avoid merge conflict on upstream distclean change
[sqlcipher.git] / src / where.c
blob6c2c64d18ecc2f13ccaf5caabbce5aabddc5ca16
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
20 #include "whereInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33 WhereClause *pWC; /* The Where clause being analyzed */
34 Parse *pParse; /* The parsing context */
35 int eDistinct; /* Value to return from sqlite3_vtab_distinct() */
36 u32 mIn; /* Mask of terms that are <col> IN (...) */
37 u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */
38 sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST
39 ** because extra space is allocated to hold up
40 ** to nTerm such values */
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3*, WhereLoop*, int);
47 ** Return the estimated number of output rows from a WHERE clause
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50 return pWInfo->nRowOut;
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58 return pWInfo->eDistinct;
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause. A return of 0 means that the output must be
64 ** completely sorted. A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all. A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70 return pWInfo->nOBSat;
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop. If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97 WhereLevel *pInner;
98 if( !pWInfo->bOrderedInnerLoop ){
99 /* The ORDER BY LIMIT optimization does not apply. Jump to the
100 ** continuation of the inner-most loop. */
101 return pWInfo->iContinue;
103 pInner = &pWInfo->a[pWInfo->nLevel-1];
104 assert( pInner->addrNxt!=0 );
105 return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required. If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
115 ** Any extra OP_Goto that is coded here is an optimization. The
116 ** correct answer should be obtained regardless. This OP_Goto just
117 ** makes the answer appear faster.
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
120 WhereLevel *pInner;
121 int i;
122 if( !pWInfo->bOrderedInnerLoop ) return;
123 if( pWInfo->nOBSat==0 ) return;
124 for(i=pWInfo->nLevel-1; i>=0; i--){
125 pInner = &pWInfo->a[i];
126 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
127 sqlite3VdbeGoto(v, pInner->addrNxt);
128 return;
131 sqlite3VdbeGoto(v, pWInfo->iBreak);
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
139 assert( pWInfo->iContinue!=0 );
140 return pWInfo->iContinue;
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
148 return pWInfo->iBreak;
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause. Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
169 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
172 sqlite3DebugPrintf("%s cursors: %d %d\n",
173 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
174 aiCur[0], aiCur[1]);
176 #endif
177 return pWInfo->eOnePass;
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
185 return pWInfo->bDeferredSeek;
189 ** Move the content of pSrc into pDest
191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
192 pDest->n = pSrc->n;
193 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded. Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
203 static int whereOrInsert(
204 WhereOrSet *pSet, /* The WhereOrSet to be updated */
205 Bitmask prereq, /* Prerequisites of the new entry */
206 LogEst rRun, /* Run-cost of the new entry */
207 LogEst nOut /* Number of outputs for the new entry */
209 u16 i;
210 WhereOrCost *p;
211 for(i=pSet->n, p=pSet->a; i>0; i--, p++){
212 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
213 goto whereOrInsert_done;
215 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
216 return 0;
219 if( pSet->n<N_OR_COST ){
220 p = &pSet->a[pSet->n++];
221 p->nOut = nOut;
222 }else{
223 p = pSet->a;
224 for(i=1; i<pSet->n; i++){
225 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
227 if( p->rRun<=rRun ) return 0;
229 whereOrInsert_done:
230 p->prereq = prereq;
231 p->rRun = rRun;
232 if( p->nOut>nOut ) p->nOut = nOut;
233 return 1;
237 ** Return the bitmask for the given cursor number. Return 0 if
238 ** iCursor is not in the set.
240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
241 int i;
242 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
243 assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
244 assert( iCursor>=-1 );
245 if( pMaskSet->ix[0]==iCursor ){
246 return 1;
248 for(i=1; i<pMaskSet->n; i++){
249 if( pMaskSet->ix[i]==iCursor ){
250 return MASKBIT(i);
253 return 0;
256 /* Allocate memory that is automatically freed when pWInfo is freed.
258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
259 WhereMemBlock *pBlock;
260 pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
261 if( pBlock ){
262 pBlock->pNext = pWInfo->pMemToFree;
263 pBlock->sz = nByte;
264 pWInfo->pMemToFree = pBlock;
265 pBlock++;
267 return (void*)pBlock;
269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
270 void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
271 if( pNew && pOld ){
272 WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
273 pOldBlk--;
274 assert( pOldBlk->sz<nByte );
275 memcpy(pNew, pOld, pOldBlk->sz);
277 return pNew;
281 ** Create a new mask for cursor iCursor.
283 ** There is one cursor per table in the FROM clause. The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
286 ** array will never overflow.
288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
289 assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
290 pMaskSet->ix[pMaskSet->n++] = iCursor;
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch. Otherwise, return NULL.
297 static Expr *whereRightSubexprIsColumn(Expr *p){
298 p = sqlite3ExprSkipCollateAndLikely(p->pRight);
299 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
300 return p;
302 return 0;
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
310 static WhereTerm *whereScanNext(WhereScan *pScan){
311 int iCur; /* The cursor on the LHS of the term */
312 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */
313 Expr *pX; /* An expression being tested */
314 WhereClause *pWC; /* Shorthand for pScan->pWC */
315 WhereTerm *pTerm; /* The term being tested */
316 int k = pScan->k; /* Where to start scanning */
318 assert( pScan->iEquiv<=pScan->nEquiv );
319 pWC = pScan->pWC;
320 while(1){
321 iColumn = pScan->aiColumn[pScan->iEquiv-1];
322 iCur = pScan->aiCur[pScan->iEquiv-1];
323 assert( pWC!=0 );
324 assert( iCur>=0 );
326 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
327 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
328 if( pTerm->leftCursor==iCur
329 && pTerm->u.x.leftColumn==iColumn
330 && (iColumn!=XN_EXPR
331 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
332 pScan->pIdxExpr,iCur)==0)
333 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
335 if( (pTerm->eOperator & WO_EQUIV)!=0
336 && pScan->nEquiv<ArraySize(pScan->aiCur)
337 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
339 int j;
340 for(j=0; j<pScan->nEquiv; j++){
341 if( pScan->aiCur[j]==pX->iTable
342 && pScan->aiColumn[j]==pX->iColumn ){
343 break;
346 if( j==pScan->nEquiv ){
347 pScan->aiCur[j] = pX->iTable;
348 pScan->aiColumn[j] = pX->iColumn;
349 pScan->nEquiv++;
352 if( (pTerm->eOperator & pScan->opMask)!=0 ){
353 /* Verify the affinity and collating sequence match */
354 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
355 CollSeq *pColl;
356 Parse *pParse = pWC->pWInfo->pParse;
357 pX = pTerm->pExpr;
358 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
359 continue;
361 assert(pX->pLeft);
362 pColl = sqlite3ExprCompareCollSeq(pParse, pX);
363 if( pColl==0 ) pColl = pParse->db->pDfltColl;
364 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
365 continue;
368 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
369 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
370 && pX->op==TK_COLUMN
371 && pX->iTable==pScan->aiCur[0]
372 && pX->iColumn==pScan->aiColumn[0]
374 testcase( pTerm->eOperator & WO_IS );
375 continue;
377 pScan->pWC = pWC;
378 pScan->k = k+1;
379 #ifdef WHERETRACE_ENABLED
380 if( sqlite3WhereTrace & 0x20000 ){
381 int ii;
382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383 pTerm, pScan->nEquiv);
384 for(ii=0; ii<pScan->nEquiv; ii++){
385 sqlite3DebugPrintf(" {%d:%d}",
386 pScan->aiCur[ii], pScan->aiColumn[ii]);
388 sqlite3DebugPrintf("\n");
390 #endif
391 return pTerm;
395 pWC = pWC->pOuter;
396 k = 0;
397 }while( pWC!=0 );
398 if( pScan->iEquiv>=pScan->nEquiv ) break;
399 pWC = pScan->pOrigWC;
400 k = 0;
401 pScan->iEquiv++;
403 return 0;
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
413 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
414 return whereScanNext(pScan);
418 ** Initialize a WHERE clause scanner object. Return a pointer to the
419 ** first match. Return NULL if there are no matches.
421 ** The scanner will be searching the WHERE clause pWC. It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
424 ** must be one of the indexes of table iCur.
426 ** The <op> must be one of the operators described by opMask.
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>". The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
434 ** index pIdx.
436 static WhereTerm *whereScanInit(
437 WhereScan *pScan, /* The WhereScan object being initialized */
438 WhereClause *pWC, /* The WHERE clause to be scanned */
439 int iCur, /* Cursor to scan for */
440 int iColumn, /* Column to scan for */
441 u32 opMask, /* Operator(s) to scan for */
442 Index *pIdx /* Must be compatible with this index */
444 pScan->pOrigWC = pWC;
445 pScan->pWC = pWC;
446 pScan->pIdxExpr = 0;
447 pScan->idxaff = 0;
448 pScan->zCollName = 0;
449 pScan->opMask = opMask;
450 pScan->k = 0;
451 pScan->aiCur[0] = iCur;
452 pScan->nEquiv = 1;
453 pScan->iEquiv = 1;
454 if( pIdx ){
455 int j = iColumn;
456 iColumn = pIdx->aiColumn[j];
457 if( iColumn==pIdx->pTable->iPKey ){
458 iColumn = XN_ROWID;
459 }else if( iColumn>=0 ){
460 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
461 pScan->zCollName = pIdx->azColl[j];
462 }else if( iColumn==XN_EXPR ){
463 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
464 pScan->zCollName = pIdx->azColl[j];
465 pScan->aiColumn[0] = XN_EXPR;
466 return whereScanInitIndexExpr(pScan);
468 }else if( iColumn==XN_EXPR ){
469 return 0;
471 pScan->aiColumn[0] = iColumn;
472 return whereScanNext(pScan);
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter. Return a pointer to the term. Return 0 if not found.
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y. Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values. Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind. Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
500 WhereTerm *sqlite3WhereFindTerm(
501 WhereClause *pWC, /* The WHERE clause to be searched */
502 int iCur, /* Cursor number of LHS */
503 int iColumn, /* Column number of LHS */
504 Bitmask notReady, /* RHS must not overlap with this mask */
505 u32 op, /* Mask of WO_xx values describing operator */
506 Index *pIdx /* Must be compatible with this index, if not NULL */
508 WhereTerm *pResult = 0;
509 WhereTerm *p;
510 WhereScan scan;
512 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
513 op &= WO_EQ|WO_IS;
514 while( p ){
515 if( (p->prereqRight & notReady)==0 ){
516 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
517 testcase( p->eOperator & WO_IS );
518 return p;
520 if( pResult==0 ) pResult = p;
522 p = whereScanNext(&scan);
524 return pResult;
528 ** This function searches pList for an entry that matches the iCol-th column
529 ** of index pIdx.
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
534 static int findIndexCol(
535 Parse *pParse, /* Parse context */
536 ExprList *pList, /* Expression list to search */
537 int iBase, /* Cursor for table associated with pIdx */
538 Index *pIdx, /* Index to match column of */
539 int iCol /* Column of index to match */
541 int i;
542 const char *zColl = pIdx->azColl[iCol];
544 for(i=0; i<pList->nExpr; i++){
545 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
546 if( ALWAYS(p!=0)
547 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
548 && p->iColumn==pIdx->aiColumn[iCol]
549 && p->iTable==iBase
551 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
552 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
553 return i;
558 return -1;
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
564 static int indexColumnNotNull(Index *pIdx, int iCol){
565 int j;
566 assert( pIdx!=0 );
567 assert( iCol>=0 && iCol<pIdx->nColumn );
568 j = pIdx->aiColumn[iCol];
569 if( j>=0 ){
570 return pIdx->pTable->aCol[j].notNull;
571 }else if( j==(-1) ){
572 return 1;
573 }else{
574 assert( j==(-2) );
575 return 0; /* Assume an indexed expression can always yield a NULL */
581 ** Return true if the DISTINCT expression-list passed as the third argument
582 ** is redundant.
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
587 static int isDistinctRedundant(
588 Parse *pParse, /* Parsing context */
589 SrcList *pTabList, /* The FROM clause */
590 WhereClause *pWC, /* The WHERE clause */
591 ExprList *pDistinct /* The result set that needs to be DISTINCT */
593 Table *pTab;
594 Index *pIdx;
595 int i;
596 int iBase;
598 /* If there is more than one table or sub-select in the FROM clause of
599 ** this query, then it will not be possible to show that the DISTINCT
600 ** clause is redundant. */
601 if( pTabList->nSrc!=1 ) return 0;
602 iBase = pTabList->a[0].iCursor;
603 pTab = pTabList->a[0].pTab;
605 /* If any of the expressions is an IPK column on table iBase, then return
606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607 ** current SELECT is a correlated sub-query.
609 for(i=0; i<pDistinct->nExpr; i++){
610 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
611 if( NEVER(p==0) ) continue;
612 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
613 if( p->iTable==iBase && p->iColumn<0 ) return 1;
616 /* Loop through all indices on the table, checking each to see if it makes
617 ** the DISTINCT qualifier redundant. It does so if:
619 ** 1. The index is itself UNIQUE, and
621 ** 2. All of the columns in the index are either part of the pDistinct
622 ** list, or else the WHERE clause contains a term of the form "col=X",
623 ** where X is a constant value. The collation sequences of the
624 ** comparison and select-list expressions must match those of the index.
626 ** 3. All of those index columns for which the WHERE clause does not
627 ** contain a "col=X" term are subject to a NOT NULL constraint.
629 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
630 if( !IsUniqueIndex(pIdx) ) continue;
631 if( pIdx->pPartIdxWhere ) continue;
632 for(i=0; i<pIdx->nKeyCol; i++){
633 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
634 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
635 if( indexColumnNotNull(pIdx, i)==0 ) break;
638 if( i==pIdx->nKeyCol ){
639 /* This index implies that the DISTINCT qualifier is redundant. */
640 return 1;
644 return 0;
649 ** Estimate the logarithm of the input value to base 2.
651 static LogEst estLog(LogEst N){
652 return N<=10 ? 0 : sqlite3LogEst(N) - 33;
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
667 static void translateColumnToCopy(
668 Parse *pParse, /* Parsing context */
669 int iStart, /* Translate from this opcode to the end */
670 int iTabCur, /* OP_Column/OP_Rowid references to this table */
671 int iRegister, /* The first column is in this register */
672 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */
674 Vdbe *v = pParse->pVdbe;
675 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
676 int iEnd = sqlite3VdbeCurrentAddr(v);
677 if( pParse->db->mallocFailed ) return;
678 for(; iStart<iEnd; iStart++, pOp++){
679 if( pOp->p1!=iTabCur ) continue;
680 if( pOp->opcode==OP_Column ){
681 pOp->opcode = OP_Copy;
682 pOp->p1 = pOp->p2 + iRegister;
683 pOp->p2 = pOp->p3;
684 pOp->p3 = 0;
685 pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */
686 }else if( pOp->opcode==OP_Rowid ){
687 pOp->opcode = OP_Sequence;
688 pOp->p1 = iAutoidxCur;
689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
690 if( iAutoidxCur==0 ){
691 pOp->opcode = OP_Null;
692 pOp->p3 = 0;
694 #endif
700 ** Two routines for printing the content of an sqlite3_index_info
701 ** structure. Used for testing and debugging only. If neither
702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
703 ** are no-ops.
705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
707 int i;
708 if( !sqlite3WhereTrace ) return;
709 for(i=0; i<p->nConstraint; i++){
710 sqlite3DebugPrintf(
711 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
713 p->aConstraint[i].iColumn,
714 p->aConstraint[i].iTermOffset,
715 p->aConstraint[i].op,
716 p->aConstraint[i].usable,
717 sqlite3_vtab_collation(p,i));
719 for(i=0; i<p->nOrderBy; i++){
720 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
722 p->aOrderBy[i].iColumn,
723 p->aOrderBy[i].desc);
726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
727 int i;
728 if( !sqlite3WhereTrace ) return;
729 for(i=0; i<p->nConstraint; i++){
730 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
732 p->aConstraintUsage[i].argvIndex,
733 p->aConstraintUsage[i].omit);
735 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum);
736 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr);
737 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed);
738 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost);
739 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows);
741 #else
742 #define whereTraceIndexInfoInputs(A)
743 #define whereTraceIndexInfoOutputs(A)
744 #endif
746 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
748 ** Return TRUE if the WHERE clause term pTerm is of a form where it
749 ** could be used with an index to access pSrc, assuming an appropriate
750 ** index existed.
752 static int termCanDriveIndex(
753 const WhereTerm *pTerm, /* WHERE clause term to check */
754 const SrcItem *pSrc, /* Table we are trying to access */
755 const Bitmask notReady /* Tables in outer loops of the join */
757 char aff;
758 if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
759 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
760 assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
761 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
762 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
763 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
764 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
765 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
766 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
767 || pTerm->pExpr->w.iJoin != pSrc->iCursor
769 return 0; /* See tag-20191211-001 */
772 if( (pTerm->prereqRight & notReady)!=0 ) return 0;
773 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
774 if( pTerm->u.x.leftColumn<0 ) return 0;
775 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
776 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
777 testcase( pTerm->pExpr->op==TK_IS );
778 return 1;
780 #endif
783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
785 ** Generate code to construct the Index object for an automatic index
786 ** and to set up the WhereLevel object pLevel so that the code generator
787 ** makes use of the automatic index.
789 static SQLITE_NOINLINE void constructAutomaticIndex(
790 Parse *pParse, /* The parsing context */
791 const WhereClause *pWC, /* The WHERE clause */
792 const SrcItem *pSrc, /* The FROM clause term to get the next index */
793 const Bitmask notReady, /* Mask of cursors that are not available */
794 WhereLevel *pLevel /* Write new index here */
796 int nKeyCol; /* Number of columns in the constructed index */
797 WhereTerm *pTerm; /* A single term of the WHERE clause */
798 WhereTerm *pWCEnd; /* End of pWC->a[] */
799 Index *pIdx; /* Object describing the transient index */
800 Vdbe *v; /* Prepared statement under construction */
801 int addrInit; /* Address of the initialization bypass jump */
802 Table *pTable; /* The table being indexed */
803 int addrTop; /* Top of the index fill loop */
804 int regRecord; /* Register holding an index record */
805 int n; /* Column counter */
806 int i; /* Loop counter */
807 int mxBitCol; /* Maximum column in pSrc->colUsed */
808 CollSeq *pColl; /* Collating sequence to on a column */
809 WhereLoop *pLoop; /* The Loop object */
810 char *zNotUsed; /* Extra space on the end of pIdx */
811 Bitmask idxCols; /* Bitmap of columns used for indexing */
812 Bitmask extraCols; /* Bitmap of additional columns */
813 u8 sentWarning = 0; /* True if a warnning has been issued */
814 Expr *pPartial = 0; /* Partial Index Expression */
815 int iContinue = 0; /* Jump here to skip excluded rows */
816 SrcItem *pTabItem; /* FROM clause term being indexed */
817 int addrCounter = 0; /* Address where integer counter is initialized */
818 int regBase; /* Array of registers where record is assembled */
820 /* Generate code to skip over the creation and initialization of the
821 ** transient index on 2nd and subsequent iterations of the loop. */
822 v = pParse->pVdbe;
823 assert( v!=0 );
824 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
826 /* Count the number of columns that will be added to the index
827 ** and used to match WHERE clause constraints */
828 nKeyCol = 0;
829 pTable = pSrc->pTab;
830 pWCEnd = &pWC->a[pWC->nTerm];
831 pLoop = pLevel->pWLoop;
832 idxCols = 0;
833 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
834 Expr *pExpr = pTerm->pExpr;
835 /* Make the automatic index a partial index if there are terms in the
836 ** WHERE clause (or the ON clause of a LEFT join) that constrain which
837 ** rows of the target table (pSrc) that can be used. */
838 if( (pTerm->wtFlags & TERM_VIRTUAL)==0
839 && sqlite3ExprIsTableConstraint(pExpr, pSrc)
841 pPartial = sqlite3ExprAnd(pParse, pPartial,
842 sqlite3ExprDup(pParse->db, pExpr, 0));
844 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
845 int iCol;
846 Bitmask cMask;
847 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
848 iCol = pTerm->u.x.leftColumn;
849 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
850 testcase( iCol==BMS );
851 testcase( iCol==BMS-1 );
852 if( !sentWarning ){
853 sqlite3_log(SQLITE_WARNING_AUTOINDEX,
854 "automatic index on %s(%s)", pTable->zName,
855 pTable->aCol[iCol].zCnName);
856 sentWarning = 1;
858 if( (idxCols & cMask)==0 ){
859 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
860 goto end_auto_index_create;
862 pLoop->aLTerm[nKeyCol++] = pTerm;
863 idxCols |= cMask;
867 assert( nKeyCol>0 || pParse->db->mallocFailed );
868 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
869 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
870 | WHERE_AUTO_INDEX;
872 /* Count the number of additional columns needed to create a
873 ** covering index. A "covering index" is an index that contains all
874 ** columns that are needed by the query. With a covering index, the
875 ** original table never needs to be accessed. Automatic indices must
876 ** be a covering index because the index will not be updated if the
877 ** original table changes and the index and table cannot both be used
878 ** if they go out of sync.
880 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
881 mxBitCol = MIN(BMS-1,pTable->nCol);
882 testcase( pTable->nCol==BMS-1 );
883 testcase( pTable->nCol==BMS-2 );
884 for(i=0; i<mxBitCol; i++){
885 if( extraCols & MASKBIT(i) ) nKeyCol++;
887 if( pSrc->colUsed & MASKBIT(BMS-1) ){
888 nKeyCol += pTable->nCol - BMS + 1;
891 /* Construct the Index object to describe this index */
892 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
893 if( pIdx==0 ) goto end_auto_index_create;
894 pLoop->u.btree.pIndex = pIdx;
895 pIdx->zName = "auto-index";
896 pIdx->pTable = pTable;
897 n = 0;
898 idxCols = 0;
899 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
900 if( termCanDriveIndex(pTerm, pSrc, notReady) ){
901 int iCol;
902 Bitmask cMask;
903 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
904 iCol = pTerm->u.x.leftColumn;
905 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
906 testcase( iCol==BMS-1 );
907 testcase( iCol==BMS );
908 if( (idxCols & cMask)==0 ){
909 Expr *pX = pTerm->pExpr;
910 idxCols |= cMask;
911 pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
912 pColl = sqlite3ExprCompareCollSeq(pParse, pX);
913 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
914 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
915 n++;
919 assert( (u32)n==pLoop->u.btree.nEq );
921 /* Add additional columns needed to make the automatic index into
922 ** a covering index */
923 for(i=0; i<mxBitCol; i++){
924 if( extraCols & MASKBIT(i) ){
925 pIdx->aiColumn[n] = i;
926 pIdx->azColl[n] = sqlite3StrBINARY;
927 n++;
930 if( pSrc->colUsed & MASKBIT(BMS-1) ){
931 for(i=BMS-1; i<pTable->nCol; i++){
932 pIdx->aiColumn[n] = i;
933 pIdx->azColl[n] = sqlite3StrBINARY;
934 n++;
937 assert( n==nKeyCol );
938 pIdx->aiColumn[n] = XN_ROWID;
939 pIdx->azColl[n] = sqlite3StrBINARY;
941 /* Create the automatic index */
942 assert( pLevel->iIdxCur>=0 );
943 pLevel->iIdxCur = pParse->nTab++;
944 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
945 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
946 VdbeComment((v, "for %s", pTable->zName));
947 if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
948 pLevel->regFilter = ++pParse->nMem;
949 sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
952 /* Fill the automatic index with content */
953 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
954 if( pTabItem->fg.viaCoroutine ){
955 int regYield = pTabItem->regReturn;
956 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
957 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
958 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield);
959 VdbeCoverage(v);
960 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
961 }else{
962 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
964 if( pPartial ){
965 iContinue = sqlite3VdbeMakeLabel(pParse);
966 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
967 pLoop->wsFlags |= WHERE_PARTIALIDX;
969 regRecord = sqlite3GetTempReg(pParse);
970 regBase = sqlite3GenerateIndexKey(
971 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
973 if( pLevel->regFilter ){
974 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
975 regBase, pLoop->u.btree.nEq);
977 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
978 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
979 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
980 if( pTabItem->fg.viaCoroutine ){
981 sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
982 testcase( pParse->db->mallocFailed );
983 assert( pLevel->iIdxCur>0 );
984 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
985 pTabItem->regResult, pLevel->iIdxCur);
986 sqlite3VdbeGoto(v, addrTop);
987 pTabItem->fg.viaCoroutine = 0;
988 }else{
989 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
990 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
992 sqlite3VdbeJumpHere(v, addrTop);
993 sqlite3ReleaseTempReg(pParse, regRecord);
995 /* Jump here when skipping the initialization */
996 sqlite3VdbeJumpHere(v, addrInit);
998 end_auto_index_create:
999 sqlite3ExprDelete(pParse->db, pPartial);
1001 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1004 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1005 ** for pLevel.
