New #ifdefs to omit code that is unused when SQLITE_USE_LONG DOUBLE is defined.
[sqlite.git] / src / pcache1.c
bloba0a8c7e28c2371232340c5cc997c5fb8383aa838
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
19 ** A Page cache line looks like this:
21 ** -------------------------------------------------------------
22 ** | database page content | PgHdr1 | MemPage | PgHdr |
23 ** -------------------------------------------------------------
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used. PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty". PgHdr1 is an extension added by this
31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
42 ** Historical note: It used to be that if the SQLITE_PCACHE_SEPARATE_HEADER
43 ** was defined, then the page content would be held in a separate memory
44 ** allocation from the PgHdr1. This was intended to avoid clownshoe memory
45 ** allocations. However, the btree layer needs a small (16-byte) overrun
46 ** area after the page content buffer. The header serves as that overrun
47 ** area. Therefore SQLITE_PCACHE_SEPARATE_HEADER was discontinued to avoid
48 ** any possibility of a memory error.
50 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
51 ** with this module. Information is passed back and forth as PgHdr1 pointers.
53 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
54 ** The btree.c module deals with pointers to MemPage objects.
56 ** SOURCE OF PAGE CACHE MEMORY:
58 ** Memory for a page might come from any of three sources:
60 ** (1) The general-purpose memory allocator - sqlite3Malloc()
61 ** (2) Global page-cache memory provided using sqlite3_config() with
62 ** SQLITE_CONFIG_PAGECACHE.
63 ** (3) PCache-local bulk allocation.
65 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
66 ** that is allocated when the page cache is created. The size of the local
67 ** bulk allocation can be adjusted using
69 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
71 ** If N is positive, then N pages worth of memory are allocated using a single
72 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
73 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
74 ** for as many pages as can be accommodated.
76 ** Only one of (2) or (3) can be used. Once the memory available to (2) or
77 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
78 ** memory allocator (1).
80 ** Earlier versions of SQLite used only methods (1) and (2). But experiments
81 ** show that method (3) with N==100 provides about a 5% performance boost for
82 ** common workloads.
84 #include "sqliteInt.h"
86 typedef struct PCache1 PCache1;
87 typedef struct PgHdr1 PgHdr1;
88 typedef struct PgFreeslot PgFreeslot;
89 typedef struct PGroup PGroup;
92 ** Each cache entry is represented by an instance of the following
93 ** structure. A buffer of PgHdr1.pCache->szPage bytes is allocated
94 ** directly before this structure and is used to cache the page content.
96 ** When reading a corrupt database file, it is possible that SQLite might
97 ** read a few bytes (no more than 16 bytes) past the end of the page buffer.
98 ** It will only read past the end of the page buffer, never write. This
99 ** object is positioned immediately after the page buffer to serve as an
100 ** overrun area, so that overreads are harmless.
102 ** Variables isBulkLocal and isAnchor were once type "u8". That works,
103 ** but causes a 2-byte gap in the structure for most architectures (since
104 ** pointers must be either 4 or 8-byte aligned). As this structure is located
105 ** in memory directly after the associated page data, if the database is
106 ** corrupt, code at the b-tree layer may overread the page buffer and
107 ** read part of this structure before the corruption is detected. This
108 ** can cause a valgrind error if the uninitialized gap is accessed. Using u16
109 ** ensures there is no such gap, and therefore no bytes of uninitialized
110 ** memory in the structure.
112 ** The pLruNext and pLruPrev pointers form a double-linked circular list
113 ** of all pages that are unpinned. The PGroup.lru element (which should be
114 ** the only element on the list with PgHdr1.isAnchor set to 1) forms the
115 ** beginning and the end of the list.
117 struct PgHdr1 {
118 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
119 unsigned int iKey; /* Key value (page number) */
120 u16 isBulkLocal; /* This page from bulk local storage */
121 u16 isAnchor; /* This is the PGroup.lru element */
122 PgHdr1 *pNext; /* Next in hash table chain */
123 PCache1 *pCache; /* Cache that currently owns this page */
124 PgHdr1 *pLruNext; /* Next in circular LRU list of unpinned pages */
125 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
126 /* NB: pLruPrev is only valid if pLruNext!=0 */
130 ** A page is pinned if it is not on the LRU list. To be "pinned" means
131 ** that the page is in active use and must not be deallocated.
133 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0)
134 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0)
136 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
137 ** of one or more PCaches that are able to recycle each other's unpinned
138 ** pages when they are under memory pressure. A PGroup is an instance of
139 ** the following object.
141 ** This page cache implementation works in one of two modes:
143 ** (1) Every PCache is the sole member of its own PGroup. There is
144 ** one PGroup per PCache.
146 ** (2) There is a single global PGroup that all PCaches are a member
147 ** of.
149 ** Mode 1 uses more memory (since PCache instances are not able to rob
150 ** unused pages from other PCaches) but it also operates without a mutex,
151 ** and is therefore often faster. Mode 2 requires a mutex in order to be
152 ** threadsafe, but recycles pages more efficiently.
154 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
155 ** PGroup which is the pcache1.grp global variable and its mutex is
156 ** SQLITE_MUTEX_STATIC_LRU.
