8 * Copyright (C) 1991-1996, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains a slow-but-accurate integer implementation of the
13 * forward DCT (Discrete Cosine Transform).
15 * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
16 * on each column. Direct algorithms are also available, but they are
17 * much more complex and seem not to be any faster when reduced to code.
19 * This implementation is based on an algorithm described in
20 * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT
21 * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics,
22 * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991.
23 * The primary algorithm described there uses 11 multiplies and 29 adds.
24 * We use their alternate method with 12 multiplies and 32 adds.
25 * The advantage of this method is that no data path contains more than one
26 * multiplication; this allows a very simple and accurate implementation in
27 * scaled fixed-point arithmetic, with a minimal number of shifts.
30 #define JPEG_INTERNALS
33 #include "jdct.h" /* Private declarations for DCT subsystem */
35 #ifdef DCT_ISLOW_SUPPORTED
39 * This module is specialized to the case DCTSIZE = 8.
43 Sorry
, this code only copes with
8x8 DCTs
. /* deliberate syntax err */
48 * The poop on this scaling stuff is as follows:
50 * Each 1-D DCT step produces outputs which are a factor of sqrt(N)
51 * larger than the true DCT outputs. The final outputs are therefore
52 * a factor of N larger than desired; since N=8 this can be cured by
53 * a simple right shift at the end of the algorithm. The advantage of
54 * this arrangement is that we save two multiplications per 1-D DCT,
55 * because the y0 and y4 outputs need not be divided by sqrt(N).
56 * In the IJG code, this factor of 8 is removed by the quantization step
57 * (in jcdctmgr.c), NOT in this module.
59 * We have to do addition and subtraction of the integer inputs, which
60 * is no problem, and multiplication by fractional constants, which is
61 * a problem to do in integer arithmetic. We multiply all the constants
62 * by CONST_SCALE and convert them to integer constants (thus retaining
63 * CONST_BITS bits of precision in the constants). After doing a
64 * multiplication we have to divide the product by CONST_SCALE, with proper
65 * rounding, to produce the correct output. This division can be done
66 * cheaply as a right shift of CONST_BITS bits. We postpone shifting
67 * as long as possible so that partial sums can be added together with
68 * full fractional precision.
70 * The outputs of the first pass are scaled up by PASS1_BITS bits so that
71 * they are represented to better-than-integral precision. These outputs
72 * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word
73 * with the recommended scaling. (For 12-bit sample data, the intermediate
74 * array is INT32 anyway.)
76 * To avoid overflow of the 32-bit intermediate results in pass 2, we must
77 * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis
78 * shows that the values given below are the most effective.
81 #if BITS_IN_JSAMPLE == 8
86 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
89 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
90 * causing a lot of useless floating-point operations at run time.
91 * To get around this we use the following pre-calculated constants.
92 * If you change CONST_BITS you may want to add appropriate values.
93 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
97 #define FIX_0_298631336 ((INT32) 2446) /* FIX(0.298631336) */
98 #define FIX_0_390180644 ((INT32) 3196) /* FIX(0.390180644) */
99 #define FIX_0_541196100 ((INT32) 4433) /* FIX(0.541196100) */
100 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
101 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
102 #define FIX_1_175875602 ((INT32) 9633) /* FIX(1.175875602) */
103 #define FIX_1_501321110 ((INT32) 12299) /* FIX(1.501321110) */
104 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
105 #define FIX_1_961570560 ((INT32) 16069) /* FIX(1.961570560) */
106 #define FIX_2_053119869 ((INT32) 16819) /* FIX(2.053119869) */
107 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
108 #define FIX_3_072711026 ((INT32) 25172) /* FIX(3.072711026) */
110 #define FIX_0_298631336 FIX(0.298631336)
111 #define FIX_0_390180644 FIX(0.390180644)
112 #define FIX_0_541196100 FIX(0.541196100)
113 #define FIX_0_765366865 FIX(0.765366865)
114 #define FIX_0_899976223 FIX(0.899976223)
115 #define FIX_1_175875602 FIX(1.175875602)
116 #define FIX_1_501321110 FIX(1.501321110)
117 #define FIX_1_847759065 FIX(1.847759065)
118 #define FIX_1_961570560 FIX(1.961570560)
119 #define FIX_2_053119869 FIX(2.053119869)
120 #define FIX_2_562915447 FIX(2.562915447)
121 #define FIX_3_072711026 FIX(3.072711026)
125 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
126 * For 8-bit samples with the recommended scaling, all the variable
127 * and constant values involved are no more than 16 bits wide, so a
128 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
129 * For 12-bit samples, a full 32-bit multiplication will be needed.
