3 Part of the swftools package.
5 Copyright (c) 2001,2002,2003,2004 Matthias Kramm <kramm@quiss.org>
7 This program is rfx_free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the rfx_free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the rfx_free Software
19 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
32 // ------------------------------- malloc, alloc routines ---------------------
35 char* strdup_n(const char*str
, int size
)
37 char*m
= (char*)rfx_alloc(size
+1);
43 char*qstrdup(const char*string
)
45 return strdup(string
);
47 char*qstrndup(const char*string
, int len
)
49 return strdup_n(string
, len
);
51 char* allocprintf(const char*format
, ...)
54 va_start(arglist1
, format
);
56 int l
= vsnprintf(&dummy
, 1, format
, arglist1
);
60 va_start(arglist2
, format
);
61 char*buf
= malloc(l
+1);
62 vsnprintf(buf
, l
+1, format
, arglist2
);
67 // ------------------------------- mem_t --------------------------------------
69 void mem_init(mem_t
*mem
)
71 memset(mem
, 0, sizeof(mem_t
));
73 void mem_clear(mem_t
*mem
)
75 rfx_free(mem
->buffer
);mem
->buffer
= 0;
77 void mem_destroy(mem_t
*mem
)
82 static int mem_put_(mem_t
*m
,const void*data
, int length
, int null
)
85 m
->pos
+= length
+ (null
?1:0);
87 int v1
= (m
->pos
+63)&~63;
88 int v2
= m
->len
+ m
->len
/ 2;
90 m
->buffer
= m
->buffer
?(char*)rfx_realloc(m
->buffer
,m
->len
):(char*)rfx_alloc(m
->len
);
92 assert(n
+length
<= m
->len
);
93 memcpy(&m
->buffer
[n
], data
, length
);
95 m
->buffer
[n
+ length
] = 0;
98 int mem_put(mem_t
*m
,void*data
, int length
)
100 return mem_put_(m
, data
, length
, 0);
102 int mem_putstring(mem_t
*m
,string_t str
)
104 return mem_put_(m
, str
.str
, str
.len
, 1);
106 int mem_get(mem_t
*m
, void*data
, int length
)
108 if(m
->read_pos
+ length
> m
->pos
) {
109 length
= m
->pos
- m
->read_pos
;
111 memcpy(data
, m
->buffer
+m
->read_pos
, length
);
112 m
->read_pos
+= length
;
116 // ------------------------------- ringbuffer_t -------------------------------
118 typedef struct _ringbuffer_internal_t
120 unsigned char*buffer
;
124 } ringbuffer_internal_t
;
126 void ringbuffer_init(ringbuffer_t
*r
)
128 ringbuffer_internal_t
*i
= (ringbuffer_internal_t
*)rfx_calloc(sizeof(ringbuffer_internal_t
));
129 memset(r
, 0, sizeof(ringbuffer_t
));
131 i
->buffer
= (unsigned char*)rfx_alloc(1024);
132 i
->buffersize
= 1024;
134 int ringbuffer_read(ringbuffer_t
*r
, void*buf
, int len
)
136 unsigned char* data
= (unsigned char*)buf
;
137 ringbuffer_internal_t
*i
= (ringbuffer_internal_t
*)r
->internal
;
138 if(r
->available
< len
)
142 if(i
->readpos
+ len
> i
->buffersize
) {
143 int read1
= i
->buffersize
-i
->readpos
;
144 memcpy(data
, &i
->buffer
[i
->readpos
], read1
);
145 memcpy(&data
[read1
], &i
->buffer
[0], len
- read1
);
146 i
->readpos
= len
- read1
;
148 memcpy(data
, &i
->buffer
[i
->readpos
], len
);
150 i
->readpos
%= i
->buffersize
;
155 void ringbuffer_put(ringbuffer_t
*r
, void*buf
, int len
)
157 unsigned char* data
= (unsigned char*)buf
;
158 ringbuffer_internal_t
*i
= (ringbuffer_internal_t
*)r
->internal
;
160 if(i
->buffersize
- r
->available
< len
)
163 int newbuffersize
= i
->buffersize
;
164 int oldavailable
= r
->available
;
165 newbuffersize
*=3;newbuffersize
/=2; /*grow at least by 50% each time */
