sclang: shm interface - fix Bus-setSynchronous
[supercollider.git] / Help / Math / Complex.html
blob84bddc73e474778c7d25ab1c71b6130789690572
1 <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd">
2 <html>
3 <head>
4 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
5 <meta http-equiv="Content-Style-Type" content="text/css">
6 <title></title>
7 <meta name="Generator" content="Cocoa HTML Writer">
8 <meta name="CocoaVersion" content="1038.32">
9 <style type="text/css">
10 p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
11 p.p2 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica; min-height: 14.0px}
12 p.p3 {margin: 0.0px 0.0px 0.0px 57.0px; text-indent: -57.0px; font: 12.0px Helvetica; min-height: 14.0px}
13 p.p4 {margin: 0.0px 0.0px 0.0px 57.0px; text-indent: -57.0px; font: 14.0px Helvetica}
14 p.p5 {margin: 0.0px 0.0px 0.0px 57.0px; text-indent: -57.0px; font: 12.0px Helvetica}
15 p.p6 {margin: 0.0px 0.0px 0.0px 57.0px; text-indent: -57.0px; font: 9.0px Monaco; min-height: 12.0px}
16 p.p7 {margin: 0.0px 0.0px 0.0px 57.0px; text-indent: -57.0px; font: 9.0px Monaco}
17 p.p8 {margin: 0.0px 0.0px 0.0px 57.0px; text-indent: -57.0px; font: 9.0px Monaco; color: #cd1612}
18 p.p9 {margin: 0.0px 0.0px 0.0px 57.0px; text-indent: -57.0px; font: 9.0px Monaco; color: #ad140d}
19 span.s1 {font: 18.0px Helvetica}
20 span.s2 {text-decoration: underline ; color: #0000ee}
21 span.s3 {color: #1135f9}
22 span.s4 {color: #001bb9}
23 span.s5 {color: #0b28c6}
24 span.s6 {font: 12.0px Helvetica}
25 span.s7 {color: #0b28c5}
26 span.s8 {font: 9.0px Monaco}
27 span.s9 {color: #102bc6}
28 span.s10 {color: #102ac2}
29 span.s11 {color: #cd1713}
30 span.s12 {color: #000000}
31 span.s13 {color: #102bc5}
32 span.s14 {color: #606060}
33 span.Apple-tab-span {white-space:pre}
34 </style>
35 </head>
36 <body>
37 <p class="p1"><span class="s1"><b>Complex<span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></b></span><b>complex number</b></p>
38 <p class="p2"><br></p>
39 <p class="p1"><b>inherits from:</b> <a href="../Core/Object.html"><span class="s2">Object</span></a> :<b> </b><a href="Magnitude.html"><span class="s3">Magnitude</span></a><span class="s3"> :</span><b> </b><a href="Number.html"><span class="s4">Number</span></a></p>
40 <p class="p2"><br></p>
41 <p class="p1">A class representing complex numbers.</p>
42 <p class="p2"><br></p>
43 <p class="p1">Note that this is a simplified representation of a complex number, which does not implement the full mathematical notion of a complex number.<span class="Apple-converted-space"> </span></p>
44 <p class="p2"><br></p>
45 <p class="p3"><br></p>
46 <p class="p4"><b>Creation</b></p>
47 <p class="p3"><br></p>
48 <p class="p5"><b>new(real, imag)</b></p>
49 <p class="p3"><br></p>
50 <p class="p5"><span class="Apple-tab-span"> </span>Create a new complex number with the given real and imaginary parts.</p>
51 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
52 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>a = <span class="s5">Complex</span>(2, 5);</p>
53 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>a.real;</p>
54 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>a.imag;</p>
55 <p class="p3"><br></p>
56 <p class="p3"><br></p>
57 <p class="p4"><b>Accessing</b></p>
58 <p class="p3"><br></p>
59 <p class="p5"><b><span class="Apple-tab-span"> </span>real</b></p>
60 <p class="p5"><b><span class="Apple-tab-span"> </span>real_(val)</b></p>
61 <p class="p3"><span class="Apple-tab-span"> </span></p>
62 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>The real part of the number.</p>
63 <p class="p3"><span class="Apple-tab-span"> </span></p>
64 <p class="p5"><span class="Apple-tab-span"> </span><b>imag<span class="Apple-converted-space"> </span></b></p>
65 <p class="p5"><b><span class="Apple-tab-span"> </span>imag_(val)</b></p>
66 <p class="p3"><span class="Apple-tab-span"> </span></p>
67 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>The imaginary part of the number.</p>
68 <p class="p3"><span class="Apple-tab-span"> </span></p>
69 <p class="p3"><span class="Apple-tab-span"> </span></p>
70 <p class="p3"><br></p>
71 <p class="p4"><b>Math</b></p>
72 <p class="p3"><br></p>
