8 * Copyright (C) 1994-1996, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains a floating-point implementation of the
13 * forward DCT (Discrete Cosine Transform).
15 * This implementation should be more accurate than either of the integer
16 * DCT implementations. However, it may not give the same results on all
17 * machines because of differences in roundoff behavior. Speed will depend
18 * on the hardware's floating point capacity.
20 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
21 * on each column. Direct algorithms are also available, but they are
22 * much more complex and seem not to be any faster when reduced to code.
24 * This implementation is based on Arai, Agui, and Nakajima's algorithm for
25 * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
26 * Japanese, but the algorithm is described in the Pennebaker & Mitchell
27 * JPEG textbook (see REFERENCES section in file README). The following code
28 * is based directly on figure 4-8 in P&M.
29 * While an 8-point DCT cannot be done in less than 11 multiplies, it is
30 * possible to arrange the computation so that many of the multiplies are
31 * simple scalings of the final outputs. These multiplies can then be
32 * folded into the multiplications or divisions by the JPEG quantization
33 * table entries. The AA&N method leaves only 5 multiplies and 29 adds
34 * to be done in the DCT itself.
35 * The primary disadvantage of this method is that with a fixed-point
36 * implementation, accuracy is lost due to imprecise representation of the
37 * scaled quantization values. However, that problem does not arise if
38 * we use floating point arithmetic.
41 #define JPEG_INTERNALS
44 #include "jdct.h" /* Private declarations for DCT subsystem */
46 #ifdef DCT_FLOAT_SUPPORTED
50 * This module is specialized to the case DCTSIZE = 8.
54 Sorry
, this code only copes with
8x8 DCTs
. /* deliberate syntax err */
59 * Perform the forward DCT on one block of samples.
63 jpeg_fdct_float (FAST_FLOAT
* data
)
65 FAST_FLOAT tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
66 FAST_FLOAT tmp10
, tmp11
, tmp12
, tmp13
;
67 FAST_FLOAT z1
, z2
, z3
, z4
, z5
, z11
, z13
;
71 /* Pass 1: process rows. */
74 for (ctr
= DCTSIZE
-1; ctr
>= 0; ctr
--) {
75 tmp0
= dataptr
[0] + dataptr
[7];
76 tmp7
= dataptr
[0] - dataptr
[7];
77 tmp1
= dataptr
[1] + dataptr
[6];
78 tmp6
= dataptr
[1] - dataptr
[6];
79 tmp2
= dataptr
[2] + dataptr
[5];
80 tmp5
= dataptr
[2] - dataptr
[5];
81 tmp3
= dataptr
[3] + dataptr
[4];
82 tmp4
= dataptr
[3] - dataptr
[4];
86 tmp10
= tmp0
+ tmp3
; /* phase 2 */
91 dataptr
[0] = tmp10
+ tmp11
; /* phase 3 */
92 dataptr
[4] = tmp10
- tmp11
;
94 z1
= (tmp12
+ tmp13
) * ((FAST_FLOAT
) 0.707106781); /* c4 */
95 dataptr
[2] = tmp13
+ z1
; /* phase 5 */
96 dataptr
[6] = tmp13
- z1
;
100 tmp10
= tmp4
+ tmp5
; /* phase 2 */
104 /* The rotator is modified from fig 4-8 to avoid extra negations. */
105 z5
= (tmp10
- tmp12
) * ((FAST_FLOAT
) 0.382683433); /* c6 */
106 z2
= ((FAST_FLOAT
) 0.541196100) * tmp10
+ z5
; /* c2-c6 */
107 z4
= ((FAST_FLOAT
) 1.306562965) * tmp12
+ z5
; /* c2+c6 */
108 z3
= tmp11
* ((FAST_FLOAT
) 0.707106781); /* c4 */
110 z11
= tmp7
+ z3
; /* phase 5 */
113 dataptr
[5] = z13
+ z2
; /* phase 6 */
114 dataptr
[3] = z13
- z2
;
115 dataptr
[1] = z11
+ z4
;
116 dataptr
[7] = z11
- z4
;
118 dataptr
+= DCTSIZE
; /* advance pointer to next row */
121 /* Pass 2: process columns. */
124 for (ctr
= DCTSIZE
-1; ctr
>= 0; ctr
--) {
125 tmp0
= dataptr
[DCTSIZE
*0] + dataptr
[DCTSIZE
*7];
126 tmp7
= dataptr
[DCTSIZE
*0] - dataptr
[DCTSIZE
*7];
127 tmp1
= dataptr
[DCTSIZE
*1] + dataptr
[DCTSIZE
*6];
128 tmp6
= dataptr
[DCTSIZE
*1] - dataptr
[DCTSIZE
*6];
129 tmp2
= dataptr
[DCTSIZE
*2] + dataptr
[DCTSIZE
*5];
130 tmp5
= dataptr
[DCTSIZE
*2] - dataptr
[DCTSIZE
*5];
131 tmp3
= dataptr
[DCTSIZE
*3] + dataptr
[DCTSIZE
*4];
132 tmp4
= dataptr
[DCTSIZE
*3] - dataptr
[DCTSIZE
*4];
136 tmp10
= tmp0
+ tmp3
; /* phase 2 */
141 dataptr
[DCTSIZE
*0] = tmp10
+ tmp11
; /* phase 3 */
142 dataptr
[DCTSIZE
*4] = tmp10
- tmp11
;
144 z1
= (tmp12
+ tmp13
) * ((FAST_FLOAT
) 0.707106781); /* c4 */
145 dataptr
[DCTSIZE
*2] = tmp13
+ z1
; /* phase 5 */
146 dataptr
[DCTSIZE
*6] = tmp13
- z1
;
150 tmp10
= tmp4
+ tmp5
; /* phase 2 */
154 /* The rotator is modified from fig 4-8 to avoid extra negations. */
155 z5
= (tmp10
- tmp12
) * ((FAST_FLOAT
) 0.382683433); /* c6 */
156 z2
= ((FAST_FLOAT
) 0.541196100) * tmp10
+ z5
; /* c2-c6 */
157 z4
= ((FAST_FLOAT
) 1.306562965) * tmp12
+ z5
; /* c2+c6 */
158 z3
= tmp11
* ((FAST_FLOAT
) 0.707106781); /* c4 */
160 z11
= tmp7
+ z3
; /* phase 5 */
163 dataptr
[DCTSIZE
*5] = z13
+ z2
; /* phase 6 */
164 dataptr
[DCTSIZE
*3] = z13
- z2
;
165 dataptr
[DCTSIZE
*1] = z11
+ z4
;
166 dataptr
[DCTSIZE
*7] = z11
- z4
;
168 dataptr
++; /* advance pointer to next column */
172 #endif /* DCT_FLOAT_SUPPORTED */