4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo
;
32 struct HiddenIndexInfo
{
33 WhereClause
*pWC
; /* The Where clause being analyzed */
34 Parse
*pParse
; /* The parsing context */
35 int eDistinct
; /* Value to return from sqlite3_vtab_distinct() */
36 u32 mIn
; /* Mask of terms that are <col> IN (...) */
37 u32 mHandleIn
; /* Terms that vtab will handle as <col> IN (...) */
38 sqlite3_value
*aRhs
[1]; /* RHS values for constraints. MUST BE LAST
39 ** because extra space is allocated to hold up
40 ** to nTerm such values */
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3
*, WhereLoop
*, int);
47 ** Return the estimated number of output rows from a WHERE clause
49 LogEst
sqlite3WhereOutputRowCount(WhereInfo
*pWInfo
){
50 return pWInfo
->nRowOut
;
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
57 int sqlite3WhereIsDistinct(WhereInfo
*pWInfo
){
58 return pWInfo
->eDistinct
;
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause. A return of 0 means that the output must be
64 ** completely sorted. A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all. A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
69 int sqlite3WhereIsOrdered(WhereInfo
*pWInfo
){
70 return pWInfo
->nOBSat
;
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop. If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo
*pWInfo
){
98 if( !pWInfo
->bOrderedInnerLoop
){
99 /* The ORDER BY LIMIT optimization does not apply. Jump to the
100 ** continuation of the inner-most loop. */
101 return pWInfo
->iContinue
;
103 pInner
= &pWInfo
->a
[pWInfo
->nLevel
-1];
104 assert( pInner
->addrNxt
!=0 );
105 return pInner
->pRJ
? pWInfo
->iContinue
: pInner
->addrNxt
;
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required. If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
115 ** Any extra OP_Goto that is coded here is an optimization. The
116 ** correct answer should be obtained regardless. This OP_Goto just
117 ** makes the answer appear faster.
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe
*v
, WhereInfo
*pWInfo
){
122 if( !pWInfo
->bOrderedInnerLoop
) return;
123 if( pWInfo
->nOBSat
==0 ) return;
124 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
125 pInner
= &pWInfo
->a
[i
];
126 if( (pInner
->pWLoop
->wsFlags
& WHERE_COLUMN_IN
)!=0 ){
127 sqlite3VdbeGoto(v
, pInner
->addrNxt
);
131 sqlite3VdbeGoto(v
, pWInfo
->iBreak
);
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
138 int sqlite3WhereContinueLabel(WhereInfo
*pWInfo
){
139 assert( pWInfo
->iContinue
!=0 );
140 return pWInfo
->iContinue
;
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
147 int sqlite3WhereBreakLabel(WhereInfo
*pWInfo
){
148 return pWInfo
->iBreak
;
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause. Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
168 int sqlite3WhereOkOnePass(WhereInfo
*pWInfo
, int *aiCur
){
169 memcpy(aiCur
, pWInfo
->aiCurOnePass
, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171 if( sqlite3WhereTrace
&& pWInfo
->eOnePass
!=ONEPASS_OFF
){
172 sqlite3DebugPrintf("%s cursors: %d %d\n",
173 pWInfo
->eOnePass
==ONEPASS_SINGLE
? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
177 return pWInfo
->eOnePass
;
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
184 int sqlite3WhereUsesDeferredSeek(WhereInfo
*pWInfo
){
185 return pWInfo
->bDeferredSeek
;
189 ** Move the content of pSrc into pDest
191 static void whereOrMove(WhereOrSet
*pDest
, WhereOrSet
*pSrc
){
193 memcpy(pDest
->a
, pSrc
->a
, pDest
->n
*sizeof(pDest
->a
[0]));
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded. Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
203 static int whereOrInsert(
204 WhereOrSet
*pSet
, /* The WhereOrSet to be updated */
205 Bitmask prereq
, /* Prerequisites of the new entry */
206 LogEst rRun
, /* Run-cost of the new entry */
207 LogEst nOut
/* Number of outputs for the new entry */
211 for(i
=pSet
->n
, p
=pSet
->a
; i
>0; i
--, p
++){
212 if( rRun
<=p
->rRun
&& (prereq
& p
->prereq
)==prereq
){
213 goto whereOrInsert_done
;
215 if( p
->rRun
<=rRun
&& (p
->prereq
& prereq
)==p
->prereq
){
219 if( pSet
->n
<N_OR_COST
){
220 p
= &pSet
->a
[pSet
->n
++];
224 for(i
=1; i
<pSet
->n
; i
++){
225 if( p
->rRun
>pSet
->a
[i
].rRun
) p
= pSet
->a
+ i
;
227 if( p
->rRun
<=rRun
) return 0;
232 if( p
->nOut
>nOut
) p
->nOut
= nOut
;
237 ** Return the bitmask for the given cursor number. Return 0 if
238 ** iCursor is not in the set.
240 Bitmask
sqlite3WhereGetMask(WhereMaskSet
*pMaskSet
, int iCursor
){
242 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
243 assert( pMaskSet
->n
>0 || pMaskSet
->ix
[0]<0 );
244 assert( iCursor
>=-1 );
245 if( pMaskSet
->ix
[0]==iCursor
){
248 for(i
=1; i
<pMaskSet
->n
; i
++){
249 if( pMaskSet
->ix
[i
]==iCursor
){
256 /* Allocate memory that is automatically freed when pWInfo is freed.
258 void *sqlite3WhereMalloc(WhereInfo
*pWInfo
, u64 nByte
){
259 WhereMemBlock
*pBlock
;
260 pBlock
= sqlite3DbMallocRawNN(pWInfo
->pParse
->db
, nByte
+sizeof(*pBlock
));
262 pBlock
->pNext
= pWInfo
->pMemToFree
;
264 pWInfo
->pMemToFree
= pBlock
;
267 return (void*)pBlock
;
269 void *sqlite3WhereRealloc(WhereInfo
*pWInfo
, void *pOld
, u64 nByte
){
270 void *pNew
= sqlite3WhereMalloc(pWInfo
, nByte
);
272 WhereMemBlock
*pOldBlk
= (WhereMemBlock
*)pOld
;
274 assert( pOldBlk
->sz
<nByte
);
275 memcpy(pNew
, pOld
, pOldBlk
->sz
);
281 ** Create a new mask for cursor iCursor.
283 ** There is one cursor per table in the FROM clause. The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
286 ** array will never overflow.
288 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
289 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
290 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch. Otherwise, return NULL.
297 static Expr
*whereRightSubexprIsColumn(Expr
*p
){
298 p
= sqlite3ExprSkipCollateAndLikely(p
->pRight
);
299 if( ALWAYS(p
!=0) && p
->op
==TK_COLUMN
&& !ExprHasProperty(p
, EP_FixedCol
) ){
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
310 static WhereTerm
*whereScanNext(WhereScan
*pScan
){
311 int iCur
; /* The cursor on the LHS of the term */
312 i16 iColumn
; /* The column on the LHS of the term. -1 for IPK */
313 Expr
*pX
; /* An expression being tested */
314 WhereClause
*pWC
; /* Shorthand for pScan->pWC */
315 WhereTerm
*pTerm
; /* The term being tested */
316 int k
= pScan
->k
; /* Where to start scanning */
318 assert( pScan
->iEquiv
<=pScan
->nEquiv
);
321 iColumn
= pScan
->aiColumn
[pScan
->iEquiv
-1];
322 iCur
= pScan
->aiCur
[pScan
->iEquiv
-1];
326 for(pTerm
=pWC
->a
+k
; k
<pWC
->nTerm
; k
++, pTerm
++){
327 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 || pTerm
->leftCursor
<0 );
328 if( pTerm
->leftCursor
==iCur
329 && pTerm
->u
.x
.leftColumn
==iColumn
331 || sqlite3ExprCompareSkip(pTerm
->pExpr
->pLeft
,
332 pScan
->pIdxExpr
,iCur
)==0)
333 && (pScan
->iEquiv
<=1 || !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
))
335 if( (pTerm
->eOperator
& WO_EQUIV
)!=0
336 && pScan
->nEquiv
<ArraySize(pScan
->aiCur
)
337 && (pX
= whereRightSubexprIsColumn(pTerm
->pExpr
))!=0
340 for(j
=0; j
<pScan
->nEquiv
; j
++){
341 if( pScan
->aiCur
[j
]==pX
->iTable
342 && pScan
->aiColumn
[j
]==pX
->iColumn
){
346 if( j
==pScan
->nEquiv
){
347 pScan
->aiCur
[j
] = pX
->iTable
;
348 pScan
->aiColumn
[j
] = pX
->iColumn
;
352 if( (pTerm
->eOperator
& pScan
->opMask
)!=0 ){
353 /* Verify the affinity and collating sequence match */
354 if( pScan
->zCollName
&& (pTerm
->eOperator
& WO_ISNULL
)==0 ){
356 Parse
*pParse
= pWC
->pWInfo
->pParse
;
358 if( !sqlite3IndexAffinityOk(pX
, pScan
->idxaff
) ){
362 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
363 if( pColl
==0 ) pColl
= pParse
->db
->pDfltColl
;
364 if( sqlite3StrICmp(pColl
->zName
, pScan
->zCollName
) ){
368 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))!=0
369 && (pX
= pTerm
->pExpr
->pRight
, ALWAYS(pX
!=0))
371 && pX
->iTable
==pScan
->aiCur
[0]
372 && pX
->iColumn
==pScan
->aiColumn
[0]
374 testcase( pTerm
->eOperator
& WO_IS
);
379 #ifdef WHERETRACE_ENABLED
380 if( sqlite3WhereTrace
& 0x20000 ){
382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383 pTerm
, pScan
->nEquiv
);
384 for(ii
=0; ii
<pScan
->nEquiv
; ii
++){
385 sqlite3DebugPrintf(" {%d:%d}",
386 pScan
->aiCur
[ii
], pScan
->aiColumn
[ii
]);
388 sqlite3DebugPrintf("\n");
398 if( pScan
->iEquiv
>=pScan
->nEquiv
) break;
399 pWC
= pScan
->pOrigWC
;
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
412 static SQLITE_NOINLINE WhereTerm
*whereScanInitIndexExpr(WhereScan
*pScan
){
413 pScan
->idxaff
= sqlite3ExprAffinity(pScan
->pIdxExpr
);
414 return whereScanNext(pScan
);
418 ** Initialize a WHERE clause scanner object. Return a pointer to the
419 ** first match. Return NULL if there are no matches.
421 ** The scanner will be searching the WHERE clause pWC. It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
424 ** must be one of the indexes of table iCur.
426 ** The <op> must be one of the operators described by opMask.
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>". The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
436 static WhereTerm
*whereScanInit(
437 WhereScan
*pScan
, /* The WhereScan object being initialized */
438 WhereClause
*pWC
, /* The WHERE clause to be scanned */
439 int iCur
, /* Cursor to scan for */
440 int iColumn
, /* Column to scan for */
441 u32 opMask
, /* Operator(s) to scan for */
442 Index
*pIdx
/* Must be compatible with this index */
444 pScan
->pOrigWC
= pWC
;
448 pScan
->zCollName
= 0;
449 pScan
->opMask
= opMask
;
451 pScan
->aiCur
[0] = iCur
;
456 iColumn
= pIdx
->aiColumn
[j
];
457 if( iColumn
==pIdx
->pTable
->iPKey
){
459 }else if( iColumn
>=0 ){
460 pScan
->idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
461 pScan
->zCollName
= pIdx
->azColl
[j
];
462 }else if( iColumn
==XN_EXPR
){
463 pScan
->pIdxExpr
= pIdx
->aColExpr
->a
[j
].pExpr
;
464 pScan
->zCollName
= pIdx
->azColl
[j
];
465 pScan
->aiColumn
[0] = XN_EXPR
;
466 return whereScanInitIndexExpr(pScan
);
468 }else if( iColumn
==XN_EXPR
){
471 pScan
->aiColumn
[0] = iColumn
;
472 return whereScanNext(pScan
);
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter. Return a pointer to the term. Return 0 if not found.
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y. Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values. Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind. Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
500 WhereTerm
*sqlite3WhereFindTerm(
501 WhereClause
*pWC
, /* The WHERE clause to be searched */
502 int iCur
, /* Cursor number of LHS */
503 int iColumn
, /* Column number of LHS */
504 Bitmask notReady
, /* RHS must not overlap with this mask */
505 u32 op
, /* Mask of WO_xx values describing operator */
506 Index
*pIdx
/* Must be compatible with this index, if not NULL */
508 WhereTerm
*pResult
= 0;
512 p
= whereScanInit(&scan
, pWC
, iCur
, iColumn
, op
, pIdx
);
515 if( (p
->prereqRight
& notReady
)==0 ){
516 if( p
->prereqRight
==0 && (p
->eOperator
&op
)!=0 ){
517 testcase( p
->eOperator
& WO_IS
);
520 if( pResult
==0 ) pResult
= p
;
522 p
= whereScanNext(&scan
);
528 ** This function searches pList for an entry that matches the iCol-th column
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
534 static int findIndexCol(
535 Parse
*pParse
, /* Parse context */
536 ExprList
*pList
, /* Expression list to search */
537 int iBase
, /* Cursor for table associated with pIdx */
538 Index
*pIdx
, /* Index to match column of */
539 int iCol
/* Column of index to match */
542 const char *zColl
= pIdx
->azColl
[iCol
];
544 for(i
=0; i
<pList
->nExpr
; i
++){
545 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pList
->a
[i
].pExpr
);
547 && (p
->op
==TK_COLUMN
|| p
->op
==TK_AGG_COLUMN
)
548 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
551 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pParse
, pList
->a
[i
].pExpr
);
552 if( 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
564 static int indexColumnNotNull(Index
*pIdx
, int iCol
){
567 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
568 j
= pIdx
->aiColumn
[iCol
];
570 return pIdx
->pTable
->aCol
[j
].notNull
;
575 return 0; /* Assume an indexed expression can always yield a NULL */
581 ** Return true if the DISTINCT expression-list passed as the third argument
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
587 static int isDistinctRedundant(
588 Parse
*pParse
, /* Parsing context */
589 SrcList
*pTabList
, /* The FROM clause */
590 WhereClause
*pWC
, /* The WHERE clause */
591 ExprList
*pDistinct
/* The result set that needs to be DISTINCT */
598 /* If there is more than one table or sub-select in the FROM clause of
599 ** this query, then it will not be possible to show that the DISTINCT
600 ** clause is redundant. */
601 if( pTabList
->nSrc
!=1 ) return 0;
602 iBase
= pTabList
->a
[0].iCursor
;
603 pTab
= pTabList
->a
[0].pTab
;
605 /* If any of the expressions is an IPK column on table iBase, then return
606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607 ** current SELECT is a correlated sub-query.
609 for(i
=0; i
<pDistinct
->nExpr
; i
++){
610 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pDistinct
->a
[i
].pExpr
);
611 if( NEVER(p
==0) ) continue;
612 if( p
->op
!=TK_COLUMN
&& p
->op
!=TK_AGG_COLUMN
) continue;
613 if( p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
616 /* Loop through all indices on the table, checking each to see if it makes
617 ** the DISTINCT qualifier redundant. It does so if:
619 ** 1. The index is itself UNIQUE, and
621 ** 2. All of the columns in the index are either part of the pDistinct
622 ** list, or else the WHERE clause contains a term of the form "col=X",
623 ** where X is a constant value. The collation sequences of the
624 ** comparison and select-list expressions must match those of the index.
626 ** 3. All of those index columns for which the WHERE clause does not
627 ** contain a "col=X" term are subject to a NOT NULL constraint.
629 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
630 if( !IsUniqueIndex(pIdx
) ) continue;
631 if( pIdx
->pPartIdxWhere
) continue;
632 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
633 if( 0==sqlite3WhereFindTerm(pWC
, iBase
, i
, ~(Bitmask
)0, WO_EQ
, pIdx
) ){
634 if( findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
)<0 ) break;
635 if( indexColumnNotNull(pIdx
, i
)==0 ) break;
638 if( i
==pIdx
->nKeyCol
){
639 /* This index implies that the DISTINCT qualifier is redundant. */
649 ** Estimate the logarithm of the input value to base 2.
651 static LogEst
estLog(LogEst N
){
652 return N
<=10 ? 0 : sqlite3LogEst(N
) - 33;
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
667 static void translateColumnToCopy(
668 Parse
*pParse
, /* Parsing context */
669 int iStart
, /* Translate from this opcode to the end */
670 int iTabCur
, /* OP_Column/OP_Rowid references to this table */
671 int iRegister
, /* The first column is in this register */
672 int iAutoidxCur
/* If non-zero, cursor of autoindex being generated */
674 Vdbe
*v
= pParse
->pVdbe
;
675 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iStart
);
676 int iEnd
= sqlite3VdbeCurrentAddr(v
);
677 if( pParse
->db
->mallocFailed
) return;
678 for(; iStart
<iEnd
; iStart
++, pOp
++){
679 if( pOp
->p1
!=iTabCur
) continue;
680 if( pOp
->opcode
==OP_Column
){
681 pOp
->opcode
= OP_Copy
;
682 pOp
->p1
= pOp
->p2
+ iRegister
;
685 pOp
->p5
= 2; /* Cause the MEM_Subtype flag to be cleared */
686 }else if( pOp
->opcode
==OP_Rowid
){
687 pOp
->opcode
= OP_Sequence
;
688 pOp
->p1
= iAutoidxCur
;
689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
690 if( iAutoidxCur
==0 ){
691 pOp
->opcode
= OP_Null
;
700 ** Two routines for printing the content of an sqlite3_index_info
701 ** structure. Used for testing and debugging only. If neither
702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
706 static void whereTraceIndexInfoInputs(sqlite3_index_info
*p
){
708 if( !sqlite3WhereTrace
) return;
709 for(i
=0; i
<p
->nConstraint
; i
++){
711 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
713 p
->aConstraint
[i
].iColumn
,
714 p
->aConstraint
[i
].iTermOffset
,
715 p
->aConstraint
[i
].op
,
716 p
->aConstraint
[i
].usable
,
717 sqlite3_vtab_collation(p
,i
));
719 for(i
=0; i
<p
->nOrderBy
; i
++){
720 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
722 p
->aOrderBy
[i
].iColumn
,
723 p
->aOrderBy
[i
].desc
);
726 static void whereTraceIndexInfoOutputs(sqlite3_index_info
*p
){
728 if( !sqlite3WhereTrace
) return;
729 for(i
=0; i
<p
->nConstraint
; i
++){
730 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
732 p
->aConstraintUsage
[i
].argvIndex
,
733 p
->aConstraintUsage
[i
].omit
);
735 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
736 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
737 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
738 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
739 sqlite3DebugPrintf(" estimatedRows=%lld\n", p
->estimatedRows
);
742 #define whereTraceIndexInfoInputs(A)
743 #define whereTraceIndexInfoOutputs(A)
746 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
748 ** Return TRUE if the WHERE clause term pTerm is of a form where it
749 ** could be used with an index to access pSrc, assuming an appropriate
752 static int termCanDriveIndex(
753 const WhereTerm
*pTerm
, /* WHERE clause term to check */
754 const SrcItem
*pSrc
, /* Table we are trying to access */
755 const Bitmask notReady
/* Tables in outer loops of the join */
758 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
759 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))==0 ) return 0;
760 assert( (pSrc
->fg
.jointype
& JT_RIGHT
)==0 );
761 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0 ){
762 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LEFT
);
763 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LTORJ
);
764 testcase( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) )
765 testcase( ExprHasProperty(pTerm
->pExpr
, EP_InnerON
) );
766 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
|EP_InnerON
)
767 || pTerm
->pExpr
->w
.iJoin
!= pSrc
->iCursor
769 return 0; /* See tag-20191211-001 */
772 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
773 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
774 if( pTerm
->u
.x
.leftColumn
<0 ) return 0;
775 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.x
.leftColumn
].affinity
;
776 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
777 testcase( pTerm
->pExpr
->op
==TK_IS
);
783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
785 ** Generate code to construct the Index object for an automatic index
786 ** and to set up the WhereLevel object pLevel so that the code generator
787 ** makes use of the automatic index.
789 static SQLITE_NOINLINE
void constructAutomaticIndex(
790 Parse
*pParse
, /* The parsing context */
791 const WhereClause
*pWC
, /* The WHERE clause */
792 const SrcItem
*pSrc
, /* The FROM clause term to get the next index */
793 const Bitmask notReady
, /* Mask of cursors that are not available */
794 WhereLevel
*pLevel
/* Write new index here */
796 int nKeyCol
; /* Number of columns in the constructed index */
797 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
798 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
799 Index
*pIdx
; /* Object describing the transient index */
800 Vdbe
*v
; /* Prepared statement under construction */
801 int addrInit
; /* Address of the initialization bypass jump */
802 Table
*pTable
; /* The table being indexed */
803 int addrTop
; /* Top of the index fill loop */
804 int regRecord
; /* Register holding an index record */
805 int n
; /* Column counter */
806 int i
; /* Loop counter */
807 int mxBitCol
; /* Maximum column in pSrc->colUsed */
808 CollSeq
*pColl
; /* Collating sequence to on a column */
809 WhereLoop
*pLoop
; /* The Loop object */
810 char *zNotUsed
; /* Extra space on the end of pIdx */
811 Bitmask idxCols
; /* Bitmap of columns used for indexing */
812 Bitmask extraCols
; /* Bitmap of additional columns */
813 u8 sentWarning
= 0; /* True if a warnning has been issued */
814 Expr
*pPartial
= 0; /* Partial Index Expression */
815 int iContinue
= 0; /* Jump here to skip excluded rows */
816 SrcItem
*pTabItem
; /* FROM clause term being indexed */
817 int addrCounter
= 0; /* Address where integer counter is initialized */
818 int regBase
; /* Array of registers where record is assembled */
820 /* Generate code to skip over the creation and initialization of the
821 ** transient index on 2nd and subsequent iterations of the loop. */
824 addrInit
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
826 /* Count the number of columns that will be added to the index
827 ** and used to match WHERE clause constraints */
830 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
831 pLoop
= pLevel
->pWLoop
;
833 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
834 Expr
*pExpr
= pTerm
->pExpr
;
835 /* Make the automatic index a partial index if there are terms in the
836 ** WHERE clause (or the ON clause of a LEFT join) that constrain which
837 ** rows of the target table (pSrc) that can be used. */
838 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
839 && sqlite3ExprIsTableConstraint(pExpr
, pSrc
)
841 pPartial
= sqlite3ExprAnd(pParse
, pPartial
,
842 sqlite3ExprDup(pParse
->db
, pExpr
, 0));
844 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
847 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
848 iCol
= pTerm
->u
.x
.leftColumn
;
849 cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
850 testcase( iCol
==BMS
);
851 testcase( iCol
==BMS
-1 );
853 sqlite3_log(SQLITE_WARNING_AUTOINDEX
,
854 "automatic index on %s(%s)", pTable
->zName
,
855 pTable
->aCol
[iCol
].zCnName
);
858 if( (idxCols
& cMask
)==0 ){
859 if( whereLoopResize(pParse
->db
, pLoop
, nKeyCol
+1) ){
860 goto end_auto_index_create
;
862 pLoop
->aLTerm
[nKeyCol
++] = pTerm
;
867 assert( nKeyCol
>0 || pParse
->db
->mallocFailed
);
868 pLoop
->u
.btree
.nEq
= pLoop
->nLTerm
= nKeyCol
;
869 pLoop
->wsFlags
= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WHERE_INDEXED
872 /* Count the number of additional columns needed to create a
873 ** covering index. A "covering index" is an index that contains all
874 ** columns that are needed by the query. With a covering index, the
875 ** original table never needs to be accessed. Automatic indices must
876 ** be a covering index because the index will not be updated if the
877 ** original table changes and the index and table cannot both be used
878 ** if they go out of sync.
880 extraCols
= pSrc
->colUsed
& (~idxCols
| MASKBIT(BMS
-1));
881 mxBitCol
= MIN(BMS
-1,pTable
->nCol
);
882 testcase( pTable
->nCol
==BMS
-1 );
883 testcase( pTable
->nCol
==BMS
-2 );
884 for(i
=0; i
<mxBitCol
; i
++){
885 if( extraCols
& MASKBIT(i
) ) nKeyCol
++;
887 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
888 nKeyCol
+= pTable
->nCol
- BMS
+ 1;
891 /* Construct the Index object to describe this index */
892 pIdx
= sqlite3AllocateIndexObject(pParse
->db
, nKeyCol
+1, 0, &zNotUsed
);
893 if( pIdx
==0 ) goto end_auto_index_create
;
894 pLoop
->u
.btree
.pIndex
= pIdx
;
895 pIdx
->zName
= "auto-index";
896 pIdx
->pTable
= pTable
;
899 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
900 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
903 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
904 iCol
= pTerm
->u
.x
.leftColumn
;
905 cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
906 testcase( iCol
==BMS
-1 );
907 testcase( iCol
==BMS
);
908 if( (idxCols
& cMask
)==0 ){
909 Expr
*pX
= pTerm
->pExpr
;
911 pIdx
->aiColumn
[n
] = pTerm
->u
.x
.leftColumn
;
912 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
913 assert( pColl
!=0 || pParse
->nErr
>0 ); /* TH3 collate01.800 */
914 pIdx
->azColl
[n
] = pColl
? pColl
->zName
: sqlite3StrBINARY
;
919 assert( (u32
)n
==pLoop
->u
.btree
.nEq
);
921 /* Add additional columns needed to make the automatic index into
922 ** a covering index */
923 for(i
=0; i
<mxBitCol
; i
++){
924 if( extraCols
& MASKBIT(i
) ){
925 pIdx
->aiColumn
[n
] = i
;
926 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
930 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
931 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
932 pIdx
->aiColumn
[n
] = i
;
933 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
937 assert( n
==nKeyCol
);
938 pIdx
->aiColumn
[n
] = XN_ROWID
;
939 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
941 /* Create the automatic index */
942 assert( pLevel
->iIdxCur
>=0 );
943 pLevel
->iIdxCur
= pParse
->nTab
++;
944 sqlite3VdbeAddOp2(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nKeyCol
+1);
945 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
946 VdbeComment((v
, "for %s", pTable
->zName
));
947 if( OptimizationEnabled(pParse
->db
, SQLITE_BloomFilter
) ){
948 pLevel
->regFilter
= ++pParse
->nMem
;
949 sqlite3VdbeAddOp2(v
, OP_Blob
, 10000, pLevel
->regFilter
);
952 /* Fill the automatic index with content */
953 pTabItem
= &pWC
->pWInfo
->pTabList
->a
[pLevel
->iFrom
];
954 if( pTabItem
->fg
.viaCoroutine
){
955 int regYield
= pTabItem
->regReturn
;
956 addrCounter
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, 0);
957 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pTabItem
->addrFillSub
);
958 addrTop
= sqlite3VdbeAddOp1(v
, OP_Yield
, regYield
);
960 VdbeComment((v
, "next row of %s", pTabItem
->pTab
->zName
));
962 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
); VdbeCoverage(v
);
965 iContinue
= sqlite3VdbeMakeLabel(pParse
);
966 sqlite3ExprIfFalse(pParse
, pPartial
, iContinue
, SQLITE_JUMPIFNULL
);
967 pLoop
->wsFlags
|= WHERE_PARTIALIDX
;
969 regRecord
= sqlite3GetTempReg(pParse
);
970 regBase
= sqlite3GenerateIndexKey(
971 pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 0, 0, 0, 0
973 if( pLevel
->regFilter
){
974 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0,
975 regBase
, pLoop
->u
.btree
.nEq
);
977 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
978 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
979 if( pPartial
) sqlite3VdbeResolveLabel(v
, iContinue
);
980 if( pTabItem
->fg
.viaCoroutine
){
981 sqlite3VdbeChangeP2(v
, addrCounter
, regBase
+n
);
982 testcase( pParse
->db
->mallocFailed
);
983 assert( pLevel
->iIdxCur
>0 );
984 translateColumnToCopy(pParse
, addrTop
, pLevel
->iTabCur
,
985 pTabItem
->regResult
, pLevel
->iIdxCur
);
986 sqlite3VdbeGoto(v
, addrTop
);
987 pTabItem
->fg
.viaCoroutine
= 0;
989 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1); VdbeCoverage(v
);
990 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
992 sqlite3VdbeJumpHere(v
, addrTop
);
993 sqlite3ReleaseTempReg(pParse
, regRecord
);
995 /* Jump here when skipping the initialization */
996 sqlite3VdbeJumpHere(v
, addrInit
);
998 end_auto_index_create
:
999 sqlite3ExprDelete(pParse
->db
, pPartial
);
1001 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1004 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1007 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1008 ** flag set, initialize a Bloomfilter for them as well. Except don't do
1009 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1012 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1013 ** from the loop, but the regFilter value is set to a register that implements
1014 ** the Bloom filter. When regFilter is positive, the
1015 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1016 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1017 ** no matching rows exist.
1019 ** This routine may only be called if it has previously been determined that
1020 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1023 static SQLITE_NOINLINE
void sqlite3ConstructBloomFilter(
1024 WhereInfo
*pWInfo
, /* The WHERE clause */
1025 int iLevel
, /* Index in pWInfo->a[] that is pLevel */
1026 WhereLevel
*pLevel
, /* Make a Bloom filter for this FROM term */
1027 Bitmask notReady
/* Loops that are not ready */
1029 int addrOnce
; /* Address of opening OP_Once */
1030 int addrTop
; /* Address of OP_Rewind */
1031 int addrCont
; /* Jump here to skip a row */
1032 const WhereTerm
*pTerm
; /* For looping over WHERE clause terms */
1033 const WhereTerm
*pWCEnd
; /* Last WHERE clause term */
1034 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
1035 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
1036 WhereLoop
*pLoop
= pLevel
->pWLoop
; /* The loop being coded */
1037 int iCur
; /* Cursor for table getting the filter */
1041 assert( pLoop
->wsFlags
& WHERE_BLOOMFILTER
);
1043 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1045 const SrcItem
*pItem
;
1048 sqlite3WhereExplainBloomFilter(pParse
, pWInfo
, pLevel
);
1049 addrCont
= sqlite3VdbeMakeLabel(pParse
);
1050 iCur
= pLevel
->iTabCur
;
1051 pLevel
->regFilter
= ++pParse
->nMem
;
1053 /* The Bloom filter is a Blob held in a register. Initialize it
1054 ** to zero-filled blob of at least 80K bits, but maybe more if the
1055 ** estimated size of the table is larger. We could actually
1056 ** measure the size of the table at run-time using OP_Count with
1057 ** P3==1 and use that value to initialize the blob. But that makes
1058 ** testing complicated. By basing the blob size on the value in the
1059 ** sqlite_stat1 table, testing is much easier.
