.jointype & JT_LTORJ;
4533 assert( pSub!=0 );
4534 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4535 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4536 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4538 if( pParent==p ){
4539 jointype = pSubitem->fg.jointype; /* First time through the loop */
4542 /* The subquery uses a single slot of the FROM clause of the outer
4543 ** query. If the subquery has more than one element in its FROM clause,
4544 ** then expand the outer query to make space for it to hold all elements
4545 ** of the subquery.
4547 ** Example:
4549 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4551 ** The outer query has 3 slots in its FROM clause. One slot of the
4552 ** outer query (the middle slot) is used by the subquery. The next
4553 ** block of code will expand the outer query FROM clause to 4 slots.
4554 ** The middle slot is expanded to two slots in order to make space
4555 ** for the two elements in the FROM clause of the subquery.
4557 if( nSubSrc>1 ){
4558 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4559 if( pSrc==0 ) break;
4560 pParent->pSrc = pSrc;
4563 /* Transfer the FROM clause terms from the subquery into the
4564 ** outer query.
4566 for(i=0; i<nSubSrc; i++){
4567 SrcItem *pItem = &pSrc->a[i+iFrom];
4568 if( pItem->fg.isUsing ) sqlite3IdListDelete(db, pItem->u3.pUsing);
4569 assert( pItem->fg.isTabFunc==0 );
4570 *pItem = pSubSrc->a[i];
4571 pItem->fg.jointype |= ltorj;
4572 iNewParent = pSubSrc->a[i].iCursor;
4573 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4575 pSrc->a[iFrom].fg.jointype &= JT_LTORJ;
4576 pSrc->a[iFrom].fg.jointype |= jointype | ltorj;
4578 /* Now begin substituting subquery result set expressions for
4579 ** references to the iParent in the outer query.
4581 ** Example:
4583 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4584 ** \ \_____________ subquery __________/ /
4585 ** \_____________________ outer query ______________________________/
4587 ** We look at every expression in the outer query and every place we see
4588 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4590 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4591 /* At this point, any non-zero iOrderByCol values indicate that the
4592 ** ORDER BY column expression is identical to the iOrderByCol'th
4593 ** expression returned by SELECT statement pSub. Since these values
4594 ** do not necessarily correspond to columns in SELECT statement pParent,
4595 ** zero them before transfering the ORDER BY clause.
4597 ** Not doing this may cause an error if a subsequent call to this
4598 ** function attempts to flatten a compound sub-query into pParent
4599 ** (the only way this can happen is if the compound sub-query is
4600 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4601 ExprList *pOrderBy = pSub->pOrderBy;
4602 for(i=0; i<pOrderBy->nExpr; i++){
4603 pOrderBy->a[i].u.x.iOrderByCol = 0;
4605 assert( pParent->pOrderBy==0 );
4606 pParent->pOrderBy = pOrderBy;
4607 pSub->pOrderBy = 0;
4609 pWhere = pSub->pWhere;
4610 pSub->pWhere = 0;
4611 if( isOuterJoin>0 ){
4612 sqlite3SetJoinExpr(pWhere, iNewParent, EP_OuterON);
4614 if( pWhere ){
4615 if( pParent->pWhere ){
4616 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4617 }else{
4618 pParent->pWhere = pWhere;
4621 if( db->mallocFailed==0 ){
4622 SubstContext x;
4623 x.pParse = pParse;
4624 x.iTable = iParent;
4625 x.iNewTable = iNewParent;
4626 x.isOuterJoin = isOuterJoin;
4627 x.pEList = pSub->pEList;
4628 substSelect(&x, pParent, 0);
4631 /* The flattened query is a compound if either the inner or the
4632 ** outer query is a compound. */
4633 pParent->selFlags |= pSub->selFlags & SF_Compound;
4634 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4637 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4639 ** One is tempted to try to add a and b to combine the limits. But this
4640 ** does not work if either limit is negative.
4642 if( pSub->pLimit ){
4643 pParent->pLimit = pSub->pLimit;
4644 pSub->pLimit = 0;
4647 /* Recompute the SrcList_item.colUsed masks for the flattened
4648 ** tables. */
4649 for(i=0; i<nSubSrc; i++){
4650 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4654 /* Finially, delete what is left of the subquery and return
4655 ** success.
4657 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4658 sqlite3WalkSelect(&w,pSub1);
4659 sqlite3SelectDelete(db, pSub1);
4661 #if TREETRACE_ENABLED
4662 if( sqlite3TreeTrace & 0x100 ){
4663 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4664 sqlite3TreeViewSelect(0, p, 0);
4666 #endif
4668 return 1;
4670 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4673 ** A structure to keep track of all of the column values that are fixed to
4674 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4676 typedef struct WhereConst WhereConst;
4677 struct WhereConst {
4678 Parse *pParse; /* Parsing context */
4679 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
4680 int nConst; /* Number for COLUMN=CONSTANT terms */
4681 int nChng; /* Number of times a constant is propagated */
4682 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4683 u32 mExcludeOn; /* Which ON expressions to exclude from considertion.
4684 ** Either EP_OuterON or EP_InnerON|EP_OuterON */
4685 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4689 ** Add a new entry to the pConst object. Except, do not add duplicate
4690 ** pColumn entires. Also, do not add if doing so would not be appropriate.
4692 ** The caller guarantees the pColumn is a column and pValue is a constant.
4693 ** This routine has to do some additional checks before completing the
4694 ** insert.
4696 static void constInsert(
4697 WhereConst *pConst, /* The WhereConst into which we are inserting */
4698 Expr *pColumn, /* The COLUMN part of the constraint */
4699 Expr *pValue, /* The VALUE part of the constraint */
4700 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4702 int i;
4703 assert( pColumn->op==TK_COLUMN );
4704 assert( sqlite3ExprIsConstant(pValue) );
4706 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4707 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4708 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4709 return;
4712 /* 2018-10-25 ticket [cf5ed20f]
4713 ** Make sure the same pColumn is not inserted more than once */
4714 for(i=0; i<pConst->nConst; i++){
4715 const Expr *pE2 = pConst->apExpr[i*2];
4716 assert( pE2->op==TK_COLUMN );
4717 if( pE2->iTable==pColumn->iTable
4718 && pE2->iColumn==pColumn->iColumn
4720 return; /* Already present. Return without doing anything. */
4723 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4724 pConst->bHasAffBlob = 1;
4727 pConst->nConst++;
4728 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4729 pConst->nConst*2*sizeof(Expr*));
4730 if( pConst->apExpr==0 ){
4731 pConst->nConst = 0;
4732 }else{
4733 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4734 pConst->apExpr[pConst->nConst*2-1] = pValue;
4739 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4740 ** is a constant expression and where the term must be true because it
4741 ** is part of the AND-connected terms of the expression. For each term
4742 ** found, add it to the pConst structure.
4744 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4745 Expr *pRight, *pLeft;
4746 if( NEVER(pExpr==0) ) return;
4747 if( ExprHasProperty(pExpr, pConst->mExcludeOn) ){
4748 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4749 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4750 return;
4752 if( pExpr->op==TK_AND ){
4753 findConstInWhere(pConst, pExpr->pRight);
4754 findConstInWhere(pConst, pExpr->pLeft);
4755 return;
4757 if( pExpr->op!=TK_EQ ) return;
4758 pRight = pExpr->pRight;
4759 pLeft = pExpr->pLeft;
4760 assert( pRight!=0 );
4761 assert( pLeft!=0 );
4762 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4763 constInsert(pConst,pRight,pLeft,pExpr);
4765 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4766 constInsert(pConst,pLeft,pRight,pExpr);
4771 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4773 ** Argument pExpr is a candidate expression to be replaced by a value. If
4774 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4775 ** then overwrite it with the corresponding value. Except, do not do so
4776 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4777 ** is SQLITE_AFF_BLOB.
4779 static int propagateConstantExprRewriteOne(
4780 WhereConst *pConst,
4781 Expr *pExpr,
4782 int bIgnoreAffBlob
4784 int i;
4785 if( pConst->pOomFault[0] ) return WRC_Prune;
4786 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4787 if( ExprHasProperty(pExpr, EP_FixedCol|pConst->mExcludeOn) ){
4788 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4789 testcase( ExprHasProperty(pExpr, EP_OuterON) );
4790 testcase( ExprHasProperty(pExpr, EP_InnerON) );
4791 return WRC_Continue;
4793 for(i=0; i<pConst->nConst; i++){
4794 Expr *pColumn = pConst->apExpr[i*2];
4795 if( pColumn==pExpr ) continue;
4796 if( pColumn->iTable!=pExpr->iTable ) continue;
4797 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4798 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4799 break;
4801 /* A match is found. Add the EP_FixedCol property */
4802 pConst->nChng++;
4803 ExprClearProperty(pExpr, EP_Leaf);
4804 ExprSetProperty(pExpr, EP_FixedCol);
4805 assert( pExpr->pLeft==0 );
4806 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4807 if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4808 break;
4810 return WRC_Prune;
4814 ** This is a Walker expression callback. pExpr is a node from the WHERE
4815 ** clause of a SELECT statement. This function examines pExpr to see if
4816 ** any substitutions based on the contents of pWalker->u.pConst should
4817 ** be made to pExpr or its immediate children.
4819 ** A substitution is made if:
4821 ** + pExpr is a column with an affinity other than BLOB that matches
4822 ** one of the columns in pWalker->u.pConst, or
4824 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4825 ** uses an affinity other than TEXT and one of its immediate
4826 ** children is a column that matches one of the columns in
4827 ** pWalker->u.pConst.
4829 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4830 WhereConst *pConst = pWalker->u.pConst;
4831 assert( TK_GT==TK_EQ+1 );
4832 assert( TK_LE==TK_EQ+2 );
4833 assert( TK_LT==TK_EQ+3 );
4834 assert( TK_GE==TK_EQ+4 );
4835 if( pConst->bHasAffBlob ){
4836 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4837 || pExpr->op==TK_IS
4839 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4840 if( pConst->pOomFault[0] ) return WRC_Prune;
4841 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4842 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4846 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4850 ** The WHERE-clause constant propagation optimization.
4852 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4853 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4854 ** part of a ON clause from a LEFT JOIN, then throughout the query
4855 ** replace all other occurrences of COLUMN with CONSTANT.
4857 ** For example, the query:
4859 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4861 ** Is transformed into
4863 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4865 ** Return true if any transformations where made and false if not.
4867 ** Implementation note: Constant propagation is tricky due to affinity
4868 ** and collating sequence interactions. Consider this example:
4870 ** CREATE TABLE t1(a INT,b TEXT);
4871 ** INSERT INTO t1 VALUES(123,'0123');
4872 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4873 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4875 ** The two SELECT statements above should return different answers. b=a
4876 ** is alway true because the comparison uses numeric affinity, but b=123
4877 ** is false because it uses text affinity and '0123' is not the same as '123'.
4878 ** To work around this, the expression tree is not actually changed from
4879 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4880 ** and the "123" value is hung off of the pLeft pointer. Code generator
4881 ** routines know to generate the constant "123" instead of looking up the
4882 ** column value. Also, to avoid collation problems, this optimization is
4883 ** only attempted if the "a=123" term uses the default BINARY collation.
4885 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4887 ** CREATE TABLE t1(x);
4888 ** INSERT INTO t1 VALUES(10.0);
4889 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4891 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4892 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4893 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4894 ** resulting in a false positive. To avoid this, constant propagation for
4895 ** columns with BLOB affinity is only allowed if the constant is used with
4896 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4897 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4898 ** for details.
4900 static int propagateConstants(
4901 Parse *pParse, /* The parsing context */
4902 Select *p /* The query in which to propagate constants */
4904 WhereConst x;
4905 Walker w;
4906 int nChng = 0;
4907 x.pParse = pParse;
4908 x.pOomFault = &pParse->db->mallocFailed;
4910 x.nConst = 0;
4911 x.nChng = 0;
4912 x.apExpr = 0;
4913 x.bHasAffBlob = 0;
4914 if( ALWAYS(p->pSrc!=0)
4915 && p->pSrc->nSrc>0
4916 && (p->pSrc->a[0].fg.jointype & JT_LTORJ)!=0
4918 /* Do not propagate constants on any ON clause if there is a
4919 ** RIGHT JOIN anywhere in the query */
4920 x.mExcludeOn = EP_InnerON | EP_OuterON;
4921 }else{
4922 /* Do not propagate constants through the ON clause of a LEFT JOIN */
4923 x.mExcludeOn = EP_OuterON;
4925 findConstInWhere(&x, p->pWhere);
4926 if( x.nConst ){
4927 memset(&w, 0, sizeof(w));
4928 w.pParse = pParse;
4929 w.xExprCallback = propagateConstantExprRewrite;
4930 w.xSelectCallback = sqlite3SelectWalkNoop;
4931 w.xSelectCallback2 = 0;
4932 w.walkerDepth = 0;
4933 w.u.pConst = &x;
4934 sqlite3WalkExpr(&w, p->pWhere);
4935 sqlite3DbFree(x.pParse->db, x.apExpr);
4936 nChng += x.nChng;
4938 }while( x.nChng );
4939 return nChng;
4942 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4943 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4945 ** This function is called to determine whether or not it is safe to
4946 ** push WHERE clause expression pExpr down to FROM clause sub-query
4947 ** pSubq, which contains at least one window function. Return 1
4948 ** if it is safe and the expression should be pushed down, or 0
4949 ** otherwise.
4951 ** It is only safe to push the expression down if it consists only
4952 ** of constants and copies of expressions that appear in the PARTITION
4953 ** BY clause of all window function used by the sub-query. It is safe
4954 ** to filter out entire partitions, but not rows within partitions, as
4955 ** this may change the results of the window functions.
4957 ** At the time this function is called it is guaranteed that
4959 ** * the sub-query uses only one distinct window frame, and
4960 ** * that the window frame has a PARTITION BY clase.