158 struct PGroup {
159 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
160 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
161 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
162 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
163 unsigned int nPurgeable; /* Number of purgeable pages allocated */
164 PgHdr1 lru; /* The beginning and end of the LRU list */
167 /* Each page cache is an instance of the following object. Every
168 ** open database file (including each in-memory database and each
169 ** temporary or transient database) has a single page cache which
170 ** is an instance of this object.
172 ** Pointers to structures of this type are cast and returned as
173 ** opaque sqlite3_pcache* handles.
175 struct PCache1 {
176 /* Cache configuration parameters. Page size (szPage) and the purgeable
177 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
178 ** cache is created and are never changed thereafter. nMax may be
179 ** modified at any time by a call to the pcache1Cachesize() method.
180 ** The PGroup mutex must be held when accessing nMax.
182 PGroup *pGroup; /* PGroup this cache belongs to */
183 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */
184 int szPage; /* Size of database content section */
185 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
186 int szAlloc; /* Total size of one pcache line */
187 int bPurgeable; /* True if cache is purgeable */
188 unsigned int nMin; /* Minimum number of pages reserved */
189 unsigned int nMax; /* Configured "cache_size" value */
190 unsigned int n90pct; /* nMax*9/10 */
191 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
192 unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/
194 /* Hash table of all pages. The following variables may only be accessed
195 ** when the accessor is holding the PGroup mutex.
197 unsigned int nRecyclable; /* Number of pages in the LRU list */
198 unsigned int nPage; /* Total number of pages in apHash */
199 unsigned int nHash; /* Number of slots in apHash[] */
200 PgHdr1 **apHash; /* Hash table for fast lookup by key */
201 PgHdr1 *pFree; /* List of unused pcache-local pages */
202 void *pBulk; /* Bulk memory used by pcache-local */
206 ** Free slots in the allocator used to divide up the global page cache
207 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
209 struct PgFreeslot {
210 PgFreeslot *pNext; /* Next free slot */
214 ** Global data used by this cache.
216 static SQLITE_WSD struct PCacheGlobal {
217 PGroup grp; /* The global PGroup for mode (2) */
219 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
220 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
221 ** fixed at sqlite3_initialize() time and do not require mutex protection.
222 ** The nFreeSlot and pFree values do require mutex protection.
224 int isInit; /* True if initialized */
225 int separateCache; /* Use a new PGroup for each PCache */
226 int nInitPage; /* Initial bulk allocation size */
227 int szSlot; /* Size of each free slot */
228 int nSlot; /* The number of pcache slots */
229 int nReserve; /* Try to keep nFreeSlot above this */
230 void *pStart, *pEnd; /* Bounds of global page cache memory */
231 /* Above requires no mutex. Use mutex below for variable that follow. */
232 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
233 PgFreeslot *pFree; /* Free page blocks */
234 int nFreeSlot; /* Number of unused pcache slots */
235 /* The following value requires a mutex to change. We skip the mutex on
236 ** reading because (1) most platforms read a 32-bit integer atomically and
237 ** (2) even if an incorrect value is read, no great harm is done since this
238 ** is really just an optimization. */
239 int bUnderPressure; /* True if low on PAGECACHE memory */
240 } pcache1_g;
243 ** All code in this file should access the global structure above via the
244 ** alias "pcache1". This ensures that the WSD emulation is used when
245 ** compiling for systems that do not support real WSD.
247 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
250 ** Macros to enter and leave the PCache LRU mutex.
252 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
253 # define pcache1EnterMutex(X) assert((X)->mutex==0)
254 # define pcache1LeaveMutex(X) assert((X)->mutex==0)
255 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
256 #else
257 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
258 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
259 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
260 #endif
262 /******************************************************************************/
263 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
267 ** This function is called during initialization if a static buffer is
268 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
269 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
270 ** enough to contain 'n' buffers of 'sz' bytes each.
272 ** This routine is called from sqlite3_initialize() and so it is guaranteed
273 ** to be serialized already. There is no need for further mutexing.
275 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
276 if( pcache1.isInit ){
277 PgFreeslot *p;
278 if( pBuf==0 ) sz = n = 0;
279 if( n==0 ) sz = 0;
280 sz = ROUNDDOWN8(sz);
281 pcache1.szSlot = sz;
282 pcache1.nSlot = pcache1.nFreeSlot = n;
283 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
284 pcache1.pStart = pBuf;
285 pcache1.pFree = 0;
286 pcache1.bUnderPressure = 0;
287 while( n-- ){
288 p = (PgFreeslot*)pBuf;
289 p->pNext = pcache1.pFree;
290 pcache1.pFree = p;
291 pBuf = (void*)&((char*)pBuf)[sz];
293 pcache1.pEnd = pBuf;
298 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
299 ** true if pCache->pFree ends up containing one or more free pages.
