Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / compiler / libjpeg / main / jdmainct.c
bloba6fe72f8c5d4b049655e783efa3b1f0c33f12ce4
1 /*
2 $Id$
3 */
5 /*
6 * jdmainct.c
8 * Copyright (C) 1994-1998, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains the main buffer controller for decompression.
13 * The main buffer lies between the JPEG decompressor proper and the
14 * post-processor; it holds downsampled data in the JPEG colorspace.
16 * Note that this code is bypassed in raw-data mode, since the application
17 * supplies the equivalent of the main buffer in that case.
20 #define JPEG_INTERNALS
21 #include "jinclude.h"
22 #include "jpeglib.h"
26 * In the current system design, the main buffer need never be a full-image
27 * buffer; any full-height buffers will be found inside the coefficient or
28 * postprocessing controllers. Nonetheless, the main controller is not
29 * trivial. Its responsibility is to provide context rows for upsampling/
30 * rescaling, and doing this in an efficient fashion is a bit tricky.
32 * Postprocessor input data is counted in "row groups". A row group
33 * is defined to be (v_samp_factor * codec_data_unit / min_codec_data_unit)
34 * sample rows of each component. (We require codec_data_unit values to be
35 * chosen such that these numbers are integers. In practice codec_data_unit
36 * values will likely be powers of two, so we actually have the stronger
37 * condition that codec_data_unit / min_codec_data_unit is an integer.)
38 * Upsampling will typically produce max_v_samp_factor pixel rows from each
39 * row group (times any additional scale factor that the upsampler is
40 * applying).
42 * The decompression codec will deliver data to us one iMCU row at a time;
43 * each iMCU row contains v_samp_factor * codec_data_unit sample rows, or
44 * exactly min_codec_data_unit row groups. (This amount of data corresponds
45 * to one row of MCUs when the image is fully interleaved.) Note that the
46 * number of sample rows varies across components, but the number of row
47 * groups does not. Some garbage sample rows may be included in the last iMCU
48 * row at the bottom of the image.
50 * Depending on the vertical scaling algorithm used, the upsampler may need
51 * access to the sample row(s) above and below its current input row group.
52 * The upsampler is required to set need_context_rows TRUE at global selection
53 * time if so. When need_context_rows is FALSE, this controller can simply
54 * obtain one iMCU row at a time from the coefficient controller and dole it
55 * out as row groups to the postprocessor.
57 * When need_context_rows is TRUE, this controller guarantees that the buffer
58 * passed to postprocessing contains at least one row group's worth of samples
59 * above and below the row group(s) being processed. Note that the context
60 * rows "above" the first passed row group appear at negative row offsets in
61 * the passed buffer. At the top and bottom of the image, the required
62 * context rows are manufactured by duplicating the first or last real sample
63 * row; this avoids having special cases in the upsampling inner loops.
65 * The amount of context is fixed at one row group just because that's a
66 * convenient number for this controller to work with. The existing
67 * upsamplers really only need one sample row of context. An upsampler
68 * supporting arbitrary output rescaling might wish for more than one row
69 * group of context when shrinking the image; tough, we don't handle that.
70 * (This is justified by the assumption that downsizing will be handled mostly
71 * by adjusting the codec_data_unit values, so that the actual scale factor at
72 * the upsample step needn't be much less than one.)
74 * To provide the desired context, we have to retain the last two row groups
75 * of one iMCU row while reading in the next iMCU row. (The last row group
76 * can't be processed until we have another row group for its below-context,
77 * and so we have to save the next-to-last group too for its above-context.)
78 * We could do this most simply by copying data around in our buffer, but
79 * that'd be very slow. We can avoid copying any data by creating a rather
80 * strange pointer structure. Here's how it works. We allocate a workspace
81 * consisting of M+2 row groups (where M = min_codec_data_unit is the number
82 * of row groups per iMCU row). We create two sets of redundant pointers to
83 * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
84 * pointer lists look like this:
85 * M+1 M-1
86 * master pointer --> 0 master pointer --> 0
87 * 1 1
88 * ... ...
89 * M-3 M-3
90 * M-2 M
91 * M-1 M+1
92 * M M-2
93 * M+1 M-1
94 * 0 0
95 * We read alternate iMCU rows using each master pointer; thus the last two
96 * row groups of the previous iMCU row remain un-overwritten in the workspace.
97 * The pointer lists are set up so that the required context rows appear to
98 * be adjacent to the proper places when we pass the pointer lists to the
99 * upsampler.
101 * The above pictures describe the normal state of the pointer lists.
102 * At top and bottom of the image, we diddle the pointer lists to duplicate
103 * the first or last sample row as necessary (this is cheaper than copying
104 * sample rows around).