132 #if BITS_IN_JSAMPLE == 8
133 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
135 #define MULTIPLY(var,const) ((var) * (const))
140 * Perform the forward DCT on one block of samples.
144 jpeg_fdct_islow (DCTELEM
* data
)
146 INT32 tmp0
, tmp1
, tmp2
, tmp3
, tmp4
, tmp5
, tmp6
, tmp7
;
147 INT32 tmp10
, tmp11
, tmp12
, tmp13
;
148 INT32 z1
, z2
, z3
, z4
, z5
;
153 /* Pass 1: process rows. */
154 /* Note results are scaled up by sqrt(8) compared to a true DCT; */
155 /* furthermore, we scale the results by 2**PASS1_BITS. */
158 for (ctr
= DCTSIZE
-1; ctr
>= 0; ctr
--) {
159 tmp0
= dataptr
[0] + dataptr
[7];
160 tmp7
= dataptr
[0] - dataptr
[7];
161 tmp1
= dataptr
[1] + dataptr
[6];
162 tmp6
= dataptr
[1] - dataptr
[6];
163 tmp2
= dataptr
[2] + dataptr
[5];
164 tmp5
= dataptr
[2] - dataptr
[5];
165 tmp3
= dataptr
[3] + dataptr
[4];
166 tmp4
= dataptr
[3] - dataptr
[4];
168 /* Even part per LL&M figure 1 --- note that published figure is faulty;
169 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
177 dataptr
[0] = (DCTELEM
) ((tmp10
+ tmp11
) << PASS1_BITS
);
178 dataptr
[4] = (DCTELEM
) ((tmp10
- tmp11
) << PASS1_BITS
);
180 z1
= MULTIPLY(tmp12
+ tmp13
, FIX_0_541196100
);
181 dataptr
[2] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp13
, FIX_0_765366865
),
182 CONST_BITS
-PASS1_BITS
);
183 dataptr
[6] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp12
, - FIX_1_847759065
),
184 CONST_BITS
-PASS1_BITS
);
186 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
187 * cK represents cos(K*pi/16).
188 * i0..i3 in the paper are tmp4..tmp7 here.
195 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
); /* sqrt(2) * c3 */
197 tmp4
= MULTIPLY(tmp4
, FIX_0_298631336
); /* sqrt(2) * (-c1+c3+c5-c7) */
198 tmp5
= MULTIPLY(tmp5
, FIX_2_053119869
); /* sqrt(2) * ( c1+c3-c5+c7) */
199 tmp6
= MULTIPLY(tmp6
, FIX_3_072711026
); /* sqrt(2) * ( c1+c3+c5-c7) */
200 tmp7
= MULTIPLY(tmp7
, FIX_1_501321110
); /* sqrt(2) * ( c1+c3-c5-c7) */
201 z1
= MULTIPLY(z1
, - FIX_0_899976223
); /* sqrt(2) * (c7-c3) */
202 z2
= MULTIPLY(z2
, - FIX_2_562915447
); /* sqrt(2) * (-c1-c3) */
203 z3
= MULTIPLY(z3
, - FIX_1_961570560
); /* sqrt(2) * (-c3-c5) */
204 z4
= MULTIPLY(z4
, - FIX_0_390180644
); /* sqrt(2) * (c5-c3) */
209 dataptr
[7] = (DCTELEM
) DESCALE(tmp4
+ z1
+ z3
, CONST_BITS
-PASS1_BITS
);
210 dataptr
[5] = (DCTELEM
) DESCALE(tmp5
+ z2
+ z4
, CONST_BITS
-PASS1_BITS
);
211 dataptr
[3] = (DCTELEM
) DESCALE(tmp6
+ z2
+ z3
, CONST_BITS
-PASS1_BITS
);
212 dataptr
[1] = (DCTELEM
) DESCALE(tmp7
+ z1
+ z4
, CONST_BITS
-PASS1_BITS
);
214 dataptr
+= DCTSIZE
; /* advance pointer to next row */
217 /* Pass 2: process columns.
