Fix harmless compiler warning in flockCheckReservedLock().
[sqlite.git] / src / vdbeaux.c
blob8120536b9817c4742b81f2d9fa25b93d8bc12c39
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->ppVPrev = &p->pVNext;
35 p->pVNext = db->pVdbe;
36 p->ppVPrev = &db->pVdbe;
37 db->pVdbe = p;
38 assert( p->eVdbeState==VDBE_INIT_STATE );
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
125 ** finalized.
127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
128 Vdbe tmp, *pTmp, **ppTmp;
129 char *zTmp;
130 assert( pA->db==pB->db );
131 tmp = *pA;
132 *pA = *pB;
133 *pB = tmp;
134 pTmp = pA->pVNext;
135 pA->pVNext = pB->pVNext;
136 pB->pVNext = pTmp;
137 ppTmp = pA->ppVPrev;
138 pA->ppVPrev = pB->ppVPrev;
139 pB->ppVPrev = ppTmp;
140 zTmp = pA->zSql;
141 pA->zSql = pB->zSql;
142 pB->zSql = zTmp;
143 #ifdef SQLITE_ENABLE_NORMALIZE
144 zTmp = pA->zNormSql;
145 pA->zNormSql = pB->zNormSql;
146 pB->zNormSql = zTmp;
147 #endif
148 pB->expmask = pA->expmask;
149 pB->prepFlags = pA->prepFlags;
150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe *v, int nOp){
165 VdbeOp *pNew;
166 Parse *p = v->pParse;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
177 : (sqlite3_int64)v->nOpAlloc+nOp);
178 #else
179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
180 : (sqlite3_int64)(1024/sizeof(Op)));
181 UNUSED_PARAMETER(nOp);
182 #endif
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
186 sqlite3OomFault(p->db);
187 return SQLITE_NOMEM;
190 assert( nOp<=(int)(1024/sizeof(Op)) );
191 assert( nNew>=(v->nOpAlloc+nOp) );
192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
193 if( pNew ){
194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
195 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
196 v->aOp = pNew;
198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
201 #ifdef SQLITE_DEBUG
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc, Op *pOp){
214 static u64 n = 0;
215 (void)pc;
216 (void)pOp;
217 n++;
218 if( n==LARGEST_UINT64 ) abort(); /* so that n is used, preventing a warning */
220 #endif
223 ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the
224 ** unusual case when we need to increase the size of the Vdbe.aOp[] array
225 ** before adding the new opcode.
227 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
228 assert( p->nOpAlloc<=p->nOp );
229 if( growOpArray(p, 1) ) return 1;
230 assert( p->nOpAlloc>p->nOp );
231 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 static SQLITE_NOINLINE int addOp4IntSlow(
234 Vdbe *p, /* Add the opcode to this VM */
235 int op, /* The new opcode */
236 int p1, /* The P1 operand */
237 int p2, /* The P2 operand */
238 int p3, /* The P3 operand */
239 int p4 /* The P4 operand as an integer */
241 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
242 if( p->db->mallocFailed==0 ){
243 VdbeOp *pOp = &p->aOp[addr];
244 pOp->p4type = P4_INT32;
245 pOp->p4.i = p4;
247 return addr;
252 ** Add a new instruction to the list of instructions current in the
253 ** VDBE. Return the address of the new instruction.
255 ** Parameters:
257 ** p Pointer to the VDBE
259 ** op The opcode for this instruction
261 ** p1, p2, p3, p4 Operands
263 int sqlite3VdbeAddOp0(Vdbe *p, int op){
264 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
266 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
267 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
269 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
270 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
272 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
273 int i;
274 VdbeOp *pOp;
276 i = p->nOp;
277 assert( p->eVdbeState==VDBE_INIT_STATE );
278 assert( op>=0 && op<0xff );
279 if( p->nOpAlloc<=i ){
280 return growOp3(p, op, p1, p2, p3);
282 assert( p->aOp!=0 );
283 p->nOp++;
284 pOp = &p->aOp[i];
285 assert( pOp!=0 );
286 pOp->opcode = (u8)op;
287 pOp->p5 = 0;
288 pOp->p1 = p1;
289 pOp->p2 = p2;
290 pOp->p3 = p3;
291 pOp->p4.p = 0;
292 pOp->p4type = P4_NOTUSED;
294 /* Replicate this logic in sqlite3VdbeAddOp4Int()
295 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
296 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
297 pOp->zComment = 0;
298 #endif
299 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
300 pOp->nExec = 0;
301 pOp->nCycle = 0;
302 #endif
303 #ifdef SQLITE_DEBUG
304 if( p->db->flags & SQLITE_VdbeAddopTrace ){
305 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
306 test_addop_breakpoint(i, &p->aOp[i]);
308 #endif
309 #ifdef SQLITE_VDBE_COVERAGE
310 pOp->iSrcLine = 0;
311 #endif
312 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
313 ** Replicate in sqlite3VdbeAddOp4Int() */
315 return i;
317 int sqlite3VdbeAddOp4Int(
318 Vdbe *p, /* Add the opcode to this VM */
319 int op, /* The new opcode */
320 int p1, /* The P1 operand */
321 int p2, /* The P2 operand */
322 int p3, /* The P3 operand */
323 int p4 /* The P4 operand as an integer */
325 int i;
326 VdbeOp *pOp;
328 i = p->nOp;
329 if( p->nOpAlloc<=i ){
330 return addOp4IntSlow(p, op, p1, p2, p3, p4);
332 p->nOp++;
333 pOp = &p->aOp[i];
334 assert( pOp!=0 );
335 pOp->opcode = (u8)op;
336 pOp->p5 = 0;
337 pOp->p1 = p1;
338 pOp->p2 = p2;
339 pOp->p3 = p3;
340 pOp->p4.i = p4;
341 pOp->p4type = P4_INT32;
343 /* Replicate this logic in sqlite3VdbeAddOp3()
344 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
345 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
346 pOp->zComment = 0;
347 #endif
348 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
349 pOp->nExec = 0;
350 pOp->nCycle = 0;
351 #endif
352 #ifdef SQLITE_DEBUG
353 if( p->db->flags & SQLITE_VdbeAddopTrace ){
354 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
355 test_addop_breakpoint(i, &p->aOp[i]);
357 #endif
358 #ifdef SQLITE_VDBE_COVERAGE
359 pOp->iSrcLine = 0;
360 #endif
361 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
362 ** Replicate in sqlite3VdbeAddOp3() */
364 return i;
367 /* Generate code for an unconditional jump to instruction iDest
369 int sqlite3VdbeGoto(Vdbe *p, int iDest){
370 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
373 /* Generate code to cause the string zStr to be loaded into
374 ** register iDest
376 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
377 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
381 ** Generate code that initializes multiple registers to string or integer
382 ** constants. The registers begin with iDest and increase consecutively.
383 ** One register is initialized for each characgter in zTypes[]. For each
384 ** "s" character in zTypes[], the register is a string if the argument is
385 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
386 ** in zTypes[], the register is initialized to an integer.
388 ** If the input string does not end with "X" then an OP_ResultRow instruction
389 ** is generated for the values inserted.
391 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
392 va_list ap;
393 int i;
394 char c;
395 va_start(ap, zTypes);
396 for(i=0; (c = zTypes[i])!=0; i++){
397 if( c=='s' ){
398 const char *z = va_arg(ap, const char*);
399 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
400 }else if( c=='i' ){
401 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
402 }else{
403 goto skip_op_resultrow;
406 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
407 skip_op_resultrow:
408 va_end(ap);
412 ** Add an opcode that includes the p4 value as a pointer.
414 int sqlite3VdbeAddOp4(
415 Vdbe *p, /* Add the opcode to this VM */
416 int op, /* The new opcode */
417 int p1, /* The P1 operand */
418 int p2, /* The P2 operand */
419 int p3, /* The P3 operand */
420 const char *zP4, /* The P4 operand */
421 int p4type /* P4 operand type */
423 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
424 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
425 return addr;
429 ** Add an OP_Function or OP_PureFunc opcode.
431 ** The eCallCtx argument is information (typically taken from Expr.op2)
432 ** that describes the calling context of the function. 0 means a general
433 ** function call. NC_IsCheck means called by a check constraint,
434 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
435 ** means in the WHERE clause of a partial index. NC_GenCol means called
436 ** while computing a generated column value. 0 is the usual case.
438 int sqlite3VdbeAddFunctionCall(
439 Parse *pParse, /* Parsing context */
440 int p1, /* Constant argument mask */
441 int p2, /* First argument register */
442 int p3, /* Register into which results are written */
443 int nArg, /* Number of argument */
444 const FuncDef *pFunc, /* The function to be invoked */
445 int eCallCtx /* Calling context */
447 Vdbe *v = pParse->pVdbe;
448 int nByte;
449 int addr;
450 sqlite3_context *pCtx;
451 assert( v );
452 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
453 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
454 if( pCtx==0 ){
455 assert( pParse->db->mallocFailed );
456 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
457 return 0;
459 pCtx->pOut = 0;
460 pCtx->pFunc = (FuncDef*)pFunc;
461 pCtx->pVdbe = 0;
462 pCtx->isError = 0;
463 pCtx->argc = nArg;
464 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
465 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
466 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
467 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
468 sqlite3MayAbort(pParse);
469 return addr;
473 ** Add an opcode that includes the p4 value with a P4_INT64 or
474 ** P4_REAL type.
476 int sqlite3VdbeAddOp4Dup8(
477 Vdbe *p, /* Add the opcode to this VM */
478 int op, /* The new opcode */
479 int p1, /* The P1 operand */
480 int p2, /* The P2 operand */
481 int p3, /* The P3 operand */
482 const u8 *zP4, /* The P4 operand */
483 int p4type /* P4 operand type */
485 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
486 if( p4copy ) memcpy(p4copy, zP4, 8);
487 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
490 #ifndef SQLITE_OMIT_EXPLAIN
492 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
493 ** 0 means "none".
495 int sqlite3VdbeExplainParent(Parse *pParse){
496 VdbeOp *pOp;
497 if( pParse->addrExplain==0 ) return 0;
498 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
499 return pOp->p2;
503 ** Set a debugger breakpoint on the following routine in order to
504 ** monitor the EXPLAIN QUERY PLAN code generation.
506 #if defined(SQLITE_DEBUG)
507 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
508 (void)z1;
509 (void)z2;
511 #endif
514 ** Add a new OP_Explain opcode.
516 ** If the bPush flag is true, then make this opcode the parent for
517 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
519 int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
520 int addr = 0;
521 #if !defined(SQLITE_DEBUG)
522 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
523 ** But omit them (for performance) during production builds */
524 if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) )
525 #endif
527 char *zMsg;
528 Vdbe *v;
529 va_list ap;
530 int iThis;
531 va_start(ap, zFmt);
532 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
533 va_end(ap);
534 v = pParse->pVdbe;
535 iThis = v->nOp;
536 addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
537 zMsg, P4_DYNAMIC);
538 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
539 if( bPush){
540 pParse->addrExplain = iThis;
542 sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0);
544 return addr;
548 ** Pop the EXPLAIN QUERY PLAN stack one level.
550 void sqlite3VdbeExplainPop(Parse *pParse){
551 sqlite3ExplainBreakpoint("POP", 0);
552 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
554 #endif /* SQLITE_OMIT_EXPLAIN */
557 ** Add an OP_ParseSchema opcode. This routine is broken out from
558 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
559 ** as having been used.
561 ** The zWhere string must have been obtained from sqlite3_malloc().
562 ** This routine will take ownership of the allocated memory.
564 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
565 int j;
566 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
567 sqlite3VdbeChangeP5(p, p5);
568 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
569 sqlite3MayAbort(p->pParse);
572 /* Insert the end of a co-routine
574 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
575 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
577 /* Clear the temporary register cache, thereby ensuring that each
578 ** co-routine has its own independent set of registers, because co-routines
579 ** might expect their registers to be preserved across an OP_Yield, and
580 ** that could cause problems if two or more co-routines are using the same
581 ** temporary register.
583 v->pParse->nTempReg = 0;
584 v->pParse->nRangeReg = 0;
588 ** Create a new symbolic label for an instruction that has yet to be
589 ** coded. The symbolic label is really just a negative number. The
590 ** label can be used as the P2 value of an operation. Later, when
591 ** the label is resolved to a specific address, the VDBE will scan
592 ** through its operation list and change all values of P2 which match
593 ** the label into the resolved address.
595 ** The VDBE knows that a P2 value is a label because labels are
596 ** always negative and P2 values are suppose to be non-negative.
597 ** Hence, a negative P2 value is a label that has yet to be resolved.
598 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
599 ** property.
601 ** Variable usage notes:
603 ** Parse.aLabel[x] Stores the address that the x-th label resolves
604 ** into. For testing (SQLITE_DEBUG), unresolved
605 ** labels stores -1, but that is not required.
606 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
607 ** Parse.nLabel The *negative* of the number of labels that have
608 ** been issued. The negative is stored because
609 ** that gives a performance improvement over storing
610 ** the equivalent positive value.
612 int sqlite3VdbeMakeLabel(Parse *pParse){
613 return --pParse->nLabel;
617 ** Resolve label "x" to be the address of the next instruction to
618 ** be inserted. The parameter "x" must have been obtained from
619 ** a prior call to sqlite3VdbeMakeLabel().
621 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
622 int nNewSize = 10 - p->nLabel;
623 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
624 nNewSize*sizeof(p->aLabel[0]));
625 if( p->aLabel==0 ){
626 p->nLabelAlloc = 0;
627 }else{
628 #ifdef SQLITE_DEBUG
629 int i;
630 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
631 #endif
632 if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){
633 sqlite3ProgressCheck(p);
635 p->nLabelAlloc = nNewSize;
636 p->aLabel[j] = v->nOp;
639 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
640 Parse *p = v->pParse;
641 int j = ADDR(x);
642 assert( v->eVdbeState==VDBE_INIT_STATE );
643 assert( j<-p->nLabel );
644 assert( j>=0 );
645 #ifdef SQLITE_DEBUG
646 if( p->db->flags & SQLITE_VdbeAddopTrace ){
647 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
649 #endif
650 if( p->nLabelAlloc + p->nLabel < 0 ){
651 resizeResolveLabel(p,v,j);
652 }else{
653 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
654 p->aLabel[j] = v->nOp;
659 ** Mark the VDBE as one that can only be run one time.
661 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
662 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
666 ** Mark the VDBE as one that can be run multiple times.
668 void sqlite3VdbeReusable(Vdbe *p){
669 int i;
670 for(i=1; ALWAYS(i<p->nOp); i++){
671 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
672 p->aOp[1].opcode = OP_Noop;
673 break;
678 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
681 ** The following type and function are used to iterate through all opcodes
682 ** in a Vdbe main program and each of the sub-programs (triggers) it may
683 ** invoke directly or indirectly. It should be used as follows:
685 ** Op *pOp;
686 ** VdbeOpIter sIter;
688 ** memset(&sIter, 0, sizeof(sIter));
689 ** sIter.v = v; // v is of type Vdbe*
690 ** while( (pOp = opIterNext(&sIter)) ){
691 ** // Do something with pOp
692 ** }
693 ** sqlite3DbFree(v->db, sIter.apSub);
696 typedef struct VdbeOpIter VdbeOpIter;
697 struct VdbeOpIter {
698 Vdbe *v; /* Vdbe to iterate through the opcodes of */
699 SubProgram **apSub; /* Array of subprograms */
700 int nSub; /* Number of entries in apSub */
701 int iAddr; /* Address of next instruction to return */
702 int iSub; /* 0 = main program, 1 = first sub-program etc. */
704 static Op *opIterNext(VdbeOpIter *p){
705 Vdbe *v = p->v;
706 Op *pRet = 0;
707 Op *aOp;
708 int nOp;
710 if( p->iSub<=p->nSub ){
712 if( p->iSub==0 ){
713 aOp = v->aOp;
714 nOp = v->nOp;
715 }else{
716 aOp = p->apSub[p->iSub-1]->aOp;
717 nOp = p->apSub[p->iSub-1]->nOp;
719 assert( p->iAddr<nOp );
721 pRet = &aOp[p->iAddr];
722 p->iAddr++;
723 if( p->iAddr==nOp ){
724 p->iSub++;
725 p->iAddr = 0;
728 if( pRet->p4type==P4_SUBPROGRAM ){
729 int nByte = (p->nSub+1)*sizeof(SubProgram*);
730 int j;
731 for(j=0; j<p->nSub; j++){
732 if( p->apSub[j]==pRet->p4.pProgram ) break;
734 if( j==p->nSub ){
735 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
736 if( !p->apSub ){
737 pRet = 0;
738 }else{
739 p->apSub[p->nSub++] = pRet->p4.pProgram;
745 return pRet;
749 ** Check if the program stored in the VM associated with pParse may
750 ** throw an ABORT exception (causing the statement, but not entire transaction
751 ** to be rolled back). This condition is true if the main program or any
752 ** sub-programs contains any of the following:
754 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
755 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
756 ** * OP_Destroy
757 ** * OP_VUpdate
758 ** * OP_VCreate
759 ** * OP_VRename
760 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
761 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
762 ** (for CREATE TABLE AS SELECT ...)
764 ** Then check that the value of Parse.mayAbort is true if an
765 ** ABORT may be thrown, or false otherwise. Return true if it does
766 ** match, or false otherwise. This function is intended to be used as
767 ** part of an assert statement in the compiler. Similar to:
769 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
771 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
772 int hasAbort = 0;
773 int hasFkCounter = 0;
774 int hasCreateTable = 0;
775 int hasCreateIndex = 0;
776 int hasInitCoroutine = 0;
777 Op *pOp;
778 VdbeOpIter sIter;
780 if( v==0 ) return 0;
781 memset(&sIter, 0, sizeof(sIter));
782 sIter.v = v;
784 while( (pOp = opIterNext(&sIter))!=0 ){
785 int opcode = pOp->opcode;
786 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
787 || opcode==OP_VDestroy
788 || opcode==OP_VCreate
789 || opcode==OP_ParseSchema
790 || opcode==OP_Function || opcode==OP_PureFunc
791 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
792 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
794 hasAbort = 1;
795 break;
797 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
798 if( mayAbort ){
799 /* hasCreateIndex may also be set for some DELETE statements that use
800 ** OP_Clear. So this routine may end up returning true in the case
801 ** where a "DELETE FROM tbl" has a statement-journal but does not
802 ** require one. This is not so bad - it is an inefficiency, not a bug. */
803 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
804 if( opcode==OP_Clear ) hasCreateIndex = 1;
806 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
807 #ifndef SQLITE_OMIT_FOREIGN_KEY
808 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
809 hasFkCounter = 1;
811 #endif
813 sqlite3DbFree(v->db, sIter.apSub);
815 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
816 ** If malloc failed, then the while() loop above may not have iterated
817 ** through all opcodes and hasAbort may be set incorrectly. Return
818 ** true for this case to prevent the assert() in the callers frame
819 ** from failing. */
820 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
821 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
824 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
826 #ifdef SQLITE_DEBUG
828 ** Increment the nWrite counter in the VDBE if the cursor is not an
829 ** ephemeral cursor, or if the cursor argument is NULL.
831 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
832 if( pC==0
833 || (pC->eCurType!=CURTYPE_SORTER
834 && pC->eCurType!=CURTYPE_PSEUDO
835 && !pC->isEphemeral)
837 p->nWrite++;
840 #endif
842 #ifdef SQLITE_DEBUG
844 ** Assert if an Abort at this point in time might result in a corrupt
845 ** database.
847 void sqlite3VdbeAssertAbortable(Vdbe *p){
848 assert( p->nWrite==0 || p->usesStmtJournal );
850 #endif
853 ** This routine is called after all opcodes have been inserted. It loops
854 ** through all the opcodes and fixes up some details.
856 ** (1) For each jump instruction with a negative P2 value (a label)
857 ** resolve the P2 value to an actual address.
859 ** (2) Compute the maximum number of arguments used by any SQL function
860 ** and store that value in *pMaxFuncArgs.