1061 pItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
1065 sz
= sqlite3LogEstToInt(pTab
->nRowLogEst
);
1068 }else if( sz
>10000000 ){
1071 sqlite3VdbeAddOp2(v
, OP_Blob
, (int)sz
, pLevel
->regFilter
);
1073 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iCur
); VdbeCoverage(v
);
1074 pWCEnd
= &pWInfo
->sWC
.a
[pWInfo
->sWC
.nTerm
];
1075 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pWCEnd
; pTerm
++){
1076 Expr
*pExpr
= pTerm
->pExpr
;
1077 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
1078 && sqlite3ExprIsTableConstraint(pExpr
, pItem
)
1080 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
1083 if( pLoop
->wsFlags
& WHERE_IPK
){
1084 int r1
= sqlite3GetTempReg(pParse
);
1085 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, r1
);
1086 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0, r1
, 1);
1087 sqlite3ReleaseTempReg(pParse
, r1
);
1089 Index
*pIdx
= pLoop
->u
.btree
.pIndex
;
1090 int n
= pLoop
->u
.btree
.nEq
;
1091 int r1
= sqlite3GetTempRange(pParse
, n
);
1093 for(jj
=0; jj
<n
; jj
++){
1094 int iCol
= pIdx
->aiColumn
[jj
];
1095 assert( pIdx
->pTable
==pItem
->pTab
);
1096 sqlite3ExprCodeGetColumnOfTable(v
, pIdx
->pTable
, iCur
, iCol
,r1
+jj
);
1098 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0, r1
, n
);
1099 sqlite3ReleaseTempRange(pParse
, r1
, n
);
1101 sqlite3VdbeResolveLabel(v
, addrCont
);
1102 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1);
1104 sqlite3VdbeJumpHere(v
, addrTop
);
1105 pLoop
->wsFlags
&= ~WHERE_BLOOMFILTER
;
1106 if( OptimizationDisabled(pParse
->db
, SQLITE_BloomPulldown
) ) break;
1107 while( ++iLevel
< pWInfo
->nLevel
){
1108 const SrcItem
*pTabItem
;
1109 pLevel
= &pWInfo
->a
[iLevel
];
1110 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
1111 if( pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
) ) continue;
1112 pLoop
= pLevel
->pWLoop
;
1113 if( NEVER(pLoop
==0) ) continue;
1114 if( pLoop
->prereq
& notReady
) continue;
1115 if( (pLoop
->wsFlags
& (WHERE_BLOOMFILTER
|WHERE_COLUMN_IN
))
1118 /* This is a candidate for bloom-filter pull-down (early evaluation).
1119 ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1120 ** not able to do early evaluation of bloom filters that make use of
1121 ** the IN operator */
1125 }while( iLevel
< pWInfo
->nLevel
);
1126 sqlite3VdbeJumpHere(v
, addrOnce
);
1130 #ifndef SQLITE_OMIT_VIRTUALTABLE
1132 ** Allocate and populate an sqlite3_index_info structure. It is the
1133 ** responsibility of the caller to eventually release the structure
1134 ** by passing the pointer returned by this function to freeIndexInfo().
1136 static sqlite3_index_info
*allocateIndexInfo(
1137 WhereInfo
*pWInfo
, /* The WHERE clause */
1138 WhereClause
*pWC
, /* The WHERE clause being analyzed */
1139 Bitmask mUnusable
, /* Ignore terms with these prereqs */
1140 SrcItem
*pSrc
, /* The FROM clause term that is the vtab */
1141 u16
*pmNoOmit
/* Mask of terms not to omit */
1145 Parse
*pParse
= pWInfo
->pParse
;
1146 struct sqlite3_index_constraint
*pIdxCons
;
1147 struct sqlite3_index_orderby
*pIdxOrderBy
;
1148 struct sqlite3_index_constraint_usage
*pUsage
;
1149 struct HiddenIndexInfo
*pHidden
;
1152 sqlite3_index_info
*pIdxInfo
;
1156 ExprList
*pOrderBy
= pWInfo
->pOrderBy
;
1161 assert( IsVirtual(pTab
) );
1163 /* Find all WHERE clause constraints referring to this virtual table.
1164 ** Mark each term with the TERM_OK flag. Set nTerm to the number of
1167 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1168 pTerm
->wtFlags
&= ~TERM_OK
;
1169 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
1170 if( pTerm
->prereqRight
& mUnusable
) continue;
1171 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
1172 testcase( pTerm
->eOperator
& WO_IN
);
1173 testcase( pTerm
->eOperator
& WO_ISNULL
);
1174 testcase( pTerm
->eOperator
& WO_IS
);
1175 testcase( pTerm
->eOperator
& WO_ALL
);
1176 if( (pTerm
->eOperator
& ~(WO_EQUIV
))==0 ) continue;
1177 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
1179 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
1180 assert( pTerm
->u
.x
.leftColumn
>=XN_ROWID
);
1181 assert( pTerm
->u
.x
.leftColumn
<pTab
->nCol
);
1183 /* tag-20191211-002: WHERE-clause constraints are not useful to the
1184 ** right-hand table of a LEFT JOIN nor to the either table of a
1185 ** RIGHT JOIN. See tag-20191211-001 for the
1186 ** equivalent restriction for ordinary tables. */
1187 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0 ){
1188 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LEFT
);
1189 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_RIGHT
);
1190 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LTORJ
);
1191 testcase( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) );
1192 testcase( ExprHasProperty(pTerm
->pExpr
, EP_InnerON
) );
1193 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
|EP_InnerON
)
1194 || pTerm
->pExpr
->w
.iJoin
!= pSrc
->iCursor
1200 pTerm
->wtFlags
|= TERM_OK
;
1203 /* If the ORDER BY clause contains only columns in the current
1204 ** virtual table then allocate space for the aOrderBy part of
1205 ** the sqlite3_index_info structure.
1209 int n
= pOrderBy
->nExpr
;
1211 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1214 /* Skip over constant terms in the ORDER BY clause */
1215 if( sqlite3ExprIsConstant(pExpr
) ){
1219 /* Virtual tables are unable to deal with NULLS FIRST */
1220 if( pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) break;
1222 /* First case - a direct column references without a COLLATE operator */
1223 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==pSrc
->iCursor
){
1224 assert( pExpr
->iColumn
>=XN_ROWID
&& pExpr
->iColumn
<pTab
->nCol
);
1228 /* 2nd case - a column reference with a COLLATE operator. Only match
1229 ** of the COLLATE operator matches the collation of the column. */
1230 if( pExpr
->op
==TK_COLLATE
1231 && (pE2
= pExpr
->pLeft
)->op
==TK_COLUMN
1232 && pE2
->iTable
==pSrc
->iCursor
1234 const char *zColl
; /* The collating sequence name */
1235 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1236 assert( pExpr
->u
.zToken
!=0 );
1237 assert( pE2
->iColumn
>=XN_ROWID
&& pE2
->iColumn
<pTab
->nCol
);
1238 pExpr
->iColumn
= pE2
->iColumn
;
1239 if( pE2
->iColumn
<0 ) continue; /* Collseq does not matter for rowid */
1240 zColl
= sqlite3ColumnColl(&pTab
->aCol
[pE2
->iColumn
]);
1241 if( zColl
==0 ) zColl
= sqlite3StrBINARY
;
1242 if( sqlite3_stricmp(pExpr
->u
.zToken
, zColl
)==0 ) continue;
1245 /* No matches cause a break out of the loop */
1250 if( (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
) ){
1251 eDistinct
= 2 + ((pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)!=0);
1252 }else if( pWInfo
->wctrlFlags
& WHERE_GROUPBY
){
1258 /* Allocate the sqlite3_index_info structure
1260 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
1261 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
1262 + sizeof(*pIdxOrderBy
)*nOrderBy
+ sizeof(*pHidden
)
1263 + sizeof(sqlite3_value
*)*nTerm
);
1265 sqlite3ErrorMsg(pParse
, "out of memory");
1268 pHidden
= (struct HiddenIndexInfo
*)&pIdxInfo
[1];
1269 pIdxCons
= (struct sqlite3_index_constraint
*)&pHidden
->aRhs
[nTerm
];
1270 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
1271 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
1272 pIdxInfo
->aConstraint
= pIdxCons
;
1273 pIdxInfo
->aOrderBy
= pIdxOrderBy
;
1274 pIdxInfo
->aConstraintUsage
= pUsage
;
1276 pHidden
->pParse
= pParse
;
1277 pHidden
->eDistinct
= eDistinct
;
1279 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1281 if( (pTerm
->wtFlags
& TERM_OK
)==0 ) continue;
1282 pIdxCons
[j
].iColumn
= pTerm
->u
.x
.leftColumn
;
1283 pIdxCons
[j
].iTermOffset
= i
;
1284 op
= pTerm
->eOperator
& WO_ALL
;
1286 if( (pTerm
->wtFlags
& TERM_SLICE
)==0 ){
1287 pHidden
->mIn
|= SMASKBIT32(j
);
1292 pIdxCons
[j
].op
= pTerm
->eMatchOp
;
1293 }else if( op
& (WO_ISNULL
|WO_IS
) ){
1294 if( op
==WO_ISNULL
){
1295 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_ISNULL
;
1297 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_IS
;
1300 pIdxCons
[j
].op
= (u8
)op
;
1301 /* The direct assignment in the previous line is possible only because
1302 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1303 ** following asserts verify this fact. */
1304 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
1305 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
1306 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
1307 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
1308 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
1309 assert( pTerm
->eOperator
&(WO_IN
|WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_AUX
) );
1311 if( op
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
)
1312 && sqlite3ExprIsVector(pTerm
->pExpr
->pRight
)
1315 if( j
<16 ) mNoOmit
|= (1 << j
);
1316 if( op
==WO_LT
) pIdxCons
[j
].op
= WO_LE
;
1317 if( op
==WO_GT
) pIdxCons
[j
].op
= WO_GE
;
1324 pIdxInfo
->nConstraint
= j
;
1325 for(i
=j
=0; i
<nOrderBy
; i
++){
1326 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1327 if( sqlite3ExprIsConstant(pExpr
) ) continue;
1328 assert( pExpr
->op
==TK_COLUMN
1329 || (pExpr
->op
==TK_COLLATE
&& pExpr
->pLeft
->op
==TK_COLUMN
1330 && pExpr
->iColumn
==pExpr
->pLeft
->iColumn
) );
1331 pIdxOrderBy
[j
].iColumn
= pExpr
->iColumn
;
1332 pIdxOrderBy
[j
].desc
= pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_DESC
;
1335 pIdxInfo
->nOrderBy
= j
;
1337 *pmNoOmit
= mNoOmit
;
1342 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1343 ** and possibly modified by xBestIndex methods.
1345 static void freeIndexInfo(sqlite3
*db
, sqlite3_index_info
*pIdxInfo
){
1346 HiddenIndexInfo
*pHidden
;
1348 assert( pIdxInfo
!=0 );
1349 pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
1350 assert( pHidden
->pParse
!=0 );
1351 assert( pHidden
->pParse
->db
==db
);
1352 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++){
1353 sqlite3ValueFree(pHidden
->aRhs
[i
]); /* IMP: R-14553-25174 */
1354 pHidden
->aRhs
[i
] = 0;
1356 sqlite3DbFree(db
, pIdxInfo
);
1360 ** The table object reference passed as the second argument to this function
1361 ** must represent a virtual table. This function invokes the xBestIndex()
1362 ** method of the virtual table with the sqlite3_index_info object that
1363 ** comes in as the 3rd argument to this function.
1365 ** If an error occurs, pParse is populated with an error message and an
1366 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1367 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1368 ** the current configuration of "unusable" flags in sqlite3_index_info can
1369 ** not result in a valid plan.
1371 ** Whether or not an error is returned, it is the responsibility of the
1372 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1373 ** that this is required.
1375 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
1376 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
1379 whereTraceIndexInfoInputs(p
);
1380 pParse
->db
->nSchemaLock
++;
1381 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
1382 pParse
->db
->nSchemaLock
--;
1383 whereTraceIndexInfoOutputs(p
);
1385 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_CONSTRAINT
){
1386 if( rc
==SQLITE_NOMEM
){
1387 sqlite3OomFault(pParse
->db
);
1388 }else if( !pVtab
->zErrMsg
){
1389 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
1391 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
1394 sqlite3_free(pVtab
->zErrMsg
);
1398 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1400 #ifdef SQLITE_ENABLE_STAT4
1402 ** Estimate the location of a particular key among all keys in an
1403 ** index. Store the results in aStat as follows:
1405 ** aStat[0] Est. number of rows less than pRec
1406 ** aStat[1] Est. number of rows equal to pRec
1408 ** Return the index of the sample that is the smallest sample that
1409 ** is greater than or equal to pRec. Note that this index is not an index
1410 ** into the aSample[] array - it is an index into a virtual set of samples
1411 ** based on the contents of aSample[] and the number of fields in record
1414 static int whereKeyStats(
1415 Parse
*pParse
, /* Database connection */
1416 Index
*pIdx
, /* Index to consider domain of */
1417 UnpackedRecord
*pRec
, /* Vector of values to consider */
1418 int roundUp
, /* Round up if true. Round down if false */
1419 tRowcnt
*aStat
/* OUT: stats written here */
1421 IndexSample
*aSample
= pIdx
->aSample
;
1422 int iCol
; /* Index of required stats in anEq[] etc. */
1423 int i
; /* Index of first sample >= pRec */
1424 int iSample
; /* Smallest sample larger than or equal to pRec */
1425 int iMin
= 0; /* Smallest sample not yet tested */
1426 int iTest
; /* Next sample to test */
1427 int res
; /* Result of comparison operation */
1428 int nField
; /* Number of fields in pRec */
1429 tRowcnt iLower
= 0; /* anLt[] + anEq[] of largest sample pRec is > */
1431 #ifndef SQLITE_DEBUG
1432 UNUSED_PARAMETER( pParse
);
1435 assert( pIdx
->nSample
>0 );
1436 assert( pRec
->nField
>0 );
1438 /* Do a binary search to find the first sample greater than or equal
1439 ** to pRec. If pRec contains a single field, the set of samples to search
1440 ** is simply the aSample[] array. If the samples in aSample[] contain more
1441 ** than one fields, all fields following the first are ignored.
1443 ** If pRec contains N fields, where N is more than one, then as well as the
1444 ** samples in aSample[] (truncated to N fields), the search also has to
1445 ** consider prefixes of those samples. For example, if the set of samples
1448 ** aSample[0] = (a, 5)
1449 ** aSample[1] = (a, 10)
1450 ** aSample[2] = (b, 5)
1451 ** aSample[3] = (c, 100)
1452 ** aSample[4] = (c, 105)
1454 ** Then the search space should ideally be the samples above and the
1455 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1456 ** the code actually searches this set:
1469 ** For each sample in the aSample[] array, N samples are present in the
1470 ** effective sample array. In the above, samples 0 and 1 are based on
1471 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1473 ** Often, sample i of each block of N effective samples has (i+1) fields.
1474 ** Except, each sample may be extended to ensure that it is greater than or
1475 ** equal to the previous sample in the array. For example, in the above,
1476 ** sample 2 is the first sample of a block of N samples, so at first it
1477 ** appears that it should be 1 field in size. However, that would make it
1478 ** smaller than sample 1, so the binary search would not work. As a result,
1479 ** it is extended to two fields. The duplicates that this creates do not
1480 ** cause any problems.
1482 nField
= MIN(pRec
->nField
, pIdx
->nSample
);
1484 iSample
= pIdx
->nSample
* nField
;
1486 int iSamp
; /* Index in aSample[] of test sample */
1487 int n
; /* Number of fields in test sample */
1489 iTest
= (iMin
+iSample
)/2;
1490 iSamp
= iTest
/ nField
;
1492 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1493 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1494 ** fields that is greater than the previous effective sample. */
1495 for(n
=(iTest
% nField
) + 1; n
<nField
; n
++){
1496 if( aSample
[iSamp
-1].anLt
[n
-1]!=aSample
[iSamp
].anLt
[n
-1] ) break;
1503 res
= sqlite3VdbeRecordCompare(aSample
[iSamp
].n
, aSample
[iSamp
].p
, pRec
);
1505 iLower
= aSample
[iSamp
].anLt
[n
-1] + aSample
[iSamp
].anEq
[n
-1];
1507 }else if( res
==0 && n
<nField
){
1508 iLower
= aSample
[iSamp
].anLt
[n
-1];
1515 }while( res
&& iMin
<iSample
);
1516 i
= iSample
/ nField
;
1519 /* The following assert statements check that the binary search code
1520 ** above found the right answer. This block serves no purpose other
1521 ** than to invoke the asserts. */
1522 if( pParse
->db
->mallocFailed
==0 ){
1524 /* If (res==0) is true, then pRec must be equal to sample i. */
1525 assert( i
<pIdx
->nSample
);
1526 assert( iCol
==nField
-1 );
1527 pRec
->nField
= nField
;
1528 assert( 0==sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)
1529 || pParse
->db
->mallocFailed
1532 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1533 ** all samples in the aSample[] array, pRec must be smaller than the
1534 ** (iCol+1) field prefix of sample i. */
1535 assert( i
<=pIdx
->nSample
&& i
>=0 );
1536 pRec
->nField
= iCol
+1;
1537 assert( i
==pIdx
->nSample
1538 || sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)>0
1539 || pParse
->db
->mallocFailed
);
1541 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1542 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1543 ** be greater than or equal to the (iCol) field prefix of sample i.
1544 ** If (i>0), then pRec must also be greater than sample (i-1). */
1546 pRec
->nField
= iCol
;
1547 assert( sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)<=0
1548 || pParse
->db
->mallocFailed
);
1551 pRec
->nField
= nField
;
1552 assert( sqlite3VdbeRecordCompare(aSample
[i
-1].n
, aSample
[i
-1].p
, pRec
)<0
1553 || pParse
->db
->mallocFailed
);
1557 #endif /* ifdef SQLITE_DEBUG */
1560 /* Record pRec is equal to sample i */
1561 assert( iCol
==nField
-1 );
1562 aStat
[0] = aSample
[i
].anLt
[iCol
];
1563 aStat
[1] = aSample
[i
].anEq
[iCol
];
1565 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1566 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1567 ** is larger than all samples in the array. */
1568 tRowcnt iUpper
, iGap
;
1569 if( i
>=pIdx
->nSample
){
1570 iUpper
= sqlite3LogEstToInt(pIdx
->aiRowLogEst
[0]);
1572 iUpper
= aSample
[i
].anLt
[iCol
];
1575 if( iLower
>=iUpper
){
1578 iGap
= iUpper
- iLower
;
1585 aStat
[0] = iLower
+ iGap
;
1586 aStat
[1] = pIdx
->aAvgEq
[nField
-1];
1589 /* Restore the pRec->nField value before returning. */
1590 pRec
->nField
= nField
;
1593 #endif /* SQLITE_ENABLE_STAT4 */
1596 ** If it is not NULL, pTerm is a term that provides an upper or lower
1597 ** bound on a range scan. Without considering pTerm, it is estimated
1598 ** that the scan will visit nNew rows. This function returns the number
1599 ** estimated to be visited after taking pTerm into account.
1601 ** If the user explicitly specified a likelihood() value for this term,
1602 ** then the return value is the likelihood multiplied by the number of
1603 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1604 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1606 static LogEst
whereRangeAdjust(WhereTerm
*pTerm
, LogEst nNew
){
1609 if( pTerm
->truthProb
<=0 ){
1610 nRet
+= pTerm
->truthProb
;
1611 }else if( (pTerm
->wtFlags
& TERM_VNULL
)==0 ){
1612 nRet
-= 20; assert( 20==sqlite3LogEst(4) );
1619 #ifdef SQLITE_ENABLE_STAT4
1621 ** Return the affinity for a single column of an index.
1623 char sqlite3IndexColumnAffinity(sqlite3
*db
, Index
*pIdx
, int iCol
){
1624 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
1625 if( !pIdx
->zColAff
){
1626 if( sqlite3IndexAffinityStr(db
, pIdx
)==0 ) return SQLITE_AFF_BLOB
;
1628 assert( pIdx
->zColAff
[iCol
]!=0 );
1629 return pIdx
->zColAff
[iCol
];
1634 #ifdef SQLITE_ENABLE_STAT4
1636 ** This function is called to estimate the number of rows visited by a
1637 ** range-scan on a skip-scan index. For example:
1639 ** CREATE INDEX i1 ON t1(a, b, c);
1640 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1642 ** Value pLoop->nOut is currently set to the estimated number of rows
1643 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1644 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1645 ** on the stat4 data for the index. this scan will be peformed multiple
1646 ** times (once for each (a,b) combination that matches a=?) is dealt with
1649 ** It does this by scanning through all stat4 samples, comparing values
1650 ** extracted from pLower and pUpper with the corresponding column in each
1651 ** sample. If L and U are the number of samples found to be less than or
1652 ** equal to the values extracted from pLower and pUpper respectively, and
1653 ** N is the total number of samples, the pLoop->nOut value is adjusted
1656 ** nOut = nOut * ( min(U - L, 1) / N )
1658 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1659 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1662 ** Normally, this function sets *pbDone to 1 before returning. However,
1663 ** if no value can be extracted from either pLower or pUpper (and so the
1664 ** estimate of the number of rows delivered remains unchanged), *pbDone
1667 ** If an error occurs, an SQLite error code is returned. Otherwise,
1670 static int whereRangeSkipScanEst(
1671 Parse
*pParse
, /* Parsing & code generating context */
1672 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1673 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1674 WhereLoop
*pLoop
, /* Update the .nOut value of this loop */
1675 int *pbDone
/* Set to true if at least one expr. value extracted */
1677 Index
*p
= pLoop
->u
.btree
.pIndex
;
1678 int nEq
= pLoop
->u
.btree
.nEq
;
1679 sqlite3
*db
= pParse
->db
;
1681 int nUpper
= p
->nSample
+1;
1683 u8 aff
= sqlite3IndexColumnAffinity(db
, p
, nEq
);
1686 sqlite3_value
*p1
= 0; /* Value extracted from pLower */
1687 sqlite3_value
*p2
= 0; /* Value extracted from pUpper */
1688 sqlite3_value
*pVal
= 0; /* Value extracted from record */
1690 pColl
= sqlite3LocateCollSeq(pParse
, p
->azColl
[nEq
]);
1692 rc
= sqlite3Stat4ValueFromExpr(pParse
, pLower
->pExpr
->pRight
, aff
, &p1
);
1695 if( pUpper
&& rc
==SQLITE_OK
){
1696 rc
= sqlite3Stat4ValueFromExpr(pParse
, pUpper
->pExpr
->pRight
, aff
, &p2
);
1697 nUpper
= p2
? 0 : p
->nSample
;
1703 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nSample
; i
++){
1704 rc
= sqlite3Stat4Column(db
, p
->aSample
[i
].p
, p
->aSample
[i
].n
, nEq
, &pVal
);
1705 if( rc
==SQLITE_OK
&& p1
){
1706 int res
= sqlite3MemCompare(p1
, pVal
, pColl
);
1707 if( res
>=0 ) nLower
++;
1709 if( rc
==SQLITE_OK
&& p2
){
1710 int res
= sqlite3MemCompare(p2
, pVal
, pColl
);
1711 if( res
>=0 ) nUpper
++;
1714 nDiff
= (nUpper
- nLower
);
1715 if( nDiff
<=0 ) nDiff
= 1;
1717 /* If there is both an upper and lower bound specified, and the
1718 ** comparisons indicate that they are close together, use the fallback
1719 ** method (assume that the scan visits 1/64 of the rows) for estimating
1720 ** the number of rows visited. Otherwise, estimate the number of rows
1721 ** using the method described in the header comment for this function. */
1722 if( nDiff
!=1 || pUpper
==0 || pLower
==0 ){
1723 int nAdjust
= (sqlite3LogEst(p
->nSample
) - sqlite3LogEst(nDiff
));
1724 pLoop
->nOut
-= nAdjust
;
1726 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1727 nLower
, nUpper
, nAdjust
*-1, pLoop
->nOut
));
1731 assert( *pbDone
==0 );
1734 sqlite3ValueFree(p1
);
1735 sqlite3ValueFree(p2
);
1736 sqlite3ValueFree(pVal
);
1740 #endif /* SQLITE_ENABLE_STAT4 */
1743 ** This function is used to estimate the number of rows that will be visited
1744 ** by scanning an index for a range of values. The range may have an upper
1745 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1746 ** and lower bounds are represented by pLower and pUpper respectively. For
1747 ** example, assuming that index p is on t1(a):
1749 ** ... FROM t1 WHERE a > ? AND a < ? ...
1754 ** If either of the upper or lower bound is not present, then NULL is passed in
1755 ** place of the corresponding WhereTerm.
1757 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1758 ** column subject to the range constraint. Or, equivalently, the number of
1759 ** equality constraints optimized by the proposed index scan. For example,
1760 ** assuming index p is on t1(a, b), and the SQL query is:
1762 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1764 ** then nEq is set to 1 (as the range restricted column, b, is the second
1765 ** left-most column of the index). Or, if the query is:
1767 ** ... FROM t1 WHERE a > ? AND a < ? ...
1769 ** then nEq is set to 0.
1771 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1772 ** number of rows that the index scan is expected to visit without
1773 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1774 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1775 ** to account for the range constraints pLower and pUpper.
1777 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1778 ** used, a single range inequality reduces the search space by a factor of 4.
1779 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1780 ** rows visited by a factor of 64.
1782 static int whereRangeScanEst(
1783 Parse
*pParse
, /* Parsing & code generating context */
1784 WhereLoopBuilder
*pBuilder
,
1785 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1786 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1787 WhereLoop
*pLoop
/* Modify the .nOut and maybe .rRun fields */
1790 int nOut
= pLoop
->nOut
;
1793 #ifdef SQLITE_ENABLE_STAT4
1794 Index
*p
= pLoop
->u
.btree
.pIndex
;
1795 int nEq
= pLoop
->u
.btree
.nEq
;
1797 if( p
->nSample
>0 && ALWAYS(nEq
<p
->nSampleCol
)
1798 && OptimizationEnabled(pParse
->db
, SQLITE_Stat4
)
1800 if( nEq
==pBuilder
->nRecValid
){
1801 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1803 int nBtm
= pLoop
->u
.btree
.nBtm
;
1804 int nTop
= pLoop
->u
.btree
.nTop
;
1806 /* Variable iLower will be set to the estimate of the number of rows in
1807 ** the index that are less than the lower bound of the range query. The
1808 ** lower bound being the concatenation of $P and $L, where $P is the
1809 ** key-prefix formed by the nEq values matched against the nEq left-most
1810 ** columns of the index, and $L is the value in pLower.
1812 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1813 ** is not a simple variable or literal value), the lower bound of the
1814 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1815 ** if $L is available, whereKeyStats() is called for both ($P) and
1816 ** ($P:$L) and the larger of the two returned values is used.
1818 ** Similarly, iUpper is to be set to the estimate of the number of rows
1819 ** less than the upper bound of the range query. Where the upper bound
1820 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1821 ** of iUpper are requested of whereKeyStats() and the smaller used.
1823 ** The number of rows between the two bounds is then just iUpper-iLower.