1007 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1008 ** flag set, initialize a Bloomfilter for them as well. Except don't do
1009 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1010 ** been turned off.
1012 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1013 ** from the loop, but the regFilter value is set to a register that implements
1014 ** the Bloom filter. When regFilter is positive, the
1015 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1016 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1017 ** no matching rows exist.
1019 ** This routine may only be called if it has previously been determined that
1020 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1021 ** is set.
1023 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
1024 WhereInfo *pWInfo, /* The WHERE clause */
1025 int iLevel, /* Index in pWInfo->a[] that is pLevel */
1026 WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */
1027 Bitmask notReady /* Loops that are not ready */
1029 int addrOnce; /* Address of opening OP_Once */
1030 int addrTop; /* Address of OP_Rewind */
1031 int addrCont; /* Jump here to skip a row */
1032 const WhereTerm *pTerm; /* For looping over WHERE clause terms */
1033 const WhereTerm *pWCEnd; /* Last WHERE clause term */
1034 Parse *pParse = pWInfo->pParse; /* Parsing context */
1035 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
1036 WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */
1037 int iCur; /* Cursor for table getting the filter */
1039 assert( pLoop!=0 );
1040 assert( v!=0 );
1041 assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1043 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1045 const SrcItem *pItem;
1046 const Table *pTab;
1047 u64 sz;
1048 sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1049 addrCont = sqlite3VdbeMakeLabel(pParse);
1050 iCur = pLevel->iTabCur;
1051 pLevel->regFilter = ++pParse->nMem;
1053 /* The Bloom filter is a Blob held in a register. Initialize it
1054 ** to zero-filled blob of at least 80K bits, but maybe more if the
1055 ** estimated size of the table is larger. We could actually
1056 ** measure the size of the table at run-time using OP_Count with
1057 ** P3==1 and use that value to initialize the blob. But that makes
1058 ** testing complicated. By basing the blob size on the value in the
1059 ** sqlite_stat1 table, testing is much easier.
1061 pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1062 assert( pItem!=0 );
1063 pTab = pItem->pTab;
1064 assert( pTab!=0 );
1065 sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1066 if( sz<10000 ){
1067 sz = 10000;
1068 }else if( sz>10000000 ){
1069 sz = 10000000;
1071 sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1073 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1074 pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1075 for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1076 Expr *pExpr = pTerm->pExpr;
1077 if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1078 && sqlite3ExprIsTableConstraint(pExpr, pItem)
1080 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1083 if( pLoop->wsFlags & WHERE_IPK ){
1084 int r1 = sqlite3GetTempReg(pParse);
1085 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1086 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1087 sqlite3ReleaseTempReg(pParse, r1);
1088 }else{
1089 Index *pIdx = pLoop->u.btree.pIndex;
1090 int n = pLoop->u.btree.nEq;
1091 int r1 = sqlite3GetTempRange(pParse, n);
1092 int jj;
1093 for(jj=0; jj<n; jj++){
1094 int iCol = pIdx->aiColumn[jj];
1095 assert( pIdx->pTable==pItem->pTab );
1096 sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1098 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1099 sqlite3ReleaseTempRange(pParse, r1, n);
1101 sqlite3VdbeResolveLabel(v, addrCont);
1102 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1103 VdbeCoverage(v);
1104 sqlite3VdbeJumpHere(v, addrTop);
1105 pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1106 if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1107 while( ++iLevel < pWInfo->nLevel ){
1108 const SrcItem *pTabItem;
1109 pLevel = &pWInfo->a[iLevel];
1110 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1111 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
1112 pLoop = pLevel->pWLoop;
1113 if( NEVER(pLoop==0) ) continue;
1114 if( pLoop->prereq & notReady ) continue;
1115 if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1116 ==WHERE_BLOOMFILTER
1118 /* This is a candidate for bloom-filter pull-down (early evaluation).
1119 ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1120 ** not able to do early evaluation of bloom filters that make use of
1121 ** the IN operator */
1122 break;
1125 }while( iLevel < pWInfo->nLevel );
1126 sqlite3VdbeJumpHere(v, addrOnce);
1130 #ifndef SQLITE_OMIT_VIRTUALTABLE
1132 ** Allocate and populate an sqlite3_index_info structure. It is the
1133 ** responsibility of the caller to eventually release the structure
1134 ** by passing the pointer returned by this function to freeIndexInfo().
1136 static sqlite3_index_info *allocateIndexInfo(
1137 WhereInfo *pWInfo, /* The WHERE clause */
1138 WhereClause *pWC, /* The WHERE clause being analyzed */
1139 Bitmask mUnusable, /* Ignore terms with these prereqs */
1140 SrcItem *pSrc, /* The FROM clause term that is the vtab */
1141 u16 *pmNoOmit /* Mask of terms not to omit */
1143 int i, j;
1144 int nTerm;
1145 Parse *pParse = pWInfo->pParse;
1146 struct sqlite3_index_constraint *pIdxCons;
1147 struct sqlite3_index_orderby *pIdxOrderBy;
1148 struct sqlite3_index_constraint_usage *pUsage;
1149 struct HiddenIndexInfo *pHidden;
1150 WhereTerm *pTerm;
1151 int nOrderBy;
1152 sqlite3_index_info *pIdxInfo;
1153 u16 mNoOmit = 0;
1154 const Table *pTab;
1155 int eDistinct = 0;
1156 ExprList *pOrderBy = pWInfo->pOrderBy;
1158 assert( pSrc!=0 );
1159 pTab = pSrc->pTab;
1160 assert( pTab!=0 );
1161 assert( IsVirtual(pTab) );
1163 /* Find all WHERE clause constraints referring to this virtual table.
1164 ** Mark each term with the TERM_OK flag. Set nTerm to the number of
1165 ** terms found.
1167 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1168 pTerm->wtFlags &= ~TERM_OK;
1169 if( pTerm->leftCursor != pSrc->iCursor ) continue;
1170 if( pTerm->prereqRight & mUnusable ) continue;
1171 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1172 testcase( pTerm->eOperator & WO_IN );
1173 testcase( pTerm->eOperator & WO_ISNULL );
1174 testcase( pTerm->eOperator & WO_IS );
1175 testcase( pTerm->eOperator & WO_ALL );
1176 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1177 if( pTerm->wtFlags & TERM_VNULL ) continue;
1179 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1180 assert( pTerm->u.x.leftColumn>=XN_ROWID );
1181 assert( pTerm->u.x.leftColumn<pTab->nCol );
1183 /* tag-20191211-002: WHERE-clause constraints are not useful to the
1184 ** right-hand table of a LEFT JOIN nor to the either table of a
1185 ** RIGHT JOIN. See tag-20191211-001 for the
1186 ** equivalent restriction for ordinary tables. */
1187 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
1188 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
1189 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT );
1190 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
1191 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) );
1192 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
1193 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
1194 || pTerm->pExpr->w.iJoin != pSrc->iCursor
1196 continue;
1199 nTerm++;
1200 pTerm->wtFlags |= TERM_OK;
1203 /* If the ORDER BY clause contains only columns in the current
1204 ** virtual table then allocate space for the aOrderBy part of
1205 ** the sqlite3_index_info structure.
1207 nOrderBy = 0;
1208 if( pOrderBy ){
1209 int n = pOrderBy->nExpr;
1210 for(i=0; i<n; i++){
1211 Expr *pExpr = pOrderBy->a[i].pExpr;
1212 Expr *pE2;
1214 /* Skip over constant terms in the ORDER BY clause */
1215 if( sqlite3ExprIsConstant(pExpr) ){
1216 continue;
1219 /* Virtual tables are unable to deal with NULLS FIRST */
1220 if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1222 /* First case - a direct column references without a COLLATE operator */
1223 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1224 assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1225 continue;
1228 /* 2nd case - a column reference with a COLLATE operator. Only match
1229 ** of the COLLATE operator matches the collation of the column. */
1230 if( pExpr->op==TK_COLLATE
1231 && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1232 && pE2->iTable==pSrc->iCursor
1234 const char *zColl; /* The collating sequence name */
1235 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1236 assert( pExpr->u.zToken!=0 );
1237 assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1238 pExpr->iColumn = pE2->iColumn;
1239 if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */
1240 zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1241 if( zColl==0 ) zColl = sqlite3StrBINARY;
1242 if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1245 /* No matches cause a break out of the loop */
1246 break;
1248 if( i==n ){
1249 nOrderBy = n;
1250 if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
1251 eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
1252 }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
1253 eDistinct = 1;
1258 /* Allocate the sqlite3_index_info structure
1260 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1261 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1262 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1263 + sizeof(sqlite3_value*)*nTerm );
1264 if( pIdxInfo==0 ){
1265 sqlite3ErrorMsg(pParse, "out of memory");
1266 return 0;
1268 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1269 pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1270 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1271 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1272 pIdxInfo->aConstraint = pIdxCons;
1273 pIdxInfo->aOrderBy = pIdxOrderBy;
1274 pIdxInfo->aConstraintUsage = pUsage;
1275 pHidden->pWC = pWC;
1276 pHidden->pParse = pParse;
1277 pHidden->eDistinct = eDistinct;
1278 pHidden->mIn = 0;
1279 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1280 u16 op;
1281 if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1282 pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1283 pIdxCons[j].iTermOffset = i;
1284 op = pTerm->eOperator & WO_ALL;
1285 if( op==WO_IN ){
1286 if( (pTerm->wtFlags & TERM_SLICE)==0 ){
1287 pHidden->mIn |= SMASKBIT32(j);
1289 op = WO_EQ;
1291 if( op==WO_AUX ){
1292 pIdxCons[j].op = pTerm->eMatchOp;
1293 }else if( op & (WO_ISNULL|WO_IS) ){
1294 if( op==WO_ISNULL ){
1295 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1296 }else{
1297 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1299 }else{
1300 pIdxCons[j].op = (u8)op;
1301 /* The direct assignment in the previous line is possible only because
1302 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1303 ** following asserts verify this fact. */
1304 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1305 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1306 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1307 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1308 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1309 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1311 if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1312 && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1314 testcase( j!=i );
1315 if( j<16 ) mNoOmit |= (1 << j);
1316 if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1317 if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1321 j++;
1323 assert( j==nTerm );
1324 pIdxInfo->nConstraint = j;
1325 for(i=j=0; i<nOrderBy; i++){
1326 Expr *pExpr = pOrderBy->a[i].pExpr;
1327 if( sqlite3ExprIsConstant(pExpr) ) continue;
1328 assert( pExpr->op==TK_COLUMN
1329 || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1330 && pExpr->iColumn==pExpr->pLeft->iColumn) );
1331 pIdxOrderBy[j].iColumn = pExpr->iColumn;
1332 pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
1333 j++;
1335 pIdxInfo->nOrderBy = j;
1337 *pmNoOmit = mNoOmit;
1338 return pIdxInfo;
1342 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1343 ** and possibly modified by xBestIndex methods.
1345 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1346 HiddenIndexInfo *pHidden;
1347 int i;
1348 assert( pIdxInfo!=0 );
1349 pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1350 assert( pHidden->pParse!=0 );
1351 assert( pHidden->pParse->db==db );
1352 for(i=0; i<pIdxInfo->nConstraint; i++){
1353 sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1354 pHidden->aRhs[i] = 0;
1356 sqlite3DbFree(db, pIdxInfo);
1360 ** The table object reference passed as the second argument to this function
1361 ** must represent a virtual table. This function invokes the xBestIndex()
1362 ** method of the virtual table with the sqlite3_index_info object that
1363 ** comes in as the 3rd argument to this function.
1365 ** If an error occurs, pParse is populated with an error message and an
1366 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1367 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1368 ** the current configuration of "unusable" flags in sqlite3_index_info can
1369 ** not result in a valid plan.
1371 ** Whether or not an error is returned, it is the responsibility of the
1372 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1373 ** that this is required.
1375 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1376 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1377 int rc;
1379 whereTraceIndexInfoInputs(p);
1380 pParse->db->nSchemaLock++;
1381 rc = pVtab->pModule->xBestIndex(pVtab, p);
1382 pParse->db->nSchemaLock--;
1383 whereTraceIndexInfoOutputs(p);
1385 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1386 if( rc==SQLITE_NOMEM ){
1387 sqlite3OomFault(pParse->db);
1388 }else if( !pVtab->zErrMsg ){
1389 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1390 }else{
1391 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1394 sqlite3_free(pVtab->zErrMsg);
1395 pVtab->zErrMsg = 0;
1396 return rc;
1398 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1400 #ifdef SQLITE_ENABLE_STAT4
1402 ** Estimate the location of a particular key among all keys in an
1403 ** index. Store the results in aStat as follows:
1405 ** aStat[0] Est. number of rows less than pRec
1406 ** aStat[1] Est. number of rows equal to pRec
1408 ** Return the index of the sample that is the smallest sample that
1409 ** is greater than or equal to pRec. Note that this index is not an index
1410 ** into the aSample[] array - it is an index into a virtual set of samples
1411 ** based on the contents of aSample[] and the number of fields in record
1412 ** pRec.
1414 static int whereKeyStats(
1415 Parse *pParse, /* Database connection */
1416 Index *pIdx, /* Index to consider domain of */
1417 UnpackedRecord *pRec, /* Vector of values to consider */
1418 int roundUp, /* Round up if true. Round down if false */
1419 tRowcnt *aStat /* OUT: stats written here */
1421 IndexSample *aSample = pIdx->aSample;
1422 int iCol; /* Index of required stats in anEq[] etc. */
1423 int i; /* Index of first sample >= pRec */
1424 int iSample; /* Smallest sample larger than or equal to pRec */
1425 int iMin = 0; /* Smallest sample not yet tested */
1426 int iTest; /* Next sample to test */
1427 int res; /* Result of comparison operation */
1428 int nField; /* Number of fields in pRec */
1429 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */
1431 #ifndef SQLITE_DEBUG
1432 UNUSED_PARAMETER( pParse );
1433 #endif
1434 assert( pRec!=0 );
1435 assert( pIdx->nSample>0 );
1436 assert( pRec->nField>0 );
1438 /* Do a binary search to find the first sample greater than or equal
1439 ** to pRec. If pRec contains a single field, the set of samples to search
1440 ** is simply the aSample[] array. If the samples in aSample[] contain more
1441 ** than one fields, all fields following the first are ignored.
1443 ** If pRec contains N fields, where N is more than one, then as well as the
1444 ** samples in aSample[] (truncated to N fields), the search also has to
1445 ** consider prefixes of those samples. For example, if the set of samples
1446 ** in aSample is:
1448 ** aSample[0] = (a, 5)
1449 ** aSample[1] = (a, 10)
1450 ** aSample[2] = (b, 5)
1451 ** aSample[3] = (c, 100)
1452 ** aSample[4] = (c, 105)
1454 ** Then the search space should ideally be the samples above and the
1455 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1456 ** the code actually searches this set:
1458 ** 0: (a)
1459 ** 1: (a, 5)
1460 ** 2: (a, 10)
1461 ** 3: (a, 10)
1462 ** 4: (b)
1463 ** 5: (b, 5)
1464 ** 6: (c)
1465 ** 7: (c, 100)
1466 ** 8: (c, 105)
1467 ** 9: (c, 105)
1469 ** For each sample in the aSample[] array, N samples are present in the
1470 ** effective sample array. In the above, samples 0 and 1 are based on
1471 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1473 ** Often, sample i of each block of N effective samples has (i+1) fields.
1474 ** Except, each sample may be extended to ensure that it is greater than or
1475 ** equal to the previous sample in the array. For example, in the above,
1476 ** sample 2 is the first sample of a block of N samples, so at first it
1477 ** appears that it should be 1 field in size. However, that would make it
1478 ** smaller than sample 1, so the binary search would not work. As a result,
1479 ** it is extended to two fields. The duplicates that this creates do not
1480 ** cause any problems.
1482 nField = MIN(pRec->nField, pIdx->nSample);
1483 iCol = 0;
1484 iSample = pIdx->nSample * nField;
1486 int iSamp; /* Index in aSample[] of test sample */
1487 int n; /* Number of fields in test sample */
1489 iTest = (iMin+iSample)/2;
1490 iSamp = iTest / nField;
1491 if( iSamp>0 ){
1492 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1493 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1494 ** fields that is greater than the previous effective sample. */
1495 for(n=(iTest % nField) + 1; n<nField; n++){
1496 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1498 }else{
1499 n = iTest + 1;
1502 pRec->nField = n;
1503 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1504 if( res<0 ){
1505 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1506 iMin = iTest+1;
1507 }else if( res==0 && n<nField ){
1508 iLower = aSample[iSamp].anLt[n-1];
1509 iMin = iTest+1;
1510 res = -1;
1511 }else{
1512 iSample = iTest;
1513 iCol = n-1;
1515 }while( res && iMin<iSample );
1516 i = iSample / nField;
1518 #ifdef SQLITE_DEBUG
1519 /* The following assert statements check that the binary search code
1520 ** above found the right answer. This block serves no purpose other
1521 ** than to invoke the asserts. */
1522 if( pParse->db->mallocFailed==0 ){
1523 if( res==0 ){
1524 /* If (res==0) is true, then pRec must be equal to sample i. */
1525 assert( i<pIdx->nSample );
1526 assert( iCol==nField-1 );
1527 pRec->nField = nField;
1528 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1529 || pParse->db->mallocFailed
1531 }else{
1532 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1533 ** all samples in the aSample[] array, pRec must be smaller than the
1534 ** (iCol+1) field prefix of sample i. */
1535 assert( i<=pIdx->nSample && i>=0 );
1536 pRec->nField = iCol+1;
1537 assert( i==pIdx->nSample
1538 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1539 || pParse->db->mallocFailed );
1541 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1542 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1543 ** be greater than or equal to the (iCol) field prefix of sample i.
1544 ** If (i>0), then pRec must also be greater than sample (i-1). */
1545 if( iCol>0 ){
1546 pRec->nField = iCol;
1547 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1548 || pParse->db->mallocFailed );
1550 if( i>0 ){
1551 pRec->nField = nField;
1552 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1553 || pParse->db->mallocFailed );
1557 #endif /* ifdef SQLITE_DEBUG */
1559 if( res==0 ){
1560 /* Record pRec is equal to sample i */
1561 assert( iCol==nField-1 );
1562 aStat[0] = aSample[i].anLt[iCol];
1563 aStat[1] = aSample[i].anEq[iCol];
1564 }else{
1565 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1566 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1567 ** is larger than all samples in the array. */
1568 tRowcnt iUpper, iGap;
1569 if( i>=pIdx->nSample ){
1570 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1571 }else{
1572 iUpper = aSample[i].anLt[iCol];
1575 if( iLower>=iUpper ){
1576 iGap = 0;
1577 }else{
1578 iGap = iUpper - iLower;
1580 if( roundUp ){
1581 iGap = (iGap*2)/3;
1582 }else{
1583 iGap = iGap/3;
1585 aStat[0] = iLower + iGap;
1586 aStat[1] = pIdx->aAvgEq[nField-1];
1589 /* Restore the pRec->nField value before returning. */
1590 pRec->nField = nField;
1591 return i;
1593 #endif /* SQLITE_ENABLE_STAT4 */
1596 ** If it is not NULL, pTerm is a term that provides an upper or lower
1597 ** bound on a range scan. Without considering pTerm, it is estimated
1598 ** that the scan will visit nNew rows. This function returns the number
1599 ** estimated to be visited after taking pTerm into account.
1601 ** If the user explicitly specified a likelihood() value for this term,
1602 ** then the return value is the likelihood multiplied by the number of
1603 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1604 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1606 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1607 LogEst nRet = nNew;
1608 if( pTerm ){
1609 if( pTerm->truthProb<=0 ){
1610 nRet += pTerm->truthProb;
1611 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1612 nRet -= 20; assert( 20==sqlite3LogEst(4) );
1615 return nRet;
1619 #ifdef SQLITE_ENABLE_STAT4
1621 ** Return the affinity for a single column of an index.
1623 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1624 assert( iCol>=0 && iCol<pIdx->nColumn );
1625 if( !pIdx->zColAff ){
1626 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1628 assert( pIdx->zColAff[iCol]!=0 );
1629 return pIdx->zColAff[iCol];
1631 #endif
1634 #ifdef SQLITE_ENABLE_STAT4
1636 ** This function is called to estimate the number of rows visited by a
1637 ** range-scan on a skip-scan index. For example:
1639 ** CREATE INDEX i1 ON t1(a, b, c);
1640 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1642 ** Value pLoop->nOut is currently set to the estimated number of rows
1643 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1644 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1645 ** on the stat4 data for the index. this scan will be peformed multiple
1646 ** times (once for each (a,b) combination that matches a=?) is dealt with
1647 ** by the caller.
1649 ** It does this by scanning through all stat4 samples, comparing values
1650 ** extracted from pLower and pUpper with the corresponding column in each
1651 ** sample. If L and U are the number of samples found to be less than or
1652 ** equal to the values extracted from pLower and pUpper respectively, and
1653 ** N is the total number of samples, the pLoop->nOut value is adjusted
1654 ** as follows:
1656 ** nOut = nOut * ( min(U - L, 1) / N )
1658 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1659 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1660 ** U is set to N.
1662 ** Normally, this function sets *pbDone to 1 before returning. However,
1663 ** if no value can be extracted from either pLower or pUpper (and so the
1664 ** estimate of the number of rows delivered remains unchanged), *pbDone
1665 ** is left as is.
1667 ** If an error occurs, an SQLite error code is returned. Otherwise,
1668 ** SQLITE_OK.
1670 static int whereRangeSkipScanEst(
1671 Parse *pParse, /* Parsing & code generating context */
1672 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1673 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1674 WhereLoop *pLoop, /* Update the .nOut value of this loop */
1675 int *pbDone /* Set to true if at least one expr. value extracted */
1677 Index *p = pLoop->u.btree.pIndex;
1678 int nEq = pLoop->u.btree.nEq;
1679 sqlite3 *db = pParse->db;
1680 int nLower = -1;
1681 int nUpper = p->nSample+1;
1682 int rc = SQLITE_OK;
1683 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1684 CollSeq *pColl;
1686 sqlite3_value *p1 = 0; /* Value extracted from pLower */
1687 sqlite3_value *p2 = 0; /* Value extracted from pUpper */
1688 sqlite3_value *pVal = 0; /* Value extracted from record */
1690 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1691 if( pLower ){
1692 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1693 nLower = 0;
1695 if( pUpper && rc==SQLITE_OK ){
1696 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1697 nUpper = p2 ? 0 : p->nSample;
1700 if( p1 || p2 ){
1701 int i;
1702 int nDiff;
1703 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1704 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1705 if( rc==SQLITE_OK && p1 ){
1706 int res = sqlite3MemCompare(p1, pVal, pColl);
1707 if( res>=0 ) nLower++;
1709 if( rc==SQLITE_OK && p2 ){
1710 int res = sqlite3MemCompare(p2, pVal, pColl);
1711 if( res>=0 ) nUpper++;
1714 nDiff = (nUpper - nLower);
1715 if( nDiff<=0 ) nDiff = 1;
1717 /* If there is both an upper and lower bound specified, and the
1718 ** comparisons indicate that they are close together, use the fallback
1719 ** method (assume that the scan visits 1/64 of the rows) for estimating
1720 ** the number of rows visited. Otherwise, estimate the number of rows
1721 ** using the method described in the header comment for this function. */
1722 if( nDiff!=1 || pUpper==0 || pLower==0 ){
1723 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1724 pLoop->nOut -= nAdjust;
1725 *pbDone = 1;
1726 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1727 nLower, nUpper, nAdjust*-1, pLoop->nOut));
1730 }else{
1731 assert( *pbDone==0 );
1734 sqlite3ValueFree(p1);
1735 sqlite3ValueFree(p2);
1736 sqlite3ValueFree(pVal);
1738 return rc;
1740 #endif /* SQLITE_ENABLE_STAT4 */
1743 ** This function is used to estimate the number of rows that will be visited
1744 ** by scanning an index for a range of values. The range may have an upper
1745 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1746 ** and lower bounds are represented by pLower and pUpper respectively. For
1747 ** example, assuming that index p is on t1(a):
1749 ** ... FROM t1 WHERE a > ? AND a < ? ...