862 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
863 ** indicate what the prepared statement actually does.
865 ** (4) (discontinued)
867 ** (5) Reclaim the memory allocated for storing labels.
869 ** This routine will only function correctly if the mkopcodeh.tcl generator
870 ** script numbers the opcodes correctly. Changes to this routine must be
871 ** coordinated with changes to mkopcodeh.tcl.
873 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
874 int nMaxArgs = *pMaxFuncArgs;
875 Op *pOp;
876 Parse *pParse = p->pParse;
877 int *aLabel = pParse->aLabel;
879 assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */
880 p->readOnly = 1;
881 p->bIsReader = 0;
882 pOp = &p->aOp[p->nOp-1];
883 assert( p->aOp[0].opcode==OP_Init );
884 while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){
885 /* Only JUMP opcodes and the short list of special opcodes in the switch
886 ** below need to be considered. The mkopcodeh.tcl generator script groups
887 ** all these opcodes together near the front of the opcode list. Skip
888 ** any opcode that does not need processing by virtual of the fact that
889 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
891 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
892 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
893 ** cases from this switch! */
894 switch( pOp->opcode ){
895 case OP_Transaction: {
896 if( pOp->p2!=0 ) p->readOnly = 0;
897 /* no break */ deliberate_fall_through
899 case OP_AutoCommit:
900 case OP_Savepoint: {
901 p->bIsReader = 1;
902 break;
904 #ifndef SQLITE_OMIT_WAL
905 case OP_Checkpoint:
906 #endif
907 case OP_Vacuum:
908 case OP_JournalMode: {
909 p->readOnly = 0;
910 p->bIsReader = 1;
911 break;
913 case OP_Init: {
914 assert( pOp->p2>=0 );
915 goto resolve_p2_values_loop_exit;
917 #ifndef SQLITE_OMIT_VIRTUALTABLE
918 case OP_VUpdate: {
919 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
920 break;
922 case OP_VFilter: {
923 int n;
924 assert( (pOp - p->aOp) >= 3 );
925 assert( pOp[-1].opcode==OP_Integer );
926 n = pOp[-1].p1;
927 if( n>nMaxArgs ) nMaxArgs = n;
928 /* Fall through into the default case */
929 /* no break */ deliberate_fall_through
931 #endif
932 default: {
933 if( pOp->p2<0 ){
934 /* The mkopcodeh.tcl script has so arranged things that the only
935 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
936 ** have non-negative values for P2. */
937 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
938 assert( ADDR(pOp->p2)<-pParse->nLabel );
939 assert( aLabel!=0 ); /* True because of tag-20230419-1 */
940 pOp->p2 = aLabel[ADDR(pOp->p2)];
943 /* OPFLG_JUMP opcodes never have P2==0, though OPFLG_JUMP0 opcodes
944 ** might */
945 assert( pOp->p2>0
946 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP0)!=0 );
948 /* Jumps never go off the end of the bytecode array */
949 assert( pOp->p2<p->nOp
950 || (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)==0 );
951 break;
954 /* The mkopcodeh.tcl script has so arranged things that the only
955 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
956 ** have non-negative values for P2. */
957 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
959 assert( pOp>p->aOp );
960 pOp--;
962 resolve_p2_values_loop_exit:
963 if( aLabel ){
964 sqlite3DbNNFreeNN(p->db, pParse->aLabel);
965 pParse->aLabel = 0;
967 pParse->nLabel = 0;
968 *pMaxFuncArgs = nMaxArgs;
969 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
972 #ifdef SQLITE_DEBUG
974 ** Check to see if a subroutine contains a jump to a location outside of
975 ** the subroutine. If a jump outside the subroutine is detected, add code
976 ** that will cause the program to halt with an error message.
978 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
979 ** locations within the subroutine are acceptable. iRetReg is a register
980 ** that contains the return address. Jumps to outside the range of iFirst
981 ** through iLast are also acceptable as long as the jump destination is
982 ** an OP_Return to iReturnAddr.
984 ** A jump to an unresolved label means that the jump destination will be
985 ** beyond the current address. That is normally a jump to an early
986 ** termination and is consider acceptable.
988 ** This routine only runs during debug builds. The purpose is (of course)
989 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
990 ** is generated rather than an assert() or other error, so that ".eqp full"
991 ** will still work to show the original bytecode, to aid in debugging.
993 void sqlite3VdbeNoJumpsOutsideSubrtn(
994 Vdbe *v, /* The byte-code program under construction */
995 int iFirst, /* First opcode of the subroutine */
996 int iLast, /* Last opcode of the subroutine */
997 int iRetReg /* Subroutine return address register */
999 VdbeOp *pOp;
1000 Parse *pParse;
1001 int i;
1002 sqlite3_str *pErr = 0;
1003 assert( v!=0 );
1004 pParse = v->pParse;
1005 assert( pParse!=0 );
1006 if( pParse->nErr ) return;
1007 assert( iLast>=iFirst );
1008 assert( iLast<v->nOp );
1009 pOp = &v->aOp[iFirst];
1010 for(i=iFirst; i<=iLast; i++, pOp++){
1011 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
1012 int iDest = pOp->p2; /* Jump destination */
1013 if( iDest==0 ) continue;
1014 if( pOp->opcode==OP_Gosub ) continue;
1015 if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){
1016 /* This is a deliberately taken illegal branch. tag-20230325-2 */
1017 continue;
1019 if( iDest<0 ){
1020 int j = ADDR(iDest);
1021 assert( j>=0 );
1022 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
1023 continue;
1025 iDest = pParse->aLabel[j];
1027 if( iDest<iFirst || iDest>iLast ){
1028 int j = iDest;
1029 for(; j<v->nOp; j++){
1030 VdbeOp *pX = &v->aOp[j];
1031 if( pX->opcode==OP_Return ){
1032 if( pX->p1==iRetReg ) break;
1033 continue;
1035 if( pX->opcode==OP_Noop ) continue;
1036 if( pX->opcode==OP_Explain ) continue;
1037 if( pErr==0 ){
1038 pErr = sqlite3_str_new(0);
1039 }else{
1040 sqlite3_str_appendchar(pErr, 1, '\n');
1042 sqlite3_str_appendf(pErr,
1043 "Opcode at %d jumps to %d which is outside the "
1044 "subroutine at %d..%d",
1045 i, iDest, iFirst, iLast);
1046 break;
1051 if( pErr ){
1052 char *zErr = sqlite3_str_finish(pErr);
1053 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
1054 sqlite3_free(zErr);
1055 sqlite3MayAbort(pParse);
1058 #endif /* SQLITE_DEBUG */
1061 ** Return the address of the next instruction to be inserted.
1063 int sqlite3VdbeCurrentAddr(Vdbe *p){
1064 assert( p->eVdbeState==VDBE_INIT_STATE );
1065 return p->nOp;
1069 ** Verify that at least N opcode slots are available in p without
1070 ** having to malloc for more space (except when compiled using
1071 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1072 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1073 ** fail due to a OOM fault and hence that the return value from
1074 ** sqlite3VdbeAddOpList() will always be non-NULL.
1076 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1077 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
1078 assert( p->nOp + N <= p->nOpAlloc );
1080 #endif
1083 ** Verify that the VM passed as the only argument does not contain
1084 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1085 ** by code in pragma.c to ensure that the implementation of certain
1086 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1087 ** script.
1089 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1090 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
1091 int i;
1092 for(i=0; i<p->nOp; i++){
1093 assert( p->aOp[i].opcode!=OP_ResultRow );
1096 #endif
1099 ** Generate code (a single OP_Abortable opcode) that will
1100 ** verify that the VDBE program can safely call Abort in the current
1101 ** context.
1103 #if defined(SQLITE_DEBUG)
1104 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
1105 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
1107 #endif
1110 ** This function returns a pointer to the array of opcodes associated with
1111 ** the Vdbe passed as the first argument. It is the callers responsibility
1112 ** to arrange for the returned array to be eventually freed using the
1113 ** vdbeFreeOpArray() function.
1115 ** Before returning, *pnOp is set to the number of entries in the returned
1116 ** array. Also, *pnMaxArg is set to the larger of its current value and
1117 ** the number of entries in the Vdbe.apArg[] array required to execute the
1118 ** returned program.
1120 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
1121 VdbeOp *aOp = p->aOp;
1122 assert( aOp && !p->db->mallocFailed );
1124 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1125 assert( DbMaskAllZero(p->btreeMask) );
1127 resolveP2Values(p, pnMaxArg);
1128 *pnOp = p->nOp;
1129 p->aOp = 0;
1130 return aOp;
1134 ** Add a whole list of operations to the operation stack. Return a
1135 ** pointer to the first operation inserted.
1137 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1138 ** so that the jump target is relative to the first operation inserted.
1140 VdbeOp *sqlite3VdbeAddOpList(
1141 Vdbe *p, /* Add opcodes to the prepared statement */
1142 int nOp, /* Number of opcodes to add */
1143 VdbeOpList const *aOp, /* The opcodes to be added */
1144 int iLineno /* Source-file line number of first opcode */
1146 int i;
1147 VdbeOp *pOut, *pFirst;
1148 assert( nOp>0 );
1149 assert( p->eVdbeState==VDBE_INIT_STATE );
1150 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
1151 return 0;
1153 pFirst = pOut = &p->aOp[p->nOp];
1154 for(i=0; i<nOp; i++, aOp++, pOut++){
1155 pOut->opcode = aOp->opcode;
1156 pOut->p1 = aOp->p1;
1157 pOut->p2 = aOp->p2;
1158 assert( aOp->p2>=0 );
1159 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
1160 pOut->p2 += p->nOp;
1162 pOut->p3 = aOp->p3;
1163 pOut->p4type = P4_NOTUSED;
1164 pOut->p4.p = 0;
1165 pOut->p5 = 0;
1166 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1167 pOut->zComment = 0;
1168 #endif
1169 #ifdef SQLITE_VDBE_COVERAGE
1170 pOut->iSrcLine = iLineno+i;
1171 #else
1172 (void)iLineno;
1173 #endif
1174 #ifdef SQLITE_DEBUG
1175 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1176 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1178 #endif
1180 p->nOp += nOp;
1181 return pFirst;
1184 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1186 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1188 void sqlite3VdbeScanStatus(
1189 Vdbe *p, /* VM to add scanstatus() to */
1190 int addrExplain, /* Address of OP_Explain (or 0) */
1191 int addrLoop, /* Address of loop counter */
1192 int addrVisit, /* Address of rows visited counter */
1193 LogEst nEst, /* Estimated number of output rows */
1194 const char *zName /* Name of table or index being scanned */
1196 if( IS_STMT_SCANSTATUS(p->db) ){
1197 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1198 ScanStatus *aNew;
1199 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1200 if( aNew ){
1201 ScanStatus *pNew = &aNew[p->nScan++];
1202 memset(pNew, 0, sizeof(ScanStatus));
1203 pNew->addrExplain = addrExplain;
1204 pNew->addrLoop = addrLoop;
1205 pNew->addrVisit = addrVisit;
1206 pNew->nEst = nEst;
1207 pNew->zName = sqlite3DbStrDup(p->db, zName);
1208 p->aScan = aNew;
1214 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1215 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1216 ** associated with the OP_Explain instruction at addrExplain. The
1217 ** sum of the sqlite3Hwtime() values for each of these instructions
1218 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1220 void sqlite3VdbeScanStatusRange(
1221 Vdbe *p,
1222 int addrExplain,
1223 int addrStart,
1224 int addrEnd
1226 if( IS_STMT_SCANSTATUS(p->db) ){
1227 ScanStatus *pScan = 0;
1228 int ii;
1229 for(ii=p->nScan-1; ii>=0; ii--){
1230 pScan = &p->aScan[ii];
1231 if( pScan->addrExplain==addrExplain ) break;
1232 pScan = 0;
1234 if( pScan ){
1235 if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1;
1236 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
1237 if( pScan->aAddrRange[ii]==0 ){
1238 pScan->aAddrRange[ii] = addrStart;
1239 pScan->aAddrRange[ii+1] = addrEnd;
1240 break;
1248 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1249 ** counters for the query element associated with the OP_Explain at
1250 ** addrExplain.
1252 void sqlite3VdbeScanStatusCounters(
1253 Vdbe *p,
1254 int addrExplain,
1255 int addrLoop,
1256 int addrVisit
1258 if( IS_STMT_SCANSTATUS(p->db) ){
1259 ScanStatus *pScan = 0;
1260 int ii;
1261 for(ii=p->nScan-1; ii>=0; ii--){
1262 pScan = &p->aScan[ii];
1263 if( pScan->addrExplain==addrExplain ) break;
1264 pScan = 0;
1266 if( pScan ){
1267 if( addrLoop>0 ) pScan->addrLoop = addrLoop;
1268 if( addrVisit>0 ) pScan->addrVisit = addrVisit;
1272 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
1276 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1277 ** for a specific instruction.
1279 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1280 assert( addr>=0 );
1281 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1283 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1284 assert( addr>=0 );
1285 sqlite3VdbeGetOp(p,addr)->p1 = val;
1287 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1288 assert( addr>=0 || p->db->mallocFailed );
1289 sqlite3VdbeGetOp(p,addr)->p2 = val;
1291 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1292 assert( addr>=0 );
1293 sqlite3VdbeGetOp(p,addr)->p3 = val;
1295 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1296 assert( p->nOp>0 || p->db->mallocFailed );
1297 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1301 ** If the previous opcode is an OP_Column that delivers results
1302 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1303 ** opcode.
1305 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
1306 VdbeOp *pOp = sqlite3VdbeGetLastOp(p);
1307 if( pOp->p3==iDest && pOp->opcode==OP_Column ){
1308 pOp->p5 |= OPFLAG_TYPEOFARG;
1313 ** Change the P2 operand of instruction addr so that it points to
1314 ** the address of the next instruction to be coded.
1316 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1317 sqlite3VdbeChangeP2(p, addr, p->nOp);
1321 ** Change the P2 operand of the jump instruction at addr so that
1322 ** the jump lands on the next opcode. Or if the jump instruction was
1323 ** the previous opcode (and is thus a no-op) then simply back up
1324 ** the next instruction counter by one slot so that the jump is
1325 ** overwritten by the next inserted opcode.
1327 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1328 ** strives to omit useless byte-code like this:
1330 ** 7 Once 0 8 0
1331 ** 8 ...
1333 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1334 if( addr==p->nOp-1 ){
1335 assert( p->aOp[addr].opcode==OP_Once
1336 || p->aOp[addr].opcode==OP_If
1337 || p->aOp[addr].opcode==OP_FkIfZero );
1338 assert( p->aOp[addr].p4type==0 );
1339 #ifdef SQLITE_VDBE_COVERAGE
1340 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1341 #endif
1342 p->nOp--;
1343 }else{
1344 sqlite3VdbeChangeP2(p, addr, p->nOp);
1350 ** If the input FuncDef structure is ephemeral, then free it. If
1351 ** the FuncDef is not ephemeral, then do nothing.
1353 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1354 assert( db!=0 );
1355 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1356 sqlite3DbNNFreeNN(db, pDef);
1361 ** Delete a P4 value if necessary.
1363 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1364 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1365 sqlite3DbNNFreeNN(db, p);
1367 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1368 assert( db!=0 );
1369 freeEphemeralFunction(db, p->pFunc);
1370 sqlite3DbNNFreeNN(db, p);
1372 static void freeP4(sqlite3 *db, int p4type, void *p4){
1373 assert( db );
1374 switch( p4type ){
1375 case P4_FUNCCTX: {
1376 freeP4FuncCtx(db, (sqlite3_context*)p4);
1377 break;
1379 case P4_REAL:
1380 case P4_INT64:
1381 case P4_DYNAMIC:
1382 case P4_INTARRAY: {
1383 if( p4 ) sqlite3DbNNFreeNN(db, p4);
1384 break;
1386 case P4_KEYINFO: {
1387 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1388 break;
1390 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1391 case P4_EXPR: {
1392 sqlite3ExprDelete(db, (Expr*)p4);
1393 break;
1395 #endif
1396 case P4_FUNCDEF: {
1397 freeEphemeralFunction(db, (FuncDef*)p4);
1398 break;
1400 case P4_MEM: {
1401 if( db->pnBytesFreed==0 ){
1402 sqlite3ValueFree((sqlite3_value*)p4);
1403 }else{
1404 freeP4Mem(db, (Mem*)p4);
1406 break;
1408 case P4_VTAB : {
1409 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1410 break;
1412 case P4_TABLEREF: {
1413 if( db->pnBytesFreed==0 ) sqlite3DeleteTable(db, (Table*)p4);
1414 break;
1416 case P4_SUBRTNSIG: {
1417 SubrtnSig *pSig = (SubrtnSig*)p4;
1418 sqlite3DbFree(db, pSig->zAff);
1419 sqlite3DbFree(db, pSig);
1420 break;
1426 ** Free the space allocated for aOp and any p4 values allocated for the
1427 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1428 ** nOp entries.
1430 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1431 assert( nOp>=0 );
1432 assert( db!=0 );
1433 if( aOp ){
1434 Op *pOp = &aOp[nOp-1];
1435 while(1){ /* Exit via break */
1436 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1437 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1438 sqlite3DbFree(db, pOp->zComment);
1439 #endif
1440 if( pOp==aOp ) break;
1441 pOp--;
1443 sqlite3DbNNFreeNN(db, aOp);
1448 ** Link the SubProgram object passed as the second argument into the linked
1449 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1450 ** objects when the VM is no longer required.
1452 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1453 p->pNext = pVdbe->pProgram;
1454 pVdbe->pProgram = p;
1458 ** Return true if the given Vdbe has any SubPrograms.
1460 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1461 return pVdbe->pProgram!=0;
1465 ** Change the opcode at addr into OP_Noop
1467 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1468 VdbeOp *pOp;
1469 if( p->db->mallocFailed ) return 0;
1470 assert( addr>=0 && addr<p->nOp );
1471 pOp = &p->aOp[addr];
1472 freeP4(p->db, pOp->p4type, pOp->p4.p);
1473 pOp->p4type = P4_NOTUSED;
1474 pOp->p4.z = 0;
1475 pOp->opcode = OP_Noop;
1476 return 1;
1480 ** If the last opcode is "op" and it is not a jump destination,
1481 ** then remove it. Return true if and only if an opcode was removed.
1483 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1484 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1485 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1486 }else{
1487 return 0;
1491 #ifdef SQLITE_DEBUG
1493 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1494 ** registers, except any identified by mask, are no longer in use.
1496 void sqlite3VdbeReleaseRegisters(
1497 Parse *pParse, /* Parsing context */
1498 int iFirst, /* Index of first register to be released */
1499 int N, /* Number of registers to release */
1500 u32 mask, /* Mask of registers to NOT release */
1501 int bUndefine /* If true, mark registers as undefined */
1503 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1504 assert( pParse->pVdbe );
1505 assert( iFirst>=1 );
1506 assert( iFirst+N-1<=pParse->nMem );
1507 if( N<=31 && mask!=0 ){
1508 while( N>0 && (mask&1)!=0 ){
1509 mask >>= 1;
1510 iFirst++;
1511 N--;
1513 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1514 mask &= ~MASKBIT32(N-1);
1515 N--;
1518 if( N>0 ){
1519 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1520 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1523 #endif /* SQLITE_DEBUG */
1526 ** Change the value of the P4 operand for a specific instruction.
1527 ** This routine is useful when a large program is loaded from a
1528 ** static array using sqlite3VdbeAddOpList but we want to make a
1529 ** few minor changes to the program.
1531 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1532 ** the string is made into memory obtained from sqlite3_malloc().
1533 ** A value of n==0 means copy bytes of zP4 up to and including the
1534 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1536 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1537 ** to a string or structure that is guaranteed to exist for the lifetime of
1538 ** the Vdbe. In these cases we can just copy the pointer.
1540 ** If addr<0 then change P4 on the most recently inserted instruction.