1825 tRowcnt iLower
; /* Rows less than the lower bound */
1826 tRowcnt iUpper
; /* Rows less than the upper bound */
1827 int iLwrIdx
= -2; /* aSample[] for the lower bound */
1828 int iUprIdx
= -1; /* aSample[] for the upper bound */
1831 testcase( pRec
->nField
!=pBuilder
->nRecValid
);
1832 pRec
->nField
= pBuilder
->nRecValid
;
1834 /* Determine iLower and iUpper using ($P) only. */
1837 iUpper
= p
->nRowEst0
;
1839 /* Note: this call could be optimized away - since the same values must
1840 ** have been requested when testing key $P in whereEqualScanEst(). */
1841 whereKeyStats(pParse
, p
, pRec
, 0, a
);
1843 iUpper
= a
[0] + a
[1];
1846 assert( pLower
==0 || (pLower
->eOperator
& (WO_GT
|WO_GE
))!=0 );
1847 assert( pUpper
==0 || (pUpper
->eOperator
& (WO_LT
|WO_LE
))!=0 );
1848 assert( p
->aSortOrder
!=0 );
1849 if( p
->aSortOrder
[nEq
] ){
1850 /* The roles of pLower and pUpper are swapped for a DESC index */
1851 SWAP(WhereTerm
*, pLower
, pUpper
);
1852 SWAP(int, nBtm
, nTop
);
1855 /* If possible, improve on the iLower estimate using ($P:$L). */
1857 int n
; /* Values extracted from pExpr */
1858 Expr
*pExpr
= pLower
->pExpr
->pRight
;
1859 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nBtm
, nEq
, &n
);
1860 if( rc
==SQLITE_OK
&& n
){
1862 u16 mask
= WO_GT
|WO_LE
;
1863 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1864 iLwrIdx
= whereKeyStats(pParse
, p
, pRec
, 0, a
);
1865 iNew
= a
[0] + ((pLower
->eOperator
& mask
) ? a
[1] : 0);
1866 if( iNew
>iLower
) iLower
= iNew
;
1872 /* If possible, improve on the iUpper estimate using ($P:$U). */
1874 int n
; /* Values extracted from pExpr */
1875 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
1876 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nTop
, nEq
, &n
);
1877 if( rc
==SQLITE_OK
&& n
){
1879 u16 mask
= WO_GT
|WO_LE
;
1880 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1881 iUprIdx
= whereKeyStats(pParse
, p
, pRec
, 1, a
);
1882 iNew
= a
[0] + ((pUpper
->eOperator
& mask
) ? a
[1] : 0);
1883 if( iNew
<iUpper
) iUpper
= iNew
;
1889 pBuilder
->pRec
= pRec
;
1890 if( rc
==SQLITE_OK
){
1891 if( iUpper
>iLower
){
1892 nNew
= sqlite3LogEst(iUpper
- iLower
);
1893 /* TUNING: If both iUpper and iLower are derived from the same
1894 ** sample, then assume they are 4x more selective. This brings
1895 ** the estimated selectivity more in line with what it would be
1896 ** if estimated without the use of STAT4 tables. */
1897 if( iLwrIdx
==iUprIdx
) nNew
-= 20; assert( 20==sqlite3LogEst(4) );
1899 nNew
= 10; assert( 10==sqlite3LogEst(2) );
1904 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1905 (u32
)iLower
, (u32
)iUpper
, nOut
));
1909 rc
= whereRangeSkipScanEst(pParse
, pLower
, pUpper
, pLoop
, &bDone
);
1910 if( bDone
) return rc
;
1914 UNUSED_PARAMETER(pParse
);
1915 UNUSED_PARAMETER(pBuilder
);
1916 assert( pLower
|| pUpper
);
1918 assert( pUpper
==0 || (pUpper
->wtFlags
& TERM_VNULL
)==0 );
1919 nNew
= whereRangeAdjust(pLower
, nOut
);
1920 nNew
= whereRangeAdjust(pUpper
, nNew
);
1922 /* TUNING: If there is both an upper and lower limit and neither limit
1923 ** has an application-defined likelihood(), assume the range is
1924 ** reduced by an additional 75%. This means that, by default, an open-ended
1925 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1926 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1927 ** match 1/64 of the index. */
1928 if( pLower
&& pLower
->truthProb
>0 && pUpper
&& pUpper
->truthProb
>0 ){
1932 nOut
-= (pLower
!=0) + (pUpper
!=0);
1933 if( nNew
<10 ) nNew
= 10;
1934 if( nNew
<nOut
) nOut
= nNew
;
1935 #if defined(WHERETRACE_ENABLED)
1936 if( pLoop
->nOut
>nOut
){
1937 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1938 pLoop
->nOut
, nOut
));
1941 pLoop
->nOut
= (LogEst
)nOut
;
1945 #ifdef SQLITE_ENABLE_STAT4
1947 ** Estimate the number of rows that will be returned based on
1948 ** an equality constraint x=VALUE and where that VALUE occurs in
1949 ** the histogram data. This only works when x is the left-most
1950 ** column of an index and sqlite_stat4 histogram data is available
1951 ** for that index. When pExpr==NULL that means the constraint is
1952 ** "x IS NULL" instead of "x=VALUE".
1954 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1955 ** If unable to make an estimate, leave *pnRow unchanged and return
1958 ** This routine can fail if it is unable to load a collating sequence
1959 ** required for string comparison, or if unable to allocate memory
1960 ** for a UTF conversion required for comparison. The error is stored
1961 ** in the pParse structure.
1963 static int whereEqualScanEst(
1964 Parse
*pParse
, /* Parsing & code generating context */
1965 WhereLoopBuilder
*pBuilder
,
1966 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
1967 tRowcnt
*pnRow
/* Write the revised row estimate here */
1969 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
1970 int nEq
= pBuilder
->pNew
->u
.btree
.nEq
;
1971 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1972 int rc
; /* Subfunction return code */
1973 tRowcnt a
[2]; /* Statistics */
1977 assert( nEq
<=p
->nColumn
);
1978 assert( p
->aSample
!=0 );
1979 assert( p
->nSample
>0 );
1980 assert( pBuilder
->nRecValid
<nEq
);
1982 /* If values are not available for all fields of the index to the left
1983 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1984 if( pBuilder
->nRecValid
<(nEq
-1) ){
1985 return SQLITE_NOTFOUND
;
1988 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1989 ** below would return the same value. */
1990 if( nEq
>=p
->nColumn
){
1995 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, 1, nEq
-1, &bOk
);
1996 pBuilder
->pRec
= pRec
;
1997 if( rc
!=SQLITE_OK
) return rc
;
1998 if( bOk
==0 ) return SQLITE_NOTFOUND
;
1999 pBuilder
->nRecValid
= nEq
;
2001 whereKeyStats(pParse
, p
, pRec
, 0, a
);
2002 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
2003 p
->zName
, nEq
-1, (int)a
[1]));
2008 #endif /* SQLITE_ENABLE_STAT4 */
2010 #ifdef SQLITE_ENABLE_STAT4
2012 ** Estimate the number of rows that will be returned based on
2013 ** an IN constraint where the right-hand side of the IN operator
2014 ** is a list of values. Example:
2016 ** WHERE x IN (1,2,3,4)
2018 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2019 ** If unable to make an estimate, leave *pnRow unchanged and return
2022 ** This routine can fail if it is unable to load a collating sequence
2023 ** required for string comparison, or if unable to allocate memory
2024 ** for a UTF conversion required for comparison. The error is stored
2025 ** in the pParse structure.
2027 static int whereInScanEst(
2028 Parse
*pParse
, /* Parsing & code generating context */
2029 WhereLoopBuilder
*pBuilder
,
2030 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2031 tRowcnt
*pnRow
/* Write the revised row estimate here */
2033 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2034 i64 nRow0
= sqlite3LogEstToInt(p
->aiRowLogEst
[0]);
2035 int nRecValid
= pBuilder
->nRecValid
;
2036 int rc
= SQLITE_OK
; /* Subfunction return code */
2037 tRowcnt nEst
; /* Number of rows for a single term */
2038 tRowcnt nRowEst
= 0; /* New estimate of the number of rows */
2039 int i
; /* Loop counter */
2041 assert( p
->aSample
!=0 );
2042 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
2044 rc
= whereEqualScanEst(pParse
, pBuilder
, pList
->a
[i
].pExpr
, &nEst
);
2046 pBuilder
->nRecValid
= nRecValid
;
2049 if( rc
==SQLITE_OK
){
2050 if( nRowEst
> nRow0
) nRowEst
= nRow0
;
2052 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst
));
2054 assert( pBuilder
->nRecValid
==nRecValid
);
2057 #endif /* SQLITE_ENABLE_STAT4 */
2060 #ifdef WHERETRACE_ENABLED
2062 ** Print the content of a WhereTerm object
2064 void sqlite3WhereTermPrint(WhereTerm
*pTerm
, int iTerm
){
2066 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm
);
2070 memcpy(zType
, "....", 5);
2071 if( pTerm
->wtFlags
& TERM_VIRTUAL
) zType
[0] = 'V';
2072 if( pTerm
->eOperator
& WO_EQUIV
) zType
[1] = 'E';
2073 if( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) ) zType
[2] = 'L';
2074 if( pTerm
->wtFlags
& TERM_CODED
) zType
[3] = 'C';
2075 if( pTerm
->eOperator
& WO_SINGLE
){
2076 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
2077 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left={%d:%d}",
2078 pTerm
->leftCursor
, pTerm
->u
.x
.leftColumn
);
2079 }else if( (pTerm
->eOperator
& WO_OR
)!=0 && pTerm
->u
.pOrInfo
!=0 ){
2080 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"indexable=0x%llx",
2081 pTerm
->u
.pOrInfo
->indexable
);
2083 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left=%d", pTerm
->leftCursor
);
2086 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2087 iTerm
, pTerm
, zType
, zLeft
, pTerm
->eOperator
, pTerm
->wtFlags
);
2088 /* The 0x10000 .wheretrace flag causes extra information to be
2089 ** shown about each Term */
2090 if( sqlite3WhereTrace
& 0x10000 ){
2091 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2092 pTerm
->truthProb
, (u64
)pTerm
->prereqAll
, (u64
)pTerm
->prereqRight
);
2094 if( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 && pTerm
->u
.x
.iField
){
2095 sqlite3DebugPrintf(" iField=%d", pTerm
->u
.x
.iField
);
2097 if( pTerm
->iParent
>=0 ){
2098 sqlite3DebugPrintf(" iParent=%d", pTerm
->iParent
);
2100 sqlite3DebugPrintf("\n");
2101 sqlite3TreeViewExpr(0, pTerm
->pExpr
, 0);
2106 #ifdef WHERETRACE_ENABLED
2108 ** Show the complete content of a WhereClause
2110 void sqlite3WhereClausePrint(WhereClause
*pWC
){
2112 for(i
=0; i
<pWC
->nTerm
; i
++){
2113 sqlite3WhereTermPrint(&pWC
->a
[i
], i
);
2118 #ifdef WHERETRACE_ENABLED
2120 ** Print a WhereLoop object for debugging purposes
2122 void sqlite3WhereLoopPrint(WhereLoop
*p
, WhereClause
*pWC
){
2123 WhereInfo
*pWInfo
= pWC
->pWInfo
;
2124 int nb
= 1+(pWInfo
->pTabList
->nSrc
+3)/4;
2125 SrcItem
*pItem
= pWInfo
->pTabList
->a
+ p
->iTab
;
2126 Table
*pTab
= pItem
->pTab
;
2127 Bitmask mAll
= (((Bitmask
)1)<<(nb
*4)) - 1;
2128 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p
->cId
,
2129 p
->iTab
, nb
, p
->maskSelf
, nb
, p
->prereq
& mAll
);
2130 sqlite3DebugPrintf(" %12s",
2131 pItem
->zAlias
? pItem
->zAlias
: pTab
->zName
);
2132 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2134 if( p
->u
.btree
.pIndex
&& (zName
= p
->u
.btree
.pIndex
->zName
)!=0 ){
2135 if( strncmp(zName
, "sqlite_autoindex_", 17)==0 ){
2136 int i
= sqlite3Strlen30(zName
) - 1;
2137 while( zName
[i
]!='_' ) i
--;
2140 sqlite3DebugPrintf(".%-16s %2d", zName
, p
->u
.btree
.nEq
);
2142 sqlite3DebugPrintf("%20s","");
2146 if( p
->u
.vtab
.idxStr
){
2147 z
= sqlite3_mprintf("(%d,\"%s\",%#x)",
2148 p
->u
.vtab
.idxNum
, p
->u
.vtab
.idxStr
, p
->u
.vtab
.omitMask
);
2150 z
= sqlite3_mprintf("(%d,%x)", p
->u
.vtab
.idxNum
, p
->u
.vtab
.omitMask
);
2152 sqlite3DebugPrintf(" %-19s", z
);
2155 if( p
->wsFlags
& WHERE_SKIPSCAN
){
2156 sqlite3DebugPrintf(" f %06x %d-%d", p
->wsFlags
, p
->nLTerm
,p
->nSkip
);
2158 sqlite3DebugPrintf(" f %06x N %d", p
->wsFlags
, p
->nLTerm
);
2160 sqlite3DebugPrintf(" cost %d,%d,%d\n", p
->rSetup
, p
->rRun
, p
->nOut
);
2161 if( p
->nLTerm
&& (sqlite3WhereTrace
& 0x100)!=0 ){
2163 for(i
=0; i
<p
->nLTerm
; i
++){
2164 sqlite3WhereTermPrint(p
->aLTerm
[i
], i
);
2171 ** Convert bulk memory into a valid WhereLoop that can be passed
2172 ** to whereLoopClear harmlessly.
2174 static void whereLoopInit(WhereLoop
*p
){
2175 p
->aLTerm
= p
->aLTermSpace
;
2177 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
2182 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
2184 static void whereLoopClearUnion(sqlite3
*db
, WhereLoop
*p
){
2185 if( p
->wsFlags
& (WHERE_VIRTUALTABLE
|WHERE_AUTO_INDEX
) ){
2186 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 && p
->u
.vtab
.needFree
){
2187 sqlite3_free(p
->u
.vtab
.idxStr
);
2188 p
->u
.vtab
.needFree
= 0;
2189 p
->u
.vtab
.idxStr
= 0;
2190 }else if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && p
->u
.btree
.pIndex
!=0 ){
2191 sqlite3DbFree(db
, p
->u
.btree
.pIndex
->zColAff
);
2192 sqlite3DbFreeNN(db
, p
->u
.btree
.pIndex
);
2193 p
->u
.btree
.pIndex
= 0;
2199 ** Deallocate internal memory used by a WhereLoop object
2201 static void whereLoopClear(sqlite3
*db
, WhereLoop
*p
){
2202 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
2203 whereLoopClearUnion(db
, p
);
2208 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2210 static int whereLoopResize(sqlite3
*db
, WhereLoop
*p
, int n
){
2212 if( p
->nLSlot
>=n
) return SQLITE_OK
;
2214 paNew
= sqlite3DbMallocRawNN(db
, sizeof(p
->aLTerm
[0])*n
);
2215 if( paNew
==0 ) return SQLITE_NOMEM_BKPT
;
2216 memcpy(paNew
, p
->aLTerm
, sizeof(p
->aLTerm
[0])*p
->nLSlot
);
2217 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
2224 ** Transfer content from the second pLoop into the first.
2226 static int whereLoopXfer(sqlite3
*db
, WhereLoop
*pTo
, WhereLoop
*pFrom
){
2227 whereLoopClearUnion(db
, pTo
);
2228 if( whereLoopResize(db
, pTo
, pFrom
->nLTerm
) ){
2229 memset(pTo
, 0, WHERE_LOOP_XFER_SZ
);
2230 return SQLITE_NOMEM_BKPT
;
2232 memcpy(pTo
, pFrom
, WHERE_LOOP_XFER_SZ
);
2233 memcpy(pTo
->aLTerm
, pFrom
->aLTerm
, pTo
->nLTerm
*sizeof(pTo
->aLTerm
[0]));
2234 if( pFrom
->wsFlags
& WHERE_VIRTUALTABLE
){
2235 pFrom
->u
.vtab
.needFree
= 0;
2236 }else if( (pFrom
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
2237 pFrom
->u
.btree
.pIndex
= 0;
2243 ** Delete a WhereLoop object
2245 static void whereLoopDelete(sqlite3
*db
, WhereLoop
*p
){
2246 whereLoopClear(db
, p
);
2247 sqlite3DbFreeNN(db
, p
);
2251 ** Free a WhereInfo structure
2253 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
2254 assert( pWInfo
!=0 );
2255 sqlite3WhereClauseClear(&pWInfo
->sWC
);
2256 while( pWInfo
->pLoops
){
2257 WhereLoop
*p
= pWInfo
->pLoops
;
2258 pWInfo
->pLoops
= p
->pNextLoop
;
2259 whereLoopDelete(db
, p
);
2261 assert( pWInfo
->pExprMods
==0 );
2262 while( pWInfo
->pMemToFree
){
2263 WhereMemBlock
*pNext
= pWInfo
->pMemToFree
->pNext
;
2264 sqlite3DbFreeNN(db
, pWInfo
->pMemToFree
);
2265 pWInfo
->pMemToFree
= pNext
;
2267 sqlite3DbFreeNN(db
, pWInfo
);
2270 /* Undo all Expr node modifications
2272 static void whereUndoExprMods(WhereInfo
*pWInfo
){
2273 while( pWInfo
->pExprMods
){
2274 WhereExprMod
*p
= pWInfo
->pExprMods
;
2275 pWInfo
->pExprMods
= p
->pNext
;
2276 memcpy(p
->pExpr
, &p
->orig
, sizeof(p
->orig
));
2277 sqlite3DbFree(pWInfo
->pParse
->db
, p
);
2282 ** Return TRUE if all of the following are true:
2284 ** (1) X has the same or lower cost, or returns the same or fewer rows,
2286 ** (2) X uses fewer WHERE clause terms than Y
2287 ** (3) Every WHERE clause term used by X is also used by Y
2288 ** (4) X skips at least as many columns as Y
2289 ** (5) If X is a covering index, than Y is too
2291 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2292 ** If X is a proper subset of Y then Y is a better choice and ought
2293 ** to have a lower cost. This routine returns TRUE when that cost
2294 ** relationship is inverted and needs to be adjusted. Constraint (4)
2295 ** was added because if X uses skip-scan less than Y it still might
2296 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
2297 ** was added because a covering index probably deserves to have a lower cost
2298 ** than a non-covering index even if it is a proper subset.
2300 static int whereLoopCheaperProperSubset(
2301 const WhereLoop
*pX
, /* First WhereLoop to compare */
2302 const WhereLoop
*pY
/* Compare against this WhereLoop */
2305 if( pX
->nLTerm
-pX
->nSkip
>= pY
->nLTerm
-pY
->nSkip
){
2306 return 0; /* X is not a subset of Y */
2308 if( pX
->rRun
>pY
->rRun
&& pX
->nOut
>pY
->nOut
) return 0;
2309 if( pY
->nSkip
> pX
->nSkip
) return 0;
2310 for(i
=pX
->nLTerm
-1; i
>=0; i
--){
2311 if( pX
->aLTerm
[i
]==0 ) continue;
2312 for(j
=pY
->nLTerm
-1; j
>=0; j
--){
2313 if( pY
->aLTerm
[j
]==pX
->aLTerm
[i
] ) break;
2315 if( j
<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
2317 if( (pX
->wsFlags
&WHERE_IDX_ONLY
)!=0
2318 && (pY
->wsFlags
&WHERE_IDX_ONLY
)==0 ){
2319 return 0; /* Constraint (5) */
2321 return 1; /* All conditions meet */
2325 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2326 ** upwards or downwards so that:
2328 ** (1) pTemplate costs less than any other WhereLoops that are a proper
2329 ** subset of pTemplate
2331 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2332 ** is a proper subset.
2334 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2335 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2338 static void whereLoopAdjustCost(const WhereLoop
*p
, WhereLoop
*pTemplate
){
2339 if( (pTemplate
->wsFlags
& WHERE_INDEXED
)==0 ) return;
2340 for(; p
; p
=p
->pNextLoop
){
2341 if( p
->iTab
!=pTemplate
->iTab
) continue;
2342 if( (p
->wsFlags
& WHERE_INDEXED
)==0 ) continue;
2343 if( whereLoopCheaperProperSubset(p
, pTemplate
) ){
2344 /* Adjust pTemplate cost downward so that it is cheaper than its
2346 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2347 pTemplate
->rRun
, pTemplate
->nOut
,
2348 MIN(p
->rRun
, pTemplate
->rRun
),
2349 MIN(p
->nOut
- 1, pTemplate
->nOut
)));
2350 pTemplate
->rRun
= MIN(p
->rRun
, pTemplate
->rRun
);
2351 pTemplate
->nOut
= MIN(p
->nOut
- 1, pTemplate
->nOut
);
2352 }else if( whereLoopCheaperProperSubset(pTemplate
, p
) ){
2353 /* Adjust pTemplate cost upward so that it is costlier than p since
2354 ** pTemplate is a proper subset of p */
2355 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2356 pTemplate
->rRun
, pTemplate
->nOut
,
2357 MAX(p
->rRun
, pTemplate
->rRun
),
2358 MAX(p
->nOut
+ 1, pTemplate
->nOut
)));
2359 pTemplate
->rRun
= MAX(p
->rRun
, pTemplate
->rRun
);
2360 pTemplate
->nOut
= MAX(p
->nOut
+ 1, pTemplate
->nOut
);
2366 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2367 ** replaced by pTemplate.
2369 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2370 ** In other words if pTemplate ought to be dropped from further consideration.
2372 ** If pX is a WhereLoop that pTemplate can replace, then return the
2373 ** link that points to pX.
2375 ** If pTemplate cannot replace any existing element of the list but needs
2376 ** to be added to the list as a new entry, then return a pointer to the
2377 ** tail of the list.
2379 static WhereLoop
**whereLoopFindLesser(
2381 const WhereLoop
*pTemplate
2384 for(p
=(*ppPrev
); p
; ppPrev
=&p
->pNextLoop
, p
=*ppPrev
){
2385 if( p
->iTab
!=pTemplate
->iTab
|| p
->iSortIdx
!=pTemplate
->iSortIdx
){
2386 /* If either the iTab or iSortIdx values for two WhereLoop are different
2387 ** then those WhereLoops need to be considered separately. Neither is
2388 ** a candidate to replace the other. */
2391 /* In the current implementation, the rSetup value is either zero
2392 ** or the cost of building an automatic index (NlogN) and the NlogN
2393 ** is the same for compatible WhereLoops. */
2394 assert( p
->rSetup
==0 || pTemplate
->rSetup
==0
2395 || p
->rSetup
==pTemplate
->rSetup
);
2397 /* whereLoopAddBtree() always generates and inserts the automatic index
2398 ** case first. Hence compatible candidate WhereLoops never have a larger
2399 ** rSetup. Call this SETUP-INVARIANT */
2400 assert( p
->rSetup
>=pTemplate
->rSetup
);
2402 /* Any loop using an appliation-defined index (or PRIMARY KEY or
2403 ** UNIQUE constraint) with one or more == constraints is better
2404 ** than an automatic index. Unless it is a skip-scan. */
2405 if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0
2406 && (pTemplate
->nSkip
)==0
2407 && (pTemplate
->wsFlags
& WHERE_INDEXED
)!=0
2408 && (pTemplate
->wsFlags
& WHERE_COLUMN_EQ
)!=0
2409 && (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
2414 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2415 ** discarded. WhereLoop p is better if:
2416 ** (1) p has no more dependencies than pTemplate, and
2417 ** (2) p has an equal or lower cost than pTemplate
2419 if( (p
->prereq
& pTemplate
->prereq
)==p
->prereq
/* (1) */
2420 && p
->rSetup
<=pTemplate
->rSetup
/* (2a) */
2421 && p
->rRun
<=pTemplate
->rRun
/* (2b) */
2422 && p
->nOut
<=pTemplate
->nOut
/* (2c) */
2424 return 0; /* Discard pTemplate */
2427 /* If pTemplate is always better than p, then cause p to be overwritten
2428 ** with pTemplate. pTemplate is better than p if:
2429 ** (1) pTemplate has no more dependences than p, and
2430 ** (2) pTemplate has an equal or lower cost than p.
2432 if( (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
/* (1) */
2433 && p
->rRun
>=pTemplate
->rRun
/* (2a) */
2434 && p
->nOut
>=pTemplate
->nOut
/* (2b) */
2436 assert( p
->rSetup
>=pTemplate
->rSetup
); /* SETUP-INVARIANT above */
2437 break; /* Cause p to be overwritten by pTemplate */
2444 ** Insert or replace a WhereLoop entry using the template supplied.
2446 ** An existing WhereLoop entry might be overwritten if the new template
2447 ** is better and has fewer dependencies. Or the template will be ignored
2448 ** and no insert will occur if an existing WhereLoop is faster and has
2449 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2450 ** added based on the template.
2452 ** If pBuilder->pOrSet is not NULL then we care about only the
2453 ** prerequisites and rRun and nOut costs of the N best loops. That
2454 ** information is gathered in the pBuilder->pOrSet object. This special
2455 ** processing mode is used only for OR clause processing.
2457 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2458 ** still might overwrite similar loops with the new template if the
2459 ** new template is better. Loops may be overwritten if the following
2460 ** conditions are met:
2462 ** (1) They have the same iTab.
2463 ** (2) They have the same iSortIdx.
2464 ** (3) The template has same or fewer dependencies than the current loop
2465 ** (4) The template has the same or lower cost than the current loop
2467 static int whereLoopInsert(WhereLoopBuilder
*pBuilder
, WhereLoop
*pTemplate
){
2468 WhereLoop
**ppPrev
, *p
;
2469 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
2470 sqlite3
*db
= pWInfo
->pParse
->db
;
2473 /* Stop the search once we hit the query planner search limit */
2474 if( pBuilder
->iPlanLimit
==0 ){
2475 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2476 if( pBuilder
->pOrSet
) pBuilder
->pOrSet
->n
= 0;
2479 pBuilder
->iPlanLimit
--;
2481 whereLoopAdjustCost(pWInfo
->pLoops
, pTemplate
);
2483 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2486 if( pBuilder
->pOrSet
!=0 ){
2487 if( pTemplate
->nLTerm
){
2488 #if WHERETRACE_ENABLED
2489 u16 n
= pBuilder
->pOrSet
->n
;
2492 whereOrInsert(pBuilder
->pOrSet
, pTemplate
->prereq
, pTemplate
->rRun
,
2494 #if WHERETRACE_ENABLED /* 0x8 */
2495 if( sqlite3WhereTrace
& 0x8 ){
2496 sqlite3DebugPrintf(x
?" or-%d: ":" or-X: ", n
);
2497 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2504 /* Look for an existing WhereLoop to replace with pTemplate
2506 ppPrev
= whereLoopFindLesser(&pWInfo
->pLoops
, pTemplate
);
2509 /* There already exists a WhereLoop on the list that is better
2510 ** than pTemplate, so just ignore pTemplate */
2511 #if WHERETRACE_ENABLED /* 0x8 */
2512 if( sqlite3WhereTrace
& 0x8 ){
2513 sqlite3DebugPrintf(" skip: ");
2514 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2522 /* If we reach this point it means that either p[] should be overwritten
2523 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2524 ** WhereLoop and insert it.
2526 #if WHERETRACE_ENABLED /* 0x8 */
2527 if( sqlite3WhereTrace
& 0x8 ){
2529 sqlite3DebugPrintf("replace: ");
2530 sqlite3WhereLoopPrint(p
, pBuilder
->pWC
);
2531 sqlite3DebugPrintf(" with: ");
2533 sqlite3DebugPrintf(" add: ");
2535 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2539 /* Allocate a new WhereLoop to add to the end of the list */
2540 *ppPrev
= p
= sqlite3DbMallocRawNN(db
, sizeof(WhereLoop
));
2541 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
2545 /* We will be overwriting WhereLoop p[]. But before we do, first
2546 ** go through the rest of the list and delete any other entries besides
2547 ** p[] that are also supplated by pTemplate */
2548 WhereLoop
**ppTail
= &p
->pNextLoop
;
2551 ppTail
= whereLoopFindLesser(ppTail
, pTemplate
);
2552 if( ppTail
==0 ) break;
2554 if( pToDel
==0 ) break;
2555 *ppTail
= pToDel
->pNextLoop
;
2556 #if WHERETRACE_ENABLED /* 0x8 */
2557 if( sqlite3WhereTrace
& 0x8 ){
2558 sqlite3DebugPrintf(" delete: ");
2559 sqlite3WhereLoopPrint(pToDel
, pBuilder
->pWC
);
2562 whereLoopDelete(db
, pToDel
);
2565 rc
= whereLoopXfer(db
, p
, pTemplate
);
2566 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2567 Index
*pIndex
= p
->u
.btree
.pIndex
;
2568 if( pIndex
&& pIndex
->idxType
==SQLITE_IDXTYPE_IPK
){
2569 p
->u
.btree
.pIndex
= 0;
2576 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2577 ** WHERE clause that reference the loop but which are not used by an
2580 ** For every WHERE clause term that is not used by the index
2581 ** and which has a truth probability assigned by one of the likelihood(),
2582 ** likely(), or unlikely() SQL functions, reduce the estimated number
2583 ** of output rows by the probability specified.
2585 ** TUNING: For every WHERE clause term that is not used by the index
2586 ** and which does not have an assigned truth probability, heuristics
2587 ** described below are used to try to estimate the truth probability.
2588 ** TODO --> Perhaps this is something that could be improved by better
2589 ** table statistics.
2591 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2592 ** value corresponds to -1 in LogEst notation, so this means decrement
2593 ** the WhereLoop.nOut field for every such WHERE clause term.
2595 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2596 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2597 ** final output row estimate is no greater than 1/4 of the total number
2598 ** of rows in the table. In other words, assume that x==EXPR will filter
2599 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2600 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2601 ** on the "x" column and so in that case only cap the output row estimate
2602 ** at 1/2 instead of 1/4.
2604 static void whereLoopOutputAdjust(
2605 WhereClause
*pWC
, /* The WHERE clause */
2606 WhereLoop
*pLoop
, /* The loop to adjust downward */
2607 LogEst nRow
/* Number of rows in the entire table */
2609 WhereTerm
*pTerm
, *pX
;
2610 Bitmask notAllowed
= ~(pLoop
->prereq
|pLoop
->maskSelf
);
2612 LogEst iReduce
= 0; /* pLoop->nOut should not exceed nRow-iReduce */
2614 assert( (pLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
2615 for(i
=pWC
->nBase
, pTerm
=pWC
->a
; i
>0; i
--, pTerm
++){
2617 if( (pTerm
->prereqAll
& notAllowed
)!=0 ) continue;
2618 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)==0 ) continue;
2619 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)!=0 ) continue;
2620 for(j
=pLoop
->nLTerm
-1; j
>=0; j
--){
2621 pX
= pLoop
->aLTerm
[j
];
2622 if( pX
==0 ) continue;
2623 if( pX
==pTerm
) break;
2624 if( pX
->iParent
>=0 && (&pWC
->a
[pX
->iParent
])==pTerm
) break;
2627 if( pLoop
->maskSelf
==pTerm
->prereqAll
){
2628 /* If there are extra terms in the WHERE clause not used by an index
2629 ** that depend only on the table being scanned, and that will tend to
2630 ** cause many rows to be omitted, then mark that table as
2633 ** 2022-03-24: Self-culling only applies if either the extra terms
2634 ** are straight comparison operators that are non-true with NULL
2635 ** operand, or if the loop is not an OUTER JOIN.