167 if(newbuffersize
< r
->available
+ len
)
168 newbuffersize
= r
->available
+ len
+ 1024;
170 buf2
= (unsigned char*)rfx_alloc(newbuffersize
);
171 ringbuffer_read(r
, buf2
, r
->available
);
174 i
->buffersize
= newbuffersize
;
176 i
->writepos
= oldavailable
;
177 r
->available
= oldavailable
;
179 if(i
->writepos
+ len
> i
->buffersize
) {
180 int read1
= i
->buffersize
-i
->writepos
;
181 memcpy(&i
->buffer
[i
->writepos
], data
, read1
);
182 memcpy(&i
->buffer
[0], &data
[read1
], len
- read1
);
183 i
->writepos
= len
- read1
;
185 memcpy(&i
->buffer
[i
->writepos
], data
, len
);
187 i
->writepos
%= i
->buffersize
;
191 void ringbuffer_clear(ringbuffer_t
*r
)
193 ringbuffer_internal_t
*i
= (ringbuffer_internal_t
*)r
->internal
;
194 rfx_free(i
->buffer
);i
->buffer
= 0;
198 // ------------------------------- heap_t -------------------------------
200 void heap_init(heap_t
*h
,int elem_size
, int(*compare
)(const void *, const void *))
202 memset(h
, 0, sizeof(heap_t
));
204 h
->elem_size
= elem_size
;
205 h
->compare
= compare
;
209 heap_t
* heap_new(int elem_size
, int(*compare
)(const void *, const void *))
211 heap_t
*h
= malloc(sizeof(heap_t
));
212 heap_init(h
, elem_size
, compare
);
215 heap_t
* heap_clone(heap_t
*o
)
217 heap_t
*h
= malloc(sizeof(heap_t
));
218 memcpy(h
, o
, sizeof(heap_t
));
219 h
->elements
= rfx_alloc(sizeof(void*)*h
->size
);
221 for(t
=0;t
<h
->size
;t
++) {
222 h
->elements
[t
] = rfx_alloc(h
->elem_size
);
223 memcpy(h
->elements
[t
], o
->elements
[t
], h
->elem_size
);
227 void heap_clear(heap_t
*h
)
230 for(t
=0;t
<h
->size
;t
++) {
231 rfx_free(h
->elements
[t
]);
234 rfx_free(h
->elements
);
236 void heap_destroy(heap_t
*h
)
242 #define HEAP_NODE_LARGER(h,node1,node2) ((h)->compare((node1),(node2))>0)
243 #define HEAP_NODE_SMALLER(h,node1,node2) ((h)->compare((node1),(node2))<0)
245 static void up(heap_t
*h
, int node
)
247 void*node_p
= h
->elements
[node
];
254 h
->elements
[node
] = h
->elements
[parent
];
255 } while(HEAP_NODE_SMALLER(h
, h
->elements
[parent
], node_p
));
256 h
->elements
[node
] = node_p
;
258 static void down(heap_t
*h
, int node
)
260 void*node_p
= h
->elements
[node
];
265 /* determine new child's position */
269 if(child
+1 < h
->size
&& HEAP_NODE_SMALLER(h
,h
->elements
[child
],h
->elements
[child
+1])) // search for bigger child
272 h
->elements
[node
] = h
->elements
[child
];
273 } while(HEAP_NODE_SMALLER(h
,node_p
, h
->elements
[child
]));
275 h
->elements
[node
] = node_p
;
277 void heap_put(heap_t
*h
, void*e
)
280 void*data
= rfx_alloc(h
->elem_size
);
281 memcpy(data
,e
,h
->elem_size
);
283 if(pos
>=h
->max_size
) {
284 h
->max_size
= h
->max_size
<15?15:(h
->max_size
+1)*2-1;
285 h
->elements
= (void**)rfx_realloc(h
->elements
, h
->max_size
*sizeof(void*));
286 assert(pos
<h
->max_size
);
289 h
->elements
[pos
] = data
;
292 int heap_size(heap_t
*h
)
296 void* heap_peek(heap_t
*h
)
300 return h
->elements
[0];
302 void* heap_chopmax(heap_t
*h
)
306 void*p
= h
->elements
[0];
307 h
->elements
[0] = h
->elements
[--h
->size
];
311 void heap_dump(heap_t
*h
, FILE*fi
)
314 for(t
=0;t
<h
->size
;t
++) {
316 for(s
=0;s
<=t
;s
=(s
+1)*2-1) {
317 if(s
==t
) fprintf(fi
,"\n");
319 //fprintf(fi,"%d ", h->elements[t]->x); //?
