Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / compiler / libjpeg / main / jcphuff.c
blobac4c5fe7b6593df792cd890657024482a66693a3
1 /*
2 $Id$
3 */
5 /*
6 * jcphuff.c
8 * Copyright (C) 1995-1998, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains Huffman entropy encoding routines for progressive JPEG.
14 * We do not support output suspension in this module, since the library
15 * currently does not allow multiple-scan files to be written with output
16 * suspension.
19 #define JPEG_INTERNALS
20 #include "jinclude.h"
21 #include "jpeglib.h"
22 #include "jlossy.h" /* Private declarations for lossy codec */
23 #include "jchuff.h" /* Declarations shared with jc*huff.c */
25 #ifdef C_PROGRESSIVE_SUPPORTED
27 /* Expanded entropy encoder object for progressive Huffman encoding. */
29 typedef struct {
30 /* Mode flag: TRUE for optimization, FALSE for actual data output */
31 boolean gather_statistics;
33 /* Bit-level coding status.
34 * next_output_byte/free_in_buffer are local copies of cinfo->dest fields.
36 JOCTET * next_output_byte; /* => next byte to write in buffer */
37 size_t free_in_buffer; /* # of byte spaces remaining in buffer */
38 INT32 put_buffer; /* current bit-accumulation buffer */
39 int put_bits; /* # of bits now in it */
40 j_compress_ptr cinfo; /* link to cinfo (needed for dump_buffer) */
42 /* Coding status for DC components */
43 int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
45 /* Coding status for AC components */
46 int ac_tbl_no; /* the table number of the single component */
47 unsigned int EOBRUN; /* run length of EOBs */
48 unsigned int BE; /* # of buffered correction bits before MCU */
49 char * bit_buffer; /* buffer for correction bits (1 per char) */
50 /* packing correction bits tightly would save some space but cost time... */
52 unsigned int restarts_to_go; /* MCUs left in this restart interval */
53 int next_restart_num; /* next restart number to write (0-7) */
55 /* Pointers to derived tables (these workspaces have image lifespan).
56 * Since any one scan codes only DC or only AC, we only need one set
57 * of tables, not one for DC and one for AC.
59 c_derived_tbl * derived_tbls[NUM_HUFF_TBLS];
61 /* Statistics tables for optimization; again, one set is enough */
62 long * count_ptrs[NUM_HUFF_TBLS];
63 } phuff_entropy_encoder;
65 typedef phuff_entropy_encoder * phuff_entropy_ptr;
67 /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit
68 * buffer can hold. Larger sizes may slightly improve compression, but
69 * 1000 is already well into the realm of overkill.
70 * The minimum safe size is 64 bits.
73 #define MAX_CORR_BITS 1000 /* Max # of correction bits I can buffer */
75 /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32.
76 * We assume that int right shift is unsigned if INT32 right shift is,
77 * which should be safe.
80 #ifdef RIGHT_SHIFT_IS_UNSIGNED
81 #define ISHIFT_TEMPS int ishift_temp;
82 #define IRIGHT_SHIFT(x,shft) \
83 ((ishift_temp = (x)) < 0 ? \
84 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \
85 (ishift_temp >> (shft)))
86 #else
87 #define ISHIFT_TEMPS
88 #define IRIGHT_SHIFT(x,shft) ((x) >> (shft))
89 #endif
91 /* Forward declarations */
92 METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo,
93 JBLOCKROW *MCU_data));
94 METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo,
95 JBLOCKROW *MCU_data));
96 METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo,
97 JBLOCKROW *MCU_data));
98 METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo,
99 JBLOCKROW *MCU_data));
100 METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo));
101 METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo));
105 * Initialize for a Huffman-compressed scan using progressive JPEG.