2637 if( (pTerm
->eOperator
& 0x3f)!=0
2638 || (pWC
->pWInfo
->pTabList
->a
[pLoop
->iTab
].fg
.jointype
2639 & (JT_LEFT
|JT_LTORJ
))==0
2641 pLoop
->wsFlags
|= WHERE_SELFCULL
;
2644 if( pTerm
->truthProb
<=0 ){
2645 /* If a truth probability is specified using the likelihood() hints,
2646 ** then use the probability provided by the application. */
2647 pLoop
->nOut
+= pTerm
->truthProb
;
2649 /* In the absence of explicit truth probabilities, use heuristics to
2650 ** guess a reasonable truth probability. */
2652 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0
2653 && (pTerm
->wtFlags
& TERM_HIGHTRUTH
)==0 /* tag-20200224-1 */
2655 Expr
*pRight
= pTerm
->pExpr
->pRight
;
2657 testcase( pTerm
->pExpr
->op
==TK_IS
);
2658 if( sqlite3ExprIsInteger(pRight
, &k
) && k
>=(-1) && k
<=1 ){
2664 pTerm
->wtFlags
|= TERM_HEURTRUTH
;
2671 if( pLoop
->nOut
> nRow
-iReduce
){
2672 pLoop
->nOut
= nRow
- iReduce
;
2677 ** Term pTerm is a vector range comparison operation. The first comparison
2678 ** in the vector can be optimized using column nEq of the index. This
2679 ** function returns the total number of vector elements that can be used
2680 ** as part of the range comparison.
2682 ** For example, if the query is:
2684 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2688 ** CREATE INDEX ... ON (a, b, c, d, e)
2690 ** then this function would be invoked with nEq=1. The value returned in
2693 static int whereRangeVectorLen(
2694 Parse
*pParse
, /* Parsing context */
2695 int iCur
, /* Cursor open on pIdx */
2696 Index
*pIdx
, /* The index to be used for a inequality constraint */
2697 int nEq
, /* Number of prior equality constraints on same index */
2698 WhereTerm
*pTerm
/* The vector inequality constraint */
2700 int nCmp
= sqlite3ExprVectorSize(pTerm
->pExpr
->pLeft
);
2703 nCmp
= MIN(nCmp
, (pIdx
->nColumn
- nEq
));
2704 for(i
=1; i
<nCmp
; i
++){
2705 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2706 ** of the index. If not, exit the loop. */
2707 char aff
; /* Comparison affinity */
2708 char idxaff
= 0; /* Indexed columns affinity */
2709 CollSeq
*pColl
; /* Comparison collation sequence */
2712 assert( ExprUseXList(pTerm
->pExpr
->pLeft
) );
2713 pLhs
= pTerm
->pExpr
->pLeft
->x
.pList
->a
[i
].pExpr
;
2714 pRhs
= pTerm
->pExpr
->pRight
;
2715 if( ExprUseXSelect(pRhs
) ){
2716 pRhs
= pRhs
->x
.pSelect
->pEList
->a
[i
].pExpr
;
2718 pRhs
= pRhs
->x
.pList
->a
[i
].pExpr
;
2721 /* Check that the LHS of the comparison is a column reference to
2722 ** the right column of the right source table. And that the sort
2723 ** order of the index column is the same as the sort order of the
2724 ** leftmost index column. */
2725 if( pLhs
->op
!=TK_COLUMN
2726 || pLhs
->iTable
!=iCur
2727 || pLhs
->iColumn
!=pIdx
->aiColumn
[i
+nEq
]
2728 || pIdx
->aSortOrder
[i
+nEq
]!=pIdx
->aSortOrder
[nEq
]
2733 testcase( pLhs
->iColumn
==XN_ROWID
);
2734 aff
= sqlite3CompareAffinity(pRhs
, sqlite3ExprAffinity(pLhs
));
2735 idxaff
= sqlite3TableColumnAffinity(pIdx
->pTable
, pLhs
->iColumn
);
2736 if( aff
!=idxaff
) break;
2738 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2739 if( pColl
==0 ) break;
2740 if( sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[i
+nEq
]) ) break;
2746 ** Adjust the cost C by the costMult facter T. This only occurs if
2747 ** compiled with -DSQLITE_ENABLE_COSTMULT
2749 #ifdef SQLITE_ENABLE_COSTMULT
2750 # define ApplyCostMultiplier(C,T) C += T
2752 # define ApplyCostMultiplier(C,T)
2756 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2757 ** index pIndex. Try to match one more.
2759 ** When this function is called, pBuilder->pNew->nOut contains the
2760 ** number of rows expected to be visited by filtering using the nEq
2761 ** terms only. If it is modified, this value is restored before this
2762 ** function returns.
2764 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2765 ** a fake index used for the INTEGER PRIMARY KEY.
2767 static int whereLoopAddBtreeIndex(
2768 WhereLoopBuilder
*pBuilder
, /* The WhereLoop factory */
2769 SrcItem
*pSrc
, /* FROM clause term being analyzed */
2770 Index
*pProbe
, /* An index on pSrc */
2771 LogEst nInMul
/* log(Number of iterations due to IN) */
2773 WhereInfo
*pWInfo
= pBuilder
->pWInfo
; /* WHERE analyse context */
2774 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
2775 sqlite3
*db
= pParse
->db
; /* Database connection malloc context */
2776 WhereLoop
*pNew
; /* Template WhereLoop under construction */
2777 WhereTerm
*pTerm
; /* A WhereTerm under consideration */
2778 int opMask
; /* Valid operators for constraints */
2779 WhereScan scan
; /* Iterator for WHERE terms */
2780 Bitmask saved_prereq
; /* Original value of pNew->prereq */
2781 u16 saved_nLTerm
; /* Original value of pNew->nLTerm */
2782 u16 saved_nEq
; /* Original value of pNew->u.btree.nEq */
2783 u16 saved_nBtm
; /* Original value of pNew->u.btree.nBtm */
2784 u16 saved_nTop
; /* Original value of pNew->u.btree.nTop */
2785 u16 saved_nSkip
; /* Original value of pNew->nSkip */
2786 u32 saved_wsFlags
; /* Original value of pNew->wsFlags */
2787 LogEst saved_nOut
; /* Original value of pNew->nOut */
2788 int rc
= SQLITE_OK
; /* Return code */
2789 LogEst rSize
; /* Number of rows in the table */
2790 LogEst rLogSize
; /* Logarithm of table size */
2791 WhereTerm
*pTop
= 0, *pBtm
= 0; /* Top and bottom range constraints */
2793 pNew
= pBuilder
->pNew
;
2794 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
2795 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2796 pProbe
->pTable
->zName
,pProbe
->zName
,
2797 pNew
->u
.btree
.nEq
, pNew
->nSkip
, pNew
->rRun
));
2799 assert( (pNew
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2800 assert( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0 );
2801 if( pNew
->wsFlags
& WHERE_BTM_LIMIT
){
2802 opMask
= WO_LT
|WO_LE
;
2804 assert( pNew
->u
.btree
.nBtm
==0 );
2805 opMask
= WO_EQ
|WO_IN
|WO_GT
|WO_GE
|WO_LT
|WO_LE
|WO_ISNULL
|WO_IS
;
2807 if( pProbe
->bUnordered
) opMask
&= ~(WO_GT
|WO_GE
|WO_LT
|WO_LE
);
2809 assert( pNew
->u
.btree
.nEq
<pProbe
->nColumn
);
2810 assert( pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
2811 || pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
);
2813 saved_nEq
= pNew
->u
.btree
.nEq
;
2814 saved_nBtm
= pNew
->u
.btree
.nBtm
;
2815 saved_nTop
= pNew
->u
.btree
.nTop
;
2816 saved_nSkip
= pNew
->nSkip
;
2817 saved_nLTerm
= pNew
->nLTerm
;
2818 saved_wsFlags
= pNew
->wsFlags
;
2819 saved_prereq
= pNew
->prereq
;
2820 saved_nOut
= pNew
->nOut
;
2821 pTerm
= whereScanInit(&scan
, pBuilder
->pWC
, pSrc
->iCursor
, saved_nEq
,
2824 rSize
= pProbe
->aiRowLogEst
[0];
2825 rLogSize
= estLog(rSize
);
2826 for(; rc
==SQLITE_OK
&& pTerm
!=0; pTerm
= whereScanNext(&scan
)){
2827 u16 eOp
= pTerm
->eOperator
; /* Shorthand for pTerm->eOperator */
2829 LogEst nOutUnadjusted
; /* nOut before IN() and WHERE adjustments */
2831 #ifdef SQLITE_ENABLE_STAT4
2832 int nRecValid
= pBuilder
->nRecValid
;
2834 if( (eOp
==WO_ISNULL
|| (pTerm
->wtFlags
&TERM_VNULL
)!=0)
2835 && indexColumnNotNull(pProbe
, saved_nEq
)
2837 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2839 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
2841 /* Do not allow the upper bound of a LIKE optimization range constraint
2842 ** to mix with a lower range bound from some other source */
2843 if( pTerm
->wtFlags
& TERM_LIKEOPT
&& pTerm
->eOperator
==WO_LT
) continue;
2845 /* tag-20191211-001: Do not allow constraints from the WHERE clause to
2846 ** be used by the right table of a LEFT JOIN nor by the left table of a
2847 ** RIGHT JOIN. Only constraints in the ON clause are allowed.
2848 ** See tag-20191211-002 for the vtab equivalent.
2850 ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f
2851 ** for an example of a WHERE clause constraints that may not be used on
2852 ** the right table of a RIGHT JOIN because the constraint implies a
2853 ** not-NULL condition on the left table of the RIGHT JOIN.
2855 ** 2022-06-10: The same condition applies to termCanDriveIndex() above.
2856 ** https://sqlite.org/forum/forumpost/51e6959f61
2858 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0 ){
2859 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LEFT
);
2860 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_RIGHT
);
2861 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LTORJ
);
2862 testcase( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) )
2863 testcase( ExprHasProperty(pTerm
->pExpr
, EP_InnerON
) );
2864 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
|EP_InnerON
)
2865 || pTerm
->pExpr
->w
.iJoin
!= pSrc
->iCursor
2871 if( IsUniqueIndex(pProbe
) && saved_nEq
==pProbe
->nKeyCol
-1 ){
2872 pBuilder
->bldFlags1
|= SQLITE_BLDF1_UNIQUE
;
2874 pBuilder
->bldFlags1
|= SQLITE_BLDF1_INDEXED
;
2876 pNew
->wsFlags
= saved_wsFlags
;
2877 pNew
->u
.btree
.nEq
= saved_nEq
;
2878 pNew
->u
.btree
.nBtm
= saved_nBtm
;
2879 pNew
->u
.btree
.nTop
= saved_nTop
;
2880 pNew
->nLTerm
= saved_nLTerm
;
2881 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
2882 pNew
->aLTerm
[pNew
->nLTerm
++] = pTerm
;
2883 pNew
->prereq
= (saved_prereq
| pTerm
->prereqRight
) & ~pNew
->maskSelf
;
2886 || (pNew
->wsFlags
& WHERE_COLUMN_NULL
)!=0
2887 || (pNew
->wsFlags
& WHERE_COLUMN_IN
)!=0
2888 || (pNew
->wsFlags
& WHERE_SKIPSCAN
)!=0
2892 Expr
*pExpr
= pTerm
->pExpr
;
2893 if( ExprUseXSelect(pExpr
) ){
2894 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2896 nIn
= 46; assert( 46==sqlite3LogEst(25) );
2898 /* The expression may actually be of the form (x, y) IN (SELECT...).
2899 ** In this case there is a separate term for each of (x) and (y).
2900 ** However, the nIn multiplier should only be applied once, not once
2901 ** for each such term. The following loop checks that pTerm is the
2902 ** first such term in use, and sets nIn back to 0 if it is not. */
2903 for(i
=0; i
<pNew
->nLTerm
-1; i
++){
2904 if( pNew
->aLTerm
[i
] && pNew
->aLTerm
[i
]->pExpr
==pExpr
) nIn
= 0;
2906 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
2907 /* "x IN (value, value, ...)" */
2908 nIn
= sqlite3LogEst(pExpr
->x
.pList
->nExpr
);
2910 if( pProbe
->hasStat1
&& rLogSize
>=10 ){
2913 ** N = the total number of rows in the table
2914 ** K = the number of entries on the RHS of the IN operator
2915 ** M = the number of rows in the table that match terms to the
2916 ** to the left in the same index. If the IN operator is on
2917 ** the left-most index column, M==N.
2919 ** Given the definitions above, it is better to omit the IN operator
2920 ** from the index lookup and instead do a scan of the M elements,
2921 ** testing each scanned row against the IN operator separately, if:
2923 ** M*log(K) < K*log(N)
2925 ** Our estimates for M, K, and N might be inaccurate, so we build in
2926 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2927 ** with the index, as using an index has better worst-case behavior.
2928 ** If we do not have real sqlite_stat1 data, always prefer to use
2929 ** the index. Do not bother with this optimization on very small
2930 ** tables (less than 2 rows) as it is pointless in that case.
2932 M
= pProbe
->aiRowLogEst
[saved_nEq
];
2934 /* TUNING v----- 10 to bias toward indexed IN */
2935 x
= M
+ logK
+ 10 - (nIn
+ rLogSize
);
2938 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2939 "prefers indexed lookup\n",
2940 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
));
2941 }else if( nInMul
<2 && OptimizationEnabled(db
, SQLITE_SeekScan
) ){
2943 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2944 " nInMul=%d) prefers skip-scan\n",
2945 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
2946 pNew
->wsFlags
|= WHERE_IN_SEEKSCAN
;
2949 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2950 " nInMul=%d) prefers normal scan\n",
2951 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
2955 pNew
->wsFlags
|= WHERE_COLUMN_IN
;
2956 }else if( eOp
& (WO_EQ
|WO_IS
) ){
2957 int iCol
= pProbe
->aiColumn
[saved_nEq
];
2958 pNew
->wsFlags
|= WHERE_COLUMN_EQ
;
2959 assert( saved_nEq
==pNew
->u
.btree
.nEq
);
2961 || (iCol
>=0 && nInMul
==0 && saved_nEq
==pProbe
->nKeyCol
-1)
2963 if( iCol
==XN_ROWID
|| pProbe
->uniqNotNull
2964 || (pProbe
->nKeyCol
==1 && pProbe
->onError
&& eOp
==WO_EQ
)
2966 pNew
->wsFlags
|= WHERE_ONEROW
;
2968 pNew
->wsFlags
|= WHERE_UNQ_WANTED
;
2971 if( scan
.iEquiv
>1 ) pNew
->wsFlags
|= WHERE_TRANSCONS
;
2972 }else if( eOp
& WO_ISNULL
){
2973 pNew
->wsFlags
|= WHERE_COLUMN_NULL
;
2974 }else if( eOp
& (WO_GT
|WO_GE
) ){
2975 testcase( eOp
& WO_GT
);
2976 testcase( eOp
& WO_GE
);
2977 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_BTM_LIMIT
;
2978 pNew
->u
.btree
.nBtm
= whereRangeVectorLen(
2979 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
2983 if( pTerm
->wtFlags
& TERM_LIKEOPT
){
2984 /* Range constraints that come from the LIKE optimization are
2985 ** always used in pairs. */
2987 assert( (pTop
-(pTerm
->pWC
->a
))<pTerm
->pWC
->nTerm
);
2988 assert( pTop
->wtFlags
& TERM_LIKEOPT
);
2989 assert( pTop
->eOperator
==WO_LT
);
2990 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
2991 pNew
->aLTerm
[pNew
->nLTerm
++] = pTop
;
2992 pNew
->wsFlags
|= WHERE_TOP_LIMIT
;
2993 pNew
->u
.btree
.nTop
= 1;
2996 assert( eOp
& (WO_LT
|WO_LE
) );
2997 testcase( eOp
& WO_LT
);
2998 testcase( eOp
& WO_LE
);
2999 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_TOP_LIMIT
;
3000 pNew
->u
.btree
.nTop
= whereRangeVectorLen(
3001 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
3004 pBtm
= (pNew
->wsFlags
& WHERE_BTM_LIMIT
)!=0 ?
3005 pNew
->aLTerm
[pNew
->nLTerm
-2] : 0;
3008 /* At this point pNew->nOut is set to the number of rows expected to
3009 ** be visited by the index scan before considering term pTerm, or the
3010 ** values of nIn and nInMul. In other words, assuming that all
3011 ** "x IN(...)" terms are replaced with "x = ?". This block updates
3012 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
3013 assert( pNew
->nOut
==saved_nOut
);
3014 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
3015 /* Adjust nOut using stat4 data. Or, if there is no stat4
3016 ** data, using some other estimate. */
3017 whereRangeScanEst(pParse
, pBuilder
, pBtm
, pTop
, pNew
);
3019 int nEq
= ++pNew
->u
.btree
.nEq
;
3020 assert( eOp
& (WO_ISNULL
|WO_EQ
|WO_IN
|WO_IS
) );
3022 assert( pNew
->nOut
==saved_nOut
);
3023 if( pTerm
->truthProb
<=0 && pProbe
->aiColumn
[saved_nEq
]>=0 ){
3024 assert( (eOp
& WO_IN
) || nIn
==0 );
3025 testcase( eOp
& WO_IN
);
3026 pNew
->nOut
+= pTerm
->truthProb
;
3029 #ifdef SQLITE_ENABLE_STAT4
3033 && ALWAYS(pNew
->u
.btree
.nEq
<=pProbe
->nSampleCol
)
3034 && ((eOp
& WO_IN
)==0 || ExprUseXList(pTerm
->pExpr
))
3035 && OptimizationEnabled(db
, SQLITE_Stat4
)
3037 Expr
*pExpr
= pTerm
->pExpr
;
3038 if( (eOp
& (WO_EQ
|WO_ISNULL
|WO_IS
))!=0 ){
3039 testcase( eOp
& WO_EQ
);
3040 testcase( eOp
& WO_IS
);
3041 testcase( eOp
& WO_ISNULL
);
3042 rc
= whereEqualScanEst(pParse
, pBuilder
, pExpr
->pRight
, &nOut
);
3044 rc
= whereInScanEst(pParse
, pBuilder
, pExpr
->x
.pList
, &nOut
);
3046 if( rc
==SQLITE_NOTFOUND
) rc
= SQLITE_OK
;
3047 if( rc
!=SQLITE_OK
) break; /* Jump out of the pTerm loop */
3049 pNew
->nOut
= sqlite3LogEst(nOut
);
3051 /* TUNING: Mark terms as "low selectivity" if they seem likely
3052 ** to be true for half or more of the rows in the table.
3053 ** See tag-202002240-1 */
3054 && pNew
->nOut
+10 > pProbe
->aiRowLogEst
[0]
3056 #if WHERETRACE_ENABLED /* 0x01 */
3057 if( sqlite3WhereTrace
& 0x01 ){
3059 "STAT4 determines term has low selectivity:\n");
3060 sqlite3WhereTermPrint(pTerm
, 999);
3063 pTerm
->wtFlags
|= TERM_HIGHTRUTH
;
3064 if( pTerm
->wtFlags
& TERM_HEURTRUTH
){
3065 /* If the term has previously been used with an assumption of
3066 ** higher selectivity, then set the flag to rerun the
3067 ** loop computations. */
3068 pBuilder
->bldFlags2
|= SQLITE_BLDF2_2NDPASS
;
3071 if( pNew
->nOut
>saved_nOut
) pNew
->nOut
= saved_nOut
;
3078 pNew
->nOut
+= (pProbe
->aiRowLogEst
[nEq
] - pProbe
->aiRowLogEst
[nEq
-1]);
3079 if( eOp
& WO_ISNULL
){
3080 /* TUNING: If there is no likelihood() value, assume that a
3081 ** "col IS NULL" expression matches twice as many rows
3089 /* Set rCostIdx to the cost of visiting selected rows in index. Add
3090 ** it to pNew->rRun, which is currently set to the cost of the index
3091 ** seek only. Then, if this is a non-covering index, add the cost of
3092 ** visiting the rows in the main table. */
3093 assert( pSrc
->pTab
->szTabRow
>0 );
3094 rCostIdx
= pNew
->nOut
+ 1 + (15*pProbe
->szIdxRow
)/pSrc
->pTab
->szTabRow
;
3095 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
, rCostIdx
);
3096 if( (pNew
->wsFlags
& (WHERE_IDX_ONLY
|WHERE_IPK
))==0 ){
3097 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, pNew
->nOut
+ 16);
3099 ApplyCostMultiplier(pNew
->rRun
, pProbe
->pTable
->costMult
);
3101 nOutUnadjusted
= pNew
->nOut
;
3102 pNew
->rRun
+= nInMul
+ nIn
;
3103 pNew
->nOut
+= nInMul
+ nIn
;
3104 whereLoopOutputAdjust(pBuilder
->pWC
, pNew
, rSize
);
3105 rc
= whereLoopInsert(pBuilder
, pNew
);
3107 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
3108 pNew
->nOut
= saved_nOut
;
3110 pNew
->nOut
= nOutUnadjusted
;
3113 if( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0
3114 && pNew
->u
.btree
.nEq
<pProbe
->nColumn
3115 && (pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
||
3116 pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
)
3118 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nInMul
+nIn
);
3120 pNew
->nOut
= saved_nOut
;
3121 #ifdef SQLITE_ENABLE_STAT4
3122 pBuilder
->nRecValid
= nRecValid
;
3125 pNew
->prereq
= saved_prereq
;
3126 pNew
->u
.btree
.nEq
= saved_nEq
;
3127 pNew
->u
.btree
.nBtm
= saved_nBtm
;
3128 pNew
->u
.btree
.nTop
= saved_nTop
;
3129 pNew
->nSkip
= saved_nSkip
;
3130 pNew
->wsFlags
= saved_wsFlags
;
3131 pNew
->nOut
= saved_nOut
;
3132 pNew
->nLTerm
= saved_nLTerm
;
3134 /* Consider using a skip-scan if there are no WHERE clause constraints
3135 ** available for the left-most terms of the index, and if the average
3136 ** number of repeats in the left-most terms is at least 18.
3138 ** The magic number 18 is selected on the basis that scanning 17 rows
3139 ** is almost always quicker than an index seek (even though if the index
3140 ** contains fewer than 2^17 rows we assume otherwise in other parts of
3141 ** the code). And, even if it is not, it should not be too much slower.
3142 ** On the other hand, the extra seeks could end up being significantly
3143 ** more expensive. */
3144 assert( 42==sqlite3LogEst(18) );
3145 if( saved_nEq
==saved_nSkip
3146 && saved_nEq
+1<pProbe
->nKeyCol
3147 && saved_nEq
==pNew
->nLTerm
3148 && pProbe
->noSkipScan
==0
3149 && pProbe
->hasStat1
!=0
3150 && OptimizationEnabled(db
, SQLITE_SkipScan
)
3151 && pProbe
->aiRowLogEst
[saved_nEq
+1]>=42 /* TUNING: Minimum for skip-scan */
3152 && (rc
= whereLoopResize(db
, pNew
, pNew
->nLTerm
+1))==SQLITE_OK
3155 pNew
->u
.btree
.nEq
++;
3157 pNew
->aLTerm
[pNew
->nLTerm
++] = 0;
3158 pNew
->wsFlags
|= WHERE_SKIPSCAN
;
3159 nIter
= pProbe
->aiRowLogEst
[saved_nEq
] - pProbe
->aiRowLogEst
[saved_nEq
+1];
3160 pNew
->nOut
-= nIter
;
3161 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
3162 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3164 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nIter
+ nInMul
);
3165 pNew
->nOut
= saved_nOut
;
3166 pNew
->u
.btree
.nEq
= saved_nEq
;
3167 pNew
->nSkip
= saved_nSkip
;
3168 pNew
->wsFlags
= saved_wsFlags
;
3171 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3172 pProbe
->pTable
->zName
, pProbe
->zName
, saved_nEq
, rc
));
3177 ** Return True if it is possible that pIndex might be useful in
3178 ** implementing the ORDER BY clause in pBuilder.
3180 ** Return False if pBuilder does not contain an ORDER BY clause or
3181 ** if there is no way for pIndex to be useful in implementing that
3184 static int indexMightHelpWithOrderBy(
3185 WhereLoopBuilder
*pBuilder
,
3193 if( pIndex
->bUnordered
) return 0;
3194 if( (pOB
= pBuilder
->pWInfo
->pOrderBy
)==0 ) return 0;
3195 for(ii
=0; ii
<pOB
->nExpr
; ii
++){
3196 Expr
*pExpr
= sqlite3ExprSkipCollateAndLikely(pOB
->a
[ii
].pExpr
);
3197 if( NEVER(pExpr
==0) ) continue;
3198 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==iCursor
){
3199 if( pExpr
->iColumn
<0 ) return 1;
3200 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
3201 if( pExpr
->iColumn
==pIndex
->aiColumn
[jj
] ) return 1;
3203 }else if( (aColExpr
= pIndex
->aColExpr
)!=0 ){
3204 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
3205 if( pIndex
->aiColumn
[jj
]!=XN_EXPR
) continue;
3206 if( sqlite3ExprCompareSkip(pExpr
,aColExpr
->a
[jj
].pExpr
,iCursor
)==0 ){
3215 /* Check to see if a partial index with pPartIndexWhere can be used
3216 ** in the current query. Return true if it can be and false if not.
3218 static int whereUsablePartialIndex(
3219 int iTab
, /* The table for which we want an index */
3220 u8 jointype
, /* The JT_* flags on the join */
3221 WhereClause
*pWC
, /* The WHERE clause of the query */
3222 Expr
*pWhere
/* The WHERE clause from the partial index */
3228 if( jointype
& JT_LTORJ
) return 0;
3229 pParse
= pWC
->pWInfo
->pParse
;
3230 while( pWhere
->op
==TK_AND
){
3231 if( !whereUsablePartialIndex(iTab
,jointype
,pWC
,pWhere
->pLeft
) ) return 0;
3232 pWhere
= pWhere
->pRight
;
3234 if( pParse
->db
->flags
& SQLITE_EnableQPSG
) pParse
= 0;
3235 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
3237 pExpr
= pTerm
->pExpr
;
3238 if( (!ExprHasProperty(pExpr
, EP_OuterON
) || pExpr
->w
.iJoin
==iTab
)
3239 && ((jointype
& JT_OUTER
)==0 || ExprHasProperty(pExpr
, EP_OuterON
))
3240 && sqlite3ExprImpliesExpr(pParse
, pExpr
, pWhere
, iTab
)
3241 && (pTerm
->wtFlags
& TERM_VNULL
)==0
3250 ** Add all WhereLoop objects for a single table of the join where the table
3251 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
3252 ** a b-tree table, not a virtual table.
3254 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3255 ** are calculated as follows:
3257 ** For a full scan, assuming the table (or index) contains nRow rows:
3259 ** cost = nRow * 3.0 // full-table scan
3260 ** cost = nRow * K // scan of covering index
3261 ** cost = nRow * (K+3.0) // scan of non-covering index
3263 ** where K is a value between 1.1 and 3.0 set based on the relative
3264 ** estimated average size of the index and table records.
3266 ** For an index scan, where nVisit is the number of index rows visited
3267 ** by the scan, and nSeek is the number of seek operations required on
3268 ** the index b-tree:
3270 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
3271 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
3273 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3274 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3275 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3277 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3278 ** of uncertainty. For this reason, scoring is designed to pick plans that
3279 ** "do the least harm" if the estimates are inaccurate. For example, a
3280 ** log(nRow) factor is omitted from a non-covering index scan in order to
3281 ** bias the scoring in favor of using an index, since the worst-case
3282 ** performance of using an index is far better than the worst-case performance
3283 ** of a full table scan.