322 void** heap_flatten(heap_t
*h
)
324 void**nodes
= (void**)rfx_alloc((h
->size
+1)*sizeof(void*));
328 /*printf("Heap Size: %d\n", h->size);
329 heap_print(stdout, h);
331 *p
++ = heap_chopmax(h
);
337 // ------------------------------- trie --------------------------------------
341 return (trie_t
*)rfx_calloc(sizeof(trie_t
));
343 static char _trie_put(trielayer_t
**t
, unsigned const char*id
, void*data
)
346 (*t
) = rfx_calloc(sizeof(trielayer_t
));
347 (*t
)->rest
= (unsigned char*)strdup(id
);
351 if((*t
)->rest
&& (*t
)->rest
[0]) {
352 // make room: shift whatever's currently in here one node down
353 _trie_put(&(*t
)->row
[(*t
)->rest
[0]], (*t
)->rest
+1, (*t
)->data
);
357 return _trie_put(&(*t
)->row
[id
[0]], id
+1, data
);
362 (*t
)->rest
= strdup("");
367 static char _trie_remove(trielayer_t
*t
, unsigned const char*id
)
370 if(t
->rest
&& !strcmp(t
->rest
, id
)) {
382 static void trie_rollback_removes(trie_t
*t
, unsigned const char*id
, void*data
);
383 static void trie_rollback_adds(trie_t
*t
, unsigned const char*id
, void*data
);
385 void trie_put(trie_t
*t
, unsigned const char*id
, void*data
)
388 _trie_put(&t
->start
, id
, data
);
390 char contains
= trie_contains(t
, id
);
391 void*olddata
= contains
?trie_lookup(t
, id
):0;
392 _trie_put(&t
->start
, id
, data
);
394 trie_rollback_adds(t
, id
, olddata
);
396 trie_rollback_removes(t
, id
, data
);
399 char trie_remove(trie_t
*t
, unsigned const char*id
)
402 return _trie_remove(t
->start
, id
);
404 void*olddata
= trie_lookup(t
, id
);
405 char exists
= _trie_remove(t
->start
, id
);
407 trie_rollback_adds(t
, id
, olddata
);
412 int trie_contains(trie_t
*trie
, unsigned const char*id
)
414 trielayer_t
*t
= trie
->start
;
416 if(t
->rest
&& !strcmp(t
->rest
, id
))
424 void* trie_lookup(trie_t
*trie
, unsigned const char*id
)
426 trielayer_t
*t
= trie
->start
;
428 if(t
->rest
&& !strcmp(t
->rest
, id
))
437 typedef struct _triememory
{
438 const unsigned char*key
;
441 struct _triememory
*next
;
444 typedef struct _trierollback
{
446 struct _trierollback
*prev
;
449 static void trie_rollback_adds(trie_t
*t
, unsigned const char*id
, void*data
)
451 trierollback_t
*rollback
= (trierollback_t
*)t
->rollback
;
452 triememory_t
*m
= (triememory_t
*)rfx_calloc(sizeof(triememory_t
));
456 m
->next
= rollback
->ops
;
459 static void trie_rollback_removes(trie_t
*t
, unsigned const char*id
, void*data
)
461 trierollback_t
*rollback
= (trierollback_t
*)t
->rollback
;
462 triememory_t
*m
= (triememory_t
*)rfx_calloc(sizeof(triememory_t
));
466 m
->next
= rollback
->ops
;
470 void _trie_dump(trielayer_t
*t
, char*buffer
, int pos
)
476 _trie_dump(t
->row
[i
], buffer
, pos
+1);
481 printf("%s%s %08x\n", buffer
, t
->rest
, t
->data
);
485 void trie_dump(trie_t
*t
)
488 _trie_dump(t
->start
, buffer
, 0);
492 void trie_remember(trie_t
*t
)
494 trierollback_t
*old
= (trierollback_t
*)t
->rollback
;
495 t
->rollback
= (trierollback_t
*)rfx_calloc(sizeof(trierollback_t
));
496 ((trierollback_t
*)t
->rollback
)->prev
= old
;
499 void trie_rollback(trie_t
*t
)
501 trierollback_t
*rollback
= (trierollback_t
*)t
->rollback
;
503 fprintf(stderr
, "Internal error: can't roll back this trie any further\n");
506 t
->rollback
= ((trierollback_t
*)t
->rollback
)->prev
;
508 triememory_t
*op
= rollback
->ops
;
510 triememory_t
*next
= op
->next
;
512 if(!_trie_remove(t
->start
, op
->key
)) {
513 fprintf(stderr
, "Internal error: can't delete key %s in trie during rollback\n", op
->key
);
516 if(_trie_put(&t
->start
, op
->key
