2 * FreeSec: libcrypt for NetBSD
4 * Copyright (c) 1994 David Burren
7 * Adapted for FreeBSD-2.0 by Geoffrey M. Rehmet
8 * this file should now *only* export crypt(), in order to make
9 * binaries of libcrypt exportable from the USA
11 * Adapted for FreeBSD-4.0 by Mark R V Murray
12 * this file should now *only* export crypt_des(), in order to make
13 * a module that can be optionally included in libcrypt.
15 * Adapted for pxelinux menu environment by Th.Gebhardt
16 * removed dependencies of standard C libs
17 * added LOWSPACE option (using common space for different arrays)
19 * Redistribution and use in source and binary forms, with or without
20 * modification, are permitted provided that the following conditions
22 * 1. Redistributions of source code must retain the above copyright
23 * notice, this list of conditions and the following disclaimer.
24 * 2. Redistributions in binary form must reproduce the above copyright
25 * notice, this list of conditions and the following disclaimer in the
26 * documentation and/or other materials provided with the distribution.
27 * 3. Neither the name of the author nor the names of other contributors
28 * may be used to endorse or promote products derived from this software
29 * without specific prior written permission.
31 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
43 * This is an original implementation of the DES and the crypt(3) interfaces
44 * by David Burren <davidb@werj.com.au>.
46 * An excellent reference on the underlying algorithm (and related
49 * B. Schneier, Applied Cryptography: protocols, algorithms,
50 * and source code in C, John Wiley & Sons, 1994.
52 * Note that in that book's description of DES the lookups for the initial,
53 * pbox, and final permutations are inverted (this has been brought to the
54 * attention of the author). A list of errata for this book has been
55 * posted to the sci.crypt newsgroup by the author and is available for FTP.
57 * ARCHITECTURE ASSUMPTIONS:
58 * It is assumed that the 8-byte arrays passed by reference can be
59 * addressed as arrays of u_int32_t's (ie. the CPU is not picky about
67 #define NULL ((void *) 0)
70 typedef unsigned long my_u_int32_t
;
71 typedef unsigned char my_u_char_t
;
73 /* Re-entrantify me -- all this junk needs to be in
74 * struct crypt_data to make this really reentrant... */
75 static my_u_char_t inv_key_perm
[64];
76 static my_u_char_t inv_comp_perm
[56];
77 static my_u_char_t u_sbox
[8][64];
78 static my_u_char_t un_pbox
[32];
79 static my_u_int32_t en_keysl
[16], en_keysr
[16];
80 static my_u_int32_t de_keysl
[16], de_keysr
[16];
83 static my_u_int32_t ip_maskl
[8][256], ip_maskr
[8][256];
84 static my_u_int32_t fp_maskl
[8][256], fp_maskr
[8][256];
85 static my_u_int32_t key_perm_maskl
[8][128], key_perm_maskr
[8][128];
86 static my_u_int32_t comp_maskl
[8][128], comp_maskr
[8][128];
89 static my_u_int32_t saltbits
;
90 static my_u_int32_t old_salt
;
91 static my_u_int32_t old_rawkey0
, old_rawkey1
;
94 static my_u_int32_t common
[8][256];
97 /* Static stuff that stays resident and doesn't change after
98 * being initialized, and therefore doesn't need to be made
100 static my_u_char_t init_perm
[64], final_perm
[64];
101 static my_u_char_t m_sbox
[4][4096];
104 static my_u_int32_t psbox
[4][256];
108 static const my_u_char_t ascii64
[] = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
110 static const my_u_char_t IP
[64] = {
111 58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
112 62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
113 57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
114 61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
117 static const my_u_char_t key_perm
[56] = {
118 57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
119 10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
120 63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
121 14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
124 static const my_u_char_t key_shifts
[16] = {
125 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1
128 static const my_u_char_t comp_perm
[48] = {
129 14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
130 23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
131 41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
132 44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
136 * No E box is used, as it's replaced by some ANDs, shifts, and ORs.