301 static int pcache1InitBulk(PCache1 *pCache){
302 i64 szBulk;
303 char *zBulk;
304 if( pcache1.nInitPage==0 ) return 0;
305 /* Do not bother with a bulk allocation if the cache size very small */
306 if( pCache->nMax<3 ) return 0;
307 sqlite3BeginBenignMalloc();
308 if( pcache1.nInitPage>0 ){
309 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
310 }else{
311 szBulk = -1024 * (i64)pcache1.nInitPage;
313 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
314 szBulk = pCache->szAlloc*(i64)pCache->nMax;
316 zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
317 sqlite3EndBenignMalloc();
318 if( zBulk ){
319 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
321 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
322 pX->page.pBuf = zBulk;
323 pX->page.pExtra = (u8*)pX + ROUND8(sizeof(*pX));
324 assert( EIGHT_BYTE_ALIGNMENT( pX->page.pExtra ) );
325 pX->isBulkLocal = 1;
326 pX->isAnchor = 0;
327 pX->pNext = pCache->pFree;
328 pX->pLruPrev = 0; /* Initializing this saves a valgrind error */
329 pCache->pFree = pX;
330 zBulk += pCache->szAlloc;
331 }while( --nBulk );
333 return pCache->pFree!=0;
337 ** Malloc function used within this file to allocate space from the buffer
338 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
339 ** such buffer exists or there is no space left in it, this function falls
340 ** back to sqlite3Malloc().
342 ** Multiple threads can run this routine at the same time. Global variables
343 ** in pcache1 need to be protected via mutex.
345 static void *pcache1Alloc(int nByte){
346 void *p = 0;
347 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
348 if( nByte<=pcache1.szSlot ){
349 sqlite3_mutex_enter(pcache1.mutex);
350 p = (PgHdr1 *)pcache1.pFree;
351 if( p ){
352 pcache1.pFree = pcache1.pFree->pNext;
353 pcache1.nFreeSlot--;
354 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
355 assert( pcache1.nFreeSlot>=0 );
356 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
357 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
359 sqlite3_mutex_leave(pcache1.mutex);
361 if( p==0 ){
362 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
363 ** it from sqlite3Malloc instead.
365 p = sqlite3Malloc(nByte);
366 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
367 if( p ){
368 int sz = sqlite3MallocSize(p);
369 sqlite3_mutex_enter(pcache1.mutex);
370 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
371 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
372 sqlite3_mutex_leave(pcache1.mutex);
374 #endif
375 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
377 return p;
381 ** Free an allocated buffer obtained from pcache1Alloc().
383 static void pcache1Free(void *p){
384 if( p==0 ) return;
385 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
386 PgFreeslot *pSlot;
387 sqlite3_mutex_enter(pcache1.mutex);
388 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
389 pSlot = (PgFreeslot*)p;
390 pSlot->pNext = pcache1.pFree;
391 pcache1.pFree = pSlot;
392 pcache1.nFreeSlot++;
393 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
394 assert( pcache1.nFreeSlot<=pcache1.nSlot );
395 sqlite3_mutex_leave(pcache1.mutex);
396 }else{
397 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
398 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
399 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
401 int nFreed = 0;
402 nFreed = sqlite3MallocSize(p);
403 sqlite3_mutex_enter(pcache1.mutex);
404 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
405 sqlite3_mutex_leave(pcache1.mutex);
407 #endif
408 sqlite3_free(p);
412 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
414 ** Return the size of a pcache allocation
416 static int pcache1MemSize(void *p){
417 if( p>=pcache1.pStart && p<pcache1.pEnd ){
418 return pcache1.szSlot;
419 }else{
420 int iSize;
421 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
422 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
423 iSize = sqlite3MallocSize(p);
424 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
425 return iSize;
428 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
431 ** Allocate a new page object initially associated with cache pCache.
433 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
434 PgHdr1 *p = 0;
435 void *pPg;
437 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
438 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
439 assert( pCache->pFree!=0 );
440 p = pCache->pFree;
441 pCache->pFree = p->pNext;
442 p->pNext = 0;
443 }else{
444 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
445 /* The group mutex must be released before pcache1Alloc() is called. This
446 ** is because it might call sqlite3_release_memory(), which assumes that
447 ** this mutex is not held. */
448 assert( pcache1.separateCache==0 );
449 assert( pCache->pGroup==&pcache1.grp );
450 pcache1LeaveMutex(pCache->pGroup);
451 #endif
452 if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
453 pPg = pcache1Alloc(pCache->szAlloc);
454 if( benignMalloc ){ sqlite3EndBenignMalloc(); }
455 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
456 pcache1EnterMutex(pCache->pGroup);
457 #endif
458 if( pPg==0 ) return 0;
459 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
460 p->page.pBuf = pPg;
461 p->page.pExtra = (u8*)p + ROUND8(sizeof(*p));
462 assert( EIGHT_BYTE_ALIGNMENT( p->page.pExtra ) );
463 p->isBulkLocal = 0;
464 p->isAnchor = 0;
465 p->pLruPrev = 0; /* Initializing this saves a valgrind error */
467 (*pCache->pnPurgeable)++;
468 return p;
472 ** Free a page object allocated by pcache1AllocPage().
474 static void pcache1FreePage(PgHdr1 *p){
475 PCache1 *pCache;
476 assert( p!=0 );
477 pCache = p->pCache;
478 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
479 if( p->isBulkLocal ){
480 p->pNext = pCache->pFree;
481 pCache->pFree = p;
482 }else{
483 pcache1Free(p->page.pBuf);
485 (*pCache->pnPurgeable)--;
489 ** Malloc function used by SQLite to obtain space from the buffer configured
490 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
491 ** exists, this function falls back to sqlite3Malloc().