, op
->data
)) {
517 fprintf(stderr
, "Internal error: overwrote key %s in trie during rollback\n", op
->key
);
526 // ------------------------------- crc32 --------------------------------------
527 static unsigned int*crc32
= 0;
528 static void crc32_init(void)
533 crc32
= (unsigned int*)rfx_alloc(sizeof(unsigned int)*256);
534 for(t
=0; t
<256; t
++) {
537 for (s
= 0; s
< 8; s
++) {
538 c
= (0xedb88320L
*(c
&1)) ^ (c
>> 1);
543 // ------------------------------- string_t -----------------------------------
545 void string_set2(string_t
*str
, const char*text
, int len
)
550 void string_set(string_t
*str
, const char*text
)
553 str
->len
= strlen(text
);
559 string_t
string_new(const char*text
, int len
)
566 string_t
string_new2(const char*text
)
570 s
.len
= strlen(text
);
577 string_t
* string_new3(const char*text
, int len
)
580 string_t
*s
= malloc(sizeof(string_t
));
585 string_t
*s
= malloc(sizeof(string_t
)+len
+1);
587 s
->str
= (const char*)(s
+1);
588 memcpy((char*)s
->str
, text
, len
);
589 ((char*)s
->str
)[len
]=0;
593 string_t
* string_new4(const char*text
)
595 int l
= strlen(text
);
596 return string_new3(text
, l
);
599 void string_free(string_t
*s
)
604 if((string_t
*)(s
->str
) == s
+1) {
608 rfx_free((char*)(s
->str
));
613 char* string_cstr(string_t
*str
)
615 return strdup_n(str
->str
, str
->len
);
617 char* string_escape(string_t
*str
)
621 for(t
=0;t
<str
->len
;t
++) {
627 char*s
= malloc(len
+1);
629 for(t
=0;t
<str
->len
;t
++) {
630 if(str
->str
[t
]<0x20) {
632 unsigned char c
= str
->str
[t
];
633 *p
++ = "0123456789abcdef"[c
>>4];
634 *p
++ = "0123456789abcdef"[c
&0x0f];
640 assert(p
== &s
[len
+1]);
644 unsigned int crc32_add_byte(unsigned int checksum
, unsigned char b
)
648 return checksum
>>8 ^ crc32
[(b
^checksum
)&0xff];
650 unsigned int crc32_add_string(unsigned int checksum
, const char*s
)
657 checksum
= checksum
>>8 ^ crc32
[(*s
^checksum
)&0xff];
663 unsigned int string_hash(const string_t
*str
)
666 unsigned int checksum
= 0;
669 for(t
=0;t
<str
->len
;t
++) {
670 checksum
= checksum
>>8 ^ crc32
[(str
->str
[t
]^checksum
)&0xff];
674 unsigned int string_hash2(const char*str
)
676 unsigned int checksum
= 0;
681 checksum
= checksum
>>8 ^ crc32
[(*p
^checksum
)&0xff];
686 unsigned int string_hash3(const char*str
, int len
)
691 return string_hash(&s
);
693 void string_dup2(string_t
*str
, const char*text
, int len
)
696 str
->str
= strdup_n(text
, len
);
698 void string_dup(string_t
*str
, const char*text
)
700 str
->len
= strlen(text
);
701 str
->str
= strdup(text
);
703 int string_equals(string_t
*str
, const char*text
)
705 int l
= strlen(text
);
706 if(str
->len
== l
&& !memcmp(str
->str
, text
, l
))
710 int string_equals2(string_t
*str
, string_t
*str2
)
712 if(str
->len
== str2
->len
&& !memcmp(str
->str
, str2
->str
, str
->len
))
717 // ------------------------------- stringarray_t ------------------------------
719 typedef struct _stringlist
{
721 struct _stringlist
*next
;
724 typedef struct _stringarray_internal_t
730 } stringarray_internal_t
;
732 void stringarray_init(stringarray_t
*sa
, int hashsize
)
734 stringarray_internal_t
*s
;
736 sa
->internal
= (stringarray_internal_t
*)rfx_calloc(sizeof(stringarray_internal_t
));
737 s
= (stringarray_internal_t
*)sa
->internal
;
739 s
->hash
= rfx_calloc(sizeof(stringlist_t
*)*hashsize
);
740 s
->hashsize
= hashsize
;
742 void stringarray_put(stringarray_t
*sa
, string_t str
)
744 stringarray_internal_t
*s
= (stringarray_internal_t
*)sa
->internal
;
746 int hash
= string_hash(&str