4962 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4963 assert( pSubq->pWin->pPartition );
4964 assert( (pSubq->selFlags & SF_MultiPart)==0 );
4965 assert( pSubq->pPrior==0 );
4966 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4968 # endif /* SQLITE_OMIT_WINDOWFUNC */
4969 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4971 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4973 ** Make copies of relevant WHERE clause terms of the outer query into
4974 ** the WHERE clause of subquery. Example:
4976 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4978 ** Transformed into:
4980 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4981 ** WHERE x=5 AND y=10;
4983 ** The hope is that the terms added to the inner query will make it more
4984 ** efficient.
4986 ** Do not attempt this optimization if:
4988 ** (1) (** This restriction was removed on 2017-09-29. We used to
4989 ** disallow this optimization for aggregate subqueries, but now
4990 ** it is allowed by putting the extra terms on the HAVING clause.
4991 ** The added HAVING clause is pointless if the subquery lacks
4992 ** a GROUP BY clause. But such a HAVING clause is also harmless
4993 ** so there does not appear to be any reason to add extra logic
4994 ** to suppress it. **)
4996 ** (2) The inner query is the recursive part of a common table expression.
4998 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4999 ** clause would change the meaning of the LIMIT).
5001 ** (4) The inner query is the right operand of a LEFT JOIN and the
5002 ** expression to be pushed down does not come from the ON clause
5003 ** on that LEFT JOIN.
5005 ** (5) The WHERE clause expression originates in the ON or USING clause
5006 ** of a LEFT JOIN where iCursor is not the right-hand table of that
5007 ** left join. An example:
5009 ** SELECT *
5010 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
5011 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
5012 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
5014 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
5015 ** But if the (b2=2) term were to be pushed down into the bb subquery,
5016 ** then the (1,1,NULL) row would be suppressed.
5018 ** (6) Window functions make things tricky as changes to the WHERE clause
5019 ** of the inner query could change the window over which window
5020 ** functions are calculated. Therefore, do not attempt the optimization
5021 ** if:
5023 ** (6a) The inner query uses multiple incompatible window partitions.
5025 ** (6b) The inner query is a compound and uses window-functions.
5027 ** (6c) The WHERE clause does not consist entirely of constants and
5028 ** copies of expressions found in the PARTITION BY clause of
5029 ** all window-functions used by the sub-query. It is safe to
5030 ** filter out entire partitions, as this does not change the
5031 ** window over which any window-function is calculated.
5033 ** (7) The inner query is a Common Table Expression (CTE) that should
5034 ** be materialized. (This restriction is implemented in the calling
5035 ** routine.)
5037 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
5038 ** terms are duplicated into the subquery.
5040 static int pushDownWhereTerms(
5041 Parse *pParse, /* Parse context (for malloc() and error reporting) */
5042 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
5043 Expr *pWhere, /* The WHERE clause of the outer query */
5044 SrcItem *pSrc /* The subquery term of the outer FROM clause */
5046 Expr *pNew;
5047 int nChng = 0;
5048 if( pWhere==0 ) return 0;
5049 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
5050 if( pSrc->fg.jointype & (JT_LTORJ|JT_RIGHT) ) return 0;
5052 #ifndef SQLITE_OMIT_WINDOWFUNC
5053 if( pSubq->pPrior ){
5054 Select *pSel;
5055 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
5056 if( pSel->pWin ) return 0; /* restriction (6b) */
5058 }else{
5059 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
5061 #endif
5063 #ifdef SQLITE_DEBUG
5064 /* Only the first term of a compound can have a WITH clause. But make
5065 ** sure no other terms are marked SF_Recursive in case something changes
5066 ** in the future.
5069 Select *pX;
5070 for(pX=pSubq; pX; pX=pX->pPrior){
5071 assert( (pX->selFlags & (SF_Recursive))==0 );
5074 #endif
5076 if( pSubq->pLimit!=0 ){
5077 return 0; /* restriction (3) */
5079 while( pWhere->op==TK_AND ){
5080 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight, pSrc);
5081 pWhere = pWhere->pLeft;
5084 #if 0 /* Legacy code. Checks now done by sqlite3ExprIsTableConstraint() */
5085 if( isLeftJoin
5086 && (ExprHasProperty(pWhere,EP_OuterON)==0
5087 || pWhere->w.iJoin!=iCursor)
5089 return 0; /* restriction (4) */
5091 if( ExprHasProperty(pWhere,EP_OuterON)
5092 && pWhere->w.iJoin!=iCursor
5094 return 0; /* restriction (5) */
5096 #endif
5098 if( sqlite3ExprIsTableConstraint(pWhere, pSrc) ){
5099 nChng++;
5100 pSubq->selFlags |= SF_PushDown;
5101 while( pSubq ){
5102 SubstContext x;
5103 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
5104 unsetJoinExpr(pNew, -1, 1);
5105 x.pParse = pParse;
5106 x.iTable = pSrc->iCursor;
5107 x.iNewTable = pSrc->iCursor;
5108 x.isOuterJoin = 0;
5109 x.pEList = pSubq->pEList;
5110 pNew = substExpr(&x, pNew);
5111 #ifndef SQLITE_OMIT_WINDOWFUNC
5112 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
5113 /* Restriction 6c has prevented push-down in this case */
5114 sqlite3ExprDelete(pParse->db, pNew);
5115 nChng--;
5116 break;
5118 #endif
5119 if( pSubq->selFlags & SF_Aggregate ){
5120 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
5121 }else{
5122 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
5124 pSubq = pSubq->pPrior;
5127 return nChng;
5129 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
5132 ** The pFunc is the only aggregate function in the query. Check to see
5133 ** if the query is a candidate for the min/max optimization.
5135 ** If the query is a candidate for the min/max optimization, then set
5136 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
5137 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
5138 ** whether pFunc is a min() or max() function.
5140 ** If the query is not a candidate for the min/max optimization, return
5141 ** WHERE_ORDERBY_NORMAL (which must be zero).
5143 ** This routine must be called after aggregate functions have been
5144 ** located but before their arguments have been subjected to aggregate
5145 ** analysis.
5147 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
5148 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
5149 ExprList *pEList; /* Arguments to agg function */
5150 const char *zFunc; /* Name of aggregate function pFunc */
5151 ExprList *pOrderBy;
5152 u8 sortFlags = 0;
5154 assert( *ppMinMax==0 );
5155 assert( pFunc->op==TK_AGG_FUNCTION );
5156 assert( !IsWindowFunc(pFunc) );
5157 assert( ExprUseXList(pFunc) );
5158 pEList = pFunc->x.pList;
5159 if( pEList==0
5160 || pEList->nExpr!=1
5161 || ExprHasProperty(pFunc, EP_WinFunc)
5162 || OptimizationDisabled(db, SQLITE_MinMaxOpt)
5164 return eRet;
5166 assert( !ExprHasProperty(pFunc, EP_IntValue) );
5167 zFunc = pFunc->u.zToken;
5168 if( sqlite3StrICmp(zFunc, "min")==0 ){
5169 eRet = WHERE_ORDERBY_MIN;
5170 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
5171 sortFlags = KEYINFO_ORDER_BIGNULL;
5173 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
5174 eRet = WHERE_ORDERBY_MAX;
5175 sortFlags = KEYINFO_ORDER_DESC;
5176 }else{
5177 return eRet;
5179 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
5180 assert( pOrderBy!=0 || db->mallocFailed );
5181 if( pOrderBy ) pOrderBy->a[0].fg.sortFlags = sortFlags;
5182 return eRet;
5186 ** The select statement passed as the first argument is an aggregate query.
5187 ** The second argument is the associated aggregate-info object. This
5188 ** function tests if the SELECT is of the form:
5190 ** SELECT count(*) FROM <tbl>
5192 ** where table is a database table, not a sub-select or view. If the query
5193 ** does match this pattern, then a pointer to the Table object representing
5194 ** <tbl> is returned. Otherwise, NULL is returned.
5196 ** This routine checks to see if it is safe to use the count optimization.
5197 ** A correct answer is still obtained (though perhaps more slowly) if
5198 ** this routine returns NULL when it could have returned a table pointer.
5199 ** But returning the pointer when NULL should have been returned can
5200 ** result in incorrect answers and/or crashes. So, when in doubt, return NULL.
5202 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
5203 Table *pTab;
5204 Expr *pExpr;
5206 assert( !p->pGroupBy );
5208 if( p->pWhere
5209 || p->pEList->nExpr!=1
5210 || p->pSrc->nSrc!=1
5211 || p->pSrc->a[0].pSelect
5212 || pAggInfo->nFunc!=1
5214 return 0;
5216 pTab = p->pSrc->a[0].pTab;
5217 assert( pTab!=0 );
5218 assert( !IsView(pTab) );
5219 if( !IsOrdinaryTable(pTab) ) return 0;
5220 pExpr = p->pEList->a[0].pExpr;
5221 assert( pExpr!=0 );
5222 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
5223 if( pExpr->pAggInfo!=pAggInfo ) return 0;
5224 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
5225 assert( pAggInfo->aFunc[0].pFExpr==pExpr );
5226 testcase( ExprHasProperty(pExpr, EP_Distinct) );
5227 testcase( ExprHasProperty(pExpr, EP_WinFunc) );
5228 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
5230 return pTab;
5234 ** If the source-list item passed as an argument was augmented with an
5235 ** INDEXED BY clause, then try to locate the specified index. If there
5236 ** was such a clause and the named index cannot be found, return
5237 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
5238 ** pFrom->pIndex and return SQLITE_OK.
5240 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
5241 Table *pTab = pFrom->pTab;
5242 char *zIndexedBy = pFrom->u1.zIndexedBy;
5243 Index *pIdx;
5244 assert( pTab!=0 );
5245 assert( pFrom->fg.isIndexedBy!=0 );
5247 for(pIdx=pTab->pIndex;
5248 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
5249 pIdx=pIdx->pNext
5251 if( !pIdx ){
5252 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
5253 pParse->checkSchema = 1;
5254 return SQLITE_ERROR;
5256 assert( pFrom->fg.isCte==0 );
5257 pFrom->u2.pIBIndex = pIdx;
5258 return SQLITE_OK;
5262 ** Detect compound SELECT statements that use an ORDER BY clause with
5263 ** an alternative collating sequence.
5265 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
5267 ** These are rewritten as a subquery:
5269 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
5270 ** ORDER BY ... COLLATE ...
5272 ** This transformation is necessary because the multiSelectOrderBy() routine
5273 ** above that generates the code for a compound SELECT with an ORDER BY clause
5274 ** uses a merge algorithm that requires the same collating sequence on the
5275 ** result columns as on the ORDER BY clause. See ticket
5276 ** http://www.sqlite.org/src/info/6709574d2a
5278 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
5279 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
5280 ** there are COLLATE terms in the ORDER BY.
5282 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
5283 int i;
5284 Select *pNew;
5285 Select *pX;
5286 sqlite3 *db;
5287 struct ExprList_item *a;
5288 SrcList *pNewSrc;
5289 Parse *pParse;
5290 Token dummy;
5292 if( p->pPrior==0 ) return WRC_Continue;
5293 if( p->pOrderBy==0 ) return WRC_Continue;
5294 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
5295 if( pX==0 ) return WRC_Continue;
5296 a = p->pOrderBy->a;
5297 #ifndef SQLITE_OMIT_WINDOWFUNC
5298 /* If iOrderByCol is already non-zero, then it has already been matched
5299 ** to a result column of the SELECT statement. This occurs when the
5300 ** SELECT is rewritten for window-functions processing and then passed
5301 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5302 ** by this function is not required in this case. */
5303 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5304 #endif
5305 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5306 if( a[i].pExpr->flags & EP_Collate ) break;
5308 if( i<0 ) return WRC_Continue;
5310 /* If we reach this point, that means the transformation is required. */
5312 pParse = pWalker->pParse;
5313 db = pParse->db;
5314 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5315 if( pNew==0 ) return WRC_Abort;
5316 memset(&dummy, 0, sizeof(dummy));
5317 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0);
5318 if( pNewSrc==0 ) return WRC_Abort;
5319 *pNew = *p;
5320 p->pSrc = pNewSrc;
5321 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5322 p->op = TK_SELECT;
5323 p->pWhere = 0;
5324 pNew->pGroupBy = 0;
5325 pNew->pHaving = 0;
5326 pNew->pOrderBy = 0;
5327 p->pPrior = 0;
5328 p->pNext = 0;
5329 p->pWith = 0;
5330 #ifndef SQLITE_OMIT_WINDOWFUNC
5331 p->pWinDefn = 0;
5332 #endif
5333 p->selFlags &= ~SF_Compound;
5334 assert( (p->selFlags & SF_Converted)==0 );
5335 p->selFlags |= SF_Converted;
5336 assert( pNew->pPrior!=0 );
5337 pNew->pPrior->pNext = pNew;
5338 pNew->pLimit = 0;
5339 return WRC_Continue;
5343 ** Check to see if the FROM clause term pFrom has table-valued function
5344 ** arguments. If it does, leave an error message in pParse and return
5345 ** non-zero, since pFrom is not allowed to be a table-valued function.
5347 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5348 if( pFrom->fg.isTabFunc ){
5349 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5350 return 1;
5352 return 0;
5355 #ifndef SQLITE_OMIT_CTE
5357 ** Argument pWith (which may be NULL) points to a linked list of nested
5358 ** WITH contexts, from inner to outermost. If the table identified by
5359 ** FROM clause element pItem is really a common-table-expression (CTE)
5360 ** then return a pointer to the CTE definition for that table. Otherwise
5361 ** return NULL.
5363 ** If a non-NULL value is returned, set *ppContext to point to the With
5364 ** object that the returned CTE belongs to.