3285 static int whereLoopAddBtree(
3286 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
3287 Bitmask mPrereq
/* Extra prerequesites for using this table */
3289 WhereInfo
*pWInfo
; /* WHERE analysis context */
3290 Index
*pProbe
; /* An index we are evaluating */
3291 Index sPk
; /* A fake index object for the primary key */
3292 LogEst aiRowEstPk
[2]; /* The aiRowLogEst[] value for the sPk index */
3293 i16 aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
3294 SrcList
*pTabList
; /* The FROM clause */
3295 SrcItem
*pSrc
; /* The FROM clause btree term to add */
3296 WhereLoop
*pNew
; /* Template WhereLoop object */
3297 int rc
= SQLITE_OK
; /* Return code */
3298 int iSortIdx
= 1; /* Index number */
3299 int b
; /* A boolean value */
3300 LogEst rSize
; /* number of rows in the table */
3301 WhereClause
*pWC
; /* The parsed WHERE clause */
3302 Table
*pTab
; /* Table being queried */
3304 pNew
= pBuilder
->pNew
;
3305 pWInfo
= pBuilder
->pWInfo
;
3306 pTabList
= pWInfo
->pTabList
;
3307 pSrc
= pTabList
->a
+ pNew
->iTab
;
3309 pWC
= pBuilder
->pWC
;
3310 assert( !IsVirtual(pSrc
->pTab
) );
3312 if( pSrc
->fg
.isIndexedBy
){
3313 assert( pSrc
->fg
.isCte
==0 );
3314 /* An INDEXED BY clause specifies a particular index to use */
3315 pProbe
= pSrc
->u2
.pIBIndex
;
3316 }else if( !HasRowid(pTab
) ){
3317 pProbe
= pTab
->pIndex
;
3319 /* There is no INDEXED BY clause. Create a fake Index object in local
3320 ** variable sPk to represent the rowid primary key index. Make this
3321 ** fake index the first in a chain of Index objects with all of the real
3322 ** indices to follow */
3323 Index
*pFirst
; /* First of real indices on the table */
3324 memset(&sPk
, 0, sizeof(Index
));
3327 sPk
.aiColumn
= &aiColumnPk
;
3328 sPk
.aiRowLogEst
= aiRowEstPk
;
3329 sPk
.onError
= OE_Replace
;
3331 sPk
.szIdxRow
= pTab
->szTabRow
;
3332 sPk
.idxType
= SQLITE_IDXTYPE_IPK
;
3333 aiRowEstPk
[0] = pTab
->nRowLogEst
;
3335 pFirst
= pSrc
->pTab
->pIndex
;
3336 if( pSrc
->fg
.notIndexed
==0 ){
3337 /* The real indices of the table are only considered if the
3338 ** NOT INDEXED qualifier is omitted from the FROM clause */
3343 rSize
= pTab
->nRowLogEst
;
3345 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3346 /* Automatic indexes */
3347 if( !pBuilder
->pOrSet
/* Not part of an OR optimization */
3348 && (pWInfo
->wctrlFlags
& (WHERE_RIGHT_JOIN
|WHERE_OR_SUBCLAUSE
))==0
3349 && (pWInfo
->pParse
->db
->flags
& SQLITE_AutoIndex
)!=0
3350 && !pSrc
->fg
.isIndexedBy
/* Has no INDEXED BY clause */
3351 && !pSrc
->fg
.notIndexed
/* Has no NOT INDEXED clause */
3352 && HasRowid(pTab
) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3353 && !pSrc
->fg
.isCorrelated
/* Not a correlated subquery */
3354 && !pSrc
->fg
.isRecursive
/* Not a recursive common table expression. */
3355 && (pSrc
->fg
.jointype
& JT_RIGHT
)==0 /* Not the right tab of a RIGHT JOIN */
3357 /* Generate auto-index WhereLoops */
3358 LogEst rLogSize
; /* Logarithm of the number of rows in the table */
3360 WhereTerm
*pWCEnd
= pWC
->a
+ pWC
->nTerm
;
3361 rLogSize
= estLog(rSize
);
3362 for(pTerm
=pWC
->a
; rc
==SQLITE_OK
&& pTerm
<pWCEnd
; pTerm
++){
3363 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
3364 if( termCanDriveIndex(pTerm
, pSrc
, 0) ){
3365 pNew
->u
.btree
.nEq
= 1;
3367 pNew
->u
.btree
.pIndex
= 0;
3369 pNew
->aLTerm
[0] = pTerm
;
3370 /* TUNING: One-time cost for computing the automatic index is
3371 ** estimated to be X*N*log2(N) where N is the number of rows in
3372 ** the table being indexed and where X is 7 (LogEst=28) for normal
3373 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
3374 ** of X is smaller for views and subqueries so that the query planner
3375 ** will be more aggressive about generating automatic indexes for
3376 ** those objects, since there is no opportunity to add schema
3377 ** indexes on subqueries and views. */
3378 pNew
->rSetup
= rLogSize
+ rSize
;
3379 if( !IsView(pTab
) && (pTab
->tabFlags
& TF_Ephemeral
)==0 ){
3384 ApplyCostMultiplier(pNew
->rSetup
, pTab
->costMult
);
3385 if( pNew
->rSetup
<0 ) pNew
->rSetup
= 0;
3386 /* TUNING: Each index lookup yields 20 rows in the table. This
3387 ** is more than the usual guess of 10 rows, since we have no way
3388 ** of knowing how selective the index will ultimately be. It would
3389 ** not be unreasonable to make this value much larger. */
3390 pNew
->nOut
= 43; assert( 43==sqlite3LogEst(20) );
3391 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
,pNew
->nOut
);
3392 pNew
->wsFlags
= WHERE_AUTO_INDEX
;
3393 pNew
->prereq
= mPrereq
| pTerm
->prereqRight
;
3394 rc
= whereLoopInsert(pBuilder
, pNew
);
3398 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3400 /* Loop over all indices. If there was an INDEXED BY clause, then only
3401 ** consider index pProbe. */
3402 for(; rc
==SQLITE_OK
&& pProbe
;
3403 pProbe
=(pSrc
->fg
.isIndexedBy
? 0 : pProbe
->pNext
), iSortIdx
++
3405 if( pProbe
->pPartIdxWhere
!=0
3406 && !whereUsablePartialIndex(pSrc
->iCursor
, pSrc
->fg
.jointype
, pWC
,
3407 pProbe
->pPartIdxWhere
)
3409 testcase( pNew
->iTab
!=pSrc
->iCursor
); /* See ticket [98d973b8f5] */
3410 continue; /* Partial index inappropriate for this query */
3412 if( pProbe
->bNoQuery
) continue;
3413 rSize
= pProbe
->aiRowLogEst
[0];
3414 pNew
->u
.btree
.nEq
= 0;
3415 pNew
->u
.btree
.nBtm
= 0;
3416 pNew
->u
.btree
.nTop
= 0;
3421 pNew
->prereq
= mPrereq
;
3423 pNew
->u
.btree
.pIndex
= pProbe
;
3424 b
= indexMightHelpWithOrderBy(pBuilder
, pProbe
, pSrc
->iCursor
);
3426 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3427 assert( (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || b
==0 );
3428 if( pProbe
->idxType
==SQLITE_IDXTYPE_IPK
){
3429 /* Integer primary key index */
3430 pNew
->wsFlags
= WHERE_IPK
;
3432 /* Full table scan */
3433 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3434 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
3435 ** extra cost designed to discourage the use of full table scans,
3436 ** since index lookups have better worst-case performance if our
3437 ** stat guesses are wrong. Reduce the 3.0 penalty slightly
3438 ** (to 2.75) if we have valid STAT4 information for the table.
3439 ** At 2.75, a full table scan is preferred over using an index on
3440 ** a column with just two distinct values where each value has about
3441 ** an equal number of appearances. Without STAT4 data, we still want
3442 ** to use an index in that case, since the constraint might be for
3443 ** the scarcer of the two values, and in that case an index lookup is
3446 #ifdef SQLITE_ENABLE_STAT4
3447 pNew
->rRun
= rSize
+ 16 - 2*((pTab
->tabFlags
& TF_HasStat4
)!=0);
3449 pNew
->rRun
= rSize
+ 16;
3451 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3452 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3453 rc
= whereLoopInsert(pBuilder
, pNew
);
3458 if( pProbe
->isCovering
){
3459 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
3462 m
= pSrc
->colUsed
& pProbe
->colNotIdxed
;
3463 pNew
->wsFlags
= (m
==0) ? (WHERE_IDX_ONLY
|WHERE_INDEXED
) : WHERE_INDEXED
;
3466 /* Full scan via index */
3469 || pProbe
->pPartIdxWhere
!=0
3470 || pSrc
->fg
.isIndexedBy
3472 && pProbe
->bUnordered
==0
3473 && (pProbe
->szIdxRow
<pTab
->szTabRow
)
3474 && (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0
3475 && sqlite3GlobalConfig
.bUseCis
3476 && OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_CoverIdxScan
)
3479 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3481 /* The cost of visiting the index rows is N*K, where K is
3482 ** between 1.1 and 3.0, depending on the relative sizes of the
3483 ** index and table rows. */
3484 pNew
->rRun
= rSize
+ 1 + (15*pProbe
->szIdxRow
)/pTab
->szTabRow
;
3486 /* If this is a non-covering index scan, add in the cost of
3487 ** doing table lookups. The cost will be 3x the number of
3488 ** lookups. Take into account WHERE clause terms that can be
3489 ** satisfied using just the index, and that do not require a
3491 LogEst nLookup
= rSize
+ 16; /* Base cost: N*3 */
3493 int iCur
= pSrc
->iCursor
;
3494 WhereClause
*pWC2
= &pWInfo
->sWC
;
3495 for(ii
=0; ii
<pWC2
->nTerm
; ii
++){
3496 WhereTerm
*pTerm
= &pWC2
->a
[ii
];
3497 if( !sqlite3ExprCoveredByIndex(pTerm
->pExpr
, iCur
, pProbe
) ){
3500 /* pTerm can be evaluated using just the index. So reduce
3501 ** the expected number of table lookups accordingly */
3502 if( pTerm
->truthProb
<=0 ){
3503 nLookup
+= pTerm
->truthProb
;
3506 if( pTerm
->eOperator
& (WO_EQ
|WO_IS
) ) nLookup
-= 19;
3510 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, nLookup
);
3512 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3513 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3514 if( (pSrc
->fg
.jointype
& JT_RIGHT
)!=0 && pProbe
->aColExpr
){
3515 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3516 ** because the cursor used to access the index might not be
3517 ** positioned to the correct row during the right-join no-match
3520 rc
= whereLoopInsert(pBuilder
, pNew
);
3527 pBuilder
->bldFlags1
= 0;
3528 rc
= whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, 0);
3529 if( pBuilder
->bldFlags1
==SQLITE_BLDF1_INDEXED
){
3530 /* If a non-unique index is used, or if a prefix of the key for
3531 ** unique index is used (making the index functionally non-unique)
3532 ** then the sqlite_stat1 data becomes important for scoring the
3534 pTab
->tabFlags
|= TF_StatsUsed
;
3536 #ifdef SQLITE_ENABLE_STAT4
3537 sqlite3Stat4ProbeFree(pBuilder
->pRec
);
3538 pBuilder
->nRecValid
= 0;
3545 #ifndef SQLITE_OMIT_VIRTUALTABLE
3548 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3550 static int isLimitTerm(WhereTerm
*pTerm
){
3551 assert( pTerm
->eOperator
==WO_AUX
|| pTerm
->eMatchOp
==0 );
3552 return pTerm
->eMatchOp
>=SQLITE_INDEX_CONSTRAINT_LIMIT
3553 && pTerm
->eMatchOp
<=SQLITE_INDEX_CONSTRAINT_OFFSET
;
3557 ** Argument pIdxInfo is already populated with all constraints that may
3558 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3559 ** function marks a subset of those constraints usable, invokes the
3560 ** xBestIndex method and adds the returned plan to pBuilder.
3562 ** A constraint is marked usable if:
3564 ** * Argument mUsable indicates that its prerequisites are available, and
3566 ** * It is not one of the operators specified in the mExclude mask passed
3567 ** as the fourth argument (which in practice is either WO_IN or 0).
3569 ** Argument mPrereq is a mask of tables that must be scanned before the
3570 ** virtual table in question. These are added to the plans prerequisites
3571 ** before it is added to pBuilder.
3573 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3574 ** uses one or more WO_IN terms, or false otherwise.
3576 static int whereLoopAddVirtualOne(
3577 WhereLoopBuilder
*pBuilder
,
3578 Bitmask mPrereq
, /* Mask of tables that must be used. */
3579 Bitmask mUsable
, /* Mask of usable tables */
3580 u16 mExclude
, /* Exclude terms using these operators */
3581 sqlite3_index_info
*pIdxInfo
, /* Populated object for xBestIndex */
3582 u16 mNoOmit
, /* Do not omit these constraints */
3583 int *pbIn
, /* OUT: True if plan uses an IN(...) op */
3584 int *pbRetryLimit
/* OUT: Retry without LIMIT/OFFSET */
3586 WhereClause
*pWC
= pBuilder
->pWC
;
3587 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3588 struct sqlite3_index_constraint
*pIdxCons
;
3589 struct sqlite3_index_constraint_usage
*pUsage
= pIdxInfo
->aConstraintUsage
;
3593 WhereLoop
*pNew
= pBuilder
->pNew
;
3594 Parse
*pParse
= pBuilder
->pWInfo
->pParse
;
3595 SrcItem
*pSrc
= &pBuilder
->pWInfo
->pTabList
->a
[pNew
->iTab
];
3596 int nConstraint
= pIdxInfo
->nConstraint
;
3598 assert( (mUsable
& mPrereq
)==mPrereq
);
3600 pNew
->prereq
= mPrereq
;
3602 /* Set the usable flag on the subset of constraints identified by
3603 ** arguments mUsable and mExclude. */
3604 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3605 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3606 WhereTerm
*pTerm
= &pWC
->a
[pIdxCons
->iTermOffset
];
3607 pIdxCons
->usable
= 0;
3608 if( (pTerm
->prereqRight
& mUsable
)==pTerm
->prereqRight
3609 && (pTerm
->eOperator
& mExclude
)==0
3610 && (pbRetryLimit
|| !isLimitTerm(pTerm
))
3612 pIdxCons
->usable
= 1;
3616 /* Initialize the output fields of the sqlite3_index_info structure */
3617 memset(pUsage
, 0, sizeof(pUsage
[0])*nConstraint
);
3618 assert( pIdxInfo
->needToFreeIdxStr
==0 );
3619 pIdxInfo
->idxStr
= 0;
3620 pIdxInfo
->idxNum
= 0;
3621 pIdxInfo
->orderByConsumed
= 0;
3622 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ (double)2;
3623 pIdxInfo
->estimatedRows
= 25;
3624 pIdxInfo
->idxFlags
= 0;
3625 pIdxInfo
->colUsed
= (sqlite3_int64
)pSrc
->colUsed
;
3626 pHidden
->mHandleIn
= 0;
3628 /* Invoke the virtual table xBestIndex() method */
3629 rc
= vtabBestIndex(pParse
, pSrc
->pTab
, pIdxInfo
);
3631 if( rc
==SQLITE_CONSTRAINT
){
3632 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3633 ** that the particular combination of parameters provided is unusable.
3634 ** Make no entries in the loop table.
3636 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n"));
3643 assert( pNew
->nLSlot
>=nConstraint
);
3644 memset(pNew
->aLTerm
, 0, sizeof(pNew
->aLTerm
[0])*nConstraint
);
3645 memset(&pNew
->u
.vtab
, 0, sizeof(pNew
->u
.vtab
));
3646 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
3647 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
3649 if( (iTerm
= pUsage
[i
].argvIndex
- 1)>=0 ){
3651 int j
= pIdxCons
->iTermOffset
;
3652 if( iTerm
>=nConstraint
3655 || pNew
->aLTerm
[iTerm
]!=0
3656 || pIdxCons
->usable
==0
3658 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
3659 testcase( pIdxInfo
->needToFreeIdxStr
);
3660 return SQLITE_ERROR
;
3662 testcase( iTerm
==nConstraint
-1 );
3664 testcase( j
==pWC
->nTerm
-1 );
3666 pNew
->prereq
|= pTerm
->prereqRight
;
3667 assert( iTerm
<pNew
->nLSlot
);
3668 pNew
->aLTerm
[iTerm
] = pTerm
;
3669 if( iTerm
>mxTerm
) mxTerm
= iTerm
;
3670 testcase( iTerm
==15 );
3671 testcase( iTerm
==16 );
3672 if( pUsage
[i
].omit
){
3673 if( i
<16 && ((1<<i
)&mNoOmit
)==0 ){
3674 testcase( i
!=iTerm
);
3675 pNew
->u
.vtab
.omitMask
|= 1<<iTerm
;
3677 testcase( i
!=iTerm
);
3679 if( pTerm
->eMatchOp
==SQLITE_INDEX_CONSTRAINT_OFFSET
){
3680 pNew
->u
.vtab
.bOmitOffset
= 1;
3683 if( SMASKBIT32(i
) & pHidden
->mHandleIn
){
3684 pNew
->u
.vtab
.mHandleIn
|= MASKBIT32(iTerm
);
3685 }else if( (pTerm
->eOperator
& WO_IN
)!=0 ){
3686 /* A virtual table that is constrained by an IN clause may not
3687 ** consume the ORDER BY clause because (1) the order of IN terms
3688 ** is not necessarily related to the order of output terms and
3689 ** (2) Multiple outputs from a single IN value will not merge
3691 pIdxInfo
->orderByConsumed
= 0;
3692 pIdxInfo
->idxFlags
&= ~SQLITE_INDEX_SCAN_UNIQUE
;
3693 *pbIn
= 1; assert( (mExclude
& WO_IN
)==0 );
3696 assert( pbRetryLimit
|| !isLimitTerm(pTerm
) );
3697 if( isLimitTerm(pTerm
) && *pbIn
){
3698 /* If there is an IN(...) term handled as an == (separate call to
3699 ** xFilter for each value on the RHS of the IN) and a LIMIT or
3700 ** OFFSET term handled as well, the plan is unusable. Set output
3701 ** variable *pbRetryLimit to true to tell the caller to retry with
3702 ** LIMIT and OFFSET disabled. */
3703 if( pIdxInfo
->needToFreeIdxStr
){
3704 sqlite3_free(pIdxInfo
->idxStr
);
3705 pIdxInfo
->idxStr
= 0;
3706 pIdxInfo
->needToFreeIdxStr
= 0;
3714 pNew
->nLTerm
= mxTerm
+1;
3715 for(i
=0; i
<=mxTerm
; i
++){
3716 if( pNew
->aLTerm
[i
]==0 ){
3717 /* The non-zero argvIdx values must be contiguous. Raise an
3718 ** error if they are not */
3719 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
3720 testcase( pIdxInfo
->needToFreeIdxStr
);
3721 return SQLITE_ERROR
;
3724 assert( pNew
->nLTerm
<=pNew
->nLSlot
);
3725 pNew
->u
.vtab
.idxNum
= pIdxInfo
->idxNum
;
3726 pNew
->u
.vtab
.needFree
= pIdxInfo
->needToFreeIdxStr
;
3727 pIdxInfo
->needToFreeIdxStr
= 0;
3728 pNew
->u
.vtab
.idxStr
= pIdxInfo
->idxStr
;
3729 pNew
->u
.vtab
.isOrdered
= (i8
)(pIdxInfo
->orderByConsumed
?
3730 pIdxInfo
->nOrderBy
: 0);
3732 pNew
->rRun
= sqlite3LogEstFromDouble(pIdxInfo
->estimatedCost
);
3733 pNew
->nOut
= sqlite3LogEst(pIdxInfo
->estimatedRows
);
3735 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3736 ** that the scan will visit at most one row. Clear it otherwise. */
3737 if( pIdxInfo
->idxFlags
& SQLITE_INDEX_SCAN_UNIQUE
){
3738 pNew
->wsFlags
|= WHERE_ONEROW
;
3740 pNew
->wsFlags
&= ~WHERE_ONEROW
;
3742 rc
= whereLoopInsert(pBuilder
, pNew
);
3743 if( pNew
->u
.vtab
.needFree
){
3744 sqlite3_free(pNew
->u
.vtab
.idxStr
);
3745 pNew
->u
.vtab
.needFree
= 0;
3747 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3748 *pbIn
, (sqlite3_uint64
)mPrereq
,
3749 (sqlite3_uint64
)(pNew
->prereq
& ~mPrereq
)));
3755 ** Return the collating sequence for a constraint passed into xBestIndex.
3757 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3758 ** This routine depends on there being a HiddenIndexInfo structure immediately
3759 ** following the sqlite3_index_info structure.
3761 ** Return a pointer to the collation name:
3763 ** 1. If there is an explicit COLLATE operator on the constaint, return it.
3765 ** 2. Else, if the column has an alternative collation, return that.
3767 ** 3. Otherwise, return "BINARY".
3769 const char *sqlite3_vtab_collation(sqlite3_index_info
*pIdxInfo
, int iCons
){
3770 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3771 const char *zRet
= 0;
3772 if( iCons
>=0 && iCons
<pIdxInfo
->nConstraint
){
3774 int iTerm
= pIdxInfo
->aConstraint
[iCons
].iTermOffset
;
3775 Expr
*pX
= pHidden
->pWC
->a
[iTerm
].pExpr
;
3777 pC
= sqlite3ExprCompareCollSeq(pHidden
->pParse
, pX
);
3779 zRet
= (pC
? pC
->zName
: sqlite3StrBINARY
);
3785 ** Return true if constraint iCons is really an IN(...) constraint, or
3786 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3787 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3789 int sqlite3_vtab_in(sqlite3_index_info
*pIdxInfo
, int iCons
, int bHandle
){
3790 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3791 u32 m
= SMASKBIT32(iCons
);
3792 if( m
& pHidden
->mIn
){
3794 pHidden
->mHandleIn
&= ~m
;
3795 }else if( bHandle
>0 ){
3796 pHidden
->mHandleIn
|= m
;
3804 ** This interface is callable from within the xBestIndex callback only.
3806 ** If possible, set (*ppVal) to point to an object containing the value
3807 ** on the right-hand-side of constraint iCons.
3809 int sqlite3_vtab_rhs_value(
3810 sqlite3_index_info
*pIdxInfo
, /* Copy of first argument to xBestIndex */
3811 int iCons
, /* Constraint for which RHS is wanted */
3812 sqlite3_value
**ppVal
/* Write value extracted here */
3814 HiddenIndexInfo
*pH
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3815 sqlite3_value
*pVal
= 0;
3817 if( iCons
<0 || iCons
>=pIdxInfo
->nConstraint
){
3818 rc
= SQLITE_MISUSE
; /* EV: R-30545-25046 */
3820 if( pH
->aRhs
[iCons
]==0 ){
3821 WhereTerm
*pTerm
= &pH
->pWC
->a
[pIdxInfo
->aConstraint
[iCons
].iTermOffset
];
3822 rc
= sqlite3ValueFromExpr(
3823 pH
->pParse
->db
, pTerm
->pExpr
->pRight
, ENC(pH
->pParse
->db
),
3824 SQLITE_AFF_BLOB
, &pH
->aRhs
[iCons
]
3826 testcase( rc
!=SQLITE_OK
);
3828 pVal
= pH
->aRhs
[iCons
];
3832 if( rc
==SQLITE_OK
&& pVal
==0 ){ /* IMP: R-19933-32160 */
3833 rc
= SQLITE_NOTFOUND
; /* IMP: R-36424-56542 */
3840 ** Return true if ORDER BY clause may be handled as DISTINCT.
3842 int sqlite3_vtab_distinct(sqlite3_index_info
*pIdxInfo
){
3843 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3844 assert( pHidden
->eDistinct
>=0 && pHidden
->eDistinct
<=3 );
3845 return pHidden
->eDistinct
;
3848 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
3849 && !defined(SQLITE_OMIT_VIRTUALTABLE)
3851 ** Cause the prepared statement that is associated with a call to
3852 ** xBestIndex to potentiall use all schemas. If the statement being
3853 ** prepared is read-only, then just start read transactions on all
3854 ** schemas. But if this is a write operation, start writes on all
3857 ** This is used by the (built-in) sqlite_dbpage virtual table.
3859 void sqlite3VtabUsesAllSchemas(sqlite3_index_info
*pIdxInfo
){
3860 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
3861 Parse
*pParse
= pHidden
->pParse
;
3862 int nDb
= pParse
->db
->nDb
;
3864 for(i
=0; i
<nDb
; i
++){
3865 sqlite3CodeVerifySchema(pParse
, i
);
3867 if( pParse
->writeMask
){
3868 for(i
=0; i
<nDb
; i
++){
3869 sqlite3BeginWriteOperation(pParse
, 0, i
);
3876 ** Add all WhereLoop objects for a table of the join identified by
3877 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3879 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3880 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3881 ** entries that occur before the virtual table in the FROM clause and are
3882 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3883 ** mUnusable mask contains all FROM clause entries that occur after the
3884 ** virtual table and are separated from it by at least one LEFT or
3887 ** For example, if the query were:
3889 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3891 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3893 ** All the tables in mPrereq must be scanned before the current virtual
3894 ** table. So any terms for which all prerequisites are satisfied by
3895 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3896 ** Conversely, all tables in mUnusable must be scanned after the current
3897 ** virtual table, so any terms for which the prerequisites overlap with
3898 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3900 static int whereLoopAddVirtual(
3901 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
3902 Bitmask mPrereq
, /* Tables that must be scanned before this one */
3903 Bitmask mUnusable
/* Tables that must be scanned after this one */
3905 int rc
= SQLITE_OK
; /* Return code */
3906 WhereInfo
*pWInfo
; /* WHERE analysis context */
3907 Parse
*pParse
; /* The parsing context */
3908 WhereClause
*pWC
; /* The WHERE clause */
3909 SrcItem
*pSrc
; /* The FROM clause term to search */
3910 sqlite3_index_info
*p
; /* Object to pass to xBestIndex() */
3911 int nConstraint
; /* Number of constraints in p */
3912 int bIn
; /* True if plan uses IN(...) operator */
3914 Bitmask mBest
; /* Tables used by best possible plan */
3916 int bRetry
= 0; /* True to retry with LIMIT/OFFSET disabled */
3918 assert( (mPrereq
& mUnusable
)==0 );
3919 pWInfo
= pBuilder
->pWInfo
;
3920 pParse
= pWInfo
->pParse
;
3921 pWC
= pBuilder
->pWC
;
3922 pNew
= pBuilder
->pNew
;
3923 pSrc
= &pWInfo
->pTabList
->a
[pNew
->iTab
];
3924 assert( IsVirtual(pSrc
->pTab
) );
3925 p
= allocateIndexInfo(pWInfo
, pWC
, mUnusable
, pSrc
, &mNoOmit
);
3926 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
3928 pNew
->wsFlags
= WHERE_VIRTUALTABLE
;
3930 pNew
->u
.vtab
.needFree
= 0;
3931 nConstraint
= p
->nConstraint
;
3932 if( whereLoopResize(pParse
->db
, pNew
, nConstraint
) ){
3933 freeIndexInfo(pParse
->db
, p
);
3934 return SQLITE_NOMEM_BKPT
;
3937 /* First call xBestIndex() with all constraints usable. */
3938 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc
->pTab
->zName
));
3939 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3940 rc
= whereLoopAddVirtualOne(
3941 pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
, &bRetry
3944 assert( rc
==SQLITE_OK
);
3945 rc
= whereLoopAddVirtualOne(
3946 pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
, 0
3950 /* If the call to xBestIndex() with all terms enabled produced a plan
3951 ** that does not require any source tables (IOW: a plan with mBest==0)
3952 ** and does not use an IN(...) operator, then there is no point in making
3953 ** any further calls to xBestIndex() since they will all return the same
3954 ** result (if the xBestIndex() implementation is sane). */
3955 if( rc
==SQLITE_OK
&& ((mBest
= (pNew
->prereq
& ~mPrereq
))!=0 || bIn
) ){
3956 int seenZero
= 0; /* True if a plan with no prereqs seen */
3957 int seenZeroNoIN
= 0; /* Plan with no prereqs and no IN(...) seen */
3959 Bitmask mBestNoIn
= 0;
3961 /* If the plan produced by the earlier call uses an IN(...) term, call
3962 ** xBestIndex again, this time with IN(...) terms disabled. */
3964 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3965 rc
= whereLoopAddVirtualOne(
3966 pBuilder
, mPrereq
, ALLBITS
, WO_IN
, p
, mNoOmit
, &bIn
, 0);
3968 mBestNoIn
= pNew
->prereq
& ~mPrereq
;
3975 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3976 ** in the set of terms that apply to the current virtual table. */
3977 while( rc
==SQLITE_OK
){
3979 Bitmask mNext
= ALLBITS
;
3981 for(i
=0; i
<nConstraint
; i
++){
3983 pWC
->a
[p
->aConstraint
[i
].iTermOffset
].prereqRight
& ~mPrereq
3985 if( mThis
>mPrev
&& mThis
<mNext
) mNext
= mThis
;
3988 if( mNext
==ALLBITS
) break;
3989 if( mNext
==mBest
|| mNext
==mBestNoIn
) continue;
3990 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3991 (sqlite3_uint64
)mPrev
, (sqlite3_uint64
)mNext
));
3992 rc
= whereLoopAddVirtualOne(
3993 pBuilder
, mPrereq
, mNext
|mPrereq
, 0, p
, mNoOmit
, &bIn
, 0);
3994 if( pNew
->prereq
==mPrereq
){
3996 if( bIn
==0 ) seenZeroNoIN
= 1;
4000 /* If the calls to xBestIndex() in the above loop did not find a plan
4001 ** that requires no source tables at all (i.e. one guaranteed to be
4002 ** usable), make a call here with all source tables disabled */
4003 if( rc
==SQLITE_OK
&& seenZero
==0 ){
4004 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
4005 rc
= whereLoopAddVirtualOne(
4006 pBuilder
, mPrereq
, mPrereq
, 0, p
, mNoOmit
, &bIn
, 0);
4007 if( bIn
==0 ) seenZeroNoIN
= 1;
4010 /* If the calls to xBestIndex() have so far failed to find a plan
4011 ** that requires no source tables at all and does not use an IN(...)
4012 ** operator, make a final call to obtain one here. */
4013 if( rc
==SQLITE_OK
&& seenZeroNoIN
==0 ){
4014 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
4015 rc
= whereLoopAddVirtualOne(
4016 pBuilder
, mPrereq
, mPrereq
, WO_IN
, p
, mNoOmit
, &bIn
, 0);
4020 if( p
->needToFreeIdxStr
) sqlite3_free(p
->idxStr
);
4021 freeIndexInfo(pParse
->db
, p
);
4022 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc
->pTab
->zName
, rc
));
4025 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4028 ** Add WhereLoop entries to handle OR terms. This works for either
4029 ** btrees or virtual tables.