) % s
->hashsize
;
748 char*ss
= string_cstr(&str
);
749 mem_put(&s
->pos
, &ss
, sizeof(char*));
751 stringlist_t
*l
= rfx_alloc(sizeof(stringlist_t
));
753 l
->next
= s
->hash
[hash
];
758 char* stringarray_at(stringarray_t
*sa
, int pos
)
760 stringarray_internal_t
*s
= (stringarray_internal_t
*)sa
->internal
;
762 if(pos
<0 || pos
>=s
->num
)
764 p
= *(char**)&s
->pos
.buffer
[pos
*sizeof(char*)];
769 string_t
stringarray_at2(stringarray_t
*sa
, int pos
)
772 s
.str
= stringarray_at(sa
, pos
);
773 s
.len
= s
.str
?strlen(s
.str
):0;
776 static stringlist_t
* stringlist_del(stringarray_t
*sa
, stringlist_t
*l
, int index
)
779 stringlist_t
*old
= l
;
781 if(index
==l
->index
) {
783 memset(l
, 0, sizeof(stringlist_t
));
793 fprintf(stderr
, "Internal error: did not find string %d in hash\n", index
);
797 void stringarray_del(stringarray_t
*sa
, int pos
)
799 stringarray_internal_t
*s
= (stringarray_internal_t
*)sa
->internal
;
800 string_t str
= stringarray_at2(sa
, pos
);
801 int hash
= string_hash(&str
) % s
->hashsize
;
802 s
->hash
[hash
] = stringlist_del(sa
, s
->hash
[hash
], pos
);
803 *(char**)&s
->pos
.buffer
[pos
*sizeof(char*)] = 0;
805 int stringarray_find(stringarray_t
*sa
, string_t
* str
)
807 stringarray_internal_t
*s
= (stringarray_internal_t
*)sa
->internal
;
808 int hash
= string_hash(str
) % s
->hashsize
;
810 stringlist_t
*l
= s
->hash
[hash
];
813 string_t s
= stringarray_at2(sa
, l
->index
);
814 if(string_equals2(str
, &s
)) {
821 void stringarray_clear(stringarray_t
*sa
)
823 stringarray_internal_t
*s
= (stringarray_internal_t
*)sa
->internal
;
826 for(t
=0;t
<s
->hashsize
;t
++) {
827 stringlist_t
*l
= s
->hash
[t
];
829 stringlist_t
*next
= l
->next
;
830 memset(l
, 0, sizeof(stringlist_t
));
835 rfx_free(s
->hash
);s
->hash
=0;
838 void stringarray_destroy(stringarray_t
*sa
)
840 stringarray_clear(sa
);
844 // ------------------------------- type_t -------------------------------
846 char ptr_equals(const void*o1
, const void*o2
)
850 unsigned int ptr_hash(const void*o
)
852 return string_hash3((const char*)&o
, sizeof(o
));
854 void* ptr_dup(const void*o
)
858 void ptr_free(void*o
)
863 char charptr_equals(const void*o1
, const void*o2
)
867 return !strcmp(o1
,o2
);
869 unsigned int charptr_hash(const void*o
)
873 return string_hash2(o
);
875 void* charptr_dup(const void*o
)
881 void charptr_free(void*o
)
888 char stringstruct_equals(const void*o1
, const void*o2
)
892 string_t
*s1
= (string_t
*)o1
;
893 string_t
*s2
= (string_t
*)o2
;
894 int l
= s1
->len
<s2
->len
?s1
->len
:s2
->len
;
895 int r
= memcmp(s1
->str
, s2
->str
, l
);
899 return s1
->len
==s2
->len
;
901 unsigned int stringstruct_hash(const void*o
)
904 return string_hash(o
);
906 string_t
*string_dup3(string_t
*o
)
910 string_t
*s
= malloc(sizeof(string_t
));
915 string_t
*s
= rfx_alloc(sizeof(string_t
)+o
->len
+1);
917 s
->str
= (const char*)(s
+1);
918 memcpy((char*)s
->str
, o
->str
, s
->len
);
919 ((char*)s
->str
)[s
->len
]=0;
922 void stringstruct_free(void*o
)
935 type_t charptr_type
= {
936 equals
: charptr_equals
,
942 type_t stringstruct_type
= {
943 equals
: stringstruct_equals
,
944 hash
: stringstruct_hash
,
945 dup
: (dup_func
)string_dup3
,
946 free
: stringstruct_free
,
949 // ------------------------------- dictionary_t -------------------------------
951 #define INITIAL_SIZE 1
953 static int max(int x
, int y
) {
959 dict_t
*d
= rfx_alloc(sizeof(dict_t
));
960 dict_init(d
, INITIAL_SIZE
);
963 dict_t
*dict_new2(type_t
*t
)
965 dict_t
*d
= rfx_alloc(sizeof(dict_t