5366 static struct Cte *searchWith(
5367 With *pWith, /* Current innermost WITH clause */
5368 SrcItem *pItem, /* FROM clause element to resolve */
5369 With **ppContext /* OUT: WITH clause return value belongs to */
5371 const char *zName = pItem->zName;
5372 With *p;
5373 assert( pItem->zDatabase==0 );
5374 assert( zName!=0 );
5375 for(p=pWith; p; p=p->pOuter){
5376 int i;
5377 for(i=0; i<p->nCte; i++){
5378 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5379 *ppContext = p;
5380 return &p->a[i];
5383 if( p->bView ) break;
5385 return 0;
5388 /* The code generator maintains a stack of active WITH clauses
5389 ** with the inner-most WITH clause being at the top of the stack.
5391 ** This routine pushes the WITH clause passed as the second argument
5392 ** onto the top of the stack. If argument bFree is true, then this
5393 ** WITH clause will never be popped from the stack but should instead
5394 ** be freed along with the Parse object. In other cases, when
5395 ** bFree==0, the With object will be freed along with the SELECT
5396 ** statement with which it is associated.
5398 ** This routine returns a copy of pWith. Or, if bFree is true and
5399 ** the pWith object is destroyed immediately due to an OOM condition,
5400 ** then this routine return NULL.
5402 ** If bFree is true, do not continue to use the pWith pointer after
5403 ** calling this routine, Instead, use only the return value.
5405 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5406 if( pWith ){
5407 if( bFree ){
5408 pWith = (With*)sqlite3ParserAddCleanup(pParse,
5409 (void(*)(sqlite3*,void*))sqlite3WithDelete,
5410 pWith);
5411 if( pWith==0 ) return 0;
5413 if( pParse->nErr==0 ){
5414 assert( pParse->pWith!=pWith );
5415 pWith->pOuter = pParse->pWith;
5416 pParse->pWith = pWith;
5419 return pWith;
5423 ** This function checks if argument pFrom refers to a CTE declared by
5424 ** a WITH clause on the stack currently maintained by the parser (on the
5425 ** pParse->pWith linked list). And if currently processing a CTE
5426 ** CTE expression, through routine checks to see if the reference is
5427 ** a recursive reference to the CTE.
5429 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5430 ** and other fields are populated accordingly.
5432 ** Return 0 if no match is found.
5433 ** Return 1 if a match is found.
5434 ** Return 2 if an error condition is detected.
5436 static int resolveFromTermToCte(
5437 Parse *pParse, /* The parsing context */
5438 Walker *pWalker, /* Current tree walker */
5439 SrcItem *pFrom /* The FROM clause term to check */
5441 Cte *pCte; /* Matched CTE (or NULL if no match) */
5442 With *pWith; /* The matching WITH */
5444 assert( pFrom->pTab==0 );
5445 if( pParse->pWith==0 ){
5446 /* There are no WITH clauses in the stack. No match is possible */
5447 return 0;
5449 if( pParse->nErr ){
5450 /* Prior errors might have left pParse->pWith in a goofy state, so
5451 ** go no further. */
5452 return 0;
5454 if( pFrom->zDatabase!=0 ){
5455 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5456 ** it cannot possibly be a CTE reference. */
5457 return 0;
5459 if( pFrom->fg.notCte ){
5460 /* The FROM term is specifically excluded from matching a CTE.
5461 ** (1) It is part of a trigger that used to have zDatabase but had
5462 ** zDatabase removed by sqlite3FixTriggerStep().
5463 ** (2) This is the first term in the FROM clause of an UPDATE.
5465 return 0;
5467 pCte = searchWith(pParse->pWith, pFrom, &pWith);
5468 if( pCte ){
5469 sqlite3 *db = pParse->db;
5470 Table *pTab;
5471 ExprList *pEList;
5472 Select *pSel;
5473 Select *pLeft; /* Left-most SELECT statement */
5474 Select *pRecTerm; /* Left-most recursive term */
5475 int bMayRecursive; /* True if compound joined by UNION [ALL] */
5476 With *pSavedWith; /* Initial value of pParse->pWith */
5477 int iRecTab = -1; /* Cursor for recursive table */
5478 CteUse *pCteUse;
5480 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5481 ** recursive reference to CTE pCte. Leave an error in pParse and return
5482 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5483 ** In this case, proceed. */
5484 if( pCte->zCteErr ){
5485 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5486 return 2;
5488 if( cannotBeFunction(pParse, pFrom) ) return 2;
5490 assert( pFrom->pTab==0 );
5491 pTab = sqlite3DbMallocZero(db, sizeof(Table));
5492 if( pTab==0 ) return 2;
5493 pCteUse = pCte->pUse;
5494 if( pCteUse==0 ){
5495 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5496 if( pCteUse==0
5497 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5499 sqlite3DbFree(db, pTab);
5500 return 2;
5502 pCteUse->eM10d = pCte->eM10d;
5504 pFrom->pTab = pTab;
5505 pTab->nTabRef = 1;
5506 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5507 pTab->iPKey = -1;
5508 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5509 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5510 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5511 if( db->mallocFailed ) return 2;
5512 pFrom->pSelect->selFlags |= SF_CopyCte;
5513 assert( pFrom->pSelect );
5514 if( pFrom->fg.isIndexedBy ){
5515 sqlite3ErrorMsg(pParse, "no such index: \"%s\"", pFrom->u1.zIndexedBy);
5516 return 2;
5518 pFrom->fg.isCte = 1;
5519 pFrom->u2.pCteUse = pCteUse;
5520 pCteUse->nUse++;
5521 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5522 pCteUse->eM10d = M10d_Yes;
5525 /* Check if this is a recursive CTE. */
5526 pRecTerm = pSel = pFrom->pSelect;
5527 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5528 while( bMayRecursive && pRecTerm->op==pSel->op ){
5529 int i;
5530 SrcList *pSrc = pRecTerm->pSrc;
5531 assert( pRecTerm->pPrior!=0 );
5532 for(i=0; i<pSrc->nSrc; i++){
5533 SrcItem *pItem = &pSrc->a[i];
5534 if( pItem->zDatabase==0
5535 && pItem->zName!=0
5536 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5538 pItem->pTab = pTab;
5539 pTab->nTabRef++;
5540 pItem->fg.isRecursive = 1;
5541 if( pRecTerm->selFlags & SF_Recursive ){
5542 sqlite3ErrorMsg(pParse,
5543 "multiple references to recursive table: %s", pCte->zName
5545 return 2;
5547 pRecTerm->selFlags |= SF_Recursive;
5548 if( iRecTab<0 ) iRecTab = pParse->nTab++;
5549 pItem->iCursor = iRecTab;
5552 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5553 pRecTerm = pRecTerm->pPrior;
5556 pCte->zCteErr = "circular reference: %s";
5557 pSavedWith = pParse->pWith;
5558 pParse->pWith = pWith;
5559 if( pSel->selFlags & SF_Recursive ){
5560 int rc;
5561 assert( pRecTerm!=0 );
5562 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5563 assert( pRecTerm->pNext!=0 );
5564 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5565 assert( pRecTerm->pWith==0 );
5566 pRecTerm->pWith = pSel->pWith;
5567 rc = sqlite3WalkSelect(pWalker, pRecTerm);
5568 pRecTerm->pWith = 0;
5569 if( rc ){
5570 pParse->pWith = pSavedWith;
5571 return 2;
5573 }else{
5574 if( sqlite3WalkSelect(pWalker, pSel) ){
5575 pParse->pWith = pSavedWith;
5576 return 2;
5579 pParse->pWith = pWith;
5581 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5582 pEList = pLeft->pEList;
5583 if( pCte->pCols ){
5584 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5585 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5586 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5588 pParse->pWith = pSavedWith;
5589 return 2;
5591 pEList = pCte->pCols;
5594 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5595 if( bMayRecursive ){
5596 if( pSel->selFlags & SF_Recursive ){
5597 pCte->zCteErr = "multiple recursive references: %s";
5598 }else{
5599 pCte->zCteErr = "recursive reference in a subquery: %s";
5601 sqlite3WalkSelect(pWalker, pSel);
5603 pCte->zCteErr = 0;
5604 pParse->pWith = pSavedWith;
5605 return 1; /* Success */
5607 return 0; /* No match */
5609 #endif
5611 #ifndef SQLITE_OMIT_CTE
5613 ** If the SELECT passed as the second argument has an associated WITH
5614 ** clause, pop it from the stack stored as part of the Parse object.
5616 ** This function is used as the xSelectCallback2() callback by
5617 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5618 ** names and other FROM clause elements.
5620 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5621 Parse *pParse = pWalker->pParse;
5622 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5623 With *pWith = findRightmost(p)->pWith;
5624 if( pWith!=0 ){
5625 assert( pParse->pWith==pWith || pParse->nErr );
5626 pParse->pWith = pWith->pOuter;
5630 #endif
5633 ** The SrcList_item structure passed as the second argument represents a
5634 ** sub-query in the FROM clause of a SELECT statement. This function
5635 ** allocates and populates the SrcList_item.pTab object. If successful,
5636 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5637 ** SQLITE_NOMEM.
5639 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5640 Select *pSel = pFrom->pSelect;
5641 Table *pTab;
5643 assert( pSel );
5644 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5645 if( pTab==0 ) return SQLITE_NOMEM;
5646 pTab->nTabRef = 1;
5647 if( pFrom->zAlias ){
5648 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5649 }else{
5650 pTab->zName = sqlite3MPrintf(pParse->db, "%!S", pFrom);
5652 while( pSel->pPrior ){ pSel = pSel->pPrior; }
5653 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5654 pTab->iPKey = -1;
5655 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5656 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5657 /* The usual case - do not allow ROWID on a subquery */
5658 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5659 #else
5660 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */
5661 #endif
5662 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5667 ** Check the N SrcItem objects to the right of pBase. (N might be zero!)
5668 ** If any of those SrcItem objects have a USING clause containing zName
5669 ** then return true.
5671 ** If N is zero, or none of the N SrcItem objects to the right of pBase
5672 ** contains a USING clause, or if none of the USING clauses contain zName,
5673 ** then return false.
5675 static int inAnyUsingClause(
5676 const char *zName, /* Name we are looking for */
5677 SrcItem *pBase, /* The base SrcItem. Looking at pBase[1] and following */
5678 int N /* How many SrcItems to check */
5680 while( N>0 ){
5681 N--;
5682 pBase++;
5683 if( pBase->fg.isUsing==0 ) continue;
5684 if( NEVER(pBase->u3.pUsing==0) ) continue;
5685 if( sqlite3IdListIndex(pBase->u3.pUsing, zName)>=0 ) return 1;
5687 return 0;
5692 ** This routine is a Walker callback for "expanding" a SELECT statement.
5693 ** "Expanding" means to do the following:
5695 ** (1) Make sure VDBE cursor numbers have been assigned to every
5696 ** element of the FROM clause.
5698 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5699 ** defines FROM clause. When views appear in the FROM clause,
5700 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5701 ** that implements the view. A copy is made of the view's SELECT
5702 ** statement so that we can freely modify or delete that statement
5703 ** without worrying about messing up the persistent representation
5704 ** of the view.
5706 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5707 ** on joins and the ON and USING clause of joins.
5709 ** (4) Scan the list of columns in the result set (pEList) looking
5710 ** for instances of the "*" operator or the TABLE.* operator.
5711 ** If found, expand each "*" to be every column in every table
5712 ** and TABLE.* to be every column in TABLE.
5715 static int selectExpander(Walker *pWalker, Select *p){
5716 Parse *pParse = pWalker->pParse;
5717 int i, j, k, rc;
5718 SrcList *pTabList;
5719 ExprList *pEList;
5720 SrcItem *pFrom;
5721 sqlite3 *db = pParse->db;
5722 Expr *pE, *pRight, *pExpr;
5723 u16 selFlags = p->selFlags;
5724 u32 elistFlags = 0;
5726 p->selFlags |= SF_Expanded;
5727 if( db->mallocFailed ){
5728 return WRC_Abort;
5730 assert( p->pSrc!=0 );
5731 if( (selFlags & SF_Expanded)!=0 ){
5732 return WRC_Prune;
5734 if( pWalker->eCode ){
5735 /* Renumber selId because it has been copied from a view */
5736 p->selId = ++pParse->nSelect;
5738 pTabList = p->pSrc;
5739 pEList = p->pEList;
5740 if( pParse->pWith && (p->selFlags & SF_View) ){
5741 if( p->pWith==0 ){
5742 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5743 if( p->pWith==0 ){
5744 return WRC_Abort;
5747 p->pWith->bView = 1;
5749 sqlite3WithPush(pParse, p->pWith, 0);
5751 /* Make sure cursor numbers have been assigned to all entries in
5752 ** the FROM clause of the SELECT statement.
5754 sqlite3SrcListAssignCursors(pParse, pTabList);
5756 /* Look up every table named in the FROM clause of the select. If
5757 ** an entry of the FROM clause is a subquery instead of a table or view,
5758 ** then create a transient table structure to describe the subquery.
