New #ifdefs to omit code that is unused when SQLITE_USE_LONG DOUBLE is defined.
[sqlite.git] / src / vdbemem.c
blob0fc6b68f5e774a2dfafb5727e486d5715c949aa3
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
26 #ifdef SQLITE_DEBUG
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem *p){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
48 if( p->flags & MEM_Null ){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
55 ** set.
57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67 }else{
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
71 }else{
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p->flags & MEM_Cleared)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p->szMalloc==0
78 || (p->flags==MEM_Undefined
79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
87 ** (3) An ephemeral string or blob
88 ** (4) A static string or blob
90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
91 assert(
92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
98 return 1;
100 #endif
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
104 ** into a buffer.
106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
107 StrAccum acc;
108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
109 assert( sz>22 );
110 if( p->flags & MEM_Int ){
111 #if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
114 i64 x;
115 assert( (p->flags&MEM_Int)*2==sizeof(x) );
116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
117 p->n = sqlite3Int64ToText(x, zBuf);
118 #else
119 p->n = sqlite3Int64ToText(p->u.i, zBuf);
120 #endif
121 }else{
122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
123 sqlite3_str_appendf(&acc, "%!.15g",
124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
125 assert( acc.zText==zBuf && acc.mxAlloc<=0 );
126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
127 p->n = acc.nChar;
131 #ifdef SQLITE_DEBUG
133 ** Validity checks on pMem. pMem holds a string.
135 ** (1) Check that string value of pMem agrees with its integer or real value.
136 ** (2) Check that the string is correctly zero terminated
138 ** A single int or real value always converts to the same strings. But
139 ** many different strings can be converted into the same int or real.
140 ** If a table contains a numeric value and an index is based on the
141 ** corresponding string value, then it is important that the string be
142 ** derived from the numeric value, not the other way around, to ensure
143 ** that the index and table are consistent. See ticket
144 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
145 ** an example.
147 ** This routine looks at pMem to verify that if it has both a numeric
148 ** representation and a string representation then the string rep has
149 ** been derived from the numeric and not the other way around. It returns
150 ** true if everything is ok and false if there is a problem.
152 ** This routine is for use inside of assert() statements only.
154 int sqlite3VdbeMemValidStrRep(Mem *p){
155 Mem tmp;
156 char zBuf[100];
157 char *z;
158 int i, j, incr;
159 if( (p->flags & MEM_Str)==0 ) return 1;
160 if( p->db && p->db->mallocFailed ) return 1;
161 if( p->flags & MEM_Term ){
162 /* Insure that the string is properly zero-terminated. Pay particular
163 ** attention to the case where p->n is odd */
164 if( p->szMalloc>0 && p->z==p->zMalloc ){
165 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
166 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
168 assert( p->z[p->n]==0 );
169 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
170 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
172 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
173 memcpy(&tmp, p, sizeof(tmp));
174 vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp);
175 z = p->z;
176 i = j = 0;
177 incr = 1;
178 if( p->enc!=SQLITE_UTF8 ){
179 incr = 2;
180 if( p->enc==SQLITE_UTF16BE ) z++;
182 while( zBuf[j] ){
183 if( zBuf[j++]!=z[i] ) return 0;
184 i += incr;
186 return 1;
188 #endif /* SQLITE_DEBUG */
191 ** If pMem is an object with a valid string representation, this routine
192 ** ensures the internal encoding for the string representation is
193 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
195 ** If pMem is not a string object, or the encoding of the string
196 ** representation is already stored using the requested encoding, then this
197 ** routine is a no-op.
199 ** SQLITE_OK is returned if the conversion is successful (or not required).
200 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
201 ** between formats.
203 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
204 #ifndef SQLITE_OMIT_UTF16
205 int rc;
206 #endif
207 assert( pMem!=0 );
208 assert( !sqlite3VdbeMemIsRowSet(pMem) );
209 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
210 || desiredEnc==SQLITE_UTF16BE );
211 if( !(pMem->flags&MEM_Str) ){
212 pMem->enc = desiredEnc;
213 return SQLITE_OK;
215 if( pMem->enc==desiredEnc ){
216 return SQLITE_OK;
218 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
219 #ifdef SQLITE_OMIT_UTF16
220 return SQLITE_ERROR;
221 #else
223 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
224 ** then the encoding of the value may not have changed.
226 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
227 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
228 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
229 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
230 return rc;
231 #endif
235 ** Make sure pMem->z points to a writable allocation of at least n bytes.
237 ** If the bPreserve argument is true, then copy of the content of
238 ** pMem->z into the new allocation. pMem must be either a string or
239 ** blob if bPreserve is true. If bPreserve is false, any prior content
240 ** in pMem->z is discarded.
242 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
243 assert( sqlite3VdbeCheckMemInvariants(pMem) );
244 assert( !sqlite3VdbeMemIsRowSet(pMem) );
245 testcase( pMem->db==0 );
247 /* If the bPreserve flag is set to true, then the memory cell must already
248 ** contain a valid string or blob value. */
249 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
250 testcase( bPreserve && pMem->z==0 );
252 assert( pMem->szMalloc==0
253 || (pMem->flags==MEM_Undefined
254 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
255 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
256 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
257 if( pMem->db ){
258 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
259 }else{
260 pMem->zMalloc = sqlite3Realloc(pMem->z, n);
261 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
262 pMem->z = pMem->zMalloc;
264 bPreserve = 0;
265 }else{
266 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
267 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
269 if( pMem->zMalloc==0 ){
270 sqlite3VdbeMemSetNull(pMem);
271 pMem->z = 0;
272 pMem->szMalloc = 0;
273 return SQLITE_NOMEM_BKPT;
274 }else{
275 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
278 if( bPreserve && pMem->z ){
279 assert( pMem->z!=pMem->zMalloc );
280 memcpy(pMem->zMalloc, pMem->z, pMem->n);
282 if( (pMem->flags&MEM_Dyn)!=0 ){
283 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
284 pMem->xDel((void *)(pMem->z));
287 pMem->z = pMem->zMalloc;
288 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
289 return SQLITE_OK;
293 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
294 ** If pMem->zMalloc already meets or exceeds the requested size, this
295 ** routine is a no-op.
297 ** Any prior string or blob content in the pMem object may be discarded.
298 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
299 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
300 ** and MEM_Null values are preserved.
302 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
303 ** if unable to complete the resizing.
305 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
306 assert( CORRUPT_DB || szNew>0 );
307 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
308 if( pMem->szMalloc<szNew ){
309 return sqlite3VdbeMemGrow(pMem, szNew, 0);
311 assert( (pMem->flags & MEM_Dyn)==0 );
312 pMem->z = pMem->zMalloc;
313 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
314 return SQLITE_OK;
318 ** If pMem is already a string, detect if it is a zero-terminated
319 ** string, or make it into one if possible, and mark it as such.
321 ** This is an optimization. Correct operation continues even if
322 ** this routine is a no-op.