139 static const my_u_char_t sbox
[8][64] = {
141 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
142 0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
143 4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
144 15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13
147 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
148 3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
149 0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
150 13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9
153 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
154 13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
155 13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
156 1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12
159 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
160 13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
161 10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
162 3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14
165 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
166 14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
167 4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
168 11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3
171 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
172 10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
173 9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
174 4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13
177 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
178 13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
179 1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
180 6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12
183 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
184 1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
185 7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
186 2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
190 static const my_u_char_t pbox
[32] = {
191 16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
192 2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
195 static const my_u_int32_t bits32
[32] =
197 0x80000000, 0x40000000, 0x20000000, 0x10000000,
198 0x08000000, 0x04000000, 0x02000000, 0x01000000,
199 0x00800000, 0x00400000, 0x00200000, 0x00100000,
200 0x00080000, 0x00040000, 0x00020000, 0x00010000,
201 0x00008000, 0x00004000, 0x00002000, 0x00001000,
202 0x00000800, 0x00000400, 0x00000200, 0x00000100,
203 0x00000080, 0x00000040, 0x00000020, 0x00000010,
204 0x00000008, 0x00000004, 0x00000002, 0x00000001
207 static const my_u_int32_t bits28
[28] =
209 0x08000000, 0x04000000, 0x02000000, 0x01000000,
210 0x00800000, 0x00400000, 0x00200000, 0x00100000,
211 0x00080000, 0x00040000, 0x00020000, 0x00010000,
212 0x00008000, 0x00004000, 0x00002000, 0x00001000,
213 0x00000800, 0x00000400, 0x00000200, 0x00000100,
214 0x00000080, 0x00000040, 0x00000020, 0x00000010,
215 0x00000008, 0x00000004, 0x00000002, 0x00000001
218 static const my_u_int32_t bits24
[24] =
220 0x00800000, 0x00400000, 0x00200000, 0x00100000,
221 0x00080000, 0x00040000, 0x00020000, 0x00010000,
222 0x00008000, 0x00004000, 0x00002000, 0x00001000,
223 0x00000800, 0x00000400, 0x00000200, 0x00000100,
224 0x00000080, 0x00000040, 0x00000020, 0x00000010,
225 0x00000008, 0x00000004, 0x00000002, 0x00000001
228 static const my_u_char_t bits8
[8] = { 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01 };
229 // static const my_u_int32_t *bits28, *bits24;
233 ascii_to_bin(char ch
)
238 return(ch
- 'a' + 38);
242 return(ch
- 'A' + 12);
257 int i
, j
, b
, k
, inbit
, obit
;
258 my_u_int32_t
*p
, *il
, *ir
, *fl
, *fr
;
260 static int des_initialised
= 0;
262 if (des_initialised
==1)
265 old_rawkey0
= old_rawkey1
= 0L;
268 // bits24 = (bits28 = bits32 + 4) + 4;
271 * Invert the S-boxes, reordering the input bits.
273 for (i
= 0; i
< 8; i
++)
274 for (j
= 0; j
< 64; j
++) {
275 b
= (j
& 0x20) | ((j
& 1) << 4) | ((j
>> 1) & 0xf);
276 u_sbox
[i
][j
] = sbox
[i
][b
];
280 * Convert the inverted S-boxes into 4 arrays of 8 bits.
281 * Each will handle 12 bits of the S-box input.
283 for (b
= 0; b
< 4; b
++)
284 for (i
= 0; i
< 64; i
++)
285 for (j
= 0; j
< 64; j
++)
286 m_sbox
[b
][(i
<< 6) | j
] =
287 (my_u_char_t
)((u_sbox
[(b
<< 1)][i
] << 4) |
288 u_sbox
[(b
<< 1) + 1][j
]);
291 * Set up the initial & final permutations into a useful form, and
292 * initialise the inverted key permutation.