5760 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5761 Table *pTab;
5762 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5763 if( pFrom->pTab ) continue;
5764 assert( pFrom->fg.isRecursive==0 );
5765 if( pFrom->zName==0 ){
5766 #ifndef SQLITE_OMIT_SUBQUERY
5767 Select *pSel = pFrom->pSelect;
5768 /* A sub-query in the FROM clause of a SELECT */
5769 assert( pSel!=0 );
5770 assert( pFrom->pTab==0 );
5771 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5772 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5773 #endif
5774 #ifndef SQLITE_OMIT_CTE
5775 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5776 if( rc>1 ) return WRC_Abort;
5777 pTab = pFrom->pTab;
5778 assert( pTab!=0 );
5779 #endif
5780 }else{
5781 /* An ordinary table or view name in the FROM clause */
5782 assert( pFrom->pTab==0 );
5783 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5784 if( pTab==0 ) return WRC_Abort;
5785 if( pTab->nTabRef>=0xffff ){
5786 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5787 pTab->zName);
5788 pFrom->pTab = 0;
5789 return WRC_Abort;
5791 pTab->nTabRef++;
5792 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5793 return WRC_Abort;
5795 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5796 if( !IsOrdinaryTable(pTab) ){
5797 i16 nCol;
5798 u8 eCodeOrig = pWalker->eCode;
5799 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5800 assert( pFrom->pSelect==0 );
5801 if( IsView(pTab) ){
5802 if( (db->flags & SQLITE_EnableView)==0
5803 && pTab->pSchema!=db->aDb[1].pSchema
5805 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5806 pTab->zName);
5808 pFrom->pSelect = sqlite3SelectDup(db, pTab->u.view.pSelect, 0);
5810 #ifndef SQLITE_OMIT_VIRTUALTABLE
5811 else if( ALWAYS(IsVirtual(pTab))
5812 && pFrom->fg.fromDDL
5813 && ALWAYS(pTab->u.vtab.p!=0)
5814 && pTab->u.vtab.p->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5816 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5817 pTab->zName);
5819 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5820 #endif
5821 nCol = pTab->nCol;
5822 pTab->nCol = -1;
5823 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
5824 sqlite3WalkSelect(pWalker, pFrom->pSelect);
5825 pWalker->eCode = eCodeOrig;
5826 pTab->nCol = nCol;
5828 #endif
5831 /* Locate the index named by the INDEXED BY clause, if any. */
5832 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5833 return WRC_Abort;
5837 /* Process NATURAL keywords, and ON and USING clauses of joins.
5839 assert( db->mallocFailed==0 || pParse->nErr!=0 );
5840 if( pParse->nErr || sqlite3ProcessJoin(pParse, p) ){
5841 return WRC_Abort;
5844 /* For every "*" that occurs in the column list, insert the names of
5845 ** all columns in all tables. And for every TABLE.* insert the names
5846 ** of all columns in TABLE. The parser inserted a special expression
5847 ** with the TK_ASTERISK operator for each "*" that it found in the column
5848 ** list. The following code just has to locate the TK_ASTERISK
5849 ** expressions and expand each one to the list of all columns in
5850 ** all tables.
5852 ** The first loop just checks to see if there are any "*" operators
5853 ** that need expanding.
5855 for(k=0; k<pEList->nExpr; k++){
5856 pE = pEList->a[k].pExpr;
5857 if( pE->op==TK_ASTERISK ) break;
5858 assert( pE->op!=TK_DOT || pE->pRight!=0 );
5859 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5860 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5861 elistFlags |= pE->flags;
5863 if( k<pEList->nExpr ){
5865 ** If we get here it means the result set contains one or more "*"
5866 ** operators that need to be expanded. Loop through each expression
5867 ** in the result set and expand them one by one.
5869 struct ExprList_item *a = pEList->a;
5870 ExprList *pNew = 0;
5871 int flags = pParse->db->flags;
5872 int longNames = (flags & SQLITE_FullColNames)!=0
5873 && (flags & SQLITE_ShortColNames)==0;
5875 for(k=0; k<pEList->nExpr; k++){
5876 pE = a[k].pExpr;
5877 elistFlags |= pE->flags;
5878 pRight = pE->pRight;
5879 assert( pE->op!=TK_DOT || pRight!=0 );
5880 if( pE->op!=TK_ASTERISK
5881 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5883 /* This particular expression does not need to be expanded.
5885 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5886 if( pNew ){
5887 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5888 pNew->a[pNew->nExpr-1].fg.eEName = a[k].fg.eEName;
5889 a[k].zEName = 0;
5891 a[k].pExpr = 0;
5892 }else{
5893 /* This expression is a "*" or a "TABLE.*" and needs to be
5894 ** expanded. */
5895 int tableSeen = 0; /* Set to 1 when TABLE matches */
5896 char *zTName = 0; /* text of name of TABLE */
5897 if( pE->op==TK_DOT ){
5898 assert( pE->pLeft!=0 );
5899 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5900 zTName = pE->pLeft->u.zToken;
5902 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5903 Table *pTab = pFrom->pTab; /* Table for this data source */
5904 ExprList *pNestedFrom; /* Result-set of a nested FROM clause */
5905 char *zTabName; /* AS name for this data source */
5906 const char *zSchemaName = 0; /* Schema name for this data source */
5907 int iDb; /* Schema index for this data src */
5908 IdList *pUsing; /* USING clause for pFrom[1] */
5910 if( (zTabName = pFrom->zAlias)==0 ){
5911 zTabName = pTab->zName;
5913 if( db->mallocFailed ) break;
5914 assert( (int)pFrom->fg.isNestedFrom == IsNestedFrom(pFrom->pSelect) );
5915 if( pFrom->fg.isNestedFrom ){
5916 assert( pFrom->pSelect!=0 );
5917 pNestedFrom = pFrom->pSelect->pEList;
5918 assert( pNestedFrom!=0 );
5919 assert( pNestedFrom->nExpr==pTab->nCol );
5920 }else{
5921 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5922 continue;
5924 pNestedFrom = 0;
5925 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5926 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5928 if( i+1<pTabList->nSrc
5929 && pFrom[1].fg.isUsing
5930 && (selFlags & SF_NestedFrom)!=0
5932 int ii;
5933 pUsing = pFrom[1].u3.pUsing;
5934 for(ii=0; ii<pUsing->nId; ii++){
5935 const char *zUName = pUsing->a[ii].zName;
5936 pRight = sqlite3Expr(db, TK_ID, zUName);
5937 pNew = sqlite3ExprListAppend(pParse, pNew, pRight);
5938 if( pNew ){
5939 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5940 assert( pX->zEName==0 );
5941 pX->zEName = sqlite3MPrintf(db,"..%s", zUName);
5942 pX->fg.eEName = ENAME_TAB;
5943 pX->fg.bUsingTerm = 1;
5946 }else{
5947 pUsing = 0;
5949 for(j=0; j<pTab->nCol; j++){
5950 char *zName = pTab->aCol[j].zCnName;
5951 struct ExprList_item *pX; /* Newly added ExprList term */
5953 assert( zName );
5954 if( zTName
5955 && pNestedFrom
5956 && sqlite3MatchEName(&pNestedFrom->a[j], 0, zTName, 0)==0
5958 continue;
5961 /* If a column is marked as 'hidden', omit it from the expanded
5962 ** result-set list unless the SELECT has the SF_IncludeHidden
5963 ** bit set.
5965 if( (p->selFlags & SF_IncludeHidden)==0
5966 && IsHiddenColumn(&pTab->aCol[j])
5968 continue;
5970 if( (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
5971 && zTName==0
5972 && (selFlags & (SF_NestedFrom))==0
5974 continue;
5976 tableSeen = 1;
5978 if( i>0 && zTName==0 && (selFlags & SF_NestedFrom)==0 ){
5979 if( pFrom->fg.isUsing
5980 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0
5982 /* In a join with a USING clause, omit columns in the
5983 ** using clause from the table on the right. */
5984 continue;
5987 pRight = sqlite3Expr(db, TK_ID, zName);
5988 if( (pTabList->nSrc>1
5989 && ( (pFrom->fg.jointype & JT_LTORJ)==0
5990 || (selFlags & SF_NestedFrom)!=0
5991 || !inAnyUsingClause(zName,pFrom,pTabList->nSrc-i-1)
5994 || IN_RENAME_OBJECT
5996 Expr *pLeft;
5997 pLeft = sqlite3Expr(db, TK_ID, zTabName);
5998 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5999 if( IN_RENAME_OBJECT && pE->pLeft ){
6000 sqlite3RenameTokenRemap(pParse, pLeft, pE->pLeft);
6002 if( zSchemaName ){
6003 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
6004 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
6006 }else{
6007 pExpr = pRight;
6009 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
6010 if( pNew==0 ){
6011 break; /* OOM */
6013 pX = &pNew->a[pNew->nExpr-1];
6014 assert( pX->zEName==0 );
6015 if( (selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
6016 if( pNestedFrom ){
6017 pX->zEName = sqlite3DbStrDup(db, pNestedFrom->a[j].zEName);
6018 testcase( pX->zEName==0 );
6019 }else{
6020 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
6021 zSchemaName, zTabName, zName);
6022 testcase( pX->zEName==0 );
6024 pX->fg.eEName = ENAME_TAB;
6025 if( (pFrom->fg.isUsing
6026 && sqlite3IdListIndex(pFrom->u3.pUsing, zName)>=0)
6027 || (pUsing && sqlite3IdListIndex(pUsing, zName)>=0)
6028 || (pTab->aCol[j].colFlags & COLFLAG_NOEXPAND)!=0
6030 pX->fg.bNoExpand = 1;
6032 }else if( longNames ){
6033 pX->zEName = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
6034 pX->fg.eEName = ENAME_NAME;
6035 }else{
6036 pX->zEName = sqlite3DbStrDup(db, zName);
6037 pX->fg.eEName = ENAME_NAME;
6041 if( !tableSeen ){
6042 if( zTName ){
6043 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
6044 }else{
6045 sqlite3ErrorMsg(pParse, "no tables specified");
6050 sqlite3ExprListDelete(db, pEList);
6051 p->pEList = pNew;
6053 if( p->pEList ){
6054 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
6055 sqlite3ErrorMsg(pParse, "too many columns in result set");
6056 return WRC_Abort;
6058 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
6059 p->selFlags |= SF_ComplexResult;
6062 #if TREETRACE_ENABLED
6063 if( sqlite3TreeTrace & 0x100 ){
6064 SELECTTRACE(0x100,pParse,p,("After result-set wildcard expansion:\n"));
6065 sqlite3TreeViewSelect(0, p, 0);
6067 #endif
6068 return WRC_Continue;
6071 #if SQLITE_DEBUG
6073 ** Always assert. This xSelectCallback2 implementation proves that the
6074 ** xSelectCallback2 is never invoked.
6076 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
6077 UNUSED_PARAMETER2(NotUsed, NotUsed2);
6078 assert( 0 );
6080 #endif
6082 ** This routine "expands" a SELECT statement and all of its subqueries.
6083 ** For additional information on what it means to "expand" a SELECT
6084 ** statement, see the comment on the selectExpand worker callback above.
6086 ** Expanding a SELECT statement is the first step in processing a
6087 ** SELECT statement. The SELECT statement must be expanded before
6088 ** name resolution is performed.
6090 ** If anything goes wrong, an error message is written into pParse.
6091 ** The calling function can detect the problem by looking at pParse->nErr
6092 ** and/or pParse->db->mallocFailed.
6094 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
6095 Walker w;
6096 w.xExprCallback = sqlite3ExprWalkNoop;
6097 w.pParse = pParse;
6098 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
6099 w.xSelectCallback = convertCompoundSelectToSubquery;
6100 w.xSelectCallback2 = 0;
6101 sqlite3WalkSelect(&w, pSelect);
6103 w.xSelectCallback = selectExpander;
6104 w.xSelectCallback2 = sqlite3SelectPopWith;
6105 w.eCode = 0;
6106 sqlite3WalkSelect(&w, pSelect);
6110 #ifndef SQLITE_OMIT_SUBQUERY
6112 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
6113 ** interface.
6115 ** For each FROM-clause subquery, add Column.zType and Column.zColl
6116 ** information to the Table structure that represents the result set
6117 ** of that subquery.
6119 ** The Table structure that represents the result set was constructed
6120 ** by selectExpander() but the type and collation information was omitted
6121 ** at that point because identifiers had not yet been resolved. This
6122 ** routine is called after identifier resolution.
6124 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
6125 Parse *pParse;
6126 int i;
6127 SrcList *pTabList;
6128 SrcItem *pFrom;
6130 assert( p->selFlags & SF_Resolved );
6131 if( p->selFlags & SF_HasTypeInfo ) return;
6132 p->selFlags |= SF_HasTypeInfo;
6133 pParse = pWalker->pParse;
6134 pTabList = p->pSrc;
6135 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
6136 Table *pTab = pFrom->pTab;
6137 assert( pTab!=0 );
6138 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
6139 /* A sub-query in the FROM clause of a SELECT */
6140 Select *pSel = pFrom->pSelect;
6141 if( pSel ){
6142 while( pSel->pPrior ) pSel = pSel->pPrior;
6143 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
6144 SQLITE_AFF_NONE);
6149 #endif
6153 ** This routine adds datatype and collating sequence information to
6154 ** the Table structures of all FROM-clause subqueries in a
6155 ** SELECT statement.
6157 ** Use this routine after name resolution.
6159 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
6160 #ifndef SQLITE_OMIT_SUBQUERY
6161 Walker w;
6162 w.xSelectCallback = sqlite3SelectWalkNoop;
6163 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
6164 w.xExprCallback = sqlite3ExprWalkNoop;
6165 w.pParse = pParse;
6166 sqlite3WalkSelect(&w, pSelect);
6167 #endif
6172 ** This routine sets up a SELECT statement for processing. The
6173 ** following is accomplished:
6175 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
6176 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
6177 ** * ON and USING clauses are shifted into WHERE statements
6178 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
6179 ** * Identifiers in expression are matched to tables.
6181 ** This routine acts recursively on all subqueries within the SELECT.
6183 void sqlite3SelectPrep(
6184 Parse *pParse, /* The parser context */
6185 Select *p, /* The SELECT statement being coded. */
6186 NameContext *pOuterNC /* Name context for container */
6188 assert( p!=0 || pParse->db->mallocFailed );
6189 assert( pParse->db->pParse==pParse );
6190 if( pParse->db->mallocFailed ) return;
6191 if( p->selFlags & SF_HasTypeInfo ) return;
6192 sqlite3SelectExpand(pParse, p);
6193 if( pParse->nErr ) return;
6194 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
6195 if( pParse->nErr ) return;
6196 sqlite3SelectAddTypeInfo(pParse, p);
6200 ** Reset the aggregate accumulator.
6202 ** The aggregate accumulator is a set of memory cells that hold
6203 ** intermediate results while calculating an aggregate. This
6204 ** routine generates code that stores NULLs in all of those memory
6205 ** cells.