73 <p class="p5"><b><span class="Apple-tab-span"> </span>+ aNumber</b></p>
74 <p class="p3"><span class="Apple-tab-span"> </span></p>
75 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Complex addition.</p>
76 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
77 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s7">Complex</span>(2, 9) + <span class="s7">Complex</span>(-6, 2)</p>
78 <p class="p3"><span class="Apple-tab-span"> </span></p>
79 <p class="p5"><span class="Apple-tab-span"> </span><b>- aNumber</b></p>
80 <p class="p3"><span class="Apple-tab-span"> </span></p>
81 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Complex subtraction.</p>
82 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
83 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s7">Complex</span>(2, 9) - <span class="s7">Complex</span>(-6, 2)</p>
84 <p class="p3"><span class="Apple-tab-span"> </span></p>
85 <p class="p5"><span class="Apple-tab-span"> </span><b>* aNumber</b></p>
86 <p class="p3"><span class="Apple-tab-span"> </span></p>
87 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Complex multiplication.</p>
88 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
89 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s7">Complex</span>(2, 9) * <span class="s7">Complex</span>(-6, 2)</p>
90 <p class="p3"><span class="Apple-tab-span"> </span></p>
91 <p class="p5"><span class="Apple-tab-span"> </span><b>/ aNumber</b></p>
92 <p class="p3"><span class="Apple-tab-span"> </span></p>
93 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Complex division.</p>
94 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
95 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s7">Complex</span>(2, 9) / <span class="s7">Complex</span>(-6, 2)</p>
96 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
97 <p class="p5"><span class="s8"><span class="Apple-tab-span"> </span></span><b>** aNumber</b></p>
98 <p class="p3"><span class="Apple-tab-span"> </span></p>
99 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Complex exponentiation (not implemented for all combinations - some are mathematically ambiguous).</p>
100 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
101 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="s9">Complex</span>(0, 2) ** 6</p>
102 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>2.3 ** <span class="s5">Complex</span>(0, 2)</p>
103 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="s10">Complex</span>(2, 9) ** 1.2 <span class="s11">// not defined</span></p>
104 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
105 <p class="p5"><span class="s8"><span class="Apple-tab-span"> </span></span><b>exp(aNumber)</b></p>
106 <p class="p3"><span class="Apple-tab-span"> </span></p>
107 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Complex exponentiation with base <b>e</b>.</p>
108 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
109 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>exp(<span class="s5">Complex</span>(2, 9))</p>
110 <p class="p8"><span class="s12"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>exp(</span><span class="s5">Complex</span><span class="s12">(0, pi)) == -1 </span>// Euler's formula: true</p>
111 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
112 <p class="p5"><span class="Apple-tab-span"> </span><b>squared</b></p>
113 <p class="p3"><span class="Apple-tab-span"> </span></p>
114 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Complex self multiplication.</p>
115 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
116 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>squared(<span class="s7">Complex</span>(2, 1))</p>
117 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
118 <p class="p5"><span class="s8"><span class="Apple-tab-span"> </span></span><b>cubed</b></p>
119 <p class="p3"><span class="Apple-tab-span"> </span></p>
120 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Complex double self multiplication.</p>
121 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
122 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>squared(<span class="s7">Complex</span>(2, 1))</p>
123 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