493 void *sqlite3PageMalloc(int sz){
494 assert( sz<=65536+8 ); /* These allocations are never very large */
495 return pcache1Alloc(sz);
499 ** Free an allocated buffer obtained from sqlite3PageMalloc().
501 void sqlite3PageFree(void *p){
502 pcache1Free(p);
507 ** Return true if it desirable to avoid allocating a new page cache
508 ** entry.
510 ** If memory was allocated specifically to the page cache using
511 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
512 ** it is desirable to avoid allocating a new page cache entry because
513 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
514 ** for all page cache needs and we should not need to spill the
515 ** allocation onto the heap.
517 ** Or, the heap is used for all page cache memory but the heap is
518 ** under memory pressure, then again it is desirable to avoid
519 ** allocating a new page cache entry in order to avoid stressing
520 ** the heap even further.
522 static int pcache1UnderMemoryPressure(PCache1 *pCache){
523 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
524 return pcache1.bUnderPressure;
525 }else{
526 return sqlite3HeapNearlyFull();
530 /******************************************************************************/
531 /******** General Implementation Functions ************************************/
534 ** This function is used to resize the hash table used by the cache passed
535 ** as the first argument.
537 ** The PCache mutex must be held when this function is called.
539 static void pcache1ResizeHash(PCache1 *p){
540 PgHdr1 **apNew;
541 unsigned int nNew;
542 unsigned int i;
544 assert( sqlite3_mutex_held(p->pGroup->mutex) );
546 nNew = p->nHash*2;
547 if( nNew<256 ){
548 nNew = 256;
551 pcache1LeaveMutex(p->pGroup);
552 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
553 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
554 if( p->nHash ){ sqlite3EndBenignMalloc(); }
555 pcache1EnterMutex(p->pGroup);
556 if( apNew ){
557 for(i=0; i<p->nHash; i++){
558 PgHdr1 *pPage;
559 PgHdr1 *pNext = p->apHash[i];
560 while( (pPage = pNext)!=0 ){
561 unsigned int h = pPage->iKey % nNew;
562 pNext = pPage->pNext;
563 pPage->pNext = apNew[h];
564 apNew[h] = pPage;
567 sqlite3_free(p->apHash);
568 p->apHash = apNew;
569 p->nHash = nNew;
574 ** This function is used internally to remove the page pPage from the
575 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
576 ** LRU list, then this function is a no-op.
578 ** The PGroup mutex must be held when this function is called.
580 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
581 assert( pPage!=0 );
582 assert( PAGE_IS_UNPINNED(pPage) );
583 assert( pPage->pLruNext );
584 assert( pPage->pLruPrev );
585 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
586 pPage->pLruPrev->pLruNext = pPage->pLruNext;
587 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
588 pPage->pLruNext = 0;
589 /* pPage->pLruPrev = 0;
590 ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
591 assert( pPage->isAnchor==0 );
592 assert( pPage->pCache->pGroup->lru.isAnchor==1 );
593 pPage->pCache->nRecyclable--;
594 return pPage;
599 ** Remove the page supplied as an argument from the hash table
600 ** (PCache1.apHash structure) that it is currently stored in.
601 ** Also free the page if freePage is true.
603 ** The PGroup mutex must be held when this function is called.
605 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
606 unsigned int h;
607 PCache1 *pCache = pPage->pCache;
608 PgHdr1 **pp;
610 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
611 h = pPage->iKey % pCache->nHash;
612 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
613 *pp = (*pp)->pNext;
615 pCache->nPage--;
616 if( freeFlag ) pcache1FreePage(pPage);
620 ** If there are currently more than nMaxPage pages allocated, try
621 ** to recycle pages to reduce the number allocated to nMaxPage.
623 static void pcache1EnforceMaxPage(PCache1 *pCache){
624 PGroup *pGroup = pCache->pGroup;
625 PgHdr1 *p;
626 assert( sqlite3_mutex_held(pGroup->mutex) );
627 while( pGroup->nPurgeable>pGroup->nMaxPage
628 && (p=pGroup->lru.pLruPrev)->isAnchor==0
630 assert( p->pCache->pGroup==pGroup );
631 assert( PAGE_IS_UNPINNED(p) );
632 pcache1PinPage(p);
633 pcache1RemoveFromHash(p, 1);
635 if( pCache->nPage==0 && pCache->pBulk ){
636 sqlite3_free(pCache->pBulk);
637 pCache->pBulk = pCache->pFree = 0;
642 ** Discard all pages from cache pCache with a page number (key value)
643 ** greater than or equal to iLimit. Any pinned pages that meet this
644 ** criteria are unpinned before they are discarded.
646 ** The PCache mutex must be held when this function is called.
648 static void pcache1TruncateUnsafe(
649 PCache1 *pCache, /* The cache to truncate */
650 unsigned int iLimit /* Drop pages with this pgno or larger */
652 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
653 unsigned int h, iStop;
654 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
655 assert( pCache->iMaxKey >= iLimit );
656 assert( pCache->nHash > 0 );
657 if( pCache->iMaxKey - iLimit < pCache->nHash ){
658 /* If we are just shaving the last few pages off the end of the
659 ** cache, then there is no point in scanning the entire hash table.