218 * We remove the PASS1_BITS scaling, but leave the results scaled up
219 * by an overall factor of 8.
223 for (ctr
= DCTSIZE
-1; ctr
>= 0; ctr
--) {
224 tmp0
= dataptr
[DCTSIZE
*0] + dataptr
[DCTSIZE
*7];
225 tmp7
= dataptr
[DCTSIZE
*0] - dataptr
[DCTSIZE
*7];
226 tmp1
= dataptr
[DCTSIZE
*1] + dataptr
[DCTSIZE
*6];
227 tmp6
= dataptr
[DCTSIZE
*1] - dataptr
[DCTSIZE
*6];
228 tmp2
= dataptr
[DCTSIZE
*2] + dataptr
[DCTSIZE
*5];
229 tmp5
= dataptr
[DCTSIZE
*2] - dataptr
[DCTSIZE
*5];
230 tmp3
= dataptr
[DCTSIZE
*3] + dataptr
[DCTSIZE
*4];
231 tmp4
= dataptr
[DCTSIZE
*3] - dataptr
[DCTSIZE
*4];
233 /* Even part per LL&M figure 1 --- note that published figure is faulty;
234 * rotator "sqrt(2)*c1" should be "sqrt(2)*c6".
242 dataptr
[DCTSIZE
*0] = (DCTELEM
) DESCALE(tmp10
+ tmp11
, PASS1_BITS
);
243 dataptr
[DCTSIZE
*4] = (DCTELEM
) DESCALE(tmp10
- tmp11
, PASS1_BITS
);
245 z1
= MULTIPLY(tmp12
+ tmp13
, FIX_0_541196100
);
246 dataptr
[DCTSIZE
*2] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp13
, FIX_0_765366865
),
247 CONST_BITS
+PASS1_BITS
);
248 dataptr
[DCTSIZE
*6] = (DCTELEM
) DESCALE(z1
+ MULTIPLY(tmp12
, - FIX_1_847759065
),
249 CONST_BITS
+PASS1_BITS
);
251 /* Odd part per figure 8 --- note paper omits factor of sqrt(2).
252 * cK represents cos(K*pi/16).
253 * i0..i3 in the paper are tmp4..tmp7 here.
260 z5
= MULTIPLY(z3
+ z4
, FIX_1_175875602
); /* sqrt(2) * c3 */
262 tmp4
= MULTIPLY(tmp4
, FIX_0_298631336
); /* sqrt(2) * (-c1+c3+c5-c7) */
263 tmp5
= MULTIPLY(tmp5
, FIX_2_053119869
); /* sqrt(2) * ( c1+c3-c5+c7) */
264 tmp6
= MULTIPLY(tmp6
, FIX_3_072711026
); /* sqrt(2) * ( c1+c3+c5-c7) */
265 tmp7
= MULTIPLY(tmp7
, FIX_1_501321110
); /* sqrt(2) * ( c1+c3-c5-c7) */
266 z1
= MULTIPLY(z1
, - FIX_0_899976223
); /* sqrt(2) * (c7-c3) */
267 z2
= MULTIPLY(z2
, - FIX_2_562915447
); /* sqrt(2) * (-c1-c3) */
268 z3
= MULTIPLY(z3
, - FIX_1_961570560
); /* sqrt(2) * (-c3-c5) */
269 z4
= MULTIPLY(z4
, - FIX_0_390180644
); /* sqrt(2) * (c5-c3) */
274 dataptr
[DCTSIZE
*7] = (DCTELEM
) DESCALE(tmp4
+ z1
+ z3
,
275 CONST_BITS
+PASS1_BITS
);
276 dataptr
[DCTSIZE
*5] = (DCTELEM
) DESCALE(tmp5
+ z2
+ z4
,
277 CONST_BITS
+PASS1_BITS
);
278 dataptr
[DCTSIZE
*3] = (DCTELEM
) DESCALE(tmp6
+ z2
+ z3
,
279 CONST_BITS
+PASS1_BITS
);
280 dataptr
[DCTSIZE
*1] = (DCTELEM
) DESCALE(tmp7
+ z1
+ z4
,
281 CONST_BITS
+PASS1_BITS
);
283 dataptr
++; /* advance pointer to next column */
287 #endif /* DCT_ISLOW_SUPPORTED */