New #ifdefs to omit code that is unused when SQLITE_USE_LONG DOUBLE is defined.
[sqlite.git] / src / test_func.c
blob8c06705ae442e67c48e92cfd1a9e7ae3b4c39626
1 /*
2 ** 2008 March 19
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Code for testing all sorts of SQLite interfaces. This code
13 ** implements new SQL functions used by the test scripts.
15 #include "sqlite3.h"
16 #include "tclsqlite.h"
17 #include <stdlib.h>
18 #include <string.h>
19 #include <assert.h>
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
25 ** Allocate nByte bytes of space using sqlite3_malloc(). If the
26 ** allocation fails, call sqlite3_result_error_nomem() to notify
27 ** the database handle that malloc() has failed.
29 static void *testContextMalloc(sqlite3_context *context, int nByte){
30 char *z = sqlite3_malloc(nByte);
31 if( !z && nByte>0 ){
32 sqlite3_result_error_nomem(context);
34 return z;
38 ** This function generates a string of random characters. Used for
39 ** generating test data.
41 static void randStr(sqlite3_context *context, int argc, sqlite3_value **argv){
42 static const unsigned char zSrc[] =
43 "abcdefghijklmnopqrstuvwxyz"
44 "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
45 "0123456789"
46 ".-!,:*^+=_|?/<> ";
47 int iMin, iMax, n, r, i;
48 unsigned char zBuf[1000];
50 /* It used to be possible to call randstr() with any number of arguments,
51 ** but now it is registered with SQLite as requiring exactly 2.
53 assert(argc==2);
55 iMin = sqlite3_value_int(argv[0]);
56 if( iMin<0 ) iMin = 0;
57 if( iMin>=sizeof(zBuf) ) iMin = sizeof(zBuf)-1;
58 iMax = sqlite3_value_int(argv[1]);
59 if( iMax<iMin ) iMax = iMin;
60 if( iMax>=sizeof(zBuf) ) iMax = sizeof(zBuf)-1;
61 n = iMin;
62 if( iMax>iMin ){
63 sqlite3_randomness(sizeof(r), &r);
64 r &= 0x7fffffff;
65 n += r%(iMax + 1 - iMin);
67 assert( n<sizeof(zBuf) );
68 sqlite3_randomness(n, zBuf);
69 for(i=0; i<n; i++){
70 zBuf[i] = zSrc[zBuf[i]%(sizeof(zSrc)-1)];
72 zBuf[n] = 0;
73 sqlite3_result_text(context, (char*)zBuf, n, SQLITE_TRANSIENT);
77 ** The following two SQL functions are used to test returning a text
78 ** result with a destructor. Function 'test_destructor' takes one argument
79 ** and returns the same argument interpreted as TEXT. A destructor is
80 ** passed with the sqlite3_result_text() call.
82 ** SQL function 'test_destructor_count' returns the number of outstanding
83 ** allocations made by 'test_destructor';
85 ** WARNING: Not threadsafe.
87 static int test_destructor_count_var = 0;
88 static void destructor(void *p){
89 char *zVal = (char *)p;
90 assert(zVal);
91 zVal--;
92 sqlite3_free(zVal);
93 test_destructor_count_var--;
95 static void test_destructor(
96 sqlite3_context *pCtx,
97 int nArg,
98 sqlite3_value **argv
100 char *zVal;
101 int len;
103 test_destructor_count_var++;
104 assert( nArg==1 );
105 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
106 len = sqlite3_value_bytes(argv[0]);
107 zVal = testContextMalloc(pCtx, len+3);
108 if( !zVal ){
109 return;
111 zVal[len+1] = 0;
112 zVal[len+2] = 0;
113 zVal++;
114 memcpy(zVal, sqlite3_value_text(argv[0]), len);
115 sqlite3_result_text(pCtx, zVal, -1, destructor);
117 #ifndef SQLITE_OMIT_UTF16
118 static void test_destructor16(
119 sqlite3_context *pCtx,
120 int nArg,
121 sqlite3_value **argv
123 char *zVal;
124 int len;
126 test_destructor_count_var++;
127 assert( nArg==1 );
128 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
129 len = sqlite3_value_bytes16(argv[0]);
130 zVal = testContextMalloc(pCtx, len+3);
131 if( !zVal ){
132 return;
134 zVal[len+1] = 0;
135 zVal[len+2] = 0;
136 zVal++;
137 memcpy(zVal, sqlite3_value_text16(argv[0]), len);
138 sqlite3_result_text16(pCtx, zVal, -1, destructor);
140 #endif
141 static void test_destructor_count(
142 sqlite3_context *pCtx,
143 int nArg,
144 sqlite3_value **argv
146 sqlite3_result_int(pCtx, test_destructor_count_var);
150 ** The following aggregate function, test_agg_errmsg16(), takes zero
151 ** arguments. It returns the text value returned by the sqlite3_errmsg16()
152 ** API function.