294 for (i
= 0; i
< 64; i
++) {
295 init_perm
[final_perm
[i
] = IP
[i
] - 1] = (my_u_char_t
)i
;
296 inv_key_perm
[i
] = 255;
300 * Invert the key permutation and initialise the inverted key
301 * compression permutation.
303 for (i
= 0; i
< 56; i
++) {
304 inv_key_perm
[key_perm
[i
] - 1] = (my_u_char_t
)i
;
305 inv_comp_perm
[i
] = 255;
309 * Invert the key compression permutation.
311 for (i
= 0; i
< 48; i
++) {
312 inv_comp_perm
[comp_perm
[i
] - 1] = (my_u_char_t
)i
;
316 * Set up the OR-mask arrays for the initial and final permutations,
317 * and for the key initial and compression permutations.
321 for (k
= 0; k
< 8; k
++) {
322 for (i
= 0; i
< 256; i
++) {
323 *(il
= &ip_maskl
[k
][i
]) = 0L;
324 *(ir
= &ip_maskr
[k
][i
]) = 0L;
325 *(fl
= &fp_maskl
[k
][i
]) = 0L;
326 *(fr
= &fp_maskr
[k
][i
]) = 0L;
327 for (j
= 0; j
< 8; j
++) {
330 if ((obit
= init_perm
[inbit
]) < 32)
333 *ir
|= bits32
[obit
-32];
334 if ((obit
= final_perm
[inbit
]) < 32)
337 *fr
|= bits32
[obit
- 32];
341 for (i
= 0; i
< 128; i
++) {
342 *(il
= &key_perm_maskl
[k
][i
]) = 0L;
343 *(ir
= &key_perm_maskr
[k
][i
]) = 0L;
344 for (j
= 0; j
< 7; j
++) {
346 if (i
& bits8
[j
+ 1]) {
347 if ((obit
= inv_key_perm
[inbit
]) == 255)
352 *ir
|= bits28
[obit
- 28];
355 *(il
= &comp_maskl
[k
][i
]) = 0L;
356 *(ir
= &comp_maskr
[k
][i
]) = 0L;
357 for (j
= 0; j
< 7; j
++) {
359 if (i
& bits8
[j
+ 1]) {
360 if ((obit
=inv_comp_perm
[inbit
]) == 255)
365 *ir
|= bits24
[obit
- 24];
373 * Invert the P-box permutation, and convert into OR-masks for
374 * handling the output of the S-box arrays setup above.
376 for (i
= 0; i
< 32; i
++)
377 un_pbox
[pbox
[i
] - 1] = (my_u_char_t
)i
;
380 for (b
= 0; b
< 4; b
++)
381 for (i
= 0; i
< 256; i
++) {
382 *(p
= &psbox
[b
][i
]) = 0L;
383 for (j
= 0; j
< 8; j
++) {
385 *p
|= bits32
[un_pbox
[8 * b
+ j
]];
398 int i
, j
, k
, inbit
, obit
;
401 for (k
= 0; k
< 8; k
++) {
402 for (i
= 0; i
< 256; i
++) {
403 *(il
= &common
[k
][i
]) = 0L;
404 for (j
= 0; j
< 8; j
++) {
407 if ((obit
= init_perm
[inbit
]) < 32)
418 int i
, j
, k
, inbit
, obit
;
421 for (k
= 0; k
< 8; k
++) {
422 for (i
= 0; i
< 256; i
++) {
423 *(ir
= &common
[k
][i
]) = 0L;
424 for (j
= 0; j
< 8; j
++) {
427 if ((obit
= init_perm
[inbit
]) >= 32)
428 *ir
|= bits32
[obit
-32];
438 int i
, j
, k
, inbit
, obit
;
441 for (k
= 0; k
< 8; k
++) {
442 for (i
= 0; i
< 256; i
++) {
443 *(fl
= &common
[k
][i
]) = 0L;
444 for (j
= 0; j
< 8; j
++) {
447 if ((obit