1750 ** |_____| |_____|
1751 ** | |
1752 ** pLower pUpper
1754 ** If either of the upper or lower bound is not present, then NULL is passed in
1755 ** place of the corresponding WhereTerm.
1757 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1758 ** column subject to the range constraint. Or, equivalently, the number of
1759 ** equality constraints optimized by the proposed index scan. For example,
1760 ** assuming index p is on t1(a, b), and the SQL query is:
1762 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1764 ** then nEq is set to 1 (as the range restricted column, b, is the second
1765 ** left-most column of the index). Or, if the query is:
1767 ** ... FROM t1 WHERE a > ? AND a < ? ...
1769 ** then nEq is set to 0.
1771 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1772 ** number of rows that the index scan is expected to visit without
1773 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1774 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1775 ** to account for the range constraints pLower and pUpper.
1777 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1778 ** used, a single range inequality reduces the search space by a factor of 4.
1779 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1780 ** rows visited by a factor of 64.
1782 static int whereRangeScanEst(
1783 Parse *pParse, /* Parsing & code generating context */
1784 WhereLoopBuilder *pBuilder,
1785 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */
1786 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */
1787 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */
1789 int rc = SQLITE_OK;
1790 int nOut = pLoop->nOut;
1791 LogEst nNew;
1793 #ifdef SQLITE_ENABLE_STAT4
1794 Index *p = pLoop->u.btree.pIndex;
1795 int nEq = pLoop->u.btree.nEq;
1797 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1798 && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1800 if( nEq==pBuilder->nRecValid ){
1801 UnpackedRecord *pRec = pBuilder->pRec;
1802 tRowcnt a[2];
1803 int nBtm = pLoop->u.btree.nBtm;
1804 int nTop = pLoop->u.btree.nTop;
1806 /* Variable iLower will be set to the estimate of the number of rows in
1807 ** the index that are less than the lower bound of the range query. The
1808 ** lower bound being the concatenation of $P and $L, where $P is the
1809 ** key-prefix formed by the nEq values matched against the nEq left-most
1810 ** columns of the index, and $L is the value in pLower.
1812 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1813 ** is not a simple variable or literal value), the lower bound of the
1814 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1815 ** if $L is available, whereKeyStats() is called for both ($P) and
1816 ** ($P:$L) and the larger of the two returned values is used.
1818 ** Similarly, iUpper is to be set to the estimate of the number of rows
1819 ** less than the upper bound of the range query. Where the upper bound
1820 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1821 ** of iUpper are requested of whereKeyStats() and the smaller used.
1823 ** The number of rows between the two bounds is then just iUpper-iLower.
1825 tRowcnt iLower; /* Rows less than the lower bound */
1826 tRowcnt iUpper; /* Rows less than the upper bound */
1827 int iLwrIdx = -2; /* aSample[] for the lower bound */
1828 int iUprIdx = -1; /* aSample[] for the upper bound */
1830 if( pRec ){
1831 testcase( pRec->nField!=pBuilder->nRecValid );
1832 pRec->nField = pBuilder->nRecValid;
1834 /* Determine iLower and iUpper using ($P) only. */
1835 if( nEq==0 ){
1836 iLower = 0;
1837 iUpper = p->nRowEst0;
1838 }else{
1839 /* Note: this call could be optimized away - since the same values must
1840 ** have been requested when testing key $P in whereEqualScanEst(). */
1841 whereKeyStats(pParse, p, pRec, 0, a);
1842 iLower = a[0];
1843 iUpper = a[0] + a[1];
1846 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1847 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1848 assert( p->aSortOrder!=0 );
1849 if( p->aSortOrder[nEq] ){
1850 /* The roles of pLower and pUpper are swapped for a DESC index */
1851 SWAP(WhereTerm*, pLower, pUpper);
1852 SWAP(int, nBtm, nTop);
1855 /* If possible, improve on the iLower estimate using ($P:$L). */
1856 if( pLower ){
1857 int n; /* Values extracted from pExpr */
1858 Expr *pExpr = pLower->pExpr->pRight;
1859 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1860 if( rc==SQLITE_OK && n ){
1861 tRowcnt iNew;
1862 u16 mask = WO_GT|WO_LE;
1863 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1864 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1865 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1866 if( iNew>iLower ) iLower = iNew;
1867 nOut--;
1868 pLower = 0;
1872 /* If possible, improve on the iUpper estimate using ($P:$U). */
1873 if( pUpper ){
1874 int n; /* Values extracted from pExpr */
1875 Expr *pExpr = pUpper->pExpr->pRight;
1876 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1877 if( rc==SQLITE_OK && n ){
1878 tRowcnt iNew;
1879 u16 mask = WO_GT|WO_LE;
1880 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1881 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1882 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1883 if( iNew<iUpper ) iUpper = iNew;
1884 nOut--;
1885 pUpper = 0;
1889 pBuilder->pRec = pRec;
1890 if( rc==SQLITE_OK ){
1891 if( iUpper>iLower ){
1892 nNew = sqlite3LogEst(iUpper - iLower);
1893 /* TUNING: If both iUpper and iLower are derived from the same
1894 ** sample, then assume they are 4x more selective. This brings
1895 ** the estimated selectivity more in line with what it would be
1896 ** if estimated without the use of STAT4 tables. */
1897 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) );
1898 }else{
1899 nNew = 10; assert( 10==sqlite3LogEst(2) );
1901 if( nNew<nOut ){
1902 nOut = nNew;
1904 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n",
1905 (u32)iLower, (u32)iUpper, nOut));
1907 }else{
1908 int bDone = 0;
1909 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1910 if( bDone ) return rc;
1913 #else
1914 UNUSED_PARAMETER(pParse);
1915 UNUSED_PARAMETER(pBuilder);
1916 assert( pLower || pUpper );
1917 #endif
1918 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1919 nNew = whereRangeAdjust(pLower, nOut);
1920 nNew = whereRangeAdjust(pUpper, nNew);
1922 /* TUNING: If there is both an upper and lower limit and neither limit
1923 ** has an application-defined likelihood(), assume the range is
1924 ** reduced by an additional 75%. This means that, by default, an open-ended
1925 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1926 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1927 ** match 1/64 of the index. */
1928 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1929 nNew -= 20;
1932 nOut -= (pLower!=0) + (pUpper!=0);
1933 if( nNew<10 ) nNew = 10;
1934 if( nNew<nOut ) nOut = nNew;
1935 #if defined(WHERETRACE_ENABLED)
1936 if( pLoop->nOut>nOut ){
1937 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1938 pLoop->nOut, nOut));
1940 #endif
1941 pLoop->nOut = (LogEst)nOut;
1942 return rc;
1945 #ifdef SQLITE_ENABLE_STAT4
1947 ** Estimate the number of rows that will be returned based on
1948 ** an equality constraint x=VALUE and where that VALUE occurs in
1949 ** the histogram data. This only works when x is the left-most
1950 ** column of an index and sqlite_stat4 histogram data is available
1951 ** for that index. When pExpr==NULL that means the constraint is
1952 ** "x IS NULL" instead of "x=VALUE".
1954 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1955 ** If unable to make an estimate, leave *pnRow unchanged and return
1956 ** non-zero.
1958 ** This routine can fail if it is unable to load a collating sequence
1959 ** required for string comparison, or if unable to allocate memory
1960 ** for a UTF conversion required for comparison. The error is stored
1961 ** in the pParse structure.
1963 static int whereEqualScanEst(
1964 Parse *pParse, /* Parsing & code generating context */
1965 WhereLoopBuilder *pBuilder,
1966 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */
1967 tRowcnt *pnRow /* Write the revised row estimate here */
1969 Index *p = pBuilder->pNew->u.btree.pIndex;
1970 int nEq = pBuilder->pNew->u.btree.nEq;
1971 UnpackedRecord *pRec = pBuilder->pRec;
1972 int rc; /* Subfunction return code */
1973 tRowcnt a[2]; /* Statistics */
1974 int bOk;
1976 assert( nEq>=1 );
1977 assert( nEq<=p->nColumn );
1978 assert( p->aSample!=0 );
1979 assert( p->nSample>0 );
1980 assert( pBuilder->nRecValid<nEq );
1982 /* If values are not available for all fields of the index to the left
1983 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1984 if( pBuilder->nRecValid<(nEq-1) ){
1985 return SQLITE_NOTFOUND;
1988 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1989 ** below would return the same value. */
1990 if( nEq>=p->nColumn ){
1991 *pnRow = 1;
1992 return SQLITE_OK;
1995 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1996 pBuilder->pRec = pRec;
1997 if( rc!=SQLITE_OK ) return rc;
1998 if( bOk==0 ) return SQLITE_NOTFOUND;
1999 pBuilder->nRecValid = nEq;
2001 whereKeyStats(pParse, p, pRec, 0, a);
2002 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
2003 p->zName, nEq-1, (int)a[1]));
2004 *pnRow = a[1];
2006 return rc;
2008 #endif /* SQLITE_ENABLE_STAT4 */
2010 #ifdef SQLITE_ENABLE_STAT4
2012 ** Estimate the number of rows that will be returned based on
2013 ** an IN constraint where the right-hand side of the IN operator
2014 ** is a list of values. Example:
2016 ** WHERE x IN (1,2,3,4)
2018 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2019 ** If unable to make an estimate, leave *pnRow unchanged and return
2020 ** non-zero.
2022 ** This routine can fail if it is unable to load a collating sequence
2023 ** required for string comparison, or if unable to allocate memory
2024 ** for a UTF conversion required for comparison. The error is stored
2025 ** in the pParse structure.
2027 static int whereInScanEst(
2028 Parse *pParse, /* Parsing & code generating context */
2029 WhereLoopBuilder *pBuilder,
2030 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2031 tRowcnt *pnRow /* Write the revised row estimate here */
2033 Index *p = pBuilder->pNew->u.btree.pIndex;
2034 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
2035 int nRecValid = pBuilder->nRecValid;
2036 int rc = SQLITE_OK; /* Subfunction return code */
2037 tRowcnt nEst; /* Number of rows for a single term */
2038 tRowcnt nRowEst = 0; /* New estimate of the number of rows */
2039 int i; /* Loop counter */
2041 assert( p->aSample!=0 );
2042 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2043 nEst = nRow0;
2044 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2045 nRowEst += nEst;
2046 pBuilder->nRecValid = nRecValid;
2049 if( rc==SQLITE_OK ){
2050 if( nRowEst > nRow0 ) nRowEst = nRow0;
2051 *pnRow = nRowEst;
2052 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2054 assert( pBuilder->nRecValid==nRecValid );
2055 return rc;
2057 #endif /* SQLITE_ENABLE_STAT4 */
2060 #ifdef WHERETRACE_ENABLED
2062 ** Print the content of a WhereTerm object
2064 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2065 if( pTerm==0 ){
2066 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2067 }else{
2068 char zType[8];
2069 char zLeft[50];
2070 memcpy(zType, "....", 5);
2071 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2072 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E';
2073 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
2074 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C';
2075 if( pTerm->eOperator & WO_SINGLE ){
2076 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2077 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2078 pTerm->leftCursor, pTerm->u.x.leftColumn);
2079 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2080 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2081 pTerm->u.pOrInfo->indexable);
2082 }else{
2083 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2085 sqlite3DebugPrintf(
2086 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2087 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2088 /* The 0x10000 .wheretrace flag causes extra information to be
2089 ** shown about each Term */
2090 if( sqlite3WhereTrace & 0x10000 ){
2091 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2092 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2094 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2095 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2097 if( pTerm->iParent>=0 ){
2098 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2100 sqlite3DebugPrintf("\n");
2101 sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2104 #endif
2106 #ifdef WHERETRACE_ENABLED
2108 ** Show the complete content of a WhereClause
2110 void sqlite3WhereClausePrint(WhereClause *pWC){
2111 int i;
2112 for(i=0; i<pWC->nTerm; i++){
2113 sqlite3WhereTermPrint(&pWC->a[i], i);
2116 #endif
2118 #ifdef WHERETRACE_ENABLED
2120 ** Print a WhereLoop object for debugging purposes
2122 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2123 WhereInfo *pWInfo = pWC->pWInfo;
2124 int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2125 SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2126 Table *pTab = pItem->pTab;
2127 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2128 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2129 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2130 sqlite3DebugPrintf(" %12s",
2131 pItem->zAlias ? pItem->zAlias : pTab->zName);
2132 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2133 const char *zName;
2134 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2135 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2136 int i = sqlite3Strlen30(zName) - 1;
2137 while( zName[i]!='_' ) i--;
2138 zName += i;
2140 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2141 }else{
2142 sqlite3DebugPrintf("%20s","");
2144 }else{
2145 char *z;
2146 if( p->u.vtab.idxStr ){
2147 z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2148 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2149 }else{
2150 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2152 sqlite3DebugPrintf(" %-19s", z);
2153 sqlite3_free(z);
2155 if( p->wsFlags & WHERE_SKIPSCAN ){
2156 sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2157 }else{
2158 sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2160 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2161 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2162 int i;
2163 for(i=0; i<p->nLTerm; i++){
2164 sqlite3WhereTermPrint(p->aLTerm[i], i);
2168 #endif
2171 ** Convert bulk memory into a valid WhereLoop that can be passed
2172 ** to whereLoopClear harmlessly.
2174 static void whereLoopInit(WhereLoop *p){
2175 p->aLTerm = p->aLTermSpace;
2176 p->nLTerm = 0;
2177 p->nLSlot = ArraySize(p->aLTermSpace);
2178 p->wsFlags = 0;
2182 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
2184 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2185 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2186 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2187 sqlite3_free(p->u.vtab.idxStr);
2188 p->u.vtab.needFree = 0;
2189 p->u.vtab.idxStr = 0;
2190 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2191 sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2192 sqlite3DbFreeNN(db, p->u.btree.pIndex);
2193 p->u.btree.pIndex = 0;
2199 ** Deallocate internal memory used by a WhereLoop object
2201 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2202 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2203 whereLoopClearUnion(db, p);
2204 whereLoopInit(p);
2208 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2210 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2211 WhereTerm **paNew;
2212 if( p->nLSlot>=n ) return SQLITE_OK;
2213 n = (n+7)&~7;
2214 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2215 if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2216 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2217 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2218 p->aLTerm = paNew;
2219 p->nLSlot = n;
2220 return SQLITE_OK;
2224 ** Transfer content from the second pLoop into the first.
2226 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2227 whereLoopClearUnion(db, pTo);
2228 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
2229 memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2230 return SQLITE_NOMEM_BKPT;
2232 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2233 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2234 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2235 pFrom->u.vtab.needFree = 0;
2236 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2237 pFrom->u.btree.pIndex = 0;
2239 return SQLITE_OK;
2243 ** Delete a WhereLoop object
2245 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2246 whereLoopClear(db, p);
2247 sqlite3DbFreeNN(db, p);
2251 ** Free a WhereInfo structure
2253 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2254 assert( pWInfo!=0 );
2255 sqlite3WhereClauseClear(&pWInfo->sWC);
2256 while( pWInfo->pLoops ){
2257 WhereLoop *p = pWInfo->pLoops;
2258 pWInfo->pLoops = p->pNextLoop;
2259 whereLoopDelete(db, p);
2261 assert( pWInfo->pExprMods==0 );
2262 while( pWInfo->pMemToFree ){
2263 WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
2264 sqlite3DbFreeNN(db, pWInfo->pMemToFree);
2265 pWInfo->pMemToFree = pNext;
2267 sqlite3DbFreeNN(db, pWInfo);
2270 /* Undo all Expr node modifications
2272 static void whereUndoExprMods(WhereInfo *pWInfo){
2273 while( pWInfo->pExprMods ){
2274 WhereExprMod *p = pWInfo->pExprMods;
2275 pWInfo->pExprMods = p->pNext;
2276 memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2277 sqlite3DbFree(pWInfo->pParse->db, p);
2282 ** Return TRUE if all of the following are true:
2284 ** (1) X has the same or lower cost, or returns the same or fewer rows,
2285 ** than Y.
2286 ** (2) X uses fewer WHERE clause terms than Y
2287 ** (3) Every WHERE clause term used by X is also used by Y
2288 ** (4) X skips at least as many columns as Y
2289 ** (5) If X is a covering index, than Y is too
2291 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2292 ** If X is a proper subset of Y then Y is a better choice and ought
2293 ** to have a lower cost. This routine returns TRUE when that cost
2294 ** relationship is inverted and needs to be adjusted. Constraint (4)
2295 ** was added because if X uses skip-scan less than Y it still might
2296 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5)
2297 ** was added because a covering index probably deserves to have a lower cost
2298 ** than a non-covering index even if it is a proper subset.
2300 static int whereLoopCheaperProperSubset(
2301 const WhereLoop *pX, /* First WhereLoop to compare */
2302 const WhereLoop *pY /* Compare against this WhereLoop */
2304 int i, j;
2305 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2306 return 0; /* X is not a subset of Y */
2308 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2309 if( pY->nSkip > pX->nSkip ) return 0;
2310 for(i=pX->nLTerm-1; i>=0; i--){
2311 if( pX->aLTerm[i]==0 ) continue;
2312 for(j=pY->nLTerm-1; j>=0; j--){
2313 if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2315 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */
2317 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2318 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2319 return 0; /* Constraint (5) */
2321 return 1; /* All conditions meet */
2325 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2326 ** upwards or downwards so that:
2328 ** (1) pTemplate costs less than any other WhereLoops that are a proper
2329 ** subset of pTemplate
2331 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2332 ** is a proper subset.
2334 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2335 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2336 ** also used by Y.
2338 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2339 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2340 for(; p; p=p->pNextLoop){
2341 if( p->iTab!=pTemplate->iTab ) continue;
2342 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2343 if( whereLoopCheaperProperSubset(p, pTemplate) ){
2344 /* Adjust pTemplate cost downward so that it is cheaper than its
2345 ** subset p. */
2346 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2347 pTemplate->rRun, pTemplate->nOut,
2348 MIN(p->rRun, pTemplate->rRun),
2349 MIN(p->nOut - 1, pTemplate->nOut)));
2350 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2351 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2352 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2353 /* Adjust pTemplate cost upward so that it is costlier than p since
2354 ** pTemplate is a proper subset of p */
2355 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2356 pTemplate->rRun, pTemplate->nOut,
2357 MAX(p->rRun, pTemplate->rRun),
2358 MAX(p->nOut + 1, pTemplate->nOut)));
2359 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2360 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2366 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2367 ** replaced by pTemplate.
2369 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2370 ** In other words if pTemplate ought to be dropped from further consideration.
2372 ** If pX is a WhereLoop that pTemplate can replace, then return the
2373 ** link that points to pX.
2375 ** If pTemplate cannot replace any existing element of the list but needs
2376 ** to be added to the list as a new entry, then return a pointer to the
2377 ** tail of the list.
2379 static WhereLoop **whereLoopFindLesser(
2380 WhereLoop **ppPrev,
2381 const WhereLoop *pTemplate
2383 WhereLoop *p;
2384 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2385 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2386 /* If either the iTab or iSortIdx values for two WhereLoop are different
2387 ** then those WhereLoops need to be considered separately. Neither is
2388 ** a candidate to replace the other. */
2389 continue;
2391 /* In the current implementation, the rSetup value is either zero
2392 ** or the cost of building an automatic index (NlogN) and the NlogN
2393 ** is the same for compatible WhereLoops. */
2394 assert( p->rSetup==0 || pTemplate->rSetup==0
2395 || p->rSetup==pTemplate->rSetup );
2397 /* whereLoopAddBtree() always generates and inserts the automatic index
2398 ** case first. Hence compatible candidate WhereLoops never have a larger
2399 ** rSetup. Call this SETUP-INVARIANT */
2400 assert( p->rSetup>=pTemplate->rSetup );
2402 /* Any loop using an appliation-defined index (or PRIMARY KEY or
2403 ** UNIQUE constraint) with one or more == constraints is better
2404 ** than an automatic index. Unless it is a skip-scan. */
2405 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2406 && (pTemplate->nSkip)==0
2407 && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2408 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2409 && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2411 break;
2414 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2415 ** discarded. WhereLoop p is better if:
2416 ** (1) p has no more dependencies than pTemplate, and
2417 ** (2) p has an equal or lower cost than pTemplate
2419 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */
2420 && p->rSetup<=pTemplate->rSetup /* (2a) */
2421 && p->rRun<=pTemplate->rRun /* (2b) */
2422 && p->nOut<=pTemplate->nOut /* (2c) */
2424 return 0; /* Discard pTemplate */
2427 /* If pTemplate is always better than p, then cause p to be overwritten
2428 ** with pTemplate. pTemplate is better than p if:
2429 ** (1) pTemplate has no more dependences than p, and
2430 ** (2) pTemplate has an equal or lower cost than p.
2432 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */
2433 && p->rRun>=pTemplate->rRun /* (2a) */
2434 && p->nOut>=pTemplate->nOut /* (2b) */
2436 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2437 break; /* Cause p to be overwritten by pTemplate */
2440 return ppPrev;
2444 ** Insert or replace a WhereLoop entry using the template supplied.
2446 ** An existing WhereLoop entry might be overwritten if the new template
2447 ** is better and has fewer dependencies. Or the template will be ignored
2448 ** and no insert will occur if an existing WhereLoop is faster and has
2449 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2450 ** added based on the template.
2452 ** If pBuilder->pOrSet is not NULL then we care about only the
2453 ** prerequisites and rRun and nOut costs of the N best loops. That
2454 ** information is gathered in the pBuilder->pOrSet object. This special
2455 ** processing mode is used only for OR clause processing.
2457 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2458 ** still might overwrite similar loops with the new template if the
2459 ** new template is better. Loops may be overwritten if the following
2460 ** conditions are met:
2462 ** (1) They have the same iTab.
2463 ** (2) They have the same iSortIdx.
2464 ** (3) The template has same or fewer dependencies than the current loop
2465 ** (4) The template has the same or lower cost than the current loop
2467 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2468 WhereLoop **ppPrev, *p;
2469 WhereInfo *pWInfo = pBuilder->pWInfo;
2470 sqlite3 *db = pWInfo->pParse->db;
2471 int rc;
2473 /* Stop the search once we hit the query planner search limit */
2474 if( pBuilder->iPlanLimit==0 ){
2475 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2476 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2477 return SQLITE_DONE;
2479 pBuilder->iPlanLimit--;
2481 whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2483 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2484 ** and prereqs.
2486 if( pBuilder->pOrSet!=0 ){
2487 if( pTemplate->nLTerm ){
2488 #if WHERETRACE_ENABLED
2489 u16 n = pBuilder->pOrSet->n;
2490 int x =
2491 #endif
2492 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2493 pTemplate->nOut);
2494 #if WHERETRACE_ENABLED /* 0x8 */
2495 if( sqlite3WhereTrace & 0x8 ){
2496 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n);
2497 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2499 #endif
2501 return SQLITE_OK;
2504 /* Look for an existing WhereLoop to replace with pTemplate
2506 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2508 if( ppPrev==0 ){
2509 /* There already exists a WhereLoop on the list that is better
2510 ** than pTemplate, so just ignore pTemplate */
2511 #if WHERETRACE_ENABLED /* 0x8 */
2512 if( sqlite3WhereTrace & 0x8 ){
2513 sqlite3DebugPrintf(" skip: ");
2514 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2516 #endif
2517 return SQLITE_OK;
2518 }else{
2519 p = *ppPrev;
2522 /* If we reach this point it means that either p[] should be overwritten
2523 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2524 ** WhereLoop and insert it.