154 #ifndef SQLITE_UNTESTABLE
155 void sqlite3BeginBenignMalloc(void);
156 void sqlite3EndBenignMalloc(void);
157 #else
158 #define sqlite3BeginBenignMalloc()
159 #define sqlite3EndBenignMalloc()
160 #endif
161 static void test_agg_errmsg16_step(sqlite3_context *a, int b,sqlite3_value **c){
163 static void test_agg_errmsg16_final(sqlite3_context *ctx){
164 #ifndef SQLITE_OMIT_UTF16
165 const void *z;
166 sqlite3 * db = sqlite3_context_db_handle(ctx);
167 sqlite3_aggregate_context(ctx, 2048);
168 z = sqlite3_errmsg16(db);
169 sqlite3_result_text16(ctx, z, -1, SQLITE_TRANSIENT);
170 #endif
174 ** Routines for testing the sqlite3_get_auxdata() and sqlite3_set_auxdata()
175 ** interface.
177 ** The test_auxdata() SQL function attempts to register each of its arguments
178 ** as auxiliary data. If there are no prior registrations of aux data for
179 ** that argument (meaning the argument is not a constant or this is its first
180 ** call) then the result for that argument is 0. If there is a prior
181 ** registration, the result for that argument is 1. The overall result
182 ** is the individual argument results separated by spaces.
184 static void free_test_auxdata(void *p) {sqlite3_free(p);}
185 static void test_auxdata(
186 sqlite3_context *pCtx,
187 int nArg,
188 sqlite3_value **argv
190 int i;
191 char *zRet = testContextMalloc(pCtx, nArg*2);
192 if( !zRet ) return;
193 memset(zRet, 0, nArg*2);
194 for(i=0; i<nArg; i++){
195 char const *z = (char*)sqlite3_value_text(argv[i]);
196 if( z ){
197 int n;
198 char *zAux = sqlite3_get_auxdata(pCtx, i);
199 if( zAux ){
200 zRet[i*2] = '1';
201 assert( strcmp(zAux,z)==0 );
202 }else {
203 zRet[i*2] = '0';
205 n = (int)strlen(z) + 1;
206 zAux = testContextMalloc(pCtx, n);
207 if( zAux ){
208 memcpy(zAux, z, n);
209 sqlite3_set_auxdata(pCtx, i, zAux, free_test_auxdata);
211 zRet[i*2+1] = ' ';
214 sqlite3_result_text(pCtx, zRet, 2*nArg-1, free_test_auxdata);
218 ** A function to test error reporting from user functions. This function
219 ** returns a copy of its first argument as the error message. If the
220 ** second argument exists, it becomes the error code.
222 static void test_error(
223 sqlite3_context *pCtx,
224 int nArg,
225 sqlite3_value **argv
227 sqlite3_result_error(pCtx, (char*)sqlite3_value_text(argv[0]), -1);
228 if( nArg==2 ){
229 sqlite3_result_error_code(pCtx, sqlite3_value_int(argv[1]));
234 ** Implementation of the counter(X) function. If X is an integer
235 ** constant, then the first invocation will return X. The second X+1.
236 ** and so forth. Can be used (for example) to provide a sequence number
237 ** in a result set.