124 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
125 <p class="p5"><span class="Apple-tab-span"> </span><b>&lt; aNumber</b></p>
126 <p class="p3"><span class="Apple-tab-span"> </span></p>
127 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer the comparison of just the real parts.</p>
128 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
129 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s5">Complex</span>(2, 9) &lt; <span class="s5">Complex</span>(5, 1);</p>
130 <p class="p3"><span class="Apple-tab-span"> </span></p>
131 <p class="p5"><span class="Apple-tab-span"> </span><b>== aNumber</b></p>
132 <p class="p3"><span class="Apple-tab-span"> </span></p>
133 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer the comparison assuming that the reals (floats) are fully embedded in the complex numbers<span class="Apple-converted-space"> </span></p>
134 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
135 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s5">Complex</span>(1, 0) == 1;</p>
136 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="s5">Complex</span>(1, 5) == <span class="s5">Complex</span>(1, 5);</p>
137 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
138 <p class="p5"><span class="Apple-tab-span"> </span><b>neg</b></p>
139 <p class="p3"><span class="Apple-tab-span"> </span></p>
140 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Negation of both parts.</p>
141 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
142 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s7">Complex</span>(2, 9).neg</p>
143 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
144 <p class="p5"><span class="s8"><span class="Apple-tab-span"> </span></span><b>abs</b></p>
145 <p class="p3"><span class="Apple-tab-span"> </span></p>
146 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>The absoulte value of a complex number is its magnitude.</p>
147 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
148 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s13">Complex</span>(3, 4).abs</p>
149 <p class="p3"><span class="Apple-tab-span"> </span></p>
150 <p class="p5"><span class="Apple-tab-span"> </span><b>conjugate</b></p>
151 <p class="p3"><span class="Apple-tab-span"> </span></p>
152 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer the complex conjugate.</p>
153 <p class="p3"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></p>
154 <p class="p7"><span class="s6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span></span><span class="s7">Complex</span>(2, 9).conjugate</p>
155 <p class="p3"><br></p>
156 <p class="p3"><br></p>
157 <p class="p4"><b>Conversion</b></p>
158 <p class="p3"><br></p>
159 <p class="p5"><b><span class="Apple-tab-span"> </span>magnitude</b></p>
160 <p class="p3"><span class="Apple-tab-span"> </span></p>
161 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer the distance to the origin.</p>
162 <p class="p3"><span class="Apple-tab-span"> </span></p>
163 <p class="p5"><span class="Apple-tab-span"> </span><b>rho</b></p>
164 <p class="p3"><span class="Apple-tab-span"> </span></p>
165 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer the distance to the origin.</p>
166 <p class="p3"><span class="Apple-tab-span"> </span></p>
167 <p class="p5"><span class="Apple-tab-span"> </span><b>angle</b></p>
168 <p class="p3"><span class="Apple-tab-span"> </span></p>
169 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer the angle in radians.</p>
170 <p class="p3"><span class="Apple-tab-span"> </span></p>
171 <p class="p5"><span class="Apple-tab-span"> </span><b>phase</b></p>
172 <p class="p3"><span class="Apple-tab-span"> </span></p>
173 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer the angle in radians.</p>
174 <p class="p3"><span class="Apple-tab-span"> </span></p>
175 <p class="p5"><span class="Apple-tab-span"> </span><b>theta</b></p>
176 <p class="p3"><span class="Apple-tab-span"> </span></p>
177 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer the angle in radians.</p>
178 <p class="p3"><span class="Apple-tab-span"> </span></p>
179 <p class="p5"><span class="Apple-tab-span"> </span><b>asPoint</b></p>