= final_perm
[inbit
]) < 32)
458 int i
, j
, k
, inbit
, obit
;
461 for (k
= 0; k
< 8; k
++) {
462 for (i
= 0; i
< 256; i
++) {
463 *(fr
= &common
[k
][i
]) = 0L;
464 for (j
= 0; j
< 8; j
++) {
467 if ((obit
= final_perm
[inbit
]) >= 32)
468 *fr
|= bits32
[obit
- 32];
476 setup_key_perm_maskl(void)
478 int i
, j
, k
, inbit
, obit
;
481 for (k
= 0; k
< 8; k
++) {
482 for (i
= 0; i
< 128; i
++) {
483 *(il
= &common
[k
][i
]) = 0L;
484 for (j
= 0; j
< 7; j
++) {
486 if (i
& bits8
[j
+ 1]) {
487 if ((obit
= inv_key_perm
[inbit
]) == 255)
498 setup_key_perm_maskr(void)
500 int i
, j
, k
, inbit
, obit
;
503 for (k
= 0; k
< 8; k
++) {
504 for (i
= 0; i
< 128; i
++) {
505 *(ir
= &common
[k
][i
]) = 0L;
506 for (j
= 0; j
< 7; j
++) {
508 if (i
& bits8
[j
+ 1]) {
509 if ((obit
= inv_key_perm
[inbit
]) == 255)
512 *ir
|= bits28
[obit
- 28];
520 setup_comp_maskl(void)
522 int i
, j
, k
, inbit
, obit
;
525 for (k
= 0; k
< 8; k
++) {
526 for (i
= 0; i
< 128; i
++) {
527 *(il
= &common
[k
][i
]) = 0L;
528 for (j
= 0; j
< 7; j
++) {
530 if (i
& bits8
[j
+ 1]) {
531 if ((obit
=inv_comp_perm
[inbit
]) == 255)
542 setup_comp_maskr(void)
544 int i
, j
, k
, inbit
, obit
;
547 for (k
= 0; k
< 8; k
++) {
548 for (i
= 0; i
< 128; i
++) {
549 *(ir
= &common
[k
][i
]) = 0L;
550 for (j
= 0; j
< 7; j
++) {
552 if (i
& bits8
[j
+ 1]) {
553 if ((obit
=inv_comp_perm
[inbit
]) == 255)
556 *ir
|= bits24
[obit
- 24];
569 for (b
= 0; b
< 4; b
++)
570 for (i
= 0; i
< 256; i
++) {
571 *(p
= &common
[b
][i
]) = 0L;
572 for (j
= 0; j
< 8; j
++) {
574 *p
|= bits32
[un_pbox
[8 * b
+ j
]];
582 setup_salt(my_u_int32_t salt
)
584 my_u_int32_t obit
, saltbit
;
587 if (salt
== old_salt
)
594 for (i
= 0; i
< 24; i
++) {
603 static my_u_int32_t
char_to_int(const char *key
)
605 my_u_int32_t byte0
,byte1
,byte2
,byte3
;
606 byte0
= (my_u_int32_t
) (my_u_char_t
) key
[0];
607 byte1
= (my_u_int32_t
) (my_u_char_t
) key
[1];
608 byte2
= (my_u_int32_t
) (my_u_char_t
) key
[2];
609 byte3
= (my_u_int32_t
) (my_u_char_t
) key
[3];
611 return byte0
<< 24 | byte1
<< 16 | byte2
<< 8 | byte3
;
616 des_setkey(const char *key
)
618 my_u_int32_t k0
, k1
, rawkey0
, rawkey1
;
623 /* rawkey0 = ntohl(*(const my_u_int32_t *) key);
624 * rawkey1 = ntohl(*(const my_u_int32_t *) (key + 4));
627 rawkey0
= char_to_int(key
);
628 rawkey1
= char_to_int(key
+4);
630 if ((rawkey0
| rawkey1
)
631 && rawkey0
== old_rawkey0
632 && rawkey1
== old_rawkey1
) {
634 * Already setup for this key.