239 static void counterFunc(
240 sqlite3_context *pCtx, /* Function context */
241 int nArg, /* Number of function arguments */
242 sqlite3_value **argv /* Values for all function arguments */
244 int *pCounter = (int*)sqlite3_get_auxdata(pCtx, 0);
245 if( pCounter==0 ){
246 pCounter = sqlite3_malloc( sizeof(*pCounter) );
247 if( pCounter==0 ){
248 sqlite3_result_error_nomem(pCtx);
249 return;
251 *pCounter = sqlite3_value_int(argv[0]);
252 sqlite3_set_auxdata(pCtx, 0, pCounter, sqlite3_free);
253 }else{
254 ++*pCounter;
256 sqlite3_result_int(pCtx, *pCounter);
261 ** This function takes two arguments. It performance UTF-8/16 type
262 ** conversions on the first argument then returns a copy of the second
263 ** argument.
265 ** This function is used in cases such as the following:
267 ** SELECT test_isolation(x,x) FROM t1;
269 ** We want to verify that the type conversions that occur on the
270 ** first argument do not invalidate the second argument.
272 static void test_isolation(
273 sqlite3_context *pCtx,
274 int nArg,
275 sqlite3_value **argv
277 #ifndef SQLITE_OMIT_UTF16
278 sqlite3_value_text16(argv[0]);
279 sqlite3_value_text(argv[0]);
280 sqlite3_value_text16(argv[0]);
281 sqlite3_value_text(argv[0]);
282 #endif
283 sqlite3_result_value(pCtx, argv[1]);
287 ** Invoke an SQL statement recursively. The function result is the
288 ** first column of the first row of the result set.
290 static void test_eval(
291 sqlite3_context *pCtx,
292 int nArg,
293 sqlite3_value **argv
295 sqlite3_stmt *pStmt;
296 int rc;
297 sqlite3 *db = sqlite3_context_db_handle(pCtx);
298 const char *zSql;
300 zSql = (char*)sqlite3_value_text(argv[0]);
301 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
302 if( rc==SQLITE_OK ){
303 rc = sqlite3_step(pStmt);
304 if( rc==SQLITE_ROW ){
305 sqlite3_result_value(pCtx, sqlite3_column_value(pStmt, 0));
307 rc = sqlite3_finalize(pStmt);
309 if( rc ){
310 char *zErr;
311 assert( pStmt==0 );
312 zErr = sqlite3_mprintf("sqlite3_prepare_v2() error: %s",sqlite3_errmsg(db));
313 sqlite3_result_text(pCtx, zErr, -1, sqlite3_free);
314 sqlite3_result_error_code(pCtx, rc);
320 ** convert one character from hex to binary
322 static int testHexChar(char c){
323 if( c>='0' && c<='9' ){
324 return c - '0';
325 }else if( c>='a' && c<='f' ){
326 return c - 'a' + 10;
327 }else if( c>='A' && c<='F' ){
328 return c - 'A' + 10;
330 return 0;
334 ** Convert hex to binary.
336 static void testHexToBin(const char *zIn, char *zOut){
337 while( zIn[0] && zIn[1] ){
338 *(zOut++) = (testHexChar(zIn[0])<<4) + testHexChar(zIn[1]);
339 zIn += 2;
344 ** hex_to_utf16be(HEX)
346 ** Convert the input string from HEX into binary. Then return the
347 ** result using sqlite3_result_text16le().
349 #ifndef SQLITE_OMIT_UTF16
350 static void testHexToUtf16be(
351 sqlite3_context *pCtx,
352 int nArg,
353 sqlite3_value **argv
355 int n;
356 const char *zIn;
357 char *zOut;
358 assert( nArg==1 );
359 n = sqlite3_value_bytes(argv[0]);
360 zIn = (const char*)sqlite3_value_text(argv[0]);
361 zOut = sqlite3_malloc( n/2 );
362 if( zOut==0 ){
363 sqlite3_result_error_nomem(pCtx);
364 }else{
365 testHexToBin(zIn, zOut);
366 sqlite3_result_text16be(pCtx, zOut, n/2, sqlite3_free);
369 #endif
372 ** hex_to_utf8(HEX)
374 ** Convert the input string from HEX into binary. Then return the
375 ** result using sqlite3_result_text16le().
377 static void testHexToUtf8(
378 sqlite3_context *pCtx,
379 int nArg,
380 sqlite3_value **argv
382 int n;
383 const char *zIn;
384 char *zOut;
385 assert( nArg==1 );
386 n = sqlite3_value_bytes(argv[0]);
387 zIn = (const char*)sqlite3_value_text(argv[0]);
388 zOut = sqlite3_malloc( n/2 );
389 if( zOut==0 ){
390 sqlite3_result_error_nomem(pCtx);
391 }else{
392 testHexToBin(zIn, zOut);
393 sqlite3_result_text(pCtx, zOut, n/2, sqlite3_free);
398 ** hex_to_utf16le(HEX)
400 ** Convert the input string from HEX into binary. Then return the
401 ** result using sqlite3_result_text16le().