180 <p class="p3"><span class="Apple-tab-span"> </span></p>
181 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Convert to a <a href="../Geometry/Point.html"><span class="s3">Point</span></a>.</p>
182 <p class="p3"><span class="Apple-tab-span"> </span></p>
183 <p class="p5"><span class="Apple-tab-span"> </span><b>asPolar</b></p>
184 <p class="p3"><span class="Apple-tab-span"> </span></p>
185 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Convert to a <a href="Polar.html"><span class="s3">Polar</span></a></p>
186 <p class="p3"><span class="Apple-tab-span"> </span></p>
187 <p class="p5"><span class="Apple-tab-span"> </span><b>asInteger</b></p>
188 <p class="p3"><span class="Apple-tab-span"> </span></p>
189 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer real part as <a href="Integer.html"><span class="s3">Integer</span></a>.</p>
190 <p class="p3"><span class="Apple-tab-span"> </span></p>
191 <p class="p5"><span class="Apple-tab-span"> </span><b>asFloat</b></p>
192 <p class="p3"><span class="Apple-tab-span"> </span></p>
193 <p class="p5"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>Answer real part as <a href="Float.html"><span class="s3">Float</span></a>.</p>
194 <p class="p3"><span class="Apple-tab-span"> </span></p>
195 <p class="p3"><br></p>
196 <p class="p3"><br></p>
197 <p class="p3"><br></p>
198 <p class="p9">// example</p>
199 <p class="p6"><br></p>
200 <p class="p7">a = <span class="s4">Complex</span>(0, 1);</p>
201 <p class="p9"><span class="s12">a * a; </span>// returns Complex(-1, 0);</p>
202 <p class="p6"><br></p>
203 <p class="p9">// julia set approximation</p>
204 <p class="p7">f = { <span class="s4">|z|</span> z * z + <span class="s4">Complex</span>(0.70176, 0.3842) };</p>
205 <p class="p6"><br></p>
206 <p class="p7">(</p>
207 <p class="p7"><span class="Apple-tab-span"> </span><span class="s4">var</span> n = 80, xs = 400, ys = 400, dx = xs / n, dy = ys / n, zoom = 3, offset = -0.5;</p>
208 <p class="p7"><span class="Apple-tab-span"> </span><span class="s4">var</span> field = { <span class="s4">|x|</span> { <span class="s4">|y|</span> <span class="s4">Complex</span>(x / n + offset * zoom, y / n + offset * zoom) } ! n } ! n;</p>
209 <p class="p7"><span class="Apple-tab-span"> </span>w = <span class="s4">Window</span>(<span class="s14">"Julia set"</span>, bounds:<span class="s4">Rect</span>(200, 200, xs, ys)).front;</p>
210 <p class="p7"><span class="Apple-tab-span"> </span>w.view.background_(<span class="s4">Color</span>.black);</p>
211 <p class="p6"><span class="Apple-tab-span"> </span></p>
212 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>w.drawHook = {</p>
213 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>n.do { <span class="s4">|x|</span></p>
214 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>n.do { <span class="s4">|y|</span></p>
215 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="s4">var</span> z = field[x][y];</p>
216 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>z = f.(z);</p>
217 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>field[x][y] = z;</p>
218 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="s4">Pen</span>.color = <span class="s4">Color</span>.gray(z.rho.linlin(-100, 100, 1, 0));</p>
219 <p class="p6"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-converted-space"> </span></p>
220 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="s4">Pen</span>.addRect(</p>
221 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="s4">Rect</span>(x * dx, y * dy, dx, dy)</p>
222 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>);</p>
223 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="s4">Pen</span>.fill</p>
224 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>}</p>
225 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>}</p>
226 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>};</p>
227 <p class="p7"><span class="Apple-tab-span"> </span><span class="Apple-tab-span"> </span>fork({ 6.do { w.refresh; 2.wait } }, <span class="s4">AppClock</span>)</p>
228 <p class="p7">)</p>
229 <p class="p6"><br></p>
230 <p class="p6"><br></p>
231 <p class="p6"><br></p>
232 <p class="p3"><br></p>
233 </body>
234 </html>