108 METHODDEF(void)
109 start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics)
111 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
112 phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyc->entropy_private;
113 boolean is_DC_band;
114 int ci, tbl;
115 jpeg_component_info * compptr;
117 entropy->cinfo = cinfo;
118 entropy->gather_statistics = gather_statistics;
120 is_DC_band = (cinfo->Ss == 0);
122 /* We assume jcmaster.c already validated the scan parameters. */
124 /* Select execution routines */
125 if (cinfo->Ah == 0) {
126 if (is_DC_band)
127 lossyc->entropy_encode_mcu = encode_mcu_DC_first;
128 else
129 lossyc->entropy_encode_mcu = encode_mcu_AC_first;
130 } else {
131 if (is_DC_band)
132 lossyc->entropy_encode_mcu = encode_mcu_DC_refine;
133 else {
134 lossyc->entropy_encode_mcu = encode_mcu_AC_refine;
135 /* AC refinement needs a correction bit buffer */
136 if (entropy->bit_buffer == NULL)
137 entropy->bit_buffer = (char *)
138 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
139 MAX_CORR_BITS * SIZEOF(char));
142 if (gather_statistics)
143 lossyc->pub.entropy_finish_pass = finish_pass_gather_phuff;
144 else
145 lossyc->pub.entropy_finish_pass = finish_pass_phuff;
147 /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1
148 * for AC coefficients.
150 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
151 compptr = cinfo->cur_comp_info[ci];
152 /* Initialize DC predictions to 0 */
153 entropy->last_dc_val[ci] = 0;
154 /* Get table index */
155 if (is_DC_band) {
156 if (cinfo->Ah != 0) /* DC refinement needs no table */
157 continue;
158 tbl = compptr->dc_tbl_no;
159 } else {
160 entropy->ac_tbl_no = tbl = compptr->ac_tbl_no;
162 if (gather_statistics) {
163 /* Check for invalid table index */
164 /* (make_c_derived_tbl does this in the other path) */
165 if (tbl < 0 || tbl >= NUM_HUFF_TBLS)
166 ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl);
167 /* Allocate and zero the statistics tables */
168 /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */
169 if (entropy->count_ptrs[tbl] == NULL)
170 entropy->count_ptrs[tbl] = (long *)
171 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
172 257 * SIZEOF(long));
173 MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long));
174 } else {
175 /* Compute derived values for Huffman table */
176 /* We may do this more than once for a table, but it's not expensive */
177 jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl,
178 & entropy->derived_tbls[tbl]);
182 /* Initialize AC stuff */
183 entropy->EOBRUN = 0;
184 entropy->BE = 0;
186 /* Initialize bit buffer to empty */
187 entropy->put_buffer = 0;
188 entropy->put_bits = 0;
190 /* Initialize restart stuff */
191 entropy->restarts_to_go = cinfo->restart_interval;
192 entropy->next_restart_num = 0;
196 /* Outputting bytes to the file.
197 * NB: these must be called only when actually outputting,
198 * that is, entropy->gather_statistics == FALSE.
201 /* Emit a byte */
202 #define emit_byte(entropy,val) \
203 { *(entropy)->next_output_byte++ = (JOCTET) (val); \
204 if (--(entropy)->free_in_buffer == 0) \
205 dump_buffer(entropy); }
208 LOCAL(void)
209 dump_buffer (phuff_entropy_ptr entropy)
210 /* Empty the output buffer; we do not support suspension in this module. */
212 struct jpeg_destination_mgr * dest = entropy->cinfo->dest;
214 if (! (*dest->empty_output_buffer) (entropy->cinfo))
215 ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND);
216 /* After a successful buffer dump, must reset buffer pointers */
217 entropy->next_output_byte = dest->next_output_byte;
218 entropy->free_in_buffer = dest->free_in_buffer;
222 /* Outputting bits to the file */
224 /* Only the right 24 bits of put_buffer are used; the valid bits are
225 * left-justified in this part. At most 16 bits can be passed to emit_bits
226 * in one call, and we never retain more than 7 bits in put_buffer
227 * between calls, so 24 bits are sufficient.
230 INLINE
231 LOCAL(void)
232 emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size)
233 /* Emit some bits, unless we are in gather mode */
235 /* This routine is heavily used, so it's worth coding tightly. */
236 register INT32 put_buffer = (INT32) code;
237 register int put_bits = entropy->put_bits;
239 /* if size is 0, caller used an invalid Huffman table entry */
240 if (size == 0)
241 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
243 if (entropy->gather_statistics)
244 return; /* do nothing if we're only getting stats */
246 put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */
248 put_bits += size; /* new number of bits in buffer */
250 put_buffer <<= 24 - put_bits; /* align incoming bits */
252 put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */
254 while (put_bits >= 8) {
255 int c = (int) ((put_buffer >> 16) & 0xFF);
257 emit_byte(entropy, c);
258 if (c == 0xFF) { /* need to stuff a zero byte? */
259 emit_byte(entropy, 0);
261 put_buffer <<= 8;
262 put_bits -= 8;
265 entropy->put_buffer = put_buffer; /* update variables */
266 entropy->put_bits = put_bits;
270 LOCAL(void)
271 flush_bits (phuff_entropy_ptr entropy)
273 emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */
274 entropy->put_buffer = 0; /* and reset bit-buffer to empty */
275 entropy->put_bits = 0;
280 * Emit (or just count) a Huffman symbol.