403 #ifndef SQLITE_OMIT_UTF16
404 static void testHexToUtf16le(
405 sqlite3_context *pCtx,
406 int nArg,
407 sqlite3_value **argv
409 int n;
410 const char *zIn;
411 char *zOut;
412 assert( nArg==1 );
413 n = sqlite3_value_bytes(argv[0]);
414 zIn = (const char*)sqlite3_value_text(argv[0]);
415 zOut = sqlite3_malloc( n/2 );
416 if( zOut==0 ){
417 sqlite3_result_error_nomem(pCtx);
418 }else{
419 testHexToBin(zIn, zOut);
420 sqlite3_result_text16le(pCtx, zOut, n/2, sqlite3_free);
423 #endif
426 ** SQL function: real2hex(X)
428 ** If argument X is a real number, then convert it into a string which is
429 ** the big-endian hexadecimal representation of the ieee754 encoding of
430 ** that number. If X is not a real number, return NULL.
432 static void real2hex(
433 sqlite3_context *context,
434 int argc,
435 sqlite3_value **argv
437 union {
438 sqlite3_uint64 i;
439 double r;
440 unsigned char x[8];
441 } v;
442 char zOut[20];
443 int i;
444 int bigEndian;
445 v.i = 1;
446 bigEndian = v.x[0]==0;
447 v.r = sqlite3_value_double(argv[0]);
448 for(i=0; i<8; i++){
449 if( bigEndian ){
450 zOut[i*2] = "0123456789abcdef"[v.x[i]>>4];
451 zOut[i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
452 }else{
453 zOut[14-i*2] = "0123456789abcdef"[v.x[i]>>4];
454 zOut[14-i*2+1] = "0123456789abcdef"[v.x[i]&0xf];
457 zOut[16] = 0;
458 sqlite3_result_text(context, zOut, -1, SQLITE_TRANSIENT);
462 ** test_extract(record, field)
464 ** This function implements an SQL user-function that accepts a blob
465 ** containing a formatted database record as the first argument. The
466 ** second argument is the index of the field within that record to
467 ** extract and return.
469 static void test_extract(
470 sqlite3_context *context,
471 int argc,
472 sqlite3_value **argv
474 sqlite3 *db = sqlite3_context_db_handle(context);
475 u8 *pRec;
476 u8 *pEndHdr; /* Points to one byte past record header */
477 u8 *pHdr; /* Current point in record header */
478 u8 *pBody; /* Current point in record data */
479 u64 nHdr; /* Bytes in record header */
480 int iIdx; /* Required field */
481 int iCurrent = 0; /* Current field */
483 assert( argc==2 );
484 pRec = (u8*)sqlite3_value_blob(argv[0]);
485 iIdx = sqlite3_value_int(argv[1]);
487 pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
488 pBody = pEndHdr = &pRec[nHdr];
490 for(iCurrent=0; pHdr<pEndHdr && iCurrent<=iIdx; iCurrent++){
491 u64 iSerialType;
492 Mem mem;
494 memset(&mem, 0, sizeof(mem));
495 mem.db = db;
496 mem.enc = ENC(db);
497 pHdr += sqlite3GetVarint(pHdr, &iSerialType);
498 sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
499 pBody += sqlite3VdbeSerialTypeLen((u32)iSerialType);
501 if( iCurrent==iIdx ){
502 sqlite3_result_value(context, &mem);
505 if( mem.szMalloc ) sqlite3DbFree(db, mem.zMalloc);
510 ** test_decode(record)
512 ** This function implements an SQL user-function that accepts a blob
513 ** containing a formatted database record as its only argument. It returns
514 ** a tcl list (type SQLITE_TEXT) containing each of the values stored
515 ** in the record.