660 ** Only scan those hash slots that might contain pages that need to
661 ** be removed. */
662 h = iLimit % pCache->nHash;
663 iStop = pCache->iMaxKey % pCache->nHash;
664 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
665 }else{
666 /* This is the general case where many pages are being removed.
667 ** It is necessary to scan the entire hash table */
668 h = pCache->nHash/2;
669 iStop = h - 1;
671 for(;;){
672 PgHdr1 **pp;
673 PgHdr1 *pPage;
674 assert( h<pCache->nHash );
675 pp = &pCache->apHash[h];
676 while( (pPage = *pp)!=0 ){
677 if( pPage->iKey>=iLimit ){
678 pCache->nPage--;
679 *pp = pPage->pNext;
680 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
681 pcache1FreePage(pPage);
682 }else{
683 pp = &pPage->pNext;
684 TESTONLY( if( nPage>=0 ) nPage++; )
687 if( h==iStop ) break;
688 h = (h+1) % pCache->nHash;
690 assert( nPage<0 || pCache->nPage==(unsigned)nPage );
693 /******************************************************************************/
694 /******** sqlite3_pcache Methods **********************************************/
697 ** Implementation of the sqlite3_pcache.xInit method.
699 static int pcache1Init(void *NotUsed){
700 UNUSED_PARAMETER(NotUsed);
701 assert( pcache1.isInit==0 );
702 memset(&pcache1, 0, sizeof(pcache1));
706 ** The pcache1.separateCache variable is true if each PCache has its own
707 ** private PGroup (mode-1). pcache1.separateCache is false if the single
708 ** PGroup in pcache1.grp is used for all page caches (mode-2).
710 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
712 ** * Use a unified cache in single-threaded applications that have
713 ** configured a start-time buffer for use as page-cache memory using
714 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
715 ** pBuf argument.
717 ** * Otherwise use separate caches (mode-1)
719 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
720 pcache1.separateCache = 0;
721 #elif SQLITE_THREADSAFE
722 pcache1.separateCache = sqlite3GlobalConfig.pPage==0
723 || sqlite3GlobalConfig.bCoreMutex>0;
724 #else
725 pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
726 #endif
728 #if SQLITE_THREADSAFE
729 if( sqlite3GlobalConfig.bCoreMutex ){
730 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
731 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
733 #endif
734 if( pcache1.separateCache
735 && sqlite3GlobalConfig.nPage!=0
736 && sqlite3GlobalConfig.pPage==0
738 pcache1.nInitPage = sqlite3GlobalConfig.nPage;
739 }else{
740 pcache1.nInitPage = 0;
742 pcache1.grp.mxPinned = 10;
743 pcache1.isInit = 1;
744 return SQLITE_OK;
748 ** Implementation of the sqlite3_pcache.xShutdown method.
749 ** Note that the static mutex allocated in xInit does
750 ** not need to be freed.
752 static void pcache1Shutdown(void *NotUsed){
753 UNUSED_PARAMETER(NotUsed);
754 assert( pcache1.isInit!=0 );
755 memset(&pcache1, 0, sizeof(pcache1));
758 /* forward declaration */
759 static void pcache1Destroy(sqlite3_pcache *p);
762 ** Implementation of the sqlite3_pcache.xCreate method.
764 ** Allocate a new cache.
766 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
767 PCache1 *pCache; /* The newly created page cache */
768 PGroup *pGroup; /* The group the new page cache will belong to */
769 int sz; /* Bytes of memory required to allocate the new cache */
771 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
772 assert( szExtra < 300 );
774 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
775 pCache = (PCache1 *)sqlite3MallocZero(sz);
776 if( pCache ){
777 if( pcache1.separateCache ){
778 pGroup = (PGroup*)&pCache[1];
779 pGroup->mxPinned = 10;
780 }else{
781 pGroup = &pcache1.grp;
783 pcache1EnterMutex(pGroup);
784 if( pGroup->lru.isAnchor==0 ){
785 pGroup->lru.isAnchor = 1;
786 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
788 pCache->pGroup = pGroup;
789 pCache->szPage = szPage;
790 pCache->szExtra = szExtra;
791 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
792 pCache->bPurgeable = (bPurgeable ? 1 : 0);
793 pcache1ResizeHash(pCache);
794 if( bPurgeable ){
795 pCache->nMin = 10;
796 pGroup->nMinPage += pCache->nMin;
797 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
798 pCache->pnPurgeable = &pGroup->nPurgeable;
799 }else{
800 pCache->pnPurgeable = &pCache->nPurgeableDummy;
802 pcache1LeaveMutex(pGroup);
803 if( pCache->nHash==0 ){
804 pcache1Destroy((sqlite3_pcache*)pCache);
805 pCache = 0;
808 return (sqlite3_pcache *)pCache;
812 ** Implementation of the sqlite3_pcache.xCachesize method.
814 ** Configure the cache_size limit for a cache.