));
966 dict_init(d
, INITIAL_SIZE
);
970 void dict_init(dict_t
*h
, int size
)
972 memset(h
, 0, sizeof(dict_t
));
974 h
->slots
= h
->hashsize
?(dictentry_t
**)rfx_calloc(sizeof(dictentry_t
*)*h
->hashsize
):0;
976 h
->key_type
= &charptr_type
;
978 void dict_init2(dict_t
*h
, type_t
*t
, int size
)
980 memset(h
, 0, sizeof(dict_t
));
982 h
->slots
= h
->hashsize
?(dictentry_t
**)rfx_calloc(sizeof(dictentry_t
*)*h
->hashsize
):0;
987 dict_t
*dict_clone(dict_t
*o
)
989 dict_t
*h
= rfx_alloc(sizeof(dict_t
));
990 memcpy(h
, o
, sizeof(dict_t
));
991 h
->slots
= h
->hashsize
?(dictentry_t
**)rfx_calloc(sizeof(dictentry_t
*)*h
->hashsize
):0;
993 for(t
=0;t
<o
->hashsize
;t
++) {
994 dictentry_t
*e
= o
->slots
[t
];
996 dictentry_t
*n
= (dictentry_t
*)rfx_alloc(sizeof(dictentry_t
));
997 memcpy(n
, e
, sizeof(dictentry_t
));
998 n
->key
= h
->key_type
->dup(e
->key
);
1000 n
->next
= h
->slots
[t
];
1008 static void dict_expand(dict_t
*h
, int newlen
)
1010 assert(h
->hashsize
< newlen
);
1011 dictentry_t
**newslots
= (dictentry_t
**)rfx_calloc(sizeof(dictentry_t
*)*newlen
);
1013 for(t
=0;t
<h
->hashsize
;t
++) {
1014 dictentry_t
*e
= h
->slots
[t
];
1016 dictentry_t
*next
= e
->next
;
1017 unsigned int newhash
= e
->hash
%newlen
;
1018 e
->next
= newslots
[newhash
];
1019 newslots
[newhash
] = e
;
1025 h
->slots
= newslots
;
1026 h
->hashsize
= newlen
;
1029 dictentry_t
* dict_put(dict_t
*h
, const void*key
, void* data
)
1031 unsigned int hash
= h
->key_type
->hash(key
);
1032 dictentry_t
*e
= (dictentry_t
*)rfx_alloc(sizeof(dictentry_t
));
1037 unsigned int hash2
= hash
% h
->hashsize
;
1039 e
->key
= h
->key_type
->dup(key
);
1040 e
->hash
= hash
; //for resizing
1041 e
->next
= h
->slots
[hash2
];
1043 h
->slots
[hash2
] = e
;
1047 void dict_put2(dict_t
*h
, const char*s
, void*data
)
1049 assert(h
->key_type
== &charptr_type
);
1050 dict_put(h
, s
, data
);
1052 void dict_dump(dict_t
*h
, FILE*fi
, const char*prefix
)
1055 for(t
=0;t
<h
->hashsize
;t
++) {
1056 dictentry_t
*e
= h
->slots
[t
];
1058 if(h
->key_type
!=&charptr_type
) {
1059 fprintf(fi
, "%s%08x=%08x\n", prefix
, e
->key
, e
->data
);
1061 fprintf(fi
, "%s%s=%08x\n", prefix
, e
->key
, e
->data
);
1068 int dict_count(dict_t
*h
)
1073 static inline dictentry_t
* dict_do_lookup(dict_t
*h
, const void*key
)
1079 unsigned int ohash
= h
->key_type
->hash(key
);
1080 unsigned int hash
= ohash
% h
->hashsize
;
1082 /* check first entry for match */
1083 dictentry_t
*e
= h
->slots
[hash
];
1084 if(e
&& h
->key_type
->equals(e
->key
, key
)) {
1090 /* if dict is 2/3 filled, double the size. Do
1091 this the first time we have to actually iterate
1092 through a slot to find our data */
1093 if(e
&& h
->num
*3 >= h
->hashsize
*2) {
1094 int newsize
= h
->hashsize
;
1095 while(h
->num
*3 >= newsize
*2) {
1096 newsize
= newsize
<15?15:(newsize
+1)*2-1;
1098 dict_expand(h
, newsize
);
1099 hash
= ohash
% h
->hashsize
;
1101 if(e
&& h
->key_type
->equals(e
->key
, key
)) {
1102 // omit move to front
1109 /* check subsequent entries for a match */
1110 dictentry_t
*last
= h
->slots
[hash
];
1112 if(h
->key_type
->equals(e
->key
, key
)) {
1113 /* move to front- makes a difference of about 10% in most applications */
1114 last
->next
= e
->next
;
1115 e
->next
= h
->slots
[hash
];
1124 void* dict_lookup(dict_t
*h
, const void*key
)
1126 dictentry_t
*e
= dict_do_lookup(h
, key
);
1131 char dict_contains(dict_t
*h
, const void*key
)
1133 dictentry_t
*e
= dict_do_lookup(h
, key
);
1137 char dict_del(dict_t
*h
, const void*key
)