324 void sqlite3VdbeMemZeroTerminateIfAble(Mem *pMem){
325 if( (pMem->flags & (MEM_Str|MEM_Term|MEM_Ephem|MEM_Static))!=MEM_Str ){
326 /* pMem must be a string, and it cannot be an ephemeral or static string */
327 return;
329 if( pMem->enc!=SQLITE_UTF8 ) return;
330 if( NEVER(pMem->z==0) ) return;
331 if( pMem->flags & MEM_Dyn ){
332 if( pMem->xDel==sqlite3_free
333 && sqlite3_msize(pMem->z) >= (u64)(pMem->n+1)
335 pMem->z[pMem->n] = 0;
336 pMem->flags |= MEM_Term;
337 return;
339 if( pMem->xDel==sqlite3RCStrUnref ){
340 /* Blindly assume that all RCStr objects are zero-terminated */
341 pMem->flags |= MEM_Term;
342 return;
344 }else if( pMem->szMalloc >= pMem->n+1 ){
345 pMem->z[pMem->n] = 0;
346 pMem->flags |= MEM_Term;
347 return;
352 ** It is already known that pMem contains an unterminated string.
353 ** Add the zero terminator.
355 ** Three bytes of zero are added. In this way, there is guaranteed
356 ** to be a double-zero byte at an even byte boundary in order to
357 ** terminate a UTF16 string, even if the initial size of the buffer
358 ** is an odd number of bytes.
360 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
361 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
362 return SQLITE_NOMEM_BKPT;
364 pMem->z[pMem->n] = 0;
365 pMem->z[pMem->n+1] = 0;
366 pMem->z[pMem->n+2] = 0;
367 pMem->flags |= MEM_Term;
368 return SQLITE_OK;
372 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
373 ** MEM.zMalloc, where it can be safely written.
375 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
377 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
378 assert( pMem!=0 );
379 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
380 assert( !sqlite3VdbeMemIsRowSet(pMem) );
381 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
382 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
383 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
384 int rc = vdbeMemAddTerminator(pMem);
385 if( rc ) return rc;
388 pMem->flags &= ~MEM_Ephem;
389 #ifdef SQLITE_DEBUG
390 pMem->pScopyFrom = 0;
391 #endif
393 return SQLITE_OK;
397 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
398 ** blob stored in dynamically allocated space.
400 #ifndef SQLITE_OMIT_INCRBLOB
401 int sqlite3VdbeMemExpandBlob(Mem *pMem){
402 int nByte;
403 assert( pMem!=0 );
404 assert( pMem->flags & MEM_Zero );
405 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
406 testcase( sqlite3_value_nochange(pMem) );
407 assert( !sqlite3VdbeMemIsRowSet(pMem) );
408 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
410 /* Set nByte to the number of bytes required to store the expanded blob. */
411 nByte = pMem->n + pMem->u.nZero;
412 if( nByte<=0 ){
413 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
414 nByte = 1;
416 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
417 return SQLITE_NOMEM_BKPT;
419 assert( pMem->z!=0 );
420 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
422 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
423 pMem->n += pMem->u.nZero;
424 pMem->flags &= ~(MEM_Zero|MEM_Term);
425 return SQLITE_OK;
427 #endif
430 ** Make sure the given Mem is \u0000 terminated.
432 int sqlite3VdbeMemNulTerminate(Mem *pMem){
433 assert( pMem!=0 );
434 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
435 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
436 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
437 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
438 return SQLITE_OK; /* Nothing to do */
439 }else{
440 return vdbeMemAddTerminator(pMem);
445 ** Add MEM_Str to the set of representations for the given Mem. This
446 ** routine is only called if pMem is a number of some kind, not a NULL
447 ** or a BLOB.
449 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
450 ** if bForce is true but are retained if bForce is false.
452 ** A MEM_Null value will never be passed to this function. This function is
453 ** used for converting values to text for returning to the user (i.e. via
454 ** sqlite3_value_text()), or for ensuring that values to be used as btree
455 ** keys are strings. In the former case a NULL pointer is returned the
456 ** user and the latter is an internal programming error.
458 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
459 const int nByte = 32;
461 assert( pMem!=0 );
462 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
463 assert( !(pMem->flags&MEM_Zero) );
464 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
465 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
466 assert( !sqlite3VdbeMemIsRowSet(pMem) );
467 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
470 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
471 pMem->enc = 0;
472 return SQLITE_NOMEM_BKPT;
475 vdbeMemRenderNum(nByte, pMem->z, pMem);
476 assert( pMem->z!=0 );
477 assert( pMem->n==(int)sqlite3Strlen30NN(pMem->z) );
478 pMem->enc = SQLITE_UTF8;
479 pMem->flags |= MEM_Str|MEM_Term;
480 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
481 sqlite3VdbeChangeEncoding(pMem, enc);
482 return SQLITE_OK;
486 ** Memory cell pMem contains the context of an aggregate function.
487 ** This routine calls the finalize method for that function. The
488 ** result of the aggregate is stored back into pMem.
490 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
491 ** otherwise.
493 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
494 sqlite3_context ctx;
495 Mem t;
496 assert( pFunc!=0 );
497 assert( pMem!=0 );
498 assert( pMem->db!=0 );
499 assert( pFunc->xFinalize!=0 );
500 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
501 assert( sqlite3_mutex_held(pMem->db->mutex) );
502 memset(&ctx, 0, sizeof(ctx));
503 memset(&t, 0, sizeof(t));
504 t.flags = MEM_Null;
505 t.db = pMem->db;
506 ctx.pOut = &t;
507 ctx.pMem = pMem;
508 ctx.pFunc = pFunc;
509 ctx.enc = ENC(t.db);
510 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
511 assert( (pMem->flags & MEM_Dyn)==0 );
512 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
513 memcpy(pMem, &t, sizeof(t));
514 return ctx.isError;
518 ** Memory cell pAccum contains the context of an aggregate function.
519 ** This routine calls the xValue method for that function and stores
520 ** the results in memory cell pMem.
522 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
523 ** otherwise.
525 #ifndef SQLITE_OMIT_WINDOWFUNC
526 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
527 sqlite3_context ctx;
528 assert( pFunc!=0 );
529 assert( pFunc->xValue!=0 );
530 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
531 assert( pAccum->db!=0 );
532 assert( sqlite3_mutex_held(pAccum->db->mutex) );
533 memset(&ctx, 0, sizeof(ctx));
534 sqlite3VdbeMemSetNull(pOut);
535 ctx.pOut = pOut;
536 ctx.pMem = pAccum;
537 ctx.pFunc = pFunc;
538 ctx.enc = ENC(pAccum->db);
539 pFunc->xValue(&ctx);
540 return ctx.isError;
542 #endif /* SQLITE_OMIT_WINDOWFUNC */
545 ** If the memory cell contains a value that must be freed by
546 ** invoking the external callback in Mem.xDel, then this routine
547 ** will free that value. It also sets Mem.flags to MEM_Null.
549 ** This is a helper routine for sqlite3VdbeMemSetNull() and
550 ** for sqlite3VdbeMemRelease(). Use those other routines as the
551 ** entry point for releasing Mem resources.
553 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
554 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
555 assert( VdbeMemDynamic(p) );
556 if( p->flags&MEM_Agg ){
557 sqlite3VdbeMemFinalize(p, p->u.pDef);
558 assert( (p->flags & MEM_Agg)==0 );
559 testcase( p->flags & MEM_Dyn );
561 if( p->flags&MEM_Dyn ){
562 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
563 p->xDel((void *)p->z);
565 p->flags = MEM_Null;
569 ** Release memory held by the Mem p, both external memory cleared
570 ** by p->xDel and memory in p->zMalloc.
572 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
573 ** the unusual case where there really is memory in p that needs
574 ** to be freed.