1542 static void SQLITE_NOINLINE vdbeChangeP4Full(
1543 Vdbe *p,
1544 Op *pOp,
1545 const char *zP4,
1546 int n
1548 if( pOp->p4type ){
1549 assert( pOp->p4type > P4_FREE_IF_LE );
1550 pOp->p4type = 0;
1551 pOp->p4.p = 0;
1553 if( n<0 ){
1554 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1555 }else{
1556 if( n==0 ) n = sqlite3Strlen30(zP4);
1557 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1558 pOp->p4type = P4_DYNAMIC;
1561 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1562 Op *pOp;
1563 sqlite3 *db;
1564 assert( p!=0 );
1565 db = p->db;
1566 assert( p->eVdbeState==VDBE_INIT_STATE );
1567 assert( p->aOp!=0 || db->mallocFailed );
1568 if( db->mallocFailed ){
1569 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1570 return;
1572 assert( p->nOp>0 );
1573 assert( addr<p->nOp );
1574 if( addr<0 ){
1575 addr = p->nOp - 1;
1577 pOp = &p->aOp[addr];
1578 if( n>=0 || pOp->p4type ){
1579 vdbeChangeP4Full(p, pOp, zP4, n);
1580 return;
1582 if( n==P4_INT32 ){
1583 /* Note: this cast is safe, because the origin data point was an int
1584 ** that was cast to a (const char *). */
1585 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1586 pOp->p4type = P4_INT32;
1587 }else if( zP4!=0 ){
1588 assert( n<0 );
1589 pOp->p4.p = (void*)zP4;
1590 pOp->p4type = (signed char)n;
1591 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1596 ** Change the P4 operand of the most recently coded instruction
1597 ** to the value defined by the arguments. This is a high-speed
1598 ** version of sqlite3VdbeChangeP4().
1600 ** The P4 operand must not have been previously defined. And the new
1601 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1602 ** those cases.
1604 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1605 VdbeOp *pOp;
1606 assert( n!=P4_INT32 && n!=P4_VTAB );
1607 assert( n<=0 );
1608 if( p->db->mallocFailed ){
1609 freeP4(p->db, n, pP4);
1610 }else{
1611 assert( pP4!=0 || n==P4_DYNAMIC );
1612 assert( p->nOp>0 );
1613 pOp = &p->aOp[p->nOp-1];
1614 assert( pOp->p4type==P4_NOTUSED );
1615 pOp->p4type = n;
1616 pOp->p4.p = pP4;
1621 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1622 ** index given.
1624 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1625 Vdbe *v = pParse->pVdbe;
1626 KeyInfo *pKeyInfo;
1627 assert( v!=0 );
1628 assert( pIdx!=0 );
1629 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1630 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1633 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1635 ** Change the comment on the most recently coded instruction. Or
1636 ** insert a No-op and add the comment to that new instruction. This
1637 ** makes the code easier to read during debugging. None of this happens
1638 ** in a production build.
1640 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1641 assert( p->nOp>0 || p->aOp==0 );
1642 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1643 if( p->nOp ){
1644 assert( p->aOp );
1645 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1646 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1649 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1650 va_list ap;
1651 if( p ){
1652 va_start(ap, zFormat);
1653 vdbeVComment(p, zFormat, ap);
1654 va_end(ap);
1657 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1658 va_list ap;
1659 if( p ){
1660 sqlite3VdbeAddOp0(p, OP_Noop);
1661 va_start(ap, zFormat);
1662 vdbeVComment(p, zFormat, ap);
1663 va_end(ap);
1666 #endif /* NDEBUG */
1668 #ifdef SQLITE_VDBE_COVERAGE
1670 ** Set the value if the iSrcLine field for the previously coded instruction.
1672 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1673 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
1675 #endif /* SQLITE_VDBE_COVERAGE */
1678 ** Return the opcode for a given address. The address must be non-negative.
1679 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1681 ** If a memory allocation error has occurred prior to the calling of this
1682 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1683 ** is readable but not writable, though it is cast to a writable value.
1684 ** The return of a dummy opcode allows the call to continue functioning
1685 ** after an OOM fault without having to check to see if the return from
1686 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1687 ** dummy will never be written to. This is verified by code inspection and
1688 ** by running with Valgrind.
1690 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1691 /* C89 specifies that the constant "dummy" will be initialized to all
1692 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1693 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1694 assert( p->eVdbeState==VDBE_INIT_STATE );
1695 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1696 if( p->db->mallocFailed ){
1697 return (VdbeOp*)&dummy;
1698 }else{
1699 return &p->aOp[addr];
1703 /* Return the most recently added opcode
1705 VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){
1706 return sqlite3VdbeGetOp(p, p->nOp - 1);
1709 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1711 ** Return an integer value for one of the parameters to the opcode pOp
1712 ** determined by character c.
1714 static int translateP(char c, const Op *pOp){
1715 if( c=='1' ) return pOp->p1;
1716 if( c=='2' ) return pOp->p2;
1717 if( c=='3' ) return pOp->p3;
1718 if( c=='4' ) return pOp->p4.i;
1719 return pOp->p5;
1723 ** Compute a string for the "comment" field of a VDBE opcode listing.
1725 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1726 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1727 ** absence of other comments, this synopsis becomes the comment on the opcode.
1728 ** Some translation occurs:
1730 ** "PX" -> "r[X]"
1731 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1732 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1733 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1735 char *sqlite3VdbeDisplayComment(
1736 sqlite3 *db, /* Optional - Oom error reporting only */
1737 const Op *pOp, /* The opcode to be commented */
1738 const char *zP4 /* Previously obtained value for P4 */
1740 const char *zOpName;
1741 const char *zSynopsis;
1742 int nOpName;
1743 int ii;
1744 char zAlt[50];
1745 StrAccum x;
1747 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1748 zOpName = sqlite3OpcodeName(pOp->opcode);
1749 nOpName = sqlite3Strlen30(zOpName);
1750 if( zOpName[nOpName+1] ){
1751 int seenCom = 0;
1752 char c;
1753 zSynopsis = zOpName + nOpName + 1;
1754 if( strncmp(zSynopsis,"IF ",3)==0 ){
1755 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1756 zSynopsis = zAlt;
1758 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1759 if( c=='P' ){
1760 c = zSynopsis[++ii];
1761 if( c=='4' ){
1762 sqlite3_str_appendall(&x, zP4);
1763 }else if( c=='X' ){
1764 if( pOp->zComment && pOp->zComment[0] ){
1765 sqlite3_str_appendall(&x, pOp->zComment);
1766 seenCom = 1;
1767 break;
1769 }else{
1770 int v1 = translateP(c, pOp);
1771 int v2;
1772 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1773 ii += 3;
1774 v2 = translateP(zSynopsis[ii], pOp);
1775 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1776 ii += 2;
1777 v2++;
1779 if( v2<2 ){
1780 sqlite3_str_appendf(&x, "%d", v1);
1781 }else{
1782 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1784 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1785 sqlite3_context *pCtx = pOp->p4.pCtx;
1786 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1787 sqlite3_str_appendf(&x, "%d", v1);
1788 }else if( pCtx->argc>1 ){
1789 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1790 }else if( x.accError==0 ){
1791 assert( x.nChar>2 );
1792 x.nChar -= 2;
1793 ii++;
1795 ii += 3;
1796 }else{
1797 sqlite3_str_appendf(&x, "%d", v1);
1798 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1799 ii += 4;
1803 }else{
1804 sqlite3_str_appendchar(&x, 1, c);
1807 if( !seenCom && pOp->zComment ){
1808 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1810 }else if( pOp->zComment ){
1811 sqlite3_str_appendall(&x, pOp->zComment);
1813 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1814 sqlite3OomFault(db);
1816 return sqlite3StrAccumFinish(&x);
1818 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1820 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1822 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1823 ** that can be displayed in the P4 column of EXPLAIN output.
1825 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1826 const char *zOp = 0;
1827 switch( pExpr->op ){
1828 case TK_STRING:
1829 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1830 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1831 break;
1832 case TK_INTEGER:
1833 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1834 break;
1835 case TK_NULL:
1836 sqlite3_str_appendf(p, "NULL");
1837 break;
1838 case TK_REGISTER: {
1839 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1840 break;
1842 case TK_COLUMN: {
1843 if( pExpr->iColumn<0 ){
1844 sqlite3_str_appendf(p, "rowid");
1845 }else{
1846 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1848 break;
1850 case TK_LT: zOp = "LT"; break;
1851 case TK_LE: zOp = "LE"; break;
1852 case TK_GT: zOp = "GT"; break;
1853 case TK_GE: zOp = "GE"; break;
1854 case TK_NE: zOp = "NE"; break;
1855 case TK_EQ: zOp = "EQ"; break;
1856 case TK_IS: zOp = "IS"; break;
1857 case TK_ISNOT: zOp = "ISNOT"; break;
1858 case TK_AND: zOp = "AND"; break;
1859 case TK_OR: zOp = "OR"; break;
1860 case TK_PLUS: zOp = "ADD"; break;
1861 case TK_STAR: zOp = "MUL"; break;
1862 case TK_MINUS: zOp = "SUB"; break;
1863 case TK_REM: zOp = "REM"; break;
1864 case TK_BITAND: zOp = "BITAND"; break;
1865 case TK_BITOR: zOp = "BITOR"; break;
1866 case TK_SLASH: zOp = "DIV"; break;
1867 case TK_LSHIFT: zOp = "LSHIFT"; break;
1868 case TK_RSHIFT: zOp = "RSHIFT"; break;
1869 case TK_CONCAT: zOp = "CONCAT"; break;
1870 case TK_UMINUS: zOp = "MINUS"; break;
1871 case TK_UPLUS: zOp = "PLUS"; break;
1872 case TK_BITNOT: zOp = "BITNOT"; break;
1873 case TK_NOT: zOp = "NOT"; break;
1874 case TK_ISNULL: zOp = "ISNULL"; break;
1875 case TK_NOTNULL: zOp = "NOTNULL"; break;
1877 default:
1878 sqlite3_str_appendf(p, "%s", "expr");
1879 break;
1882 if( zOp ){
1883 sqlite3_str_appendf(p, "%s(", zOp);
1884 displayP4Expr(p, pExpr->pLeft);
1885 if( pExpr->pRight ){
1886 sqlite3_str_append(p, ",", 1);
1887 displayP4Expr(p, pExpr->pRight);
1889 sqlite3_str_append(p, ")", 1);
1892 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1895 #if VDBE_DISPLAY_P4
1897 ** Compute a string that describes the P4 parameter for an opcode.
1898 ** Use zTemp for any required temporary buffer space.
1900 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1901 char *zP4 = 0;
1902 StrAccum x;
1904 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1905 switch( pOp->p4type ){
1906 case P4_KEYINFO: {
1907 int j;
1908 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1909 assert( pKeyInfo->aSortFlags!=0 );
1910 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1911 for(j=0; j<pKeyInfo->nKeyField; j++){
1912 CollSeq *pColl = pKeyInfo->aColl[j];
1913 const char *zColl = pColl ? pColl->zName : "";
1914 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1915 sqlite3_str_appendf(&x, ",%s%s%s",
1916 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1917 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1918 zColl);
1920 sqlite3_str_append(&x, ")", 1);
1921 break;
1923 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1924 case P4_EXPR: {
1925 displayP4Expr(&x, pOp->p4.pExpr);
1926 break;
1928 #endif
1929 case P4_COLLSEQ: {
1930 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1931 CollSeq *pColl = pOp->p4.pColl;
1932 assert( pColl->enc<4 );
1933 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1934 encnames[pColl->enc]);
1935 break;
1937 case P4_FUNCDEF: {
1938 FuncDef *pDef = pOp->p4.pFunc;
1939 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1940 break;
1942 case P4_FUNCCTX: {
1943 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1944 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1945 break;
1947 case P4_INT64: {
1948 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1949 break;
1951 case P4_INT32: {
1952 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1953 break;
1955 case P4_REAL: {
1956 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1957 break;
1959 case P4_MEM: {
1960 Mem *pMem = pOp->p4.pMem;
1961 if( pMem->flags & MEM_Str ){
1962 zP4 = pMem->z;
1963 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1964 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1965 }else if( pMem->flags & MEM_Real ){
1966 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1967 }else if( pMem->flags & MEM_Null ){
1968 zP4 = "NULL";
1969 }else{
1970 assert( pMem->flags & MEM_Blob );
1971 zP4 = "(blob)";
1973 break;
1975 #ifndef SQLITE_OMIT_VIRTUALTABLE
1976 case P4_VTAB: {
1977 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1978 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1979 break;
1981 #endif
1982 case P4_INTARRAY: {
1983 u32 i;
1984 u32 *ai = pOp->p4.ai;
1985 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1986 ** count of the number of elements to follow */
1987 for(i=1; i<=n; i++){
1988 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1990 sqlite3_str_append(&x, "]", 1);
1991 break;
1993 case P4_SUBPROGRAM: {
1994 zP4 = "program";
1995 break;
1997 case P4_TABLE: {
1998 zP4 = pOp->p4.pTab->zName;
1999 break;
2001 case P4_SUBRTNSIG: {
2002 SubrtnSig *pSig = pOp->p4.pSubrtnSig;
2003 sqlite3_str_appendf(&x, "subrtnsig:%d,%s", pSig->selId, pSig->zAff);
2004 break;
2006 default: {
2007 zP4 = pOp->p4.z;
2010 if( zP4 ) sqlite3_str_appendall(&x, zP4);
2011 if( (x.accError & SQLITE_NOMEM)!=0 ){
2012 sqlite3OomFault(db);
2014 return sqlite3StrAccumFinish(&x);
2016 #endif /* VDBE_DISPLAY_P4 */
2019 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
2021 ** The prepared statements need to know in advance the complete set of
2022 ** attached databases that will be use. A mask of these databases
2023 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
2024 ** p->btreeMask of databases that will require a lock.
2026 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
2027 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
2028 assert( i<(int)sizeof(p->btreeMask)*8 );
2029 DbMaskSet(p->btreeMask, i);
2030 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
2031 DbMaskSet(p->lockMask, i);
2035 #if !defined(SQLITE_OMIT_SHARED_CACHE)
2037 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
2038 ** this routine obtains the mutex associated with each BtShared structure
2039 ** that may be accessed by the VM passed as an argument. In doing so it also
2040 ** sets the BtShared.db member of each of the BtShared structures, ensuring
2041 ** that the correct busy-handler callback is invoked if required.
2043 ** If SQLite is not threadsafe but does support shared-cache mode, then
2044 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
2045 ** of all of BtShared structures accessible via the database handle
2046 ** associated with the VM.
2048 ** If SQLite is not threadsafe and does not support shared-cache mode, this
2049 ** function is a no-op.
2051 ** The p->btreeMask field is a bitmask of all btrees that the prepared
2052 ** statement p will ever use. Let N be the number of bits in p->btreeMask
2053 ** corresponding to btrees that use shared cache. Then the runtime of
2054 ** this routine is N*N. But as N is rarely more than 1, this should not
2055 ** be a problem.
2057 void sqlite3VdbeEnter(Vdbe *p){
2058 int i;
2059 sqlite3 *db;
2060 Db *aDb;
2061 int nDb;
2062 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
2063 db = p->db;
2064 aDb = db->aDb;
2065 nDb = db->nDb;
2066 for(i=0; i<nDb; i++){
2067 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
2068 sqlite3BtreeEnter(aDb[i].pBt);
2072 #endif
2074 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
2076 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
2078 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
2079 int i;
2080 sqlite3 *db;
2081 Db *aDb;
2082 int nDb;
2083 db = p->db;
2084 aDb = db->aDb;
2085 nDb = db->nDb;
2086 for(i=0; i<nDb; i++){
2087 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
2088 sqlite3BtreeLeave(aDb[i].pBt);
2092 void sqlite3VdbeLeave(Vdbe *p){
2093 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
2094 vdbeLeave(p);
2096 #endif
2098 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2100 ** Print a single opcode. This routine is used for debugging only.
2102 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
2103 char *zP4;
2104 char *zCom;
2105 sqlite3 dummyDb;
2106 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2107 if( pOut==0 ) pOut = stdout;
2108 sqlite3BeginBenignMalloc();
2109 dummyDb.mallocFailed = 1;
2110 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
2111 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2112 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
2113 #else
2114 zCom = 0;
2115 #endif
2116 /* NB: The sqlite3OpcodeName() function is implemented by code created
2117 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2118 ** information from the vdbe.c source text */
2119 fprintf(pOut, zFormat1, pc,
2120 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
2121 zP4 ? zP4 : "", pOp->p5,
2122 zCom ? zCom : ""
2124 fflush(pOut);
2125 sqlite3_free(zP4);
2126 sqlite3_free(zCom);
2127 sqlite3EndBenignMalloc();
2129 #endif
2132 ** Initialize an array of N Mem element.
2134 ** This is a high-runner, so only those fields that really do need to
2135 ** be initialized are set. The Mem structure is organized so that
2136 ** the fields that get initialized are nearby and hopefully on the same
2137 ** cache line.
2139 ** Mem.flags = flags
2140 ** Mem.db = db
2141 ** Mem.szMalloc = 0
2143 ** All other fields of Mem can safely remain uninitialized for now. They
2144 ** will be initialized before use.
2146 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
2147 if( N>0 ){
2149 p->flags = flags;
2150 p->db = db;
2151 p->szMalloc = 0;
2152 #ifdef SQLITE_DEBUG
2153 p->pScopyFrom = 0;
2154 #endif
2155 p++;
2156 }while( (--N)>0 );
2161 ** Release auxiliary memory held in an array of N Mem elements.
2163 ** After this routine returns, all Mem elements in the array will still
2164 ** be valid. Those Mem elements that were not holding auxiliary resources
2165 ** will be unchanged. Mem elements which had something freed will be
2166 ** set to MEM_Undefined.
2168 static void releaseMemArray(Mem *p, int N){
2169 if( p && N ){
2170 Mem *pEnd = &p[N];
2171 sqlite3 *db = p->db;
2172 if( db->pnBytesFreed ){
2174 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
2175 }while( (++p)<pEnd );
2176 return;
2179 assert( (&p[1])==pEnd || p[0].db==p[1].db );
2180 assert( sqlite3VdbeCheckMemInvariants(p) );
2182 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2183 ** that takes advantage of the fact that the memory cell value is
2184 ** being set to NULL after releasing any dynamic resources.
2186 ** The justification for duplicating code is that according to
2187 ** callgrind, this causes a certain test case to hit the CPU 4.7
2188 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2189 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2190 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2191 ** with no indexes using a single prepared INSERT statement, bind()
2192 ** and reset(). Inserts are grouped into a transaction.
2194 testcase( p->flags & MEM_Agg );
2195 testcase( p->flags & MEM_Dyn );
2196 if( p->flags&(MEM_Agg|MEM_Dyn) ){
2197 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
2198 sqlite3VdbeMemRelease(p);
2199 p->flags = MEM_Undefined;
2200 }else if( p->szMalloc ){
2201 sqlite3DbNNFreeNN(db, p->zMalloc);
2202 p->szMalloc = 0;
2203 p->flags = MEM_Undefined;
2205 #ifdef SQLITE_DEBUG
2206 else{
2207 p->flags = MEM_Undefined;
2209 #endif
2210 }while( (++p)<pEnd );
2214 #ifdef SQLITE_DEBUG
2216 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2217 ** and false if something is wrong.
2219 ** This routine is intended for use inside of assert() statements only.
2221 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
2222 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
2223 return 1;
2225 #endif
2229 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2230 ** that deletes the Frame object that is attached to it as a blob.
2232 ** This routine does not delete the Frame right away. It merely adds the
2233 ** frame to a list of frames to be deleted when the Vdbe halts.
2235 void sqlite3VdbeFrameMemDel(void *pArg){
2236 VdbeFrame *pFrame = (VdbeFrame*)pArg;
2237 assert( sqlite3VdbeFrameIsValid(pFrame) );
2238 pFrame->pParent = pFrame->v->pDelFrame;
2239 pFrame->v->pDelFrame = pFrame;
2242 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2244 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2245 ** QUERY PLAN output.
2247 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2248 ** more opcodes to be displayed.