4031 static int whereLoopAddOr(
4032 WhereLoopBuilder
*pBuilder
,
4036 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4039 WhereTerm
*pTerm
, *pWCEnd
;
4043 WhereLoopBuilder sSubBuild
;
4044 WhereOrSet sSum
, sCur
;
4047 pWC
= pBuilder
->pWC
;
4048 pWCEnd
= pWC
->a
+ pWC
->nTerm
;
4049 pNew
= pBuilder
->pNew
;
4050 memset(&sSum
, 0, sizeof(sSum
));
4051 pItem
= pWInfo
->pTabList
->a
+ pNew
->iTab
;
4052 iCur
= pItem
->iCursor
;
4054 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4055 if( pItem
->fg
.jointype
& JT_RIGHT
) return SQLITE_OK
;
4057 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
&& rc
==SQLITE_OK
; pTerm
++){
4058 if( (pTerm
->eOperator
& WO_OR
)!=0
4059 && (pTerm
->u
.pOrInfo
->indexable
& pNew
->maskSelf
)!=0
4061 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
4062 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
4067 sSubBuild
= *pBuilder
;
4068 sSubBuild
.pOrSet
= &sCur
;
4070 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm
));
4071 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
4072 if( (pOrTerm
->eOperator
& WO_AND
)!=0 ){
4073 sSubBuild
.pWC
= &pOrTerm
->u
.pAndInfo
->wc
;
4074 }else if( pOrTerm
->leftCursor
==iCur
){
4075 tempWC
.pWInfo
= pWC
->pWInfo
;
4076 tempWC
.pOuter
= pWC
;
4081 sSubBuild
.pWC
= &tempWC
;
4086 #ifdef WHERETRACE_ENABLED
4087 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
4088 (int)(pOrTerm
-pOrWC
->a
), pTerm
, sSubBuild
.pWC
->nTerm
));
4089 if( sqlite3WhereTrace
& 0x400 ){
4090 sqlite3WhereClausePrint(sSubBuild
.pWC
);
4093 #ifndef SQLITE_OMIT_VIRTUALTABLE
4094 if( IsVirtual(pItem
->pTab
) ){
4095 rc
= whereLoopAddVirtual(&sSubBuild
, mPrereq
, mUnusable
);
4099 rc
= whereLoopAddBtree(&sSubBuild
, mPrereq
);
4101 if( rc
==SQLITE_OK
){
4102 rc
= whereLoopAddOr(&sSubBuild
, mPrereq
, mUnusable
);
4104 assert( rc
==SQLITE_OK
|| rc
==SQLITE_DONE
|| sCur
.n
==0
4105 || rc
==SQLITE_NOMEM
);
4106 testcase( rc
==SQLITE_NOMEM
&& sCur
.n
>0 );
4107 testcase( rc
==SQLITE_DONE
);
4112 whereOrMove(&sSum
, &sCur
);
4116 whereOrMove(&sPrev
, &sSum
);
4118 for(i
=0; i
<sPrev
.n
; i
++){
4119 for(j
=0; j
<sCur
.n
; j
++){
4120 whereOrInsert(&sSum
, sPrev
.a
[i
].prereq
| sCur
.a
[j
].prereq
,
4121 sqlite3LogEstAdd(sPrev
.a
[i
].rRun
, sCur
.a
[j
].rRun
),
4122 sqlite3LogEstAdd(sPrev
.a
[i
].nOut
, sCur
.a
[j
].nOut
));
4128 pNew
->aLTerm
[0] = pTerm
;
4129 pNew
->wsFlags
= WHERE_MULTI_OR
;
4132 memset(&pNew
->u
, 0, sizeof(pNew
->u
));
4133 for(i
=0; rc
==SQLITE_OK
&& i
<sSum
.n
; i
++){
4134 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4135 ** of all sub-scans required by the OR-scan. However, due to rounding
4136 ** errors, it may be that the cost of the OR-scan is equal to its
4137 ** most expensive sub-scan. Add the smallest possible penalty
4138 ** (equivalent to multiplying the cost by 1.07) to ensure that
4139 ** this does not happen. Otherwise, for WHERE clauses such as the
4140 ** following where there is an index on "y":
4142 ** WHERE likelihood(x=?, 0.99) OR y=?
4144 ** the planner may elect to "OR" together a full-table scan and an
4145 ** index lookup. And other similarly odd results. */
4146 pNew
->rRun
= sSum
.a
[i
].rRun
+ 1;
4147 pNew
->nOut
= sSum
.a
[i
].nOut
;
4148 pNew
->prereq
= sSum
.a
[i
].prereq
;
4149 rc
= whereLoopInsert(pBuilder
, pNew
);
4151 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm
));
4158 ** Add all WhereLoop objects for all tables
4160 static int whereLoopAddAll(WhereLoopBuilder
*pBuilder
){
4161 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4162 Bitmask mPrereq
= 0;
4165 SrcList
*pTabList
= pWInfo
->pTabList
;
4167 SrcItem
*pEnd
= &pTabList
->a
[pWInfo
->nLevel
];
4168 sqlite3
*db
= pWInfo
->pParse
->db
;
4170 int bFirstPastRJ
= 0;
4171 int hasRightJoin
= 0;
4175 /* Loop over the tables in the join, from left to right */
4176 pNew
= pBuilder
->pNew
;
4177 whereLoopInit(pNew
);
4178 pBuilder
->iPlanLimit
= SQLITE_QUERY_PLANNER_LIMIT
;
4179 for(iTab
=0, pItem
=pTabList
->a
; pItem
<pEnd
; iTab
++, pItem
++){
4180 Bitmask mUnusable
= 0;
4182 pBuilder
->iPlanLimit
+= SQLITE_QUERY_PLANNER_LIMIT_INCR
;
4183 pNew
->maskSelf
= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pItem
->iCursor
);
4185 || (pItem
->fg
.jointype
& (JT_OUTER
|JT_CROSS
|JT_LTORJ
))!=0
4187 /* Add prerequisites to prevent reordering of FROM clause terms
4188 ** across CROSS joins and outer joins. The bFirstPastRJ boolean
4189 ** prevents the right operand of a RIGHT JOIN from being swapped with
4190 ** other elements even further to the right.
4192 ** The JT_LTORJ case and the hasRightJoin flag work together to
4193 ** prevent FROM-clause terms from moving from the right side of
4194 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4195 ** is itself on the left side of a RIGHT JOIN.
4197 if( pItem
->fg
.jointype
& JT_LTORJ
) hasRightJoin
= 1;
4199 bFirstPastRJ
= (pItem
->fg
.jointype
& JT_RIGHT
)!=0;
4200 }else if( !hasRightJoin
){
4203 #ifndef SQLITE_OMIT_VIRTUALTABLE
4204 if( IsVirtual(pItem
->pTab
) ){
4206 for(p
=&pItem
[1]; p
<pEnd
; p
++){
4207 if( mUnusable
|| (p
->fg
.jointype
& (JT_OUTER
|JT_CROSS
)) ){
4208 mUnusable
|= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, p
->iCursor
);
4211 rc
= whereLoopAddVirtual(pBuilder
, mPrereq
, mUnusable
);
4213 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4215 rc
= whereLoopAddBtree(pBuilder
, mPrereq
);
4217 if( rc
==SQLITE_OK
&& pBuilder
->pWC
->hasOr
){
4218 rc
= whereLoopAddOr(pBuilder
, mPrereq
, mUnusable
);
4220 mPrior
|= pNew
->maskSelf
;
4221 if( rc
|| db
->mallocFailed
){
4222 if( rc
==SQLITE_DONE
){
4223 /* We hit the query planner search limit set by iPlanLimit */
4224 sqlite3_log(SQLITE_WARNING
, "abbreviated query algorithm search");
4232 whereLoopClear(db
, pNew
);
4237 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4238 ** parameters) to see if it outputs rows in the requested ORDER BY
4239 ** (or GROUP BY) without requiring a separate sort operation. Return N:
4241 ** N>0: N terms of the ORDER BY clause are satisfied
4242 ** N==0: No terms of the ORDER BY clause are satisfied
4243 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
4245 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4246 ** strict. With GROUP BY and DISTINCT the only requirement is that
4247 ** equivalent rows appear immediately adjacent to one another. GROUP BY
4248 ** and DISTINCT do not require rows to appear in any particular order as long
4249 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
4250 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
4251 ** pOrderBy terms must be matched in strict left-to-right order.
4253 static i8
wherePathSatisfiesOrderBy(
4254 WhereInfo
*pWInfo
, /* The WHERE clause */
4255 ExprList
*pOrderBy
, /* ORDER BY or GROUP BY or DISTINCT clause to check */
4256 WherePath
*pPath
, /* The WherePath to check */
4257 u16 wctrlFlags
, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4258 u16 nLoop
, /* Number of entries in pPath->aLoop[] */
4259 WhereLoop
*pLast
, /* Add this WhereLoop to the end of pPath->aLoop[] */
4260 Bitmask
*pRevMask
/* OUT: Mask of WhereLoops to run in reverse order */
4262 u8 revSet
; /* True if rev is known */
4263 u8 rev
; /* Composite sort order */
4264 u8 revIdx
; /* Index sort order */
4265 u8 isOrderDistinct
; /* All prior WhereLoops are order-distinct */
4266 u8 distinctColumns
; /* True if the loop has UNIQUE NOT NULL columns */
4267 u8 isMatch
; /* iColumn matches a term of the ORDER BY clause */
4268 u16 eqOpMask
; /* Allowed equality operators */
4269 u16 nKeyCol
; /* Number of key columns in pIndex */
4270 u16 nColumn
; /* Total number of ordered columns in the index */
4271 u16 nOrderBy
; /* Number terms in the ORDER BY clause */
4272 int iLoop
; /* Index of WhereLoop in pPath being processed */
4273 int i
, j
; /* Loop counters */
4274 int iCur
; /* Cursor number for current WhereLoop */
4275 int iColumn
; /* A column number within table iCur */
4276 WhereLoop
*pLoop
= 0; /* Current WhereLoop being processed. */
4277 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
4278 Expr
*pOBExpr
; /* An expression from the ORDER BY clause */
4279 CollSeq
*pColl
; /* COLLATE function from an ORDER BY clause term */
4280 Index
*pIndex
; /* The index associated with pLoop */
4281 sqlite3
*db
= pWInfo
->pParse
->db
; /* Database connection */
4282 Bitmask obSat
= 0; /* Mask of ORDER BY terms satisfied so far */
4283 Bitmask obDone
; /* Mask of all ORDER BY terms */
4284 Bitmask orderDistinctMask
; /* Mask of all well-ordered loops */
4285 Bitmask ready
; /* Mask of inner loops */
4288 ** We say the WhereLoop is "one-row" if it generates no more than one
4289 ** row of output. A WhereLoop is one-row if all of the following are true:
4290 ** (a) All index columns match with WHERE_COLUMN_EQ.
4291 ** (b) The index is unique
4292 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4293 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4295 ** We say the WhereLoop is "order-distinct" if the set of columns from
4296 ** that WhereLoop that are in the ORDER BY clause are different for every
4297 ** row of the WhereLoop. Every one-row WhereLoop is automatically
4298 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
4299 ** is not order-distinct. To be order-distinct is not quite the same as being
4300 ** UNIQUE since a UNIQUE column or index can have multiple rows that
4301 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4302 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4304 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4305 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4306 ** automatically order-distinct.
4309 assert( pOrderBy
!=0 );
4310 if( nLoop
&& OptimizationDisabled(db
, SQLITE_OrderByIdxJoin
) ) return 0;
4312 nOrderBy
= pOrderBy
->nExpr
;
4313 testcase( nOrderBy
==BMS
-1 );
4314 if( nOrderBy
>BMS
-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
4315 isOrderDistinct
= 1;
4316 obDone
= MASKBIT(nOrderBy
)-1;
4317 orderDistinctMask
= 0;
4319 eqOpMask
= WO_EQ
| WO_IS
| WO_ISNULL
;
4320 if( wctrlFlags
& (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MAX
|WHERE_ORDERBY_MIN
) ){
4323 for(iLoop
=0; isOrderDistinct
&& obSat
<obDone
&& iLoop
<=nLoop
; iLoop
++){
4324 if( iLoop
>0 ) ready
|= pLoop
->maskSelf
;
4326 pLoop
= pPath
->aLoop
[iLoop
];
4327 if( wctrlFlags
& WHERE_ORDERBY_LIMIT
) continue;
4331 if( pLoop
->wsFlags
& WHERE_VIRTUALTABLE
){
4332 if( pLoop
->u
.vtab
.isOrdered
4333 && ((wctrlFlags
&(WHERE_DISTINCTBY
|WHERE_SORTBYGROUP
))!=WHERE_DISTINCTBY
)
4338 }else if( wctrlFlags
& WHERE_DISTINCTBY
){
4339 pLoop
->u
.btree
.nDistinctCol
= 0;
4341 iCur
= pWInfo
->pTabList
->a
[pLoop
->iTab
].iCursor
;
4343 /* Mark off any ORDER BY term X that is a column in the table of
4344 ** the current loop for which there is term in the WHERE
4345 ** clause of the form X IS NULL or X=? that reference only outer
4348 for(i
=0; i
<nOrderBy
; i
++){
4349 if( MASKBIT(i
) & obSat
) continue;
4350 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4351 if( NEVER(pOBExpr
==0) ) continue;
4352 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4353 if( pOBExpr
->iTable
!=iCur
) continue;
4354 pTerm
= sqlite3WhereFindTerm(&pWInfo
->sWC
, iCur
, pOBExpr
->iColumn
,
4355 ~ready
, eqOpMask
, 0);
4356 if( pTerm
==0 ) continue;
4357 if( pTerm
->eOperator
==WO_IN
){
4358 /* IN terms are only valid for sorting in the ORDER BY LIMIT
4359 ** optimization, and then only if they are actually used
4360 ** by the query plan */
4361 assert( wctrlFlags
&
4362 (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
) );
4363 for(j
=0; j
<pLoop
->nLTerm
&& pTerm
!=pLoop
->aLTerm
[j
]; j
++){}
4364 if( j
>=pLoop
->nLTerm
) continue;
4366 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0 && pOBExpr
->iColumn
>=0 ){
4367 Parse
*pParse
= pWInfo
->pParse
;
4368 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pOrderBy
->a
[i
].pExpr
);
4369 CollSeq
*pColl2
= sqlite3ExprCompareCollSeq(pParse
, pTerm
->pExpr
);
4371 if( pColl2
==0 || sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
) ){
4374 testcase( pTerm
->pExpr
->op
==TK_IS
);
4376 obSat
|= MASKBIT(i
);
4379 if( (pLoop
->wsFlags
& WHERE_ONEROW
)==0 ){
4380 if( pLoop
->wsFlags
& WHERE_IPK
){
4384 }else if( (pIndex
= pLoop
->u
.btree
.pIndex
)==0 || pIndex
->bUnordered
){
4387 nKeyCol
= pIndex
->nKeyCol
;
4388 nColumn
= pIndex
->nColumn
;
4389 assert( nColumn
==nKeyCol
+1 || !HasRowid(pIndex
->pTable
) );
4390 assert( pIndex
->aiColumn
[nColumn
-1]==XN_ROWID
4391 || !HasRowid(pIndex
->pTable
));
4392 /* All relevant terms of the index must also be non-NULL in order
4393 ** for isOrderDistinct to be true. So the isOrderDistint value
4394 ** computed here might be a false positive. Corrections will be
4395 ** made at tag-20210426-1 below */
4396 isOrderDistinct
= IsUniqueIndex(pIndex
)
4397 && (pLoop
->wsFlags
& WHERE_SKIPSCAN
)==0;
4400 /* Loop through all columns of the index and deal with the ones
4401 ** that are not constrained by == or IN.
4404 distinctColumns
= 0;
4405 for(j
=0; j
<nColumn
; j
++){
4406 u8 bOnce
= 1; /* True to run the ORDER BY search loop */
4408 assert( j
>=pLoop
->u
.btree
.nEq
4409 || (pLoop
->aLTerm
[j
]==0)==(j
<pLoop
->nSkip
)
4411 if( j
<pLoop
->u
.btree
.nEq
&& j
>=pLoop
->nSkip
){
4412 u16 eOp
= pLoop
->aLTerm
[j
]->eOperator
;
4414 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
4415 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
4416 ** terms imply that the index is not UNIQUE NOT NULL in which case
4417 ** the loop need to be marked as not order-distinct because it can
4418 ** have repeated NULL rows.
4420 ** If the current term is a column of an ((?,?) IN (SELECT...))
4421 ** expression for which the SELECT returns more than one column,
4422 ** check that it is the only column used by this loop. Otherwise,
4423 ** if it is one of two or more, none of the columns can be
4424 ** considered to match an ORDER BY term.
4426 if( (eOp
& eqOpMask
)!=0 ){
4427 if( eOp
& (WO_ISNULL
|WO_IS
) ){
4428 testcase( eOp
& WO_ISNULL
);
4429 testcase( eOp
& WO_IS
);
4430 testcase( isOrderDistinct
);
4431 isOrderDistinct
= 0;
4434 }else if( ALWAYS(eOp
& WO_IN
) ){
4435 /* ALWAYS() justification: eOp is an equality operator due to the
4436 ** j<pLoop->u.btree.nEq constraint above. Any equality other
4437 ** than WO_IN is captured by the previous "if". So this one
4438 ** always has to be WO_IN. */
4439 Expr
*pX
= pLoop
->aLTerm
[j
]->pExpr
;
4440 for(i
=j
+1; i
<pLoop
->u
.btree
.nEq
; i
++){
4441 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
4442 assert( (pLoop
->aLTerm
[i
]->eOperator
& WO_IN
) );
4450 /* Get the column number in the table (iColumn) and sort order
4451 ** (revIdx) for the j-th column of the index.
4454 iColumn
= pIndex
->aiColumn
[j
];
4455 revIdx
= pIndex
->aSortOrder
[j
] & KEYINFO_ORDER_DESC
;
4456 if( iColumn
==pIndex
->pTable
->iPKey
) iColumn
= XN_ROWID
;
4462 /* An unconstrained column that might be NULL means that this
4463 ** WhereLoop is not well-ordered. tag-20210426-1
4465 if( isOrderDistinct
){
4467 && j
>=pLoop
->u
.btree
.nEq
4468 && pIndex
->pTable
->aCol
[iColumn
].notNull
==0
4470 isOrderDistinct
= 0;
4472 if( iColumn
==XN_EXPR
){
4473 isOrderDistinct
= 0;
4477 /* Find the ORDER BY term that corresponds to the j-th column
4478 ** of the index and mark that ORDER BY term off
4481 for(i
=0; bOnce
&& i
<nOrderBy
; i
++){
4482 if( MASKBIT(i
) & obSat
) continue;
4483 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4484 testcase( wctrlFlags
& WHERE_GROUPBY
);
4485 testcase( wctrlFlags
& WHERE_DISTINCTBY
);
4486 if( NEVER(pOBExpr
==0) ) continue;
4487 if( (wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
))==0 ) bOnce
= 0;
4488 if( iColumn
>=XN_ROWID
){
4489 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4490 if( pOBExpr
->iTable
!=iCur
) continue;
4491 if( pOBExpr
->iColumn
!=iColumn
) continue;
4493 Expr
*pIdxExpr
= pIndex
->aColExpr
->a
[j
].pExpr
;
4494 if( sqlite3ExprCompareSkip(pOBExpr
, pIdxExpr
, iCur
) ){
4498 if( iColumn
!=XN_ROWID
){
4499 pColl
= sqlite3ExprNNCollSeq(pWInfo
->pParse
, pOrderBy
->a
[i
].pExpr
);
4500 if( sqlite3StrICmp(pColl
->zName
, pIndex
->azColl
[j
])!=0 ) continue;
4502 if( wctrlFlags
& WHERE_DISTINCTBY
){
4503 pLoop
->u
.btree
.nDistinctCol
= j
+1;
4508 if( isMatch
&& (wctrlFlags
& WHERE_GROUPBY
)==0 ){
4509 /* Make sure the sort order is compatible in an ORDER BY clause.
4510 ** Sort order is irrelevant for a GROUP BY clause. */
4513 != (pOrderBy
->a
[i
].fg
.sortFlags
&KEYINFO_ORDER_DESC
)
4518 rev
= revIdx
^ (pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_DESC
);
4519 if( rev
) *pRevMask
|= MASKBIT(iLoop
);
4523 if( isMatch
&& (pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) ){
4524 if( j
==pLoop
->u
.btree
.nEq
){
4525 pLoop
->wsFlags
|= WHERE_BIGNULL_SORT
;
4531 if( iColumn
==XN_ROWID
){
4532 testcase( distinctColumns
==0 );
4533 distinctColumns
= 1;
4535 obSat
|= MASKBIT(i
);
4537 /* No match found */
4538 if( j
==0 || j
<nKeyCol
){
4539 testcase( isOrderDistinct
!=0 );
4540 isOrderDistinct
= 0;
4544 } /* end Loop over all index columns */
4545 if( distinctColumns
){
4546 testcase( isOrderDistinct
==0 );
4547 isOrderDistinct
= 1;
4549 } /* end-if not one-row */
4551 /* Mark off any other ORDER BY terms that reference pLoop */
4552 if( isOrderDistinct
){
4553 orderDistinctMask
|= pLoop
->maskSelf
;
4554 for(i
=0; i
<nOrderBy
; i
++){
4557 if( MASKBIT(i
) & obSat
) continue;
4558 p
= pOrderBy
->a
[i
].pExpr
;
4559 mTerm
= sqlite3WhereExprUsage(&pWInfo
->sMaskSet
,p
);
4560 if( mTerm
==0 && !sqlite3ExprIsConstant(p
) ) continue;
4561 if( (mTerm
&~orderDistinctMask
)==0 ){
4562 obSat
|= MASKBIT(i
);
4566 } /* End the loop over all WhereLoops from outer-most down to inner-most */
4567 if( obSat
==obDone
) return (i8
)nOrderBy
;
4568 if( !isOrderDistinct
){
4569 for(i
=nOrderBy
-1; i
>0; i
--){
4570 Bitmask m
= ALWAYS(i
<BMS
) ? MASKBIT(i
) - 1 : 0;
4571 if( (obSat
&m
)==m
) return i
;
4580 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4581 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4582 ** BY clause - and so any order that groups rows as required satisfies the
4585 ** Normally, in this case it is not possible for the caller to determine
4586 ** whether or not the rows are really being delivered in sorted order, or
4587 ** just in some other order that provides the required grouping. However,
4588 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4589 ** this function may be called on the returned WhereInfo object. It returns
4590 ** true if the rows really will be sorted in the specified order, or false
4593 ** For example, assuming:
4595 ** CREATE INDEX i1 ON t1(x, Y);
4599 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
4600 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
4602 int sqlite3WhereIsSorted(WhereInfo
*pWInfo
){
4603 assert( pWInfo
->wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
) );
4604 assert( pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
);
4605 return pWInfo
->sorted
;
4608 #ifdef WHERETRACE_ENABLED
4609 /* For debugging use only: */
4610 static const char *wherePathName(WherePath
*pPath
, int nLoop
, WhereLoop
*pLast
){
4611 static char zName
[65];
4613 for(i
=0; i
<nLoop
; i
++){ zName
[i
] = pPath
->aLoop
[i
]->cId
; }
4614 if( pLast
) zName
[i
++] = pLast
->cId
;
4621 ** Return the cost of sorting nRow rows, assuming that the keys have
4622 ** nOrderby columns and that the first nSorted columns are already in
4625 static LogEst
whereSortingCost(
4631 /* TUNING: Estimated cost of a full external sort, where N is
4632 ** the number of rows to sort is:
4634 ** cost = (3.0 * N * log(N)).
4636 ** Or, if the order-by clause has X terms but only the last Y
4637 ** terms are out of order, then block-sorting will reduce the
4640 ** cost = (3.0 * N * log(N)) * (Y/X)
4642 ** The (Y/X) term is implemented using stack variable rScale
4645 LogEst rScale
, rSortCost
;
4646 assert( nOrderBy
>0 && 66==sqlite3LogEst(100) );
4647 rScale
= sqlite3LogEst((nOrderBy
-nSorted
)*100/nOrderBy
) - 66;
4648 rSortCost
= nRow
+ rScale
+ 16;
4650 /* Multiple by log(M) where M is the number of output rows.
4651 ** Use the LIMIT for M if it is smaller. Or if this sort is for
4652 ** a DISTINCT operator, M will be the number of distinct output
4653 ** rows, so fudge it downwards a bit.
4655 if( (pWInfo
->wctrlFlags
& WHERE_USE_LIMIT
)!=0 && pWInfo
->iLimit
<nRow
){
4656 nRow
= pWInfo
->iLimit
;
4657 }else if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
) ){
4658 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4659 ** reduces the number of output rows by a factor of 2 */
4660 if( nRow
>10 ){ nRow
-= 10; assert( 10==sqlite3LogEst(2) ); }
4662 rSortCost
+= estLog(nRow
);
4667 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4668 ** attempts to find the lowest cost path that visits each WhereLoop
4669 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
4671 ** Assume that the total number of output rows that will need to be sorted
4672 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
4673 ** costs if nRowEst==0.
4675 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4678 static int wherePathSolver(WhereInfo
*pWInfo
, LogEst nRowEst
){
4679 int mxChoice
; /* Maximum number of simultaneous paths tracked */
4680 int nLoop
; /* Number of terms in the join */
4681 Parse
*pParse
; /* Parsing context */
4682 sqlite3
*db
; /* The database connection */
4683 int iLoop
; /* Loop counter over the terms of the join */
4684 int ii
, jj
; /* Loop counters */
4685 int mxI
= 0; /* Index of next entry to replace */
4686 int nOrderBy
; /* Number of ORDER BY clause terms */
4687 LogEst mxCost
= 0; /* Maximum cost of a set of paths */
4688 LogEst mxUnsorted
= 0; /* Maximum unsorted cost of a set of path */
4689 int nTo
, nFrom
; /* Number of valid entries in aTo[] and aFrom[] */
4690 WherePath
*aFrom
; /* All nFrom paths at the previous level */
4691 WherePath
*aTo
; /* The nTo best paths at the current level */
4692 WherePath
*pFrom
; /* An element of aFrom[] that we are working on */
4693 WherePath
*pTo
; /* An element of aTo[] that we are working on */
4694 WhereLoop
*pWLoop
; /* One of the WhereLoop objects */
4695 WhereLoop
**pX
; /* Used to divy up the pSpace memory */
4696 LogEst
*aSortCost
= 0; /* Sorting and partial sorting costs */
4697 char *pSpace
; /* Temporary memory used by this routine */
4698 int nSpace
; /* Bytes of space allocated at pSpace */
4700 pParse
= pWInfo
->pParse
;
4702 nLoop
= pWInfo
->nLevel
;
4703 /* TUNING: For simple queries, only the best path is tracked.
4704 ** For 2-way joins, the 5 best paths are followed.
4705 ** For joins of 3 or more tables, track the 10 best paths */
4706 mxChoice
= (nLoop
<=1) ? 1 : (nLoop
==2 ? 5 : 10);
4707 assert( nLoop
<=pWInfo
->pTabList
->nSrc
);
4708 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst
));
4710 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4711 ** case the purpose of this call is to estimate the number of rows returned
4712 ** by the overall query. Once this estimate has been obtained, the caller
4713 ** will invoke this function a second time, passing the estimate as the
4714 ** nRowEst parameter. */
4715 if( pWInfo
->pOrderBy
==0 || nRowEst
==0 ){
4718 nOrderBy
= pWInfo
->pOrderBy
->nExpr
;
4721 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4722 nSpace
= (sizeof(WherePath
)+sizeof(WhereLoop
*)*nLoop
)*mxChoice
*2;
4723 nSpace
+= sizeof(LogEst
) * nOrderBy
;
4724 pSpace
= sqlite3DbMallocRawNN(db
, nSpace
);
4725 if( pSpace
==0 ) return SQLITE_NOMEM_BKPT
;
4726 aTo
= (WherePath
*)pSpace
;
4727 aFrom
= aTo
+mxChoice
;
4728 memset(aFrom
, 0, sizeof(aFrom
[0]));
4729 pX
= (WhereLoop
**)(aFrom
+mxChoice
);
4730 for(ii
=mxChoice
*2, pFrom
=aTo
; ii
>0; ii
--, pFrom
++, pX
+= nLoop
){
4734 /* If there is an ORDER BY clause and it is not being ignored, set up
4735 ** space for the aSortCost[] array. Each element of the aSortCost array
4736 ** is either zero - meaning it has not yet been initialized - or the
4737 ** cost of sorting nRowEst rows of data where the first X terms of
4738 ** the ORDER BY clause are already in order, where X is the array
4740 aSortCost
= (LogEst
*)pX
;
4741 memset(aSortCost
, 0, sizeof(LogEst
) * nOrderBy
);
4743 assert( aSortCost
==0 || &pSpace
[nSpace
]==(char*)&aSortCost
[nOrderBy
] );
4744 assert( aSortCost
!=0 || &pSpace
[nSpace
]==(char*)pX
);
4746 /* Seed the search with a single WherePath containing zero WhereLoops.
4748 ** TUNING: Do not let the number of iterations go above 28. If the cost
4749 ** of computing an automatic index is not paid back within the first 28
4750 ** rows, then do not use the automatic index. */
4751 aFrom
[0].nRow
= MIN(pParse
->nQueryLoop
, 48); assert( 48==sqlite3LogEst(28) );
4753 assert( aFrom
[0].isOrdered
==0 );
4755 /* If nLoop is zero, then there are no FROM terms in the query. Since
4756 ** in this case the query may return a maximum of one row, the results
4757 ** are already in the requested order. Set isOrdered to nOrderBy to
4758 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4759 ** -1, indicating that the result set may or may not be ordered,
4760 ** depending on the loops added to the current plan. */
4761 aFrom
[0].isOrdered
= nLoop
>0 ? -1 : nOrderBy
;
4764 /* Compute successively longer WherePaths using the previous generation
4765 ** of WherePaths as the basis for the next. Keep track of the mxChoice
4766 ** best paths at each generation */
4767 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
4769 for(ii
=0, pFrom
=aFrom
; ii
<nFrom
; ii
++, pFrom
++){
4770 for(pWLoop
=pWInfo
->pLoops
; pWLoop
; pWLoop
=pWLoop
->pNextLoop
){
4771 LogEst nOut
; /* Rows visited by (pFrom+pWLoop) */
4772 LogEst rCost
; /* Cost of path (pFrom+pWLoop) */
4773 LogEst rUnsorted
; /* Unsorted cost of (pFrom+pWLoop) */
4774 i8 isOrdered
= pFrom
->isOrdered
; /* isOrdered for (pFrom+pWLoop) */
4775 Bitmask maskNew
; /* Mask of src visited by (..) */
4776 Bitmask revMask
= 0; /* Mask of rev-order loops for (..) */
4778 if( (pWLoop
->prereq
& ~pFrom
->maskLoop
)!=0 ) continue;
4779 if( (pWLoop
->maskSelf
& pFrom
->maskLoop
)!=0 ) continue;
4780 if( (pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && pFrom
->nRow
<3 ){
4781 /* Do not use an automatic index if the this loop is expected
4782 ** to run less than 1.25 times. It is tempting to also exclude
4783 ** automatic index usage on an outer loop, but sometimes an automatic
4784 ** index is useful in the outer loop of a correlated subquery. */
4785 assert( 10==sqlite3LogEst(2) );
4789 /* At this point, pWLoop is a candidate to be the next loop.