576 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
577 if( VdbeMemDynamic(p) ){
578 vdbeMemClearExternAndSetNull(p);
580 if( p->szMalloc ){
581 sqlite3DbFreeNN(p->db, p->zMalloc);
582 p->szMalloc = 0;
584 p->z = 0;
588 ** Release any memory resources held by the Mem. Both the memory that is
589 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
591 ** Use this routine prior to clean up prior to abandoning a Mem, or to
592 ** reset a Mem back to its minimum memory utilization.
594 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
595 ** prior to inserting new content into the Mem.
597 void sqlite3VdbeMemRelease(Mem *p){
598 assert( sqlite3VdbeCheckMemInvariants(p) );
599 if( VdbeMemDynamic(p) || p->szMalloc ){
600 vdbeMemClear(p);
604 /* Like sqlite3VdbeMemRelease() but faster for cases where we
605 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
607 void sqlite3VdbeMemReleaseMalloc(Mem *p){
608 assert( !VdbeMemDynamic(p) );
609 if( p->szMalloc ) vdbeMemClear(p);
613 ** Return some kind of integer value which is the best we can do
614 ** at representing the value that *pMem describes as an integer.
615 ** If pMem is an integer, then the value is exact. If pMem is
616 ** a floating-point then the value returned is the integer part.
617 ** If pMem is a string or blob, then we make an attempt to convert
618 ** it into an integer and return that. If pMem represents an
619 ** an SQL-NULL value, return 0.
621 ** If pMem represents a string value, its encoding might be changed.
623 static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
624 i64 value = 0;
625 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
626 return value;
628 i64 sqlite3VdbeIntValue(const Mem *pMem){
629 int flags;
630 assert( pMem!=0 );
631 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
632 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
633 flags = pMem->flags;
634 if( flags & (MEM_Int|MEM_IntReal) ){
635 testcase( flags & MEM_IntReal );
636 return pMem->u.i;
637 }else if( flags & MEM_Real ){
638 return sqlite3RealToI64(pMem->u.r);
639 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
640 return memIntValue(pMem);
641 }else{
642 return 0;
647 ** Return the best representation of pMem that we can get into a
648 ** double. If pMem is already a double or an integer, return its
649 ** value. If it is a string or blob, try to convert it to a double.
650 ** If it is a NULL, return 0.0.
652 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
653 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
654 double val = (double)0;
655 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
656 return val;
658 double sqlite3VdbeRealValue(Mem *pMem){
659 assert( pMem!=0 );
660 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
661 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
662 if( pMem->flags & MEM_Real ){
663 return pMem->u.r;
664 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
665 testcase( pMem->flags & MEM_IntReal );
666 return (double)pMem->u.i;
667 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
668 return memRealValue(pMem);
669 }else{
670 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
671 return (double)0;
676 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
677 ** Return the value ifNull if pMem is NULL.
679 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
680 testcase( pMem->flags & MEM_IntReal );
681 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
682 if( pMem->flags & MEM_Null ) return ifNull;
683 return sqlite3VdbeRealValue(pMem)!=0.0;
687 ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
688 ** make it a MEM_Int if we can.
690 void sqlite3VdbeIntegerAffinity(Mem *pMem){
691 assert( pMem!=0 );
692 assert( pMem->flags & (MEM_Real|MEM_IntReal) );
693 assert( !sqlite3VdbeMemIsRowSet(pMem) );
694 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
695 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
697 if( pMem->flags & MEM_IntReal ){
698 MemSetTypeFlag(pMem, MEM_Int);
699 }else{
700 i64 ix = sqlite3RealToI64(pMem->u.r);
702 /* Only mark the value as an integer if
704 ** (1) the round-trip conversion real->int->real is a no-op, and
705 ** (2) The integer is neither the largest nor the smallest
706 ** possible integer (ticket #3922)
708 ** The second and third terms in the following conditional enforces
709 ** the second condition under the assumption that addition overflow causes
710 ** values to wrap around.
712 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
713 pMem->u.i = ix;
714 MemSetTypeFlag(pMem, MEM_Int);
720 ** Convert pMem to type integer. Invalidate any prior representations.
722 int sqlite3VdbeMemIntegerify(Mem *pMem){
723 assert( pMem!=0 );
724 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
725 assert( !sqlite3VdbeMemIsRowSet(pMem) );
726 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
728 pMem->u.i = sqlite3VdbeIntValue(pMem);
729 MemSetTypeFlag(pMem, MEM_Int);
730 return SQLITE_OK;
734 ** Convert pMem so that it is of type MEM_Real.
735 ** Invalidate any prior representations.
737 int sqlite3VdbeMemRealify(Mem *pMem){
738 assert( pMem!=0 );
739 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
740 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
742 pMem->u.r = sqlite3VdbeRealValue(pMem);
743 MemSetTypeFlag(pMem, MEM_Real);
744 return SQLITE_OK;
747 /* Compare a floating point value to an integer. Return true if the two
748 ** values are the same within the precision of the floating point value.
750 ** This function assumes that i was obtained by assignment from r1.
752 ** For some versions of GCC on 32-bit machines, if you do the more obvious
753 ** comparison of "r1==(double)i" you sometimes get an answer of false even
754 ** though the r1 and (double)i values are bit-for-bit the same.
756 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
757 double r2 = (double)i;
758 return r1==0.0
759 || (memcmp(&r1, &r2, sizeof(r1))==0
760 && i >= -2251799813685248LL && i < 2251799813685248LL);
763 /* Convert a floating point value to its closest integer. Do so in
764 ** a way that avoids 'outside the range of representable values' warnings
765 ** from UBSAN.
767 i64 sqlite3RealToI64(double r){
768 if( r<-9223372036854774784.0 ) return SMALLEST_INT64;
769 if( r>+9223372036854774784.0 ) return LARGEST_INT64;
770 return (i64)r;
774 ** Convert pMem so that it has type MEM_Real or MEM_Int.
775 ** Invalidate any prior representations.
777 ** Every effort is made to force the conversion, even if the input
778 ** is a string that does not look completely like a number. Convert
779 ** as much of the string as we can and ignore the rest.
781 int sqlite3VdbeMemNumerify(Mem *pMem){
782 assert( pMem!=0 );
783 testcase( pMem->flags & MEM_Int );
784 testcase( pMem->flags & MEM_Real );
785 testcase( pMem->flags & MEM_IntReal );
786 testcase( pMem->flags & MEM_Null );
787 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
788 int rc;
789 sqlite3_int64 ix;
790 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
791 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
792 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
793 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
794 || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r)))
796 pMem->u.i = ix;
797 MemSetTypeFlag(pMem, MEM_Int);
798 }else{
799 MemSetTypeFlag(pMem, MEM_Real);
802 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
803 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
804 return SQLITE_OK;
808 ** Cast the datatype of the value in pMem according to the affinity
809 ** "aff". Casting is different from applying affinity in that a cast
810 ** is forced. In other words, the value is converted into the desired
811 ** affinity even if that results in loss of data. This routine is
812 ** used (for example) to implement the SQL "cast()" operator.
814 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
815 if( pMem->flags & MEM_Null ) return SQLITE_OK;
816 switch( aff ){
817 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
818 if( (pMem->flags & MEM_Blob)==0 ){
819 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
820 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
821 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
822 }else{
823 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
825 break;
827 case SQLITE_AFF_NUMERIC: {
828 sqlite3VdbeMemNumerify(pMem);
829 break;
831 case SQLITE_AFF_INTEGER: {
832 sqlite3VdbeMemIntegerify(pMem);
833 break;
835 case SQLITE_AFF_REAL: {
836 sqlite3VdbeMemRealify(pMem);
837 break;
839 default: {
840 int rc;
841 assert( aff==SQLITE_AFF_TEXT );
842 assert( MEM_Str==(MEM_Blob>>3) );
843 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
844 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
845 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
846 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
847 if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1;
848 rc = sqlite3VdbeChangeEncoding(pMem, encoding);
849 if( rc ) return rc;
850 sqlite3VdbeMemZeroTerminateIfAble(pMem);
853 return SQLITE_OK;
857 ** Initialize bulk memory to be a consistent Mem object.