6207 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
6208 Vdbe *v = pParse->pVdbe;
6209 int i;
6210 struct AggInfo_func *pFunc;
6211 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
6212 assert( pParse->db->pParse==pParse );
6213 assert( pParse->db->mallocFailed==0 || pParse->nErr!=0 );
6214 if( nReg==0 ) return;
6215 if( pParse->nErr ) return;
6216 #ifdef SQLITE_DEBUG
6217 /* Verify that all AggInfo registers are within the range specified by
6218 ** AggInfo.mnReg..AggInfo.mxReg */
6219 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
6220 for(i=0; i<pAggInfo->nColumn; i++){
6221 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
6222 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
6224 for(i=0; i<pAggInfo->nFunc; i++){
6225 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
6226 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
6228 #endif
6229 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
6230 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
6231 if( pFunc->iDistinct>=0 ){
6232 Expr *pE = pFunc->pFExpr;
6233 assert( ExprUseXList(pE) );
6234 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
6235 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
6236 "argument");
6237 pFunc->iDistinct = -1;
6238 }else{
6239 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
6240 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6241 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
6242 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
6243 pFunc->pFunc->zName));
6250 ** Invoke the OP_AggFinalize opcode for every aggregate function
6251 ** in the AggInfo structure.
6253 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
6254 Vdbe *v = pParse->pVdbe;
6255 int i;
6256 struct AggInfo_func *pF;
6257 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6258 ExprList *pList;
6259 assert( ExprUseXList(pF->pFExpr) );
6260 pList = pF->pFExpr->x.pList;
6261 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
6262 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6268 ** Update the accumulator memory cells for an aggregate based on
6269 ** the current cursor position.
6271 ** If regAcc is non-zero and there are no min() or max() aggregates
6272 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
6273 ** registers if register regAcc contains 0. The caller will take care
6274 ** of setting and clearing regAcc.
6276 static void updateAccumulator(
6277 Parse *pParse,
6278 int regAcc,
6279 AggInfo *pAggInfo,
6280 int eDistinctType
6282 Vdbe *v = pParse->pVdbe;
6283 int i;
6284 int regHit = 0;
6285 int addrHitTest = 0;
6286 struct AggInfo_func *pF;
6287 struct AggInfo_col *pC;
6289 pAggInfo->directMode = 1;
6290 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
6291 int nArg;
6292 int addrNext = 0;
6293 int regAgg;
6294 ExprList *pList;
6295 assert( ExprUseXList(pF->pFExpr) );
6296 assert( !IsWindowFunc(pF->pFExpr) );
6297 pList = pF->pFExpr->x.pList;
6298 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
6299 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
6300 if( pAggInfo->nAccumulator
6301 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
6302 && regAcc
6304 /* If regAcc==0, there there exists some min() or max() function
6305 ** without a FILTER clause that will ensure the magnet registers
6306 ** are populated. */
6307 if( regHit==0 ) regHit = ++pParse->nMem;
6308 /* If this is the first row of the group (regAcc contains 0), clear the
6309 ** "magnet" register regHit so that the accumulator registers
6310 ** are populated if the FILTER clause jumps over the the
6311 ** invocation of min() or max() altogether. Or, if this is not
6312 ** the first row (regAcc contains 1), set the magnet register so that
6313 ** the accumulators are not populated unless the min()/max() is invoked
6314 ** and indicates that they should be. */
6315 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
6317 addrNext = sqlite3VdbeMakeLabel(pParse);
6318 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
6320 if( pList ){
6321 nArg = pList->nExpr;
6322 regAgg = sqlite3GetTempRange(pParse, nArg);
6323 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
6324 }else{
6325 nArg = 0;
6326 regAgg = 0;
6328 if( pF->iDistinct>=0 && pList ){
6329 if( addrNext==0 ){
6330 addrNext = sqlite3VdbeMakeLabel(pParse);
6332 pF->iDistinct = codeDistinct(pParse, eDistinctType,
6333 pF->iDistinct, addrNext, pList, regAgg);
6335 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
6336 CollSeq *pColl = 0;
6337 struct ExprList_item *pItem;
6338 int j;
6339 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
6340 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
6341 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
6343 if( !pColl ){
6344 pColl = pParse->db->pDfltColl;
6346 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
6347 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
6349 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
6350 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
6351 sqlite3VdbeChangeP5(v, (u8)nArg);
6352 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
6353 if( addrNext ){
6354 sqlite3VdbeResolveLabel(v, addrNext);
6357 if( regHit==0 && pAggInfo->nAccumulator ){
6358 regHit = regAcc;
6360 if( regHit ){
6361 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
6363 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
6364 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
6367 pAggInfo->directMode = 0;
6368 if( addrHitTest ){
6369 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
6374 ** Add a single OP_Explain instruction to the VDBE to explain a simple
6375 ** count(*) query ("SELECT count(*) FROM pTab").
6377 #ifndef SQLITE_OMIT_EXPLAIN
6378 static void explainSimpleCount(
6379 Parse *pParse, /* Parse context */
6380 Table *pTab, /* Table being queried */
6381 Index *pIdx /* Index used to optimize scan, or NULL */
6383 if( pParse->explain==2 ){
6384 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
6385 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
6386 pTab->zName,
6387 bCover ? " USING COVERING INDEX " : "",
6388 bCover ? pIdx->zName : ""
6392 #else
6393 # define explainSimpleCount(a,b,c)
6394 #endif
6397 ** sqlite3WalkExpr() callback used by havingToWhere().
6399 ** If the node passed to the callback is a TK_AND node, return
6400 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6402 ** Otherwise, return WRC_Prune. In this case, also check if the
6403 ** sub-expression matches the criteria for being moved to the WHERE
6404 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6405 ** within the HAVING expression with a constant "1".
6407 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6408 if( pExpr->op!=TK_AND ){
6409 Select *pS = pWalker->u.pSelect;
6410 /* This routine is called before the HAVING clause of the current
6411 ** SELECT is analyzed for aggregates. So if pExpr->pAggInfo is set
6412 ** here, it indicates that the expression is a correlated reference to a
6413 ** column from an outer aggregate query, or an aggregate function that
6414 ** belongs to an outer query. Do not move the expression to the WHERE
6415 ** clause in this obscure case, as doing so may corrupt the outer Select
6416 ** statements AggInfo structure. */
6417 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6418 && ExprAlwaysFalse(pExpr)==0
6419 && pExpr->pAggInfo==0
6421 sqlite3 *db = pWalker->pParse->db;
6422 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6423 if( pNew ){
6424 Expr *pWhere = pS->pWhere;
6425 SWAP(Expr, *pNew, *pExpr);
6426 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6427 pS->pWhere = pNew;
6428 pWalker->eCode = 1;
6431 return WRC_Prune;
6433 return WRC_Continue;
6437 ** Transfer eligible terms from the HAVING clause of a query, which is
6438 ** processed after grouping, to the WHERE clause, which is processed before
6439 ** grouping. For example, the query:
6441 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6443 ** can be rewritten as:
6445 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6447 ** A term of the HAVING expression is eligible for transfer if it consists
6448 ** entirely of constants and expressions that are also GROUP BY terms that
6449 ** use the "BINARY" collation sequence.
6451 static void havingToWhere(Parse *pParse, Select *p){
6452 Walker sWalker;
6453 memset(&sWalker, 0, sizeof(sWalker));
6454 sWalker.pParse = pParse;
6455 sWalker.xExprCallback = havingToWhereExprCb;
6456 sWalker.u.pSelect = p;
6457 sqlite3WalkExpr(&sWalker, p->pHaving);
6458 #if TREETRACE_ENABLED
6459 if( sWalker.eCode && (sqlite3TreeTrace & 0x100)!=0 ){
6460 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6461 sqlite3TreeViewSelect(0, p, 0);
6463 #endif
6467 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6468 ** If it is, then return the SrcList_item for the prior view. If it is not,
6469 ** then return 0.
6471 static SrcItem *isSelfJoinView(
6472 SrcList *pTabList, /* Search for self-joins in this FROM clause */
6473 SrcItem *pThis /* Search for prior reference to this subquery */
6475 SrcItem *pItem;
6476 assert( pThis->pSelect!=0 );
6477 if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6478 for(pItem = pTabList->a; pItem<pThis; pItem++){
6479 Select *pS1;
6480 if( pItem->pSelect==0 ) continue;
6481 if( pItem->fg.viaCoroutine ) continue;
6482 if( pItem->zName==0 ) continue;
6483 assert( pItem->pTab!=0 );
6484 assert( pThis->pTab!=0 );
6485 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6486 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6487 pS1 = pItem->pSelect;
6488 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6489 /* The query flattener left two different CTE tables with identical
6490 ** names in the same FROM clause. */
6491 continue;
6493 if( pItem->pSelect->selFlags & SF_PushDown ){
6494 /* The view was modified by some other optimization such as
6495 ** pushDownWhereTerms() */
6496 continue;
6498 return pItem;
6500 return 0;
6504 ** Deallocate a single AggInfo object
6506 static void agginfoFree(sqlite3 *db, AggInfo *p){
6507 sqlite3DbFree(db, p->aCol);
6508 sqlite3DbFree(db, p->aFunc);
6509 sqlite3DbFreeNN(db, p);
6512 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6514 ** Attempt to transform a query of the form
6516 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6518 ** Into this:
6520 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6522 ** The transformation only works if all of the following are true:
6524 ** * The subquery is a UNION ALL of two or more terms
6525 ** * The subquery does not have a LIMIT clause
6526 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6527 ** * The outer query is a simple count(*) with no WHERE clause or other
6528 ** extraneous syntax.
6530 ** Return TRUE if the optimization is undertaken.
6532 static int countOfViewOptimization(Parse *pParse, Select *p){
6533 Select *pSub, *pPrior;
6534 Expr *pExpr;
6535 Expr *pCount;
6536 sqlite3 *db;
6537 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
6538 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
6539 if( p->pWhere ) return 0;
6540 if( p->pGroupBy ) return 0;
6541 pExpr = p->pEList->a[0].pExpr;
6542 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
6543 assert( ExprUseUToken(pExpr) );
6544 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
6545 assert( ExprUseXList(pExpr) );
6546 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
6547 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
6548 pSub = p->pSrc->a[0].pSelect;
6549 if( pSub==0 ) return 0; /* The FROM is a subquery */
6550 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
6552 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
6553 if( pSub->pWhere ) return 0; /* No WHERE clause */
6554 if( pSub->pLimit ) return 0; /* No LIMIT clause */
6555 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
6556 pSub = pSub->pPrior; /* Repeat over compound */
6557 }while( pSub );
6559 /* If we reach this point then it is OK to perform the transformation */
6561 db = pParse->db;
6562 pCount = pExpr;
6563 pExpr = 0;
6564 pSub = p->pSrc->a[0].pSelect;
6565 p->pSrc->a[0].pSelect = 0;
6566 sqlite3SrcListDelete(db, p->pSrc);
6567 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6568 while( pSub ){
6569 Expr *pTerm;
6570 pPrior = pSub->pPrior;
6571 pSub->pPrior = 0;
6572 pSub->pNext = 0;
6573 pSub->selFlags |= SF_Aggregate;
6574 pSub->selFlags &= ~SF_Compound;
6575 pSub->nSelectRow = 0;
6576 sqlite3ExprListDelete(db, pSub->pEList);
6577 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6578 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6579 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6580 sqlite3PExprAddSelect(pParse, pTerm, pSub);
6581 if( pExpr==0 ){
6582 pExpr = pTerm;
6583 }else{
6584 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6586 pSub = pPrior;
6588 p->pEList->a[0].pExpr = pExpr;
6589 p->selFlags &= ~SF_Aggregate;
6591 #if TREETRACE_ENABLED
6592 if( sqlite3TreeTrace & 0x400 ){
6593 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6594 sqlite3TreeViewSelect(0, p, 0);
6596 #endif
6597 return 1;
6599 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6602 ** If any term of pSrc, or any SF_NestedFrom sub-query, is not the same
6603 ** as pSrcItem but has the same alias as p0, then return true.
6604 ** Otherwise return false.
6606 static int sameSrcAlias(SrcItem *p0, SrcList *pSrc){
6607 int i;
6608 for(i=0; i<pSrc->nSrc; i++){
6609 SrcItem *p1 = &pSrc->a[i];
6610 if( p1==p0 ) continue;
6611 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6612 return 1;
6614 if( p1->pSelect
6615 && (p1->pSelect->selFlags & SF_NestedFrom)!=0
6616 && sameSrcAlias(p0, p1->pSelect->pSrc)
6618 return 1;
6621 return 0;
6625 ** Generate code for the SELECT statement given in the p argument.
6627 ** The results are returned according to the SelectDest structure.
6628 ** See comments in sqliteInt.h for further information.
6630 ** This routine returns the number of errors. If any errors are
6631 ** encountered, then an appropriate error message is left in
6632 ** pParse->zErrMsg.
6634 ** This routine does NOT free the Select structure passed in. The
6635 ** calling function needs to do that.