816 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
817 PCache1 *pCache = (PCache1 *)p;
818 u32 n;
819 assert( nMax>=0 );
820 if( pCache->bPurgeable ){
821 PGroup *pGroup = pCache->pGroup;
822 pcache1EnterMutex(pGroup);
823 n = (u32)nMax;
824 if( n > 0x7fff0000 - pGroup->nMaxPage + pCache->nMax ){
825 n = 0x7fff0000 - pGroup->nMaxPage + pCache->nMax;
827 pGroup->nMaxPage += (n - pCache->nMax);
828 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
829 pCache->nMax = n;
830 pCache->n90pct = pCache->nMax*9/10;
831 pcache1EnforceMaxPage(pCache);
832 pcache1LeaveMutex(pGroup);
837 ** Implementation of the sqlite3_pcache.xShrink method.
839 ** Free up as much memory as possible.
841 static void pcache1Shrink(sqlite3_pcache *p){
842 PCache1 *pCache = (PCache1*)p;
843 if( pCache->bPurgeable ){
844 PGroup *pGroup = pCache->pGroup;
845 unsigned int savedMaxPage;
846 pcache1EnterMutex(pGroup);
847 savedMaxPage = pGroup->nMaxPage;
848 pGroup->nMaxPage = 0;
849 pcache1EnforceMaxPage(pCache);
850 pGroup->nMaxPage = savedMaxPage;
851 pcache1LeaveMutex(pGroup);
856 ** Implementation of the sqlite3_pcache.xPagecount method.
858 static int pcache1Pagecount(sqlite3_pcache *p){
859 int n;
860 PCache1 *pCache = (PCache1*)p;
861 pcache1EnterMutex(pCache->pGroup);
862 n = pCache->nPage;
863 pcache1LeaveMutex(pCache->pGroup);
864 return n;
869 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
870 ** in the header of the pcache1Fetch() procedure.
872 ** This steps are broken out into a separate procedure because they are
873 ** usually not needed, and by avoiding the stack initialization required
874 ** for these steps, the main pcache1Fetch() procedure can run faster.
876 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
877 PCache1 *pCache,
878 unsigned int iKey,
879 int createFlag
881 unsigned int nPinned;
882 PGroup *pGroup = pCache->pGroup;
883 PgHdr1 *pPage = 0;
885 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
886 assert( pCache->nPage >= pCache->nRecyclable );
887 nPinned = pCache->nPage - pCache->nRecyclable;
888 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
889 assert( pCache->n90pct == pCache->nMax*9/10 );
890 if( createFlag==1 && (
891 nPinned>=pGroup->mxPinned
892 || nPinned>=pCache->n90pct
893 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
895 return 0;
898 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
899 assert( pCache->nHash>0 && pCache->apHash );
901 /* Step 4. Try to recycle a page. */
902 if( pCache->bPurgeable
903 && !pGroup->lru.pLruPrev->isAnchor
904 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
906 PCache1 *pOther;
907 pPage = pGroup->lru.pLruPrev;
908 assert( PAGE_IS_UNPINNED(pPage) );
909 pcache1RemoveFromHash(pPage, 0);
910 pcache1PinPage(pPage);
911 pOther = pPage->pCache;
912 if( pOther->szAlloc != pCache->szAlloc ){
913 pcache1FreePage(pPage);
914 pPage = 0;
915 }else{
916 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
920 /* Step 5. If a usable page buffer has still not been found,
921 ** attempt to allocate a new one.
923 if( !pPage ){
924 pPage = pcache1AllocPage(pCache, createFlag==1);
927 if( pPage ){
928 unsigned int h = iKey % pCache->nHash;
929 pCache->nPage++;
930 pPage->iKey = iKey;
931 pPage->pNext = pCache->apHash[h];
932 pPage->pCache = pCache;
933 pPage->pLruNext = 0;
934 /* pPage->pLruPrev = 0;
935 ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
936 *(void **)pPage->page.pExtra = 0;
937 pCache->apHash[h] = pPage;
938 if( iKey>pCache->iMaxKey ){
939 pCache->iMaxKey = iKey;
942 return pPage;
946 ** Implementation of the sqlite3_pcache.xFetch method.
948 ** Fetch a page by key value.
950 ** Whether or not a new page may be allocated by this function depends on
951 ** the value of the createFlag argument. 0 means do not allocate a new
952 ** page. 1 means allocate a new page if space is easily available. 2
953 ** means to try really hard to allocate a new page.
955 ** For a non-purgeable cache (a cache used as the storage for an in-memory
956 ** database) there is really no difference between createFlag 1 and 2. So
957 ** the calling function (pcache.c) will never have a createFlag of 1 on
958 ** a non-purgeable cache.
960 ** There are three different approaches to obtaining space for a page,
961 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
963 ** 1. Regardless of the value of createFlag, the cache is searched for a
964 ** copy of the requested page. If one is found, it is returned.
966 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
967 ** returned.
969 ** 3. If createFlag is 1, and the page is not already in the cache, then
970 ** return NULL (do not allocate a new page) if any of the following
971 ** conditions are true:
973 ** (a) the number of pages pinned by the cache is greater than
974 ** PCache1.nMax, or
976 ** (b) the number of pages pinned by the cache is greater than
977 ** the sum of nMax for all purgeable caches, less the sum of
978 ** nMin for all other purgeable caches, or
980 ** 4. If none of the first three conditions apply and the cache is marked
981 ** as purgeable, and if one of the following is true:
983 ** (a) The number of pages allocated for the cache is already
984 ** PCache1.nMax, or
986 ** (b) The number of pages allocated for all purgeable caches is
987 ** already equal to or greater than the sum of nMax for all
988 ** purgeable caches,
990 ** (c) The system is under memory pressure and wants to avoid
991 ** unnecessary pages cache entry allocations
993 ** then attempt to recycle a page from the LRU list. If it is the right
994 ** size, return the recycled buffer. Otherwise, free the buffer and
995 ** proceed to step 5.