2526 #if WHERETRACE_ENABLED /* 0x8 */
2527 if( sqlite3WhereTrace & 0x8 ){
2528 if( p!=0 ){
2529 sqlite3DebugPrintf("replace: ");
2530 sqlite3WhereLoopPrint(p, pBuilder->pWC);
2531 sqlite3DebugPrintf(" with: ");
2532 }else{
2533 sqlite3DebugPrintf(" add: ");
2535 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2537 #endif
2538 if( p==0 ){
2539 /* Allocate a new WhereLoop to add to the end of the list */
2540 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2541 if( p==0 ) return SQLITE_NOMEM_BKPT;
2542 whereLoopInit(p);
2543 p->pNextLoop = 0;
2544 }else{
2545 /* We will be overwriting WhereLoop p[]. But before we do, first
2546 ** go through the rest of the list and delete any other entries besides
2547 ** p[] that are also supplated by pTemplate */
2548 WhereLoop **ppTail = &p->pNextLoop;
2549 WhereLoop *pToDel;
2550 while( *ppTail ){
2551 ppTail = whereLoopFindLesser(ppTail, pTemplate);
2552 if( ppTail==0 ) break;
2553 pToDel = *ppTail;
2554 if( pToDel==0 ) break;
2555 *ppTail = pToDel->pNextLoop;
2556 #if WHERETRACE_ENABLED /* 0x8 */
2557 if( sqlite3WhereTrace & 0x8 ){
2558 sqlite3DebugPrintf(" delete: ");
2559 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2561 #endif
2562 whereLoopDelete(db, pToDel);
2565 rc = whereLoopXfer(db, p, pTemplate);
2566 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2567 Index *pIndex = p->u.btree.pIndex;
2568 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2569 p->u.btree.pIndex = 0;
2572 return rc;
2576 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2577 ** WHERE clause that reference the loop but which are not used by an
2578 ** index.
2580 ** For every WHERE clause term that is not used by the index
2581 ** and which has a truth probability assigned by one of the likelihood(),
2582 ** likely(), or unlikely() SQL functions, reduce the estimated number
2583 ** of output rows by the probability specified.
2585 ** TUNING: For every WHERE clause term that is not used by the index
2586 ** and which does not have an assigned truth probability, heuristics
2587 ** described below are used to try to estimate the truth probability.
2588 ** TODO --> Perhaps this is something that could be improved by better
2589 ** table statistics.
2591 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2592 ** value corresponds to -1 in LogEst notation, so this means decrement
2593 ** the WhereLoop.nOut field for every such WHERE clause term.
2595 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2596 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2597 ** final output row estimate is no greater than 1/4 of the total number
2598 ** of rows in the table. In other words, assume that x==EXPR will filter
2599 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2600 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2601 ** on the "x" column and so in that case only cap the output row estimate
2602 ** at 1/2 instead of 1/4.
2604 static void whereLoopOutputAdjust(
2605 WhereClause *pWC, /* The WHERE clause */
2606 WhereLoop *pLoop, /* The loop to adjust downward */
2607 LogEst nRow /* Number of rows in the entire table */
2609 WhereTerm *pTerm, *pX;
2610 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2611 int i, j;
2612 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */
2614 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2615 for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2616 assert( pTerm!=0 );
2617 if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2618 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2619 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2620 for(j=pLoop->nLTerm-1; j>=0; j--){
2621 pX = pLoop->aLTerm[j];
2622 if( pX==0 ) continue;
2623 if( pX==pTerm ) break;
2624 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2626 if( j<0 ){
2627 if( pLoop->maskSelf==pTerm->prereqAll ){
2628 /* If there are extra terms in the WHERE clause not used by an index
2629 ** that depend only on the table being scanned, and that will tend to
2630 ** cause many rows to be omitted, then mark that table as
2631 ** "self-culling".
2633 ** 2022-03-24: Self-culling only applies if either the extra terms
2634 ** are straight comparison operators that are non-true with NULL
2635 ** operand, or if the loop is not an OUTER JOIN.
2637 if( (pTerm->eOperator & 0x3f)!=0
2638 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
2639 & (JT_LEFT|JT_LTORJ))==0
2641 pLoop->wsFlags |= WHERE_SELFCULL;
2644 if( pTerm->truthProb<=0 ){
2645 /* If a truth probability is specified using the likelihood() hints,
2646 ** then use the probability provided by the application. */
2647 pLoop->nOut += pTerm->truthProb;
2648 }else{
2649 /* In the absence of explicit truth probabilities, use heuristics to
2650 ** guess a reasonable truth probability. */
2651 pLoop->nOut--;
2652 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2653 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */
2655 Expr *pRight = pTerm->pExpr->pRight;
2656 int k = 0;
2657 testcase( pTerm->pExpr->op==TK_IS );
2658 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2659 k = 10;
2660 }else{
2661 k = 20;
2663 if( iReduce<k ){
2664 pTerm->wtFlags |= TERM_HEURTRUTH;
2665 iReduce = k;
2671 if( pLoop->nOut > nRow-iReduce ){
2672 pLoop->nOut = nRow - iReduce;
2677 ** Term pTerm is a vector range comparison operation. The first comparison
2678 ** in the vector can be optimized using column nEq of the index. This
2679 ** function returns the total number of vector elements that can be used
2680 ** as part of the range comparison.
2682 ** For example, if the query is:
2684 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2686 ** and the index:
2688 ** CREATE INDEX ... ON (a, b, c, d, e)
2690 ** then this function would be invoked with nEq=1. The value returned in
2691 ** this case is 3.
2693 static int whereRangeVectorLen(
2694 Parse *pParse, /* Parsing context */
2695 int iCur, /* Cursor open on pIdx */
2696 Index *pIdx, /* The index to be used for a inequality constraint */
2697 int nEq, /* Number of prior equality constraints on same index */
2698 WhereTerm *pTerm /* The vector inequality constraint */
2700 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2701 int i;
2703 nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2704 for(i=1; i<nCmp; i++){
2705 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2706 ** of the index. If not, exit the loop. */
2707 char aff; /* Comparison affinity */
2708 char idxaff = 0; /* Indexed columns affinity */
2709 CollSeq *pColl; /* Comparison collation sequence */
2710 Expr *pLhs, *pRhs;
2712 assert( ExprUseXList(pTerm->pExpr->pLeft) );
2713 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2714 pRhs = pTerm->pExpr->pRight;
2715 if( ExprUseXSelect(pRhs) ){
2716 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2717 }else{
2718 pRhs = pRhs->x.pList->a[i].pExpr;
2721 /* Check that the LHS of the comparison is a column reference to
2722 ** the right column of the right source table. And that the sort
2723 ** order of the index column is the same as the sort order of the
2724 ** leftmost index column. */
2725 if( pLhs->op!=TK_COLUMN
2726 || pLhs->iTable!=iCur
2727 || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2728 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2730 break;
2733 testcase( pLhs->iColumn==XN_ROWID );
2734 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2735 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2736 if( aff!=idxaff ) break;
2738 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2739 if( pColl==0 ) break;
2740 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2742 return i;
2746 ** Adjust the cost C by the costMult facter T. This only occurs if
2747 ** compiled with -DSQLITE_ENABLE_COSTMULT
2749 #ifdef SQLITE_ENABLE_COSTMULT
2750 # define ApplyCostMultiplier(C,T) C += T
2751 #else
2752 # define ApplyCostMultiplier(C,T)
2753 #endif
2756 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2757 ** index pIndex. Try to match one more.
2759 ** When this function is called, pBuilder->pNew->nOut contains the
2760 ** number of rows expected to be visited by filtering using the nEq
2761 ** terms only. If it is modified, this value is restored before this
2762 ** function returns.
2764 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2765 ** a fake index used for the INTEGER PRIMARY KEY.
2767 static int whereLoopAddBtreeIndex(
2768 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */
2769 SrcItem *pSrc, /* FROM clause term being analyzed */
2770 Index *pProbe, /* An index on pSrc */
2771 LogEst nInMul /* log(Number of iterations due to IN) */
2773 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */
2774 Parse *pParse = pWInfo->pParse; /* Parsing context */
2775 sqlite3 *db = pParse->db; /* Database connection malloc context */
2776 WhereLoop *pNew; /* Template WhereLoop under construction */
2777 WhereTerm *pTerm; /* A WhereTerm under consideration */
2778 int opMask; /* Valid operators for constraints */
2779 WhereScan scan; /* Iterator for WHERE terms */
2780 Bitmask saved_prereq; /* Original value of pNew->prereq */
2781 u16 saved_nLTerm; /* Original value of pNew->nLTerm */
2782 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */
2783 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */
2784 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */
2785 u16 saved_nSkip; /* Original value of pNew->nSkip */
2786 u32 saved_wsFlags; /* Original value of pNew->wsFlags */
2787 LogEst saved_nOut; /* Original value of pNew->nOut */
2788 int rc = SQLITE_OK; /* Return code */
2789 LogEst rSize; /* Number of rows in the table */
2790 LogEst rLogSize; /* Logarithm of table size */
2791 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2793 pNew = pBuilder->pNew;
2794 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2795 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2796 pProbe->pTable->zName,pProbe->zName,
2797 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2799 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2800 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2801 if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2802 opMask = WO_LT|WO_LE;
2803 }else{
2804 assert( pNew->u.btree.nBtm==0 );
2805 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2807 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2809 assert( pNew->u.btree.nEq<pProbe->nColumn );
2810 assert( pNew->u.btree.nEq<pProbe->nKeyCol
2811 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2813 saved_nEq = pNew->u.btree.nEq;
2814 saved_nBtm = pNew->u.btree.nBtm;
2815 saved_nTop = pNew->u.btree.nTop;
2816 saved_nSkip = pNew->nSkip;
2817 saved_nLTerm = pNew->nLTerm;
2818 saved_wsFlags = pNew->wsFlags;
2819 saved_prereq = pNew->prereq;
2820 saved_nOut = pNew->nOut;
2821 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2822 opMask, pProbe);
2823 pNew->rSetup = 0;
2824 rSize = pProbe->aiRowLogEst[0];
2825 rLogSize = estLog(rSize);
2826 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2827 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */
2828 LogEst rCostIdx;
2829 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */
2830 int nIn = 0;
2831 #ifdef SQLITE_ENABLE_STAT4
2832 int nRecValid = pBuilder->nRecValid;
2833 #endif
2834 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2835 && indexColumnNotNull(pProbe, saved_nEq)
2837 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2839 if( pTerm->prereqRight & pNew->maskSelf ) continue;
2841 /* Do not allow the upper bound of a LIKE optimization range constraint
2842 ** to mix with a lower range bound from some other source */
2843 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2845 /* tag-20191211-001: Do not allow constraints from the WHERE clause to
2846 ** be used by the right table of a LEFT JOIN nor by the left table of a
2847 ** RIGHT JOIN. Only constraints in the ON clause are allowed.
2848 ** See tag-20191211-002 for the vtab equivalent.
2850 ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f
2851 ** for an example of a WHERE clause constraints that may not be used on
2852 ** the right table of a RIGHT JOIN because the constraint implies a
2853 ** not-NULL condition on the left table of the RIGHT JOIN.
2855 ** 2022-06-10: The same condition applies to termCanDriveIndex() above.
2856 ** https://sqlite.org/forum/forumpost/51e6959f61
2858 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
2859 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
2860 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT );
2861 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
2862 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
2863 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
2864 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
2865 || pTerm->pExpr->w.iJoin != pSrc->iCursor
2867 continue;
2871 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2872 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2873 }else{
2874 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2876 pNew->wsFlags = saved_wsFlags;
2877 pNew->u.btree.nEq = saved_nEq;
2878 pNew->u.btree.nBtm = saved_nBtm;
2879 pNew->u.btree.nTop = saved_nTop;
2880 pNew->nLTerm = saved_nLTerm;
2881 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2882 pNew->aLTerm[pNew->nLTerm++] = pTerm;
2883 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2885 assert( nInMul==0
2886 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2887 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2888 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2891 if( eOp & WO_IN ){
2892 Expr *pExpr = pTerm->pExpr;
2893 if( ExprUseXSelect(pExpr) ){
2894 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
2895 int i;
2896 nIn = 46; assert( 46==sqlite3LogEst(25) );
2898 /* The expression may actually be of the form (x, y) IN (SELECT...).
2899 ** In this case there is a separate term for each of (x) and (y).
2900 ** However, the nIn multiplier should only be applied once, not once
2901 ** for each such term. The following loop checks that pTerm is the
2902 ** first such term in use, and sets nIn back to 0 if it is not. */
2903 for(i=0; i<pNew->nLTerm-1; i++){
2904 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2906 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2907 /* "x IN (value, value, ...)" */
2908 nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2910 if( pProbe->hasStat1 && rLogSize>=10 ){
2911 LogEst M, logK, x;
2912 /* Let:
2913 ** N = the total number of rows in the table
2914 ** K = the number of entries on the RHS of the IN operator
2915 ** M = the number of rows in the table that match terms to the
2916 ** to the left in the same index. If the IN operator is on
2917 ** the left-most index column, M==N.
2919 ** Given the definitions above, it is better to omit the IN operator
2920 ** from the index lookup and instead do a scan of the M elements,
2921 ** testing each scanned row against the IN operator separately, if:
2923 ** M*log(K) < K*log(N)
2925 ** Our estimates for M, K, and N might be inaccurate, so we build in
2926 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2927 ** with the index, as using an index has better worst-case behavior.
2928 ** If we do not have real sqlite_stat1 data, always prefer to use
2929 ** the index. Do not bother with this optimization on very small
2930 ** tables (less than 2 rows) as it is pointless in that case.
2932 M = pProbe->aiRowLogEst[saved_nEq];
2933 logK = estLog(nIn);
2934 /* TUNING v----- 10 to bias toward indexed IN */
2935 x = M + logK + 10 - (nIn + rLogSize);
2936 if( x>=0 ){
2937 WHERETRACE(0x40,
2938 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2939 "prefers indexed lookup\n",
2940 saved_nEq, M, logK, nIn, rLogSize, x));
2941 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2942 WHERETRACE(0x40,
2943 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2944 " nInMul=%d) prefers skip-scan\n",
2945 saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2946 pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2947 }else{
2948 WHERETRACE(0x40,
2949 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2950 " nInMul=%d) prefers normal scan\n",
2951 saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2952 continue;
2955 pNew->wsFlags |= WHERE_COLUMN_IN;
2956 }else if( eOp & (WO_EQ|WO_IS) ){
2957 int iCol = pProbe->aiColumn[saved_nEq];
2958 pNew->wsFlags |= WHERE_COLUMN_EQ;
2959 assert( saved_nEq==pNew->u.btree.nEq );
2960 if( iCol==XN_ROWID
2961 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2963 if( iCol==XN_ROWID || pProbe->uniqNotNull
2964 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2966 pNew->wsFlags |= WHERE_ONEROW;
2967 }else{
2968 pNew->wsFlags |= WHERE_UNQ_WANTED;
2971 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2972 }else if( eOp & WO_ISNULL ){
2973 pNew->wsFlags |= WHERE_COLUMN_NULL;
2974 }else if( eOp & (WO_GT|WO_GE) ){
2975 testcase( eOp & WO_GT );
2976 testcase( eOp & WO_GE );
2977 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2978 pNew->u.btree.nBtm = whereRangeVectorLen(
2979 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2981 pBtm = pTerm;
2982 pTop = 0;
2983 if( pTerm->wtFlags & TERM_LIKEOPT ){
2984 /* Range constraints that come from the LIKE optimization are
2985 ** always used in pairs. */
2986 pTop = &pTerm[1];
2987 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2988 assert( pTop->wtFlags & TERM_LIKEOPT );
2989 assert( pTop->eOperator==WO_LT );
2990 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2991 pNew->aLTerm[pNew->nLTerm++] = pTop;
2992 pNew->wsFlags |= WHERE_TOP_LIMIT;
2993 pNew->u.btree.nTop = 1;
2995 }else{
2996 assert( eOp & (WO_LT|WO_LE) );
2997 testcase( eOp & WO_LT );
2998 testcase( eOp & WO_LE );
2999 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
3000 pNew->u.btree.nTop = whereRangeVectorLen(
3001 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
3003 pTop = pTerm;
3004 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
3005 pNew->aLTerm[pNew->nLTerm-2] : 0;
3008 /* At this point pNew->nOut is set to the number of rows expected to
3009 ** be visited by the index scan before considering term pTerm, or the
3010 ** values of nIn and nInMul. In other words, assuming that all
3011 ** "x IN(...)" terms are replaced with "x = ?". This block updates
3012 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
3013 assert( pNew->nOut==saved_nOut );
3014 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3015 /* Adjust nOut using stat4 data. Or, if there is no stat4
3016 ** data, using some other estimate. */
3017 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
3018 }else{
3019 int nEq = ++pNew->u.btree.nEq;
3020 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
3022 assert( pNew->nOut==saved_nOut );
3023 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
3024 assert( (eOp & WO_IN) || nIn==0 );
3025 testcase( eOp & WO_IN );
3026 pNew->nOut += pTerm->truthProb;
3027 pNew->nOut -= nIn;
3028 }else{
3029 #ifdef SQLITE_ENABLE_STAT4
3030 tRowcnt nOut = 0;
3031 if( nInMul==0
3032 && pProbe->nSample
3033 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
3034 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
3035 && OptimizationEnabled(db, SQLITE_Stat4)
3037 Expr *pExpr = pTerm->pExpr;
3038 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
3039 testcase( eOp & WO_EQ );
3040 testcase( eOp & WO_IS );
3041 testcase( eOp & WO_ISNULL );
3042 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
3043 }else{
3044 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
3046 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
3047 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */
3048 if( nOut ){
3049 pNew->nOut = sqlite3LogEst(nOut);
3050 if( nEq==1
3051 /* TUNING: Mark terms as "low selectivity" if they seem likely
3052 ** to be true for half or more of the rows in the table.
3053 ** See tag-202002240-1 */
3054 && pNew->nOut+10 > pProbe->aiRowLogEst[0]
3056 #if WHERETRACE_ENABLED /* 0x01 */
3057 if( sqlite3WhereTrace & 0x01 ){
3058 sqlite3DebugPrintf(
3059 "STAT4 determines term has low selectivity:\n");
3060 sqlite3WhereTermPrint(pTerm, 999);
3062 #endif
3063 pTerm->wtFlags |= TERM_HIGHTRUTH;
3064 if( pTerm->wtFlags & TERM_HEURTRUTH ){
3065 /* If the term has previously been used with an assumption of
3066 ** higher selectivity, then set the flag to rerun the
3067 ** loop computations. */
3068 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
3071 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
3072 pNew->nOut -= nIn;
3075 if( nOut==0 )
3076 #endif
3078 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3079 if( eOp & WO_ISNULL ){
3080 /* TUNING: If there is no likelihood() value, assume that a
3081 ** "col IS NULL" expression matches twice as many rows
3082 ** as (col=?). */
3083 pNew->nOut += 10;
3089 /* Set rCostIdx to the cost of visiting selected rows in index. Add
3090 ** it to pNew->rRun, which is currently set to the cost of the index
3091 ** seek only. Then, if this is a non-covering index, add the cost of
3092 ** visiting the rows in the main table. */
3093 assert( pSrc->pTab->szTabRow>0 );
3094 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3095 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3096 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3097 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3099 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3101 nOutUnadjusted = pNew->nOut;
3102 pNew->rRun += nInMul + nIn;
3103 pNew->nOut += nInMul + nIn;
3104 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3105 rc = whereLoopInsert(pBuilder, pNew);
3107 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3108 pNew->nOut = saved_nOut;
3109 }else{
3110 pNew->nOut = nOutUnadjusted;
3113 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3114 && pNew->u.btree.nEq<pProbe->nColumn
3115 && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3116 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3118 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3120 pNew->nOut = saved_nOut;
3121 #ifdef SQLITE_ENABLE_STAT4
3122 pBuilder->nRecValid = nRecValid;
3123 #endif
3125 pNew->prereq = saved_prereq;
3126 pNew->u.btree.nEq = saved_nEq;
3127 pNew->u.btree.nBtm = saved_nBtm;
3128 pNew->u.btree.nTop = saved_nTop;
3129 pNew->nSkip = saved_nSkip;
3130 pNew->wsFlags = saved_wsFlags;
3131 pNew->nOut = saved_nOut;
3132 pNew->nLTerm = saved_nLTerm;
3134 /* Consider using a skip-scan if there are no WHERE clause constraints
3135 ** available for the left-most terms of the index, and if the average
3136 ** number of repeats in the left-most terms is at least 18.
3138 ** The magic number 18 is selected on the basis that scanning 17 rows
3139 ** is almost always quicker than an index seek (even though if the index
3140 ** contains fewer than 2^17 rows we assume otherwise in other parts of
3141 ** the code). And, even if it is not, it should not be too much slower.
3142 ** On the other hand, the extra seeks could end up being significantly
3143 ** more expensive. */
3144 assert( 42==sqlite3LogEst(18) );
3145 if( saved_nEq==saved_nSkip
3146 && saved_nEq+1<pProbe->nKeyCol
3147 && saved_nEq==pNew->nLTerm
3148 && pProbe->noSkipScan==0
3149 && pProbe->hasStat1!=0
3150 && OptimizationEnabled(db, SQLITE_SkipScan)
3151 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */
3152 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3154 LogEst nIter;
3155 pNew->u.btree.nEq++;
3156 pNew->nSkip++;
3157 pNew->aLTerm[pNew->nLTerm++] = 0;
3158 pNew->wsFlags |= WHERE_SKIPSCAN;
3159 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3160 pNew->nOut -= nIter;
3161 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
3162 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3163 nIter += 5;
3164 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3165 pNew->nOut = saved_nOut;
3166 pNew->u.btree.nEq = saved_nEq;
3167 pNew->nSkip = saved_nSkip;
3168 pNew->wsFlags = saved_wsFlags;
3171 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3172 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3173 return rc;
3177 ** Return True if it is possible that pIndex might be useful in
3178 ** implementing the ORDER BY clause in pBuilder.
3180 ** Return False if pBuilder does not contain an ORDER BY clause or
3181 ** if there is no way for pIndex to be useful in implementing that
3182 ** ORDER BY clause.
3184 static int indexMightHelpWithOrderBy(
3185 WhereLoopBuilder *pBuilder,
3186 Index *pIndex,
3187 int iCursor
3189 ExprList *pOB;
3190 ExprList *aColExpr;
3191 int ii, jj;
3193 if( pIndex->bUnordered ) return 0;
3194 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3195 for(ii=0; ii<pOB->nExpr; ii++){
3196 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3197 if( NEVER(pExpr==0) ) continue;
3198 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3199 if( pExpr->iColumn<0 ) return 1;
3200 for(jj=0; jj<pIndex->nKeyCol; jj++){
3201 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3203 }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3204 for(jj=0; jj<pIndex->nKeyCol; jj++){
3205 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3206 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3207 return 1;
3212 return 0;
3215 /* Check to see if a partial index with pPartIndexWhere can be used
3216 ** in the current query. Return true if it can be and false if not.
3218 static int whereUsablePartialIndex(
3219 int iTab, /* The table for which we want an index */
3220 u8 jointype, /* The JT_* flags on the join */
3221 WhereClause *pWC, /* The WHERE clause of the query */
3222 Expr *pWhere /* The WHERE clause from the partial index */
3224 int i;
3225 WhereTerm *pTerm;
3226 Parse *pParse;
3228 if( jointype & JT_LTORJ ) return 0;
3229 pParse = pWC->pWInfo->pParse;
3230 while( pWhere->op==TK_AND ){
3231 if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
3232 pWhere = pWhere->pRight;
3234 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3235 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3236 Expr *pExpr;
3237 pExpr = pTerm->pExpr;
3238 if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
3239 && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
3240 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3241 && (pTerm->wtFlags & TERM_VNULL)==0
3243 return 1;
3246 return 0;
3250 ** Add all WhereLoop objects for a single table of the join where the table
3251 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
3252 ** a b-tree table, not a virtual table.
3254 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3255 ** are calculated as follows:
3257 ** For a full scan, assuming the table (or index) contains nRow rows:
3259 ** cost = nRow * 3.0 // full-table scan
3260 ** cost = nRow * K // scan of covering index
3261 ** cost = nRow * (K+3.0) // scan of non-covering index
3263 ** where K is a value between 1.1 and 3.0 set based on the relative
3264 ** estimated average size of the index and table records.
3266 ** For an index scan, where nVisit is the number of index rows visited
3267 ** by the scan, and nSeek is the number of seek operations required on
3268 ** the index b-tree:
3270 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
3271 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
3273 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3274 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3275 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3277 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3278 ** of uncertainty. For this reason, scoring is designed to pick plans that
3279 ** "do the least harm" if the estimates are inaccurate. For example, a
3280 ** log(nRow) factor is omitted from a non-covering index scan in order to
3281 ** bias the scoring in favor of using an index, since the worst-case
3282 ** performance of using an index is far better than the worst-case performance
3283 ** of a full table scan.