6637 int sqlite3Select(
6638 Parse *pParse, /* The parser context */
6639 Select *p, /* The SELECT statement being coded. */
6640 SelectDest *pDest /* What to do with the query results */
6642 int i, j; /* Loop counters */
6643 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
6644 Vdbe *v; /* The virtual machine under construction */
6645 int isAgg; /* True for select lists like "count(*)" */
6646 ExprList *pEList = 0; /* List of columns to extract. */
6647 SrcList *pTabList; /* List of tables to select from */
6648 Expr *pWhere; /* The WHERE clause. May be NULL */
6649 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
6650 Expr *pHaving; /* The HAVING clause. May be NULL */
6651 AggInfo *pAggInfo = 0; /* Aggregate information */
6652 int rc = 1; /* Value to return from this function */
6653 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6654 SortCtx sSort; /* Info on how to code the ORDER BY clause */
6655 int iEnd; /* Address of the end of the query */
6656 sqlite3 *db; /* The database connection */
6657 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
6658 u8 minMaxFlag; /* Flag for min/max queries */
6660 db = pParse->db;
6661 assert( pParse==db->pParse );
6662 v = sqlite3GetVdbe(pParse);
6663 if( p==0 || pParse->nErr ){
6664 return 1;
6666 assert( db->mallocFailed==0 );
6667 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6668 #if TREETRACE_ENABLED
6669 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6670 if( sqlite3TreeTrace & 0x10100 ){
6671 if( (sqlite3TreeTrace & 0x10001)==0x10000 ){
6672 sqlite3TreeViewLine(0, "In sqlite3Select() at %s:%d",
6673 __FILE__, __LINE__);
6675 sqlite3ShowSelect(p);
6677 #endif
6679 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6680 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6681 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6682 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6683 if( IgnorableDistinct(pDest) ){
6684 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
6685 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
6686 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
6687 /* All of these destinations are also able to ignore the ORDER BY clause */
6688 if( p->pOrderBy ){
6689 #if TREETRACE_ENABLED
6690 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6691 if( sqlite3TreeTrace & 0x100 ){
6692 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6694 #endif
6695 sqlite3ParserAddCleanup(pParse,
6696 (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6697 p->pOrderBy);
6698 testcase( pParse->earlyCleanup );
6699 p->pOrderBy = 0;
6701 p->selFlags &= ~SF_Distinct;
6702 p->selFlags |= SF_NoopOrderBy;
6704 sqlite3SelectPrep(pParse, p, 0);
6705 if( pParse->nErr ){
6706 goto select_end;
6708 assert( db->mallocFailed==0 );
6709 assert( p->pEList!=0 );
6710 #if TREETRACE_ENABLED
6711 if( sqlite3TreeTrace & 0x104 ){
6712 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6713 sqlite3TreeViewSelect(0, p, 0);
6715 #endif
6717 /* If the SF_UFSrcCheck flag is set, then this function is being called
6718 ** as part of populating the temp table for an UPDATE...FROM statement.
6719 ** In this case, it is an error if the target object (pSrc->a[0]) name
6720 ** or alias is duplicated within FROM clause (pSrc->a[1..n]).
6722 ** Postgres disallows this case too. The reason is that some other
6723 ** systems handle this case differently, and not all the same way,
6724 ** which is just confusing. To avoid this, we follow PG's lead and
6725 ** disallow it altogether. */
6726 if( p->selFlags & SF_UFSrcCheck ){
6727 SrcItem *p0 = &p->pSrc->a[0];
6728 if( sameSrcAlias(p0, p->pSrc) ){
6729 sqlite3ErrorMsg(pParse,
6730 "target object/alias may not appear in FROM clause: %s",
6731 p0->zAlias ? p0->zAlias : p0->pTab->zName
6733 goto select_end;
6736 /* Clear the SF_UFSrcCheck flag. The check has already been performed,
6737 ** and leaving this flag set can cause errors if a compound sub-query
6738 ** in p->pSrc is flattened into this query and this function called
6739 ** again as part of compound SELECT processing. */
6740 p->selFlags &= ~SF_UFSrcCheck;
6743 if( pDest->eDest==SRT_Output ){
6744 sqlite3GenerateColumnNames(pParse, p);
6747 #ifndef SQLITE_OMIT_WINDOWFUNC
6748 if( sqlite3WindowRewrite(pParse, p) ){
6749 assert( pParse->nErr );
6750 goto select_end;
6752 #if TREETRACE_ENABLED
6753 if( p->pWin && (sqlite3TreeTrace & 0x108)!=0 ){
6754 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6755 sqlite3TreeViewSelect(0, p, 0);
6757 #endif
6758 #endif /* SQLITE_OMIT_WINDOWFUNC */
6759 pTabList = p->pSrc;
6760 isAgg = (p->selFlags & SF_Aggregate)!=0;
6761 memset(&sSort, 0, sizeof(sSort));
6762 sSort.pOrderBy = p->pOrderBy;
6764 /* Try to do various optimizations (flattening subqueries, and strength
6765 ** reduction of join operators) in the FROM clause up into the main query
6767 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6768 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6769 SrcItem *pItem = &pTabList->a[i];
6770 Select *pSub = pItem->pSelect;
6771 Table *pTab = pItem->pTab;
6773 /* The expander should have already created transient Table objects
6774 ** even for FROM clause elements such as subqueries that do not correspond
6775 ** to a real table */
6776 assert( pTab!=0 );
6778 /* Convert LEFT JOIN into JOIN if there are terms of the right table
6779 ** of the LEFT JOIN used in the WHERE clause.
6781 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))==JT_LEFT
6782 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6783 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6785 SELECTTRACE(0x100,pParse,p,
6786 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6787 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6788 assert( pItem->iCursor>=0 );
6789 unsetJoinExpr(p->pWhere, pItem->iCursor,
6790 pTabList->a[0].fg.jointype & JT_LTORJ);
6793 /* No futher action if this term of the FROM clause is no a subquery */
6794 if( pSub==0 ) continue;
6796 /* Catch mismatch in the declared columns of a view and the number of
6797 ** columns in the SELECT on the RHS */
6798 if( pTab->nCol!=pSub->pEList->nExpr ){
6799 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6800 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6801 goto select_end;
6804 /* Do not try to flatten an aggregate subquery.
6806 ** Flattening an aggregate subquery is only possible if the outer query
6807 ** is not a join. But if the outer query is not a join, then the subquery
6808 ** will be implemented as a co-routine and there is no advantage to
6809 ** flattening in that case.
6811 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6812 assert( pSub->pGroupBy==0 );
6814 /* If a FROM-clause subquery has an ORDER BY clause that is not
6815 ** really doing anything, then delete it now so that it does not
6816 ** interfere with query flattening. See the discussion at
6817 ** https://sqlite.org/forum/forumpost/2d76f2bcf65d256a
6819 ** Beware of these cases where the ORDER BY clause may not be safely
6820 ** omitted:
6822 ** (1) There is also a LIMIT clause
6823 ** (2) The subquery was added to help with window-function
6824 ** processing
6825 ** (3) The subquery is in the FROM clause of an UPDATE
6826 ** (4) The outer query uses an aggregate function other than
6827 ** the built-in count(), min(), or max().
6828 ** (5) The ORDER BY isn't going to accomplish anything because
6829 ** one of:
6830 ** (a) The outer query has a different ORDER BY clause
6831 ** (b) The subquery is part of a join
6832 ** See forum post 062d576715d277c8
6834 if( pSub->pOrderBy!=0
6835 && (p->pOrderBy!=0 || pTabList->nSrc>1) /* Condition (5) */
6836 && pSub->pLimit==0 /* Condition (1) */
6837 && (pSub->selFlags & SF_OrderByReqd)==0 /* Condition (2) */
6838 && (p->selFlags & SF_OrderByReqd)==0 /* Condition (3) and (4) */
6839 && OptimizationEnabled(db, SQLITE_OmitOrderBy)
6841 SELECTTRACE(0x100,pParse,p,
6842 ("omit superfluous ORDER BY on %r FROM-clause subquery\n",i+1));
6843 sqlite3ParserAddCleanup(pParse,
6844 (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6845 pSub->pOrderBy);
6846 pSub->pOrderBy = 0;
6849 /* If the outer query contains a "complex" result set (that is,
6850 ** if the result set of the outer query uses functions or subqueries)
6851 ** and if the subquery contains an ORDER BY clause and if
6852 ** it will be implemented as a co-routine, then do not flatten. This
6853 ** restriction allows SQL constructs like this:
6855 ** SELECT expensive_function(x)
6856 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6858 ** The expensive_function() is only computed on the 10 rows that
6859 ** are output, rather than every row of the table.
6861 ** The requirement that the outer query have a complex result set
6862 ** means that flattening does occur on simpler SQL constraints without
6863 ** the expensive_function() like:
6865 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6867 if( pSub->pOrderBy!=0
6868 && i==0
6869 && (p->selFlags & SF_ComplexResult)!=0
6870 && (pTabList->nSrc==1
6871 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0)
6873 continue;
6876 if( flattenSubquery(pParse, p, i, isAgg) ){
6877 if( pParse->nErr ) goto select_end;
6878 /* This subquery can be absorbed into its parent. */
6879 i = -1;
6881 pTabList = p->pSrc;
6882 if( db->mallocFailed ) goto select_end;
6883 if( !IgnorableOrderby(pDest) ){
6884 sSort.pOrderBy = p->pOrderBy;
6887 #endif
6889 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6890 /* Handle compound SELECT statements using the separate multiSelect()
6891 ** procedure.
6893 if( p->pPrior ){
6894 rc = multiSelect(pParse, p, pDest);
6895 #if TREETRACE_ENABLED
6896 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6897 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6898 sqlite3TreeViewSelect(0, p, 0);
6900 #endif
6901 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6902 return rc;
6904 #endif
6906 /* Do the WHERE-clause constant propagation optimization if this is
6907 ** a join. No need to speed time on this operation for non-join queries
6908 ** as the equivalent optimization will be handled by query planner in
6909 ** sqlite3WhereBegin().
6911 if( p->pWhere!=0
6912 && p->pWhere->op==TK_AND
6913 && OptimizationEnabled(db, SQLITE_PropagateConst)
6914 && propagateConstants(pParse, p)
6916 #if TREETRACE_ENABLED
6917 if( sqlite3TreeTrace & 0x100 ){
6918 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6919 sqlite3TreeViewSelect(0, p, 0);
6921 #endif
6922 }else{
6923 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6926 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6927 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6928 && countOfViewOptimization(pParse, p)
6930 if( db->mallocFailed ) goto select_end;
6931 pEList = p->pEList;
6932 pTabList = p->pSrc;
6934 #endif
6936 /* For each term in the FROM clause, do two things:
6937 ** (1) Authorized unreferenced tables
6938 ** (2) Generate code for all sub-queries
6940 for(i=0; i<pTabList->nSrc; i++){
6941 SrcItem *pItem = &pTabList->a[i];
6942 SrcItem *pPrior;
6943 SelectDest dest;
6944 Select *pSub;
6945 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6946 const char *zSavedAuthContext;
6947 #endif
6949 /* Issue SQLITE_READ authorizations with a fake column name for any
6950 ** tables that are referenced but from which no values are extracted.
6951 ** Examples of where these kinds of null SQLITE_READ authorizations
6952 ** would occur:
6954 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
6955 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
6957 ** The fake column name is an empty string. It is possible for a table to
6958 ** have a column named by the empty string, in which case there is no way to
6959 ** distinguish between an unreferenced table and an actual reference to the
6960 ** "" column. The original design was for the fake column name to be a NULL,
6961 ** which would be unambiguous. But legacy authorization callbacks might
6962 ** assume the column name is non-NULL and segfault. The use of an empty
6963 ** string for the fake column name seems safer.
6965 if( pItem->colUsed==0 && pItem->zName!=0 ){
6966 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6969 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6970 /* Generate code for all sub-queries in the FROM clause
6972 pSub = pItem->pSelect;
6973 if( pSub==0 ) continue;
6975 /* The code for a subquery should only be generated once. */
6976 assert( pItem->addrFillSub==0 );
6978 /* Increment Parse.nHeight by the height of the largest expression
6979 ** tree referred to by this, the parent select. The child select
6980 ** may contain expression trees of at most
6981 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6982 ** more conservative than necessary, but much easier than enforcing
6983 ** an exact limit.
6985 pParse->nHeight += sqlite3SelectExprHeight(p);
6987 /* Make copies of constant WHERE-clause terms in the outer query down
6988 ** inside the subquery. This can help the subquery to run more efficiently.
6990 if( OptimizationEnabled(db, SQLITE_PushDown)
6991 && (pItem->fg.isCte==0
6992 || (pItem->u2.pCteUse->eM10d!=M10d_Yes && pItem->u2.pCteUse->nUse<2))
6993 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem)
6995 #if TREETRACE_ENABLED
6996 if( sqlite3TreeTrace & 0x100 ){
6997 SELECTTRACE(0x100,pParse,p,
6998 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6999 sqlite3TreeViewSelect(0, p, 0);
7001 #endif
7002 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
7003 }else{
7004 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
7007 zSavedAuthContext = pParse->zAuthContext;
7008 pParse->zAuthContext = pItem->zName;
7010 /* Generate code to implement the subquery
7012 ** The subquery is implemented as a co-routine if all of the following are
7013 ** true:
7015 ** (1) the subquery is guaranteed to be the outer loop (so that
7016 ** it does not need to be computed more than once), and
7017 ** (2) the subquery is not a CTE that should be materialized
7018 ** (3) the subquery is not part of a left operand for a RIGHT JOIN
7020 if( i==0
7021 && (pTabList->nSrc==1
7022 || (pTabList->a[1].fg.jointype&(JT_OUTER|JT_CROSS))!=0) /* (1) */
7023 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */
7024 && (pTabList->a[0].fg.jointype & JT_LTORJ)==0 /* (3) */
7026 /* Implement a co-routine that will return a single row of the result
7027 ** set on each invocation.