997 ** 5. Otherwise, allocate and return a new page buffer.
999 ** There are two versions of this routine. pcache1FetchWithMutex() is
1000 ** the general case. pcache1FetchNoMutex() is a faster implementation for
1001 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
1002 ** invokes the appropriate routine.
1004 static PgHdr1 *pcache1FetchNoMutex(
1005 sqlite3_pcache *p,
1006 unsigned int iKey,
1007 int createFlag
1009 PCache1 *pCache = (PCache1 *)p;
1010 PgHdr1 *pPage = 0;
1012 /* Step 1: Search the hash table for an existing entry. */
1013 pPage = pCache->apHash[iKey % pCache->nHash];
1014 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
1016 /* Step 2: If the page was found in the hash table, then return it.
1017 ** If the page was not in the hash table and createFlag is 0, abort.
1018 ** Otherwise (page not in hash and createFlag!=0) continue with
1019 ** subsequent steps to try to create the page. */
1020 if( pPage ){
1021 if( PAGE_IS_UNPINNED(pPage) ){
1022 return pcache1PinPage(pPage);
1023 }else{
1024 return pPage;
1026 }else if( createFlag ){
1027 /* Steps 3, 4, and 5 implemented by this subroutine */
1028 return pcache1FetchStage2(pCache, iKey, createFlag);
1029 }else{
1030 return 0;
1033 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1034 static PgHdr1 *pcache1FetchWithMutex(
1035 sqlite3_pcache *p,
1036 unsigned int iKey,
1037 int createFlag
1039 PCache1 *pCache = (PCache1 *)p;
1040 PgHdr1 *pPage;
1042 pcache1EnterMutex(pCache->pGroup);
1043 pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1044 assert( pPage==0 || pCache->iMaxKey>=iKey );
1045 pcache1LeaveMutex(pCache->pGroup);
1046 return pPage;
1048 #endif
1049 static sqlite3_pcache_page *pcache1Fetch(
1050 sqlite3_pcache *p,
1051 unsigned int iKey,
1052 int createFlag
1054 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1055 PCache1 *pCache = (PCache1 *)p;
1056 #endif
1058 assert( offsetof(PgHdr1,page)==0 );
1059 assert( pCache->bPurgeable || createFlag!=1 );
1060 assert( pCache->bPurgeable || pCache->nMin==0 );
1061 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1062 assert( pCache->nMin==0 || pCache->bPurgeable );
1063 assert( pCache->nHash>0 );
1064 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1065 if( pCache->pGroup->mutex ){
1066 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1067 }else
1068 #endif
1070 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1076 ** Implementation of the sqlite3_pcache.xUnpin method.
1078 ** Mark a page as unpinned (eligible for asynchronous recycling).
1080 static void pcache1Unpin(
1081 sqlite3_pcache *p,
1082 sqlite3_pcache_page *pPg,
1083 int reuseUnlikely
1085 PCache1 *pCache = (PCache1 *)p;
1086 PgHdr1 *pPage = (PgHdr1 *)pPg;
1087 PGroup *pGroup = pCache->pGroup;
1089 assert( pPage->pCache==pCache );
1090 pcache1EnterMutex(pGroup);
1092 /* It is an error to call this function if the page is already
1093 ** part of the PGroup LRU list.
1095 assert( pPage->pLruNext==0 );
1096 assert( PAGE_IS_PINNED(pPage) );
1098 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
1099 pcache1RemoveFromHash(pPage, 1);
1100 }else{
1101 /* Add the page to the PGroup LRU list. */
1102 PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1103 pPage->pLruPrev = &pGroup->lru;
1104 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1105 *ppFirst = pPage;
1106 pCache->nRecyclable++;
1109 pcache1LeaveMutex(pCache->pGroup);
1113 ** Implementation of the sqlite3_pcache.xRekey method.
1115 static void pcache1Rekey(
1116 sqlite3_pcache *p,
1117 sqlite3_pcache_page *pPg,
1118 unsigned int iOld,
1119 unsigned int iNew
1121 PCache1 *pCache = (PCache1 *)p;
1122 PgHdr1 *pPage = (PgHdr1 *)pPg;
1123 PgHdr1 **pp;
1124 unsigned int hOld, hNew;
1125 assert( pPage->iKey==iOld );
1126 assert( pPage->pCache==pCache );
1127 assert( iOld!=iNew ); /* The page number really is changing */
1129 pcache1EnterMutex(pCache->pGroup);
1131 assert( pcache1FetchNoMutex(p, iOld, 0)==pPage ); /* pPg really is iOld */
1132 hOld = iOld%pCache->nHash;
1133 pp = &pCache->apHash[hOld];
1134 while( (*pp)!=pPage ){
1135 pp = &(*pp)->pNext;
1137 *pp = pPage->pNext;
1139 assert( pcache1FetchNoMutex(p, iNew, 0)==0 ); /* iNew not in cache */
1140 hNew = iNew%pCache->nHash;
1141 pPage->iKey = iNew;
1142 pPage->pNext = pCache->apHash[hNew];
1143 pCache->apHash[hNew] = pPage;
1144 if( iNew>pCache->iMaxKey ){
1145 pCache->iMaxKey = iNew;
1148 pcache1LeaveMutex(pCache->pGroup);
1152 ** Implementation of the sqlite3_pcache.xTruncate method.