4790 ** Compute its cost */
4791 rUnsorted
= sqlite3LogEstAdd(pWLoop
->rSetup
,pWLoop
->rRun
+ pFrom
->nRow
);
4792 rUnsorted
= sqlite3LogEstAdd(rUnsorted
, pFrom
->rUnsorted
);
4793 nOut
= pFrom
->nRow
+ pWLoop
->nOut
;
4794 maskNew
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
4796 isOrdered
= wherePathSatisfiesOrderBy(pWInfo
,
4797 pWInfo
->pOrderBy
, pFrom
, pWInfo
->wctrlFlags
,
4798 iLoop
, pWLoop
, &revMask
);
4800 revMask
= pFrom
->revLoop
;
4802 if( isOrdered
>=0 && isOrdered
<nOrderBy
){
4803 if( aSortCost
[isOrdered
]==0 ){
4804 aSortCost
[isOrdered
] = whereSortingCost(
4805 pWInfo
, nRowEst
, nOrderBy
, isOrdered
4808 /* TUNING: Add a small extra penalty (5) to sorting as an
4809 ** extra encouragment to the query planner to select a plan
4810 ** where the rows emerge in the correct order without any sorting
4812 rCost
= sqlite3LogEstAdd(rUnsorted
, aSortCost
[isOrdered
]) + 5;
4815 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4816 aSortCost
[isOrdered
], (nOrderBy
-isOrdered
), nOrderBy
,
4820 rUnsorted
-= 2; /* TUNING: Slight bias in favor of no-sort plans */
4823 /* Check to see if pWLoop should be added to the set of
4824 ** mxChoice best-so-far paths.
4826 ** First look for an existing path among best-so-far paths
4827 ** that covers the same set of loops and has the same isOrdered
4828 ** setting as the current path candidate.
4830 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4831 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4832 ** of legal values for isOrdered, -1..64.
4834 for(jj
=0, pTo
=aTo
; jj
<nTo
; jj
++, pTo
++){
4835 if( pTo
->maskLoop
==maskNew
4836 && ((pTo
->isOrdered
^isOrdered
)&0x80)==0
4838 testcase( jj
==nTo
-1 );
4843 /* None of the existing best-so-far paths match the candidate. */
4845 && (rCost
>mxCost
|| (rCost
==mxCost
&& rUnsorted
>=mxUnsorted
))
4847 /* The current candidate is no better than any of the mxChoice
4848 ** paths currently in the best-so-far buffer. So discard
4849 ** this candidate as not viable. */
4850 #ifdef WHERETRACE_ENABLED /* 0x4 */
4851 if( sqlite3WhereTrace
&0x4 ){
4852 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4853 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4854 isOrdered
>=0 ? isOrdered
+'0' : '?');
4859 /* If we reach this points it means that the new candidate path
4860 ** needs to be added to the set of best-so-far paths. */
4862 /* Increase the size of the aTo set by one */
4865 /* New path replaces the prior worst to keep count below mxChoice */
4869 #ifdef WHERETRACE_ENABLED /* 0x4 */
4870 if( sqlite3WhereTrace
&0x4 ){
4871 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4872 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4873 isOrdered
>=0 ? isOrdered
+'0' : '?');
4877 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4878 ** same set of loops and has the same isOrdered setting as the
4879 ** candidate path. Check to see if the candidate should replace
4880 ** pTo or if the candidate should be skipped.
4882 ** The conditional is an expanded vector comparison equivalent to:
4883 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4885 if( pTo
->rCost
<rCost
4886 || (pTo
->rCost
==rCost
4888 || (pTo
->nRow
==nOut
&& pTo
->rUnsorted
<=rUnsorted
)
4892 #ifdef WHERETRACE_ENABLED /* 0x4 */
4893 if( sqlite3WhereTrace
&0x4 ){
4895 "Skip %s cost=%-3d,%3d,%3d order=%c",
4896 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4897 isOrdered
>=0 ? isOrdered
+'0' : '?');
4898 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4899 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4900 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
4903 /* Discard the candidate path from further consideration */
4904 testcase( pTo
->rCost
==rCost
);
4907 testcase( pTo
->rCost
==rCost
+1 );
4908 /* Control reaches here if the candidate path is better than the
4909 ** pTo path. Replace pTo with the candidate. */
4910 #ifdef WHERETRACE_ENABLED /* 0x4 */
4911 if( sqlite3WhereTrace
&0x4 ){
4913 "Update %s cost=%-3d,%3d,%3d order=%c",
4914 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
4915 isOrdered
>=0 ? isOrdered
+'0' : '?');
4916 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4917 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4918 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
4922 /* pWLoop is a winner. Add it to the set of best so far */
4923 pTo
->maskLoop
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
4924 pTo
->revLoop
= revMask
;
4927 pTo
->rUnsorted
= rUnsorted
;
4928 pTo
->isOrdered
= isOrdered
;
4929 memcpy(pTo
->aLoop
, pFrom
->aLoop
, sizeof(WhereLoop
*)*iLoop
);
4930 pTo
->aLoop
[iLoop
] = pWLoop
;
4931 if( nTo
>=mxChoice
){
4933 mxCost
= aTo
[0].rCost
;
4934 mxUnsorted
= aTo
[0].nRow
;
4935 for(jj
=1, pTo
=&aTo
[1]; jj
<mxChoice
; jj
++, pTo
++){
4936 if( pTo
->rCost
>mxCost
4937 || (pTo
->rCost
==mxCost
&& pTo
->rUnsorted
>mxUnsorted
)
4939 mxCost
= pTo
->rCost
;
4940 mxUnsorted
= pTo
->rUnsorted
;
4948 #ifdef WHERETRACE_ENABLED /* >=2 */
4949 if( sqlite3WhereTrace
& 0x02 ){
4950 sqlite3DebugPrintf("---- after round %d ----\n", iLoop
);
4951 for(ii
=0, pTo
=aTo
; ii
<nTo
; ii
++, pTo
++){
4952 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4953 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
4954 pTo
->isOrdered
>=0 ? (pTo
->isOrdered
+'0') : '?');
4955 if( pTo
->isOrdered
>0 ){
4956 sqlite3DebugPrintf(" rev=0x%llx\n", pTo
->revLoop
);
4958 sqlite3DebugPrintf("\n");
4964 /* Swap the roles of aFrom and aTo for the next generation */
4972 sqlite3ErrorMsg(pParse
, "no query solution");
4973 sqlite3DbFreeNN(db
, pSpace
);
4974 return SQLITE_ERROR
;
4977 /* Find the lowest cost path. pFrom will be left pointing to that path */
4979 for(ii
=1; ii
<nFrom
; ii
++){
4980 if( pFrom
->rCost
>aFrom
[ii
].rCost
) pFrom
= &aFrom
[ii
];
4982 assert( pWInfo
->nLevel
==nLoop
);
4983 /* Load the lowest cost path into pWInfo */
4984 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
4985 WhereLevel
*pLevel
= pWInfo
->a
+ iLoop
;
4986 pLevel
->pWLoop
= pWLoop
= pFrom
->aLoop
[iLoop
];
4987 pLevel
->iFrom
= pWLoop
->iTab
;
4988 pLevel
->iTabCur
= pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
;
4990 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
4991 && (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
)==0
4992 && pWInfo
->eDistinct
==WHERE_DISTINCT_NOOP
4996 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pResultSet
, pFrom
,
4997 WHERE_DISTINCTBY
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], ¬Used
);
4998 if( rc
==pWInfo
->pResultSet
->nExpr
){
4999 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5002 pWInfo
->bOrderedInnerLoop
= 0;
5003 if( pWInfo
->pOrderBy
){
5004 pWInfo
->nOBSat
= pFrom
->isOrdered
;
5005 if( pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
){
5006 if( pFrom
->isOrdered
==pWInfo
->pOrderBy
->nExpr
){
5007 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5010 pWInfo
->revMask
= pFrom
->revLoop
;
5011 if( pWInfo
->nOBSat
<=0 ){
5014 u32 wsFlags
= pFrom
->aLoop
[nLoop
-1]->wsFlags
;
5015 if( (wsFlags
& WHERE_ONEROW
)==0
5016 && (wsFlags
&(WHERE_IPK
|WHERE_COLUMN_IN
))!=(WHERE_IPK
|WHERE_COLUMN_IN
)
5019 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
, pFrom
,
5020 WHERE_ORDERBY_LIMIT
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &m
);
5021 testcase( wsFlags
& WHERE_IPK
);
5022 testcase( wsFlags
& WHERE_COLUMN_IN
);
5023 if( rc
==pWInfo
->pOrderBy
->nExpr
){
5024 pWInfo
->bOrderedInnerLoop
= 1;
5025 pWInfo
->revMask
= m
;
5030 && pWInfo
->nOBSat
==1
5031 && (pWInfo
->wctrlFlags
& (WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
))!=0
5033 pWInfo
->bOrderedInnerLoop
= 1;
5036 if( (pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)
5037 && pWInfo
->nOBSat
==pWInfo
->pOrderBy
->nExpr
&& nLoop
>0
5039 Bitmask revMask
= 0;
5040 int nOrder
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
,
5041 pFrom
, 0, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &revMask
5043 assert( pWInfo
->sorted
==0 );
5044 if( nOrder
==pWInfo
->pOrderBy
->nExpr
){
5046 pWInfo
->revMask
= revMask
;
5052 pWInfo
->nRowOut
= pFrom
->nRow
;
5054 /* Free temporary memory and return success */
5055 sqlite3DbFreeNN(db
, pSpace
);
5060 ** Most queries use only a single table (they are not joins) and have
5061 ** simple == constraints against indexed fields. This routine attempts
5062 ** to plan those simple cases using much less ceremony than the
5063 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5064 ** times for the common case.
5066 ** Return non-zero on success, if this query can be handled by this
5067 ** no-frills query planner. Return zero if this query needs the
5068 ** general-purpose query planner.
5070 static int whereShortCut(WhereLoopBuilder
*pBuilder
){
5082 pWInfo
= pBuilder
->pWInfo
;
5083 if( pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
) return 0;
5084 assert( pWInfo
->pTabList
->nSrc
>=1 );
5085 pItem
= pWInfo
->pTabList
->a
;
5087 if( IsVirtual(pTab
) ) return 0;
5088 if( pItem
->fg
.isIndexedBy
|| pItem
->fg
.notIndexed
){
5089 testcase( pItem
->fg
.isIndexedBy
);
5090 testcase( pItem
->fg
.notIndexed
);
5093 iCur
= pItem
->iCursor
;
5095 pLoop
= pBuilder
->pNew
;
5098 pTerm
= whereScanInit(&scan
, pWC
, iCur
, -1, WO_EQ
|WO_IS
, 0);
5099 while( pTerm
&& pTerm
->prereqRight
) pTerm
= whereScanNext(&scan
);
5101 testcase( pTerm
->eOperator
& WO_IS
);
5102 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_IPK
|WHERE_ONEROW
;
5103 pLoop
->aLTerm
[0] = pTerm
;
5105 pLoop
->u
.btree
.nEq
= 1;
5106 /* TUNING: Cost of a rowid lookup is 10 */
5107 pLoop
->rRun
= 33; /* 33==sqlite3LogEst(10) */
5109 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5111 assert( pLoop
->aLTermSpace
==pLoop
->aLTerm
);
5112 if( !IsUniqueIndex(pIdx
)
5113 || pIdx
->pPartIdxWhere
!=0
5114 || pIdx
->nKeyCol
>ArraySize(pLoop
->aLTermSpace
)
5116 opMask
= pIdx
->uniqNotNull
? (WO_EQ
|WO_IS
) : WO_EQ
;
5117 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5118 pTerm
= whereScanInit(&scan
, pWC
, iCur
, j
, opMask
, pIdx
);
5119 while( pTerm
&& pTerm
->prereqRight
) pTerm
= whereScanNext(&scan
);
5120 if( pTerm
==0 ) break;
5121 testcase( pTerm
->eOperator
& WO_IS
);
5122 pLoop
->aLTerm
[j
] = pTerm
;
5124 if( j
!=pIdx
->nKeyCol
) continue;
5125 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_ONEROW
|WHERE_INDEXED
;
5126 if( pIdx
->isCovering
|| (pItem
->colUsed
& pIdx
->colNotIdxed
)==0 ){
5127 pLoop
->wsFlags
|= WHERE_IDX_ONLY
;
5130 pLoop
->u
.btree
.nEq
= j
;
5131 pLoop
->u
.btree
.pIndex
= pIdx
;
5132 /* TUNING: Cost of a unique index lookup is 15 */
5133 pLoop
->rRun
= 39; /* 39==sqlite3LogEst(15) */
5137 if( pLoop
->wsFlags
){
5138 pLoop
->nOut
= (LogEst
)1;
5139 pWInfo
->a
[0].pWLoop
= pLoop
;
5140 assert( pWInfo
->sMaskSet
.n
==1 && iCur
==pWInfo
->sMaskSet
.ix
[0] );
5141 pLoop
->maskSelf
= 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5142 pWInfo
->a
[0].iTabCur
= iCur
;
5143 pWInfo
->nRowOut
= 1;
5144 if( pWInfo
->pOrderBy
) pWInfo
->nOBSat
= pWInfo
->pOrderBy
->nExpr
;
5145 if( pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
){
5146 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5148 if( scan
.iEquiv
>1 ) pLoop
->wsFlags
|= WHERE_TRANSCONS
;
5152 #ifdef WHERETRACE_ENABLED
5153 if( sqlite3WhereTrace
){
5154 sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5163 ** Helper function for exprIsDeterministic().
5165 static int exprNodeIsDeterministic(Walker
*pWalker
, Expr
*pExpr
){
5166 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_ConstFunc
)==0 ){
5170 return WRC_Continue
;
5174 ** Return true if the expression contains no non-deterministic SQL
5175 ** functions. Do not consider non-deterministic SQL functions that are
5176 ** part of sub-select statements.
5178 static int exprIsDeterministic(Expr
*p
){
5180 memset(&w
, 0, sizeof(w
));
5182 w
.xExprCallback
= exprNodeIsDeterministic
;
5183 w
.xSelectCallback
= sqlite3SelectWalkFail
;
5184 sqlite3WalkExpr(&w
, p
);
5189 #ifdef WHERETRACE_ENABLED
5191 ** Display all WhereLoops in pWInfo
5193 static void showAllWhereLoops(WhereInfo
*pWInfo
, WhereClause
*pWC
){
5194 if( sqlite3WhereTrace
){ /* Display all of the WhereLoop objects */
5197 static const char zLabel
[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5198 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5199 for(p
=pWInfo
->pLoops
, i
=0; p
; p
=p
->pNextLoop
, i
++){
5200 p
->cId
= zLabel
[i
%(sizeof(zLabel
)-1)];
5201 sqlite3WhereLoopPrint(p
, pWC
);
5205 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5207 # define WHERETRACE_ALL_LOOPS(W,C)
5210 /* Attempt to omit tables from a join that do not affect the result.
5211 ** For a table to not affect the result, the following must be true:
5213 ** 1) The query must not be an aggregate.
5214 ** 2) The table must be the RHS of a LEFT JOIN.
5215 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
5216 ** must contain a constraint that limits the scan of the table to
5217 ** at most a single row.
5218 ** 4) The table must not be referenced by any part of the query apart
5219 ** from its own USING or ON clause.
5221 ** For example, given:
5223 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5224 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5225 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5227 ** then table t2 can be omitted from the following:
5229 ** SELECT v1, v3 FROM t1
5230 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5231 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5235 ** SELECT DISTINCT v1, v3 FROM t1
5237 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5239 static SQLITE_NOINLINE Bitmask
whereOmitNoopJoin(
5246 /* Preconditions checked by the caller */
5247 assert( pWInfo
->nLevel
>=2 );
5248 assert( OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_OmitNoopJoin
) );
5250 /* These two preconditions checked by the caller combine to guarantee
5251 ** condition (1) of the header comment */
5252 assert( pWInfo
->pResultSet
!=0 );
5253 assert( 0==(pWInfo
->wctrlFlags
& WHERE_AGG_DISTINCT
) );
5255 tabUsed
= sqlite3WhereExprListUsage(&pWInfo
->sMaskSet
, pWInfo
->pResultSet
);
5256 if( pWInfo
->pOrderBy
){
5257 tabUsed
|= sqlite3WhereExprListUsage(&pWInfo
->sMaskSet
, pWInfo
->pOrderBy
);
5259 for(i
=pWInfo
->nLevel
-1; i
>=1; i
--){
5260 WhereTerm
*pTerm
, *pEnd
;
5263 pLoop
= pWInfo
->a
[i
].pWLoop
;
5264 pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5265 if( (pItem
->fg
.jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
) continue;
5266 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)==0
5267 && (pLoop
->wsFlags
& WHERE_ONEROW
)==0
5271 if( (tabUsed
& pLoop
->maskSelf
)!=0 ) continue;
5272 pEnd
= pWInfo
->sWC
.a
+ pWInfo
->sWC
.nTerm
;
5273 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pEnd
; pTerm
++){
5274 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5275 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
)
5276 || pTerm
->pExpr
->w
.iJoin
!=pItem
->iCursor
5282 if( pTerm
<pEnd
) continue;
5283 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop
->cId
));
5284 notReady
&= ~pLoop
->maskSelf
;
5285 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pEnd
; pTerm
++){
5286 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5287 pTerm
->wtFlags
|= TERM_CODED
;
5290 if( i
!=pWInfo
->nLevel
-1 ){
5291 int nByte
= (pWInfo
->nLevel
-1-i
) * sizeof(WhereLevel
);
5292 memmove(&pWInfo
->a
[i
], &pWInfo
->a
[i
+1], nByte
);
5295 assert( pWInfo
->nLevel
>0 );
5301 ** Check to see if there are any SEARCH loops that might benefit from
5302 ** using a Bloom filter. Consider a Bloom filter if:
5304 ** (1) The SEARCH happens more than N times where N is the number
5305 ** of rows in the table that is being considered for the Bloom
5307 ** (2) Some searches are expected to find zero rows. (This is determined
5308 ** by the WHERE_SELFCULL flag on the term.)
5309 ** (3) Bloom-filter processing is not disabled. (Checked by the
5311 ** (4) The size of the table being searched is known by ANALYZE.
5313 ** This block of code merely checks to see if a Bloom filter would be
5314 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5315 ** WhereLoop. The implementation of the Bloom filter comes further
5316 ** down where the code for each WhereLoop is generated.
5318 static SQLITE_NOINLINE
void whereCheckIfBloomFilterIsUseful(
5319 const WhereInfo
*pWInfo
5324 assert( pWInfo
->nLevel
>=2 );
5325 assert( OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_BloomFilter
) );
5326 nSearch
= pWInfo
->a
[0].pWLoop
->nOut
;
5327 for(i
=1; i
<pWInfo
->nLevel
; i
++){
5328 WhereLoop
*pLoop
= pWInfo
->a
[i
].pWLoop
;
5329 const unsigned int reqFlags
= (WHERE_SELFCULL
|WHERE_COLUMN_EQ
);
5330 if( (pLoop
->wsFlags
& reqFlags
)==reqFlags
5331 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5332 && ALWAYS((pLoop
->wsFlags
& (WHERE_IPK
|WHERE_INDEXED
))!=0)
5334 SrcItem
*pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5335 Table
*pTab
= pItem
->pTab
;
5336 pTab
->tabFlags
|= TF_StatsUsed
;
5337 if( nSearch
> pTab
->nRowLogEst
5338 && (pTab
->tabFlags
& TF_HasStat1
)!=0
5340 testcase( pItem
->fg
.jointype
& JT_LEFT
);
5341 pLoop
->wsFlags
|= WHERE_BLOOMFILTER
;
5342 pLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
5343 WHERETRACE(0xffff, (
5344 "-> use Bloom-filter on loop %c because there are ~%.1e "
5345 "lookups into %s which has only ~%.1e rows\n",
5346 pLoop
->cId
, (double)sqlite3LogEstToInt(nSearch
), pTab
->zName
,
5347 (double)sqlite3LogEstToInt(pTab
->nRowLogEst
)));
5350 nSearch
+= pLoop
->nOut
;
5355 ** Generate the beginning of the loop used for WHERE clause processing.
5356 ** The return value is a pointer to an opaque structure that contains
5357 ** information needed to terminate the loop. Later, the calling routine
5358 ** should invoke sqlite3WhereEnd() with the return value of this function
5359 ** in order to complete the WHERE clause processing.
5361 ** If an error occurs, this routine returns NULL.
5363 ** The basic idea is to do a nested loop, one loop for each table in
5364 ** the FROM clause of a select. (INSERT and UPDATE statements are the
5365 ** same as a SELECT with only a single table in the FROM clause.) For
5366 ** example, if the SQL is this:
5368 ** SELECT * FROM t1, t2, t3 WHERE ...;
5370 ** Then the code generated is conceptually like the following:
5372 ** foreach row1 in t1 do \ Code generated
5373 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
5374 ** foreach row3 in t3 do /
5376 ** end \ Code generated
5377 ** end |-- by sqlite3WhereEnd()
5380 ** Note that the loops might not be nested in the order in which they
5381 ** appear in the FROM clause if a different order is better able to make
5382 ** use of indices. Note also that when the IN operator appears in
5383 ** the WHERE clause, it might result in additional nested loops for
5384 ** scanning through all values on the right-hand side of the IN.
5386 ** There are Btree cursors associated with each table. t1 uses cursor
5387 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
5388 ** And so forth. This routine generates code to open those VDBE cursors
5389 ** and sqlite3WhereEnd() generates the code to close them.
5391 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5392 ** in pTabList pointing at their appropriate entries. The [...] code
5393 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5394 ** data from the various tables of the loop.
5396 ** If the WHERE clause is empty, the foreach loops must each scan their
5397 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
5398 ** the tables have indices and there are terms in the WHERE clause that
5399 ** refer to those indices, a complete table scan can be avoided and the
5400 ** code will run much faster. Most of the work of this routine is checking
5401 ** to see if there are indices that can be used to speed up the loop.
5403 ** Terms of the WHERE clause are also used to limit which rows actually
5404 ** make it to the "..." in the middle of the loop. After each "foreach",
5405 ** terms of the WHERE clause that use only terms in that loop and outer
5406 ** loops are evaluated and if false a jump is made around all subsequent
5407 ** inner loops (or around the "..." if the test occurs within the inner-
5412 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5414 ** foreach row1 in t1 do
5416 ** foreach row2 in t2 do
5422 ** move the row2 cursor to a null row
5427 ** ORDER BY CLAUSE PROCESSING
5429 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5430 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5431 ** if there is one. If there is no ORDER BY clause or if this routine
5432 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5434 ** The iIdxCur parameter is the cursor number of an index. If
5435 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5436 ** to use for OR clause processing. The WHERE clause should use this
5437 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5438 ** the first cursor in an array of cursors for all indices. iIdxCur should
5439 ** be used to compute the appropriate cursor depending on which index is
5442 WhereInfo
*sqlite3WhereBegin(
5443 Parse
*pParse
, /* The parser context */
5444 SrcList
*pTabList
, /* FROM clause: A list of all tables to be scanned */
5445 Expr
*pWhere
, /* The WHERE clause */
5446 ExprList
*pOrderBy
, /* An ORDER BY (or GROUP BY) clause, or NULL */
5447 ExprList
*pResultSet
, /* Query result set. Req'd for DISTINCT */
5448 Select
*pLimit
, /* Use this LIMIT/OFFSET clause, if any */
5449 u16 wctrlFlags
, /* The WHERE_* flags defined in sqliteInt.h */
5450 int iAuxArg
/* If WHERE_OR_SUBCLAUSE is set, index cursor number
5451 ** If WHERE_USE_LIMIT, then the limit amount */
5453 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
5454 int nTabList
; /* Number of elements in pTabList */
5455 WhereInfo
*pWInfo
; /* Will become the return value of this function */
5456 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
5457 Bitmask notReady
; /* Cursors that are not yet positioned */
5458 WhereLoopBuilder sWLB
; /* The WhereLoop builder */
5459 WhereMaskSet
*pMaskSet
; /* The expression mask set */
5460 WhereLevel
*pLevel
; /* A single level in pWInfo->a[] */
5461 WhereLoop
*pLoop
; /* Pointer to a single WhereLoop object */
5462 int ii
; /* Loop counter */
5463 sqlite3
*db
; /* Database connection */
5464 int rc
; /* Return code */
5465 u8 bFordelete
= 0; /* OPFLAG_FORDELETE or zero, as appropriate */
5467 assert( (wctrlFlags
& WHERE_ONEPASS_MULTIROW
)==0 || (
5468 (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0
5469 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
5472 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5473 assert( (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
5474 || (wctrlFlags
& WHERE_USE_LIMIT
)==0 );
5476 /* Variable initialization */
5478 memset(&sWLB
, 0, sizeof(sWLB
));
5480 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5481 testcase( pOrderBy
&& pOrderBy
->nExpr
==BMS
-1 );
5482 if( pOrderBy
&& pOrderBy
->nExpr
>=BMS
) pOrderBy
= 0;
5484 /* The number of tables in the FROM clause is limited by the number of
5485 ** bits in a Bitmask
5487 testcase( pTabList
->nSrc
==BMS
);
5488 if( pTabList
->nSrc
>BMS
){
5489 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
5493 /* This function normally generates a nested loop for all tables in
5494 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5495 ** only generate code for the first table in pTabList and assume that
5496 ** any cursors associated with subsequent tables are uninitialized.
5498 nTabList
= (wctrlFlags
& WHERE_OR_SUBCLAUSE
) ? 1 : pTabList
->nSrc
;
5500 /* Allocate and initialize the WhereInfo structure that will become the
5501 ** return value. A single allocation is used to store the WhereInfo
5502 ** struct, the contents of WhereInfo.a[], the WhereClause structure
5503 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5504 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5505 ** some architectures. Hence the ROUND8() below.
5507 nByteWInfo
= ROUND8P(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
5508 pWInfo
= sqlite3DbMallocRawNN(db
, nByteWInfo
+ sizeof(WhereLoop
));
5509 if( db
->mallocFailed
){
5510 sqlite3DbFree(db
, pWInfo
);
5512 goto whereBeginError
;
5514 pWInfo
->pParse
= pParse
;
5515 pWInfo
->pTabList
= pTabList
;
5516 pWInfo
->pOrderBy
= pOrderBy
;
5517 pWInfo
->pWhere
= pWhere
;
5518 pWInfo
->pResultSet
= pResultSet
;
5519 pWInfo
->aiCurOnePass
[0] = pWInfo
->aiCurOnePass
[1] = -1;
5520 pWInfo
->nLevel
= nTabList
;
5521 pWInfo
->iBreak
= pWInfo
->iContinue
= sqlite3VdbeMakeLabel(pParse
);
5522 pWInfo
->wctrlFlags
= wctrlFlags
;
5523 pWInfo
->iLimit
= iAuxArg
;
5524 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
5525 #ifndef SQLITE_OMIT_VIRTUALTABLE
5526 pWInfo
->pLimit
= pLimit
;
5528 memset(&pWInfo
->nOBSat
, 0,
5529 offsetof(WhereInfo
,sWC
) - offsetof(WhereInfo
,nOBSat
));
5530 memset(&pWInfo
->a
[0], 0, sizeof(WhereLoop
)+nTabList
*sizeof(WhereLevel
));
5531 assert( pWInfo
->eOnePass
==ONEPASS_OFF
); /* ONEPASS defaults to OFF */
5532 pMaskSet
= &pWInfo
->sMaskSet
;
5534 pMaskSet
->ix
[0] = -99; /* Initialize ix[0] to a value that can never be
5535 ** a valid cursor number, to avoid an initial
5536 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5537 sWLB
.pWInfo
= pWInfo
;
5538 sWLB
.pWC
= &pWInfo
->sWC
;
5539 sWLB
.pNew
= (WhereLoop
*)(((char*)pWInfo
)+nByteWInfo
);
5540 assert( EIGHT_BYTE_ALIGNMENT(sWLB
.pNew
) );
5541 whereLoopInit(sWLB
.pNew
);
5543 sWLB
.pNew
->cId
= '*';
5546 /* Split the WHERE clause into separate subexpressions where each
5547 ** subexpression is separated by an AND operator.
5549 sqlite3WhereClauseInit(&pWInfo
->sWC
, pWInfo
);
5550 sqlite3WhereSplit(&pWInfo
->sWC
, pWhere
, TK_AND
);
5552 /* Special case: No FROM clause
5555 if( pOrderBy
) pWInfo
->nOBSat
= pOrderBy
->nExpr
;
5556 if( (wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
5557 && OptimizationEnabled(db
, SQLITE_DistinctOpt
)
5559 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5561 ExplainQueryPlan((pParse
, 0, "SCAN CONSTANT ROW"));
5563 /* Assign a bit from the bitmask to every term in the FROM clause.
5565 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5567 ** The rule of the previous sentence ensures thta if X is the bitmask for
5568 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5569 ** Knowing the bitmask for all tables to the left of a left join is
5570 ** important. Ticket #3015.
5572 ** Note that bitmasks are created for all pTabList->nSrc tables in
5573 ** pTabList, not just the first nTabList tables. nTabList is normally
5574 ** equal to pTabList->nSrc but might be shortened to 1 if the
5575 ** WHERE_OR_SUBCLAUSE flag is set.
5579 createMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
5580 sqlite3WhereTabFuncArgs(pParse
, &pTabList
->a
[ii
], &pWInfo
->sWC
);
5581 }while( (++ii
)<pTabList
->nSrc
);
5585 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
5586 Bitmask m
= sqlite3WhereGetMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
5594 /* Analyze all of the subexpressions. */
5595 sqlite3WhereExprAnalyze(pTabList
, &pWInfo
->sWC
);
5596 sqlite3WhereAddLimit(&pWInfo
->sWC
, pLimit
);
5597 if( pParse
->nErr
) goto whereBeginError
;
5599 /* Special case: WHERE terms that do not refer to any tables in the join
5600 ** (constant expressions). Evaluate each such term, and jump over all the
5601 ** generated code if the result is not true.