7029 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
7031 pItem->regReturn = ++pParse->nMem;
7032 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
7033 VdbeComment((v, "%!S", pItem));
7034 pItem->addrFillSub = addrTop;
7035 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
7036 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
7037 sqlite3Select(pParse, pSub, &dest);
7038 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7039 pItem->fg.viaCoroutine = 1;
7040 pItem->regResult = dest.iSdst;
7041 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
7042 sqlite3VdbeJumpHere(v, addrTop-1);
7043 sqlite3ClearTempRegCache(pParse);
7044 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
7045 /* This is a CTE for which materialization code has already been
7046 ** generated. Invoke the subroutine to compute the materialization,
7047 ** the make the pItem->iCursor be a copy of the ephemerial table that
7048 ** holds the result of the materialization. */
7049 CteUse *pCteUse = pItem->u2.pCteUse;
7050 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
7051 if( pItem->iCursor!=pCteUse->iCur ){
7052 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
7053 VdbeComment((v, "%!S", pItem));
7055 pSub->nSelectRow = pCteUse->nRowEst;
7056 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
7057 /* This view has already been materialized by a prior entry in
7058 ** this same FROM clause. Reuse it. */
7059 if( pPrior->addrFillSub ){
7060 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
7062 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
7063 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
7064 }else{
7065 /* Materialize the view. If the view is not correlated, generate a
7066 ** subroutine to do the materialization so that subsequent uses of
7067 ** the same view can reuse the materialization. */
7068 int topAddr;
7069 int onceAddr = 0;
7071 pItem->regReturn = ++pParse->nMem;
7072 topAddr = sqlite3VdbeAddOp0(v, OP_Goto);
7073 pItem->addrFillSub = topAddr+1;
7074 pItem->fg.isMaterialized = 1;
7075 if( pItem->fg.isCorrelated==0 ){
7076 /* If the subquery is not correlated and if we are not inside of
7077 ** a trigger, then we only need to compute the value of the subquery
7078 ** once. */
7079 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
7080 VdbeComment((v, "materialize %!S", pItem));
7081 }else{
7082 VdbeNoopComment((v, "materialize %!S", pItem));
7084 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
7085 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
7086 sqlite3Select(pParse, pSub, &dest);
7087 pItem->pTab->nRowLogEst = pSub->nSelectRow;
7088 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
7089 sqlite3VdbeAddOp2(v, OP_Return, pItem->regReturn, topAddr+1);
7090 VdbeComment((v, "end %!S", pItem));
7091 sqlite3VdbeJumpHere(v, topAddr);
7092 sqlite3ClearTempRegCache(pParse);
7093 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
7094 CteUse *pCteUse = pItem->u2.pCteUse;
7095 pCteUse->addrM9e = pItem->addrFillSub;
7096 pCteUse->regRtn = pItem->regReturn;
7097 pCteUse->iCur = pItem->iCursor;
7098 pCteUse->nRowEst = pSub->nSelectRow;
7101 if( db->mallocFailed ) goto select_end;
7102 pParse->nHeight -= sqlite3SelectExprHeight(p);
7103 pParse->zAuthContext = zSavedAuthContext;
7104 #endif
7107 /* Various elements of the SELECT copied into local variables for
7108 ** convenience */
7109 pEList = p->pEList;
7110 pWhere = p->pWhere;
7111 pGroupBy = p->pGroupBy;
7112 pHaving = p->pHaving;
7113 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
7115 #if TREETRACE_ENABLED
7116 if( sqlite3TreeTrace & 0x400 ){
7117 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
7118 sqlite3TreeViewSelect(0, p, 0);
7120 #endif
7122 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
7123 ** if the select-list is the same as the ORDER BY list, then this query
7124 ** can be rewritten as a GROUP BY. In other words, this:
7126 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
7128 ** is transformed to:
7130 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
7132 ** The second form is preferred as a single index (or temp-table) may be
7133 ** used for both the ORDER BY and DISTINCT processing. As originally
7134 ** written the query must use a temp-table for at least one of the ORDER
7135 ** BY and DISTINCT, and an index or separate temp-table for the other.
7137 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
7138 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
7139 #ifndef SQLITE_OMIT_WINDOWFUNC
7140 && p->pWin==0
7141 #endif
7143 p->selFlags &= ~SF_Distinct;
7144 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
7145 p->selFlags |= SF_Aggregate;
7146 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
7147 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
7148 ** original setting of the SF_Distinct flag, not the current setting */
7149 assert( sDistinct.isTnct );
7150 sDistinct.isTnct = 2;
7152 #if TREETRACE_ENABLED
7153 if( sqlite3TreeTrace & 0x400 ){
7154 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
7155 sqlite3TreeViewSelect(0, p, 0);
7157 #endif
7160 /* If there is an ORDER BY clause, then create an ephemeral index to
7161 ** do the sorting. But this sorting ephemeral index might end up
7162 ** being unused if the data can be extracted in pre-sorted order.
7163 ** If that is the case, then the OP_OpenEphemeral instruction will be
7164 ** changed to an OP_Noop once we figure out that the sorting index is
7165 ** not needed. The sSort.addrSortIndex variable is used to facilitate
7166 ** that change.
7168 if( sSort.pOrderBy ){
7169 KeyInfo *pKeyInfo;
7170 pKeyInfo = sqlite3KeyInfoFromExprList(
7171 pParse, sSort.pOrderBy, 0, pEList->nExpr);
7172 sSort.iECursor = pParse->nTab++;
7173 sSort.addrSortIndex =
7174 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7175 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
7176 (char*)pKeyInfo, P4_KEYINFO
7178 }else{
7179 sSort.addrSortIndex = -1;
7182 /* If the output is destined for a temporary table, open that table.
7184 if( pDest->eDest==SRT_EphemTab ){
7185 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
7186 if( p->selFlags & SF_NestedFrom ){
7187 /* Delete or NULL-out result columns that will never be used */
7188 int ii;
7189 for(ii=pEList->nExpr-1; ii>0 && pEList->a[ii].fg.bUsed==0; ii--){
7190 sqlite3ExprDelete(db, pEList->a[ii].pExpr);
7191 sqlite3DbFree(db, pEList->a[ii].zEName);
7192 pEList->nExpr--;
7194 for(ii=0; ii<pEList->nExpr; ii++){
7195 if( pEList->a[ii].fg.bUsed==0 ) pEList->a[ii].pExpr->op = TK_NULL;
7200 /* Set the limiter.
7202 iEnd = sqlite3VdbeMakeLabel(pParse);
7203 if( (p->selFlags & SF_FixedLimit)==0 ){
7204 p->nSelectRow = 320; /* 4 billion rows */
7206 computeLimitRegisters(pParse, p, iEnd);
7207 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
7208 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
7209 sSort.sortFlags |= SORTFLAG_UseSorter;
7212 /* Open an ephemeral index to use for the distinct set.
7214 if( p->selFlags & SF_Distinct ){
7215 sDistinct.tabTnct = pParse->nTab++;
7216 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
7217 sDistinct.tabTnct, 0, 0,
7218 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
7219 P4_KEYINFO);
7220 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
7221 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
7222 }else{
7223 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
7226 if( !isAgg && pGroupBy==0 ){
7227 /* No aggregate functions and no GROUP BY clause */
7228 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
7229 | (p->selFlags & SF_FixedLimit);
7230 #ifndef SQLITE_OMIT_WINDOWFUNC
7231 Window *pWin = p->pWin; /* Main window object (or NULL) */
7232 if( pWin ){
7233 sqlite3WindowCodeInit(pParse, p);
7235 #endif
7236 assert( WHERE_USE_LIMIT==SF_FixedLimit );
7239 /* Begin the database scan. */
7240 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7241 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
7242 p->pEList, p, wctrlFlags, p->nSelectRow);
7243 if( pWInfo==0 ) goto select_end;
7244 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
7245 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
7247 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
7248 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
7250 if( sSort.pOrderBy ){
7251 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
7252 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
7253 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
7254 sSort.pOrderBy = 0;
7257 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7259 /* If sorting index that was created by a prior OP_OpenEphemeral
7260 ** instruction ended up not being needed, then change the OP_OpenEphemeral
7261 ** into an OP_Noop.
7263 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
7264 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7267 assert( p->pEList==pEList );
7268 #ifndef SQLITE_OMIT_WINDOWFUNC
7269 if( pWin ){
7270 int addrGosub = sqlite3VdbeMakeLabel(pParse);
7271 int iCont = sqlite3VdbeMakeLabel(pParse);
7272 int iBreak = sqlite3VdbeMakeLabel(pParse);
7273 int regGosub = ++pParse->nMem;
7275 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
7277 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
7278 sqlite3VdbeResolveLabel(v, addrGosub);
7279 VdbeNoopComment((v, "inner-loop subroutine"));
7280 sSort.labelOBLopt = 0;
7281 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
7282 sqlite3VdbeResolveLabel(v, iCont);
7283 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
7284 VdbeComment((v, "end inner-loop subroutine"));
7285 sqlite3VdbeResolveLabel(v, iBreak);
7286 }else
7287 #endif /* SQLITE_OMIT_WINDOWFUNC */
7289 /* Use the standard inner loop. */
7290 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
7291 sqlite3WhereContinueLabel(pWInfo),
7292 sqlite3WhereBreakLabel(pWInfo));
7294 /* End the database scan loop.
7296 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7297 sqlite3WhereEnd(pWInfo);
7299 }else{
7300 /* This case when there exist aggregate functions or a GROUP BY clause
7301 ** or both */
7302 NameContext sNC; /* Name context for processing aggregate information */
7303 int iAMem; /* First Mem address for storing current GROUP BY */
7304 int iBMem; /* First Mem address for previous GROUP BY */
7305 int iUseFlag; /* Mem address holding flag indicating that at least
7306 ** one row of the input to the aggregator has been
7307 ** processed */
7308 int iAbortFlag; /* Mem address which causes query abort if positive */
7309 int groupBySort; /* Rows come from source in GROUP BY order */
7310 int addrEnd; /* End of processing for this SELECT */
7311 int sortPTab = 0; /* Pseudotable used to decode sorting results */
7312 int sortOut = 0; /* Output register from the sorter */
7313 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
7315 /* Remove any and all aliases between the result set and the
7316 ** GROUP BY clause.
7318 if( pGroupBy ){
7319 int k; /* Loop counter */
7320 struct ExprList_item *pItem; /* For looping over expression in a list */
7322 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
7323 pItem->u.x.iAlias = 0;
7325 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
7326 pItem->u.x.iAlias = 0;
7328 assert( 66==sqlite3LogEst(100) );
7329 if( p->nSelectRow>66 ) p->nSelectRow = 66;
7331 /* If there is both a GROUP BY and an ORDER BY clause and they are
7332 ** identical, then it may be possible to disable the ORDER BY clause
7333 ** on the grounds that the GROUP BY will cause elements to come out
7334 ** in the correct order. It also may not - the GROUP BY might use a
7335 ** database index that causes rows to be grouped together as required
7336 ** but not actually sorted. Either way, record the fact that the
7337 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
7338 ** variable. */
7339 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
7340 int ii;
7341 /* The GROUP BY processing doesn't care whether rows are delivered in
7342 ** ASC or DESC order - only that each group is returned contiguously.
7343 ** So set the ASC/DESC flags in the GROUP BY to match those in the
7344 ** ORDER BY to maximize the chances of rows being delivered in an
7345 ** order that makes the ORDER BY redundant. */
7346 for(ii=0; ii<pGroupBy->nExpr; ii++){
7347 u8 sortFlags;
7348 sortFlags = sSort.pOrderBy->a[ii].fg.sortFlags & KEYINFO_ORDER_DESC;
7349 pGroupBy->a[ii].fg.sortFlags = sortFlags;
7351 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
7352 orderByGrp = 1;
7355 }else{
7356 assert( 0==sqlite3LogEst(1) );
7357 p->nSelectRow = 0;
7360 /* Create a label to jump to when we want to abort the query */
7361 addrEnd = sqlite3VdbeMakeLabel(pParse);
7363 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
7364 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
7365 ** SELECT statement.
7367 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
7368 if( pAggInfo ){
7369 sqlite3ParserAddCleanup(pParse,
7370 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
7371 testcase( pParse->earlyCleanup );
7373 if( db->mallocFailed ){
7374 goto select_end;
7376 pAggInfo->selId = p->selId;
7377 memset(&sNC, 0, sizeof(sNC));
7378 sNC.pParse = pParse;
7379 sNC.pSrcList = pTabList;
7380 sNC.uNC.pAggInfo = pAggInfo;
7381 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
7382 pAggInfo->mnReg = pParse->nMem+1;
7383 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
7384 pAggInfo->pGroupBy = pGroupBy;
7385 sqlite3ExprAnalyzeAggList(&sNC, pEList);
7386 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
7387 if( pHaving ){
7388 if( pGroupBy ){
7389 assert( pWhere==p->pWhere );
7390 assert( pHaving==p->pHaving );
7391 assert( pGroupBy==p->pGroupBy );
7392 havingToWhere(pParse, p);
7393 pWhere = p->pWhere;
7395 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
7397 pAggInfo->nAccumulator = pAggInfo->nColumn;
7398 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
7399 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
7400 }else{
7401 minMaxFlag = WHERE_ORDERBY_NORMAL;
7403 for(i=0; i<pAggInfo->nFunc; i++){
7404 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7405 assert( ExprUseXList(pExpr) );
7406 sNC.ncFlags |= NC_InAggFunc;
7407 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
7408 #ifndef SQLITE_OMIT_WINDOWFUNC
7409 assert( !IsWindowFunc(pExpr) );
7410 if( ExprHasProperty(pExpr, EP_WinFunc) ){
7411 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
7413 #endif
7414 sNC.ncFlags &= ~NC_InAggFunc;
7416 pAggInfo->mxReg = pParse->nMem;
7417 if( db->mallocFailed ) goto select_end;
7418 #if TREETRACE_ENABLED
7419 if( sqlite3TreeTrace & 0x400 ){
7420 int ii;
7421 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
7422 sqlite3TreeViewSelect(0, p, 0);
7423 if( minMaxFlag ){
7424 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
7425 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
7427 for(ii=0; ii<pAggInfo->nColumn; ii++){
7428 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
7429 ii, pAggInfo->aCol[ii].iMem);
7430 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
7432 for(ii=0; ii<pAggInfo->nFunc; ii++){
7433 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
7434 ii, pAggInfo->aFunc[ii].iMem);
7435 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
7438 #endif
7441 /* Processing for aggregates with GROUP BY is very different and
7442 ** much more complex than aggregates without a GROUP BY.