106 * This scheme breaks down if M < 2, ie, min_codec_data_unit is 1. In that
107 * situation each iMCU row provides only one row group so the buffering logic
108 * must be different (eg, we must read two iMCU rows before we can emit the
109 * first row group). For now, we simply do not support providing context
110 * rows when min_codec_data_unit is 1. That combination seems unlikely to
111 * be worth providing --- if someone wants a 1/8th-size preview, they probably
112 * want it quick and dirty, so a context-free upsampler is sufficient.
116 /* Private buffer controller object */
118 typedef struct {
119 struct jpeg_d_main_controller pub; /* public fields */
121 /* Pointer to allocated workspace (M or M+2 row groups). */
122 JSAMPARRAY buffer[MAX_COMPONENTS];
124 boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
125 JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
127 /* Remaining fields are only used in the context case. */
129 /* These are the master pointers to the funny-order pointer lists. */
130 JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
132 int whichptr; /* indicates which pointer set is now in use */
133 int context_state; /* process_data state machine status */
134 JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
135 JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
136 } my_main_controller;
138 typedef my_main_controller * my_main_ptr;
140 /* context_state values: */
141 #define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
142 #define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
143 #define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
146 /* Forward declarations */
147 METHODDEF(void) process_data_simple_main
148 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
149 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
150 METHODDEF(void) process_data_context_main
151 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
152 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
153 #ifdef QUANT_2PASS_SUPPORTED
154 METHODDEF(void) process_data_crank_post
155 JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
156 JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
157 #endif
160 LOCAL(void)
161 alloc_funny_pointers (j_decompress_ptr cinfo)
162 /* Allocate space for the funny pointer lists.
163 * This is done only once, not once per pass.
166 my_main_ptr main = (my_main_ptr) cinfo->main;
167 int ci, rgroup;
168 int M = cinfo->min_codec_data_unit;
169 jpeg_component_info *compptr;
170 JSAMPARRAY xbuf;
172 /* Get top-level space for component array pointers.
173 * We alloc both arrays with one call to save a few cycles.
175 main->xbuffer[0] = (JSAMPIMAGE)
176 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
177 cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
178 main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
180 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
181 ci++, compptr++) {
182 rgroup = (compptr->v_samp_factor * compptr->codec_data_unit) /
183 cinfo->min_codec_data_unit; /* height of a row group of component */
184 /* Get space for pointer lists --- M+4 row groups in each list.
185 * We alloc both pointer lists with one call to save a few cycles.
187 xbuf = (JSAMPARRAY)
188 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
189 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
190 xbuf += rgroup; /* want one row group at negative offsets */
191 main->xbuffer[0][ci] = xbuf;
192 xbuf += rgroup * (M + 4);
193 main->xbuffer[1][ci] = xbuf;
198 LOCAL(void)
199 make_funny_pointers (j_decompress_ptr cinfo)
200 /* Create the funny pointer lists discussed in the comments above.
201 * The actual workspace is already allocated (in main->buffer),
202 * and the space for the pointer lists is allocated too.
203 * This routine just fills in the curiously ordered lists.
204 * This will be repeated at the beginning of each pass.
207 my_main_ptr main = (my_main_ptr) cinfo->main;
208 int ci, i, rgroup;
209 int M = cinfo->min_codec_data_unit;
210 jpeg_component_info *compptr;
211 JSAMPARRAY buf, xbuf0, xbuf1;
213 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
214 ci++, compptr++) {
215 rgroup = (compptr->v_samp_factor * compptr->codec_data_unit) /
216 cinfo->min_codec_data_unit; /* height of a row group of component */
217 xbuf0 = main->xbuffer[0][ci];
218 xbuf1 = main->xbuffer[1][ci];
219 /* First copy the workspace pointers as-is */
220 buf = main->buffer[ci];
221 for (i = 0; i < rgroup * (M + 2); i++) {
222 xbuf0[i] = xbuf1[i] = buf[i];
224 /* In the second list, put the last four row groups in swapped order */
225 for (i = 0; i < rgroup * 2; i++) {
226 xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
227 xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
229 /* The wraparound pointers at top and bottom will be filled later
230 * (see set_wraparound_pointers, below). Initially we want the "above"
231 * pointers to duplicate the first actual data line. This only needs
232 * to happen in xbuffer[0].
234 for (i = 0; i < rgroup; i++) {
235 xbuf0[i - rgroup] = xbuf0[0];
241 LOCAL(void)
242 set_wraparound_pointers (j_decompress_ptr cinfo)
243 /* Set up the "wraparound" pointers at top and bottom of the pointer lists.
244 * This changes the pointer list state from top-of-image to the normal state.