3285 static int whereLoopAddBtree(
3286 WhereLoopBuilder *pBuilder, /* WHERE clause information */
3287 Bitmask mPrereq /* Extra prerequesites for using this table */
3289 WhereInfo *pWInfo; /* WHERE analysis context */
3290 Index *pProbe; /* An index we are evaluating */
3291 Index sPk; /* A fake index object for the primary key */
3292 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */
3293 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */
3294 SrcList *pTabList; /* The FROM clause */
3295 SrcItem *pSrc; /* The FROM clause btree term to add */
3296 WhereLoop *pNew; /* Template WhereLoop object */
3297 int rc = SQLITE_OK; /* Return code */
3298 int iSortIdx = 1; /* Index number */
3299 int b; /* A boolean value */
3300 LogEst rSize; /* number of rows in the table */
3301 WhereClause *pWC; /* The parsed WHERE clause */
3302 Table *pTab; /* Table being queried */
3304 pNew = pBuilder->pNew;
3305 pWInfo = pBuilder->pWInfo;
3306 pTabList = pWInfo->pTabList;
3307 pSrc = pTabList->a + pNew->iTab;
3308 pTab = pSrc->pTab;
3309 pWC = pBuilder->pWC;
3310 assert( !IsVirtual(pSrc->pTab) );
3312 if( pSrc->fg.isIndexedBy ){
3313 assert( pSrc->fg.isCte==0 );
3314 /* An INDEXED BY clause specifies a particular index to use */
3315 pProbe = pSrc->u2.pIBIndex;
3316 }else if( !HasRowid(pTab) ){
3317 pProbe = pTab->pIndex;
3318 }else{
3319 /* There is no INDEXED BY clause. Create a fake Index object in local
3320 ** variable sPk to represent the rowid primary key index. Make this
3321 ** fake index the first in a chain of Index objects with all of the real
3322 ** indices to follow */
3323 Index *pFirst; /* First of real indices on the table */
3324 memset(&sPk, 0, sizeof(Index));
3325 sPk.nKeyCol = 1;
3326 sPk.nColumn = 1;
3327 sPk.aiColumn = &aiColumnPk;
3328 sPk.aiRowLogEst = aiRowEstPk;
3329 sPk.onError = OE_Replace;
3330 sPk.pTable = pTab;
3331 sPk.szIdxRow = pTab->szTabRow;
3332 sPk.idxType = SQLITE_IDXTYPE_IPK;
3333 aiRowEstPk[0] = pTab->nRowLogEst;
3334 aiRowEstPk[1] = 0;
3335 pFirst = pSrc->pTab->pIndex;
3336 if( pSrc->fg.notIndexed==0 ){
3337 /* The real indices of the table are only considered if the
3338 ** NOT INDEXED qualifier is omitted from the FROM clause */
3339 sPk.pNext = pFirst;
3341 pProbe = &sPk;
3343 rSize = pTab->nRowLogEst;
3345 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3346 /* Automatic indexes */
3347 if( !pBuilder->pOrSet /* Not part of an OR optimization */
3348 && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
3349 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3350 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */
3351 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */
3352 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3353 && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3354 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */
3355 && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
3357 /* Generate auto-index WhereLoops */
3358 LogEst rLogSize; /* Logarithm of the number of rows in the table */
3359 WhereTerm *pTerm;
3360 WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3361 rLogSize = estLog(rSize);
3362 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3363 if( pTerm->prereqRight & pNew->maskSelf ) continue;
3364 if( termCanDriveIndex(pTerm, pSrc, 0) ){
3365 pNew->u.btree.nEq = 1;
3366 pNew->nSkip = 0;
3367 pNew->u.btree.pIndex = 0;
3368 pNew->nLTerm = 1;
3369 pNew->aLTerm[0] = pTerm;
3370 /* TUNING: One-time cost for computing the automatic index is
3371 ** estimated to be X*N*log2(N) where N is the number of rows in
3372 ** the table being indexed and where X is 7 (LogEst=28) for normal
3373 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
3374 ** of X is smaller for views and subqueries so that the query planner
3375 ** will be more aggressive about generating automatic indexes for
3376 ** those objects, since there is no opportunity to add schema
3377 ** indexes on subqueries and views. */
3378 pNew->rSetup = rLogSize + rSize;
3379 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3380 pNew->rSetup += 28;
3381 }else{
3382 pNew->rSetup -= 10;
3384 ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3385 if( pNew->rSetup<0 ) pNew->rSetup = 0;
3386 /* TUNING: Each index lookup yields 20 rows in the table. This
3387 ** is more than the usual guess of 10 rows, since we have no way
3388 ** of knowing how selective the index will ultimately be. It would
3389 ** not be unreasonable to make this value much larger. */
3390 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) );
3391 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3392 pNew->wsFlags = WHERE_AUTO_INDEX;
3393 pNew->prereq = mPrereq | pTerm->prereqRight;
3394 rc = whereLoopInsert(pBuilder, pNew);
3398 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3400 /* Loop over all indices. If there was an INDEXED BY clause, then only
3401 ** consider index pProbe. */
3402 for(; rc==SQLITE_OK && pProbe;
3403 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3405 if( pProbe->pPartIdxWhere!=0
3406 && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
3407 pProbe->pPartIdxWhere)
3409 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */
3410 continue; /* Partial index inappropriate for this query */
3412 if( pProbe->bNoQuery ) continue;
3413 rSize = pProbe->aiRowLogEst[0];
3414 pNew->u.btree.nEq = 0;
3415 pNew->u.btree.nBtm = 0;
3416 pNew->u.btree.nTop = 0;
3417 pNew->nSkip = 0;
3418 pNew->nLTerm = 0;
3419 pNew->iSortIdx = 0;
3420 pNew->rSetup = 0;
3421 pNew->prereq = mPrereq;
3422 pNew->nOut = rSize;
3423 pNew->u.btree.pIndex = pProbe;
3424 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3426 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3427 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3428 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3429 /* Integer primary key index */
3430 pNew->wsFlags = WHERE_IPK;
3432 /* Full table scan */
3433 pNew->iSortIdx = b ? iSortIdx : 0;
3434 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
3435 ** extra cost designed to discourage the use of full table scans,
3436 ** since index lookups have better worst-case performance if our
3437 ** stat guesses are wrong. Reduce the 3.0 penalty slightly
3438 ** (to 2.75) if we have valid STAT4 information for the table.
3439 ** At 2.75, a full table scan is preferred over using an index on
3440 ** a column with just two distinct values where each value has about
3441 ** an equal number of appearances. Without STAT4 data, we still want
3442 ** to use an index in that case, since the constraint might be for
3443 ** the scarcer of the two values, and in that case an index lookup is
3444 ** better.
3446 #ifdef SQLITE_ENABLE_STAT4
3447 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3448 #else
3449 pNew->rRun = rSize + 16;
3450 #endif
3451 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3452 whereLoopOutputAdjust(pWC, pNew, rSize);
3453 rc = whereLoopInsert(pBuilder, pNew);
3454 pNew->nOut = rSize;
3455 if( rc ) break;
3456 }else{
3457 Bitmask m;
3458 if( pProbe->isCovering ){
3459 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3460 m = 0;
3461 }else{
3462 m = pSrc->colUsed & pProbe->colNotIdxed;
3463 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3466 /* Full scan via index */
3467 if( b
3468 || !HasRowid(pTab)
3469 || pProbe->pPartIdxWhere!=0
3470 || pSrc->fg.isIndexedBy
3471 || ( m==0
3472 && pProbe->bUnordered==0
3473 && (pProbe->szIdxRow<pTab->szTabRow)
3474 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3475 && sqlite3GlobalConfig.bUseCis
3476 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3479 pNew->iSortIdx = b ? iSortIdx : 0;
3481 /* The cost of visiting the index rows is N*K, where K is
3482 ** between 1.1 and 3.0, depending on the relative sizes of the
3483 ** index and table rows. */
3484 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3485 if( m!=0 ){
3486 /* If this is a non-covering index scan, add in the cost of
3487 ** doing table lookups. The cost will be 3x the number of
3488 ** lookups. Take into account WHERE clause terms that can be
3489 ** satisfied using just the index, and that do not require a
3490 ** table lookup. */
3491 LogEst nLookup = rSize + 16; /* Base cost: N*3 */
3492 int ii;
3493 int iCur = pSrc->iCursor;
3494 WhereClause *pWC2 = &pWInfo->sWC;
3495 for(ii=0; ii<pWC2->nTerm; ii++){
3496 WhereTerm *pTerm = &pWC2->a[ii];
3497 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3498 break;
3500 /* pTerm can be evaluated using just the index. So reduce
3501 ** the expected number of table lookups accordingly */
3502 if( pTerm->truthProb<=0 ){
3503 nLookup += pTerm->truthProb;
3504 }else{
3505 nLookup--;
3506 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3510 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3512 ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3513 whereLoopOutputAdjust(pWC, pNew, rSize);
3514 if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
3515 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3516 ** because the cursor used to access the index might not be
3517 ** positioned to the correct row during the right-join no-match
3518 ** loop. */
3519 }else{
3520 rc = whereLoopInsert(pBuilder, pNew);
3522 pNew->nOut = rSize;
3523 if( rc ) break;
3527 pBuilder->bldFlags1 = 0;
3528 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3529 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3530 /* If a non-unique index is used, or if a prefix of the key for
3531 ** unique index is used (making the index functionally non-unique)
3532 ** then the sqlite_stat1 data becomes important for scoring the
3533 ** plan */
3534 pTab->tabFlags |= TF_StatsUsed;
3536 #ifdef SQLITE_ENABLE_STAT4
3537 sqlite3Stat4ProbeFree(pBuilder->pRec);
3538 pBuilder->nRecValid = 0;
3539 pBuilder->pRec = 0;
3540 #endif
3542 return rc;
3545 #ifndef SQLITE_OMIT_VIRTUALTABLE
3548 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3550 static int isLimitTerm(WhereTerm *pTerm){
3551 assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3552 return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3553 && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3557 ** Argument pIdxInfo is already populated with all constraints that may
3558 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3559 ** function marks a subset of those constraints usable, invokes the
3560 ** xBestIndex method and adds the returned plan to pBuilder.
3562 ** A constraint is marked usable if:
3564 ** * Argument mUsable indicates that its prerequisites are available, and
3566 ** * It is not one of the operators specified in the mExclude mask passed
3567 ** as the fourth argument (which in practice is either WO_IN or 0).
3569 ** Argument mPrereq is a mask of tables that must be scanned before the
3570 ** virtual table in question. These are added to the plans prerequisites
3571 ** before it is added to pBuilder.
3573 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3574 ** uses one or more WO_IN terms, or false otherwise.
3576 static int whereLoopAddVirtualOne(
3577 WhereLoopBuilder *pBuilder,
3578 Bitmask mPrereq, /* Mask of tables that must be used. */
3579 Bitmask mUsable, /* Mask of usable tables */
3580 u16 mExclude, /* Exclude terms using these operators */
3581 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */
3582 u16 mNoOmit, /* Do not omit these constraints */
3583 int *pbIn, /* OUT: True if plan uses an IN(...) op */
3584 int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */
3586 WhereClause *pWC = pBuilder->pWC;
3587 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3588 struct sqlite3_index_constraint *pIdxCons;
3589 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3590 int i;
3591 int mxTerm;
3592 int rc = SQLITE_OK;
3593 WhereLoop *pNew = pBuilder->pNew;
3594 Parse *pParse = pBuilder->pWInfo->pParse;
3595 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3596 int nConstraint = pIdxInfo->nConstraint;
3598 assert( (mUsable & mPrereq)==mPrereq );
3599 *pbIn = 0;
3600 pNew->prereq = mPrereq;
3602 /* Set the usable flag on the subset of constraints identified by
3603 ** arguments mUsable and mExclude. */
3604 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3605 for(i=0; i<nConstraint; i++, pIdxCons++){
3606 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3607 pIdxCons->usable = 0;
3608 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3609 && (pTerm->eOperator & mExclude)==0
3610 && (pbRetryLimit || !isLimitTerm(pTerm))
3612 pIdxCons->usable = 1;
3616 /* Initialize the output fields of the sqlite3_index_info structure */
3617 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3618 assert( pIdxInfo->needToFreeIdxStr==0 );
3619 pIdxInfo->idxStr = 0;
3620 pIdxInfo->idxNum = 0;
3621 pIdxInfo->orderByConsumed = 0;
3622 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3623 pIdxInfo->estimatedRows = 25;
3624 pIdxInfo->idxFlags = 0;
3625 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3626 pHidden->mHandleIn = 0;
3628 /* Invoke the virtual table xBestIndex() method */
3629 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3630 if( rc ){
3631 if( rc==SQLITE_CONSTRAINT ){
3632 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3633 ** that the particular combination of parameters provided is unusable.
3634 ** Make no entries in the loop table.
3636 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n"));
3637 return SQLITE_OK;
3639 return rc;
3642 mxTerm = -1;
3643 assert( pNew->nLSlot>=nConstraint );
3644 memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3645 memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3646 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3647 for(i=0; i<nConstraint; i++, pIdxCons++){
3648 int iTerm;
3649 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3650 WhereTerm *pTerm;
3651 int j = pIdxCons->iTermOffset;
3652 if( iTerm>=nConstraint
3653 || j<0
3654 || j>=pWC->nTerm
3655 || pNew->aLTerm[iTerm]!=0
3656 || pIdxCons->usable==0
3658 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3659 testcase( pIdxInfo->needToFreeIdxStr );
3660 return SQLITE_ERROR;
3662 testcase( iTerm==nConstraint-1 );
3663 testcase( j==0 );
3664 testcase( j==pWC->nTerm-1 );
3665 pTerm = &pWC->a[j];
3666 pNew->prereq |= pTerm->prereqRight;
3667 assert( iTerm<pNew->nLSlot );
3668 pNew->aLTerm[iTerm] = pTerm;
3669 if( iTerm>mxTerm ) mxTerm = iTerm;
3670 testcase( iTerm==15 );
3671 testcase( iTerm==16 );
3672 if( pUsage[i].omit ){
3673 if( i<16 && ((1<<i)&mNoOmit)==0 ){
3674 testcase( i!=iTerm );
3675 pNew->u.vtab.omitMask |= 1<<iTerm;
3676 }else{
3677 testcase( i!=iTerm );
3679 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3680 pNew->u.vtab.bOmitOffset = 1;
3683 if( SMASKBIT32(i) & pHidden->mHandleIn ){
3684 pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
3685 }else if( (pTerm->eOperator & WO_IN)!=0 ){
3686 /* A virtual table that is constrained by an IN clause may not
3687 ** consume the ORDER BY clause because (1) the order of IN terms
3688 ** is not necessarily related to the order of output terms and
3689 ** (2) Multiple outputs from a single IN value will not merge
3690 ** together. */
3691 pIdxInfo->orderByConsumed = 0;
3692 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3693 *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3696 assert( pbRetryLimit || !isLimitTerm(pTerm) );
3697 if( isLimitTerm(pTerm) && *pbIn ){
3698 /* If there is an IN(...) term handled as an == (separate call to
3699 ** xFilter for each value on the RHS of the IN) and a LIMIT or
3700 ** OFFSET term handled as well, the plan is unusable. Set output
3701 ** variable *pbRetryLimit to true to tell the caller to retry with
3702 ** LIMIT and OFFSET disabled. */
3703 if( pIdxInfo->needToFreeIdxStr ){
3704 sqlite3_free(pIdxInfo->idxStr);
3705 pIdxInfo->idxStr = 0;
3706 pIdxInfo->needToFreeIdxStr = 0;
3708 *pbRetryLimit = 1;
3709 return SQLITE_OK;
3714 pNew->nLTerm = mxTerm+1;
3715 for(i=0; i<=mxTerm; i++){
3716 if( pNew->aLTerm[i]==0 ){
3717 /* The non-zero argvIdx values must be contiguous. Raise an
3718 ** error if they are not */
3719 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3720 testcase( pIdxInfo->needToFreeIdxStr );
3721 return SQLITE_ERROR;
3724 assert( pNew->nLTerm<=pNew->nLSlot );
3725 pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3726 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3727 pIdxInfo->needToFreeIdxStr = 0;
3728 pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3729 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3730 pIdxInfo->nOrderBy : 0);
3731 pNew->rSetup = 0;
3732 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3733 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3735 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3736 ** that the scan will visit at most one row. Clear it otherwise. */
3737 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3738 pNew->wsFlags |= WHERE_ONEROW;
3739 }else{
3740 pNew->wsFlags &= ~WHERE_ONEROW;
3742 rc = whereLoopInsert(pBuilder, pNew);
3743 if( pNew->u.vtab.needFree ){
3744 sqlite3_free(pNew->u.vtab.idxStr);
3745 pNew->u.vtab.needFree = 0;
3747 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3748 *pbIn, (sqlite3_uint64)mPrereq,
3749 (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3751 return rc;
3755 ** Return the collating sequence for a constraint passed into xBestIndex.
3757 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3758 ** This routine depends on there being a HiddenIndexInfo structure immediately
3759 ** following the sqlite3_index_info structure.
3761 ** Return a pointer to the collation name:
3763 ** 1. If there is an explicit COLLATE operator on the constaint, return it.
3765 ** 2. Else, if the column has an alternative collation, return that.
3767 ** 3. Otherwise, return "BINARY".
3769 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3770 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3771 const char *zRet = 0;
3772 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3773 CollSeq *pC = 0;
3774 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3775 Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3776 if( pX->pLeft ){
3777 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3779 zRet = (pC ? pC->zName : sqlite3StrBINARY);
3781 return zRet;
3785 ** Return true if constraint iCons is really an IN(...) constraint, or
3786 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3787 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3789 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
3790 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3791 u32 m = SMASKBIT32(iCons);
3792 if( m & pHidden->mIn ){
3793 if( bHandle==0 ){
3794 pHidden->mHandleIn &= ~m;
3795 }else if( bHandle>0 ){
3796 pHidden->mHandleIn |= m;
3798 return 1;
3800 return 0;
3804 ** This interface is callable from within the xBestIndex callback only.
3806 ** If possible, set (*ppVal) to point to an object containing the value
3807 ** on the right-hand-side of constraint iCons.
3809 int sqlite3_vtab_rhs_value(
3810 sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */
3811 int iCons, /* Constraint for which RHS is wanted */
3812 sqlite3_value **ppVal /* Write value extracted here */
3814 HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3815 sqlite3_value *pVal = 0;
3816 int rc = SQLITE_OK;
3817 if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3818 rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3819 }else{
3820 if( pH->aRhs[iCons]==0 ){
3821 WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3822 rc = sqlite3ValueFromExpr(
3823 pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3824 SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3826 testcase( rc!=SQLITE_OK );
3828 pVal = pH->aRhs[iCons];
3830 *ppVal = pVal;
3832 if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */
3833 rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */
3836 return rc;
3840 ** Return true if ORDER BY clause may be handled as DISTINCT.
3842 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3843 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3844 assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
3845 return pHidden->eDistinct;
3848 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
3849 && !defined(SQLITE_OMIT_VIRTUALTABLE)
3851 ** Cause the prepared statement that is associated with a call to
3852 ** xBestIndex to potentiall use all schemas. If the statement being
3853 ** prepared is read-only, then just start read transactions on all
3854 ** schemas. But if this is a write operation, start writes on all
3855 ** schemas.
3857 ** This is used by the (built-in) sqlite_dbpage virtual table.
3859 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){
3860 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3861 Parse *pParse = pHidden->pParse;
3862 int nDb = pParse->db->nDb;
3863 int i;
3864 for(i=0; i<nDb; i++){
3865 sqlite3CodeVerifySchema(pParse, i);
3867 if( pParse->writeMask ){
3868 for(i=0; i<nDb; i++){
3869 sqlite3BeginWriteOperation(pParse, 0, i);
3873 #endif
3876 ** Add all WhereLoop objects for a table of the join identified by
3877 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
3879 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3880 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3881 ** entries that occur before the virtual table in the FROM clause and are
3882 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3883 ** mUnusable mask contains all FROM clause entries that occur after the
3884 ** virtual table and are separated from it by at least one LEFT or
3885 ** CROSS JOIN.
3887 ** For example, if the query were:
3889 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3891 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3893 ** All the tables in mPrereq must be scanned before the current virtual
3894 ** table. So any terms for which all prerequisites are satisfied by
3895 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3896 ** Conversely, all tables in mUnusable must be scanned after the current
3897 ** virtual table, so any terms for which the prerequisites overlap with
3898 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3900 static int whereLoopAddVirtual(
3901 WhereLoopBuilder *pBuilder, /* WHERE clause information */
3902 Bitmask mPrereq, /* Tables that must be scanned before this one */
3903 Bitmask mUnusable /* Tables that must be scanned after this one */
3905 int rc = SQLITE_OK; /* Return code */
3906 WhereInfo *pWInfo; /* WHERE analysis context */
3907 Parse *pParse; /* The parsing context */
3908 WhereClause *pWC; /* The WHERE clause */
3909 SrcItem *pSrc; /* The FROM clause term to search */
3910 sqlite3_index_info *p; /* Object to pass to xBestIndex() */
3911 int nConstraint; /* Number of constraints in p */
3912 int bIn; /* True if plan uses IN(...) operator */
3913 WhereLoop *pNew;
3914 Bitmask mBest; /* Tables used by best possible plan */
3915 u16 mNoOmit;
3916 int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */
3918 assert( (mPrereq & mUnusable)==0 );
3919 pWInfo = pBuilder->pWInfo;
3920 pParse = pWInfo->pParse;
3921 pWC = pBuilder->pWC;
3922 pNew = pBuilder->pNew;
3923 pSrc = &pWInfo->pTabList->a[pNew->iTab];
3924 assert( IsVirtual(pSrc->pTab) );
3925 p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3926 if( p==0 ) return SQLITE_NOMEM_BKPT;
3927 pNew->rSetup = 0;
3928 pNew->wsFlags = WHERE_VIRTUALTABLE;
3929 pNew->nLTerm = 0;
3930 pNew->u.vtab.needFree = 0;
3931 nConstraint = p->nConstraint;
3932 if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3933 freeIndexInfo(pParse->db, p);
3934 return SQLITE_NOMEM_BKPT;
3937 /* First call xBestIndex() with all constraints usable. */
3938 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3939 WHERETRACE(0x40, (" VirtualOne: all usable\n"));
3940 rc = whereLoopAddVirtualOne(
3941 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3943 if( bRetry ){
3944 assert( rc==SQLITE_OK );
3945 rc = whereLoopAddVirtualOne(
3946 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3950 /* If the call to xBestIndex() with all terms enabled produced a plan
3951 ** that does not require any source tables (IOW: a plan with mBest==0)
3952 ** and does not use an IN(...) operator, then there is no point in making
3953 ** any further calls to xBestIndex() since they will all return the same
3954 ** result (if the xBestIndex() implementation is sane). */
3955 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3956 int seenZero = 0; /* True if a plan with no prereqs seen */
3957 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */
3958 Bitmask mPrev = 0;
3959 Bitmask mBestNoIn = 0;
3961 /* If the plan produced by the earlier call uses an IN(...) term, call
3962 ** xBestIndex again, this time with IN(...) terms disabled. */
3963 if( bIn ){
3964 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n"));
3965 rc = whereLoopAddVirtualOne(
3966 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3967 assert( bIn==0 );
3968 mBestNoIn = pNew->prereq & ~mPrereq;
3969 if( mBestNoIn==0 ){
3970 seenZero = 1;
3971 seenZeroNoIN = 1;
3975 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3976 ** in the set of terms that apply to the current virtual table. */
3977 while( rc==SQLITE_OK ){
3978 int i;
3979 Bitmask mNext = ALLBITS;
3980 assert( mNext>0 );
3981 for(i=0; i<nConstraint; i++){
3982 Bitmask mThis = (
3983 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3985 if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3987 mPrev = mNext;
3988 if( mNext==ALLBITS ) break;
3989 if( mNext==mBest || mNext==mBestNoIn ) continue;
3990 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
3991 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3992 rc = whereLoopAddVirtualOne(
3993 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
3994 if( pNew->prereq==mPrereq ){
3995 seenZero = 1;
3996 if( bIn==0 ) seenZeroNoIN = 1;
4000 /* If the calls to xBestIndex() in the above loop did not find a plan
4001 ** that requires no source tables at all (i.e. one guaranteed to be
4002 ** usable), make a call here with all source tables disabled */
4003 if( rc==SQLITE_OK && seenZero==0 ){
4004 WHERETRACE(0x40, (" VirtualOne: all disabled\n"));
4005 rc = whereLoopAddVirtualOne(
4006 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
4007 if( bIn==0 ) seenZeroNoIN = 1;
4010 /* If the calls to xBestIndex() have so far failed to find a plan
4011 ** that requires no source tables at all and does not use an IN(...)