283 INLINE
284 LOCAL(void)
285 emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol)
287 if (entropy->gather_statistics)
288 entropy->count_ptrs[tbl_no][symbol]++;
289 else {
290 c_derived_tbl * tbl = entropy->derived_tbls[tbl_no];
291 emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]);
297 * Emit bits from a correction bit buffer.
300 LOCAL(void)
301 emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart,
302 unsigned int nbits)
304 if (entropy->gather_statistics)
305 return; /* no real work */
307 while (nbits > 0) {
308 emit_bits(entropy, (unsigned int) (*bufstart), 1);
309 bufstart++;
310 nbits--;
316 * Emit any pending EOBRUN symbol.
319 LOCAL(void)
320 emit_eobrun (phuff_entropy_ptr entropy)
322 register int temp, nbits;
324 if (entropy->EOBRUN > 0) { /* if there is any pending EOBRUN */
325 temp = entropy->EOBRUN;
326 nbits = 0;
327 while ((temp >>= 1))
328 nbits++;
329 /* safety check: shouldn't happen given limited correction-bit buffer */
330 if (nbits > 14)
331 ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE);
333 emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4);
334 if (nbits)
335 emit_bits(entropy, entropy->EOBRUN, nbits);
337 entropy->EOBRUN = 0;
339 /* Emit any buffered correction bits */
340 emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE);
341 entropy->BE = 0;
347 * Emit a restart marker & resynchronize predictions.
350 LOCAL(void)
351 emit_restart (phuff_entropy_ptr entropy, int restart_num)
353 int ci;
355 emit_eobrun(entropy);
357 if (! entropy->gather_statistics) {
358 flush_bits(entropy);
359 emit_byte(entropy, 0xFF);
360 emit_byte(entropy, JPEG_RST0 + restart_num);
363 if (entropy->cinfo->Ss == 0) {
364 /* Re-initialize DC predictions to 0 */
365 for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++)
366 entropy->last_dc_val[ci] = 0;
367 } else {
368 /* Re-initialize all AC-related fields to 0 */
369 entropy->EOBRUN = 0;
370 entropy->BE = 0;
376 * MCU encoding for DC initial scan (either spectral selection,
377 * or first pass of successive approximation).
380 METHODDEF(boolean)
381 encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
383 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
384 phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyc->entropy_private;
385 register int temp, temp2;
386 register int nbits;
387 int blkn, ci;
388 int Al = cinfo->Al;
389 JBLOCKROW block;
390 jpeg_component_info * compptr;
391 ISHIFT_TEMPS
393 entropy->next_output_byte = cinfo->dest->next_output_byte;
394 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
396 /* Emit restart marker if needed */
397 if (cinfo->restart_interval)
398 if (entropy->restarts_to_go == 0)
399 emit_restart(entropy, entropy->next_restart_num);
401 /* Encode the MCU data blocks */
402 for (blkn = 0; blkn < cinfo->data_units_in_MCU; blkn++) {
403 block = MCU_data[blkn];
404 ci = cinfo->MCU_membership[blkn];
405 compptr = cinfo->cur_comp_info[ci];
407 /* Compute the DC value after the required point transform by Al.
408 * This is simply an arithmetic right shift.
410 temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al);
412 /* DC differences are figured on the point-transformed values. */
413 temp = temp2 - entropy->last_dc_val[ci];
414 entropy->last_dc_val[ci] = temp2;
416 /* Encode the DC coefficient difference per section G.1.2.1 */
417 temp2 = temp;
418 if (temp < 0) {
419 temp = -temp; /* temp is abs value of input */
420 /* For a negative input, want temp2 = bitwise complement of abs(input) */
421 /* This code assumes we are on a two's complement machine */
422 temp2--;
425 /* Find the number of bits needed for the magnitude of the coefficient */
426 nbits = 0;
427 while (temp) {
428 nbits++;
429 temp >>= 1;
431 /* Check for out-of-range coefficient values.
432 * Since we're encoding a difference, the range limit is twice as much.