247 my_main_ptr main = (my_main_ptr) cinfo->main;
248 int ci, i, rgroup;
249 int M = cinfo->min_codec_data_unit;
250 jpeg_component_info *compptr;
251 JSAMPARRAY xbuf0, xbuf1;
253 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
254 ci++, compptr++) {
255 rgroup = (compptr->v_samp_factor * compptr->codec_data_unit) /
256 cinfo->min_codec_data_unit; /* height of a row group of component */
257 xbuf0 = main->xbuffer[0][ci];
258 xbuf1 = main->xbuffer[1][ci];
259 for (i = 0; i < rgroup; i++) {
260 xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
261 xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
262 xbuf0[rgroup*(M+2) + i] = xbuf0[i];
263 xbuf1[rgroup*(M+2) + i] = xbuf1[i];
269 LOCAL(void)
270 set_bottom_pointers (j_decompress_ptr cinfo)
271 /* Change the pointer lists to duplicate the last sample row at the bottom
272 * of the image. whichptr indicates which xbuffer holds the final iMCU row.
273 * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
276 my_main_ptr main = (my_main_ptr) cinfo->main;
277 int ci, i, rgroup, iMCUheight, rows_left;
278 jpeg_component_info *compptr;
279 JSAMPARRAY xbuf;
281 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
282 ci++, compptr++) {
283 /* Count sample rows in one iMCU row and in one row group */
284 iMCUheight = compptr->v_samp_factor * compptr->codec_data_unit;
285 rgroup = iMCUheight / cinfo->min_codec_data_unit;
286 /* Count nondummy sample rows remaining for this component */
287 rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
288 if (rows_left == 0) rows_left = iMCUheight;
289 /* Count nondummy row groups. Should get same answer for each component,
290 * so we need only do it once.
292 if (ci == 0) {
293 main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
295 /* Duplicate the last real sample row rgroup*2 times; this pads out the
296 * last partial rowgroup and ensures at least one full rowgroup of context.
298 xbuf = main->xbuffer[main->whichptr][ci];
299 for (i = 0; i < rgroup * 2; i++) {
300 xbuf[rows_left + i] = xbuf[rows_left-1];
307 * Initialize for a processing pass.
310 METHODDEF(void)
311 start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
313 my_main_ptr main = (my_main_ptr) cinfo->main;
315 switch (pass_mode) {
316 case JBUF_PASS_THRU:
317 if (cinfo->upsample->need_context_rows) {
318 main->pub.process_data = process_data_context_main;
319 make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
320 main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
321 main->context_state = CTX_PREPARE_FOR_IMCU;
322 main->iMCU_row_ctr = 0;
323 } else {
324 /* Simple case with no context needed */
325 main->pub.process_data = process_data_simple_main;
327 main->buffer_full = FALSE; /* Mark buffer empty */
328 main->rowgroup_ctr = 0;
329 break;
330 #ifdef QUANT_2PASS_SUPPORTED
331 case JBUF_CRANK_DEST:
332 /* For last pass of 2-pass quantization, just crank the postprocessor */
333 main->pub.process_data = process_data_crank_post;
334 break;
335 #endif
336 default:
337 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
338 break;
344 * Process some data.
345 * This handles the simple case where no context is required.
348 METHODDEF(void)
349 process_data_simple_main (j_decompress_ptr cinfo,
350 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
351 JDIMENSION out_rows_avail)
353 my_main_ptr main = (my_main_ptr) cinfo->main;
354 JDIMENSION rowgroups_avail;
356 /* Read input data if we haven't filled the main buffer yet */
357 if (! main->buffer_full) {
358 if (! (*cinfo->codec->decompress_data) (cinfo, main->buffer))
359 return; /* suspension forced, can do nothing more */
360 main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
363 /* There are always min_codec_data_unit row groups in an iMCU row. */
364 rowgroups_avail = (JDIMENSION) cinfo->min_codec_data_unit;
365 /* Note: at the bottom of the image, we may pass extra garbage row groups
366 * to the postprocessor. The postprocessor has to check for bottom
367 * of image anyway (at row resolution), so no point in us doing it too.
370 /* Feed the postprocessor */
371 (*cinfo->post->post_process_data) (cinfo, main->buffer,
372 &main->rowgroup_ctr, rowgroups_avail,
373 output_buf, out_row_ctr, out_rows_avail);
375 /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
376 if (main->rowgroup_ctr >= rowgroups_avail) {
377 main->buffer_full = FALSE;
378 main->rowgroup_ctr = 0;
384 * Process some data.
385 * This handles the case where context rows must be provided.