1141 unsigned int hash
= h
->key_type
->hash(key
) % h
->hashsize
;
1142 dictentry_t
*head
= h
->slots
[hash
];
1143 dictentry_t
*e
= head
, *prev
=0;
1145 if(h
->key_type
->equals(e
->key
, key
)) {
1146 dictentry_t
*next
= e
->next
;
1147 h
->key_type
->free(e
->key
);
1148 memset(e
, 0, sizeof(dictentry_t
));
1151 h
->slots
[hash
] = next
;
1165 dictentry_t
* dict_get_slot(dict_t
*h
, const void*key
)
1169 unsigned int ohash
= h
->key_type
->hash(key
);
1170 unsigned int hash
= ohash
% h
->hashsize
;
1171 return h
->slots
[hash
];
1174 void dict_foreach_keyvalue(dict_t
*h
, void (*runFunction
)(void*data
, const void*key
, void*val
), void*data
)
1177 for(t
=0;t
<h
->hashsize
;t
++) {
1178 dictentry_t
*e
= h
->slots
[t
];
1180 dictentry_t
*next
= e
->next
;
1182 runFunction(data
, e
->key
, e
->data
);
1188 void dict_foreach_value(dict_t
*h
, void (*runFunction
)(void*))
1191 for(t
=0;t
<h
->hashsize
;t
++) {
1192 dictentry_t
*e
= h
->slots
[t
];
1194 dictentry_t
*next
= e
->next
;
1196 runFunction(e
->data
);
1203 void dict_free_all(dict_t
*h
, char free_keys
, void (*free_data_function
)(void*))
1206 for(t
=0;t
<h
->hashsize
;t
++) {
1207 dictentry_t
*e
= h
->slots
[t
];
1209 dictentry_t
*next
= e
->next
;
1211 h
->key_type
->free(e
->key
);
1213 if(free_data_function
) {
1214 free_data_function(e
->data
);
1216 memset(e
, 0, sizeof(dictentry_t
));
1223 memset(h
, 0, sizeof(dict_t
));
1226 void dict_clear_shallow(dict_t
*h
)
1228 dict_free_all(h
, 0, 0);
1231 void dict_clear(dict_t
*h
)
1233 dict_free_all(h
, 1, 0);
1236 void dict_destroy_shallow(dict_t
*dict
)
1238 dict_clear_shallow(dict
);
1242 void dict_destroy(dict_t
*dict
)
1250 // ------------------------------- map_t --------------------------------------
1252 typedef struct _map_internal_t
1257 void map_init(map_t
*map
)
1260 map
->internal
= (map_internal_t
*)rfx_calloc(sizeof(map_internal_t
));
1261 m
= (map_internal_t
*)map
->internal
;
1262 dict_init(&m
->d
, INITIAL_SIZE
);
1264 void map_put(map_t
*map
, string_t t1
, string_t t2
)
1266 map_internal_t
*m
= (map_internal_t
*)map
->internal
;
1268 char* s1
= string_cstr(&t1
);
1269 dict_put2(&m
->d
, s1
, (void*)string_cstr(&t2
));
1272 const char* map_lookup(map_t
*map
, const char*name
)
1274 map_internal_t
*m
= (map_internal_t
*)map
->internal
;
1275 const char*value
= dict_lookup(&m
->d
, name
);
1278 static void freestring(void*data
)
1282 static void dumpmapentry(void*data
, const void*key
, void*value
)
1284 FILE*fi
= (FILE*)data
;
1285 fprintf(fi
, "%s=%s\n", key
, (char*)value
);
1287 void map_dump(map_t
*map
, FILE*fi
, const char*prefix
)
1290 map_internal_t
*m
= (map_internal_t
*)map
->internal
;
1291 dict_foreach_keyvalue(&m
->d
, dumpmapentry
, fi
);
1293 void map_clear(map_t
*map
)
1295 map_internal_t
*m
= (map_internal_t
*)map
->internal
;
1296 dict_free_all(&m
->d
, 1, freestring
);
1299 void map_destroy(map_t
*map
)
1305 // ------------------------------- array_t --------------------------------------
1307 array_t
* array_new() {
1308 array_t
*d
= malloc(sizeof(array_t
));
1309 memset(d
, 0, sizeof(array_t
));
1310 d
->entry2pos
= dict_new();
1313 array_t
* array_new2(type_t
*type
) {
1314 array_t
*d
= malloc(sizeof(array_t
));
1315 memset(d
, 0, sizeof(array_t
));
1316 d
->entry2pos
= dict_new2(type
);
1319 void*array_getkey(array_t
*array
, int nr
) {
1320 if(nr
> array
->num
|| nr
<0) {
1321 printf("error: reference to element %d in array[%d]\n", nr
, array
->num
);
1324 return array
->d
[nr
].name
;
1326 void*array_getvalue(array_t
*array
, int nr