1154 ** Discard all unpinned pages in the cache with a page number equal to
1155 ** or greater than parameter iLimit. Any pinned pages with a page number
1156 ** equal to or greater than iLimit are implicitly unpinned.
1158 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1159 PCache1 *pCache = (PCache1 *)p;
1160 pcache1EnterMutex(pCache->pGroup);
1161 if( iLimit<=pCache->iMaxKey ){
1162 pcache1TruncateUnsafe(pCache, iLimit);
1163 pCache->iMaxKey = iLimit-1;
1165 pcache1LeaveMutex(pCache->pGroup);
1169 ** Implementation of the sqlite3_pcache.xDestroy method.
1171 ** Destroy a cache allocated using pcache1Create().
1173 static void pcache1Destroy(sqlite3_pcache *p){
1174 PCache1 *pCache = (PCache1 *)p;
1175 PGroup *pGroup = pCache->pGroup;
1176 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1177 pcache1EnterMutex(pGroup);
1178 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1179 assert( pGroup->nMaxPage >= pCache->nMax );
1180 pGroup->nMaxPage -= pCache->nMax;
1181 assert( pGroup->nMinPage >= pCache->nMin );
1182 pGroup->nMinPage -= pCache->nMin;
1183 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1184 pcache1EnforceMaxPage(pCache);
1185 pcache1LeaveMutex(pGroup);
1186 sqlite3_free(pCache->pBulk);
1187 sqlite3_free(pCache->apHash);
1188 sqlite3_free(pCache);
1192 ** This function is called during initialization (sqlite3_initialize()) to
1193 ** install the default pluggable cache module, assuming the user has not
1194 ** already provided an alternative.
1196 void sqlite3PCacheSetDefault(void){
1197 static const sqlite3_pcache_methods2 defaultMethods = {
1198 1, /* iVersion */
1199 0, /* pArg */
1200 pcache1Init, /* xInit */
1201 pcache1Shutdown, /* xShutdown */
1202 pcache1Create, /* xCreate */
1203 pcache1Cachesize, /* xCachesize */
1204 pcache1Pagecount, /* xPagecount */
1205 pcache1Fetch, /* xFetch */
1206 pcache1Unpin, /* xUnpin */
1207 pcache1Rekey, /* xRekey */
1208 pcache1Truncate, /* xTruncate */
1209 pcache1Destroy, /* xDestroy */
1210 pcache1Shrink /* xShrink */
1212 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1216 ** Return the size of the header on each page of this PCACHE implementation.
1218 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1221 ** Return the global mutex used by this PCACHE implementation. The
1222 ** sqlite3_status() routine needs access to this mutex.
1224 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1225 return pcache1.mutex;
1228 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1230 ** This function is called to free superfluous dynamically allocated memory
1231 ** held by the pager system. Memory in use by any SQLite pager allocated
1232 ** by the current thread may be sqlite3_free()ed.
1234 ** nReq is the number of bytes of memory required. Once this much has
1235 ** been released, the function returns. The return value is the total number
1236 ** of bytes of memory released.
1238 int sqlite3PcacheReleaseMemory(int nReq){
1239 int nFree = 0;
1240 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1241 assert( sqlite3_mutex_notheld(pcache1.mutex) );
1242 if( sqlite3GlobalConfig.pPage==0 ){
1243 PgHdr1 *p;
1244 pcache1EnterMutex(&pcache1.grp);
1245 while( (nReq<0 || nFree<nReq)
1246 && (p=pcache1.grp.lru.pLruPrev)!=0
1247 && p->isAnchor==0
1249 nFree += pcache1MemSize(p->page.pBuf);
1250 assert( PAGE_IS_UNPINNED(p) );
1251 pcache1PinPage(p);
1252 pcache1RemoveFromHash(p, 1);
1254 pcache1LeaveMutex(&pcache1.grp);
1256 return nFree;
1258 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1260 #ifdef SQLITE_TEST
1262 ** This function is used by test procedures to inspect the internal state
1263 ** of the global cache.
1265 void sqlite3PcacheStats(
1266 int *pnCurrent, /* OUT: Total number of pages cached */
1267 int *pnMax, /* OUT: Global maximum cache size */
1268 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1269 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1271 PgHdr1 *p;
1272 int nRecyclable = 0;
1273 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1274 assert( PAGE_IS_UNPINNED(p) );
1275 nRecyclable++;
1277 *pnCurrent = pcache1.grp.nPurgeable;
1278 *pnMax = (int)pcache1.grp.nMaxPage;
1279 *pnMin = (int)pcache1.grp.nMinPage;
1280 *pnRecyclable = nRecyclable;
1282 #endif