635 * This optimisation fails on a zero key (which is weak and
636 * has bad parity anyway) in order to simplify the starting
641 old_rawkey0
= rawkey0
;
642 old_rawkey1
= rawkey1
;
645 * Do key permutation and split into two 28-bit subkeys.
649 setup_key_perm_maskl();
650 k0
= common
[0][rawkey0
>> 25]
651 | common
[1][(rawkey0
>> 17) & 0x7f]
652 | common
[2][(rawkey0
>> 9) & 0x7f]
653 | common
[3][(rawkey0
>> 1) & 0x7f]
654 | common
[4][rawkey1
>> 25]
655 | common
[5][(rawkey1
>> 17) & 0x7f]
656 | common
[6][(rawkey1
>> 9) & 0x7f]
657 | common
[7][(rawkey1
>> 1) & 0x7f];
658 setup_key_perm_maskr();
659 k1
= common
[0][rawkey0
>> 25]
660 | common
[1][(rawkey0
>> 17) & 0x7f]
661 | common
[2][(rawkey0
>> 9) & 0x7f]
662 | common
[3][(rawkey0
>> 1) & 0x7f]
663 | common
[4][rawkey1
>> 25]
664 | common
[5][(rawkey1
>> 17) & 0x7f]
665 | common
[6][(rawkey1
>> 9) & 0x7f]
666 | common
[7][(rawkey1
>> 1) & 0x7f];
668 k0
= key_perm_maskl
[0][rawkey0
>> 25]
669 | key_perm_maskl
[1][(rawkey0
>> 17) & 0x7f]
670 | key_perm_maskl
[2][(rawkey0
>> 9) & 0x7f]
671 | key_perm_maskl
[3][(rawkey0
>> 1) & 0x7f]
672 | key_perm_maskl
[4][rawkey1
>> 25]
673 | key_perm_maskl
[5][(rawkey1
>> 17) & 0x7f]
674 | key_perm_maskl
[6][(rawkey1
>> 9) & 0x7f]
675 | key_perm_maskl
[7][(rawkey1
>> 1) & 0x7f];
676 k1
= key_perm_maskr
[0][rawkey0
>> 25]
677 | key_perm_maskr
[1][(rawkey0
>> 17) & 0x7f]
678 | key_perm_maskr
[2][(rawkey0
>> 9) & 0x7f]
679 | key_perm_maskr
[3][(rawkey0
>> 1) & 0x7f]
680 | key_perm_maskr
[4][rawkey1
>> 25]
681 | key_perm_maskr
[5][(rawkey1
>> 17) & 0x7f]
682 | key_perm_maskr
[6][(rawkey1
>> 9) & 0x7f]
683 | key_perm_maskr
[7][(rawkey1
>> 1) & 0x7f];
687 * Rotate subkeys and do compression permutation.