859 ** The minimum amount of initialization feasible is performed.
861 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
862 assert( (flags & ~MEM_TypeMask)==0 );
863 pMem->flags = flags;
864 pMem->db = db;
865 pMem->szMalloc = 0;
870 ** Delete any previous value and set the value stored in *pMem to NULL.
872 ** This routine calls the Mem.xDel destructor to dispose of values that
873 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
874 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
875 ** routine to invoke the destructor and deallocates Mem.zMalloc.
877 ** Use this routine to reset the Mem prior to insert a new value.
879 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
881 void sqlite3VdbeMemSetNull(Mem *pMem){
882 if( VdbeMemDynamic(pMem) ){
883 vdbeMemClearExternAndSetNull(pMem);
884 }else{
885 pMem->flags = MEM_Null;
888 void sqlite3ValueSetNull(sqlite3_value *p){
889 sqlite3VdbeMemSetNull((Mem*)p);
893 ** Delete any previous value and set the value to be a BLOB of length
894 ** n containing all zeros.
896 #ifndef SQLITE_OMIT_INCRBLOB
897 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
898 sqlite3VdbeMemRelease(pMem);
899 pMem->flags = MEM_Blob|MEM_Zero;
900 pMem->n = 0;
901 if( n<0 ) n = 0;
902 pMem->u.nZero = n;
903 pMem->enc = SQLITE_UTF8;
904 pMem->z = 0;
906 #else
907 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
908 int nByte = n>0?n:1;
909 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
910 return SQLITE_NOMEM_BKPT;
912 assert( pMem->z!=0 );
913 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
914 memset(pMem->z, 0, nByte);
915 pMem->n = n>0?n:0;
916 pMem->flags = MEM_Blob;
917 pMem->enc = SQLITE_UTF8;
918 return SQLITE_OK;
920 #endif
923 ** The pMem is known to contain content that needs to be destroyed prior
924 ** to a value change. So invoke the destructor, then set the value to
925 ** a 64-bit integer.
927 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
928 sqlite3VdbeMemSetNull(pMem);
929 pMem->u.i = val;
930 pMem->flags = MEM_Int;
934 ** Delete any previous value and set the value stored in *pMem to val,
935 ** manifest type INTEGER.
937 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
938 if( VdbeMemDynamic(pMem) ){
939 vdbeReleaseAndSetInt64(pMem, val);
940 }else{
941 pMem->u.i = val;
942 pMem->flags = MEM_Int;
947 ** Set the iIdx'th entry of array aMem[] to contain integer value val.
949 void sqlite3MemSetArrayInt64(sqlite3_value *aMem, int iIdx, i64 val){
950 sqlite3VdbeMemSetInt64(&aMem[iIdx], val);
953 /* A no-op destructor */
954 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
957 ** Set the value stored in *pMem should already be a NULL.
958 ** Also store a pointer to go with it.
960 void sqlite3VdbeMemSetPointer(
961 Mem *pMem,
962 void *pPtr,
963 const char *zPType,
964 void (*xDestructor)(void*)
966 assert( pMem->flags==MEM_Null );
967 vdbeMemClear(pMem);
968 pMem->u.zPType = zPType ? zPType : "";
969 pMem->z = pPtr;
970 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
971 pMem->eSubtype = 'p';
972 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
975 #ifndef SQLITE_OMIT_FLOATING_POINT
977 ** Delete any previous value and set the value stored in *pMem to val,
978 ** manifest type REAL.
980 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
981 sqlite3VdbeMemSetNull(pMem);
982 if( !sqlite3IsNaN(val) ){
983 pMem->u.r = val;
984 pMem->flags = MEM_Real;
987 #endif
989 #ifdef SQLITE_DEBUG
991 ** Return true if the Mem holds a RowSet object. This routine is intended
992 ** for use inside of assert() statements.
994 int sqlite3VdbeMemIsRowSet(const Mem *pMem){
995 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
996 && pMem->xDel==sqlite3RowSetDelete;
998 #endif
1001 ** Delete any previous value and set the value of pMem to be an
1002 ** empty boolean index.
1004 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
1005 ** error occurs.
1007 int sqlite3VdbeMemSetRowSet(Mem *pMem){
1008 sqlite3 *db = pMem->db;
1009 RowSet *p;
1010 assert( db!=0 );
1011 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1012 sqlite3VdbeMemRelease(pMem);
1013 p = sqlite3RowSetInit(db);
1014 if( p==0 ) return SQLITE_NOMEM;
1015 pMem->z = (char*)p;
1016 pMem->flags = MEM_Blob|MEM_Dyn;
1017 pMem->xDel = sqlite3RowSetDelete;
1018 return SQLITE_OK;
1022 ** Return true if the Mem object contains a TEXT or BLOB that is
1023 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
1025 int sqlite3VdbeMemTooBig(Mem *p){
1026 assert( p->db!=0 );
1027 if( p->flags & (MEM_Str|MEM_Blob) ){
1028 int n = p->n;
1029 if( p->flags & MEM_Zero ){
1030 n += p->u.nZero;
1032 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
1034 return 0;
1037 #ifdef SQLITE_DEBUG
1039 ** This routine prepares a memory cell for modification by breaking
1040 ** its link to a shallow copy and by marking any current shallow
1041 ** copies of this cell as invalid.
1043 ** This is used for testing and debugging only - to help ensure that shallow
1044 ** copies (created by OP_SCopy) are not misused.
1046 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
1047 int i;
1048 Mem *pX;
1049 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
1050 if( pX->pScopyFrom==pMem ){
1051 u16 mFlags;
1052 if( pVdbe->db->flags & SQLITE_VdbeTrace ){
1053 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1054 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
1056 /* If pX is marked as a shallow copy of pMem, then try to verify that
1057 ** no significant changes have been made to pX since the OP_SCopy.
1058 ** A significant change would indicated a missed call to this
1059 ** function for pX. Minor changes, such as adding or removing a
1060 ** dual type, are allowed, as long as the underlying value is the
1061 ** same. */
1062 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
1063 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
1065 /* pMem is the register that is changing. But also mark pX as
1066 ** undefined so that we can quickly detect the shallow-copy error */
1067 pX->flags = MEM_Undefined;
1068 pX->pScopyFrom = 0;
1071 pMem->pScopyFrom = 0;
1073 #endif /* SQLITE_DEBUG */
1076 ** Make an shallow copy of pFrom into pTo. Prior contents of
1077 ** pTo are freed. The pFrom->z field is not duplicated. If
1078 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1079 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1081 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
1082 vdbeMemClearExternAndSetNull(pTo);
1083 assert( !VdbeMemDynamic(pTo) );
1084 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
1086 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
1087 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1088 assert( pTo->db==pFrom->db );
1089 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
1090 memcpy(pTo, pFrom, MEMCELLSIZE);
1091 if( (pFrom->flags&MEM_Static)==0 ){
1092 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
1093 assert( srcType==MEM_Ephem || srcType==MEM_Static );
1094 pTo->flags |= srcType;
1099 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1100 ** freed before the copy is made.