4012 ** operator, make a final call to obtain one here. */
4013 if( rc==SQLITE_OK && seenZeroNoIN==0 ){
4014 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n"));
4015 rc = whereLoopAddVirtualOne(
4016 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
4020 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
4021 freeIndexInfo(pParse->db, p);
4022 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
4023 return rc;
4025 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4028 ** Add WhereLoop entries to handle OR terms. This works for either
4029 ** btrees or virtual tables.
4031 static int whereLoopAddOr(
4032 WhereLoopBuilder *pBuilder,
4033 Bitmask mPrereq,
4034 Bitmask mUnusable
4036 WhereInfo *pWInfo = pBuilder->pWInfo;
4037 WhereClause *pWC;
4038 WhereLoop *pNew;
4039 WhereTerm *pTerm, *pWCEnd;
4040 int rc = SQLITE_OK;
4041 int iCur;
4042 WhereClause tempWC;
4043 WhereLoopBuilder sSubBuild;
4044 WhereOrSet sSum, sCur;
4045 SrcItem *pItem;
4047 pWC = pBuilder->pWC;
4048 pWCEnd = pWC->a + pWC->nTerm;
4049 pNew = pBuilder->pNew;
4050 memset(&sSum, 0, sizeof(sSum));
4051 pItem = pWInfo->pTabList->a + pNew->iTab;
4052 iCur = pItem->iCursor;
4054 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4055 if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
4057 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
4058 if( (pTerm->eOperator & WO_OR)!=0
4059 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
4061 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
4062 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
4063 WhereTerm *pOrTerm;
4064 int once = 1;
4065 int i, j;
4067 sSubBuild = *pBuilder;
4068 sSubBuild.pOrSet = &sCur;
4070 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
4071 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
4072 if( (pOrTerm->eOperator & WO_AND)!=0 ){
4073 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
4074 }else if( pOrTerm->leftCursor==iCur ){
4075 tempWC.pWInfo = pWC->pWInfo;
4076 tempWC.pOuter = pWC;
4077 tempWC.op = TK_AND;
4078 tempWC.nTerm = 1;
4079 tempWC.nBase = 1;
4080 tempWC.a = pOrTerm;
4081 sSubBuild.pWC = &tempWC;
4082 }else{
4083 continue;
4085 sCur.n = 0;
4086 #ifdef WHERETRACE_ENABLED
4087 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
4088 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
4089 if( sqlite3WhereTrace & 0x400 ){
4090 sqlite3WhereClausePrint(sSubBuild.pWC);
4092 #endif
4093 #ifndef SQLITE_OMIT_VIRTUALTABLE
4094 if( IsVirtual(pItem->pTab) ){
4095 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
4096 }else
4097 #endif
4099 rc = whereLoopAddBtree(&sSubBuild, mPrereq);
4101 if( rc==SQLITE_OK ){
4102 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
4104 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
4105 || rc==SQLITE_NOMEM );
4106 testcase( rc==SQLITE_NOMEM && sCur.n>0 );
4107 testcase( rc==SQLITE_DONE );
4108 if( sCur.n==0 ){
4109 sSum.n = 0;
4110 break;
4111 }else if( once ){
4112 whereOrMove(&sSum, &sCur);
4113 once = 0;
4114 }else{
4115 WhereOrSet sPrev;
4116 whereOrMove(&sPrev, &sSum);
4117 sSum.n = 0;
4118 for(i=0; i<sPrev.n; i++){
4119 for(j=0; j<sCur.n; j++){
4120 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
4121 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
4122 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
4127 pNew->nLTerm = 1;
4128 pNew->aLTerm[0] = pTerm;
4129 pNew->wsFlags = WHERE_MULTI_OR;
4130 pNew->rSetup = 0;
4131 pNew->iSortIdx = 0;
4132 memset(&pNew->u, 0, sizeof(pNew->u));
4133 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
4134 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4135 ** of all sub-scans required by the OR-scan. However, due to rounding
4136 ** errors, it may be that the cost of the OR-scan is equal to its
4137 ** most expensive sub-scan. Add the smallest possible penalty
4138 ** (equivalent to multiplying the cost by 1.07) to ensure that
4139 ** this does not happen. Otherwise, for WHERE clauses such as the
4140 ** following where there is an index on "y":
4142 ** WHERE likelihood(x=?, 0.99) OR y=?
4144 ** the planner may elect to "OR" together a full-table scan and an
4145 ** index lookup. And other similarly odd results. */
4146 pNew->rRun = sSum.a[i].rRun + 1;
4147 pNew->nOut = sSum.a[i].nOut;
4148 pNew->prereq = sSum.a[i].prereq;
4149 rc = whereLoopInsert(pBuilder, pNew);
4151 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4154 return rc;
4158 ** Add all WhereLoop objects for all tables
4160 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4161 WhereInfo *pWInfo = pBuilder->pWInfo;
4162 Bitmask mPrereq = 0;
4163 Bitmask mPrior = 0;
4164 int iTab;
4165 SrcList *pTabList = pWInfo->pTabList;
4166 SrcItem *pItem;
4167 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4168 sqlite3 *db = pWInfo->pParse->db;
4169 int rc = SQLITE_OK;
4170 int bFirstPastRJ = 0;
4171 int hasRightJoin = 0;
4172 WhereLoop *pNew;
4175 /* Loop over the tables in the join, from left to right */
4176 pNew = pBuilder->pNew;
4177 whereLoopInit(pNew);
4178 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4179 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4180 Bitmask mUnusable = 0;
4181 pNew->iTab = iTab;
4182 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4183 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4184 if( bFirstPastRJ
4185 || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
4187 /* Add prerequisites to prevent reordering of FROM clause terms
4188 ** across CROSS joins and outer joins. The bFirstPastRJ boolean
4189 ** prevents the right operand of a RIGHT JOIN from being swapped with
4190 ** other elements even further to the right.
4192 ** The JT_LTORJ case and the hasRightJoin flag work together to
4193 ** prevent FROM-clause terms from moving from the right side of
4194 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4195 ** is itself on the left side of a RIGHT JOIN.
4197 if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
4198 mPrereq |= mPrior;
4199 bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
4200 }else if( !hasRightJoin ){
4201 mPrereq = 0;
4203 #ifndef SQLITE_OMIT_VIRTUALTABLE
4204 if( IsVirtual(pItem->pTab) ){
4205 SrcItem *p;
4206 for(p=&pItem[1]; p<pEnd; p++){
4207 if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){
4208 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4211 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4212 }else
4213 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4215 rc = whereLoopAddBtree(pBuilder, mPrereq);
4217 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4218 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4220 mPrior |= pNew->maskSelf;
4221 if( rc || db->mallocFailed ){
4222 if( rc==SQLITE_DONE ){
4223 /* We hit the query planner search limit set by iPlanLimit */
4224 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4225 rc = SQLITE_OK;
4226 }else{
4227 break;
4232 whereLoopClear(db, pNew);
4233 return rc;
4237 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4238 ** parameters) to see if it outputs rows in the requested ORDER BY
4239 ** (or GROUP BY) without requiring a separate sort operation. Return N:
4241 ** N>0: N terms of the ORDER BY clause are satisfied
4242 ** N==0: No terms of the ORDER BY clause are satisfied
4243 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
4245 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4246 ** strict. With GROUP BY and DISTINCT the only requirement is that
4247 ** equivalent rows appear immediately adjacent to one another. GROUP BY
4248 ** and DISTINCT do not require rows to appear in any particular order as long
4249 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
4250 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
4251 ** pOrderBy terms must be matched in strict left-to-right order.
4253 static i8 wherePathSatisfiesOrderBy(
4254 WhereInfo *pWInfo, /* The WHERE clause */
4255 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */
4256 WherePath *pPath, /* The WherePath to check */
4257 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4258 u16 nLoop, /* Number of entries in pPath->aLoop[] */
4259 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */
4260 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */
4262 u8 revSet; /* True if rev is known */
4263 u8 rev; /* Composite sort order */
4264 u8 revIdx; /* Index sort order */
4265 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */
4266 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */
4267 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */
4268 u16 eqOpMask; /* Allowed equality operators */
4269 u16 nKeyCol; /* Number of key columns in pIndex */
4270 u16 nColumn; /* Total number of ordered columns in the index */
4271 u16 nOrderBy; /* Number terms in the ORDER BY clause */
4272 int iLoop; /* Index of WhereLoop in pPath being processed */
4273 int i, j; /* Loop counters */
4274 int iCur; /* Cursor number for current WhereLoop */
4275 int iColumn; /* A column number within table iCur */
4276 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4277 WhereTerm *pTerm; /* A single term of the WHERE clause */
4278 Expr *pOBExpr; /* An expression from the ORDER BY clause */
4279 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */
4280 Index *pIndex; /* The index associated with pLoop */
4281 sqlite3 *db = pWInfo->pParse->db; /* Database connection */
4282 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */
4283 Bitmask obDone; /* Mask of all ORDER BY terms */
4284 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */
4285 Bitmask ready; /* Mask of inner loops */
4288 ** We say the WhereLoop is "one-row" if it generates no more than one
4289 ** row of output. A WhereLoop is one-row if all of the following are true:
4290 ** (a) All index columns match with WHERE_COLUMN_EQ.
4291 ** (b) The index is unique
4292 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4293 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4295 ** We say the WhereLoop is "order-distinct" if the set of columns from
4296 ** that WhereLoop that are in the ORDER BY clause are different for every
4297 ** row of the WhereLoop. Every one-row WhereLoop is automatically
4298 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
4299 ** is not order-distinct. To be order-distinct is not quite the same as being
4300 ** UNIQUE since a UNIQUE column or index can have multiple rows that
4301 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4302 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4304 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4305 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4306 ** automatically order-distinct.
4309 assert( pOrderBy!=0 );
4310 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4312 nOrderBy = pOrderBy->nExpr;
4313 testcase( nOrderBy==BMS-1 );
4314 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
4315 isOrderDistinct = 1;
4316 obDone = MASKBIT(nOrderBy)-1;
4317 orderDistinctMask = 0;
4318 ready = 0;
4319 eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4320 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4321 eqOpMask |= WO_IN;
4323 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4324 if( iLoop>0 ) ready |= pLoop->maskSelf;
4325 if( iLoop<nLoop ){
4326 pLoop = pPath->aLoop[iLoop];
4327 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4328 }else{
4329 pLoop = pLast;
4331 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4332 if( pLoop->u.vtab.isOrdered
4333 && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
4335 obSat = obDone;
4337 break;
4338 }else if( wctrlFlags & WHERE_DISTINCTBY ){
4339 pLoop->u.btree.nDistinctCol = 0;
4341 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4343 /* Mark off any ORDER BY term X that is a column in the table of
4344 ** the current loop for which there is term in the WHERE
4345 ** clause of the form X IS NULL or X=? that reference only outer
4346 ** loops.
4348 for(i=0; i<nOrderBy; i++){
4349 if( MASKBIT(i) & obSat ) continue;
4350 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4351 if( NEVER(pOBExpr==0) ) continue;
4352 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4353 if( pOBExpr->iTable!=iCur ) continue;
4354 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4355 ~ready, eqOpMask, 0);
4356 if( pTerm==0 ) continue;
4357 if( pTerm->eOperator==WO_IN ){
4358 /* IN terms are only valid for sorting in the ORDER BY LIMIT
4359 ** optimization, and then only if they are actually used
4360 ** by the query plan */
4361 assert( wctrlFlags &
4362 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4363 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4364 if( j>=pLoop->nLTerm ) continue;
4366 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4367 Parse *pParse = pWInfo->pParse;
4368 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4369 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4370 assert( pColl1 );
4371 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4372 continue;
4374 testcase( pTerm->pExpr->op==TK_IS );
4376 obSat |= MASKBIT(i);
4379 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4380 if( pLoop->wsFlags & WHERE_IPK ){
4381 pIndex = 0;
4382 nKeyCol = 0;
4383 nColumn = 1;
4384 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4385 return 0;
4386 }else{
4387 nKeyCol = pIndex->nKeyCol;
4388 nColumn = pIndex->nColumn;
4389 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4390 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4391 || !HasRowid(pIndex->pTable));
4392 /* All relevant terms of the index must also be non-NULL in order
4393 ** for isOrderDistinct to be true. So the isOrderDistint value
4394 ** computed here might be a false positive. Corrections will be
4395 ** made at tag-20210426-1 below */
4396 isOrderDistinct = IsUniqueIndex(pIndex)
4397 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4400 /* Loop through all columns of the index and deal with the ones
4401 ** that are not constrained by == or IN.
4403 rev = revSet = 0;
4404 distinctColumns = 0;
4405 for(j=0; j<nColumn; j++){
4406 u8 bOnce = 1; /* True to run the ORDER BY search loop */
4408 assert( j>=pLoop->u.btree.nEq
4409 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4411 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4412 u16 eOp = pLoop->aLTerm[j]->eOperator;
4414 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
4415 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
4416 ** terms imply that the index is not UNIQUE NOT NULL in which case
4417 ** the loop need to be marked as not order-distinct because it can
4418 ** have repeated NULL rows.
4420 ** If the current term is a column of an ((?,?) IN (SELECT...))
4421 ** expression for which the SELECT returns more than one column,
4422 ** check that it is the only column used by this loop. Otherwise,
4423 ** if it is one of two or more, none of the columns can be
4424 ** considered to match an ORDER BY term.
4426 if( (eOp & eqOpMask)!=0 ){
4427 if( eOp & (WO_ISNULL|WO_IS) ){
4428 testcase( eOp & WO_ISNULL );
4429 testcase( eOp & WO_IS );
4430 testcase( isOrderDistinct );
4431 isOrderDistinct = 0;
4433 continue;
4434 }else if( ALWAYS(eOp & WO_IN) ){
4435 /* ALWAYS() justification: eOp is an equality operator due to the
4436 ** j<pLoop->u.btree.nEq constraint above. Any equality other
4437 ** than WO_IN is captured by the previous "if". So this one
4438 ** always has to be WO_IN. */
4439 Expr *pX = pLoop->aLTerm[j]->pExpr;
4440 for(i=j+1; i<pLoop->u.btree.nEq; i++){
4441 if( pLoop->aLTerm[i]->pExpr==pX ){
4442 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4443 bOnce = 0;
4444 break;
4450 /* Get the column number in the table (iColumn) and sort order
4451 ** (revIdx) for the j-th column of the index.
4453 if( pIndex ){
4454 iColumn = pIndex->aiColumn[j];
4455 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4456 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4457 }else{
4458 iColumn = XN_ROWID;
4459 revIdx = 0;
4462 /* An unconstrained column that might be NULL means that this
4463 ** WhereLoop is not well-ordered. tag-20210426-1
4465 if( isOrderDistinct ){
4466 if( iColumn>=0
4467 && j>=pLoop->u.btree.nEq
4468 && pIndex->pTable->aCol[iColumn].notNull==0
4470 isOrderDistinct = 0;
4472 if( iColumn==XN_EXPR ){
4473 isOrderDistinct = 0;
4477 /* Find the ORDER BY term that corresponds to the j-th column
4478 ** of the index and mark that ORDER BY term off
4480 isMatch = 0;
4481 for(i=0; bOnce && i<nOrderBy; i++){
4482 if( MASKBIT(i) & obSat ) continue;
4483 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4484 testcase( wctrlFlags & WHERE_GROUPBY );
4485 testcase( wctrlFlags & WHERE_DISTINCTBY );
4486 if( NEVER(pOBExpr==0) ) continue;
4487 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4488 if( iColumn>=XN_ROWID ){
4489 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4490 if( pOBExpr->iTable!=iCur ) continue;
4491 if( pOBExpr->iColumn!=iColumn ) continue;
4492 }else{
4493 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4494 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4495 continue;
4498 if( iColumn!=XN_ROWID ){
4499 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4500 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4502 if( wctrlFlags & WHERE_DISTINCTBY ){
4503 pLoop->u.btree.nDistinctCol = j+1;
4505 isMatch = 1;
4506 break;
4508 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4509 /* Make sure the sort order is compatible in an ORDER BY clause.
4510 ** Sort order is irrelevant for a GROUP BY clause. */
4511 if( revSet ){
4512 if( (rev ^ revIdx)
4513 != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
4515 isMatch = 0;
4517 }else{
4518 rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
4519 if( rev ) *pRevMask |= MASKBIT(iLoop);
4520 revSet = 1;
4523 if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
4524 if( j==pLoop->u.btree.nEq ){
4525 pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4526 }else{
4527 isMatch = 0;
4530 if( isMatch ){
4531 if( iColumn==XN_ROWID ){
4532 testcase( distinctColumns==0 );
4533 distinctColumns = 1;
4535 obSat |= MASKBIT(i);
4536 }else{
4537 /* No match found */
4538 if( j==0 || j<nKeyCol ){
4539 testcase( isOrderDistinct!=0 );
4540 isOrderDistinct = 0;
4542 break;
4544 } /* end Loop over all index columns */
4545 if( distinctColumns ){
4546 testcase( isOrderDistinct==0 );
4547 isOrderDistinct = 1;
4549 } /* end-if not one-row */
4551 /* Mark off any other ORDER BY terms that reference pLoop */
4552 if( isOrderDistinct ){
4553 orderDistinctMask |= pLoop->maskSelf;
4554 for(i=0; i<nOrderBy; i++){
4555 Expr *p;
4556 Bitmask mTerm;
4557 if( MASKBIT(i) & obSat ) continue;
4558 p = pOrderBy->a[i].pExpr;
4559 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4560 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4561 if( (mTerm&~orderDistinctMask)==0 ){
4562 obSat |= MASKBIT(i);
4566 } /* End the loop over all WhereLoops from outer-most down to inner-most */
4567 if( obSat==obDone ) return (i8)nOrderBy;
4568 if( !isOrderDistinct ){
4569 for(i=nOrderBy-1; i>0; i--){
4570 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4571 if( (obSat&m)==m ) return i;
4573 return 0;
4575 return -1;
4580 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4581 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4582 ** BY clause - and so any order that groups rows as required satisfies the
4583 ** request.
4585 ** Normally, in this case it is not possible for the caller to determine
4586 ** whether or not the rows are really being delivered in sorted order, or
4587 ** just in some other order that provides the required grouping. However,
4588 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4589 ** this function may be called on the returned WhereInfo object. It returns
4590 ** true if the rows really will be sorted in the specified order, or false
4591 ** otherwise.
4593 ** For example, assuming:
4595 ** CREATE INDEX i1 ON t1(x, Y);
4597 ** then
4599 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
4600 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
4602 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4603 assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
4604 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4605 return pWInfo->sorted;
4608 #ifdef WHERETRACE_ENABLED
4609 /* For debugging use only: */
4610 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4611 static char zName[65];
4612 int i;
4613 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4614 if( pLast ) zName[i++] = pLast->cId;
4615 zName[i] = 0;
4616 return zName;
4618 #endif
4621 ** Return the cost of sorting nRow rows, assuming that the keys have
4622 ** nOrderby columns and that the first nSorted columns are already in
4623 ** order.
4625 static LogEst whereSortingCost(
4626 WhereInfo *pWInfo,
4627 LogEst nRow,
4628 int nOrderBy,
4629 int nSorted
4631 /* TUNING: Estimated cost of a full external sort, where N is
4632 ** the number of rows to sort is:
4634 ** cost = (3.0 * N * log(N)).
4636 ** Or, if the order-by clause has X terms but only the last Y
4637 ** terms are out of order, then block-sorting will reduce the
4638 ** sorting cost to:
4640 ** cost = (3.0 * N * log(N)) * (Y/X)
4642 ** The (Y/X) term is implemented using stack variable rScale
4643 ** below.
4645 LogEst rScale, rSortCost;
4646 assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4647 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4648 rSortCost = nRow + rScale + 16;
4650 /* Multiple by log(M) where M is the number of output rows.
4651 ** Use the LIMIT for M if it is smaller. Or if this sort is for
4652 ** a DISTINCT operator, M will be the number of distinct output
4653 ** rows, so fudge it downwards a bit.
4655 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4656 nRow = pWInfo->iLimit;
4657 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4658 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4659 ** reduces the number of output rows by a factor of 2 */
4660 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); }
4662 rSortCost += estLog(nRow);
4663 return rSortCost;
4667 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4668 ** attempts to find the lowest cost path that visits each WhereLoop
4669 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
4671 ** Assume that the total number of output rows that will need to be sorted
4672 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
4673 ** costs if nRowEst==0.
4675 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4676 ** error occurs.
4678 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4679 int mxChoice; /* Maximum number of simultaneous paths tracked */
4680 int nLoop; /* Number of terms in the join */
4681 Parse *pParse; /* Parsing context */
4682 sqlite3 *db; /* The database connection */
4683 int iLoop; /* Loop counter over the terms of the join */
4684 int ii, jj; /* Loop counters */
4685 int mxI = 0; /* Index of next entry to replace */
4686 int nOrderBy; /* Number of ORDER BY clause terms */
4687 LogEst mxCost = 0; /* Maximum cost of a set of paths */
4688 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */
4689 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */
4690 WherePath *aFrom; /* All nFrom paths at the previous level */
4691 WherePath *aTo; /* The nTo best paths at the current level */
4692 WherePath *pFrom; /* An element of aFrom[] that we are working on */
4693 WherePath *pTo; /* An element of aTo[] that we are working on */
4694 WhereLoop *pWLoop; /* One of the WhereLoop objects */
4695 WhereLoop **pX; /* Used to divy up the pSpace memory */
4696 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */
4697 char *pSpace; /* Temporary memory used by this routine */
4698 int nSpace; /* Bytes of space allocated at pSpace */
4700 pParse = pWInfo->pParse;
4701 db = pParse->db;
4702 nLoop = pWInfo->nLevel;
4703 /* TUNING: For simple queries, only the best path is tracked.
4704 ** For 2-way joins, the 5 best paths are followed.
4705 ** For joins of 3 or more tables, track the 10 best paths */
4706 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4707 assert( nLoop<=pWInfo->pTabList->nSrc );
4708 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst));
4710 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4711 ** case the purpose of this call is to estimate the number of rows returned
4712 ** by the overall query. Once this estimate has been obtained, the caller
4713 ** will invoke this function a second time, passing the estimate as the
4714 ** nRowEst parameter. */
4715 if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4716 nOrderBy = 0;
4717 }else{
4718 nOrderBy = pWInfo->pOrderBy->nExpr;
4721 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4722 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4723 nSpace += sizeof(LogEst) * nOrderBy;
4724 pSpace = sqlite3DbMallocRawNN(db, nSpace);
4725 if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4726 aTo = (WherePath*)pSpace;
4727 aFrom = aTo+mxChoice;
4728 memset(aFrom, 0, sizeof(aFrom[0]));
4729 pX = (WhereLoop**)(aFrom+mxChoice);
4730 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4731 pFrom->aLoop = pX;
4733 if( nOrderBy ){
4734 /* If there is an ORDER BY clause and it is not being ignored, set up
4735 ** space for the aSortCost[] array. Each element of the aSortCost array
4736 ** is either zero - meaning it has not yet been initialized - or the
4737 ** cost of sorting nRowEst rows of data where the first X terms of
4738 ** the ORDER BY clause are already in order, where X is the array
4739 ** index. */
4740 aSortCost = (LogEst*)pX;
4741 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4743 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4744 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4746 /* Seed the search with a single WherePath containing zero WhereLoops.