434 if (nbits > MAX_COEF_BITS+1)
435 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
437 /* Count/emit the Huffman-coded symbol for the number of bits */
438 emit_symbol(entropy, compptr->dc_tbl_no, nbits);
440 /* Emit that number of bits of the value, if positive, */
441 /* or the complement of its magnitude, if negative. */
442 if (nbits) /* emit_bits rejects calls with size 0 */
443 emit_bits(entropy, (unsigned int) temp2, nbits);
446 cinfo->dest->next_output_byte = entropy->next_output_byte;
447 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
449 /* Update restart-interval state too */
450 if (cinfo->restart_interval) {
451 if (entropy->restarts_to_go == 0) {
452 entropy->restarts_to_go = cinfo->restart_interval;
453 entropy->next_restart_num++;
454 entropy->next_restart_num &= 7;
456 entropy->restarts_to_go--;
459 return TRUE;
464 * MCU encoding for AC initial scan (either spectral selection,
465 * or first pass of successive approximation).
468 METHODDEF(boolean)
469 encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
471 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
472 phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyc->entropy_private;
473 register int temp, temp2;
474 register int nbits;
475 register int r, k;
476 int Se = cinfo->Se;
477 int Al = cinfo->Al;
478 JBLOCKROW block;
480 entropy->next_output_byte = cinfo->dest->next_output_byte;
481 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
483 /* Emit restart marker if needed */
484 if (cinfo->restart_interval)
485 if (entropy->restarts_to_go == 0)
486 emit_restart(entropy, entropy->next_restart_num);
488 /* Encode the MCU data block */
489 block = MCU_data[0];
491 /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */
493 r = 0; /* r = run length of zeros */
495 for (k = cinfo->Ss; k <= Se; k++) {
496 if ((temp = (*block)[jpeg_natural_order[k]]) == 0) {
497 r++;
498 continue;
500 /* We must apply the point transform by Al. For AC coefficients this
501 * is an integer division with rounding towards 0. To do this portably
502 * in C, we shift after obtaining the absolute value; so the code is
503 * interwoven with finding the abs value (temp) and output bits (temp2).
505 if (temp < 0) {
506 temp = -temp; /* temp is abs value of input */
507 temp >>= Al; /* apply the point transform */
508 /* For a negative coef, want temp2 = bitwise complement of abs(coef) */
509 temp2 = ~temp;
510 } else {
511 temp >>= Al; /* apply the point transform */
512 temp2 = temp;
514 /* Watch out for case that nonzero coef is zero after point transform */
515 if (temp == 0) {
516 r++;
517 continue;
520 /* Emit any pending EOBRUN */
521 if (entropy->EOBRUN > 0)
522 emit_eobrun(entropy);
523 /* if run length > 15, must emit special run-length-16 codes (0xF0) */
524 while (r > 15) {
525 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
526 r -= 16;
529 /* Find the number of bits needed for the magnitude of the coefficient */
530 nbits = 1; /* there must be at least one 1 bit */
531 while ((temp >>= 1))
532 nbits++;
533 /* Check for out-of-range coefficient values */
534 if (nbits > MAX_COEF_BITS)
535 ERREXIT(cinfo, JERR_BAD_DCT_COEF);
537 /* Count/emit Huffman symbol for run length / number of bits */
538 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits);
540 /* Emit that number of bits of the value, if positive, */
541 /* or the complement of its magnitude, if negative. */
542 emit_bits(entropy, (unsigned int) temp2, nbits);
544 r = 0; /* reset zero run length */
547 if (r > 0) { /* If there are trailing zeroes, */
548 entropy->EOBRUN++; /* count an EOB */
549 if (entropy->EOBRUN == 0x7FFF)
550 emit_eobrun(entropy); /* force it out to avoid overflow */
553 cinfo->dest->next_output_byte = entropy->next_output_byte;
554 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
556 /* Update restart-interval state too */
557 if (cinfo->restart_interval) {
558 if (entropy->restarts_to_go == 0) {
559 entropy->restarts_to_go = cinfo->restart_interval;
560 entropy->next_restart_num++;
561 entropy->next_restart_num &= 7;
563 entropy->restarts_to_go--;
566 return TRUE;
571 * MCU encoding for DC successive approximation refinement scan.
572 * Note: we assume such scans can be multi-component, although the spec
573 * is not very clear on the point.