388 METHODDEF(void)
389 process_data_context_main (j_decompress_ptr cinfo,
390 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
391 JDIMENSION out_rows_avail)
393 my_main_ptr main = (my_main_ptr) cinfo->main;
395 /* Read input data if we haven't filled the main buffer yet */
396 if (! main->buffer_full) {
397 if (! (*cinfo->codec->decompress_data) (cinfo,
398 main->xbuffer[main->whichptr]))
399 return; /* suspension forced, can do nothing more */
400 main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
401 main->iMCU_row_ctr++; /* count rows received */
404 /* Postprocessor typically will not swallow all the input data it is handed
405 * in one call (due to filling the output buffer first). Must be prepared
406 * to exit and restart. This switch lets us keep track of how far we got.
407 * Note that each case falls through to the next on successful completion.
409 switch (main->context_state) {
410 case CTX_POSTPONED_ROW:
411 /* Call postprocessor using previously set pointers for postponed row */
412 (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
413 &main->rowgroup_ctr, main->rowgroups_avail,
414 output_buf, out_row_ctr, out_rows_avail);
415 if (main->rowgroup_ctr < main->rowgroups_avail)
416 return; /* Need to suspend */
417 main->context_state = CTX_PREPARE_FOR_IMCU;
418 if (*out_row_ctr >= out_rows_avail)
419 return; /* Postprocessor exactly filled output buf */
420 /*FALLTHROUGH*/
421 case CTX_PREPARE_FOR_IMCU:
422 /* Prepare to process first M-1 row groups of this iMCU row */
423 main->rowgroup_ctr = 0;
424 main->rowgroups_avail = (JDIMENSION) (cinfo->min_codec_data_unit - 1);
425 /* Check for bottom of image: if so, tweak pointers to "duplicate"
426 * the last sample row, and adjust rowgroups_avail to ignore padding rows.
428 if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
429 set_bottom_pointers(cinfo);
430 main->context_state = CTX_PROCESS_IMCU;
431 /*FALLTHROUGH*/
432 case CTX_PROCESS_IMCU:
433 /* Call postprocessor using previously set pointers */
434 (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
435 &main->rowgroup_ctr, main->rowgroups_avail,
436 output_buf, out_row_ctr, out_rows_avail);
437 if (main->rowgroup_ctr < main->rowgroups_avail)
438 return; /* Need to suspend */
439 /* After the first iMCU, change wraparound pointers to normal state */
440 if (main->iMCU_row_ctr == 1)
441 set_wraparound_pointers(cinfo);
442 /* Prepare to load new iMCU row using other xbuffer list */
443 main->whichptr ^= 1; /* 0=>1 or 1=>0 */
444 main->buffer_full = FALSE;
445 /* Still need to process last row group of this iMCU row, */
446 /* which is saved at index M+1 of the other xbuffer */
447 main->rowgroup_ctr = (JDIMENSION) (cinfo->min_codec_data_unit + 1);
448 main->rowgroups_avail = (JDIMENSION) (cinfo->min_codec_data_unit + 2);
449 main->context_state = CTX_POSTPONED_ROW;
455 * Process some data.
456 * Final pass of two-pass quantization: just call the postprocessor.
457 * Source data will be the postprocessor controller's internal buffer.
460 #ifdef QUANT_2PASS_SUPPORTED
462 METHODDEF(void)
463 process_data_crank_post (j_decompress_ptr cinfo,
464 JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
465 JDIMENSION out_rows_avail)
467 (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
468 (JDIMENSION *) NULL, (JDIMENSION) 0,
469 output_buf, out_row_ctr, out_rows_avail);
472 #endif /* QUANT_2PASS_SUPPORTED */
476 * Initialize main buffer controller.
479 JGLOBAL(void)
480 jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
482 my_main_ptr main;
483 int ci, rgroup, ngroups;
484 jpeg_component_info *compptr;
486 main = (my_main_ptr)
487 (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
488 SIZEOF(my_main_controller));
489 cinfo->main = (struct jpeg_d_main_controller *) main;
490 main->pub.start_pass = start_pass_main;
492 if (need_full_buffer) /* shouldn't happen */
493 ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
495 /* Allocate the workspace.
496 * ngroups is the number of row groups we need.
498 if (cinfo->upsample->need_context_rows) {
499 if (cinfo->min_codec_data_unit < 2) /* unsupported, see comments above */
500 ERREXIT(cinfo, JERR_NOTIMPL);
501 alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
502 ngroups = cinfo->min_codec_data_unit + 2;
503 } else {
504 ngroups = cinfo->min_codec_data_unit;
507 for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
508 ci++, compptr++) {
509 rgroup = (compptr->v_samp_factor * compptr->codec_data_unit) /
510 cinfo->min_codec_data_unit; /* height of a row group of component */
511 main->buffer[ci] = (*cinfo->mem->alloc_sarray)
512 ((j_common_ptr) cinfo, JPOOL_IMAGE,
513 compptr->width_in_data_units * compptr->codec_data_unit,
514 (JDIMENSION) (rgroup * ngroups));