) {
1327 if(nr
> array
->num
|| nr
<0) {
1328 printf("error: reference to element %d in array[%d]\n", nr
, array
->num
);
1331 return array
->d
[nr
].data
;
1333 int array_append(array_t
*array
, const void*name
, void*data
) {
1334 while(array
->size
<= array
->num
) {
1337 array
->d
= malloc(sizeof(array_entry_t
)*array
->size
);
1339 array
->d
= realloc(array
->d
, sizeof(array_entry_t
)*array
->size
);
1343 dictentry_t
*e
= dict_put(array
->entry2pos
, name
, (void*)(ptroff_t
)(array
->num
+1));
1346 array
->d
[array
->num
].name
= e
->key
;
1348 array
->d
[array
->num
].name
= 0;
1350 array
->d
[array
->num
].data
= (void*)data
;
1351 return array
->num
++;
1353 int array_find(array_t
*array
, const void*name
)
1355 int pos
= (int)(ptroff_t
)dict_lookup(array
->entry2pos
, name
);
1358 int array_find2(array_t
*array
, const void*name
, void*data
)
1360 dict_t
*h
= array
->entry2pos
;
1361 dictentry_t
*e
= dict_get_slot(array
->entry2pos
, name
);
1364 int index
= ((int)(ptroff_t
)e
->data
) - 1;
1365 if(h
->key_type
->equals(e
->key
, name
) && array
->d
[index
].data
== data
) {
1372 int array_update(array_t
*array
, const void*name
, void*data
) {
1373 int pos
= array_find(array
, name
);
1375 array
->d
[pos
].data
= data
;
1378 return array_append(array
, name
, data
);
1380 int array_append_if_new(array_t
*array
, const void*name
, void*data
) {
1381 int pos
= array_find(array
, name
);
1384 return array_append(array
, name
, data
);
1386 void array_free(array_t
*array
) {
1387 dict_destroy(array
->entry2pos
);
1389 free(array
->d
);array
->d
= 0;
1394 // ------------------------------- list_t --------------------------------------
1397 typedef struct _listinfo
{
1399 struct _commonlist
*last
;
1402 typedef struct _commonlist
{
1404 struct _commonlist
*next
;
1408 int list_length_(void*_list
)
1410 commonlist_t
*l
= (commonlist_t
*)_list
;
1413 return l
->info
[0].size
;
1415 void list_concat_(void*_l1
, void*_l2
)
1417 commonlist_t
**l1
= (commonlist_t
**)_l1
;
1418 commonlist_t
**l2
= (commonlist_t
**)_l2
;
1423 (*l1
)->info
[0].last
->next
= *l2
;
1424 (*l1
)->info
[0].last
= (*l2
)->info
[0].last
;
1425 (*l1
)->info
[0].size
+= (*l2
)->info
[0].size
;
1429 void list_append_(void*_list
, void*entry
)
1431 commonlist_t
**list
= (commonlist_t
**)_list
;
1432 commonlist_t
* n
= 0;
1434 n
= (commonlist_t
*)malloc(sizeof(commonlist_t
)+sizeof(listinfo_t
));
1436 (*list
)->info
[0].size
= 0;
1438 n
= malloc(sizeof(commonlist_t
));
1439 (*list
)->info
[0].last
->next
= n
;
1443 (*list
)->info
[0].last
= n
;
1444 (*list
)->info
[0].size
++;
1446 /* notice: prepending uses slighly more space than appending */
1447 void list_prepend_(void*_list
, void*entry
)
1449 commonlist_t
**list
= (commonlist_t
**)_list
;
1450 commonlist_t
* n
= (commonlist_t
*)malloc(sizeof(commonlist_t
)+sizeof(listinfo_t
));
1452 commonlist_t
* last
= 0;
1454 last
= (*list
)->info
[0].last
;
1455 size
= (*list
)->info
[0].size
;
1460 (*list
)->info
[0].last
= last
;
1461 (*list
)->info
[0].size
= size
+1;
1463 void list_free_(void*_list
)
1465 commonlist_t
**list
= (commonlist_t
**)_list
;
1466 commonlist_t
*l
= *list
;
1468 commonlist_t
*next
= l
->next
;
1474 void list_deep_free_(void*_list
)
1476 commonlist_t
**list
= (commonlist_t
**)_list
;
1477 commonlist_t
*l
= *list
;
1479 commonlist_t
*next
= l
->next
;
1481 free(l
->entry
);l
->entry
=0;
1488 void*list_clone_(void*_list
)
1490 commonlist_t
*l
= *(commonlist_t
**)_list
;
1494 commonlist_t
*next
= l
->next
;
1495 list_append_(&dest
, l
->entry
);