2250 int sqlite3VdbeNextOpcode(
2251 Vdbe *p, /* The statement being explained */
2252 Mem *pSub, /* Storage for keeping track of subprogram nesting */
2253 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
2254 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
2255 int *piAddr, /* OUT: Write index into (*paOp)[] here */
2256 Op **paOp /* OUT: Write the opcode array here */
2258 int nRow; /* Stop when row count reaches this */
2259 int nSub = 0; /* Number of sub-vdbes seen so far */
2260 SubProgram **apSub = 0; /* Array of sub-vdbes */
2261 int i; /* Next instruction address */
2262 int rc = SQLITE_OK; /* Result code */
2263 Op *aOp = 0; /* Opcode array */
2264 int iPc; /* Rowid. Copy of value in *piPc */
2266 /* When the number of output rows reaches nRow, that means the
2267 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2268 ** nRow is the sum of the number of rows in the main program, plus
2269 ** the sum of the number of rows in all trigger subprograms encountered
2270 ** so far. The nRow value will increase as new trigger subprograms are
2271 ** encountered, but p->pc will eventually catch up to nRow.
2273 nRow = p->nOp;
2274 if( pSub!=0 ){
2275 if( pSub->flags&MEM_Blob ){
2276 /* pSub is initiallly NULL. It is initialized to a BLOB by
2277 ** the P4_SUBPROGRAM processing logic below */
2278 nSub = pSub->n/sizeof(Vdbe*);
2279 apSub = (SubProgram **)pSub->z;
2281 for(i=0; i<nSub; i++){
2282 nRow += apSub[i]->nOp;
2285 iPc = *piPc;
2286 while(1){ /* Loop exits via break */
2287 i = iPc++;
2288 if( i>=nRow ){
2289 p->rc = SQLITE_OK;
2290 rc = SQLITE_DONE;
2291 break;
2293 if( i<p->nOp ){
2294 /* The rowid is small enough that we are still in the
2295 ** main program. */
2296 aOp = p->aOp;
2297 }else{
2298 /* We are currently listing subprograms. Figure out which one and
2299 ** pick up the appropriate opcode. */
2300 int j;
2301 i -= p->nOp;
2302 assert( apSub!=0 );
2303 assert( nSub>0 );
2304 for(j=0; i>=apSub[j]->nOp; j++){
2305 i -= apSub[j]->nOp;
2306 assert( i<apSub[j]->nOp || j+1<nSub );
2308 aOp = apSub[j]->aOp;
2311 /* When an OP_Program opcode is encounter (the only opcode that has
2312 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2313 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2314 ** has not already been seen.
2316 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2317 int nByte = (nSub+1)*sizeof(SubProgram*);
2318 int j;
2319 for(j=0; j<nSub; j++){
2320 if( apSub[j]==aOp[i].p4.pProgram ) break;
2322 if( j==nSub ){
2323 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2324 if( p->rc!=SQLITE_OK ){
2325 rc = SQLITE_ERROR;
2326 break;
2328 apSub = (SubProgram **)pSub->z;
2329 apSub[nSub++] = aOp[i].p4.pProgram;
2330 MemSetTypeFlag(pSub, MEM_Blob);
2331 pSub->n = nSub*sizeof(SubProgram*);
2332 nRow += aOp[i].p4.pProgram->nOp;
2335 if( eMode==0 ) break;
2336 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2337 if( eMode==2 ){
2338 Op *pOp = aOp + i;
2339 if( pOp->opcode==OP_OpenRead ) break;
2340 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2341 if( pOp->opcode==OP_ReopenIdx ) break;
2342 }else
2343 #endif
2345 assert( eMode==1 );
2346 if( aOp[i].opcode==OP_Explain ) break;
2347 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2350 *piPc = iPc;
2351 *piAddr = i;
2352 *paOp = aOp;
2353 return rc;
2355 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2359 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2360 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2362 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2363 int i;
2364 Mem *aMem = VdbeFrameMem(p);
2365 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2366 assert( sqlite3VdbeFrameIsValid(p) );
2367 for(i=0; i<p->nChildCsr; i++){
2368 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2370 releaseMemArray(aMem, p->nChildMem);
2371 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2372 sqlite3DbFree(p->v->db, p);
2375 #ifndef SQLITE_OMIT_EXPLAIN
2377 ** Give a listing of the program in the virtual machine.
2379 ** The interface is the same as sqlite3VdbeExec(). But instead of
2380 ** running the code, it invokes the callback once for each instruction.
2381 ** This feature is used to implement "EXPLAIN".
2383 ** When p->explain==1, each instruction is listed. When
2384 ** p->explain==2, only OP_Explain instructions are listed and these
2385 ** are shown in a different format. p->explain==2 is used to implement
2386 ** EXPLAIN QUERY PLAN.
2387 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2388 ** are also shown, so that the boundaries between the main program and
2389 ** each trigger are clear.
2391 ** When p->explain==1, first the main program is listed, then each of
2392 ** the trigger subprograms are listed one by one.
2394 int sqlite3VdbeList(
2395 Vdbe *p /* The VDBE */
2397 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2398 sqlite3 *db = p->db; /* The database connection */
2399 int i; /* Loop counter */
2400 int rc = SQLITE_OK; /* Return code */
2401 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2402 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2403 Op *aOp; /* Array of opcodes */
2404 Op *pOp; /* Current opcode */
2406 assert( p->explain );
2407 assert( p->eVdbeState==VDBE_RUN_STATE );
2408 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2410 /* Even though this opcode does not use dynamic strings for
2411 ** the result, result columns may become dynamic if the user calls
2412 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2414 releaseMemArray(pMem, 8);
2416 if( p->rc==SQLITE_NOMEM ){
2417 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2418 ** sqlite3_column_text16() failed. */
2419 sqlite3OomFault(db);
2420 return SQLITE_ERROR;
2423 if( bListSubprogs ){
2424 /* The first 8 memory cells are used for the result set. So we will
2425 ** commandeer the 9th cell to use as storage for an array of pointers
2426 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2427 ** cells. */
2428 assert( p->nMem>9 );
2429 pSub = &p->aMem[9];
2430 }else{
2431 pSub = 0;
2434 /* Figure out which opcode is next to display */
2435 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2437 if( rc==SQLITE_OK ){
2438 pOp = aOp + i;
2439 if( AtomicLoad(&db->u1.isInterrupted) ){
2440 p->rc = SQLITE_INTERRUPT;
2441 rc = SQLITE_ERROR;
2442 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2443 }else{
2444 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2445 if( p->explain==2 ){
2446 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2447 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2448 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2449 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2450 assert( p->nResColumn==4 );
2451 }else{
2452 sqlite3VdbeMemSetInt64(pMem+0, i);
2453 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2454 -1, SQLITE_UTF8, SQLITE_STATIC);
2455 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2456 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2457 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2458 /* pMem+5 for p4 is done last */
2459 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2460 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2462 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2463 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2465 #else
2466 sqlite3VdbeMemSetNull(pMem+7);
2467 #endif
2468 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2469 assert( p->nResColumn==8 );
2471 p->pResultRow = pMem;
2472 if( db->mallocFailed ){
2473 p->rc = SQLITE_NOMEM;
2474 rc = SQLITE_ERROR;
2475 }else{
2476 p->rc = SQLITE_OK;
2477 rc = SQLITE_ROW;
2481 return rc;
2483 #endif /* SQLITE_OMIT_EXPLAIN */
2485 #ifdef SQLITE_DEBUG
2487 ** Print the SQL that was used to generate a VDBE program.
2489 void sqlite3VdbePrintSql(Vdbe *p){
2490 const char *z = 0;
2491 if( p->zSql ){
2492 z = p->zSql;
2493 }else if( p->nOp>=1 ){
2494 const VdbeOp *pOp = &p->aOp[0];
2495 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2496 z = pOp->p4.z;
2497 while( sqlite3Isspace(*z) ) z++;
2500 if( z ) printf("SQL: [%s]\n", z);
2502 #endif
2504 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2506 ** Print an IOTRACE message showing SQL content.
2508 void sqlite3VdbeIOTraceSql(Vdbe *p){
2509 int nOp = p->nOp;
2510 VdbeOp *pOp;
2511 if( sqlite3IoTrace==0 ) return;
2512 if( nOp<1 ) return;
2513 pOp = &p->aOp[0];
2514 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2515 int i, j;
2516 char z[1000];
2517 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2518 for(i=0; sqlite3Isspace(z[i]); i++){}
2519 for(j=0; z[i]; i++){
2520 if( sqlite3Isspace(z[i]) ){
2521 if( z[i-1]!=' ' ){
2522 z[j++] = ' ';
2524 }else{
2525 z[j++] = z[i];
2528 z[j] = 0;
2529 sqlite3IoTrace("SQL %s\n", z);
2532 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2534 /* An instance of this object describes bulk memory available for use
2535 ** by subcomponents of a prepared statement. Space is allocated out
2536 ** of a ReusableSpace object by the allocSpace() routine below.
2538 struct ReusableSpace {
2539 u8 *pSpace; /* Available memory */
2540 sqlite3_int64 nFree; /* Bytes of available memory */
2541 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2544 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2545 ** from the ReusableSpace object. Return a pointer to the allocated
2546 ** memory on success. If insufficient memory is available in the
2547 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2548 ** value by the amount needed and return NULL.
2550 ** If pBuf is not initially NULL, that means that the memory has already
2551 ** been allocated by a prior call to this routine, so just return a copy
2552 ** of pBuf and leave ReusableSpace unchanged.
2554 ** This allocator is employed to repurpose unused slots at the end of the
2555 ** opcode array of prepared state for other memory needs of the prepared
2556 ** statement.
2558 static void *allocSpace(
2559 struct ReusableSpace *p, /* Bulk memory available for allocation */
2560 void *pBuf, /* Pointer to a prior allocation */
2561 sqlite3_int64 nByte /* Bytes of memory needed. */
2563 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2564 if( pBuf==0 ){
2565 nByte = ROUND8P(nByte);
2566 if( nByte <= p->nFree ){
2567 p->nFree -= nByte;
2568 pBuf = &p->pSpace[p->nFree];
2569 }else{
2570 p->nNeeded += nByte;
2573 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2574 return pBuf;
2578 ** Rewind the VDBE back to the beginning in preparation for
2579 ** running it.
2581 void sqlite3VdbeRewind(Vdbe *p){
2582 #if defined(SQLITE_DEBUG)
2583 int i;
2584 #endif
2585 assert( p!=0 );
2586 assert( p->eVdbeState==VDBE_INIT_STATE
2587 || p->eVdbeState==VDBE_READY_STATE
2588 || p->eVdbeState==VDBE_HALT_STATE );
2590 /* There should be at least one opcode.
2592 assert( p->nOp>0 );
2594 p->eVdbeState = VDBE_READY_STATE;
2596 #ifdef SQLITE_DEBUG
2597 for(i=0; i<p->nMem; i++){
2598 assert( p->aMem[i].db==p->db );
2600 #endif
2601 p->pc = -1;
2602 p->rc = SQLITE_OK;
2603 p->errorAction = OE_Abort;
2604 p->nChange = 0;
2605 p->cacheCtr = 1;
2606 p->minWriteFileFormat = 255;
2607 p->iStatement = 0;
2608 p->nFkConstraint = 0;
2609 #ifdef VDBE_PROFILE
2610 for(i=0; i<p->nOp; i++){
2611 p->aOp[i].nExec = 0;
2612 p->aOp[i].nCycle = 0;
2614 #endif
2618 ** Prepare a virtual machine for execution for the first time after
2619 ** creating the virtual machine. This involves things such
2620 ** as allocating registers and initializing the program counter.
2621 ** After the VDBE has be prepped, it can be executed by one or more
2622 ** calls to sqlite3VdbeExec().
2624 ** This function may be called exactly once on each virtual machine.
2625 ** After this routine is called the VM has been "packaged" and is ready
2626 ** to run. After this routine is called, further calls to
2627 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2628 ** the Vdbe from the Parse object that helped generate it so that the
2629 ** the Vdbe becomes an independent entity and the Parse object can be
2630 ** destroyed.
2632 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2633 ** to its initial state after it has been run.
2635 void sqlite3VdbeMakeReady(
2636 Vdbe *p, /* The VDBE */
2637 Parse *pParse /* Parsing context */
2639 sqlite3 *db; /* The database connection */
2640 int nVar; /* Number of parameters */
2641 int nMem; /* Number of VM memory registers */
2642 int nCursor; /* Number of cursors required */
2643 int nArg; /* Number of arguments in subprograms */
2644 int n; /* Loop counter */
2645 struct ReusableSpace x; /* Reusable bulk memory */
2647 assert( p!=0 );
2648 assert( p->nOp>0 );
2649 assert( pParse!=0 );
2650 assert( p->eVdbeState==VDBE_INIT_STATE );
2651 assert( pParse==p->pParse );
2652 p->pVList = pParse->pVList;
2653 pParse->pVList = 0;
2654 db = p->db;
2655 assert( db->mallocFailed==0 );
2656 nVar = pParse->nVar;
2657 nMem = pParse->nMem;
2658 nCursor = pParse->nTab;
2659 nArg = pParse->nMaxArg;
2661 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2662 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2663 ** space at the end of aMem[] for cursors 1 and greater.
2664 ** See also: allocateCursor().
2666 nMem += nCursor;
2667 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2669 /* Figure out how much reusable memory is available at the end of the
2670 ** opcode array. This extra memory will be reallocated for other elements
2671 ** of the prepared statement.
2673 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2674 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2675 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2676 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2677 assert( x.nFree>=0 );
2678 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2680 resolveP2Values(p, &nArg);
2681 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2682 if( pParse->explain ){
2683 if( nMem<10 ) nMem = 10;
2684 p->explain = pParse->explain;
2685 p->nResColumn = 12 - 4*p->explain;
2687 p->expired = 0;
2689 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2690 ** passes. On the first pass, we try to reuse unused memory at the
2691 ** end of the opcode array. If we are unable to satisfy all memory
2692 ** requirements by reusing the opcode array tail, then the second
2693 ** pass will fill in the remainder using a fresh memory allocation.
2695 ** This two-pass approach that reuses as much memory as possible from
2696 ** the leftover memory at the end of the opcode array. This can significantly
2697 ** reduce the amount of memory held by a prepared statement.
2699 x.nNeeded = 0;
2700 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2701 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2702 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2703 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2704 if( x.nNeeded ){
2705 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2706 x.nFree = x.nNeeded;
2707 if( !db->mallocFailed ){
2708 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2709 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2710 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2711 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2715 if( db->mallocFailed ){
2716 p->nVar = 0;
2717 p->nCursor = 0;
2718 p->nMem = 0;
2719 }else{
2720 p->nCursor = nCursor;
2721 p->nVar = (ynVar)nVar;
2722 initMemArray(p->aVar, nVar, db, MEM_Null);
2723 p->nMem = nMem;
2724 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2725 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2727 sqlite3VdbeRewind(p);
2731 ** Close a VDBE cursor and release all the resources that cursor
2732 ** happens to hold.
2734 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2735 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2737 static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){
2738 VdbeTxtBlbCache *pCache = pCx->pCache;
2739 assert( pCx->colCache );
2740 pCx->colCache = 0;
2741 pCx->pCache = 0;
2742 if( pCache->pCValue ){
2743 sqlite3RCStrUnref(pCache->pCValue);
2744 pCache->pCValue = 0;
2746 sqlite3DbFree(p->db, pCache);
2747 sqlite3VdbeFreeCursorNN(p, pCx);
2749 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2750 if( pCx->colCache ){
2751 freeCursorWithCache(p, pCx);
2752 return;
2754 switch( pCx->eCurType ){
2755 case CURTYPE_SORTER: {
2756 sqlite3VdbeSorterClose(p->db, pCx);
2757 break;
2759 case CURTYPE_BTREE: {
2760 assert( pCx->uc.pCursor!=0 );
2761 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2762 break;
2764 #ifndef SQLITE_OMIT_VIRTUALTABLE
2765 case CURTYPE_VTAB: {
2766 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2767 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2768 assert( pVCur->pVtab->nRef>0 );
2769 pVCur->pVtab->nRef--;
2770 pModule->xClose(pVCur);
2771 break;
2773 #endif
2778 ** Close all cursors in the current frame.
2780 static void closeCursorsInFrame(Vdbe *p){
2781 int i;
2782 for(i=0; i<p->nCursor; i++){
2783 VdbeCursor *pC = p->apCsr[i];
2784 if( pC ){
2785 sqlite3VdbeFreeCursorNN(p, pC);
2786 p->apCsr[i] = 0;
2792 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2793 ** is used, for example, when a trigger sub-program is halted to restore
2794 ** control to the main program.
2796 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2797 Vdbe *v = pFrame->v;
2798 closeCursorsInFrame(v);
2799 v->aOp = pFrame->aOp;
2800 v->nOp = pFrame->nOp;
2801 v->aMem = pFrame->aMem;
2802 v->nMem = pFrame->nMem;
2803 v->apCsr = pFrame->apCsr;
2804 v->nCursor = pFrame->nCursor;
2805 v->db->lastRowid = pFrame->lastRowid;
2806 v->nChange = pFrame->nChange;
2807 v->db->nChange = pFrame->nDbChange;
2808 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2809 v->pAuxData = pFrame->pAuxData;
2810 pFrame->pAuxData = 0;
2811 return pFrame->pc;
2815 ** Close all cursors.
2817 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2818 ** cell array. This is necessary as the memory cell array may contain
2819 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2820 ** open cursors.
2822 static void closeAllCursors(Vdbe *p){
2823 if( p->pFrame ){
2824 VdbeFrame *pFrame;
2825 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2826 sqlite3VdbeFrameRestore(pFrame);
2827 p->pFrame = 0;
2828 p->nFrame = 0;
2830 assert( p->nFrame==0 );
2831 closeCursorsInFrame(p);
2832 releaseMemArray(p->aMem, p->nMem);
2833 while( p->pDelFrame ){
2834 VdbeFrame *pDel = p->pDelFrame;
2835 p->pDelFrame = pDel->pParent;
2836 sqlite3VdbeFrameDelete(pDel);
2839 /* Delete any auxdata allocations made by the VM */
2840 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2841 assert( p->pAuxData==0 );
2845 ** Set the number of result columns that will be returned by this SQL
2846 ** statement. This is now set at compile time, rather than during
2847 ** execution of the vdbe program so that sqlite3_column_count() can
2848 ** be called on an SQL statement before sqlite3_step().
2850 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2851 int n;
2852 sqlite3 *db = p->db;
2854 if( p->nResAlloc ){
2855 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
2856 sqlite3DbFree(db, p->aColName);
2858 n = nResColumn*COLNAME_N;
2859 p->nResColumn = p->nResAlloc = (u16)nResColumn;
2860 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2861 if( p->aColName==0 ) return;
2862 initMemArray(p->aColName, n, db, MEM_Null);
2866 ** Set the name of the idx'th column to be returned by the SQL statement.
2867 ** zName must be a pointer to a nul terminated string.
2869 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2871 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2872 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2873 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2875 int sqlite3VdbeSetColName(
2876 Vdbe *p, /* Vdbe being configured */
2877 int idx, /* Index of column zName applies to */
2878 int var, /* One of the COLNAME_* constants */
2879 const char *zName, /* Pointer to buffer containing name */
2880 void (*xDel)(void*) /* Memory management strategy for zName */
2882 int rc;
2883 Mem *pColName;
2884 assert( idx<p->nResAlloc );
2885 assert( var<COLNAME_N );
2886 if( p->db->mallocFailed ){
2887 assert( !zName || xDel!=SQLITE_DYNAMIC );
2888 return SQLITE_NOMEM_BKPT;
2890 assert( p->aColName!=0 );
2891 pColName = &(p->aColName[idx+var*p->nResAlloc]);
2892 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2893 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2894 return rc;
2898 ** A read or write transaction may or may not be active on database handle
2899 ** db. If a transaction is active, commit it. If there is a
2900 ** write-transaction spanning more than one database file, this routine
2901 ** takes care of the super-journal trickery.