517 static void test_decode(
518 sqlite3_context *context,
519 int argc,
520 sqlite3_value **argv
522 sqlite3 *db = sqlite3_context_db_handle(context);
523 u8 *pRec;
524 u8 *pEndHdr; /* Points to one byte past record header */
525 u8 *pHdr; /* Current point in record header */
526 u8 *pBody; /* Current point in record data */
527 u64 nHdr; /* Bytes in record header */
528 Tcl_Obj *pRet; /* Return value */
530 pRet = Tcl_NewObj();
531 Tcl_IncrRefCount(pRet);
533 assert( argc==1 );
534 pRec = (u8*)sqlite3_value_blob(argv[0]);
536 pHdr = pRec + sqlite3GetVarint(pRec, &nHdr);
537 pBody = pEndHdr = &pRec[nHdr];
538 while( pHdr<pEndHdr ){
539 Tcl_Obj *pVal = 0;
540 u64 iSerialType;
541 Mem mem;
543 memset(&mem, 0, sizeof(mem));
544 mem.db = db;
545 mem.enc = ENC(db);
546 pHdr += sqlite3GetVarint(pHdr, &iSerialType);
547 sqlite3VdbeSerialGet(pBody, (u32)iSerialType, &mem);
548 pBody += sqlite3VdbeSerialTypeLen((u32)iSerialType);
550 switch( sqlite3_value_type(&mem) ){
551 case SQLITE_TEXT:
552 pVal = Tcl_NewStringObj((const char*)sqlite3_value_text(&mem), -1);
553 break;
555 case SQLITE_BLOB: {
556 char hexdigit[] = {
557 '0', '1', '2', '3', '4', '5', '6', '7',
558 '8', '9', 'a', 'b', 'c', 'd', 'e', 'f'
560 int n = sqlite3_value_bytes(&mem);
561 u8 *z = (u8*)sqlite3_value_blob(&mem);
562 int i;
563 pVal = Tcl_NewStringObj("x'", -1);
564 for(i=0; i<n; i++){
565 char hex[3];
566 hex[0] = hexdigit[((z[i] >> 4) & 0x0F)];
567 hex[1] = hexdigit[(z[i] & 0x0F)];
568 hex[2] = '\0';
569 Tcl_AppendStringsToObj(pVal, hex, 0);
571 Tcl_AppendStringsToObj(pVal, "'", 0);
572 break;
575 case SQLITE_FLOAT:
576 pVal = Tcl_NewDoubleObj(sqlite3_value_double(&mem));
577 break;
579 case SQLITE_INTEGER:
580 pVal = Tcl_NewWideIntObj(sqlite3_value_int64(&mem));
581 break;
583 case SQLITE_NULL:
584 pVal = Tcl_NewStringObj("NULL", -1);
585 break;
587 default:
588 assert( 0 );
591 Tcl_ListObjAppendElement(0, pRet, pVal);
593 if( mem.szMalloc ){
594 sqlite3DbFree(db, mem.zMalloc);
598 sqlite3_result_text(context, Tcl_GetString(pRet), -1, SQLITE_TRANSIENT);
599 Tcl_DecrRefCount(pRet);
603 ** test_zeroblob(N)
605 ** The implementation of scalar SQL function "test_zeroblob()". This is
606 ** similar to the built-in zeroblob() function, except that it does not
607 ** check that the integer parameter is within range before passing it
608 ** to sqlite3_result_zeroblob().
610 static void test_zeroblob(
611 sqlite3_context *context,
612 int argc,
613 sqlite3_value **argv
615 int nZero = sqlite3_value_int(argv[0]);
616 sqlite3_result_zeroblob(context, nZero);
619 /* test_getsubtype(V)
621 ** Return the subtype for value V.
623 static void test_getsubtype(
624 sqlite3_context *context,
625 int argc,
626 sqlite3_value **argv
628 sqlite3_result_int(context, (int)sqlite3_value_subtype(argv[0]));
631 /* test_frombind(A,B,C,...)
633 ** Return an integer bitmask that has a bit set for every argument
634 ** (up to the first 63 arguments) that originates from a bind a parameter.