690 for (round
= 0; round
< 16; round
++) {
693 shifts
+= key_shifts
[round
];
695 t0
= (k0
<< shifts
) | (k0
>> (28 - shifts
));
696 t1
= (k1
<< shifts
) | (k1
>> (28 - shifts
));
700 de_keysl
[15 - round
] =
701 en_keysl
[round
] = common
[0][(t0
>> 21) & 0x7f]
702 | common
[1][(t0
>> 14) & 0x7f]
703 | common
[2][(t0
>> 7) & 0x7f]
704 | common
[3][t0
& 0x7f]
705 | common
[4][(t1
>> 21) & 0x7f]
706 | common
[5][(t1
>> 14) & 0x7f]
707 | common
[6][(t1
>> 7) & 0x7f]
708 | common
[7][t1
& 0x7f];
711 de_keysr
[15 - round
] =
712 en_keysr
[round
] = common
[0][(t0
>> 21) & 0x7f]
713 | common
[1][(t0
>> 14) & 0x7f]
714 | common
[2][(t0
>> 7) & 0x7f]
715 | common
[3][t0
& 0x7f]
716 | common
[4][(t1
>> 21) & 0x7f]
717 | common
[5][(t1
>> 14) & 0x7f]
718 | common
[6][(t1
>> 7) & 0x7f]
719 | common
[7][t1
& 0x7f];
721 de_keysl
[15 - round
] =
722 en_keysl
[round
] = comp_maskl
[0][(t0
>> 21) & 0x7f]
723 | comp_maskl
[1][(t0
>> 14) & 0x7f]
724 | comp_maskl
[2][(t0
>> 7) & 0x7f]
725 | comp_maskl
[3][t0
& 0x7f]
726 | comp_maskl
[4][(t1
>> 21) & 0x7f]
727 | comp_maskl
[5][(t1
>> 14) & 0x7f]
728 | comp_maskl
[6][(t1
>> 7) & 0x7f]
729 | comp_maskl
[7][t1
& 0x7f];
731 de_keysr
[15 - round
] =
732 en_keysr
[round
] = comp_maskr
[0][(t0
>> 21) & 0x7f]
733 | comp_maskr
[1][(t0
>> 14) & 0x7f]
734 | comp_maskr
[2][(t0
>> 7) & 0x7f]
735 | comp_maskr
[3][t0
& 0x7f]
736 | comp_maskr
[4][(t1
>> 21) & 0x7f]
737 | comp_maskr
[5][(t1
>> 14) & 0x7f]
738 | comp_maskr
[6][(t1
>> 7) & 0x7f]
739 | comp_maskr
[7][t1
& 0x7f];
747 do_des( my_u_int32_t l_in
, my_u_int32_t r_in
, my_u_int32_t
*l_out
, my_u_int32_t
*r_out
, int count
)
750 * l_in, r_in, l_out, and r_out are in pseudo-"big-endian" format.
752 my_u_int32_t l
, r
, *kl
, *kr
, *kl1
, *kr1
;
753 my_u_int32_t f
, r48l
, r48r
;
758 } else if (count
> 0) {
774 * Do initial permutation (IP).
779 l
= common
[0][l_in
>> 24]
780 | common
[1][(l_in
>> 16) & 0xff]
781 | common
[2][(l_in
>> 8) & 0xff]
782 | common
[3][l_in
& 0xff]
783 | common
[4][r_in
>> 24]
784 | common
[5][(r_in
>> 16) & 0xff]
785 | common
[6][(r_in
>> 8) & 0xff]
786 | common
[7][r_in
& 0xff];
788 r
= common
[0][l_in
>> 24]
789 | common
[1][(l_in
>> 16) & 0xff]
790 | common
[2][(l_in
>> 8) & 0xff]
791 | common
[3][l_in
& 0xff]
792 | common
[4][r_in
>> 24]
793 | common
[5][(r_in
>> 16) & 0xff]
794 | common
[6][(r_in
>> 8) & 0xff]
795 | common
[7][r_in
& 0xff];
797 l
= ip_maskl
[0][l_in
>> 24]
798 | ip_maskl
[1][(l_in
>> 16) & 0xff]
799 | ip_maskl
[2][(l_in
>> 8) & 0xff]
800 | ip_maskl
[3][l_in
& 0xff]
801 | ip_maskl
[4][r_in
>> 24]
802 | ip_maskl
[5][(r_in
>> 16) & 0xff]
803 | ip_maskl
[6][(r_in
>> 8) & 0xff]
804 | ip_maskl
[7][r_in
& 0xff];
805 r
= ip_maskr
[0][l_in
>> 24]
806 | ip_maskr
[1][(l_in
>> 16) & 0xff]
807 | ip_maskr
[2][(l_in
>> 8) & 0xff]
808 | ip_maskr
[3][l_in
& 0xff]
809 | ip_maskr
[4][r_in
>> 24]
810 | ip_maskr
[5][(r_in
>> 16) & 0xff]
811 | ip_maskr
[6][(r_in
>> 8) & 0xff]
812 | ip_maskr
[7][r_in
& 0xff];
824 * Expand R to 48 bits (simulate the E-box).