4748 ** TUNING: Do not let the number of iterations go above 28. If the cost
4749 ** of computing an automatic index is not paid back within the first 28
4750 ** rows, then do not use the automatic index. */
4751 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) );
4752 nFrom = 1;
4753 assert( aFrom[0].isOrdered==0 );
4754 if( nOrderBy ){
4755 /* If nLoop is zero, then there are no FROM terms in the query. Since
4756 ** in this case the query may return a maximum of one row, the results
4757 ** are already in the requested order. Set isOrdered to nOrderBy to
4758 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4759 ** -1, indicating that the result set may or may not be ordered,
4760 ** depending on the loops added to the current plan. */
4761 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4764 /* Compute successively longer WherePaths using the previous generation
4765 ** of WherePaths as the basis for the next. Keep track of the mxChoice
4766 ** best paths at each generation */
4767 for(iLoop=0; iLoop<nLoop; iLoop++){
4768 nTo = 0;
4769 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4770 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4771 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */
4772 LogEst rCost; /* Cost of path (pFrom+pWLoop) */
4773 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */
4774 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */
4775 Bitmask maskNew; /* Mask of src visited by (..) */
4776 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */
4778 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4779 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4780 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4781 /* Do not use an automatic index if the this loop is expected
4782 ** to run less than 1.25 times. It is tempting to also exclude
4783 ** automatic index usage on an outer loop, but sometimes an automatic
4784 ** index is useful in the outer loop of a correlated subquery. */
4785 assert( 10==sqlite3LogEst(2) );
4786 continue;
4789 /* At this point, pWLoop is a candidate to be the next loop.
4790 ** Compute its cost */
4791 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4792 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4793 nOut = pFrom->nRow + pWLoop->nOut;
4794 maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4795 if( isOrdered<0 ){
4796 isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4797 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4798 iLoop, pWLoop, &revMask);
4799 }else{
4800 revMask = pFrom->revLoop;
4802 if( isOrdered>=0 && isOrdered<nOrderBy ){
4803 if( aSortCost[isOrdered]==0 ){
4804 aSortCost[isOrdered] = whereSortingCost(
4805 pWInfo, nRowEst, nOrderBy, isOrdered
4808 /* TUNING: Add a small extra penalty (5) to sorting as an
4809 ** extra encouragment to the query planner to select a plan
4810 ** where the rows emerge in the correct order without any sorting
4811 ** required. */
4812 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4814 WHERETRACE(0x002,
4815 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4816 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4817 rUnsorted, rCost));
4818 }else{
4819 rCost = rUnsorted;
4820 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */
4823 /* Check to see if pWLoop should be added to the set of
4824 ** mxChoice best-so-far paths.
4826 ** First look for an existing path among best-so-far paths
4827 ** that covers the same set of loops and has the same isOrdered
4828 ** setting as the current path candidate.
4830 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4831 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4832 ** of legal values for isOrdered, -1..64.
4834 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4835 if( pTo->maskLoop==maskNew
4836 && ((pTo->isOrdered^isOrdered)&0x80)==0
4838 testcase( jj==nTo-1 );
4839 break;
4842 if( jj>=nTo ){
4843 /* None of the existing best-so-far paths match the candidate. */
4844 if( nTo>=mxChoice
4845 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4847 /* The current candidate is no better than any of the mxChoice
4848 ** paths currently in the best-so-far buffer. So discard
4849 ** this candidate as not viable. */
4850 #ifdef WHERETRACE_ENABLED /* 0x4 */
4851 if( sqlite3WhereTrace&0x4 ){
4852 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
4853 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4854 isOrdered>=0 ? isOrdered+'0' : '?');
4856 #endif
4857 continue;
4859 /* If we reach this points it means that the new candidate path
4860 ** needs to be added to the set of best-so-far paths. */
4861 if( nTo<mxChoice ){
4862 /* Increase the size of the aTo set by one */
4863 jj = nTo++;
4864 }else{
4865 /* New path replaces the prior worst to keep count below mxChoice */
4866 jj = mxI;
4868 pTo = &aTo[jj];
4869 #ifdef WHERETRACE_ENABLED /* 0x4 */
4870 if( sqlite3WhereTrace&0x4 ){
4871 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
4872 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4873 isOrdered>=0 ? isOrdered+'0' : '?');
4875 #endif
4876 }else{
4877 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4878 ** same set of loops and has the same isOrdered setting as the
4879 ** candidate path. Check to see if the candidate should replace
4880 ** pTo or if the candidate should be skipped.
4882 ** The conditional is an expanded vector comparison equivalent to:
4883 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4885 if( pTo->rCost<rCost
4886 || (pTo->rCost==rCost
4887 && (pTo->nRow<nOut
4888 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4892 #ifdef WHERETRACE_ENABLED /* 0x4 */
4893 if( sqlite3WhereTrace&0x4 ){
4894 sqlite3DebugPrintf(
4895 "Skip %s cost=%-3d,%3d,%3d order=%c",
4896 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4897 isOrdered>=0 ? isOrdered+'0' : '?');
4898 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
4899 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4900 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4902 #endif
4903 /* Discard the candidate path from further consideration */
4904 testcase( pTo->rCost==rCost );
4905 continue;
4907 testcase( pTo->rCost==rCost+1 );
4908 /* Control reaches here if the candidate path is better than the
4909 ** pTo path. Replace pTo with the candidate. */
4910 #ifdef WHERETRACE_ENABLED /* 0x4 */
4911 if( sqlite3WhereTrace&0x4 ){
4912 sqlite3DebugPrintf(
4913 "Update %s cost=%-3d,%3d,%3d order=%c",
4914 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4915 isOrdered>=0 ? isOrdered+'0' : '?');
4916 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
4917 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4918 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4920 #endif
4922 /* pWLoop is a winner. Add it to the set of best so far */
4923 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4924 pTo->revLoop = revMask;
4925 pTo->nRow = nOut;
4926 pTo->rCost = rCost;
4927 pTo->rUnsorted = rUnsorted;
4928 pTo->isOrdered = isOrdered;
4929 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4930 pTo->aLoop[iLoop] = pWLoop;
4931 if( nTo>=mxChoice ){
4932 mxI = 0;
4933 mxCost = aTo[0].rCost;
4934 mxUnsorted = aTo[0].nRow;
4935 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4936 if( pTo->rCost>mxCost
4937 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4939 mxCost = pTo->rCost;
4940 mxUnsorted = pTo->rUnsorted;
4941 mxI = jj;
4948 #ifdef WHERETRACE_ENABLED /* >=2 */
4949 if( sqlite3WhereTrace & 0x02 ){
4950 sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4951 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4952 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4953 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4954 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4955 if( pTo->isOrdered>0 ){
4956 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4957 }else{
4958 sqlite3DebugPrintf("\n");
4962 #endif
4964 /* Swap the roles of aFrom and aTo for the next generation */
4965 pFrom = aTo;
4966 aTo = aFrom;
4967 aFrom = pFrom;
4968 nFrom = nTo;
4971 if( nFrom==0 ){
4972 sqlite3ErrorMsg(pParse, "no query solution");
4973 sqlite3DbFreeNN(db, pSpace);
4974 return SQLITE_ERROR;
4977 /* Find the lowest cost path. pFrom will be left pointing to that path */
4978 pFrom = aFrom;
4979 for(ii=1; ii<nFrom; ii++){
4980 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4982 assert( pWInfo->nLevel==nLoop );
4983 /* Load the lowest cost path into pWInfo */
4984 for(iLoop=0; iLoop<nLoop; iLoop++){
4985 WhereLevel *pLevel = pWInfo->a + iLoop;
4986 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4987 pLevel->iFrom = pWLoop->iTab;
4988 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4990 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4991 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4992 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4993 && nRowEst
4995 Bitmask notUsed;
4996 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4997 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4998 if( rc==pWInfo->pResultSet->nExpr ){
4999 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5002 pWInfo->bOrderedInnerLoop = 0;
5003 if( pWInfo->pOrderBy ){
5004 pWInfo->nOBSat = pFrom->isOrdered;
5005 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
5006 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
5007 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5009 }else{
5010 pWInfo->revMask = pFrom->revLoop;
5011 if( pWInfo->nOBSat<=0 ){
5012 pWInfo->nOBSat = 0;
5013 if( nLoop>0 ){
5014 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
5015 if( (wsFlags & WHERE_ONEROW)==0
5016 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
5018 Bitmask m = 0;
5019 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
5020 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
5021 testcase( wsFlags & WHERE_IPK );
5022 testcase( wsFlags & WHERE_COLUMN_IN );
5023 if( rc==pWInfo->pOrderBy->nExpr ){
5024 pWInfo->bOrderedInnerLoop = 1;
5025 pWInfo->revMask = m;
5029 }else if( nLoop
5030 && pWInfo->nOBSat==1
5031 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
5033 pWInfo->bOrderedInnerLoop = 1;
5036 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
5037 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
5039 Bitmask revMask = 0;
5040 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
5041 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
5043 assert( pWInfo->sorted==0 );
5044 if( nOrder==pWInfo->pOrderBy->nExpr ){
5045 pWInfo->sorted = 1;
5046 pWInfo->revMask = revMask;
5052 pWInfo->nRowOut = pFrom->nRow;
5054 /* Free temporary memory and return success */
5055 sqlite3DbFreeNN(db, pSpace);
5056 return SQLITE_OK;
5060 ** Most queries use only a single table (they are not joins) and have
5061 ** simple == constraints against indexed fields. This routine attempts
5062 ** to plan those simple cases using much less ceremony than the
5063 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5064 ** times for the common case.
5066 ** Return non-zero on success, if this query can be handled by this
5067 ** no-frills query planner. Return zero if this query needs the
5068 ** general-purpose query planner.
5070 static int whereShortCut(WhereLoopBuilder *pBuilder){
5071 WhereInfo *pWInfo;
5072 SrcItem *pItem;
5073 WhereClause *pWC;
5074 WhereTerm *pTerm;
5075 WhereLoop *pLoop;
5076 int iCur;
5077 int j;
5078 Table *pTab;
5079 Index *pIdx;
5080 WhereScan scan;
5082 pWInfo = pBuilder->pWInfo;
5083 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
5084 assert( pWInfo->pTabList->nSrc>=1 );
5085 pItem = pWInfo->pTabList->a;
5086 pTab = pItem->pTab;
5087 if( IsVirtual(pTab) ) return 0;
5088 if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
5089 testcase( pItem->fg.isIndexedBy );
5090 testcase( pItem->fg.notIndexed );
5091 return 0;
5093 iCur = pItem->iCursor;
5094 pWC = &pWInfo->sWC;
5095 pLoop = pBuilder->pNew;
5096 pLoop->wsFlags = 0;
5097 pLoop->nSkip = 0;
5098 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
5099 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5100 if( pTerm ){
5101 testcase( pTerm->eOperator & WO_IS );
5102 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
5103 pLoop->aLTerm[0] = pTerm;
5104 pLoop->nLTerm = 1;
5105 pLoop->u.btree.nEq = 1;
5106 /* TUNING: Cost of a rowid lookup is 10 */
5107 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */
5108 }else{
5109 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5110 int opMask;
5111 assert( pLoop->aLTermSpace==pLoop->aLTerm );
5112 if( !IsUniqueIndex(pIdx)
5113 || pIdx->pPartIdxWhere!=0
5114 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
5115 ) continue;
5116 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
5117 for(j=0; j<pIdx->nKeyCol; j++){
5118 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
5119 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5120 if( pTerm==0 ) break;
5121 testcase( pTerm->eOperator & WO_IS );
5122 pLoop->aLTerm[j] = pTerm;
5124 if( j!=pIdx->nKeyCol ) continue;
5125 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
5126 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
5127 pLoop->wsFlags |= WHERE_IDX_ONLY;
5129 pLoop->nLTerm = j;
5130 pLoop->u.btree.nEq = j;
5131 pLoop->u.btree.pIndex = pIdx;
5132 /* TUNING: Cost of a unique index lookup is 15 */
5133 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */
5134 break;
5137 if( pLoop->wsFlags ){
5138 pLoop->nOut = (LogEst)1;
5139 pWInfo->a[0].pWLoop = pLoop;
5140 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
5141 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5142 pWInfo->a[0].iTabCur = iCur;
5143 pWInfo->nRowOut = 1;
5144 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr;
5145 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5146 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5148 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
5149 #ifdef SQLITE_DEBUG
5150 pLoop->cId = '0';
5151 #endif
5152 #ifdef WHERETRACE_ENABLED
5153 if( sqlite3WhereTrace ){
5154 sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5156 #endif
5157 return 1;
5159 return 0;
5163 ** Helper function for exprIsDeterministic().
5165 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5166 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5167 pWalker->eCode = 0;
5168 return WRC_Abort;
5170 return WRC_Continue;
5174 ** Return true if the expression contains no non-deterministic SQL
5175 ** functions. Do not consider non-deterministic SQL functions that are
5176 ** part of sub-select statements.
5178 static int exprIsDeterministic(Expr *p){
5179 Walker w;
5180 memset(&w, 0, sizeof(w));
5181 w.eCode = 1;
5182 w.xExprCallback = exprNodeIsDeterministic;
5183 w.xSelectCallback = sqlite3SelectWalkFail;
5184 sqlite3WalkExpr(&w, p);
5185 return w.eCode;
5189 #ifdef WHERETRACE_ENABLED
5191 ** Display all WhereLoops in pWInfo
5193 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5194 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */
5195 WhereLoop *p;
5196 int i;
5197 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5198 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5199 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5200 p->cId = zLabel[i%(sizeof(zLabel)-1)];
5201 sqlite3WhereLoopPrint(p, pWC);
5205 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5206 #else
5207 # define WHERETRACE_ALL_LOOPS(W,C)
5208 #endif
5210 /* Attempt to omit tables from a join that do not affect the result.
5211 ** For a table to not affect the result, the following must be true:
5213 ** 1) The query must not be an aggregate.
5214 ** 2) The table must be the RHS of a LEFT JOIN.
5215 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
5216 ** must contain a constraint that limits the scan of the table to
5217 ** at most a single row.
5218 ** 4) The table must not be referenced by any part of the query apart
5219 ** from its own USING or ON clause.
5221 ** For example, given:
5223 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5224 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5225 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5227 ** then table t2 can be omitted from the following:
5229 ** SELECT v1, v3 FROM t1
5230 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5231 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5233 ** or from:
5235 ** SELECT DISTINCT v1, v3 FROM t1
5236 ** LEFT JOIN t2
5237 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5239 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5240 WhereInfo *pWInfo,
5241 Bitmask notReady
5243 int i;
5244 Bitmask tabUsed;
5246 /* Preconditions checked by the caller */
5247 assert( pWInfo->nLevel>=2 );
5248 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5250 /* These two preconditions checked by the caller combine to guarantee
5251 ** condition (1) of the header comment */
5252 assert( pWInfo->pResultSet!=0 );
5253 assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5255 tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5256 if( pWInfo->pOrderBy ){
5257 tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5259 for(i=pWInfo->nLevel-1; i>=1; i--){
5260 WhereTerm *pTerm, *pEnd;
5261 SrcItem *pItem;
5262 WhereLoop *pLoop;
5263 pLoop = pWInfo->a[i].pWLoop;
5264 pItem = &pWInfo->pTabList->a[pLoop->iTab];
5265 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
5266 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5267 && (pLoop->wsFlags & WHERE_ONEROW)==0
5269 continue;
5271 if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5272 pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5273 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5274 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5275 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
5276 || pTerm->pExpr->w.iJoin!=pItem->iCursor
5278 break;
5282 if( pTerm<pEnd ) continue;
5283 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5284 notReady &= ~pLoop->maskSelf;
5285 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5286 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5287 pTerm->wtFlags |= TERM_CODED;
5290 if( i!=pWInfo->nLevel-1 ){
5291 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5292 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5294 pWInfo->nLevel--;
5295 assert( pWInfo->nLevel>0 );
5297 return notReady;
5301 ** Check to see if there are any SEARCH loops that might benefit from
5302 ** using a Bloom filter. Consider a Bloom filter if:
5304 ** (1) The SEARCH happens more than N times where N is the number
5305 ** of rows in the table that is being considered for the Bloom
5306 ** filter.
5307 ** (2) Some searches are expected to find zero rows. (This is determined
5308 ** by the WHERE_SELFCULL flag on the term.)
5309 ** (3) Bloom-filter processing is not disabled. (Checked by the
5310 ** caller.)
5311 ** (4) The size of the table being searched is known by ANALYZE.
5313 ** This block of code merely checks to see if a Bloom filter would be
5314 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5315 ** WhereLoop. The implementation of the Bloom filter comes further
5316 ** down where the code for each WhereLoop is generated.
5318 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5319 const WhereInfo *pWInfo
5321 int i;
5322 LogEst nSearch;
5324 assert( pWInfo->nLevel>=2 );
5325 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5326 nSearch = pWInfo->a[0].pWLoop->nOut;
5327 for(i=1; i<pWInfo->nLevel; i++){
5328 WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5329 const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5330 if( (pLoop->wsFlags & reqFlags)==reqFlags
5331 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5332 && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5334 SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5335 Table *pTab = pItem->pTab;
5336 pTab->tabFlags |= TF_StatsUsed;
5337 if( nSearch > pTab->nRowLogEst
5338 && (pTab->tabFlags & TF_HasStat1)!=0
5340 testcase( pItem->fg.jointype & JT_LEFT );
5341 pLoop->wsFlags |= WHERE_BLOOMFILTER;
5342 pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5343 WHERETRACE(0xffff, (
5344 "-> use Bloom-filter on loop %c because there are ~%.1e "
5345 "lookups into %s which has only ~%.1e rows\n",
5346 pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5347 (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5350 nSearch += pLoop->nOut;
5355 ** Generate the beginning of the loop used for WHERE clause processing.
5356 ** The return value is a pointer to an opaque structure that contains
5357 ** information needed to terminate the loop. Later, the calling routine
5358 ** should invoke sqlite3WhereEnd() with the return value of this function
5359 ** in order to complete the WHERE clause processing.
5361 ** If an error occurs, this routine returns NULL.
5363 ** The basic idea is to do a nested loop, one loop for each table in
5364 ** the FROM clause of a select. (INSERT and UPDATE statements are the
5365 ** same as a SELECT with only a single table in the FROM clause.) For
5366 ** example, if the SQL is this:
5368 ** SELECT * FROM t1, t2, t3 WHERE ...;
5370 ** Then the code generated is conceptually like the following:
5372 ** foreach row1 in t1 do \ Code generated
5373 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
5374 ** foreach row3 in t3 do /
5375 ** ...
5376 ** end \ Code generated
5377 ** end |-- by sqlite3WhereEnd()
5378 ** end /
5380 ** Note that the loops might not be nested in the order in which they
5381 ** appear in the FROM clause if a different order is better able to make
5382 ** use of indices. Note also that when the IN operator appears in
5383 ** the WHERE clause, it might result in additional nested loops for
5384 ** scanning through all values on the right-hand side of the IN.
5386 ** There are Btree cursors associated with each table. t1 uses cursor
5387 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
5388 ** And so forth. This routine generates code to open those VDBE cursors
5389 ** and sqlite3WhereEnd() generates the code to close them.
5391 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5392 ** in pTabList pointing at their appropriate entries. The [...] code
5393 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5394 ** data from the various tables of the loop.
5396 ** If the WHERE clause is empty, the foreach loops must each scan their
5397 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
5398 ** the tables have indices and there are terms in the WHERE clause that
5399 ** refer to those indices, a complete table scan can be avoided and the
5400 ** code will run much faster. Most of the work of this routine is checking
5401 ** to see if there are indices that can be used to speed up the loop.
5403 ** Terms of the WHERE clause are also used to limit which rows actually
5404 ** make it to the "..." in the middle of the loop. After each "foreach",
5405 ** terms of the WHERE clause that use only terms in that loop and outer
5406 ** loops are evaluated and if false a jump is made around all subsequent
5407 ** inner loops (or around the "..." if the test occurs within the inner-
5408 ** most loop)
5410 ** OUTER JOINS
5412 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5414 ** foreach row1 in t1 do
5415 ** flag = 0
5416 ** foreach row2 in t2 do
5417 ** start:
5418 ** ...
5419 ** flag = 1
5420 ** end
5421 ** if flag==0 then
5422 ** move the row2 cursor to a null row
5423 ** goto start
5424 ** fi
5425 ** end
5427 ** ORDER BY CLAUSE PROCESSING
5429 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5430 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5431 ** if there is one. If there is no ORDER BY clause or if this routine
5432 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5434 ** The iIdxCur parameter is the cursor number of an index. If
5435 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5436 ** to use for OR clause processing. The WHERE clause should use this
5437 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5438 ** the first cursor in an array of cursors for all indices. iIdxCur should
5439 ** be used to compute the appropriate cursor depending on which index is
5440 ** used.
5442 WhereInfo *sqlite3WhereBegin(
5443 Parse *pParse, /* The parser context */
5444 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */
5445 Expr *pWhere, /* The WHERE clause */
5446 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */
5447 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */
5448 Select *pLimit, /* Use this LIMIT/OFFSET clause, if any */
5449 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */
5450 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5451 ** If WHERE_USE_LIMIT, then the limit amount */
5453 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */
5454 int nTabList; /* Number of elements in pTabList */
5455 WhereInfo *pWInfo; /* Will become the return value of this function */
5456 Vdbe *v = pParse->pVdbe; /* The virtual database engine */
5457 Bitmask notReady; /* Cursors that are not yet positioned */
5458 WhereLoopBuilder sWLB; /* The WhereLoop builder */
5459 WhereMaskSet *pMaskSet; /* The expression mask set */
5460 WhereLevel *pLevel; /* A single level in pWInfo->a[] */
5461 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */
5462 int ii; /* Loop counter */
5463 sqlite3 *db; /* Database connection */
5464 int rc; /* Return code */
5465 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */
5467 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5468 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5469 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5472 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5473 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5474 || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5476 /* Variable initialization */
5477 db = pParse->db;
5478 memset(&sWLB, 0, sizeof(sWLB));
5480 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5481 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5482 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5484 /* The number of tables in the FROM clause is limited by the number of
5485 ** bits in a Bitmask
5487 testcase( pTabList->nSrc==BMS );
5488 if( pTabList->nSrc>BMS ){
5489 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5490 return 0;
5493 /* This function normally generates a nested loop for all tables in
5494 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5495 ** only generate code for the first table in pTabList and assume that
5496 ** any cursors associated with subsequent tables are uninitialized.
5498 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5500 /* Allocate and initialize the WhereInfo structure that will become the
5501 ** return value. A single allocation is used to store the WhereInfo
5502 ** struct, the contents of WhereInfo.a[], the WhereClause structure
5503 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5504 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5505 ** some architectures. Hence the ROUND8() below.
5507 nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5508 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5509 if( db->mallocFailed ){
5510 sqlite3DbFree(db, pWInfo);
5511 pWInfo = 0;
5512 goto whereBeginError;
5514 pWInfo->pParse = pParse;
5515 pWInfo->pTabList = pTabList;
5516 pWInfo->pOrderBy = pOrderBy;
5517 pWInfo->pWhere = pWhere;
5518 pWInfo->pResultSet = pResultSet;
5519 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5520 pWInfo->nLevel = nTabList;
5521 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5522 pWInfo->wctrlFlags = wctrlFlags;
5523 pWInfo->iLimit = iAuxArg;
5524 pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5525 #ifndef SQLITE_OMIT_VIRTUALTABLE
5526 pWInfo->pLimit = pLimit;
5527 #endif
5528 memset(&pWInfo->nOBSat, 0,
5529 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5530 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5531 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */
5532 pMaskSet = &pWInfo->sMaskSet;
5533 pMaskSet->n = 0;
5534 pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5535 ** a valid cursor number, to avoid an initial
5536 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5537 sWLB.pWInfo = pWInfo;
5538 sWLB.pWC = &pWInfo->sWC;
5539 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5540 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5541 whereLoopInit(sWLB.pNew);
5542 #ifdef SQLITE_DEBUG
5543 sWLB.pNew->cId = '*';
5544 #endif
5546 /* Split the WHERE clause into separate subexpressions where each
5547 ** subexpression is separated by an AND operator.
5549 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5550 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5552 /* Special case: No FROM clause
5554 if( nTabList==0 ){
5555 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5556 if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5557 && OptimizationEnabled(db, SQLITE_DistinctOpt)
5559 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5561 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5562 }else{
5563 /* Assign a bit from the bitmask to every term in the FROM clause.
5565 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5567 ** The rule of the previous sentence ensures thta if X is the bitmask for
5568 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5569 ** Knowing the bitmask for all tables to the left of a left join is
5570 ** important. Ticket #3015.