1102 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
1103 int rc = SQLITE_OK;
1105 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1106 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
1107 memcpy(pTo, pFrom, MEMCELLSIZE);
1108 pTo->flags &= ~MEM_Dyn;
1109 if( pTo->flags&(MEM_Str|MEM_Blob) ){
1110 if( 0==(pFrom->flags&MEM_Static) ){
1111 pTo->flags |= MEM_Ephem;
1112 rc = sqlite3VdbeMemMakeWriteable(pTo);
1116 return rc;
1120 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1121 ** freed. If pFrom contains ephemeral data, a copy is made.
1123 ** pFrom contains an SQL NULL when this routine returns.
1125 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1126 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1127 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1128 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1130 sqlite3VdbeMemRelease(pTo);
1131 memcpy(pTo, pFrom, sizeof(Mem));
1132 pFrom->flags = MEM_Null;
1133 pFrom->szMalloc = 0;
1137 ** Change the value of a Mem to be a string or a BLOB.
1139 ** The memory management strategy depends on the value of the xDel
1140 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1141 ** string is copied into a (possibly existing) buffer managed by the
1142 ** Mem structure. Otherwise, any existing buffer is freed and the
1143 ** pointer copied.
1145 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1146 ** size limit) then no memory allocation occurs. If the string can be
1147 ** stored without allocating memory, then it is. If a memory allocation
1148 ** is required to store the string, then value of pMem is unchanged. In
1149 ** either case, SQLITE_TOOBIG is returned.
1151 ** The "enc" parameter is the text encoding for the string, or zero
1152 ** to store a blob.
1154 ** If n is negative, then the string consists of all bytes up to but
1155 ** excluding the first zero character. The n parameter must be
1156 ** non-negative for blobs.
1158 int sqlite3VdbeMemSetStr(
1159 Mem *pMem, /* Memory cell to set to string value */
1160 const char *z, /* String pointer */
1161 i64 n, /* Bytes in string, or negative */
1162 u8 enc, /* Encoding of z. 0 for BLOBs */
1163 void (*xDel)(void*) /* Destructor function */
1165 i64 nByte = n; /* New value for pMem->n */
1166 int iLimit; /* Maximum allowed string or blob size */
1167 u16 flags; /* New value for pMem->flags */
1169 assert( pMem!=0 );
1170 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1171 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1172 assert( enc!=0 || n>=0 );
1174 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1175 if( !z ){
1176 sqlite3VdbeMemSetNull(pMem);
1177 return SQLITE_OK;
1180 if( pMem->db ){
1181 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1182 }else{
1183 iLimit = SQLITE_MAX_LENGTH;
1185 if( nByte<0 ){
1186 assert( enc!=0 );
1187 if( enc==SQLITE_UTF8 ){
1188 nByte = strlen(z);
1189 }else{
1190 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1192 flags= MEM_Str|MEM_Term;
1193 }else if( enc==0 ){
1194 flags = MEM_Blob;
1195 enc = SQLITE_UTF8;
1196 }else{
1197 flags = MEM_Str;
1199 if( nByte>iLimit ){
1200 if( xDel && xDel!=SQLITE_TRANSIENT ){
1201 if( xDel==SQLITE_DYNAMIC ){
1202 sqlite3DbFree(pMem->db, (void*)z);
1203 }else{
1204 xDel((void*)z);
1207 sqlite3VdbeMemSetNull(pMem);
1208 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1211 /* The following block sets the new values of Mem.z and Mem.xDel. It
1212 ** also sets a flag in local variable "flags" to indicate the memory
1213 ** management (one of MEM_Dyn or MEM_Static).
1215 if( xDel==SQLITE_TRANSIENT ){
1216 i64 nAlloc = nByte;
1217 if( flags&MEM_Term ){
1218 nAlloc += (enc==SQLITE_UTF8?1:2);
1220 testcase( nAlloc==0 );
1221 testcase( nAlloc==31 );
1222 testcase( nAlloc==32 );
1223 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
1224 return SQLITE_NOMEM_BKPT;
1226 memcpy(pMem->z, z, nAlloc);
1227 }else{
1228 sqlite3VdbeMemRelease(pMem);
1229 pMem->z = (char *)z;
1230 if( xDel==SQLITE_DYNAMIC ){
1231 pMem->zMalloc = pMem->z;
1232 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1233 }else{
1234 pMem->xDel = xDel;
1235 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1239 pMem->n = (int)(nByte & 0x7fffffff);
1240 pMem->flags = flags;
1241 pMem->enc = enc;
1243 #ifndef SQLITE_OMIT_UTF16
1244 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1245 return SQLITE_NOMEM_BKPT;
1247 #endif
1250 return SQLITE_OK;
1254 ** Move data out of a btree key or data field and into a Mem structure.
1255 ** The data is payload from the entry that pCur is currently pointing
1256 ** to. offset and amt determine what portion of the data or key to retrieve.
1257 ** The result is written into the pMem element.
1259 ** The pMem object must have been initialized. This routine will use
1260 ** pMem->zMalloc to hold the content from the btree, if possible. New
1261 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1262 ** is responsible for making sure that the pMem object is eventually
1263 ** destroyed.
1265 ** If this routine fails for any reason (malloc returns NULL or unable
1266 ** to read from the disk) then the pMem is left in an inconsistent state.
1268 int sqlite3VdbeMemFromBtree(
1269 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1270 u32 offset, /* Offset from the start of data to return bytes from. */
1271 u32 amt, /* Number of bytes to return. */
1272 Mem *pMem /* OUT: Return data in this Mem structure. */
1274 int rc;
1275 pMem->flags = MEM_Null;
1276 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1277 return SQLITE_CORRUPT_BKPT;
1279 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1280 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1281 if( rc==SQLITE_OK ){
1282 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1283 pMem->flags = MEM_Blob;
1284 pMem->n = (int)amt;
1285 }else{
1286 sqlite3VdbeMemRelease(pMem);
1289 return rc;
1291 int sqlite3VdbeMemFromBtreeZeroOffset(
1292 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1293 u32 amt, /* Number of bytes to return. */
1294 Mem *pMem /* OUT: Return data in this Mem structure. */
1296 u32 available = 0; /* Number of bytes available on the local btree page */
1297 int rc = SQLITE_OK; /* Return code */
1299 assert( sqlite3BtreeCursorIsValid(pCur) );
1300 assert( !VdbeMemDynamic(pMem) );
1302 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1303 ** that both the BtShared and database handle mutexes are held. */
1304 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1305 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1306 assert( pMem->z!=0 );
1308 if( amt<=available ){
1309 pMem->flags = MEM_Blob|MEM_Ephem;
1310 pMem->n = (int)amt;
1311 }else{
1312 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
1315 return rc;
1319 ** The pVal argument is known to be a value other than NULL.
1320 ** Convert it into a string with encoding enc and return a pointer
1321 ** to a zero-terminated version of that string.
1323 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1324 assert( pVal!=0 );
1325 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1326 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1327 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1328 assert( (pVal->flags & (MEM_Null))==0 );
1329 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1330 if( ExpandBlob(pVal) ) return 0;
1331 pVal->flags |= MEM_Str;
1332 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1333 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1335 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1336 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1337 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1338 return 0;
1341 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1342 }else{
1343 sqlite3VdbeMemStringify(pVal, enc, 0);
1344 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1346 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1347 || pVal->db->mallocFailed );
1348 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1349 assert( sqlite3VdbeMemValidStrRep(pVal) );
1350 return pVal->z;
1351 }else{
1352 return 0;
1356 /* This function is only available internally, it is not part of the
1357 ** external API. It works in a similar way to sqlite3_value_text(),
1358 ** except the data returned is in the encoding specified by the second
1359 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1360 ** SQLITE_UTF8.
1362 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1363 ** If that is the case, then the result must be aligned on an even byte
1364 ** boundary.
1366 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1367 if( !pVal ) return 0;
1368 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1369 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1370 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1371 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1372 assert( sqlite3VdbeMemValidStrRep(pVal) );
1373 return pVal->z;
1375 if( pVal->flags&MEM_Null ){
1376 return 0;
1378 return valueToText(pVal, enc);
1381 /* Return true if sqlit3_value object pVal is a string or blob value
1382 ** that uses the destructor specified in the second argument.
1384 ** TODO: Maybe someday promote this interface into a published API so
1385 ** that third-party extensions can get access to it?
1387 int sqlite3ValueIsOfClass(const sqlite3_value *pVal, void(*xFree)(void*)){
1388 if( ALWAYS(pVal!=0)
1389 && ALWAYS((pVal->flags & (MEM_Str|MEM_Blob))!=0)
1390 && (pVal->flags & MEM_Dyn)!=0
1391 && pVal->xDel==xFree
1393 return 1;
1394 }else{
1395 return 0;
1400 ** Create a new sqlite3_value object.
1402 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1403 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1404 if( p ){
1405 p->flags = MEM_Null;
1406 p->db = db;
1408 return p;
1412 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1413 ** valueNew(). See comments above valueNew() for details.
1415 struct ValueNewStat4Ctx {
1416 Parse *pParse;
1417 Index *pIdx;
1418 UnpackedRecord **ppRec;
1419 int iVal;
1423 ** Allocate and return a pointer to a new sqlite3_value object. If
1424 ** the second argument to this function is NULL, the object is allocated
1425 ** by calling sqlite3ValueNew().
1427 ** Otherwise, if the second argument is non-zero, then this function is
1428 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1429 ** already been allocated, allocate the UnpackedRecord structure that
1430 ** that function will return to its caller here. Then return a pointer to
1431 ** an sqlite3_value within the UnpackedRecord.a[] array.
1433 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1434 #ifdef SQLITE_ENABLE_STAT4
1435 if( p ){
1436 UnpackedRecord *pRec = p->ppRec[0];
1438 if( pRec==0 ){
1439 Index *pIdx = p->pIdx; /* Index being probed */
1440 int nByte; /* Bytes of space to allocate */
1441 int i; /* Counter variable */
1442 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1444 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1445 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1446 if( pRec ){
1447 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1448 if( pRec->pKeyInfo ){
1449 assert( pRec->pKeyInfo->nAllField==nCol );
1450 assert( pRec->pKeyInfo->enc==ENC(db) );
1451 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1452 for(i=0; i<nCol; i++){
1453 pRec->aMem[i].flags = MEM_Null;
1454 pRec->aMem[i].db = db;
1456 }else{
1457 sqlite3DbFreeNN(db, pRec);
1458 pRec = 0;
1461 if( pRec==0 ) return 0;
1462 p->ppRec[0] = pRec;
1465 pRec->nField = p->iVal+1;
1466 sqlite3VdbeMemSetNull(&pRec->aMem[p->iVal]);
1467 return &pRec->aMem[p->iVal];
1469 #else
1470 UNUSED_PARAMETER(p);
1471 #endif /* defined(SQLITE_ENABLE_STAT4) */
1472 return sqlite3ValueNew(db);
1476 ** The expression object indicated by the second argument is guaranteed
1477 ** to be a scalar SQL function. If
1479 ** * all function arguments are SQL literals,
1480 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1481 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1483 ** then this routine attempts to invoke the SQL function. Assuming no
1484 ** error occurs, output parameter (*ppVal) is set to point to a value
1485 ** object containing the result before returning SQLITE_OK.
1487 ** Affinity aff is applied to the result of the function before returning.
1488 ** If the result is a text value, the sqlite3_value object uses encoding
1489 ** enc.
1491 ** If the conditions above are not met, this function returns SQLITE_OK
1492 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1493 ** NULL and an SQLite error code returned.
1495 #ifdef SQLITE_ENABLE_STAT4
1496 static int valueFromFunction(
1497 sqlite3 *db, /* The database connection */
1498 const Expr *p, /* The expression to evaluate */
1499 u8 enc, /* Encoding to use */
1500 u8 aff, /* Affinity to use */
1501 sqlite3_value **ppVal, /* Write the new value here */
1502 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1504 sqlite3_context ctx; /* Context object for function invocation */
1505 sqlite3_value **apVal = 0; /* Function arguments */
1506 int nVal = 0; /* Size of apVal[] array */
1507 FuncDef *pFunc = 0; /* Function definition */
1508 sqlite3_value *pVal = 0; /* New value */
1509 int rc = SQLITE_OK; /* Return code */
1510 ExprList *pList = 0; /* Function arguments */
1511 int i; /* Iterator variable */
1513 assert( pCtx!=0 );
1514 assert( (p->flags & EP_TokenOnly)==0 );
1515 assert( ExprUseXList(p) );
1516 pList = p->x.pList;
1517 if( pList ) nVal = pList->nExpr;
1518 assert( !ExprHasProperty(p, EP_IntValue) );
1519 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1520 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1521 if( pFunc==0 ) return SQLITE_OK;
1522 #endif
1523 assert( pFunc );
1524 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1525 || (pFunc->funcFlags & (SQLITE_FUNC_NEEDCOLL|SQLITE_FUNC_RUNONLY))!=0
1527 return SQLITE_OK;
1530 if( pList ){
1531 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1532 if( apVal==0 ){
1533 rc = SQLITE_NOMEM_BKPT;
1534 goto value_from_function_out;
1536 for(i=0; i<nVal; i++){
1537 rc = sqlite3Stat4ValueFromExpr(pCtx->pParse, pList->a[i].pExpr, aff,
1538 &apVal[i]);
1539 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1543 pVal = valueNew(db, pCtx);
1544 if( pVal==0 ){
1545 rc = SQLITE_NOMEM_BKPT;
1546 goto value_from_function_out;
1549 memset(&ctx, 0, sizeof(ctx));
1550 ctx.pOut = pVal;
1551 ctx.pFunc = pFunc;
1552 ctx.enc = ENC(db);
1553 pFunc->xSFunc(&ctx, nVal, apVal);
1554 if( ctx.isError ){
1555 rc = ctx.isError;
1556 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1557 }else{
1558 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1559 assert( rc==SQLITE_OK );
1560 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1561 if( NEVER(rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal)) ){
1562 rc = SQLITE_TOOBIG;
1563 pCtx->pParse->nErr++;
1567 value_from_function_out:
1568 if( rc!=SQLITE_OK ){
1569 pVal = 0;
1570 pCtx->pParse->rc = rc;
1572 if( apVal ){
1573 for(i=0; i<nVal; i++){
1574 sqlite3ValueFree(apVal[i]);
1576 sqlite3DbFreeNN(db, apVal);
1579 *ppVal = pVal;
1580 return rc;
1582 #else
1583 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1584 #endif /* defined(SQLITE_ENABLE_STAT4) */
1587 ** Extract a value from the supplied expression in the manner described
1588 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1589 ** using valueNew().
1591 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1592 ** has been allocated, it is freed before returning. Or, if pCtx is not
1593 ** NULL, it is assumed that the caller will free any allocated object
1594 ** in all cases.
1596 static int valueFromExpr(
1597 sqlite3 *db, /* The database connection */
1598 const Expr *pExpr, /* The expression to evaluate */
1599 u8 enc, /* Encoding to use */
1600 u8 affinity, /* Affinity to use */
1601 sqlite3_value **ppVal, /* Write the new value here */
1602 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1604 int op;
1605 char *zVal = 0;
1606 sqlite3_value *pVal = 0;
1607 int negInt = 1;
1608 const char *zNeg = "";
1609 int rc = SQLITE_OK;
1611 assert( pExpr!=0 );
1612 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1613 if( op==TK_REGISTER ) op = pExpr->op2;
1615 /* Compressed expressions only appear when parsing the DEFAULT clause
1616 ** on a table column definition, and hence only when pCtx==0. This
1617 ** check ensures that an EP_TokenOnly expression is never passed down
1618 ** into valueFromFunction(). */
1619 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1621 if( op==TK_CAST ){
1622 u8 aff;
1623 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1624 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1625 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1626 testcase( rc!=SQLITE_OK );
1627 if( *ppVal ){
1628 #ifdef SQLITE_ENABLE_STAT4
1629 rc = ExpandBlob(*ppVal);
1630 #else
1631 /* zero-blobs only come from functions, not literal values. And
1632 ** functions are only processed under STAT4 */
1633 assert( (ppVal[0][0].flags & MEM_Zero)==0 );
1634 #endif
1635 sqlite3VdbeMemCast(*ppVal, aff, enc);
1636 sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
1638 return rc;
1641 /* Handle negative integers in a single step. This is needed in the
1642 ** case when the value is -9223372036854775808. Except - do not do this
1643 ** for hexadecimal literals. */
1644 if( op==TK_UMINUS ){
1645 Expr *pLeft = pExpr->pLeft;
1646 if( (pLeft->op==TK_INTEGER || pLeft->op==TK_FLOAT) ){
1647 if( ExprHasProperty(pLeft, EP_IntValue)
1648 || pLeft->u.zToken[0]!='0' || (pLeft->u.zToken[1] & ~0x20)!='X'
1650 pExpr = pLeft;
1651 op = pExpr->op;
1652 negInt = -1;
1653 zNeg = "-";
1658 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1659 pVal = valueNew(db, pCtx);
1660 if( pVal==0 ) goto no_mem;
1661 if( ExprHasProperty(pExpr, EP_IntValue) ){
1662 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1663 }else{
1664 i64 iVal;
1665 if( op==TK_INTEGER && 0==sqlite3DecOrHexToI64(pExpr->u.zToken, &iVal) ){
1666 sqlite3VdbeMemSetInt64(pVal, iVal*negInt);
1667 }else{
1668 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1669 if( zVal==0 ) goto no_mem;
1670 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1673 if( affinity==SQLITE_AFF_BLOB ){
1674 if( op==TK_FLOAT ){
1675 assert( pVal && pVal->z && pVal->flags==(MEM_Str|MEM_Term) );
1676 sqlite3AtoF(pVal->z, &pVal->u.r, pVal->n, SQLITE_UTF8);
1677 pVal->flags = MEM_Real;
1678 }else if( op==TK_INTEGER ){
1679 /* This case is required by -9223372036854775808 and other strings
1680 ** that look like integers but cannot be handled by the
1681 ** sqlite3DecOrHexToI64() call above. */
1682 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1684 }else{
1685 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1687 assert( (pVal->flags & MEM_IntReal)==0 );
1688 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1689 testcase( pVal->flags & MEM_Int );
1690 testcase( pVal->flags & MEM_Real );
1691 pVal->flags &= ~MEM_Str;
1693 if( enc!=SQLITE_UTF8 ){
1694 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1696 }else if( op==TK_UMINUS ) {
1697 /* This branch happens for multiple negative signs. Ex: -(-5) */
1698 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1699 && pVal!=0
1701 sqlite3VdbeMemNumerify(pVal);
1702 if( pVal->flags & MEM_Real ){
1703 pVal->u.r = -pVal->u.r;
1704 }else if( pVal->u.i==SMALLEST_INT64 ){
1705 #ifndef SQLITE_OMIT_FLOATING_POINT
1706 pVal->u.r = -(double)SMALLEST_INT64;
1707 #else
1708 pVal->u.r = LARGEST_INT64;
1709 #endif
1710 MemSetTypeFlag(pVal, MEM_Real);
1711 }else{
1712 pVal->u.i = -pVal->u.i;
1714 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1716 }else if( op==TK_NULL ){
1717 pVal = valueNew(db, pCtx);
1718 if( pVal==0 ) goto no_mem;
1719 sqlite3VdbeMemSetNull(pVal);
1721 #ifndef SQLITE_OMIT_BLOB_LITERAL
1722 else if( op==TK_BLOB ){
1723 int nVal;
1724 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1725 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1726 assert( pExpr->u.zToken[1]=='\'' );
1727 pVal = valueNew(db, pCtx);
1728 if( !pVal ) goto no_mem;
1729 zVal = &pExpr->u.zToken[2];
1730 nVal = sqlite3Strlen30(zVal)-1;
1731 assert( zVal[nVal]=='\'' );
1732 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1733 0, SQLITE_DYNAMIC);
1735 #endif
1736 #ifdef SQLITE_ENABLE_STAT4
1737 else if( op==TK_FUNCTION && pCtx!=0 ){
1738 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1740 #endif
1741 else if( op==TK_TRUEFALSE ){
1742 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1743 pVal = valueNew(db, pCtx);
1744 if( pVal ){
1745 pVal->flags = MEM_Int;
1746 pVal->u.i = pExpr->u.zToken[4]==0;
1747 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1751 *ppVal = pVal;
1752 return rc;
1754 no_mem:
1755 #ifdef SQLITE_ENABLE_STAT4
1756 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
1757 #endif
1758 sqlite3OomFault(db);
1759 sqlite3DbFree(db, zVal);
1760 assert( *ppVal==0 );
1761 #ifdef SQLITE_ENABLE_STAT4
1762 if( pCtx==0 ) sqlite3ValueFree(pVal);
1763 #else
1764 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1765 #endif
1766 return SQLITE_NOMEM_BKPT;
1770 ** Create a new sqlite3_value object, containing the value of pExpr.
1772 ** This only works for very simple expressions that consist of one constant
1773 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1774 ** be converted directly into a value, then the value is allocated and
1775 ** a pointer written to *ppVal. The caller is responsible for deallocating
1776 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1777 ** cannot be converted to a value, then *ppVal is set to NULL.
1779 int sqlite3ValueFromExpr(
1780 sqlite3 *db, /* The database connection */
1781 const Expr *pExpr, /* The expression to evaluate */
1782 u8 enc, /* Encoding to use */
1783 u8 affinity, /* Affinity to use */
1784 sqlite3_value **ppVal /* Write the new value here */
1786 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1789 #ifdef SQLITE_ENABLE_STAT4
1791 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1793 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1794 ** pAlloc if one does not exist and the new value is added to the
1795 ** UnpackedRecord object.
1797 ** A value is extracted in the following cases:
1799 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1801 ** * The expression is a bound variable, and this is a reprepare, or
1803 ** * The expression is a literal value.
1805 ** On success, *ppVal is made to point to the extracted value. The caller
1806 ** is responsible for ensuring that the value is eventually freed.
1808 static int stat4ValueFromExpr(
1809 Parse *pParse, /* Parse context */
1810 Expr *pExpr, /* The expression to extract a value from */
1811 u8 affinity, /* Affinity to use */
1812 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1813 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1815 int rc = SQLITE_OK;
1816 sqlite3_value *pVal = 0;
1817 sqlite3 *db = pParse->db;
1819 /* Skip over any TK_COLLATE nodes */
1820 pExpr = sqlite3ExprSkipCollate(pExpr);
1822 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1823 if( !pExpr ){
1824 pVal = valueNew(db, pAlloc);
1825 if( pVal ){
1826 sqlite3VdbeMemSetNull((Mem*)pVal);
1828 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1829 Vdbe *v;
1830 int iBindVar = pExpr->iColumn;
1831 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1832 if( (v = pParse->pReprepare)!=0 ){
1833 pVal = valueNew(db, pAlloc);
1834 if( pVal ){
1835 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1836 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1837 pVal->db = pParse->db;
1840 }else{
1841 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1844 assert( pVal==0 || pVal->db==db );
1845 *ppVal = pVal;
1846 return rc;
1850 ** This function is used to allocate and populate UnpackedRecord
1851 ** structures intended to be compared against sample index keys stored
1852 ** in the sqlite_stat4 table.
1854 ** A single call to this function populates zero or more fields of the
1855 ** record starting with field iVal (fields are numbered from left to
1856 ** right starting with 0). A single field is populated if:
1858 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1860 ** * The expression is a bound variable, and this is a reprepare, or
1862 ** * The sqlite3ValueFromExpr() function is able to extract a value
1863 ** from the expression (i.e. the expression is a literal value).
1865 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1866 ** vector components that match either of the two latter criteria listed
1867 ** above.
1869 ** Before any value is appended to the record, the affinity of the
1870 ** corresponding column within index pIdx is applied to it. Before
1871 ** this function returns, output parameter *pnExtract is set to the
1872 ** number of values appended to the record.
1874 ** When this function is called, *ppRec must either point to an object
1875 ** allocated by an earlier call to this function, or must be NULL. If it
1876 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1877 ** is allocated (and *ppRec set to point to it) before returning.
1879 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1880 ** error if a value cannot be extracted from pExpr. If an error does
1881 ** occur, an SQLite error code is returned.
1883 int sqlite3Stat4ProbeSetValue(
1884 Parse *pParse, /* Parse context */
1885 Index *pIdx, /* Index being probed */
1886 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1887 Expr *pExpr, /* The expression to extract a value from */
1888 int nElem, /* Maximum number of values to append */
1889 int iVal, /* Array element to populate */
1890 int *pnExtract /* OUT: Values appended to the record */
1892 int rc = SQLITE_OK;
1893 int nExtract = 0;
1895 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1896 int i;
1897 struct ValueNewStat4Ctx alloc;
1899 alloc.pParse = pParse;
1900 alloc.pIdx = pIdx;
1901 alloc.ppRec = ppRec;
1903 for(i=0; i<nElem; i++){
1904 sqlite3_value *pVal = 0;
1905 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1906 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1907 alloc.iVal = iVal+i;
1908 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1909 if( !pVal ) break;
1910 nExtract++;
1914 *pnExtract = nExtract;
1915 return rc;
1919 ** Attempt to extract a value from expression pExpr using the methods
1920 ** as described for sqlite3Stat4ProbeSetValue() above.
1922 ** If successful, set *ppVal to point to a new value object and return
1923 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1924 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1925 ** does occur, return an SQLite error code. The final value of *ppVal
1926 ** is undefined in this case.
1928 int sqlite3Stat4ValueFromExpr(
1929 Parse *pParse, /* Parse context */
1930 Expr *pExpr, /* The expression to extract a value from */
1931 u8 affinity, /* Affinity to use */
1932 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1934 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1938 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1939 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1940 ** sqlite3_value object is allocated.
1942 ** If *ppVal is initially NULL then the caller is responsible for
1943 ** ensuring that the value written into *ppVal is eventually freed.
1945 int sqlite3Stat4Column(
1946 sqlite3 *db, /* Database handle */
1947 const void *pRec, /* Pointer to buffer containing record */
1948 int nRec, /* Size of buffer pRec in bytes */
1949 int iCol, /* Column to extract */
1950 sqlite3_value **ppVal /* OUT: Extracted value */
1952 u32 t = 0; /* a column type code */
1953 u32 nHdr; /* Size of the header in the record */
1954 u32 iHdr; /* Next unread header byte */
1955 i64 iField; /* Next unread data byte */
1956 u32 szField = 0; /* Size of the current data field */
1957 int i; /* Column index */
1958 u8 *a = (u8*)pRec; /* Typecast byte array */
1959 Mem *pMem = *ppVal; /* Write result into this Mem object */
1961 assert( iCol>0 );
1962 iHdr = getVarint32(a, nHdr);
1963 if( nHdr>(u32)nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1964 iField = nHdr;
1965 for(i=0; i<=iCol; i++){
1966 iHdr += getVarint32(&a[iHdr], t);
1967 testcase( iHdr==nHdr );
1968 testcase( iHdr==nHdr+1 );
1969 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1970 szField = sqlite3VdbeSerialTypeLen(t);
1971 iField += szField;
1973 testcase( iField==nRec );
1974 testcase( iField==nRec+1 );
1975 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1976 if( pMem==0 ){
1977 pMem = *ppVal = sqlite3ValueNew(db);
1978 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1980 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1981 pMem->enc = ENC(db);
1982 return SQLITE_OK;
1986 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1987 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1988 ** the object.
1990 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1991 if( pRec ){
1992 int i;
1993 int nCol = pRec->pKeyInfo->nAllField;
1994 Mem *aMem = pRec->aMem;
1995 sqlite3 *db = aMem[0].db;
1996 for(i=0; i<nCol; i++){
1997 sqlite3VdbeMemRelease(&aMem[i]);
1999 sqlite3KeyInfoUnref(pRec->pKeyInfo);
2000 sqlite3DbFreeNN(db, pRec);
2003 #endif /* ifdef SQLITE_ENABLE_STAT4 */
2006 ** Change the string value of an sqlite3_value object
2008 void sqlite3ValueSetStr(
2009 sqlite3_value *v, /* Value to be set */
2010 int n, /* Length of string z */
2011 const void *z, /* Text of the new string */
2012 u8 enc, /* Encoding to use */
2013 void (*xDel)(void*) /* Destructor for the string */
2015 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
2019 ** Free an sqlite3_value object
2021 void sqlite3ValueFree(sqlite3_value *v){
2022 if( !v ) return;
2023 sqlite3VdbeMemRelease((Mem *)v);
2024 sqlite3DbFreeNN(((Mem*)v)->db, v);
2028 ** The sqlite3ValueBytes() routine returns the number of bytes in the
2029 ** sqlite3_value object assuming that it uses the encoding "enc".
2030 ** The valueBytes() routine is a helper function.
2032 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
2033 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
2035 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
2036 Mem *p = (Mem*)pVal;
2037 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
2038 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
2039 return p->n;
2041 if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){
2042 return p->n;
2044 if( (p->flags & MEM_Blob)!=0 ){
2045 if( p->flags & MEM_Zero ){
2046 return p->n + p->u.nZero;
2047 }else{
2048 return p->n;
2051 if( p->flags & MEM_Null ) return 0;
2052 return valueBytes(pVal, enc);