826 r48l
= ((r
& 0x00000001) << 23)
827 | ((r
& 0xf8000000) >> 9)
828 | ((r
& 0x1f800000) >> 11)
829 | ((r
& 0x01f80000) >> 13)
830 | ((r
& 0x001f8000) >> 15);
832 r48r
= ((r
& 0x0001f800) << 7)
833 | ((r
& 0x00001f80) << 5)
834 | ((r
& 0x000001f8) << 3)
835 | ((r
& 0x0000001f) << 1)
836 | ((r
& 0x80000000) >> 31);
838 * Do salting for crypt() and friends, and
839 * XOR with the permuted key.
841 f
= (r48l
^ r48r
) & saltbits
;
845 * Do sbox lookups (which shrink it back to 32 bits)
846 * and do the pbox permutation at the same time.
851 f
= common
[0][m_sbox
[0][r48l
>> 12]]
852 | common
[1][m_sbox
[1][r48l
& 0xfff]]
853 | common
[2][m_sbox
[2][r48r
>> 12]]
854 | common
[3][m_sbox
[3][r48r
& 0xfff]];
856 f
= psbox
[0][m_sbox
[0][r48l
>> 12]]
857 | psbox
[1][m_sbox
[1][r48l
& 0xfff]]
858 | psbox
[2][m_sbox
[2][r48r
>> 12]]
859 | psbox
[3][m_sbox
[3][r48r
& 0xfff]];
862 * Now that we've permuted things, complete f().
872 * Do final permutation (inverse of IP).
877 *l_out
= common
[0][l
>> 24]
878 | common
[1][(l
>> 16) & 0xff]
879 | common
[2][(l
>> 8) & 0xff]
880 | common
[3][l
& 0xff]
882 | common
[5][(r
>> 16) & 0xff]
883 | common
[6][(r
>> 8) & 0xff]
884 | common
[7][r
& 0xff];
886 *r_out
= common
[0][l
>> 24]
887 | common
[1][(l
>> 16) & 0xff]
888 | common
[2][(l
>> 8) & 0xff]
889 | common
[3][l
& 0xff]
891 | common
[5][(r
>> 16) & 0xff]
892 | common
[6][(r
>> 8) & 0xff]
893 | common
[7][r
& 0xff];
895 *l_out
= fp_maskl
[0][l
>> 24]
896 | fp_maskl
[1][(l
>> 16) & 0xff]
897 | fp_maskl
[2][(l
>> 8) & 0xff]
898 | fp_maskl
[3][l
& 0xff]
899 | fp_maskl
[4][r
>> 24]
900 | fp_maskl
[5][(r
>> 16) & 0xff]
901 | fp_maskl
[6][(r
>> 8) & 0xff]
902 | fp_maskl
[7][r
& 0xff];
903 *r_out
= fp_maskr
[0][l
>> 24]
904 | fp_maskr
[1][(l
>> 16) & 0xff]
905 | fp_maskr
[2][(l
>> 8) & 0xff]
906 | fp_maskr
[3][l
& 0xff]
907 | fp_maskr
[4][r
>> 24]
908 | fp_maskr
[5][(r
>> 16) & 0xff]
909 | fp_maskr
[6][(r
>> 8) & 0xff]
910 | fp_maskr
[7][r
& 0xff];
918 des_cipher(const char *in
, char *out
, my_u_int32_t salt
, int count
)
920 my_u_int32_t l_out
, r_out
, rawl
, rawr
;
932 rawl
= ntohl(*trans
.ui32
++);
933 rawr
= ntohl(*trans
.ui32
);
935 retval
= do_des(rawl
, rawr
, &l_out
, &r_out
, count
);
938 *trans
.ui32
++ = htonl(l_out
);
939 *trans
.ui32
= htonl(r_out
);
946 setkey(const char *key
)
949 my_u_int32_t packed_keys
[2];
952 p
= (my_u_char_t
*) packed_keys
;
954 for (i
= 0; i
< 8; i
++) {
956 for (j
= 0; j
< 8; j
++)
965 encrypt(char *block
, int flag
)
975 for (i
= 0; i
< 2; i
++) {
977 for (j
= 0; j
< 32; j
++)
981 do_des(io
[0], io
[1], io
, io
+ 1, flag
? -1 : 1);
982 for (i
= 0; i
< 2; i
++)
983 for (j
= 0; j
< 32; j
++)
984 block
[(i
<< 5) | j
] = (io
[i
] & bits32
[j
]) ? 1 : 0;
987 char *crypt(const char *key
, const char *setting
)
989 my_u_int32_t count
, salt
, l
, r0
, r1
, keybuf
[2];
991 static char output
[21];
996 * Copy the key, shifting each character up by one bit
997 * and padding with zeros.