636 static void test_frombind(
637 sqlite3_context *context,
638 int argc,
639 sqlite3_value **argv
641 sqlite3_uint64 m = 0;
642 int i;
643 for(i=0; i<argc && i<63; i++){
644 if( sqlite3_value_frombind(argv[i]) ) m |= ((sqlite3_uint64)1)<<i;
646 sqlite3_result_int64(context, (sqlite3_int64)m);
649 /* test_setsubtype(V, T)
651 ** Return the value V with its subtype changed to T
653 static void test_setsubtype(
654 sqlite3_context *context,
655 int argc,
656 sqlite3_value **argv
658 sqlite3_result_value(context, argv[0]);
659 sqlite3_result_subtype(context, (unsigned int)sqlite3_value_int(argv[1]));
662 static int registerTestFunctions(
663 sqlite3 *db,
664 char **pzErrMsg,
665 const sqlite3_api_routines *pThunk
667 static const struct {
668 char *zName;
669 signed char nArg;
670 unsigned int eTextRep; /* 1: UTF-16. 0: UTF-8 */
671 void (*xFunc)(sqlite3_context*,int,sqlite3_value **);
672 } aFuncs[] = {
673 { "randstr", 2, SQLITE_UTF8, randStr },
674 { "test_destructor", 1, SQLITE_UTF8, test_destructor},
675 #ifndef SQLITE_OMIT_UTF16
676 { "test_destructor16", 1, SQLITE_UTF8, test_destructor16},
677 { "hex_to_utf16be", 1, SQLITE_UTF8, testHexToUtf16be},
678 { "hex_to_utf16le", 1, SQLITE_UTF8, testHexToUtf16le},
679 #endif
680 { "hex_to_utf8", 1, SQLITE_UTF8, testHexToUtf8},
681 { "test_destructor_count", 0, SQLITE_UTF8, test_destructor_count},
682 { "test_auxdata", -1, SQLITE_UTF8, test_auxdata},
683 { "test_error", 1, SQLITE_UTF8, test_error},
684 { "test_error", 2, SQLITE_UTF8, test_error},
685 { "test_eval", 1, SQLITE_UTF8, test_eval},
686 { "test_isolation", 2, SQLITE_UTF8, test_isolation},
687 { "test_counter", 1, SQLITE_UTF8, counterFunc},
688 { "real2hex", 1, SQLITE_UTF8, real2hex},
689 { "test_decode", 1, SQLITE_UTF8, test_decode},
690 { "test_extract", 2, SQLITE_UTF8, test_extract},
691 { "test_zeroblob", 1, SQLITE_UTF8|SQLITE_DETERMINISTIC, test_zeroblob},
692 { "test_getsubtype", 1, SQLITE_UTF8, test_getsubtype},
693 { "test_setsubtype", 2, SQLITE_UTF8|SQLITE_RESULT_SUBTYPE,
694 test_setsubtype},
695 { "test_frombind", -1, SQLITE_UTF8, test_frombind},
697 int i;
699 for(i=0; i<sizeof(aFuncs)/sizeof(aFuncs[0]); i++){
700 sqlite3_create_function(db, aFuncs[i].zName, aFuncs[i].nArg,
701 aFuncs[i].eTextRep, 0, aFuncs[i].xFunc, 0, 0);
704 sqlite3_create_function(db, "test_agg_errmsg16", 0, SQLITE_ANY, 0, 0,
705 test_agg_errmsg16_step, test_agg_errmsg16_final);
707 return SQLITE_OK;
711 ** TCLCMD: autoinstall_test_functions
713 ** Invoke this TCL command to use sqlite3_auto_extension() to cause
714 ** the standard set of test functions to be loaded into each new
715 ** database connection.
717 static int SQLITE_TCLAPI autoinstall_test_funcs(
718 void * clientData,
719 Tcl_Interp *interp,
720 int objc,
721 Tcl_Obj *CONST objv[]
723 extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
724 int rc = sqlite3_auto_extension((void(*)(void))registerTestFunctions);
725 if( rc==SQLITE_OK ){
726 rc = sqlite3_auto_extension((void(*)(void))Md5_Register);
728 Tcl_SetObjResult(interp, Tcl_NewIntObj(rc));
729 return TCL_OK;
733 ** A bogus step function and finalizer function.
735 static void tStep(sqlite3_context *a, int b, sqlite3_value **c){}
736 static void tFinal(sqlite3_context *a){}
740 ** tclcmd: abuse_create_function
742 ** Make various calls to sqlite3_create_function that do not have valid
743 ** parameters. Verify that the error condition is detected and reported.