5572 ** Note that bitmasks are created for all pTabList->nSrc tables in
5573 ** pTabList, not just the first nTabList tables. nTabList is normally
5574 ** equal to pTabList->nSrc but might be shortened to 1 if the
5575 ** WHERE_OR_SUBCLAUSE flag is set.
5577 ii = 0;
5579 createMask(pMaskSet, pTabList->a[ii].iCursor);
5580 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5581 }while( (++ii)<pTabList->nSrc );
5582 #ifdef SQLITE_DEBUG
5584 Bitmask mx = 0;
5585 for(ii=0; ii<pTabList->nSrc; ii++){
5586 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5587 assert( m>=mx );
5588 mx = m;
5591 #endif
5594 /* Analyze all of the subexpressions. */
5595 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5596 sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5597 if( pParse->nErr ) goto whereBeginError;
5599 /* Special case: WHERE terms that do not refer to any tables in the join
5600 ** (constant expressions). Evaluate each such term, and jump over all the
5601 ** generated code if the result is not true.
5603 ** Do not do this if the expression contains non-deterministic functions
5604 ** that are not within a sub-select. This is not strictly required, but
5605 ** preserves SQLite's legacy behaviour in the following two cases:
5607 ** FROM ... WHERE random()>0; -- eval random() once per row
5608 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall
5610 for(ii=0; ii<sWLB.pWC->nBase; ii++){
5611 WhereTerm *pT = &sWLB.pWC->a[ii];
5612 if( pT->wtFlags & TERM_VIRTUAL ) continue;
5613 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5614 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5615 pT->wtFlags |= TERM_CODED;
5619 if( wctrlFlags & WHERE_WANT_DISTINCT ){
5620 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5621 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5622 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5623 wctrlFlags &= ~WHERE_WANT_DISTINCT;
5624 pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5625 }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5626 /* The DISTINCT marking is pointless. Ignore it. */
5627 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5628 }else if( pOrderBy==0 ){
5629 /* Try to ORDER BY the result set to make distinct processing easier */
5630 pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5631 pWInfo->pOrderBy = pResultSet;
5635 /* Construct the WhereLoop objects */
5636 #if defined(WHERETRACE_ENABLED)
5637 if( sqlite3WhereTrace & 0xffff ){
5638 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5639 if( wctrlFlags & WHERE_USE_LIMIT ){
5640 sqlite3DebugPrintf(", limit: %d", iAuxArg);
5642 sqlite3DebugPrintf(")\n");
5643 if( sqlite3WhereTrace & 0x100 ){
5644 Select sSelect;
5645 memset(&sSelect, 0, sizeof(sSelect));
5646 sSelect.selFlags = SF_WhereBegin;
5647 sSelect.pSrc = pTabList;
5648 sSelect.pWhere = pWhere;
5649 sSelect.pOrderBy = pOrderBy;
5650 sSelect.pEList = pResultSet;
5651 sqlite3TreeViewSelect(0, &sSelect, 0);
5654 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5655 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5656 sqlite3WhereClausePrint(sWLB.pWC);
5658 #endif
5660 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5661 rc = whereLoopAddAll(&sWLB);
5662 if( rc ) goto whereBeginError;
5664 #ifdef SQLITE_ENABLE_STAT4
5665 /* If one or more WhereTerm.truthProb values were used in estimating
5666 ** loop parameters, but then those truthProb values were subsequently
5667 ** changed based on STAT4 information while computing subsequent loops,
5668 ** then we need to rerun the whole loop building process so that all
5669 ** loops will be built using the revised truthProb values. */
5670 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5671 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5672 WHERETRACE(0xffff,
5673 ("**** Redo all loop computations due to"
5674 " TERM_HIGHTRUTH changes ****\n"));
5675 while( pWInfo->pLoops ){
5676 WhereLoop *p = pWInfo->pLoops;
5677 pWInfo->pLoops = p->pNextLoop;
5678 whereLoopDelete(db, p);
5680 rc = whereLoopAddAll(&sWLB);
5681 if( rc ) goto whereBeginError;
5683 #endif
5684 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5686 wherePathSolver(pWInfo, 0);
5687 if( db->mallocFailed ) goto whereBeginError;
5688 if( pWInfo->pOrderBy ){
5689 wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5690 if( db->mallocFailed ) goto whereBeginError;
5693 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5694 pWInfo->revMask = ALLBITS;
5696 if( pParse->nErr ){
5697 goto whereBeginError;
5699 assert( db->mallocFailed==0 );
5700 #ifdef WHERETRACE_ENABLED
5701 if( sqlite3WhereTrace ){
5702 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5703 if( pWInfo->nOBSat>0 ){
5704 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5706 switch( pWInfo->eDistinct ){
5707 case WHERE_DISTINCT_UNIQUE: {
5708 sqlite3DebugPrintf(" DISTINCT=unique");
5709 break;
5711 case WHERE_DISTINCT_ORDERED: {
5712 sqlite3DebugPrintf(" DISTINCT=ordered");
5713 break;
5715 case WHERE_DISTINCT_UNORDERED: {
5716 sqlite3DebugPrintf(" DISTINCT=unordered");
5717 break;
5720 sqlite3DebugPrintf("\n");
5721 for(ii=0; ii<pWInfo->nLevel; ii++){
5722 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5725 #endif
5727 /* Attempt to omit tables from a join that do not affect the result.
5728 ** See the comment on whereOmitNoopJoin() for further information.
5730 ** This query optimization is factored out into a separate "no-inline"
5731 ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5732 ** too large. If sqlite3WhereBegin() becomes too large, that prevents
5733 ** some C-compiler optimizers from in-lining the
5734 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5735 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5737 notReady = ~(Bitmask)0;
5738 if( pWInfo->nLevel>=2
5739 && pResultSet!=0 /* these two combine to guarantee */
5740 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */
5741 && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5743 notReady = whereOmitNoopJoin(pWInfo, notReady);
5744 nTabList = pWInfo->nLevel;
5745 assert( nTabList>0 );
5748 /* Check to see if there are any SEARCH loops that might benefit from
5749 ** using a Bloom filter.
5751 if( pWInfo->nLevel>=2
5752 && OptimizationEnabled(db, SQLITE_BloomFilter)
5754 whereCheckIfBloomFilterIsUseful(pWInfo);
5757 #if defined(WHERETRACE_ENABLED)
5758 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5759 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5760 sqlite3WhereClausePrint(sWLB.pWC);
5762 WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5763 #endif
5764 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5766 /* If the caller is an UPDATE or DELETE statement that is requesting
5767 ** to use a one-pass algorithm, determine if this is appropriate.
5769 ** A one-pass approach can be used if the caller has requested one
5770 ** and either (a) the scan visits at most one row or (b) each
5771 ** of the following are true:
5773 ** * the caller has indicated that a one-pass approach can be used
5774 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5775 ** * the table is not a virtual table, and
5776 ** * either the scan does not use the OR optimization or the caller
5777 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5778 ** for DELETE).
5780 ** The last qualification is because an UPDATE statement uses
5781 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5782 ** use a one-pass approach, and this is not set accurately for scans
5783 ** that use the OR optimization.
5785 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5786 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5787 int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5788 int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5789 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5790 if( bOnerow || (
5791 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5792 && !IsVirtual(pTabList->a[0].pTab)
5793 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5795 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5796 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5797 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5798 bFordelete = OPFLAG_FORDELETE;
5800 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5805 /* Open all tables in the pTabList and any indices selected for
5806 ** searching those tables.
5808 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5809 Table *pTab; /* Table to open */
5810 int iDb; /* Index of database containing table/index */
5811 SrcItem *pTabItem;
5813 pTabItem = &pTabList->a[pLevel->iFrom];
5814 pTab = pTabItem->pTab;
5815 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5816 pLoop = pLevel->pWLoop;
5817 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5818 /* Do nothing */
5819 }else
5820 #ifndef SQLITE_OMIT_VIRTUALTABLE
5821 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5822 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5823 int iCur = pTabItem->iCursor;
5824 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5825 }else if( IsVirtual(pTab) ){
5826 /* noop */
5827 }else
5828 #endif
5829 if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
5830 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
5831 || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
5833 int op = OP_OpenRead;
5834 if( pWInfo->eOnePass!=ONEPASS_OFF ){
5835 op = OP_OpenWrite;
5836 pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5838 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5839 assert( pTabItem->iCursor==pLevel->iTabCur );
5840 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5841 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5842 if( pWInfo->eOnePass==ONEPASS_OFF
5843 && pTab->nCol<BMS
5844 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5845 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
5847 /* If we know that only a prefix of the record will be used,
5848 ** it is advantageous to reduce the "column count" field in
5849 ** the P4 operand of the OP_OpenRead/Write opcode. */
5850 Bitmask b = pTabItem->colUsed;
5851 int n = 0;
5852 for(; b; b=b>>1, n++){}
5853 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5854 assert( n<=pTab->nCol );
5856 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5857 if( pLoop->u.btree.pIndex!=0 ){
5858 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5859 }else
5860 #endif
5862 sqlite3VdbeChangeP5(v, bFordelete);
5864 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5865 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5866 (const u8*)&pTabItem->colUsed, P4_INT64);
5867 #endif
5868 }else{
5869 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5871 if( pLoop->wsFlags & WHERE_INDEXED ){
5872 Index *pIx = pLoop->u.btree.pIndex;
5873 int iIndexCur;
5874 int op = OP_OpenRead;
5875 /* iAuxArg is always set to a positive value if ONEPASS is possible */
5876 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5877 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5878 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5880 /* This is one term of an OR-optimization using the PRIMARY KEY of a
5881 ** WITHOUT ROWID table. No need for a separate index */
5882 iIndexCur = pLevel->iTabCur;
5883 op = 0;
5884 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5885 Index *pJ = pTabItem->pTab->pIndex;
5886 iIndexCur = iAuxArg;
5887 assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5888 while( ALWAYS(pJ) && pJ!=pIx ){
5889 iIndexCur++;
5890 pJ = pJ->pNext;
5892 op = OP_OpenWrite;
5893 pWInfo->aiCurOnePass[1] = iIndexCur;
5894 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5895 iIndexCur = iAuxArg;
5896 op = OP_ReopenIdx;
5897 }else{
5898 iIndexCur = pParse->nTab++;
5900 pLevel->iIdxCur = iIndexCur;
5901 assert( pIx!=0 );
5902 assert( pIx->pSchema==pTab->pSchema );
5903 assert( iIndexCur>=0 );
5904 if( op ){
5905 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5906 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5907 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5908 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5909 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5910 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5911 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5912 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5914 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5916 VdbeComment((v, "%s", pIx->zName));
5917 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5919 u64 colUsed = 0;
5920 int ii, jj;
5921 for(ii=0; ii<pIx->nColumn; ii++){
5922 jj = pIx->aiColumn[ii];
5923 if( jj<0 ) continue;
5924 if( jj>63 ) jj = 63;
5925 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5926 colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5928 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5929 (u8*)&colUsed, P4_INT64);
5931 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5934 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5935 if( (pTabItem->fg.jointype & JT_RIGHT)!=0
5936 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
5938 WhereRightJoin *pRJ = pLevel->pRJ;
5939 pRJ->iMatch = pParse->nTab++;
5940 pRJ->regBloom = ++pParse->nMem;
5941 sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
5942 pRJ->regReturn = ++pParse->nMem;
5943 sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
5944 assert( pTab==pTabItem->pTab );
5945 if( HasRowid(pTab) ){
5946 KeyInfo *pInfo;
5947 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
5948 pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
5949 if( pInfo ){
5950 pInfo->aColl[0] = 0;
5951 pInfo->aSortFlags[0] = 0;
5952 sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
5954 }else{
5955 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5956 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
5957 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
5959 pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5960 /* The nature of RIGHT JOIN processing is such that it messes up
5961 ** the output order. So omit any ORDER BY/GROUP BY elimination
5962 ** optimizations. We need to do an actual sort for RIGHT JOIN. */
5963 pWInfo->nOBSat = 0;
5964 pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
5967 pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5968 if( db->mallocFailed ) goto whereBeginError;
5970 /* Generate the code to do the search. Each iteration of the for
5971 ** loop below generates code for a single nested loop of the VM
5972 ** program.
5974 for(ii=0; ii<nTabList; ii++){
5975 int addrExplain;
5976 int wsFlags;
5977 SrcItem *pSrc;
5978 if( pParse->nErr ) goto whereBeginError;
5979 pLevel = &pWInfo->a[ii];
5980 wsFlags = pLevel->pWLoop->wsFlags;
5981 pSrc = &pTabList->a[pLevel->iFrom];
5982 if( pSrc->fg.isMaterialized ){
5983 if( pSrc->fg.isCorrelated ){
5984 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
5985 }else{
5986 int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
5987 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
5988 sqlite3VdbeJumpHere(v, iOnce);
5991 if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
5992 if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
5993 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5994 constructAutomaticIndex(pParse, &pWInfo->sWC,
5995 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5996 #endif
5997 }else{
5998 sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
6000 if( db->mallocFailed ) goto whereBeginError;
6002 addrExplain = sqlite3WhereExplainOneScan(
6003 pParse, pTabList, pLevel, wctrlFlags
6005 pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
6006 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
6007 pWInfo->iContinue = pLevel->addrCont;
6008 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
6009 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
6013 /* Done. */
6014 VdbeModuleComment((v, "Begin WHERE-core"));
6015 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
6016 return pWInfo;
6018 /* Jump here if malloc fails */
6019 whereBeginError:
6020 if( pWInfo ){
6021 testcase( pWInfo->pExprMods!=0 );
6022 whereUndoExprMods(pWInfo);
6023 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6024 whereInfoFree(db, pWInfo);
6026 return 0;
6030 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6031 ** index rather than the main table. In SQLITE_DEBUG mode, we want
6032 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
6033 ** does that.
6035 #ifndef SQLITE_DEBUG
6036 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6037 #else
6038 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6039 static void sqlite3WhereOpcodeRewriteTrace(
6040 sqlite3 *db,
6041 int pc,
6042 VdbeOp *pOp
6044 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
6045 sqlite3VdbePrintOp(0, pc, pOp);
6047 #endif
6049 #ifdef SQLITE_DEBUG
6051 ** Return true if cursor iCur is opened by instruction k of the
6052 ** bytecode. Used inside of assert() only.
6054 static int cursorIsOpen(Vdbe *v, int iCur, int k){
6055 while( k>=0 ){
6056 VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
6057 if( pOp->p1!=iCur ) continue;
6058 if( pOp->opcode==OP_Close ) return 0;
6059 if( pOp->opcode==OP_OpenRead ) return 1;
6060 if( pOp->opcode==OP_OpenWrite ) return 1;
6061 if( pOp->opcode==OP_OpenDup ) return 1;
6062 if( pOp->opcode==OP_OpenAutoindex ) return 1;
6063 if( pOp->opcode==OP_OpenEphemeral ) return 1;
6065 return 0;
6067 #endif /* SQLITE_DEBUG */
6070 ** Generate the end of the WHERE loop. See comments on
6071 ** sqlite3WhereBegin() for additional information.
6073 void sqlite3WhereEnd(WhereInfo *pWInfo){
6074 Parse *pParse = pWInfo->pParse;
6075 Vdbe *v = pParse->pVdbe;
6076 int i;
6077 WhereLevel *pLevel;
6078 WhereLoop *pLoop;
6079 SrcList *pTabList = pWInfo->pTabList;
6080 sqlite3 *db = pParse->db;
6081 int iEnd = sqlite3VdbeCurrentAddr(v);
6082 int nRJ = 0;
6084 /* Generate loop termination code.
6086 VdbeModuleComment((v, "End WHERE-core"));
6087 for(i=pWInfo->nLevel-1; i>=0; i--){
6088 int addr;
6089 pLevel = &pWInfo->a[i];
6090 if( pLevel->pRJ ){
6091 /* Terminate the subroutine that forms the interior of the loop of
6092 ** the RIGHT JOIN table */
6093 WhereRightJoin *pRJ = pLevel->pRJ;
6094 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6095 pLevel->addrCont = 0;
6096 pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
6097 sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
6098 VdbeCoverage(v);
6099 nRJ++;
6101 pLoop = pLevel->pWLoop;
6102 if( pLevel->op!=OP_Noop ){
6103 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6104 int addrSeek = 0;
6105 Index *pIdx;
6106 int n;
6107 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
6108 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
6109 && (pLoop->wsFlags & WHERE_INDEXED)!=0
6110 && (pIdx = pLoop->u.btree.pIndex)->hasStat1
6111 && (n = pLoop->u.btree.nDistinctCol)>0
6112 && pIdx->aiRowLogEst[n]>=36
6114 int r1 = pParse->nMem+1;
6115 int j, op;
6116 for(j=0; j<n; j++){
6117 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
6119 pParse->nMem += n+1;
6120 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
6121 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
6122 VdbeCoverageIf(v, op==OP_SeekLT);
6123 VdbeCoverageIf(v, op==OP_SeekGT);
6124 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
6126 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6127 /* The common case: Advance to the next row */
6128 if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6129 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
6130 sqlite3VdbeChangeP5(v, pLevel->p5);
6131 VdbeCoverage(v);
6132 VdbeCoverageIf(v, pLevel->op==OP_Next);
6133 VdbeCoverageIf(v, pLevel->op==OP_Prev);
6134 VdbeCoverageIf(v, pLevel->op==OP_VNext);
6135 if( pLevel->regBignull ){
6136 sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
6137 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
6138 VdbeCoverage(v);
6140 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6141 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
6142 #endif
6143 }else if( pLevel->addrCont ){
6144 sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6146 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
6147 struct InLoop *pIn;
6148 int j;
6149 sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
6150 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
6151 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
6152 || pParse->db->mallocFailed );
6153 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6154 if( pIn->eEndLoopOp!=OP_Noop ){
6155 if( pIn->nPrefix ){
6156 int bEarlyOut =
6157 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
6158 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
6159 if( pLevel->iLeftJoin ){
6160 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6161 ** opened yet. This occurs for WHERE clauses such as
6162 ** "a = ? AND b IN (...)", where the index is on (a, b). If
6163 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6164 ** never have been coded, but the body of the loop run to
6165 ** return the null-row. So, if the cursor is not open yet,
6166 ** jump over the OP_Next or OP_Prev instruction about to
6167 ** be coded. */
6168 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
6169 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
6170 VdbeCoverage(v);
6172 if( bEarlyOut ){
6173 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
6174 sqlite3VdbeCurrentAddr(v)+2,
6175 pIn->iBase, pIn->nPrefix);
6176 VdbeCoverage(v);
6177 /* Retarget the OP_IsNull against the left operand of IN so
6178 ** it jumps past the OP_IfNoHope. This is because the
6179 ** OP_IsNull also bypasses the OP_Affinity opcode that is
6180 ** required by OP_IfNoHope. */
6181 sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6184 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
6185 VdbeCoverage(v);
6186 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
6187 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
6189 sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
6192 sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
6193 if( pLevel->pRJ ){
6194 sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
6195 VdbeCoverage(v);
6197 if( pLevel->addrSkip ){
6198 sqlite3VdbeGoto(v, pLevel->addrSkip);
6199 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
6200 sqlite3VdbeJumpHere(v, pLevel->addrSkip);
6201 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
6203 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6204 if( pLevel->addrLikeRep ){
6205 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
6206 pLevel->addrLikeRep);
6207 VdbeCoverage(v);
6209 #endif
6210 if( pLevel->iLeftJoin ){
6211 int ws = pLoop->wsFlags;
6212 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6213 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
6214 if( (ws & WHERE_IDX_ONLY)==0 ){
6215 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
6216 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
6218 if( (ws & WHERE_INDEXED)
6219 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
6221 if( ws & WHERE_MULTI_OR ){
6222 Index *pIx = pLevel->u.pCoveringIdx;
6223 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
6224 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
6225 sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6227 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6229 if( pLevel->op==OP_Return ){
6230 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6231 }else{
6232 sqlite3VdbeGoto(v, pLevel->addrFirst);
6234 sqlite3VdbeJumpHere(v, addr);
6236 VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6237 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6240 assert( pWInfo->nLevel<=pTabList->nSrc );
6241 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
6242 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6243 int k, last;
6244 VdbeOp *pOp, *pLastOp;
6245 Index *pIdx = 0;
6246 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6247 Table *pTab = pTabItem->pTab;
6248 assert( pTab!=0 );
6249 pLoop = pLevel->pWLoop;
6251 /* Do RIGHT JOIN processing. Generate code that will output the
6252 ** unmatched rows of the right operand of the RIGHT JOIN with
6253 ** all of the columns of the left operand set to NULL.
6255 if( pLevel->pRJ ){
6256 sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
6257 continue;
6260 /* For a co-routine, change all OP_Column references to the table of
6261 ** the co-routine into OP_Copy of result contained in a register.
6262 ** OP_Rowid becomes OP_Null.
6264 if( pTabItem->fg.viaCoroutine ){
6265 testcase( pParse->db->mallocFailed );
6266 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6267 pTabItem->regResult, 0);
6268 continue;
6271 /* If this scan uses an index, make VDBE code substitutions to read data
6272 ** from the index instead of from the table where possible. In some cases
6273 ** this optimization prevents the table from ever being read, which can
6274 ** yield a significant performance boost.
6276 ** Calls to the code generator in between sqlite3WhereBegin and
6277 ** sqlite3WhereEnd will have created code that references the table
6278 ** directly. This loop scans all that code looking for opcodes
6279 ** that reference the table and converts them into opcodes that
6280 ** reference the index.
6282 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6283 pIdx = pLoop->u.btree.pIndex;
6284 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6285 pIdx = pLevel->u.pCoveringIdx;
6287 if( pIdx
6288 && !db->mallocFailed
6290 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6291 last = iEnd;
6292 }else{
6293 last = pWInfo->iEndWhere;
6295 k = pLevel->addrBody + 1;
6296 #ifdef SQLITE_DEBUG
6297 if( db->flags & SQLITE_VdbeAddopTrace ){
6298 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6300 /* Proof that the "+1" on the k value above is safe */
6301 pOp = sqlite3VdbeGetOp(v, k - 1);
6302 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6303 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur );
6304 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6305 #endif
6306 pOp = sqlite3VdbeGetOp(v, k);
6307 pLastOp = pOp + (last - k);
6308 assert( pOp<=pLastOp );
6310 if( pOp->p1!=pLevel->iTabCur ){
6311 /* no-op */
6312 }else if( pOp->opcode==OP_Column
6313 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6314 || pOp->opcode==OP_Offset
6315 #endif
6317 int x = pOp->p2;
6318 assert( pIdx->pTable==pTab );
6319 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6320 if( pOp->opcode==OP_Offset ){
6321 /* Do not need to translate the column number */
6322 }else
6323 #endif
6324 if( !HasRowid(pTab) ){
6325 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6326 x = pPk->aiColumn[x];
6327 assert( x>=0 );
6328 }else{
6329 testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6330 x = sqlite3StorageColumnToTable(pTab,x);
6332 x = sqlite3TableColumnToIndex(pIdx, x);
6333 if( x>=0 ){
6334 pOp->p2 = x;
6335 pOp->p1 = pLevel->iIdxCur;
6336 OpcodeRewriteTrace(db, k, pOp);
6337 }else{
6338 /* Unable to translate the table reference into an index
6339 ** reference. Verify that this is harmless - that the
6340 ** table being referenced really is open.
6342 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6343 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6344 || cursorIsOpen(v,pOp->p1,k)
6345 || pOp->opcode==OP_Offset
6347 #else
6348 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6349 || cursorIsOpen(v,pOp->p1,k)
6351 #endif
6353 }else if( pOp->opcode==OP_Rowid ){
6354 pOp->p1 = pLevel->iIdxCur;
6355 pOp->opcode = OP_IdxRowid;
6356 OpcodeRewriteTrace(db, k, pOp);
6357 }else if( pOp->opcode==OP_IfNullRow ){
6358 pOp->p1 = pLevel->iIdxCur;
6359 OpcodeRewriteTrace(db, k, pOp);
6361 #ifdef SQLITE_DEBUG
6362 k++;
6363 #endif
6364 }while( (++pOp)<pLastOp );
6365 #ifdef SQLITE_DEBUG
6366 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6367 #endif
6371 /* The "break" point is here, just past the end of the outer loop.
6372 ** Set it.
6374 sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6376 /* Final cleanup
6378 pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6379 whereInfoFree(db, pWInfo);
6380 pParse->withinRJSubrtn -= nRJ;
6381 return;