999 q
= (my_u_char_t
*)keybuf
;
1000 while (q
- (my_u_char_t
*)keybuf
- 8) {
1005 if (des_setkey((char *)keybuf
))
1009 if (*setting
== _PASSWORD_EFMT1
) {
1013 * setting - underscore, 4 bytes of count, 4 bytes of salt
1014 * key - unlimited characters
1016 for (i
= 1, count
= 0L; i
< 5; i
++)
1017 count
|= ascii_to_bin(setting
[i
]) << ((i
- 1) * 6);
1019 for (i
= 5, salt
= 0L; i
< 9; i
++)
1020 salt
|= ascii_to_bin(setting
[i
]) << ((i
- 5) * 6);
1024 * Encrypt the key with itself.
1026 if (des_cipher((char *)keybuf
, (char *)keybuf
, 0L, 1))
1029 * And XOR with the next 8 characters of the key.
1031 q
= (my_u_char_t
*)keybuf
;
1032 while (q
- (my_u_char_t
*)keybuf
- 8 && *key
)
1033 *q
++ ^= *key
++ << 1;
1035 if (des_setkey((char *)keybuf
))
1038 strncpy(output
, setting
, 9);
1041 * Double check that we weren't given a short setting.
1042 * If we were, the above code will probably have created
1043 * wierd values for count and salt, but we don't really care.
1044 * Just make sure the output string doesn't have an extra
1048 p
= (my_u_char_t
*)output
+ strlen(output
);
1054 * setting - 2 bytes of salt
1055 * key - up to 8 characters
1059 salt
= (ascii_to_bin(setting
[1]) << 6)
1060 | ascii_to_bin(setting
[0]);
1062 output
[0] = setting
[0];
1064 * If the encrypted password that the salt was extracted from
1065 * is only 1 character long, the salt will be corrupted. We
1066 * need to ensure that the output string doesn't have an extra
1069 output
[1] = setting
[1] ? setting
[1] : output
[0];
1071 p
= (my_u_char_t
*)output
+ 2;
1077 if (do_des(0L, 0L, &r0
, &r1
, (int)count
))
1080 * Now encode the result...
1083 *p
++ = ascii64
[(l
>> 18) & 0x3f];
1084 *p
++ = ascii64
[(l
>> 12) & 0x3f];
1085 *p
++ = ascii64
[(l
>> 6) & 0x3f];
1086 *p
++ = ascii64
[l
& 0x3f];
1088 l
= (r0
<< 16) | ((r1
>> 16) & 0xffff);
1089 *p
++ = ascii64
[(l
>> 18) & 0x3f];
1090 *p
++ = ascii64
[(l
>> 12) & 0x3f];
1091 *p
++ = ascii64
[(l
>> 6) & 0x3f];
1092 *p
++ = ascii64
[l
& 0x3f];
1095 *p
++ = ascii64
[(l
>> 12) & 0x3f];
1096 *p
++ = ascii64
[(l
>> 6) & 0x3f];
1097 *p
++ = ascii64
[l
& 0x3f];