745 static int SQLITE_TCLAPI abuse_create_function(
746 void * clientData,
747 Tcl_Interp *interp,
748 int objc,
749 Tcl_Obj *CONST objv[]
751 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
752 sqlite3 *db;
753 int rc;
754 int mxArg;
756 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
758 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep,tStep,tFinal);
759 if( rc!=SQLITE_MISUSE ) goto abuse_err;
761 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, tStep, 0);
762 if( rc!=SQLITE_MISUSE ) goto abuse_err;
764 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, tStep, 0, tFinal);
765 if( rc!=SQLITE_MISUSE) goto abuse_err;
767 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, 0, tFinal);
768 if( rc!=SQLITE_MISUSE ) goto abuse_err;
770 rc = sqlite3_create_function(db, "tx", 1, SQLITE_UTF8, 0, 0, tStep, 0);
771 if( rc!=SQLITE_MISUSE ) goto abuse_err;
773 rc = sqlite3_create_function(db, "tx", -2, SQLITE_UTF8, 0, tStep, 0, 0);
774 if( rc!=SQLITE_MISUSE ) goto abuse_err;
776 rc = sqlite3_create_function(db, "tx", 128, SQLITE_UTF8, 0, tStep, 0, 0);
777 if( rc!=SQLITE_MISUSE ) goto abuse_err;
779 rc = sqlite3_create_function(db, "funcxx"
780 "_123456789_123456789_123456789_123456789_123456789"
781 "_123456789_123456789_123456789_123456789_123456789"
782 "_123456789_123456789_123456789_123456789_123456789"
783 "_123456789_123456789_123456789_123456789_123456789"
784 "_123456789_123456789_123456789_123456789_123456789",
785 1, SQLITE_UTF8, 0, tStep, 0, 0);
786 if( rc!=SQLITE_MISUSE ) goto abuse_err;
788 /* This last function registration should actually work. Generate
789 ** a no-op function (that always returns NULL) and which has the
790 ** maximum-length function name and the maximum number of parameters.
792 sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, 10000);
793 mxArg = sqlite3_limit(db, SQLITE_LIMIT_FUNCTION_ARG, -1);
794 rc = sqlite3_create_function(db, "nullx"
795 "_123456789_123456789_123456789_123456789_123456789"
796 "_123456789_123456789_123456789_123456789_123456789"
797 "_123456789_123456789_123456789_123456789_123456789"
798 "_123456789_123456789_123456789_123456789_123456789"
799 "_123456789_123456789_123456789_123456789_123456789",
800 mxArg, SQLITE_UTF8, 0, tStep, 0, 0);
801 if( rc!=SQLITE_OK ) goto abuse_err;
803 return TCL_OK;
805 abuse_err:
806 Tcl_AppendResult(interp, "sqlite3_create_function abused test failed",
807 (char*)0);
808 return TCL_ERROR;
813 ** SQLite user defined function to use with matchinfo() to calculate the
814 ** relevancy of an FTS match. The value returned is the relevancy score
815 ** (a real value greater than or equal to zero). A larger value indicates
816 ** a more relevant document.
818 ** The overall relevancy returned is the sum of the relevancies of each
819 ** column value in the FTS table. The relevancy of a column value is the
820 ** sum of the following for each reportable phrase in the FTS query:
822 ** (<hit count> / <global hit count>) * <column weight>
824 ** where <hit count> is the number of instances of the phrase in the
825 ** column value of the current row and <global hit count> is the number
826 ** of instances of the phrase in the same column of all rows in the FTS
827 ** table. The <column weight> is a weighting factor assigned to each
828 ** column by the caller (see below).
830 ** The first argument to this function must be the return value of the FTS
831 ** matchinfo() function. Following this must be one argument for each column
832 ** of the FTS table containing a numeric weight factor for the corresponding
833 ** column. Example:
835 ** CREATE VIRTUAL TABLE documents USING fts3(title, content)
837 ** The following query returns the docids of documents that match the full-text
838 ** query <query> sorted from most to least relevant. When calculating
839 ** relevance, query term instances in the 'title' column are given twice the
840 ** weighting of those in the 'content' column.