2903 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2904 int i;
2905 int nTrans = 0; /* Number of databases with an active write-transaction
2906 ** that are candidates for a two-phase commit using a
2907 ** super-journal */
2908 int rc = SQLITE_OK;
2909 int needXcommit = 0;
2911 #ifdef SQLITE_OMIT_VIRTUALTABLE
2912 /* With this option, sqlite3VtabSync() is defined to be simply
2913 ** SQLITE_OK so p is not used.
2915 UNUSED_PARAMETER(p);
2916 #endif
2918 /* Before doing anything else, call the xSync() callback for any
2919 ** virtual module tables written in this transaction. This has to
2920 ** be done before determining whether a super-journal file is
2921 ** required, as an xSync() callback may add an attached database
2922 ** to the transaction.
2924 rc = sqlite3VtabSync(db, p);
2926 /* This loop determines (a) if the commit hook should be invoked and
2927 ** (b) how many database files have open write transactions, not
2928 ** including the temp database. (b) is important because if more than
2929 ** one database file has an open write transaction, a super-journal
2930 ** file is required for an atomic commit.
2932 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2933 Btree *pBt = db->aDb[i].pBt;
2934 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2935 /* Whether or not a database might need a super-journal depends upon
2936 ** its journal mode (among other things). This matrix determines which
2937 ** journal modes use a super-journal and which do not */
2938 static const u8 aMJNeeded[] = {
2939 /* DELETE */ 1,
2940 /* PERSIST */ 1,
2941 /* OFF */ 0,
2942 /* TRUNCATE */ 1,
2943 /* MEMORY */ 0,
2944 /* WAL */ 0
2946 Pager *pPager; /* Pager associated with pBt */
2947 needXcommit = 1;
2948 sqlite3BtreeEnter(pBt);
2949 pPager = sqlite3BtreePager(pBt);
2950 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2951 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2952 && sqlite3PagerIsMemdb(pPager)==0
2954 assert( i!=1 );
2955 nTrans++;
2957 rc = sqlite3PagerExclusiveLock(pPager);
2958 sqlite3BtreeLeave(pBt);
2961 if( rc!=SQLITE_OK ){
2962 return rc;
2965 /* If there are any write-transactions at all, invoke the commit hook */
2966 if( needXcommit && db->xCommitCallback ){
2967 rc = db->xCommitCallback(db->pCommitArg);
2968 if( rc ){
2969 return SQLITE_CONSTRAINT_COMMITHOOK;
2973 /* The simple case - no more than one database file (not counting the
2974 ** TEMP database) has a transaction active. There is no need for the
2975 ** super-journal.
2977 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2978 ** string, it means the main database is :memory: or a temp file. In
2979 ** that case we do not support atomic multi-file commits, so use the
2980 ** simple case then too.
2982 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2983 || nTrans<=1
2985 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2986 Btree *pBt = db->aDb[i].pBt;
2987 if( pBt ){
2988 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2992 /* Do the commit only if all databases successfully complete phase 1.
2993 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2994 ** IO error while deleting or truncating a journal file. It is unlikely,
2995 ** but could happen. In this case abandon processing and return the error.
2997 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2998 Btree *pBt = db->aDb[i].pBt;
2999 if( pBt ){
3000 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
3003 if( rc==SQLITE_OK ){
3004 sqlite3VtabCommit(db);
3008 /* The complex case - There is a multi-file write-transaction active.
3009 ** This requires a super-journal file to ensure the transaction is
3010 ** committed atomically.
3012 #ifndef SQLITE_OMIT_DISKIO
3013 else{
3014 sqlite3_vfs *pVfs = db->pVfs;
3015 char *zSuper = 0; /* File-name for the super-journal */
3016 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
3017 sqlite3_file *pSuperJrnl = 0;
3018 i64 offset = 0;
3019 int res;
3020 int retryCount = 0;
3021 int nMainFile;
3023 /* Select a super-journal file name */
3024 nMainFile = sqlite3Strlen30(zMainFile);
3025 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
3026 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
3027 zSuper += 4;
3028 do {
3029 u32 iRandom;
3030 if( retryCount ){
3031 if( retryCount>100 ){
3032 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
3033 sqlite3OsDelete(pVfs, zSuper, 0);
3034 break;
3035 }else if( retryCount==1 ){
3036 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
3039 retryCount++;
3040 sqlite3_randomness(sizeof(iRandom), &iRandom);
3041 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
3042 (iRandom>>8)&0xffffff, iRandom&0xff);
3043 /* The antipenultimate character of the super-journal name must
3044 ** be "9" to avoid name collisions when using 8+3 filenames. */
3045 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
3046 sqlite3FileSuffix3(zMainFile, zSuper);
3047 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
3048 }while( rc==SQLITE_OK && res );
3049 if( rc==SQLITE_OK ){
3050 /* Open the super-journal. */
3051 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
3052 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
3053 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
3056 if( rc!=SQLITE_OK ){
3057 sqlite3DbFree(db, zSuper-4);
3058 return rc;
3061 /* Write the name of each database file in the transaction into the new
3062 ** super-journal file. If an error occurs at this point close
3063 ** and delete the super-journal file. All the individual journal files
3064 ** still have 'null' as the super-journal pointer, so they will roll
3065 ** back independently if a failure occurs.
3067 for(i=0; i<db->nDb; i++){
3068 Btree *pBt = db->aDb[i].pBt;
3069 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
3070 char const *zFile = sqlite3BtreeGetJournalname(pBt);
3071 if( zFile==0 ){
3072 continue; /* Ignore TEMP and :memory: databases */
3074 assert( zFile[0]!=0 );
3075 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
3076 offset += sqlite3Strlen30(zFile)+1;
3077 if( rc!=SQLITE_OK ){
3078 sqlite3OsCloseFree(pSuperJrnl);
3079 sqlite3OsDelete(pVfs, zSuper, 0);
3080 sqlite3DbFree(db, zSuper-4);
3081 return rc;
3086 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
3087 ** flag is set this is not required.
3089 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
3090 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
3092 sqlite3OsCloseFree(pSuperJrnl);
3093 sqlite3OsDelete(pVfs, zSuper, 0);
3094 sqlite3DbFree(db, zSuper-4);
3095 return rc;
3098 /* Sync all the db files involved in the transaction. The same call
3099 ** sets the super-journal pointer in each individual journal. If
3100 ** an error occurs here, do not delete the super-journal file.
3102 ** If the error occurs during the first call to
3103 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3104 ** super-journal file will be orphaned. But we cannot delete it,
3105 ** in case the super-journal file name was written into the journal
3106 ** file before the failure occurred.
3108 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
3109 Btree *pBt = db->aDb[i].pBt;
3110 if( pBt ){
3111 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
3114 sqlite3OsCloseFree(pSuperJrnl);
3115 assert( rc!=SQLITE_BUSY );
3116 if( rc!=SQLITE_OK ){
3117 sqlite3DbFree(db, zSuper-4);
3118 return rc;
3121 /* Delete the super-journal file. This commits the transaction. After
3122 ** doing this the directory is synced again before any individual
3123 ** transaction files are deleted.
3125 rc = sqlite3OsDelete(pVfs, zSuper, 1);
3126 sqlite3DbFree(db, zSuper-4);
3127 zSuper = 0;
3128 if( rc ){
3129 return rc;
3132 /* All files and directories have already been synced, so the following
3133 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3134 ** deleting or truncating journals. If something goes wrong while
3135 ** this is happening we don't really care. The integrity of the
3136 ** transaction is already guaranteed, but some stray 'cold' journals
3137 ** may be lying around. Returning an error code won't help matters.
3139 disable_simulated_io_errors();
3140 sqlite3BeginBenignMalloc();
3141 for(i=0; i<db->nDb; i++){
3142 Btree *pBt = db->aDb[i].pBt;
3143 if( pBt ){
3144 sqlite3BtreeCommitPhaseTwo(pBt, 1);
3147 sqlite3EndBenignMalloc();
3148 enable_simulated_io_errors();
3150 sqlite3VtabCommit(db);
3152 #endif
3154 return rc;
3158 ** This routine checks that the sqlite3.nVdbeActive count variable
3159 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3160 ** currently active. An assertion fails if the two counts do not match.
3161 ** This is an internal self-check only - it is not an essential processing
3162 ** step.
3164 ** This is a no-op if NDEBUG is defined.
3166 #ifndef NDEBUG
3167 static void checkActiveVdbeCnt(sqlite3 *db){
3168 Vdbe *p;
3169 int cnt = 0;
3170 int nWrite = 0;
3171 int nRead = 0;
3172 p = db->pVdbe;
3173 while( p ){
3174 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
3175 cnt++;
3176 if( p->readOnly==0 ) nWrite++;
3177 if( p->bIsReader ) nRead++;
3179 p = p->pVNext;
3181 assert( cnt==db->nVdbeActive );
3182 assert( nWrite==db->nVdbeWrite );
3183 assert( nRead==db->nVdbeRead );
3185 #else
3186 #define checkActiveVdbeCnt(x)
3187 #endif
3190 ** If the Vdbe passed as the first argument opened a statement-transaction,
3191 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3192 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3193 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3194 ** statement transaction is committed.
3196 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3197 ** Otherwise SQLITE_OK.
3199 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
3200 sqlite3 *const db = p->db;
3201 int rc = SQLITE_OK;
3202 int i;
3203 const int iSavepoint = p->iStatement-1;
3205 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
3206 assert( db->nStatement>0 );
3207 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
3209 for(i=0; i<db->nDb; i++){
3210 int rc2 = SQLITE_OK;
3211 Btree *pBt = db->aDb[i].pBt;
3212 if( pBt ){
3213 if( eOp==SAVEPOINT_ROLLBACK ){
3214 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
3216 if( rc2==SQLITE_OK ){
3217 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
3219 if( rc==SQLITE_OK ){
3220 rc = rc2;
3224 db->nStatement--;
3225 p->iStatement = 0;
3227 if( rc==SQLITE_OK ){
3228 if( eOp==SAVEPOINT_ROLLBACK ){
3229 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
3231 if( rc==SQLITE_OK ){
3232 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
3236 /* If the statement transaction is being rolled back, also restore the
3237 ** database handles deferred constraint counter to the value it had when
3238 ** the statement transaction was opened. */
3239 if( eOp==SAVEPOINT_ROLLBACK ){
3240 db->nDeferredCons = p->nStmtDefCons;
3241 db->nDeferredImmCons = p->nStmtDefImmCons;
3243 return rc;
3245 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
3246 if( p->db->nStatement && p->iStatement ){
3247 return vdbeCloseStatement(p, eOp);
3249 return SQLITE_OK;
3254 ** This function is called when a transaction opened by the database
3255 ** handle associated with the VM passed as an argument is about to be
3256 ** committed. If there are outstanding deferred foreign key constraint
3257 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3259 ** If there are outstanding FK violations and this function returns
3260 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3261 ** and write an error message to it. Then return SQLITE_ERROR.
3263 #ifndef SQLITE_OMIT_FOREIGN_KEY
3264 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3265 sqlite3 *db = p->db;
3266 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3267 || (!deferred && p->nFkConstraint>0)
3269 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3270 p->errorAction = OE_Abort;
3271 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3272 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3273 return SQLITE_CONSTRAINT_FOREIGNKEY;
3275 return SQLITE_OK;
3277 #endif
3280 ** This routine is called the when a VDBE tries to halt. If the VDBE
3281 ** has made changes and is in autocommit mode, then commit those
3282 ** changes. If a rollback is needed, then do the rollback.
3284 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3285 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3286 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3288 ** Return an error code. If the commit could not complete because of
3289 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3290 ** means the close did not happen and needs to be repeated.
3292 int sqlite3VdbeHalt(Vdbe *p){
3293 int rc; /* Used to store transient return codes */
3294 sqlite3 *db = p->db;
3296 /* This function contains the logic that determines if a statement or
3297 ** transaction will be committed or rolled back as a result of the
3298 ** execution of this virtual machine.
3300 ** If any of the following errors occur:
3302 ** SQLITE_NOMEM
3303 ** SQLITE_IOERR
3304 ** SQLITE_FULL
3305 ** SQLITE_INTERRUPT
3307 ** Then the internal cache might have been left in an inconsistent
3308 ** state. We need to rollback the statement transaction, if there is
3309 ** one, or the complete transaction if there is no statement transaction.
3312 assert( p->eVdbeState==VDBE_RUN_STATE );
3313 if( db->mallocFailed ){
3314 p->rc = SQLITE_NOMEM_BKPT;
3316 closeAllCursors(p);
3317 checkActiveVdbeCnt(db);
3319 /* No commit or rollback needed if the program never started or if the
3320 ** SQL statement does not read or write a database file. */
3321 if( p->bIsReader ){
3322 int mrc; /* Primary error code from p->rc */
3323 int eStatementOp = 0;
3324 int isSpecialError; /* Set to true if a 'special' error */
3326 /* Lock all btrees used by the statement */
3327 sqlite3VdbeEnter(p);
3329 /* Check for one of the special errors */
3330 if( p->rc ){
3331 mrc = p->rc & 0xff;
3332 isSpecialError = mrc==SQLITE_NOMEM
3333 || mrc==SQLITE_IOERR
3334 || mrc==SQLITE_INTERRUPT
3335 || mrc==SQLITE_FULL;
3336 }else{
3337 mrc = isSpecialError = 0;
3339 if( isSpecialError ){
3340 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3341 ** no rollback is necessary. Otherwise, at least a savepoint
3342 ** transaction must be rolled back to restore the database to a
3343 ** consistent state.
3345 ** Even if the statement is read-only, it is important to perform
3346 ** a statement or transaction rollback operation. If the error
3347 ** occurred while writing to the journal, sub-journal or database
3348 ** file as part of an effort to free up cache space (see function
3349 ** pagerStress() in pager.c), the rollback is required to restore
3350 ** the pager to a consistent state.
3352 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3353 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3354 eStatementOp = SAVEPOINT_ROLLBACK;
3355 }else{
3356 /* We are forced to roll back the active transaction. Before doing
3357 ** so, abort any other statements this handle currently has active.
3359 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3360 sqlite3CloseSavepoints(db);
3361 db->autoCommit = 1;
3362 p->nChange = 0;
3367 /* Check for immediate foreign key violations. */
3368 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3369 (void)sqlite3VdbeCheckFk(p, 0);
3372 /* If the auto-commit flag is set and this is the only active writer
3373 ** VM, then we do either a commit or rollback of the current transaction.
3375 ** Note: This block also runs if one of the special errors handled
3376 ** above has occurred.
3378 if( !sqlite3VtabInSync(db)
3379 && db->autoCommit
3380 && db->nVdbeWrite==(p->readOnly==0)
3382 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3383 rc = sqlite3VdbeCheckFk(p, 1);
3384 if( rc!=SQLITE_OK ){
3385 if( NEVER(p->readOnly) ){
3386 sqlite3VdbeLeave(p);
3387 return SQLITE_ERROR;
3389 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3390 }else if( db->flags & SQLITE_CorruptRdOnly ){
3391 rc = SQLITE_CORRUPT;
3392 db->flags &= ~SQLITE_CorruptRdOnly;
3393 }else{
3394 /* The auto-commit flag is true, the vdbe program was successful
3395 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3396 ** key constraints to hold up the transaction. This means a commit
3397 ** is required. */
3398 rc = vdbeCommit(db, p);
3400 if( rc==SQLITE_BUSY && p->readOnly ){
3401 sqlite3VdbeLeave(p);
3402 return SQLITE_BUSY;
3403 }else if( rc!=SQLITE_OK ){
3404 sqlite3SystemError(db, rc);
3405 p->rc = rc;
3406 sqlite3RollbackAll(db, SQLITE_OK);
3407 p->nChange = 0;
3408 }else{
3409 db->nDeferredCons = 0;
3410 db->nDeferredImmCons = 0;
3411 db->flags &= ~(u64)SQLITE_DeferFKs;
3412 sqlite3CommitInternalChanges(db);
3414 }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){
3415 p->nChange = 0;
3416 }else{
3417 sqlite3RollbackAll(db, SQLITE_OK);
3418 p->nChange = 0;
3420 db->nStatement = 0;
3421 }else if( eStatementOp==0 ){
3422 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3423 eStatementOp = SAVEPOINT_RELEASE;
3424 }else if( p->errorAction==OE_Abort ){
3425 eStatementOp = SAVEPOINT_ROLLBACK;
3426 }else{
3427 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3428 sqlite3CloseSavepoints(db);
3429 db->autoCommit = 1;
3430 p->nChange = 0;
3434 /* If eStatementOp is non-zero, then a statement transaction needs to
3435 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3436 ** do so. If this operation returns an error, and the current statement
3437 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3438 ** current statement error code.
3440 if( eStatementOp ){
3441 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3442 if( rc ){
3443 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3444 p->rc = rc;
3445 sqlite3DbFree(db, p->zErrMsg);
3446 p->zErrMsg = 0;
3448 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3449 sqlite3CloseSavepoints(db);
3450 db->autoCommit = 1;
3451 p->nChange = 0;
3455 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3456 ** has been rolled back, update the database connection change-counter.
3458 if( p->changeCntOn ){
3459 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3460 sqlite3VdbeSetChanges(db, p->nChange);
3461 }else{
3462 sqlite3VdbeSetChanges(db, 0);
3464 p->nChange = 0;
3467 /* Release the locks */
3468 sqlite3VdbeLeave(p);
3471 /* We have successfully halted and closed the VM. Record this fact. */
3472 db->nVdbeActive--;
3473 if( !p->readOnly ) db->nVdbeWrite--;
3474 if( p->bIsReader ) db->nVdbeRead--;
3475 assert( db->nVdbeActive>=db->nVdbeRead );
3476 assert( db->nVdbeRead>=db->nVdbeWrite );
3477 assert( db->nVdbeWrite>=0 );
3478 p->eVdbeState = VDBE_HALT_STATE;
3479 checkActiveVdbeCnt(db);
3480 if( db->mallocFailed ){
3481 p->rc = SQLITE_NOMEM_BKPT;
3484 /* If the auto-commit flag is set to true, then any locks that were held
3485 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3486 ** to invoke any required unlock-notify callbacks.
3488 if( db->autoCommit ){
3489 sqlite3ConnectionUnlocked(db);
3492 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3493 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3498 ** Each VDBE holds the result of the most recent sqlite3_step() call
3499 ** in p->rc. This routine sets that result back to SQLITE_OK.
3501 void sqlite3VdbeResetStepResult(Vdbe *p){
3502 p->rc = SQLITE_OK;
3506 ** Copy the error code and error message belonging to the VDBE passed
3507 ** as the first argument to its database handle (so that they will be
3508 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3510 ** This function does not clear the VDBE error code or message, just
3511 ** copies them to the database handle.
3513 int sqlite3VdbeTransferError(Vdbe *p){
3514 sqlite3 *db = p->db;
3515 int rc = p->rc;
3516 if( p->zErrMsg ){
3517 db->bBenignMalloc++;
3518 sqlite3BeginBenignMalloc();
3519 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3520 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3521 sqlite3EndBenignMalloc();
3522 db->bBenignMalloc--;
3523 }else if( db->pErr ){
3524 sqlite3ValueSetNull(db->pErr);
3526 db->errCode = rc;
3527 db->errByteOffset = -1;
3528 return rc;
3531 #ifdef SQLITE_ENABLE_SQLLOG
3533 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3534 ** invoke it.
3536 static void vdbeInvokeSqllog(Vdbe *v){
3537 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3538 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3539 assert( v->db->init.busy==0 );
3540 if( zExpanded ){
3541 sqlite3GlobalConfig.xSqllog(
3542 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3544 sqlite3DbFree(v->db, zExpanded);
3548 #else
3549 # define vdbeInvokeSqllog(x)
3550 #endif
3553 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3554 ** Write any error messages into *pzErrMsg. Return the result code.
3556 ** After this routine is run, the VDBE should be ready to be executed
3557 ** again.
3559 ** To look at it another way, this routine resets the state of the
3560 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3561 ** VDBE_READY_STATE.