5603 ** Do not do this if the expression contains non-deterministic functions
5604 ** that are not within a sub-select. This is not strictly required, but
5605 ** preserves SQLite's legacy behaviour in the following two cases:
5607 ** FROM ... WHERE random()>0; -- eval random() once per row
5608 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
5610 for(ii
=0; ii
<sWLB
.pWC
->nBase
; ii
++){
5611 WhereTerm
*pT
= &sWLB
.pWC
->a
[ii
];
5612 if( pT
->wtFlags
& TERM_VIRTUAL
) continue;
5613 if( pT
->prereqAll
==0 && (nTabList
==0 || exprIsDeterministic(pT
->pExpr
)) ){
5614 sqlite3ExprIfFalse(pParse
, pT
->pExpr
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
5615 pT
->wtFlags
|= TERM_CODED
;
5619 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
5620 if( OptimizationDisabled(db
, SQLITE_DistinctOpt
) ){
5621 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5622 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5623 wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
5624 pWInfo
->wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
5625 }else if( isDistinctRedundant(pParse
, pTabList
, &pWInfo
->sWC
, pResultSet
) ){
5626 /* The DISTINCT marking is pointless. Ignore it. */
5627 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5628 }else if( pOrderBy
==0 ){
5629 /* Try to ORDER BY the result set to make distinct processing easier */
5630 pWInfo
->wctrlFlags
|= WHERE_DISTINCTBY
;
5631 pWInfo
->pOrderBy
= pResultSet
;
5635 /* Construct the WhereLoop objects */
5636 #if defined(WHERETRACE_ENABLED)
5637 if( sqlite3WhereTrace
& 0xffff ){
5638 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags
);
5639 if( wctrlFlags
& WHERE_USE_LIMIT
){
5640 sqlite3DebugPrintf(", limit: %d", iAuxArg
);
5642 sqlite3DebugPrintf(")\n");
5643 if( sqlite3WhereTrace
& 0x100 ){
5645 memset(&sSelect
, 0, sizeof(sSelect
));
5646 sSelect
.selFlags
= SF_WhereBegin
;
5647 sSelect
.pSrc
= pTabList
;
5648 sSelect
.pWhere
= pWhere
;
5649 sSelect
.pOrderBy
= pOrderBy
;
5650 sSelect
.pEList
= pResultSet
;
5651 sqlite3TreeViewSelect(0, &sSelect
, 0);
5654 if( sqlite3WhereTrace
& 0x100 ){ /* Display all terms of the WHERE clause */
5655 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5656 sqlite3WhereClausePrint(sWLB
.pWC
);
5660 if( nTabList
!=1 || whereShortCut(&sWLB
)==0 ){
5661 rc
= whereLoopAddAll(&sWLB
);
5662 if( rc
) goto whereBeginError
;
5664 #ifdef SQLITE_ENABLE_STAT4
5665 /* If one or more WhereTerm.truthProb values were used in estimating
5666 ** loop parameters, but then those truthProb values were subsequently
5667 ** changed based on STAT4 information while computing subsequent loops,
5668 ** then we need to rerun the whole loop building process so that all
5669 ** loops will be built using the revised truthProb values. */
5670 if( sWLB
.bldFlags2
& SQLITE_BLDF2_2NDPASS
){
5671 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
5673 ("**** Redo all loop computations due to"
5674 " TERM_HIGHTRUTH changes ****\n"));
5675 while( pWInfo
->pLoops
){
5676 WhereLoop
*p
= pWInfo
->pLoops
;
5677 pWInfo
->pLoops
= p
->pNextLoop
;
5678 whereLoopDelete(db
, p
);
5680 rc
= whereLoopAddAll(&sWLB
);
5681 if( rc
) goto whereBeginError
;
5684 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
5686 wherePathSolver(pWInfo
, 0);
5687 if( db
->mallocFailed
) goto whereBeginError
;
5688 if( pWInfo
->pOrderBy
){
5689 wherePathSolver(pWInfo
, pWInfo
->nRowOut
+1);
5690 if( db
->mallocFailed
) goto whereBeginError
;
5693 if( pWInfo
->pOrderBy
==0 && (db
->flags
& SQLITE_ReverseOrder
)!=0 ){
5694 pWInfo
->revMask
= ALLBITS
;
5697 goto whereBeginError
;
5699 assert( db
->mallocFailed
==0 );
5700 #ifdef WHERETRACE_ENABLED
5701 if( sqlite3WhereTrace
){
5702 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo
->nRowOut
);
5703 if( pWInfo
->nOBSat
>0 ){
5704 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo
->nOBSat
, pWInfo
->revMask
);
5706 switch( pWInfo
->eDistinct
){
5707 case WHERE_DISTINCT_UNIQUE
: {
5708 sqlite3DebugPrintf(" DISTINCT=unique");
5711 case WHERE_DISTINCT_ORDERED
: {
5712 sqlite3DebugPrintf(" DISTINCT=ordered");
5715 case WHERE_DISTINCT_UNORDERED
: {
5716 sqlite3DebugPrintf(" DISTINCT=unordered");
5720 sqlite3DebugPrintf("\n");
5721 for(ii
=0; ii
<pWInfo
->nLevel
; ii
++){
5722 sqlite3WhereLoopPrint(pWInfo
->a
[ii
].pWLoop
, sWLB
.pWC
);
5727 /* Attempt to omit tables from a join that do not affect the result.
5728 ** See the comment on whereOmitNoopJoin() for further information.
5730 ** This query optimization is factored out into a separate "no-inline"
5731 ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5732 ** too large. If sqlite3WhereBegin() becomes too large, that prevents
5733 ** some C-compiler optimizers from in-lining the
5734 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5735 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5737 notReady
= ~(Bitmask
)0;
5738 if( pWInfo
->nLevel
>=2
5739 && pResultSet
!=0 /* these two combine to guarantee */
5740 && 0==(wctrlFlags
& WHERE_AGG_DISTINCT
) /* condition (1) above */
5741 && OptimizationEnabled(db
, SQLITE_OmitNoopJoin
)
5743 notReady
= whereOmitNoopJoin(pWInfo
, notReady
);
5744 nTabList
= pWInfo
->nLevel
;
5745 assert( nTabList
>0 );
5748 /* Check to see if there are any SEARCH loops that might benefit from
5749 ** using a Bloom filter.
5751 if( pWInfo
->nLevel
>=2
5752 && OptimizationEnabled(db
, SQLITE_BloomFilter
)
5754 whereCheckIfBloomFilterIsUseful(pWInfo
);
5757 #if defined(WHERETRACE_ENABLED)
5758 if( sqlite3WhereTrace
& 0x100 ){ /* Display all terms of the WHERE clause */
5759 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5760 sqlite3WhereClausePrint(sWLB
.pWC
);
5762 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5764 pWInfo
->pParse
->nQueryLoop
+= pWInfo
->nRowOut
;
5766 /* If the caller is an UPDATE or DELETE statement that is requesting
5767 ** to use a one-pass algorithm, determine if this is appropriate.
5769 ** A one-pass approach can be used if the caller has requested one
5770 ** and either (a) the scan visits at most one row or (b) each
5771 ** of the following are true:
5773 ** * the caller has indicated that a one-pass approach can be used
5774 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5775 ** * the table is not a virtual table, and
5776 ** * either the scan does not use the OR optimization or the caller
5777 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5780 ** The last qualification is because an UPDATE statement uses
5781 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5782 ** use a one-pass approach, and this is not set accurately for scans
5783 ** that use the OR optimization.
5785 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
5786 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 ){
5787 int wsFlags
= pWInfo
->a
[0].pWLoop
->wsFlags
;
5788 int bOnerow
= (wsFlags
& WHERE_ONEROW
)!=0;
5789 assert( !(wsFlags
& WHERE_VIRTUALTABLE
) || IsVirtual(pTabList
->a
[0].pTab
) );
5791 0!=(wctrlFlags
& WHERE_ONEPASS_MULTIROW
)
5792 && !IsVirtual(pTabList
->a
[0].pTab
)
5793 && (0==(wsFlags
& WHERE_MULTI_OR
) || (wctrlFlags
& WHERE_DUPLICATES_OK
))
5795 pWInfo
->eOnePass
= bOnerow
? ONEPASS_SINGLE
: ONEPASS_MULTI
;
5796 if( HasRowid(pTabList
->a
[0].pTab
) && (wsFlags
& WHERE_IDX_ONLY
) ){
5797 if( wctrlFlags
& WHERE_ONEPASS_MULTIROW
){
5798 bFordelete
= OPFLAG_FORDELETE
;
5800 pWInfo
->a
[0].pWLoop
->wsFlags
= (wsFlags
& ~WHERE_IDX_ONLY
);
5805 /* Open all tables in the pTabList and any indices selected for
5806 ** searching those tables.
5808 for(ii
=0, pLevel
=pWInfo
->a
; ii
<nTabList
; ii
++, pLevel
++){
5809 Table
*pTab
; /* Table to open */
5810 int iDb
; /* Index of database containing table/index */
5813 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5814 pTab
= pTabItem
->pTab
;
5815 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
5816 pLoop
= pLevel
->pWLoop
;
5817 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || IsView(pTab
) ){
5820 #ifndef SQLITE_OMIT_VIRTUALTABLE
5821 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
5822 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
5823 int iCur
= pTabItem
->iCursor
;
5824 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
5825 }else if( IsVirtual(pTab
) ){
5829 if( ((pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
5830 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0)
5831 || (pTabItem
->fg
.jointype
& (JT_LTORJ
|JT_RIGHT
))!=0
5833 int op
= OP_OpenRead
;
5834 if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
5836 pWInfo
->aiCurOnePass
[0] = pTabItem
->iCursor
;
5838 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
5839 assert( pTabItem
->iCursor
==pLevel
->iTabCur
);
5840 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
-1 );
5841 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
);
5842 if( pWInfo
->eOnePass
==ONEPASS_OFF
5844 && (pTab
->tabFlags
& (TF_HasGenerated
|TF_WithoutRowid
))==0
5845 && (pLoop
->wsFlags
& (WHERE_AUTO_INDEX
|WHERE_BLOOMFILTER
))==0
5847 /* If we know that only a prefix of the record will be used,
5848 ** it is advantageous to reduce the "column count" field in
5849 ** the P4 operand of the OP_OpenRead/Write opcode. */
5850 Bitmask b
= pTabItem
->colUsed
;
5852 for(; b
; b
=b
>>1, n
++){}
5853 sqlite3VdbeChangeP4(v
, -1, SQLITE_INT_TO_PTR(n
), P4_INT32
);
5854 assert( n
<=pTab
->nCol
);
5856 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5857 if( pLoop
->u
.btree
.pIndex
!=0 ){
5858 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
|bFordelete
);
5862 sqlite3VdbeChangeP5(v
, bFordelete
);
5864 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5865 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, pTabItem
->iCursor
, 0, 0,
5866 (const u8
*)&pTabItem
->colUsed
, P4_INT64
);
5869 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5871 if( pLoop
->wsFlags
& WHERE_INDEXED
){
5872 Index
*pIx
= pLoop
->u
.btree
.pIndex
;
5874 int op
= OP_OpenRead
;
5875 /* iAuxArg is always set to a positive value if ONEPASS is possible */
5876 assert( iAuxArg
!=0 || (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 );
5877 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIx
)
5878 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0
5880 /* This is one term of an OR-optimization using the PRIMARY KEY of a
5881 ** WITHOUT ROWID table. No need for a separate index */
5882 iIndexCur
= pLevel
->iTabCur
;
5884 }else if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
5885 Index
*pJ
= pTabItem
->pTab
->pIndex
;
5886 iIndexCur
= iAuxArg
;
5887 assert( wctrlFlags
& WHERE_ONEPASS_DESIRED
);
5888 while( ALWAYS(pJ
) && pJ
!=pIx
){
5893 pWInfo
->aiCurOnePass
[1] = iIndexCur
;
5894 }else if( iAuxArg
&& (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0 ){
5895 iIndexCur
= iAuxArg
;
5898 iIndexCur
= pParse
->nTab
++;
5900 pLevel
->iIdxCur
= iIndexCur
;
5902 assert( pIx
->pSchema
==pTab
->pSchema
);
5903 assert( iIndexCur
>=0 );
5905 sqlite3VdbeAddOp3(v
, op
, iIndexCur
, pIx
->tnum
, iDb
);
5906 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
5907 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)!=0
5908 && (pLoop
->wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_SKIPSCAN
))==0
5909 && (pLoop
->wsFlags
& WHERE_BIGNULL_SORT
)==0
5910 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0
5911 && (pWInfo
->wctrlFlags
&WHERE_ORDERBY_MIN
)==0
5912 && pWInfo
->eDistinct
!=WHERE_DISTINCT_ORDERED
5914 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
);
5916 VdbeComment((v
, "%s", pIx
->zName
));
5917 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5921 for(ii
=0; ii
<pIx
->nColumn
; ii
++){
5922 jj
= pIx
->aiColumn
[ii
];
5923 if( jj
<0 ) continue;
5924 if( jj
>63 ) jj
= 63;
5925 if( (pTabItem
->colUsed
& MASKBIT(jj
))==0 ) continue;
5926 colUsed
|= ((u64
)1)<<(ii
<63 ? ii
: 63);
5928 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, iIndexCur
, 0, 0,
5929 (u8
*)&colUsed
, P4_INT64
);
5931 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5934 if( iDb
>=0 ) sqlite3CodeVerifySchema(pParse
, iDb
);
5935 if( (pTabItem
->fg
.jointype
& JT_RIGHT
)!=0
5936 && (pLevel
->pRJ
= sqlite3WhereMalloc(pWInfo
, sizeof(WhereRightJoin
)))!=0
5938 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
5939 pRJ
->iMatch
= pParse
->nTab
++;
5940 pRJ
->regBloom
= ++pParse
->nMem
;
5941 sqlite3VdbeAddOp2(v
, OP_Blob
, 65536, pRJ
->regBloom
);
5942 pRJ
->regReturn
= ++pParse
->nMem
;
5943 sqlite3VdbeAddOp2(v
, OP_Null
, 0, pRJ
->regReturn
);
5944 assert( pTab
==pTabItem
->pTab
);
5945 if( HasRowid(pTab
) ){
5947 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRJ
->iMatch
, 1);
5948 pInfo
= sqlite3KeyInfoAlloc(pParse
->db
, 1, 0);
5950 pInfo
->aColl
[0] = 0;
5951 pInfo
->aSortFlags
[0] = 0;
5952 sqlite3VdbeAppendP4(v
, pInfo
, P4_KEYINFO
);
5955 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
5956 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRJ
->iMatch
, pPk
->nKeyCol
);
5957 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
5959 pLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
5960 /* The nature of RIGHT JOIN processing is such that it messes up
5961 ** the output order. So omit any ORDER BY/GROUP BY elimination
5962 ** optimizations. We need to do an actual sort for RIGHT JOIN. */
5964 pWInfo
->eDistinct
= WHERE_DISTINCT_UNORDERED
;
5967 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
5968 if( db
->mallocFailed
) goto whereBeginError
;
5970 /* Generate the code to do the search. Each iteration of the for
5971 ** loop below generates code for a single nested loop of the VM
5974 for(ii
=0; ii
<nTabList
; ii
++){
5978 if( pParse
->nErr
) goto whereBeginError
;
5979 pLevel
= &pWInfo
->a
[ii
];
5980 wsFlags
= pLevel
->pWLoop
->wsFlags
;
5981 pSrc
= &pTabList
->a
[pLevel
->iFrom
];
5982 if( pSrc
->fg
.isMaterialized
){
5983 if( pSrc
->fg
.isCorrelated
){
5984 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSrc
->regReturn
, pSrc
->addrFillSub
);
5986 int iOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
5987 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSrc
->regReturn
, pSrc
->addrFillSub
);
5988 sqlite3VdbeJumpHere(v
, iOnce
);
5991 if( (wsFlags
& (WHERE_AUTO_INDEX
|WHERE_BLOOMFILTER
))!=0 ){
5992 if( (wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
5993 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5994 constructAutomaticIndex(pParse
, &pWInfo
->sWC
,
5995 &pTabList
->a
[pLevel
->iFrom
], notReady
, pLevel
);
5998 sqlite3ConstructBloomFilter(pWInfo
, ii
, pLevel
, notReady
);
6000 if( db
->mallocFailed
) goto whereBeginError
;
6002 addrExplain
= sqlite3WhereExplainOneScan(
6003 pParse
, pTabList
, pLevel
, wctrlFlags
6005 pLevel
->addrBody
= sqlite3VdbeCurrentAddr(v
);
6006 notReady
= sqlite3WhereCodeOneLoopStart(pParse
,v
,pWInfo
,ii
,pLevel
,notReady
);
6007 pWInfo
->iContinue
= pLevel
->addrCont
;
6008 if( (wsFlags
&WHERE_MULTI_OR
)==0 && (wctrlFlags
&WHERE_OR_SUBCLAUSE
)==0 ){
6009 sqlite3WhereAddScanStatus(v
, pTabList
, pLevel
, addrExplain
);
6014 VdbeModuleComment((v
, "Begin WHERE-core"));
6015 pWInfo
->iEndWhere
= sqlite3VdbeCurrentAddr(v
);
6018 /* Jump here if malloc fails */
6021 testcase( pWInfo
->pExprMods
!=0 );
6022 whereUndoExprMods(pWInfo
);
6023 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6024 whereInfoFree(db
, pWInfo
);
6030 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6031 ** index rather than the main table. In SQLITE_DEBUG mode, we want
6032 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
6035 #ifndef SQLITE_DEBUG
6036 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6038 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6039 static void sqlite3WhereOpcodeRewriteTrace(
6044 if( (db
->flags
& SQLITE_VdbeAddopTrace
)==0 ) return;
6045 sqlite3VdbePrintOp(0, pc
, pOp
);
6051 ** Return true if cursor iCur is opened by instruction k of the
6052 ** bytecode. Used inside of assert() only.
6054 static int cursorIsOpen(Vdbe
*v
, int iCur
, int k
){
6056 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
,k
--);
6057 if( pOp
->p1
!=iCur
) continue;
6058 if( pOp
->opcode
==OP_Close
) return 0;
6059 if( pOp
->opcode
==OP_OpenRead
) return 1;
6060 if( pOp
->opcode
==OP_OpenWrite
) return 1;
6061 if( pOp
->opcode
==OP_OpenDup
) return 1;
6062 if( pOp
->opcode
==OP_OpenAutoindex
) return 1;
6063 if( pOp
->opcode
==OP_OpenEphemeral
) return 1;
6067 #endif /* SQLITE_DEBUG */
6070 ** Generate the end of the WHERE loop. See comments on
6071 ** sqlite3WhereBegin() for additional information.
6073 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
6074 Parse
*pParse
= pWInfo
->pParse
;
6075 Vdbe
*v
= pParse
->pVdbe
;
6079 SrcList
*pTabList
= pWInfo
->pTabList
;
6080 sqlite3
*db
= pParse
->db
;
6081 int iEnd
= sqlite3VdbeCurrentAddr(v
);
6084 /* Generate loop termination code.
6086 VdbeModuleComment((v
, "End WHERE-core"));
6087 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
6089 pLevel
= &pWInfo
->a
[i
];
6091 /* Terminate the subroutine that forms the interior of the loop of
6092 ** the RIGHT JOIN table */
6093 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
6094 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6095 pLevel
->addrCont
= 0;
6096 pRJ
->endSubrtn
= sqlite3VdbeCurrentAddr(v
);
6097 sqlite3VdbeAddOp3(v
, OP_Return
, pRJ
->regReturn
, pRJ
->addrSubrtn
, 1);
6101 pLoop
= pLevel
->pWLoop
;
6102 if( pLevel
->op
!=OP_Noop
){
6103 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6107 if( pWInfo
->eDistinct
==WHERE_DISTINCT_ORDERED
6108 && i
==pWInfo
->nLevel
-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
6109 && (pLoop
->wsFlags
& WHERE_INDEXED
)!=0
6110 && (pIdx
= pLoop
->u
.btree
.pIndex
)->hasStat1
6111 && (n
= pLoop
->u
.btree
.nDistinctCol
)>0
6112 && pIdx
->aiRowLogEst
[n
]>=36
6114 int r1
= pParse
->nMem
+1;
6117 sqlite3VdbeAddOp3(v
, OP_Column
, pLevel
->iIdxCur
, j
, r1
+j
);
6119 pParse
->nMem
+= n
+1;
6120 op
= pLevel
->op
==OP_Prev
? OP_SeekLT
: OP_SeekGT
;
6121 addrSeek
= sqlite3VdbeAddOp4Int(v
, op
, pLevel
->iIdxCur
, 0, r1
, n
);
6122 VdbeCoverageIf(v
, op
==OP_SeekLT
);
6123 VdbeCoverageIf(v
, op
==OP_SeekGT
);
6124 sqlite3VdbeAddOp2(v
, OP_Goto
, 1, pLevel
->p2
);
6126 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6127 /* The common case: Advance to the next row */
6128 if( pLevel
->addrCont
) sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6129 sqlite3VdbeAddOp3(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
, pLevel
->p3
);
6130 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
6132 VdbeCoverageIf(v
, pLevel
->op
==OP_Next
);
6133 VdbeCoverageIf(v
, pLevel
->op
==OP_Prev
);
6134 VdbeCoverageIf(v
, pLevel
->op
==OP_VNext
);
6135 if( pLevel
->regBignull
){
6136 sqlite3VdbeResolveLabel(v
, pLevel
->addrBignull
);
6137 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, pLevel
->regBignull
, pLevel
->p2
-1);
6140 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6141 if( addrSeek
) sqlite3VdbeJumpHere(v
, addrSeek
);
6143 }else if( pLevel
->addrCont
){
6144 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6146 if( (pLoop
->wsFlags
& WHERE_IN_ABLE
)!=0 && pLevel
->u
.in
.nIn
>0 ){
6149 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
6150 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
6151 assert( sqlite3VdbeGetOp(v
, pIn
->addrInTop
+1)->opcode
==OP_IsNull
6152 || pParse
->db
->mallocFailed
);
6153 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6154 if( pIn
->eEndLoopOp
!=OP_Noop
){
6157 (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0
6158 && (pLoop
->wsFlags
& WHERE_IN_EARLYOUT
)!=0;
6159 if( pLevel
->iLeftJoin
){
6160 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6161 ** opened yet. This occurs for WHERE clauses such as
6162 ** "a = ? AND b IN (...)", where the index is on (a, b). If
6163 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6164 ** never have been coded, but the body of the loop run to
6165 ** return the null-row. So, if the cursor is not open yet,
6166 ** jump over the OP_Next or OP_Prev instruction about to
6168 sqlite3VdbeAddOp2(v
, OP_IfNotOpen
, pIn
->iCur
,
6169 sqlite3VdbeCurrentAddr(v
) + 2 + bEarlyOut
);
6173 sqlite3VdbeAddOp4Int(v
, OP_IfNoHope
, pLevel
->iIdxCur
,
6174 sqlite3VdbeCurrentAddr(v
)+2,
6175 pIn
->iBase
, pIn
->nPrefix
);
6177 /* Retarget the OP_IsNull against the left operand of IN so
6178 ** it jumps past the OP_IfNoHope. This is because the
6179 ** OP_IsNull also bypasses the OP_Affinity opcode that is
6180 ** required by OP_IfNoHope. */
6181 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6184 sqlite3VdbeAddOp2(v
, pIn
->eEndLoopOp
, pIn
->iCur
, pIn
->addrInTop
);
6186 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Prev
);
6187 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Next
);
6189 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
6192 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
6194 sqlite3VdbeAddOp3(v
, OP_Return
, pLevel
->pRJ
->regReturn
, 0, 1);
6197 if( pLevel
->addrSkip
){
6198 sqlite3VdbeGoto(v
, pLevel
->addrSkip
);
6199 VdbeComment((v
, "next skip-scan on %s", pLoop
->u
.btree
.pIndex
->zName
));
6200 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
);
6201 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
-2);
6203 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6204 if( pLevel
->addrLikeRep
){
6205 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, (int)(pLevel
->iLikeRepCntr
>>1),
6206 pLevel
->addrLikeRep
);
6210 if( pLevel
->iLeftJoin
){
6211 int ws
= pLoop
->wsFlags
;
6212 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
); VdbeCoverage(v
);
6213 assert( (ws
& WHERE_IDX_ONLY
)==0 || (ws
& WHERE_INDEXED
)!=0 );
6214 if( (ws
& WHERE_IDX_ONLY
)==0 ){
6215 assert( pLevel
->iTabCur
==pTabList
->a
[pLevel
->iFrom
].iCursor
);
6216 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iTabCur
);
6218 if( (ws
& WHERE_INDEXED
)
6219 || ((ws
& WHERE_MULTI_OR
) && pLevel
->u
.pCoveringIdx
)
6221 if( ws
& WHERE_MULTI_OR
){
6222 Index
*pIx
= pLevel
->u
.pCoveringIdx
;
6223 int iDb
= sqlite3SchemaToIndex(db
, pIx
->pSchema
);
6224 sqlite3VdbeAddOp3(v
, OP_ReopenIdx
, pLevel
->iIdxCur
, pIx
->tnum
, iDb
);
6225 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
6227 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
6229 if( pLevel
->op
==OP_Return
){
6230 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
6232 sqlite3VdbeGoto(v
, pLevel
->addrFirst
);
6234 sqlite3VdbeJumpHere(v
, addr
);
6236 VdbeModuleComment((v
, "End WHERE-loop%d: %s", i
,
6237 pWInfo
->pTabList
->a
[pLevel
->iFrom
].pTab
->zName
));
6240 assert( pWInfo
->nLevel
<=pTabList
->nSrc
);
6241 if( pWInfo
->pExprMods
) whereUndoExprMods(pWInfo
);
6242 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
6244 VdbeOp
*pOp
, *pLastOp
;
6246 SrcItem
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6247 Table
*pTab
= pTabItem
->pTab
;
6249 pLoop
= pLevel
->pWLoop
;
6251 /* Do RIGHT JOIN processing. Generate code that will output the
6252 ** unmatched rows of the right operand of the RIGHT JOIN with
6253 ** all of the columns of the left operand set to NULL.
6256 sqlite3WhereRightJoinLoop(pWInfo
, i
, pLevel
);
6260 /* For a co-routine, change all OP_Column references to the table of
6261 ** the co-routine into OP_Copy of result contained in a register.
6262 ** OP_Rowid becomes OP_Null.
6264 if( pTabItem
->fg
.viaCoroutine
){
6265 testcase( pParse
->db
->mallocFailed
);
6266 translateColumnToCopy(pParse
, pLevel
->addrBody
, pLevel
->iTabCur
,
6267 pTabItem
->regResult
, 0);
6271 /* If this scan uses an index, make VDBE code substitutions to read data
6272 ** from the index instead of from the table where possible. In some cases
6273 ** this optimization prevents the table from ever being read, which can
6274 ** yield a significant performance boost.
6276 ** Calls to the code generator in between sqlite3WhereBegin and
6277 ** sqlite3WhereEnd will have created code that references the table
6278 ** directly. This loop scans all that code looking for opcodes
6279 ** that reference the table and converts them into opcodes that
6280 ** reference the index.
6282 if( pLoop
->wsFlags
& (WHERE_INDEXED
|WHERE_IDX_ONLY
) ){
6283 pIdx
= pLoop
->u
.btree
.pIndex
;
6284 }else if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
6285 pIdx
= pLevel
->u
.pCoveringIdx
;
6288 && !db
->mallocFailed
6290 if( pWInfo
->eOnePass
==ONEPASS_OFF
|| !HasRowid(pIdx
->pTable
) ){
6293 last
= pWInfo
->iEndWhere
;
6295 k
= pLevel
->addrBody
+ 1;
6297 if( db
->flags
& SQLITE_VdbeAddopTrace
){
6298 printf("TRANSLATE opcodes in range %d..%d\n", k
, last
-1);
6300 /* Proof that the "+1" on the k value above is safe */
6301 pOp
= sqlite3VdbeGetOp(v
, k
- 1);
6302 assert( pOp
->opcode
!=OP_Column
|| pOp
->p1
!=pLevel
->iTabCur
);
6303 assert( pOp
->opcode
!=OP_Rowid
|| pOp
->p1
!=pLevel
->iTabCur
);
6304 assert( pOp
->opcode
!=OP_IfNullRow
|| pOp
->p1
!=pLevel
->iTabCur
);
6306 pOp
= sqlite3VdbeGetOp(v
, k
);
6307 pLastOp
= pOp
+ (last
- k
);
6308 assert( pOp
<=pLastOp
);
6310 if( pOp
->p1
!=pLevel
->iTabCur
){
6312 }else if( pOp
->opcode
==OP_Column
6313 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6314 || pOp
->opcode
==OP_Offset
6318 assert( pIdx
->pTable
==pTab
);
6319 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6320 if( pOp
->opcode
==OP_Offset
){
6321 /* Do not need to translate the column number */
6324 if( !HasRowid(pTab
) ){
6325 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
6326 x
= pPk
->aiColumn
[x
];
6329 testcase( x
!=sqlite3StorageColumnToTable(pTab
,x
) );
6330 x
= sqlite3StorageColumnToTable(pTab
,x
);
6332 x
= sqlite3TableColumnToIndex(pIdx
, x
);
6335 pOp
->p1
= pLevel
->iIdxCur
;
6336 OpcodeRewriteTrace(db
, k
, pOp
);
6338 /* Unable to translate the table reference into an index
6339 ** reference. Verify that this is harmless - that the
6340 ** table being referenced really is open.
6342 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6343 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6344 || cursorIsOpen(v
,pOp
->p1
,k
)
6345 || pOp
->opcode
==OP_Offset
6348 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6349 || cursorIsOpen(v
,pOp
->p1
,k
)
6353 }else if( pOp
->opcode
==OP_Rowid
){
6354 pOp
->p1
= pLevel
->iIdxCur
;
6355 pOp
->opcode
= OP_IdxRowid
;
6356 OpcodeRewriteTrace(db
, k
, pOp
);
6357 }else if( pOp
->opcode
==OP_IfNullRow
){
6358 pOp
->p1
= pLevel
->iIdxCur
;
6359 OpcodeRewriteTrace(db
, k
, pOp
);
6364 }while( (++pOp
)<pLastOp
);
6366 if( db
->flags
& SQLITE_VdbeAddopTrace
) printf("TRANSLATE complete\n");
6371 /* The "break" point is here, just past the end of the outer loop.
6374 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
6378 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6379 whereInfoFree(db
, pWInfo
);
6380 pParse
->withinRJSubrtn
-= nRJ
;