576 METHODDEF(boolean)
577 encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
579 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
580 phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyc->entropy_private;
581 register int temp;
582 int blkn;
583 int Al = cinfo->Al;
584 JBLOCKROW block;
586 entropy->next_output_byte = cinfo->dest->next_output_byte;
587 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
589 /* Emit restart marker if needed */
590 if (cinfo->restart_interval)
591 if (entropy->restarts_to_go == 0)
592 emit_restart(entropy, entropy->next_restart_num);
594 /* Encode the MCU data blocks */
595 for (blkn = 0; blkn < cinfo->data_units_in_MCU; blkn++) {
596 block = MCU_data[blkn];
598 /* We simply emit the Al'th bit of the DC coefficient value. */
599 temp = (*block)[0];
600 emit_bits(entropy, (unsigned int) (temp >> Al), 1);
603 cinfo->dest->next_output_byte = entropy->next_output_byte;
604 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
606 /* Update restart-interval state too */
607 if (cinfo->restart_interval) {
608 if (entropy->restarts_to_go == 0) {
609 entropy->restarts_to_go = cinfo->restart_interval;
610 entropy->next_restart_num++;
611 entropy->next_restart_num &= 7;
613 entropy->restarts_to_go--;
616 return TRUE;
621 * MCU encoding for AC successive approximation refinement scan.
624 METHODDEF(boolean)
625 encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data)
627 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
628 phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyc->entropy_private;
629 register int temp;
630 register int r, k;
631 int EOB;
632 char *BR_buffer;
633 unsigned int BR;
634 int Se = cinfo->Se;
635 int Al = cinfo->Al;
636 JBLOCKROW block;
637 int absvalues[DCTSIZE2];
639 entropy->next_output_byte = cinfo->dest->next_output_byte;
640 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
642 /* Emit restart marker if needed */
643 if (cinfo->restart_interval)
644 if (entropy->restarts_to_go == 0)
645 emit_restart(entropy, entropy->next_restart_num);
647 /* Encode the MCU data block */
648 block = MCU_data[0];
650 /* It is convenient to make a pre-pass to determine the transformed
651 * coefficients' absolute values and the EOB position.
653 EOB = 0;
654 for (k = cinfo->Ss; k <= Se; k++) {
655 temp = (*block)[jpeg_natural_order[k]];
656 /* We must apply the point transform by Al. For AC coefficients this
657 * is an integer division with rounding towards 0. To do this portably
658 * in C, we shift after obtaining the absolute value.
660 if (temp < 0)
661 temp = -temp; /* temp is abs value of input */
662 temp >>= Al; /* apply the point transform */
663 absvalues[k] = temp; /* save abs value for main pass */
664 if (temp == 1)
665 EOB = k; /* EOB = index of last newly-nonzero coef */
668 /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */
670 r = 0; /* r = run length of zeros */
671 BR = 0; /* BR = count of buffered bits added now */
672 BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */
674 for (k = cinfo->Ss; k <= Se; k++) {
675 if ((temp = absvalues[k]) == 0) {
676 r++;
677 continue;
680 /* Emit any required ZRLs, but not if they can be folded into EOB */
681 while (r > 15 && k <= EOB) {
682 /* emit any pending EOBRUN and the BE correction bits */
683 emit_eobrun(entropy);
684 /* Emit ZRL */
685 emit_symbol(entropy, entropy->ac_tbl_no, 0xF0);
686 r -= 16;
687 /* Emit buffered correction bits that must be associated with ZRL */
688 emit_buffered_bits(entropy, BR_buffer, BR);
689 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
690 BR = 0;
693 /* If the coef was previously nonzero, it only needs a correction bit.
694 * NOTE: a straight translation of the spec's figure G.7 would suggest
695 * that we also need to test r > 15. But if r > 15, we can only get here
696 * if k > EOB, which implies that this coefficient is not 1.