3563 int sqlite3VdbeReset(Vdbe *p){
3564 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3565 int i;
3566 #endif
3568 sqlite3 *db;
3569 db = p->db;
3571 /* If the VM did not run to completion or if it encountered an
3572 ** error, then it might not have been halted properly. So halt
3573 ** it now.
3575 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3577 /* If the VDBE has been run even partially, then transfer the error code
3578 ** and error message from the VDBE into the main database structure. But
3579 ** if the VDBE has just been set to run but has not actually executed any
3580 ** instructions yet, leave the main database error information unchanged.
3582 if( p->pc>=0 ){
3583 vdbeInvokeSqllog(p);
3584 if( db->pErr || p->zErrMsg ){
3585 sqlite3VdbeTransferError(p);
3586 }else{
3587 db->errCode = p->rc;
3591 /* Reset register contents and reclaim error message memory.
3593 #ifdef SQLITE_DEBUG
3594 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3595 ** Vdbe.aMem[] arrays have already been cleaned up. */
3596 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3597 if( p->aMem ){
3598 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3600 #endif
3601 if( p->zErrMsg ){
3602 sqlite3DbFree(db, p->zErrMsg);
3603 p->zErrMsg = 0;
3605 p->pResultRow = 0;
3606 #ifdef SQLITE_DEBUG
3607 p->nWrite = 0;
3608 #endif
3610 /* Save profiling information from this VDBE run.
3612 #ifdef VDBE_PROFILE
3614 FILE *out = fopen("vdbe_profile.out", "a");
3615 if( out ){
3616 fprintf(out, "---- ");
3617 for(i=0; i<p->nOp; i++){
3618 fprintf(out, "%02x", p->aOp[i].opcode);
3620 fprintf(out, "\n");
3621 if( p->zSql ){
3622 char c, pc = 0;
3623 fprintf(out, "-- ");
3624 for(i=0; (c = p->zSql[i])!=0; i++){
3625 if( pc=='\n' ) fprintf(out, "-- ");
3626 putc(c, out);
3627 pc = c;
3629 if( pc!='\n' ) fprintf(out, "\n");
3631 for(i=0; i<p->nOp; i++){
3632 char zHdr[100];
3633 i64 cnt = p->aOp[i].nExec;
3634 i64 cycles = p->aOp[i].nCycle;
3635 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3636 cnt,
3637 cycles,
3638 cnt>0 ? cycles/cnt : 0
3640 fprintf(out, "%s", zHdr);
3641 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3643 fclose(out);
3646 #endif
3647 return p->rc & db->errMask;
3651 ** Clean up and delete a VDBE after execution. Return an integer which is
3652 ** the result code. Write any error message text into *pzErrMsg.
3654 int sqlite3VdbeFinalize(Vdbe *p){
3655 int rc = SQLITE_OK;
3656 assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3657 assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3658 assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3659 if( p->eVdbeState>=VDBE_READY_STATE ){
3660 rc = sqlite3VdbeReset(p);
3661 assert( (rc & p->db->errMask)==rc );
3663 sqlite3VdbeDelete(p);
3664 return rc;
3668 ** If parameter iOp is less than zero, then invoke the destructor for
3669 ** all auxiliary data pointers currently cached by the VM passed as
3670 ** the first argument.
3672 ** Or, if iOp is greater than or equal to zero, then the destructor is
3673 ** only invoked for those auxiliary data pointers created by the user
3674 ** function invoked by the OP_Function opcode at instruction iOp of
3675 ** VM pVdbe, and only then if:
3677 ** * the associated function parameter is the 32nd or later (counting
3678 ** from left to right), or
3680 ** * the corresponding bit in argument mask is clear (where the first
3681 ** function parameter corresponds to bit 0 etc.).
3683 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3684 while( *pp ){
3685 AuxData *pAux = *pp;
3686 if( (iOp<0)
3687 || (pAux->iAuxOp==iOp
3688 && pAux->iAuxArg>=0
3689 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3691 testcase( pAux->iAuxArg==31 );
3692 if( pAux->xDeleteAux ){
3693 pAux->xDeleteAux(pAux->pAux);
3695 *pp = pAux->pNextAux;
3696 sqlite3DbFree(db, pAux);
3697 }else{
3698 pp= &pAux->pNextAux;
3704 ** Free all memory associated with the Vdbe passed as the second argument,
3705 ** except for object itself, which is preserved.
3707 ** The difference between this function and sqlite3VdbeDelete() is that
3708 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3709 ** the database connection and frees the object itself.
3711 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3712 SubProgram *pSub, *pNext;
3713 assert( db!=0 );
3714 assert( p->db==0 || p->db==db );
3715 if( p->aColName ){
3716 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
3717 sqlite3DbNNFreeNN(db, p->aColName);
3719 for(pSub=p->pProgram; pSub; pSub=pNext){
3720 pNext = pSub->pNext;
3721 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3722 sqlite3DbFree(db, pSub);
3724 if( p->eVdbeState!=VDBE_INIT_STATE ){
3725 releaseMemArray(p->aVar, p->nVar);
3726 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
3727 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
3729 vdbeFreeOpArray(db, p->aOp, p->nOp);
3730 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
3731 #ifdef SQLITE_ENABLE_NORMALIZE
3732 sqlite3DbFree(db, p->zNormSql);
3734 DblquoteStr *pThis, *pNxt;
3735 for(pThis=p->pDblStr; pThis; pThis=pNxt){
3736 pNxt = pThis->pNextStr;
3737 sqlite3DbFree(db, pThis);
3740 #endif
3741 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3743 int i;
3744 for(i=0; i<p->nScan; i++){
3745 sqlite3DbFree(db, p->aScan[i].zName);
3747 sqlite3DbFree(db, p->aScan);
3749 #endif
3753 ** Delete an entire VDBE.
3755 void sqlite3VdbeDelete(Vdbe *p){
3756 sqlite3 *db;
3758 assert( p!=0 );
3759 db = p->db;
3760 assert( db!=0 );
3761 assert( sqlite3_mutex_held(db->mutex) );
3762 sqlite3VdbeClearObject(db, p);
3763 if( db->pnBytesFreed==0 ){
3764 assert( p->ppVPrev!=0 );
3765 *p->ppVPrev = p->pVNext;
3766 if( p->pVNext ){
3767 p->pVNext->ppVPrev = p->ppVPrev;
3770 sqlite3DbNNFreeNN(db, p);
3774 ** The cursor "p" has a pending seek operation that has not yet been
3775 ** carried out. Seek the cursor now. If an error occurs, return
3776 ** the appropriate error code.
3778 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3779 int res, rc;
3780 #ifdef SQLITE_TEST
3781 extern int sqlite3_search_count;
3782 #endif
3783 assert( p->deferredMoveto );
3784 assert( p->isTable );
3785 assert( p->eCurType==CURTYPE_BTREE );
3786 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3787 if( rc ) return rc;
3788 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3789 #ifdef SQLITE_TEST
3790 sqlite3_search_count++;
3791 #endif
3792 p->deferredMoveto = 0;
3793 p->cacheStatus = CACHE_STALE;
3794 return SQLITE_OK;
3798 ** Something has moved cursor "p" out of place. Maybe the row it was
3799 ** pointed to was deleted out from under it. Or maybe the btree was
3800 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3801 ** is supposed to be pointing. If the row was deleted out from under the
3802 ** cursor, set the cursor to point to a NULL row.
3804 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3805 int isDifferentRow, rc;
3806 assert( p->eCurType==CURTYPE_BTREE );
3807 assert( p->uc.pCursor!=0 );
3808 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3809 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3810 p->cacheStatus = CACHE_STALE;
3811 if( isDifferentRow ) p->nullRow = 1;
3812 return rc;
3816 ** Check to ensure that the cursor is valid. Restore the cursor
3817 ** if need be. Return any I/O error from the restore operation.
3819 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3820 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
3821 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3822 return sqlite3VdbeHandleMovedCursor(p);
3824 return SQLITE_OK;
3828 ** The following functions:
3830 ** sqlite3VdbeSerialType()
3831 ** sqlite3VdbeSerialTypeLen()
3832 ** sqlite3VdbeSerialLen()
3833 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3834 ** sqlite3VdbeSerialGet()
3836 ** encapsulate the code that serializes values for storage in SQLite
3837 ** data and index records. Each serialized value consists of a
3838 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3839 ** integer, stored as a varint.
3841 ** In an SQLite index record, the serial type is stored directly before
3842 ** the blob of data that it corresponds to. In a table record, all serial
3843 ** types are stored at the start of the record, and the blobs of data at
3844 ** the end. Hence these functions allow the caller to handle the
3845 ** serial-type and data blob separately.
3847 ** The following table describes the various storage classes for data:
3849 ** serial type bytes of data type
3850 ** -------------- --------------- ---------------
3851 ** 0 0 NULL
3852 ** 1 1 signed integer
3853 ** 2 2 signed integer
3854 ** 3 3 signed integer
3855 ** 4 4 signed integer
3856 ** 5 6 signed integer
3857 ** 6 8 signed integer
3858 ** 7 8 IEEE float
3859 ** 8 0 Integer constant 0
3860 ** 9 0 Integer constant 1
3861 ** 10,11 reserved for expansion
3862 ** N>=12 and even (N-12)/2 BLOB
3863 ** N>=13 and odd (N-13)/2 text
3865 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3866 ** of SQLite will not understand those serial types.
3869 #if 0 /* Inlined into the OP_MakeRecord opcode */
3871 ** Return the serial-type for the value stored in pMem.
3873 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3875 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3876 ** opcode in the byte-code engine. But by moving this routine in-line, we
3877 ** can omit some redundant tests and make that opcode a lot faster. So
3878 ** this routine is now only used by the STAT3 logic and STAT3 support has
3879 ** ended. The code is kept here for historical reference only.
3881 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3882 int flags = pMem->flags;
3883 u32 n;
3885 assert( pLen!=0 );
3886 if( flags&MEM_Null ){
3887 *pLen = 0;
3888 return 0;
3890 if( flags&(MEM_Int|MEM_IntReal) ){
3891 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3892 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3893 i64 i = pMem->u.i;
3894 u64 u;
3895 testcase( flags & MEM_Int );
3896 testcase( flags & MEM_IntReal );
3897 if( i<0 ){
3898 u = ~i;
3899 }else{
3900 u = i;
3902 if( u<=127 ){
3903 if( (i&1)==i && file_format>=4 ){
3904 *pLen = 0;
3905 return 8+(u32)u;
3906 }else{
3907 *pLen = 1;
3908 return 1;
3911 if( u<=32767 ){ *pLen = 2; return 2; }
3912 if( u<=8388607 ){ *pLen = 3; return 3; }
3913 if( u<=2147483647 ){ *pLen = 4; return 4; }
3914 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3915 *pLen = 8;
3916 if( flags&MEM_IntReal ){
3917 /* If the value is IntReal and is going to take up 8 bytes to store
3918 ** as an integer, then we might as well make it an 8-byte floating
3919 ** point value */
3920 pMem->u.r = (double)pMem->u.i;
3921 pMem->flags &= ~MEM_IntReal;
3922 pMem->flags |= MEM_Real;
3923 return 7;
3925 return 6;
3927 if( flags&MEM_Real ){
3928 *pLen = 8;
3929 return 7;
3931 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3932 assert( pMem->n>=0 );
3933 n = (u32)pMem->n;
3934 if( flags & MEM_Zero ){
3935 n += pMem->u.nZero;
3937 *pLen = n;
3938 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3940 #endif /* inlined into OP_MakeRecord */
3943 ** The sizes for serial types less than 128
3945 const u8 sqlite3SmallTypeSizes[128] = {
3946 /* 0 1 2 3 4 5 6 7 8 9 */
3947 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3948 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3949 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3950 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3951 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3952 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3953 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3954 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3955 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3956 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3957 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3958 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3959 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3963 ** Return the length of the data corresponding to the supplied serial-type.
3965 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3966 if( serial_type>=128 ){
3967 return (serial_type-12)/2;
3968 }else{
3969 assert( serial_type<12
3970 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3971 return sqlite3SmallTypeSizes[serial_type];
3974 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3975 assert( serial_type<128 );
3976 return sqlite3SmallTypeSizes[serial_type];
3980 ** If we are on an architecture with mixed-endian floating
3981 ** points (ex: ARM7) then swap the lower 4 bytes with the
3982 ** upper 4 bytes. Return the result.
3984 ** For most architectures, this is a no-op.
3986 ** (later): It is reported to me that the mixed-endian problem
3987 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3988 ** that early versions of GCC stored the two words of a 64-bit
3989 ** float in the wrong order. And that error has been propagated
3990 ** ever since. The blame is not necessarily with GCC, though.
3991 ** GCC might have just copying the problem from a prior compiler.
3992 ** I am also told that newer versions of GCC that follow a different
3993 ** ABI get the byte order right.
3995 ** Developers using SQLite on an ARM7 should compile and run their
3996 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3997 ** enabled, some asserts below will ensure that the byte order of
3998 ** floating point values is correct.
4000 ** (2007-08-30) Frank van Vugt has studied this problem closely
4001 ** and has send his findings to the SQLite developers. Frank
4002 ** writes that some Linux kernels offer floating point hardware
4003 ** emulation that uses only 32-bit mantissas instead of a full
4004 ** 48-bits as required by the IEEE standard. (This is the
4005 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
4006 ** byte swapping becomes very complicated. To avoid problems,
4007 ** the necessary byte swapping is carried out using a 64-bit integer
4008 ** rather than a 64-bit float. Frank assures us that the code here
4009 ** works for him. We, the developers, have no way to independently
4010 ** verify this, but Frank seems to know what he is talking about
4011 ** so we trust him.
4013 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
4014 u64 sqlite3FloatSwap(u64 in){
4015 union {
4016 u64 r;
4017 u32 i[2];
4018 } u;
4019 u32 t;
4021 u.r = in;
4022 t = u.i[0];
4023 u.i[0] = u.i[1];
4024 u.i[1] = t;
4025 return u.r;
4027 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
4030 /* Input "x" is a sequence of unsigned characters that represent a
4031 ** big-endian integer. Return the equivalent native integer
4033 #define ONE_BYTE_INT(x) ((i8)(x)[0])
4034 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
4035 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
4036 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4037 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4040 ** Deserialize the data blob pointed to by buf as serial type serial_type
4041 ** and store the result in pMem.
4043 ** This function is implemented as two separate routines for performance.
4044 ** The few cases that require local variables are broken out into a separate
4045 ** routine so that in most cases the overhead of moving the stack pointer
4046 ** is avoided.
4048 static void serialGet(
4049 const unsigned char *buf, /* Buffer to deserialize from */
4050 u32 serial_type, /* Serial type to deserialize */
4051 Mem *pMem /* Memory cell to write value into */
4053 u64 x = FOUR_BYTE_UINT(buf);
4054 u32 y = FOUR_BYTE_UINT(buf+4);
4055 x = (x<<32) + y;
4056 if( serial_type==6 ){
4057 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
4058 ** twos-complement integer. */
4059 pMem->u.i = *(i64*)&x;
4060 pMem->flags = MEM_Int;
4061 testcase( pMem->u.i<0 );
4062 }else{
4063 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
4064 ** floating point number. */
4065 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
4066 /* Verify that integers and floating point values use the same
4067 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
4068 ** defined that 64-bit floating point values really are mixed
4069 ** endian.
4071 static const u64 t1 = ((u64)0x3ff00000)<<32;
4072 static const double r1 = 1.0;
4073 u64 t2 = t1;
4074 swapMixedEndianFloat(t2);
4075 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
4076 #endif
4077 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
4078 swapMixedEndianFloat(x);
4079 memcpy(&pMem->u.r, &x, sizeof(x));
4080 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
4083 static int serialGet7(
4084 const unsigned char *buf, /* Buffer to deserialize from */
4085 Mem *pMem /* Memory cell to write value into */
4087 u64 x = FOUR_BYTE_UINT(buf);
4088 u32 y = FOUR_BYTE_UINT(buf+4);
4089 x = (x<<32) + y;
4090 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
4091 swapMixedEndianFloat(x);
4092 memcpy(&pMem->u.r, &x, sizeof(x));
4093 if( IsNaN(x) ){
4094 pMem->flags = MEM_Null;
4095 return 1;
4097 pMem->flags = MEM_Real;
4098 return 0;
4100 void sqlite3VdbeSerialGet(
4101 const unsigned char *buf, /* Buffer to deserialize from */
4102 u32 serial_type, /* Serial type to deserialize */
4103 Mem *pMem /* Memory cell to write value into */
4105 switch( serial_type ){
4106 case 10: { /* Internal use only: NULL with virtual table
4107 ** UPDATE no-change flag set */
4108 pMem->flags = MEM_Null|MEM_Zero;
4109 pMem->n = 0;
4110 pMem->u.nZero = 0;
4111 return;
4113 case 11: /* Reserved for future use */
4114 case 0: { /* Null */
4115 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4116 pMem->flags = MEM_Null;
4117 return;
4119 case 1: {
4120 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4121 ** integer. */
4122 pMem->u.i = ONE_BYTE_INT(buf);
4123 pMem->flags = MEM_Int;
4124 testcase( pMem->u.i<0 );
4125 return;
4127 case 2: { /* 2-byte signed integer */
4128 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4129 ** twos-complement integer. */
4130 pMem->u.i = TWO_BYTE_INT(buf);
4131 pMem->flags = MEM_Int;
4132 testcase( pMem->u.i<0 );
4133 return;
4135 case 3: { /* 3-byte signed integer */
4136 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4137 ** twos-complement integer. */
4138 pMem->u.i = THREE_BYTE_INT(buf);
4139 pMem->flags = MEM_Int;
4140 testcase( pMem->u.i<0 );
4141 return;
4143 case 4: { /* 4-byte signed integer */
4144 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4145 ** twos-complement integer. */
4146 pMem->u.i = FOUR_BYTE_INT(buf);
4147 #ifdef __HP_cc
4148 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4149 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
4150 #endif
4151 pMem->flags = MEM_Int;
4152 testcase( pMem->u.i<0 );
4153 return;
4155 case 5: { /* 6-byte signed integer */
4156 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4157 ** twos-complement integer. */
4158 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
4159 pMem->flags = MEM_Int;
4160 testcase( pMem->u.i<0 );
4161 return;
4163 case 6: /* 8-byte signed integer */
4164 case 7: { /* IEEE floating point */
4165 /* These use local variables, so do them in a separate routine
4166 ** to avoid having to move the frame pointer in the common case */
4167 serialGet(buf,serial_type,pMem);
4168 return;
4170 case 8: /* Integer 0 */
4171 case 9: { /* Integer 1 */
4172 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4173 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4174 pMem->u.i = serial_type-8;
4175 pMem->flags = MEM_Int;
4176 return;
4178 default: {
4179 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4180 ** length.
4181 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4182 ** (N-13)/2 bytes in length. */
4183 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
4184 pMem->z = (char *)buf;
4185 pMem->n = (serial_type-12)/2;
4186 pMem->flags = aFlag[serial_type&1];
4187 return;
4190 return;
4193 ** This routine is used to allocate sufficient space for an UnpackedRecord
4194 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4195 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4197 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4198 ** the unaligned buffer passed via the second and third arguments (presumably
4199 ** stack space). If the former, then *ppFree is set to a pointer that should
4200 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4201 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4202 ** before returning.
4204 ** If an OOM error occurs, NULL is returned.
4206 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4207 KeyInfo *pKeyInfo /* Description of the record */
4209 UnpackedRecord *p; /* Unpacked record to return */
4210 int nByte; /* Number of bytes required for *p */
4211 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4212 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4213 if( !p ) return 0;
4214 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
4215 assert( pKeyInfo->aSortFlags!=0 );
4216 p->pKeyInfo = pKeyInfo;
4217 p->nField = pKeyInfo->nKeyField + 1;
4218 return p;
4222 ** Given the nKey-byte encoding of a record in pKey[], populate the
4223 ** UnpackedRecord structure indicated by the fourth argument with the
4224 ** contents of the decoded record.
