scide: implement selectionLength for openDocument
[supercollider.git] / HelpSource / Classes / Onsets.schelp
blob85dcedc386663ba592229b9e24374567a747d547
1 class:: Onsets
2 summary:: Onset detector
3 categories:: UGens>Analysis
4 related:: Classes/BeatTrack, Classes/Loudness, Classes/MFCC, Classes/Pitch, Classes/KeyTrack
6 description::
7 An onset detector for musical audio signals - detects the beginning of notes/drumbeats/etc. Outputs a control-rate trigger signal which is 1 when an onset is detected, and 0 otherwise.
9 For more details of all the processes involved, the different onset detection functions, and their evaluation, see:
11 D. Stowell and M. D. Plumbley. Adaptive whitening for improved real-time audio onset detection. emphasis::Proceedings of the International Computer Music Conference (ICMC'07)::, Copenhagen, Denmark, August 2007. [http://www.elec.qmul.ac.uk/digitalmusic/papers/2007/StowellPlumbley07-icmc.pdf]
13 classmethods::
14 private:: categories
16 method:: kr
18 argument:: chain
19 an FFT chain.
20 argument:: threshold
21 the detection threshold, typically between 0 and 1, although in rare cases you may find values outside this range useful.
22 argument:: odftype
23 chooses which emphasis::onset detection function:: is used. In many cases the default will be fine. The following choices are available:
25 definitionlist::
26 ## code::\power:: || generally OK, good for percussive input, and also very efficient
27 ## code::\magsum:: || generally OK, good for percussive input, and also very efficient
28 ## code::\complex:: || performs generally very well, but more CPU-intensive
29 ## code::\rcomplex:: || performs generally very well, and slightly more efficient than code::\complex::
30 ## code::\phase:: || generally good, especially for tonal input, medium efficiency
31 ## code::\wphase:: || generally very good, especially for tonal input, medium efficiency
32 ## code::\mkl:: || generally very good, medium efficiency, pretty different from the other methods
35 discussion::
36 For the FFT chain, you should typically use a frame size of 512 or 1024 (at 44.1 kHz sampling rate) and 50% hop size (which is the default setting in SC). For different sampling rates choose an FFT size to cover a similar time-span (around 10 to 20 ms).
38 The onset detection should work well for a general range of monophonic and polyphonic audio signals. The onset detection is purely based on signal analysis and does not make use of any "top-down" inferences such as tempo.
40 Which onset detection function should you choose? The differences aren't large, so I'd recommend you stick with the default code::\rcomplex:: unless you find specific problems with it. Then maybe try code::\wphase::. The code::\mkl:: type is a bit different from the others so maybe try that too. They all have slightly different characteristics, and in tests perform at a similar quality level.
42 subsection:: Advanced features
44 Further options are available, which you are welcome to explore if you want. They are numbers that modulate the behaviour of the onset detector:
46 list::
47 ## strong::relaxtime:: and strong::floor:: are parameters to the whitening process used, a kind of normalisation of the FFT signal. (Note: in \mkl mode these are not used.)
48         list::
49         ## strong::relaxtime:: specifies the time (in seconds) for the normalisation to "forget" about a recent onset. If you find too much re-triggering (e.g. as a note dies away unevenly) then you might wish to increase this value.
50         ## strong::floor:: is a lower limit, connected to the idea of how quiet the sound is expected to get without becoming indistinguishable from noise. For some cleanly-recorded classical music with wide dynamic variations, I found it helpful to go down as far as 0.000001.
51         ::
52 ## strong::mingap:: specifies a minimum gap (in FFT frames) between onset detections, a brute-force way to prevent too many doubled detections.
53 ## strong::medianspan:: specifies the size (in FFT frames) of the median window used for smoothing the detection function before triggering.
56 examples::
57 code::
59 s.boot.doWhenBooted {
60         // Prepare the buffers
61         b = Buffer.alloc(s, 512);
62         // Feel free to load a more interesting clip!
63         // a11wlk01 is not an ideal example of musical onsets.
64         d = Buffer.read(s, Platform.resourceDir +/+ "sounds/a11wlk01.wav");
68 ////////////////////////////////////////////////////////////////////////////////////////////////
69 // Move the mouse to vary the threshold
71 x = {
72         var sig, chain, onsets, pips;
74         // A simple generative signal
75         sig = LPF.ar(Pulse.ar(TIRand.kr(63, 75, Impulse.kr(2)).midicps), LFNoise2.kr(0.5).exprange(100, 10000)) * Saw.ar(2).range(0, 1);
76         // or, uncomment this line if you want to play the buffer in
77         //sig = PlayBuf.ar(1, d, BufRateScale.kr(d), loop: 1);
79         chain = FFT(b, sig);
81         onsets = Onsets.kr(chain, MouseX.kr(0,1), \rcomplex);
83         // You'll hear percussive "ticks" whenever an onset is detected
84         pips = WhiteNoise.ar(EnvGen.kr(Env.perc(0.001, 0.1, 0.2), onsets));
85         Out.ar(0, Pan2.ar(sig, -0.75, 0.2) + Pan2.ar(pips, 0.75, 1));
86 }.play;
88 x.free; // Free the synth
90 ////////////////////////////////////////////////////////////////////////////////////////////////
91 // Or we could expand this multichannel, run a series of different thresholds at the same time,
92 // to sonify the effect of the threshold value.
93 // A little hard to listen to at first: try and identify a pitch at which the best sort of
94 // detection is happening.
95 // You'll hear "bobbling" at low pitches where the threshold is definitely too low.
98 var threshes = (0.1, 0.2 .. 1);
99 x = {
100         var sig, chain, onsets, pips;
102         // A simple generative signal
103         sig = LPF.ar(Pulse.ar(TIRand.kr(63, 75, Impulse.kr(2)).midicps), LFNoise2.kr(0.5).exprange(100, 10000)) * Saw.ar(2).range(0, 1);
104         // or, uncomment this line if you want to play the buffer in
105         //sig = PlayBuf.ar(1, d, BufRateScale.kr(d), loop: 1);
107         chain = FFT(b, sig);
109         onsets = Onsets.kr(chain, threshes, \rcomplex);
111         // Generate pips at a variety of pitches
112         pips = SinOsc.ar((threshes).linexp(0, 1, 440, 3520), 0, EnvGen.kr(Env.perc(0.001, 0.1, 0.5), onsets)).mean;
113         Out.ar(0, Pan2.ar(sig, -0.75, 0.2) + Pan2.ar(pips, 0.75, 1));
114 }.play;
117 x.free; // Free the synth
118 [b, d].do(_.free); // Free the buffers