842 ** SELECT docid FROM documents
843 ** WHERE documents MATCH <query>
844 ** ORDER BY rank(matchinfo(documents), 1.0, 0.5) DESC
846 static void rankfunc(sqlite3_context *pCtx, int nVal, sqlite3_value **apVal){
847 int *aMatchinfo; /* Return value of matchinfo() */
848 int nMatchinfo; /* Number of elements in aMatchinfo[] */
849 int nCol = 0; /* Number of columns in the table */
850 int nPhrase = 0; /* Number of phrases in the query */
851 int iPhrase; /* Current phrase */
852 double score = 0.0; /* Value to return */
854 assert( sizeof(int)==4 );
856 /* Check that the number of arguments passed to this function is correct.
857 ** If not, jump to wrong_number_args. Set aMatchinfo to point to the array
858 ** of unsigned integer values returned by FTS function matchinfo. Set
859 ** nPhrase to contain the number of reportable phrases in the users full-text
860 ** query, and nCol to the number of columns in the table. Then check that the
861 ** size of the matchinfo blob is as expected. Return an error if it is not.
863 if( nVal<1 ) goto wrong_number_args;
864 aMatchinfo = (int*)sqlite3_value_blob(apVal[0]);
865 nMatchinfo = sqlite3_value_bytes(apVal[0]) / sizeof(int);
866 if( nMatchinfo>=2 ){
867 nPhrase = aMatchinfo[0];
868 nCol = aMatchinfo[1];
870 if( nMatchinfo!=(2+3*nCol*nPhrase) ){
871 sqlite3_result_error(pCtx,
872 "invalid matchinfo blob passed to function rank()", -1);
873 return;
875 if( nVal!=(1+nCol) ) goto wrong_number_args;
877 /* Iterate through each phrase in the users query. */
878 for(iPhrase=0; iPhrase<nPhrase; iPhrase++){
879 int iCol; /* Current column */
881 /* Now iterate through each column in the users query. For each column,
882 ** increment the relevancy score by:
884 ** (<hit count> / <global hit count>) * <column weight>
886 ** aPhraseinfo[] points to the start of the data for phrase iPhrase. So
887 ** the hit count and global hit counts for each column are found in
888 ** aPhraseinfo[iCol*3] and aPhraseinfo[iCol*3+1], respectively.
890 int *aPhraseinfo = &aMatchinfo[2 + iPhrase*nCol*3];
891 for(iCol=0; iCol<nCol; iCol++){
892 int nHitCount = aPhraseinfo[3*iCol];
893 int nGlobalHitCount = aPhraseinfo[3*iCol+1];
894 double weight = sqlite3_value_double(apVal[iCol+1]);
895 if( nHitCount>0 ){
896 score += ((double)nHitCount / (double)nGlobalHitCount) * weight;
901 sqlite3_result_double(pCtx, score);
902 return;
904 /* Jump here if the wrong number of arguments are passed to this function */
905 wrong_number_args:
906 sqlite3_result_error(pCtx, "wrong number of arguments to function rank()", -1);
909 static int SQLITE_TCLAPI install_fts3_rank_function(
910 void * clientData,
911 Tcl_Interp *interp,
912 int objc,
913 Tcl_Obj *CONST objv[]
915 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**);
916 sqlite3 *db;
918 if( objc!=2 ){
919 Tcl_WrongNumArgs(interp, 1, objv, "DB");
920 return TCL_ERROR;
923 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR;
924 sqlite3_create_function(db, "rank", -1, SQLITE_UTF8, 0, rankfunc, 0, 0);
925 return TCL_OK;
930 ** Register commands with the TCL interpreter.
932 int Sqlitetest_func_Init(Tcl_Interp *interp){
933 static struct {
934 char *zName;
935 Tcl_ObjCmdProc *xProc;
936 } aObjCmd[] = {
937 { "autoinstall_test_functions", autoinstall_test_funcs },
938 { "abuse_create_function", abuse_create_function },
939 { "install_fts3_rank_function", install_fts3_rank_function },
941 int i;
942 extern int Md5_Register(sqlite3 *, char **, const sqlite3_api_routines *);
944 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){
945 Tcl_CreateObjCommand(interp, aObjCmd[i].zName, aObjCmd[i].xProc, 0, 0);
947 sqlite3_initialize();
948 sqlite3_auto_extension((void(*)(void))registerTestFunctions);
949 sqlite3_auto_extension((void(*)(void))Md5_Register);
950 return TCL_OK;