698 if (temp > 1) {
699 /* The correction bit is the next bit of the absolute value. */
700 BR_buffer[BR++] = (char) (temp & 1);
701 continue;
704 /* Emit any pending EOBRUN and the BE correction bits */
705 emit_eobrun(entropy);
707 /* Count/emit Huffman symbol for run length / number of bits */
708 emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1);
710 /* Emit output bit for newly-nonzero coef */
711 temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1;
712 emit_bits(entropy, (unsigned int) temp, 1);
714 /* Emit buffered correction bits that must be associated with this code */
715 emit_buffered_bits(entropy, BR_buffer, BR);
716 BR_buffer = entropy->bit_buffer; /* BE bits are gone now */
717 BR = 0;
718 r = 0; /* reset zero run length */
721 if (r > 0 || BR > 0) { /* If there are trailing zeroes, */
722 entropy->EOBRUN++; /* count an EOB */
723 entropy->BE += BR; /* concat my correction bits to older ones */
724 /* We force out the EOB if we risk either:
725 * 1. overflow of the EOB counter;
726 * 2. overflow of the correction bit buffer during the next MCU.
728 if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1))
729 emit_eobrun(entropy);
732 cinfo->dest->next_output_byte = entropy->next_output_byte;
733 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
735 /* Update restart-interval state too */
736 if (cinfo->restart_interval) {
737 if (entropy->restarts_to_go == 0) {
738 entropy->restarts_to_go = cinfo->restart_interval;
739 entropy->next_restart_num++;
740 entropy->next_restart_num &= 7;
742 entropy->restarts_to_go--;
745 return TRUE;
750 * Finish up at the end of a Huffman-compressed progressive scan.
753 METHODDEF(void)
754 finish_pass_phuff (j_compress_ptr cinfo)
756 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
757 phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyc->entropy_private;
759 entropy->next_output_byte = cinfo->dest->next_output_byte;
760 entropy->free_in_buffer = cinfo->dest->free_in_buffer;
762 /* Flush out any buffered data */
763 emit_eobrun(entropy);
764 flush_bits(entropy);
766 cinfo->dest->next_output_byte = entropy->next_output_byte;
767 cinfo->dest->free_in_buffer = entropy->free_in_buffer;
772 * Finish up a statistics-gathering pass and create the new Huffman tables.
775 METHODDEF(void)
776 finish_pass_gather_phuff (j_compress_ptr cinfo)
778 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
779 phuff_entropy_ptr entropy = (phuff_entropy_ptr) lossyc->entropy_private;
780 boolean is_DC_band;
781 int ci, tbl;
782 jpeg_component_info * compptr;
783 JHUFF_TBL **htblptr;
784 boolean did[NUM_HUFF_TBLS];
786 /* Flush out buffered data (all we care about is counting the EOB symbol) */
787 emit_eobrun(entropy);
789 is_DC_band = (cinfo->Ss == 0);
791 /* It's important not to apply jpeg_gen_optimal_table more than once
792 * per table, because it clobbers the input frequency counts!
794 MEMZERO(did, SIZEOF(did));
796 for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
797 compptr = cinfo->cur_comp_info[ci];
798 if (is_DC_band) {
799 if (cinfo->Ah != 0) /* DC refinement needs no table */
800 continue;
801 tbl = compptr->dc_tbl_no;
802 } else {
803 tbl = compptr->ac_tbl_no;
805 if (! did[tbl]) {
806 if (is_DC_band)
807 htblptr = & cinfo->dc_huff_tbl_ptrs[tbl];
808 else
809 htblptr = & cinfo->ac_huff_tbl_ptrs[tbl];
810 if (*htblptr == NULL)
811 *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
812 jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]);
813 did[tbl] = TRUE;
819 METHODDEF(boolean)
820 need_optimization_pass (j_compress_ptr cinfo)
822 return (cinfo->Ss != 0 || cinfo->Ah == 0);
827 * Module initialization routine for progressive Huffman entropy encoding.
830 JGLOBAL(void)
831 jinit_phuff_encoder (j_compress_ptr cinfo)
833 j_lossy_c_ptr lossyc = (j_lossy_c_ptr) cinfo->codec;
834 phuff_entropy_ptr entropy;
835 int i;
837 entropy = (phuff_entropy_ptr)
838 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
839 SIZEOF(phuff_entropy_encoder));
840 lossyc->entropy_private = (struct jpeg_entropy_encoder *) entropy;
841 lossyc->pub.entropy_start_pass = start_pass_phuff;
842 lossyc->pub.need_optimization_pass = need_optimization_pass;
844 /* Mark tables unallocated */
845 for (i = 0; i < NUM_HUFF_TBLS; i++) {
846 entropy->derived_tbls[i] = NULL;
847 entropy->count_ptrs[i] = NULL;
849 entropy->bit_buffer = NULL; /* needed only in AC refinement scan */
852 #endif /* C_PROGRESSIVE_SUPPORTED */