4226 void sqlite3VdbeRecordUnpack(
4227 KeyInfo *pKeyInfo, /* Information about the record format */
4228 int nKey, /* Size of the binary record */
4229 const void *pKey, /* The binary record */
4230 UnpackedRecord *p /* Populate this structure before returning. */
4232 const unsigned char *aKey = (const unsigned char *)pKey;
4233 u32 d;
4234 u32 idx; /* Offset in aKey[] to read from */
4235 u16 u; /* Unsigned loop counter */
4236 u32 szHdr;
4237 Mem *pMem = p->aMem;
4239 p->default_rc = 0;
4240 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4241 idx = getVarint32(aKey, szHdr);
4242 d = szHdr;
4243 u = 0;
4244 while( idx<szHdr && d<=(u32)nKey ){
4245 u32 serial_type;
4247 idx += getVarint32(&aKey[idx], serial_type);
4248 pMem->enc = pKeyInfo->enc;
4249 pMem->db = pKeyInfo->db;
4250 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4251 pMem->szMalloc = 0;
4252 pMem->z = 0;
4253 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4254 d += sqlite3VdbeSerialTypeLen(serial_type);
4255 pMem++;
4256 if( (++u)>=p->nField ) break;
4258 if( d>(u32)nKey && u ){
4259 assert( CORRUPT_DB );
4260 /* In a corrupt record entry, the last pMem might have been set up using
4261 ** uninitialized memory. Overwrite its value with NULL, to prevent
4262 ** warnings from MSAN. */
4263 sqlite3VdbeMemSetNull(pMem-1);
4265 assert( u<=pKeyInfo->nKeyField + 1 );
4266 p->nField = u;
4269 #ifdef SQLITE_DEBUG
4271 ** This function compares two index or table record keys in the same way
4272 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4273 ** this function deserializes and compares values using the
4274 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4275 ** in assert() statements to ensure that the optimized code in
4276 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4278 ** Return true if the result of comparison is equivalent to desiredResult.
4279 ** Return false if there is a disagreement.
4281 static int vdbeRecordCompareDebug(
4282 int nKey1, const void *pKey1, /* Left key */
4283 const UnpackedRecord *pPKey2, /* Right key */
4284 int desiredResult /* Correct answer */
4286 u32 d1; /* Offset into aKey[] of next data element */
4287 u32 idx1; /* Offset into aKey[] of next header element */
4288 u32 szHdr1; /* Number of bytes in header */
4289 int i = 0;
4290 int rc = 0;
4291 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4292 KeyInfo *pKeyInfo;
4293 Mem mem1;
4295 pKeyInfo = pPKey2->pKeyInfo;
4296 if( pKeyInfo->db==0 ) return 1;
4297 mem1.enc = pKeyInfo->enc;
4298 mem1.db = pKeyInfo->db;
4299 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4300 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4302 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4303 ** We could initialize it, as shown here, to silence those complaints.
4304 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4305 ** the unnecessary initialization has a measurable negative performance
4306 ** impact, since this routine is a very high runner. And so, we choose
4307 ** to ignore the compiler warnings and leave this variable uninitialized.
4309 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4311 idx1 = getVarint32(aKey1, szHdr1);
4312 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4313 d1 = szHdr1;
4314 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4315 assert( pKeyInfo->aSortFlags!=0 );
4316 assert( pKeyInfo->nKeyField>0 );
4317 assert( idx1<=szHdr1 || CORRUPT_DB );
4319 u32 serial_type1;
4321 /* Read the serial types for the next element in each key. */
4322 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4324 /* Verify that there is enough key space remaining to avoid
4325 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4326 ** always be greater than or equal to the amount of required key space.
4327 ** Use that approximation to avoid the more expensive call to
4328 ** sqlite3VdbeSerialTypeLen() in the common case.
4330 if( d1+(u64)serial_type1+2>(u64)nKey1
4331 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4333 if( serial_type1>=1
4334 && serial_type1<=7
4335 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8
4336 && CORRUPT_DB
4338 return 1; /* corrupt record not detected by
4339 ** sqlite3VdbeRecordCompareWithSkip(). Return true
4340 ** to avoid firing the assert() */
4342 break;
4345 /* Extract the values to be compared.
4347 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4348 d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4350 /* Do the comparison
4352 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4353 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4354 if( rc!=0 ){
4355 assert( mem1.szMalloc==0 ); /* See comment below */
4356 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4357 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4359 rc = -rc;
4361 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4362 rc = -rc; /* Invert the result for DESC sort order. */
4364 goto debugCompareEnd;
4366 i++;
4367 }while( idx1<szHdr1 && i<pPKey2->nField );
4369 /* No memory allocation is ever used on mem1. Prove this using
4370 ** the following assert(). If the assert() fails, it indicates a
4371 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4373 assert( mem1.szMalloc==0 );
4375 /* rc==0 here means that one of the keys ran out of fields and
4376 ** all the fields up to that point were equal. Return the default_rc
4377 ** value. */
4378 rc = pPKey2->default_rc;
4380 debugCompareEnd:
4381 if( desiredResult==0 && rc==0 ) return 1;
4382 if( desiredResult<0 && rc<0 ) return 1;
4383 if( desiredResult>0 && rc>0 ) return 1;
4384 if( CORRUPT_DB ) return 1;
4385 if( pKeyInfo->db->mallocFailed ) return 1;
4386 return 0;
4388 #endif
4390 #ifdef SQLITE_DEBUG
4392 ** Count the number of fields (a.k.a. columns) in the record given by
4393 ** pKey,nKey. The verify that this count is less than or equal to the
4394 ** limit given by pKeyInfo->nAllField.
4396 ** If this constraint is not satisfied, it means that the high-speed
4397 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4398 ** not work correctly. If this assert() ever fires, it probably means
4399 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4400 ** incorrectly.
4402 static void vdbeAssertFieldCountWithinLimits(
4403 int nKey, const void *pKey, /* The record to verify */
4404 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4406 int nField = 0;
4407 u32 szHdr;
4408 u32 idx;
4409 u32 notUsed;
4410 const unsigned char *aKey = (const unsigned char*)pKey;
4412 if( CORRUPT_DB ) return;
4413 idx = getVarint32(aKey, szHdr);
4414 assert( nKey>=0 );
4415 assert( szHdr<=(u32)nKey );
4416 while( idx<szHdr ){
4417 idx += getVarint32(aKey+idx, notUsed);
4418 nField++;
4420 assert( nField <= pKeyInfo->nAllField );
4422 #else
4423 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4424 #endif
4427 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4428 ** using the collation sequence pColl. As usual, return a negative , zero
4429 ** or positive value if *pMem1 is less than, equal to or greater than
4430 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4432 static int vdbeCompareMemString(
4433 const Mem *pMem1,
4434 const Mem *pMem2,
4435 const CollSeq *pColl,
4436 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4438 if( pMem1->enc==pColl->enc ){
4439 /* The strings are already in the correct encoding. Call the
4440 ** comparison function directly */
4441 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4442 }else{
4443 int rc;
4444 const void *v1, *v2;
4445 Mem c1;
4446 Mem c2;
4447 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4448 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4449 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4450 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4451 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4452 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4453 if( (v1==0 || v2==0) ){
4454 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4455 rc = 0;
4456 }else{
4457 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4459 sqlite3VdbeMemReleaseMalloc(&c1);
4460 sqlite3VdbeMemReleaseMalloc(&c2);
4461 return rc;
4466 ** The input pBlob is guaranteed to be a Blob that is not marked
4467 ** with MEM_Zero. Return true if it could be a zero-blob.
4469 static int isAllZero(const char *z, int n){
4470 int i;
4471 for(i=0; i<n; i++){
4472 if( z[i] ) return 0;
4474 return 1;
4478 ** Compare two blobs. Return negative, zero, or positive if the first
4479 ** is less than, equal to, or greater than the second, respectively.
4480 ** If one blob is a prefix of the other, then the shorter is the lessor.
4482 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4483 int c;
4484 int n1 = pB1->n;
4485 int n2 = pB2->n;
4487 /* It is possible to have a Blob value that has some non-zero content
4488 ** followed by zero content. But that only comes up for Blobs formed
4489 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4490 ** sqlite3MemCompare(). */
4491 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4492 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4494 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4495 if( pB1->flags & pB2->flags & MEM_Zero ){
4496 return pB1->u.nZero - pB2->u.nZero;
4497 }else if( pB1->flags & MEM_Zero ){
4498 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4499 return pB1->u.nZero - n2;
4500 }else{
4501 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4502 return n1 - pB2->u.nZero;
4505 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4506 if( c ) return c;
4507 return n1 - n2;
4510 /* The following two functions are used only within testcase() to prove
4511 ** test coverage. These functions do no exist for production builds.
4512 ** We must use separate SQLITE_NOINLINE functions here, since otherwise
4513 ** optimizer code movement causes gcov to become very confused.
4515 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
4516 static int SQLITE_NOINLINE doubleLt(double a, double b){ return a<b; }
4517 static int SQLITE_NOINLINE doubleEq(double a, double b){ return a==b; }
4518 #endif
4521 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4522 ** number. Return negative, zero, or positive if the first (i64) is less than,
4523 ** equal to, or greater than the second (double).
4525 int sqlite3IntFloatCompare(i64 i, double r){
4526 if( sqlite3IsNaN(r) ){
4527 /* SQLite considers NaN to be a NULL. And all integer values are greater
4528 ** than NULL */
4529 return 1;
4530 }else{
4531 i64 y;
4532 if( r<-9223372036854775808.0 ) return +1;
4533 if( r>=9223372036854775808.0 ) return -1;
4534 y = (i64)r;
4535 if( i<y ) return -1;
4536 if( i>y ) return +1;
4537 testcase( doubleLt(((double)i),r) );
4538 testcase( doubleLt(r,((double)i)) );
4539 testcase( doubleEq(r,((double)i)) );
4540 return (((double)i)<r) ? -1 : (((double)i)>r);
4545 ** Compare the values contained by the two memory cells, returning
4546 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4547 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4548 ** and reals) sorted numerically, followed by text ordered by the collating
4549 ** sequence pColl and finally blob's ordered by memcmp().
4551 ** Two NULL values are considered equal by this function.
4553 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4554 int f1, f2;
4555 int combined_flags;
4557 f1 = pMem1->flags;
4558 f2 = pMem2->flags;
4559 combined_flags = f1|f2;
4560 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4562 /* If one value is NULL, it is less than the other. If both values
4563 ** are NULL, return 0.
4565 if( combined_flags&MEM_Null ){
4566 return (f2&MEM_Null) - (f1&MEM_Null);
4569 /* At least one of the two values is a number
4571 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4572 testcase( combined_flags & MEM_Int );
4573 testcase( combined_flags & MEM_Real );
4574 testcase( combined_flags & MEM_IntReal );
4575 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4576 testcase( f1 & f2 & MEM_Int );
4577 testcase( f1 & f2 & MEM_IntReal );
4578 if( pMem1->u.i < pMem2->u.i ) return -1;
4579 if( pMem1->u.i > pMem2->u.i ) return +1;
4580 return 0;
4582 if( (f1 & f2 & MEM_Real)!=0 ){
4583 if( pMem1->u.r < pMem2->u.r ) return -1;
4584 if( pMem1->u.r > pMem2->u.r ) return +1;
4585 return 0;
4587 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4588 testcase( f1 & MEM_Int );
4589 testcase( f1 & MEM_IntReal );
4590 if( (f2&MEM_Real)!=0 ){
4591 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4592 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4593 if( pMem1->u.i < pMem2->u.i ) return -1;
4594 if( pMem1->u.i > pMem2->u.i ) return +1;
4595 return 0;
4596 }else{
4597 return -1;
4600 if( (f1&MEM_Real)!=0 ){
4601 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4602 testcase( f2 & MEM_Int );
4603 testcase( f2 & MEM_IntReal );
4604 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4605 }else{
4606 return -1;
4609 return +1;
4612 /* If one value is a string and the other is a blob, the string is less.
4613 ** If both are strings, compare using the collating functions.
4615 if( combined_flags&MEM_Str ){
4616 if( (f1 & MEM_Str)==0 ){
4617 return 1;
4619 if( (f2 & MEM_Str)==0 ){
4620 return -1;
4623 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4624 assert( pMem1->enc==SQLITE_UTF8 ||
4625 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4627 /* The collation sequence must be defined at this point, even if
4628 ** the user deletes the collation sequence after the vdbe program is
4629 ** compiled (this was not always the case).
4631 assert( !pColl || pColl->xCmp );
4633 if( pColl ){
4634 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4636 /* If a NULL pointer was passed as the collate function, fall through
4637 ** to the blob case and use memcmp(). */
4640 /* Both values must be blobs. Compare using memcmp(). */
4641 return sqlite3BlobCompare(pMem1, pMem2);
4646 ** The first argument passed to this function is a serial-type that
4647 ** corresponds to an integer - all values between 1 and 9 inclusive
4648 ** except 7. The second points to a buffer containing an integer value
4649 ** serialized according to serial_type. This function deserializes
4650 ** and returns the value.
4652 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4653 u32 y;
4654 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4655 switch( serial_type ){
4656 case 0:
4657 case 1:
4658 testcase( aKey[0]&0x80 );
4659 return ONE_BYTE_INT(aKey);
4660 case 2:
4661 testcase( aKey[0]&0x80 );
4662 return TWO_BYTE_INT(aKey);
4663 case 3:
4664 testcase( aKey[0]&0x80 );
4665 return THREE_BYTE_INT(aKey);
4666 case 4: {
4667 testcase( aKey[0]&0x80 );
4668 y = FOUR_BYTE_UINT(aKey);
4669 return (i64)*(int*)&y;
4671 case 5: {
4672 testcase( aKey[0]&0x80 );
4673 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4675 case 6: {
4676 u64 x = FOUR_BYTE_UINT(aKey);
4677 testcase( aKey[0]&0x80 );
4678 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4679 return (i64)*(i64*)&x;
4683 return (serial_type - 8);
4687 ** This function compares the two table rows or index records
4688 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4689 ** or positive integer if key1 is less than, equal to or
4690 ** greater than key2. The {nKey1, pKey1} key must be a blob
4691 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4692 ** key must be a parsed key such as obtained from
4693 ** sqlite3VdbeParseRecord.
4695 ** If argument bSkip is non-zero, it is assumed that the caller has already
4696 ** determined that the first fields of the keys are equal.
4698 ** Key1 and Key2 do not have to contain the same number of fields. If all
4699 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4700 ** returned.
4702 ** If database corruption is discovered, set pPKey2->errCode to
4703 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4704 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4705 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4707 int sqlite3VdbeRecordCompareWithSkip(
4708 int nKey1, const void *pKey1, /* Left key */
4709 UnpackedRecord *pPKey2, /* Right key */
4710 int bSkip /* If true, skip the first field */
4712 u32 d1; /* Offset into aKey[] of next data element */
4713 int i; /* Index of next field to compare */
4714 u32 szHdr1; /* Size of record header in bytes */
4715 u32 idx1; /* Offset of first type in header */
4716 int rc = 0; /* Return value */
4717 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4718 KeyInfo *pKeyInfo;
4719 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4720 Mem mem1;
4722 /* If bSkip is true, then the caller has already determined that the first
4723 ** two elements in the keys are equal. Fix the various stack variables so
4724 ** that this routine begins comparing at the second field. */
4725 if( bSkip ){
4726 u32 s1 = aKey1[1];
4727 if( s1<0x80 ){
4728 idx1 = 2;
4729 }else{
4730 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4732 szHdr1 = aKey1[0];
4733 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4734 i = 1;
4735 pRhs++;
4736 }else{
4737 if( (szHdr1 = aKey1[0])<0x80 ){
4738 idx1 = 1;
4739 }else{
4740 idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4742 d1 = szHdr1;
4743 i = 0;
4745 if( d1>(unsigned)nKey1 ){
4746 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4747 return 0; /* Corruption */
4750 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4751 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4752 || CORRUPT_DB );
4753 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4754 assert( pPKey2->pKeyInfo->nKeyField>0 );
4755 assert( idx1<=szHdr1 || CORRUPT_DB );
4756 while( 1 /*exit-by-break*/ ){
4757 u32 serial_type;
4759 /* RHS is an integer */
4760 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4761 testcase( pRhs->flags & MEM_Int );
4762 testcase( pRhs->flags & MEM_IntReal );
4763 serial_type = aKey1[idx1];
4764 testcase( serial_type==12 );
4765 if( serial_type>=10 ){
4766 rc = serial_type==10 ? -1 : +1;
4767 }else if( serial_type==0 ){
4768 rc = -1;
4769 }else if( serial_type==7 ){
4770 serialGet7(&aKey1[d1], &mem1);
4771 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4772 }else{
4773 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4774 i64 rhs = pRhs->u.i;
4775 if( lhs<rhs ){
4776 rc = -1;
4777 }else if( lhs>rhs ){
4778 rc = +1;
4783 /* RHS is real */
4784 else if( pRhs->flags & MEM_Real ){
4785 serial_type = aKey1[idx1];
4786 if( serial_type>=10 ){
4787 /* Serial types 12 or greater are strings and blobs (greater than
4788 ** numbers). Types 10 and 11 are currently "reserved for future
4789 ** use", so it doesn't really matter what the results of comparing
4790 ** them to numeric values are. */
4791 rc = serial_type==10 ? -1 : +1;
4792 }else if( serial_type==0 ){
4793 rc = -1;
4794 }else{
4795 if( serial_type==7 ){
4796 if( serialGet7(&aKey1[d1], &mem1) ){
4797 rc = -1; /* mem1 is a NaN */
4798 }else if( mem1.u.r<pRhs->u.r ){
4799 rc = -1;
4800 }else if( mem1.u.r>pRhs->u.r ){
4801 rc = +1;
4802 }else{
4803 assert( rc==0 );
4805 }else{
4806 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4807 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4812 /* RHS is a string */
4813 else if( pRhs->flags & MEM_Str ){
4814 getVarint32NR(&aKey1[idx1], serial_type);
4815 testcase( serial_type==12 );
4816 if( serial_type<12 ){
4817 rc = -1;
4818 }else if( !(serial_type & 0x01) ){
4819 rc = +1;
4820 }else{
4821 mem1.n = (serial_type - 12) / 2;
4822 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4823 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4824 if( (d1+mem1.n) > (unsigned)nKey1
4825 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4827 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4828 return 0; /* Corruption */
4829 }else if( pKeyInfo->aColl[i] ){
4830 mem1.enc = pKeyInfo->enc;
4831 mem1.db = pKeyInfo->db;
4832 mem1.flags = MEM_Str;
4833 mem1.z = (char*)&aKey1[d1];
4834 rc = vdbeCompareMemString(
4835 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4837 }else{
4838 int nCmp = MIN(mem1.n, pRhs->n);
4839 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4840 if( rc==0 ) rc = mem1.n - pRhs->n;
4845 /* RHS is a blob */
4846 else if( pRhs->flags & MEM_Blob ){
4847 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4848 getVarint32NR(&aKey1[idx1], serial_type);
4849 testcase( serial_type==12 );
4850 if( serial_type<12 || (serial_type & 0x01) ){
4851 rc = -1;
4852 }else{
4853 int nStr = (serial_type - 12) / 2;
4854 testcase( (d1+nStr)==(unsigned)nKey1 );
4855 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4856 if( (d1+nStr) > (unsigned)nKey1 ){
4857 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4858 return 0; /* Corruption */
4859 }else if( pRhs->flags & MEM_Zero ){
4860 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4861 rc = 1;
4862 }else{
4863 rc = nStr - pRhs->u.nZero;
4865 }else{
4866 int nCmp = MIN(nStr, pRhs->n);
4867 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4868 if( rc==0 ) rc = nStr - pRhs->n;
4873 /* RHS is null */
4874 else{
4875 serial_type = aKey1[idx1];
4876 if( serial_type==0
4877 || serial_type==10
4878 || (serial_type==7 && serialGet7(&aKey1[d1], &mem1)!=0)
4880 assert( rc==0 );
4881 }else{
4882 rc = 1;
4886 if( rc!=0 ){
4887 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4888 if( sortFlags ){
4889 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4890 || ((sortFlags & KEYINFO_ORDER_DESC)
4891 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4893 rc = -rc;
4896 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4897 assert( mem1.szMalloc==0 ); /* See comment below */
4898 return rc;
4901 i++;
4902 if( i==pPKey2->nField ) break;
4903 pRhs++;
4904 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4905 if( d1>(unsigned)nKey1 ) break;
4906 idx1 += sqlite3VarintLen(serial_type);
4907 if( idx1>=(unsigned)szHdr1 ){
4908 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4909 return 0; /* Corrupt index */
4913 /* No memory allocation is ever used on mem1. Prove this using
4914 ** the following assert(). If the assert() fails, it indicates a
4915 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4916 assert( mem1.szMalloc==0 );
4918 /* rc==0 here means that one or both of the keys ran out of fields and
4919 ** all the fields up to that point were equal. Return the default_rc
4920 ** value. */
4921 assert( CORRUPT_DB
4922 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4923 || pPKey2->pKeyInfo->db->mallocFailed
4925 pPKey2->eqSeen = 1;
4926 return pPKey2->default_rc;
4928 int sqlite3VdbeRecordCompare(
4929 int nKey1, const void *pKey1, /* Left key */
4930 UnpackedRecord *pPKey2 /* Right key */
4932 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4937 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4938 ** that (a) the first field of pPKey2 is an integer, and (b) the
4939 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4940 ** byte (i.e. is less than 128).