7444 if( pGroupBy ){
7445 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
7446 int addr1; /* A-vs-B comparision jump */
7447 int addrOutputRow; /* Start of subroutine that outputs a result row */
7448 int regOutputRow; /* Return address register for output subroutine */
7449 int addrSetAbort; /* Set the abort flag and return */
7450 int addrTopOfLoop; /* Top of the input loop */
7451 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
7452 int addrReset; /* Subroutine for resetting the accumulator */
7453 int regReset; /* Return address register for reset subroutine */
7454 ExprList *pDistinct = 0;
7455 u16 distFlag = 0;
7456 int eDist = WHERE_DISTINCT_NOOP;
7458 if( pAggInfo->nFunc==1
7459 && pAggInfo->aFunc[0].iDistinct>=0
7460 && ALWAYS(pAggInfo->aFunc[0].pFExpr!=0)
7461 && ALWAYS(ExprUseXList(pAggInfo->aFunc[0].pFExpr))
7462 && pAggInfo->aFunc[0].pFExpr->x.pList!=0
7464 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
7465 pExpr = sqlite3ExprDup(db, pExpr, 0);
7466 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
7467 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
7468 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7471 /* If there is a GROUP BY clause we might need a sorting index to
7472 ** implement it. Allocate that sorting index now. If it turns out
7473 ** that we do not need it after all, the OP_SorterOpen instruction
7474 ** will be converted into a Noop.
7476 pAggInfo->sortingIdx = pParse->nTab++;
7477 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
7478 0, pAggInfo->nColumn);
7479 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
7480 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
7481 0, (char*)pKeyInfo, P4_KEYINFO);
7483 /* Initialize memory locations used by GROUP BY aggregate processing
7485 iUseFlag = ++pParse->nMem;
7486 iAbortFlag = ++pParse->nMem;
7487 regOutputRow = ++pParse->nMem;
7488 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
7489 regReset = ++pParse->nMem;
7490 addrReset = sqlite3VdbeMakeLabel(pParse);
7491 iAMem = pParse->nMem + 1;
7492 pParse->nMem += pGroupBy->nExpr;
7493 iBMem = pParse->nMem + 1;
7494 pParse->nMem += pGroupBy->nExpr;
7495 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7496 VdbeComment((v, "clear abort flag"));
7497 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7499 /* Begin a loop that will extract all source rows in GROUP BY order.
7500 ** This might involve two separate loops with an OP_Sort in between, or
7501 ** it might be a single loop that uses an index to extract information
7502 ** in the right order to begin with.
7504 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7505 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7506 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7507 0, (sDistinct.isTnct==2 ? WHERE_DISTINCTBY : WHERE_GROUPBY)
7508 | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7510 if( pWInfo==0 ){
7511 sqlite3ExprListDelete(db, pDistinct);
7512 goto select_end;
7514 eDist = sqlite3WhereIsDistinct(pWInfo);
7515 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7516 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7517 /* The optimizer is able to deliver rows in group by order so
7518 ** we do not have to sort. The OP_OpenEphemeral table will be
7519 ** cancelled later because we still need to use the pKeyInfo
7521 groupBySort = 0;
7522 }else{
7523 /* Rows are coming out in undetermined order. We have to push
7524 ** each row into a sorting index, terminate the first loop,
7525 ** then loop over the sorting index in order to get the output
7526 ** in sorted order
7528 int regBase;
7529 int regRecord;
7530 int nCol;
7531 int nGroupBy;
7533 explainTempTable(pParse,
7534 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7535 "DISTINCT" : "GROUP BY");
7537 groupBySort = 1;
7538 nGroupBy = pGroupBy->nExpr;
7539 nCol = nGroupBy;
7540 j = nGroupBy;
7541 for(i=0; i<pAggInfo->nColumn; i++){
7542 if( pAggInfo->aCol[i].iSorterColumn>=j ){
7543 nCol++;
7544 j++;
7547 regBase = sqlite3GetTempRange(pParse, nCol);
7548 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7549 j = nGroupBy;
7550 for(i=0; i<pAggInfo->nColumn; i++){
7551 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7552 if( pCol->iSorterColumn>=j ){
7553 int r1 = j + regBase;
7554 sqlite3ExprCodeGetColumnOfTable(v,
7555 pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7556 j++;
7559 regRecord = sqlite3GetTempReg(pParse);
7560 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7561 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7562 sqlite3ReleaseTempReg(pParse, regRecord);
7563 sqlite3ReleaseTempRange(pParse, regBase, nCol);
7564 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7565 sqlite3WhereEnd(pWInfo);
7566 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7567 sortOut = sqlite3GetTempReg(pParse);
7568 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7569 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7570 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7571 pAggInfo->useSortingIdx = 1;
7574 /* If the index or temporary table used by the GROUP BY sort
7575 ** will naturally deliver rows in the order required by the ORDER BY
7576 ** clause, cancel the ephemeral table open coded earlier.
7578 ** This is an optimization - the correct answer should result regardless.
7579 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7580 ** disable this optimization for testing purposes. */
7581 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7582 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7584 sSort.pOrderBy = 0;
7585 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7588 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7589 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7590 ** Then compare the current GROUP BY terms against the GROUP BY terms
7591 ** from the previous row currently stored in a0, a1, a2...
7593 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7594 if( groupBySort ){
7595 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7596 sortOut, sortPTab);
7598 for(j=0; j<pGroupBy->nExpr; j++){
7599 if( groupBySort ){
7600 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7601 }else{
7602 pAggInfo->directMode = 1;
7603 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7606 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7607 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7608 addr1 = sqlite3VdbeCurrentAddr(v);
7609 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7611 /* Generate code that runs whenever the GROUP BY changes.
7612 ** Changes in the GROUP BY are detected by the previous code
7613 ** block. If there were no changes, this block is skipped.
7615 ** This code copies current group by terms in b0,b1,b2,...
7616 ** over to a0,a1,a2. It then calls the output subroutine
7617 ** and resets the aggregate accumulator registers in preparation
7618 ** for the next GROUP BY batch.
7620 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7621 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7622 VdbeComment((v, "output one row"));
7623 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7624 VdbeComment((v, "check abort flag"));
7625 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7626 VdbeComment((v, "reset accumulator"));
7628 /* Update the aggregate accumulators based on the content of
7629 ** the current row
7631 sqlite3VdbeJumpHere(v, addr1);
7632 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7633 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7634 VdbeComment((v, "indicate data in accumulator"));
7636 /* End of the loop
7638 if( groupBySort ){
7639 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7640 VdbeCoverage(v);
7641 }else{
7642 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7643 sqlite3WhereEnd(pWInfo);
7644 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7646 sqlite3ExprListDelete(db, pDistinct);
7648 /* Output the final row of result
7650 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7651 VdbeComment((v, "output final row"));
7653 /* Jump over the subroutines
7655 sqlite3VdbeGoto(v, addrEnd);
7657 /* Generate a subroutine that outputs a single row of the result
7658 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
7659 ** is less than or equal to zero, the subroutine is a no-op. If
7660 ** the processing calls for the query to abort, this subroutine
7661 ** increments the iAbortFlag memory location before returning in
7662 ** order to signal the caller to abort.
7664 addrSetAbort = sqlite3VdbeCurrentAddr(v);
7665 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7666 VdbeComment((v, "set abort flag"));
7667 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7668 sqlite3VdbeResolveLabel(v, addrOutputRow);
7669 addrOutputRow = sqlite3VdbeCurrentAddr(v);
7670 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7671 VdbeCoverage(v);
7672 VdbeComment((v, "Groupby result generator entry point"));
7673 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7674 finalizeAggFunctions(pParse, pAggInfo);
7675 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7676 selectInnerLoop(pParse, p, -1, &sSort,
7677 &sDistinct, pDest,
7678 addrOutputRow+1, addrSetAbort);
7679 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7680 VdbeComment((v, "end groupby result generator"));
7682 /* Generate a subroutine that will reset the group-by accumulator
7684 sqlite3VdbeResolveLabel(v, addrReset);
7685 resetAccumulator(pParse, pAggInfo);
7686 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7687 VdbeComment((v, "indicate accumulator empty"));
7688 sqlite3VdbeAddOp1(v, OP_Return, regReset);
7690 if( distFlag!=0 && eDist!=WHERE_DISTINCT_NOOP ){
7691 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7692 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7694 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
7695 else {
7696 Table *pTab;
7697 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7698 /* If isSimpleCount() returns a pointer to a Table structure, then
7699 ** the SQL statement is of the form:
7701 ** SELECT count(*) FROM <tbl>
7703 ** where the Table structure returned represents table <tbl>.
7705 ** This statement is so common that it is optimized specially. The
7706 ** OP_Count instruction is executed either on the intkey table that
7707 ** contains the data for table <tbl> or on one of its indexes. It
7708 ** is better to execute the op on an index, as indexes are almost
7709 ** always spread across less pages than their corresponding tables.
7711 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7712 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
7713 Index *pIdx; /* Iterator variable */
7714 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
7715 Index *pBest = 0; /* Best index found so far */
7716 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
7718 sqlite3CodeVerifySchema(pParse, iDb);
7719 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7721 /* Search for the index that has the lowest scan cost.
7723 ** (2011-04-15) Do not do a full scan of an unordered index.
7725 ** (2013-10-03) Do not count the entries in a partial index.
7727 ** In practice the KeyInfo structure will not be used. It is only
7728 ** passed to keep OP_OpenRead happy.
7730 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7731 if( !p->pSrc->a[0].fg.notIndexed ){
7732 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7733 if( pIdx->bUnordered==0
7734 && pIdx->szIdxRow<pTab->szTabRow
7735 && pIdx->pPartIdxWhere==0
7736 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7738 pBest = pIdx;
7742 if( pBest ){
7743 iRoot = pBest->tnum;
7744 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7747 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7748 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7749 if( pKeyInfo ){
7750 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7752 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7753 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7754 explainSimpleCount(pParse, pTab, pBest);
7755 }else{
7756 int regAcc = 0; /* "populate accumulators" flag */
7757 ExprList *pDistinct = 0;
7758 u16 distFlag = 0;
7759 int eDist;
7761 /* If there are accumulator registers but no min() or max() functions
7762 ** without FILTER clauses, allocate register regAcc. Register regAcc
7763 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7764 ** The code generated by updateAccumulator() uses this to ensure
7765 ** that the accumulator registers are (a) updated only once if
7766 ** there are no min() or max functions or (b) always updated for the
7767 ** first row visited by the aggregate, so that they are updated at
7768 ** least once even if the FILTER clause means the min() or max()
7769 ** function visits zero rows. */
7770 if( pAggInfo->nAccumulator ){
7771 for(i=0; i<pAggInfo->nFunc; i++){
7772 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7773 continue;
7775 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7776 break;
7779 if( i==pAggInfo->nFunc ){
7780 regAcc = ++pParse->nMem;
7781 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7783 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7784 assert( ExprUseXList(pAggInfo->aFunc[0].pFExpr) );
7785 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7786 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7789 /* This case runs if the aggregate has no GROUP BY clause. The
7790 ** processing is much simpler since there is only a single row
7791 ** of output.
7793 assert( p->pGroupBy==0 );
7794 resetAccumulator(pParse, pAggInfo);
7796 /* If this query is a candidate for the min/max optimization, then
7797 ** minMaxFlag will have been previously set to either
7798 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7799 ** be an appropriate ORDER BY expression for the optimization.
7801 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7802 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7804 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7805 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7806 pDistinct, 0, minMaxFlag|distFlag, 0);
7807 if( pWInfo==0 ){
7808 goto select_end;
7810 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7811 eDist = sqlite3WhereIsDistinct(pWInfo);
7812 updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7813 if( eDist!=WHERE_DISTINCT_NOOP ){
7814 struct AggInfo_func *pF = pAggInfo->aFunc;
7815 if( pF ){
7816 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7820 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7821 if( minMaxFlag ){
7822 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7824 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7825 sqlite3WhereEnd(pWInfo);
7826 finalizeAggFunctions(pParse, pAggInfo);
7829 sSort.pOrderBy = 0;
7830 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7831 selectInnerLoop(pParse, p, -1, 0, 0,
7832 pDest, addrEnd, addrEnd);
7834 sqlite3VdbeResolveLabel(v, addrEnd);
7836 } /* endif aggregate query */
7838 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7839 explainTempTable(pParse, "DISTINCT");
7842 /* If there is an ORDER BY clause, then we need to sort the results
7843 ** and send them to the callback one by one.
7845 if( sSort.pOrderBy ){
7846 explainTempTable(pParse,
7847 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7848 assert( p->pEList==pEList );
7849 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7852 /* Jump here to skip this query
7854 sqlite3VdbeResolveLabel(v, iEnd);
7856 /* The SELECT has been coded. If there is an error in the Parse structure,
7857 ** set the return code to 1. Otherwise 0. */
7858 rc = (pParse->nErr>0);
7860 /* Control jumps to here if an error is encountered above, or upon
7861 ** successful coding of the SELECT.
7863 select_end:
7864 assert( db->mallocFailed==0 || db->mallocFailed==1 );
7865 assert( db->mallocFailed==0 || pParse->nErr!=0 );
7866 sqlite3ExprListDelete(db, pMinMaxOrderBy);
7867 #ifdef SQLITE_DEBUG
7868 if( pAggInfo && !db->mallocFailed ){
7869 for(i=0; i<pAggInfo->nColumn; i++){
7870 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7871 assert( pExpr!=0 );
7872 assert( pExpr->pAggInfo==pAggInfo );
7873 assert( pExpr->iAgg==i );
7875 for(i=0; i<pAggInfo->nFunc; i++){
7876 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7877 assert( pExpr!=0 );
7878 assert( pExpr->pAggInfo==pAggInfo );
7879 assert( pExpr->iAgg==i );
7882 #endif
7884 #if TREETRACE_ENABLED
7885 SELECTTRACE(0x1,pParse,p,("end processing\n"));
7886 if( (sqlite3TreeTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7887 sqlite3TreeViewSelect(0, p, 0);
7889 #endif
7890 ExplainQueryPlanPop(pParse);
7891 return rc;