4942 ** To avoid concerns about buffer overreads, this routine is only used
4943 ** on schemas where the maximum valid header size is 63 bytes or less.
4945 static int vdbeRecordCompareInt(
4946 int nKey1, const void *pKey1, /* Left key */
4947 UnpackedRecord *pPKey2 /* Right key */
4949 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4950 int serial_type = ((const u8*)pKey1)[1];
4951 int res;
4952 u32 y;
4953 u64 x;
4954 i64 v;
4955 i64 lhs;
4957 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4958 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4959 switch( serial_type ){
4960 case 1: { /* 1-byte signed integer */
4961 lhs = ONE_BYTE_INT(aKey);
4962 testcase( lhs<0 );
4963 break;
4965 case 2: { /* 2-byte signed integer */
4966 lhs = TWO_BYTE_INT(aKey);
4967 testcase( lhs<0 );
4968 break;
4970 case 3: { /* 3-byte signed integer */
4971 lhs = THREE_BYTE_INT(aKey);
4972 testcase( lhs<0 );
4973 break;
4975 case 4: { /* 4-byte signed integer */
4976 y = FOUR_BYTE_UINT(aKey);
4977 lhs = (i64)*(int*)&y;
4978 testcase( lhs<0 );
4979 break;
4981 case 5: { /* 6-byte signed integer */
4982 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4983 testcase( lhs<0 );
4984 break;
4986 case 6: { /* 8-byte signed integer */
4987 x = FOUR_BYTE_UINT(aKey);
4988 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4989 lhs = *(i64*)&x;
4990 testcase( lhs<0 );
4991 break;
4993 case 8:
4994 lhs = 0;
4995 break;
4996 case 9:
4997 lhs = 1;
4998 break;
5000 /* This case could be removed without changing the results of running
5001 ** this code. Including it causes gcc to generate a faster switch
5002 ** statement (since the range of switch targets now starts at zero and
5003 ** is contiguous) but does not cause any duplicate code to be generated
5004 ** (as gcc is clever enough to combine the two like cases). Other
5005 ** compilers might be similar. */
5006 case 0: case 7:
5007 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
5009 default:
5010 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
5013 assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
5014 v = pPKey2->u.i;
5015 if( v>lhs ){
5016 res = pPKey2->r1;
5017 }else if( v<lhs ){
5018 res = pPKey2->r2;
5019 }else if( pPKey2->nField>1 ){
5020 /* The first fields of the two keys are equal. Compare the trailing
5021 ** fields. */
5022 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
5023 }else{
5024 /* The first fields of the two keys are equal and there are no trailing
5025 ** fields. Return pPKey2->default_rc in this case. */
5026 res = pPKey2->default_rc;
5027 pPKey2->eqSeen = 1;
5030 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
5031 return res;
5035 ** This function is an optimized version of sqlite3VdbeRecordCompare()
5036 ** that (a) the first field of pPKey2 is a string, that (b) the first field
5037 ** uses the collation sequence BINARY and (c) that the size-of-header varint
5038 ** at the start of (pKey1/nKey1) fits in a single byte.
5040 static int vdbeRecordCompareString(
5041 int nKey1, const void *pKey1, /* Left key */
5042 UnpackedRecord *pPKey2 /* Right key */
5044 const u8 *aKey1 = (const u8*)pKey1;
5045 int serial_type;
5046 int res;
5048 assert( pPKey2->aMem[0].flags & MEM_Str );
5049 assert( pPKey2->aMem[0].n == pPKey2->n );
5050 assert( pPKey2->aMem[0].z == pPKey2->u.z );
5051 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
5052 serial_type = (signed char)(aKey1[1]);
5054 vrcs_restart:
5055 if( serial_type<12 ){
5056 if( serial_type<0 ){
5057 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
5058 if( serial_type>=12 ) goto vrcs_restart;
5059 assert( CORRUPT_DB );
5061 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
5062 }else if( !(serial_type & 0x01) ){
5063 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
5064 }else{
5065 int nCmp;
5066 int nStr;
5067 int szHdr = aKey1[0];
5069 nStr = (serial_type-12) / 2;
5070 if( (szHdr + nStr) > nKey1 ){
5071 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
5072 return 0; /* Corruption */
5074 nCmp = MIN( pPKey2->n, nStr );
5075 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
5077 if( res>0 ){
5078 res = pPKey2->r2;
5079 }else if( res<0 ){
5080 res = pPKey2->r1;
5081 }else{
5082 res = nStr - pPKey2->n;
5083 if( res==0 ){
5084 if( pPKey2->nField>1 ){
5085 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
5086 }else{
5087 res = pPKey2->default_rc;
5088 pPKey2->eqSeen = 1;
5090 }else if( res>0 ){
5091 res = pPKey2->r2;
5092 }else{
5093 res = pPKey2->r1;
5098 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
5099 || CORRUPT_DB
5100 || pPKey2->pKeyInfo->db->mallocFailed
5102 return res;
5106 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
5107 ** suitable for comparing serialized records to the unpacked record passed
5108 ** as the only argument.
5110 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
5111 /* varintRecordCompareInt() and varintRecordCompareString() both assume
5112 ** that the size-of-header varint that occurs at the start of each record
5113 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
5114 ** also assumes that it is safe to overread a buffer by at least the
5115 ** maximum possible legal header size plus 8 bytes. Because there is
5116 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
5117 ** buffer passed to varintRecordCompareInt() this makes it convenient to
5118 ** limit the size of the header to 64 bytes in cases where the first field
5119 ** is an integer.
5121 ** The easiest way to enforce this limit is to consider only records with
5122 ** 13 fields or less. If the first field is an integer, the maximum legal
5123 ** header size is (12*5 + 1 + 1) bytes. */
5124 if( p->pKeyInfo->nAllField<=13 ){
5125 int flags = p->aMem[0].flags;
5126 if( p->pKeyInfo->aSortFlags[0] ){
5127 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
5128 return sqlite3VdbeRecordCompare;
5130 p->r1 = 1;
5131 p->r2 = -1;
5132 }else{
5133 p->r1 = -1;
5134 p->r2 = 1;
5136 if( (flags & MEM_Int) ){
5137 p->u.i = p->aMem[0].u.i;
5138 return vdbeRecordCompareInt;
5140 testcase( flags & MEM_Real );
5141 testcase( flags & MEM_Null );
5142 testcase( flags & MEM_Blob );
5143 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
5144 && p->pKeyInfo->aColl[0]==0
5146 assert( flags & MEM_Str );
5147 p->u.z = p->aMem[0].z;
5148 p->n = p->aMem[0].n;
5149 return vdbeRecordCompareString;
5153 return sqlite3VdbeRecordCompare;
5157 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5158 ** Read the rowid (the last field in the record) and store it in *rowid.
5159 ** Return SQLITE_OK if everything works, or an error code otherwise.
5161 ** pCur might be pointing to text obtained from a corrupt database file.
5162 ** So the content cannot be trusted. Do appropriate checks on the content.
5164 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
5165 i64 nCellKey = 0;
5166 int rc;
5167 u32 szHdr; /* Size of the header */
5168 u32 typeRowid; /* Serial type of the rowid */
5169 u32 lenRowid; /* Size of the rowid */
5170 Mem m, v;
5172 /* Get the size of the index entry. Only indices entries of less
5173 ** than 2GiB are support - anything large must be database corruption.
5174 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5175 ** this code can safely assume that nCellKey is 32-bits
5177 assert( sqlite3BtreeCursorIsValid(pCur) );
5178 nCellKey = sqlite3BtreePayloadSize(pCur);
5179 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
5181 /* Read in the complete content of the index entry */
5182 sqlite3VdbeMemInit(&m, db, 0);
5183 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5184 if( rc ){
5185 return rc;
5188 /* The index entry must begin with a header size */
5189 getVarint32NR((u8*)m.z, szHdr);
5190 testcase( szHdr==3 );
5191 testcase( szHdr==(u32)m.n );
5192 testcase( szHdr>0x7fffffff );
5193 assert( m.n>=0 );
5194 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
5195 goto idx_rowid_corruption;
5198 /* The last field of the index should be an integer - the ROWID.
5199 ** Verify that the last entry really is an integer. */
5200 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
5201 testcase( typeRowid==1 );
5202 testcase( typeRowid==2 );
5203 testcase( typeRowid==3 );
5204 testcase( typeRowid==4 );
5205 testcase( typeRowid==5 );
5206 testcase( typeRowid==6 );
5207 testcase( typeRowid==8 );
5208 testcase( typeRowid==9 );
5209 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
5210 goto idx_rowid_corruption;
5212 lenRowid = sqlite3SmallTypeSizes[typeRowid];
5213 testcase( (u32)m.n==szHdr+lenRowid );
5214 if( unlikely((u32)m.n<szHdr+lenRowid) ){
5215 goto idx_rowid_corruption;
5218 /* Fetch the integer off the end of the index record */
5219 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
5220 *rowid = v.u.i;
5221 sqlite3VdbeMemReleaseMalloc(&m);
5222 return SQLITE_OK;
5224 /* Jump here if database corruption is detected after m has been
5225 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5226 idx_rowid_corruption:
5227 testcase( m.szMalloc!=0 );
5228 sqlite3VdbeMemReleaseMalloc(&m);
5229 return SQLITE_CORRUPT_BKPT;
5233 ** Compare the key of the index entry that cursor pC is pointing to against
5234 ** the key string in pUnpacked. Write into *pRes a number
5235 ** that is negative, zero, or positive if pC is less than, equal to,
5236 ** or greater than pUnpacked. Return SQLITE_OK on success.
5238 ** pUnpacked is either created without a rowid or is truncated so that it
5239 ** omits the rowid at the end. The rowid at the end of the index entry
5240 ** is ignored as well. Hence, this routine only compares the prefixes
5241 ** of the keys prior to the final rowid, not the entire key.
5243 int sqlite3VdbeIdxKeyCompare(
5244 sqlite3 *db, /* Database connection */
5245 VdbeCursor *pC, /* The cursor to compare against */
5246 UnpackedRecord *pUnpacked, /* Unpacked version of key */
5247 int *res /* Write the comparison result here */
5249 i64 nCellKey = 0;
5250 int rc;
5251 BtCursor *pCur;
5252 Mem m;
5254 assert( pC->eCurType==CURTYPE_BTREE );
5255 pCur = pC->uc.pCursor;
5256 assert( sqlite3BtreeCursorIsValid(pCur) );
5257 nCellKey = sqlite3BtreePayloadSize(pCur);
5258 /* nCellKey will always be between 0 and 0xffffffff because of the way
5259 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5260 if( nCellKey<=0 || nCellKey>0x7fffffff ){
5261 *res = 0;
5262 return SQLITE_CORRUPT_BKPT;
5264 sqlite3VdbeMemInit(&m, db, 0);
5265 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5266 if( rc ){
5267 return rc;
5269 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5270 sqlite3VdbeMemReleaseMalloc(&m);
5271 return SQLITE_OK;
5275 ** This routine sets the value to be returned by subsequent calls to
5276 ** sqlite3_changes() on the database handle 'db'.
5278 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5279 assert( sqlite3_mutex_held(db->mutex) );
5280 db->nChange = nChange;
5281 db->nTotalChange += nChange;
5285 ** Set a flag in the vdbe to update the change counter when it is finalised
5286 ** or reset.
5288 void sqlite3VdbeCountChanges(Vdbe *v){
5289 v->changeCntOn = 1;
5293 ** Mark every prepared statement associated with a database connection
5294 ** as expired.
5296 ** An expired statement means that recompilation of the statement is
5297 ** recommend. Statements expire when things happen that make their
5298 ** programs obsolete. Removing user-defined functions or collating
5299 ** sequences, or changing an authorization function are the types of
5300 ** things that make prepared statements obsolete.
5302 ** If iCode is 1, then expiration is advisory. The statement should
5303 ** be reprepared before being restarted, but if it is already running
5304 ** it is allowed to run to completion.
5306 ** Internally, this function just sets the Vdbe.expired flag on all
5307 ** prepared statements. The flag is set to 1 for an immediate expiration
5308 ** and set to 2 for an advisory expiration.
5310 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5311 Vdbe *p;
5312 for(p = db->pVdbe; p; p=p->pVNext){
5313 p->expired = iCode+1;
5318 ** Return the database associated with the Vdbe.
5320 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5321 return v->db;
5325 ** Return the SQLITE_PREPARE flags for a Vdbe.
5327 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5328 return v->prepFlags;
5332 ** Return a pointer to an sqlite3_value structure containing the value bound
5333 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5334 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5335 ** constants) to the value before returning it.
5337 ** The returned value must be freed by the caller using sqlite3ValueFree().
5339 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5340 assert( iVar>0 );
5341 if( v ){
5342 Mem *pMem = &v->aVar[iVar-1];
5343 assert( (v->db->flags & SQLITE_EnableQPSG)==0
5344 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 );
5345 if( 0==(pMem->flags & MEM_Null) ){
5346 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5347 if( pRet ){
5348 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5349 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5351 return pRet;
5354 return 0;
5358 ** Configure SQL variable iVar so that binding a new value to it signals
5359 ** to sqlite3_reoptimize() that re-preparing the statement may result
5360 ** in a better query plan.
5362 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5363 assert( iVar>0 );
5364 assert( (v->db->flags & SQLITE_EnableQPSG)==0
5365 || (v->db->mDbFlags & DBFLAG_InternalFunc)!=0 );
5366 if( iVar>=32 ){
5367 v->expmask |= 0x80000000;
5368 }else{
5369 v->expmask |= ((u32)1 << (iVar-1));
5374 ** Cause a function to throw an error if it was call from OP_PureFunc
5375 ** rather than OP_Function.
5377 ** OP_PureFunc means that the function must be deterministic, and should
5378 ** throw an error if it is given inputs that would make it non-deterministic.
5379 ** This routine is invoked by date/time functions that use non-deterministic
5380 ** features such as 'now'.
5382 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5383 const VdbeOp *pOp;
5384 #ifdef SQLITE_ENABLE_STAT4
5385 if( pCtx->pVdbe==0 ) return 1;
5386 #endif
5387 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5388 if( pOp->opcode==OP_PureFunc ){
5389 const char *zContext;
5390 char *zMsg;
5391 if( pOp->p5 & NC_IsCheck ){
5392 zContext = "a CHECK constraint";
5393 }else if( pOp->p5 & NC_GenCol ){
5394 zContext = "a generated column";
5395 }else{
5396 zContext = "an index";
5398 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5399 pCtx->pFunc->zName, zContext);
5400 sqlite3_result_error(pCtx, zMsg, -1);
5401 sqlite3_free(zMsg);
5402 return 0;
5404 return 1;
5407 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
5409 ** This Walker callback is used to help verify that calls to
5410 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
5411 ** byte-code register values correctly initialized.
5413 int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){
5414 if( pExpr->op==TK_REGISTER ){
5415 assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 );
5417 return WRC_Continue;
5419 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
5421 #ifndef SQLITE_OMIT_VIRTUALTABLE
5423 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5424 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5425 ** in memory obtained from sqlite3DbMalloc).
5427 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5428 if( pVtab->zErrMsg ){
5429 sqlite3 *db = p->db;
5430 sqlite3DbFree(db, p->zErrMsg);
5431 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5432 sqlite3_free(pVtab->zErrMsg);
5433 pVtab->zErrMsg = 0;
5436 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5438 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5441 ** If the second argument is not NULL, release any allocations associated
5442 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5443 ** structure itself, using sqlite3DbFree().
5445 ** This function is used to free UnpackedRecord structures allocated by
5446 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5448 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5449 assert( db!=0 );
5450 if( p ){
5451 int i;
5452 for(i=0; i<nField; i++){
5453 Mem *pMem = &p->aMem[i];
5454 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5456 sqlite3DbNNFreeNN(db, p);
5459 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5461 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5463 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5464 ** then cursor passed as the second argument should point to the row about
5465 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5466 ** the required value will be read from the row the cursor points to.
5468 void sqlite3VdbePreUpdateHook(
5469 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5470 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5471 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5472 const char *zDb, /* Database name */
5473 Table *pTab, /* Modified table */
5474 i64 iKey1, /* Initial key value */
5475 int iReg, /* Register for new.* record */
5476 int iBlobWrite
5478 sqlite3 *db = v->db;
5479 i64 iKey2;
5480 PreUpdate preupdate;
5481 const char *zTbl = pTab->zName;
5482 static const u8 fakeSortOrder = 0;
5483 #ifdef SQLITE_DEBUG
5484 int nRealCol;
5485 if( pTab->tabFlags & TF_WithoutRowid ){
5486 nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn;
5487 }else if( pTab->tabFlags & TF_HasVirtual ){
5488 nRealCol = pTab->nNVCol;
5489 }else{
5490 nRealCol = pTab->nCol;
5492 #endif
5494 assert( db->pPreUpdate==0 );
5495 memset(&preupdate, 0, sizeof(PreUpdate));
5496 if( HasRowid(pTab)==0 ){
5497 iKey1 = iKey2 = 0;
5498 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5499 }else{
5500 if( op==SQLITE_UPDATE ){
5501 iKey2 = v->aMem[iReg].u.i;
5502 }else{
5503 iKey2 = iKey1;
5507 assert( pCsr!=0 );
5508 assert( pCsr->eCurType==CURTYPE_BTREE );
5509 assert( pCsr->nField==nRealCol
5510 || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1)
5513 preupdate.v = v;
5514 preupdate.pCsr = pCsr;
5515 preupdate.op = op;
5516 preupdate.iNewReg = iReg;
5517 preupdate.keyinfo.db = db;
5518 preupdate.keyinfo.enc = ENC(db);
5519 preupdate.keyinfo.nKeyField = pTab->nCol;
5520 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5521 preupdate.iKey1 = iKey1;
5522 preupdate.iKey2 = iKey2;
5523 preupdate.pTab = pTab;
5524 preupdate.iBlobWrite = iBlobWrite;
5526 db->pPreUpdate = &preupdate;
5527 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5528 db->pPreUpdate = 0;
5529 sqlite3DbFree(db, preupdate.aRecord);
5530 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5531 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5532 if( preupdate.aNew ){
5533 int i;
5534 for(i=0; i<pCsr->nField; i++){
5535 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5537 sqlite3DbNNFreeNN(db, preupdate.aNew);
5539 if( preupdate.apDflt ){
5540 int i;
5541 for(i=0; i<pTab->nCol; i++){
5542 sqlite3ValueFree(preupdate.apDflt[i]);
5544 sqlite3DbFree(db, preupdate.apDflt);
5547 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */