8 * Copyright (C) 1994-1998, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains inverse-DCT routines that produce reduced-size output:
13 * either 4x4, 2x2, or 1x1 pixels from an 8x8 DCT block.
15 * The implementation is based on the Loeffler, Ligtenberg and Moschytz (LL&M)
16 * algorithm used in jidctint.c. We simply replace each 8-to-8 1-D IDCT step
17 * with an 8-to-4 step that produces the four averages of two adjacent outputs
18 * (or an 8-to-2 step producing two averages of four outputs, for 2x2 output).
19 * These steps were derived by computing the corresponding values at the end
20 * of the normal LL&M code, then simplifying as much as possible.
22 * 1x1 is trivial: just take the DC coefficient divided by 8.
24 * See jidctint.c for additional comments.
27 #define JPEG_INTERNALS
30 #include "jdct.h" /* Private declarations for DCT subsystem */
32 #ifdef IDCT_SCALING_SUPPORTED
36 * This module is specialized to the case DCTSIZE = 8.
40 Sorry
, this code only copes with
8x8 DCTs
. /* deliberate syntax err */
44 /* Scaling is the same as in jidctint.c. */
46 #if BITS_IN_JSAMPLE == 8
51 #define PASS1_BITS 1 /* lose a little precision to avoid overflow */
54 /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus
55 * causing a lot of useless floating-point operations at run time.
56 * To get around this we use the following pre-calculated constants.
57 * If you change CONST_BITS you may want to add appropriate values.
58 * (With a reasonable C compiler, you can just rely on the FIX() macro...)
62 #define FIX_0_211164243 ((INT32) 1730) /* FIX(0.211164243) */
63 #define FIX_0_509795579 ((INT32) 4176) /* FIX(0.509795579) */
64 #define FIX_0_601344887 ((INT32) 4926) /* FIX(0.601344887) */
65 #define FIX_0_720959822 ((INT32) 5906) /* FIX(0.720959822) */
66 #define FIX_0_765366865 ((INT32) 6270) /* FIX(0.765366865) */
67 #define FIX_0_850430095 ((INT32) 6967) /* FIX(0.850430095) */
68 #define FIX_0_899976223 ((INT32) 7373) /* FIX(0.899976223) */
69 #define FIX_1_061594337 ((INT32) 8697) /* FIX(1.061594337) */
70 #define FIX_1_272758580 ((INT32) 10426) /* FIX(1.272758580) */
71 #define FIX_1_451774981 ((INT32) 11893) /* FIX(1.451774981) */
72 #define FIX_1_847759065 ((INT32) 15137) /* FIX(1.847759065) */
73 #define FIX_2_172734803 ((INT32) 17799) /* FIX(2.172734803) */
74 #define FIX_2_562915447 ((INT32) 20995) /* FIX(2.562915447) */
75 #define FIX_3_624509785 ((INT32) 29692) /* FIX(3.624509785) */
77 #define FIX_0_211164243 FIX(0.211164243)
78 #define FIX_0_509795579 FIX(0.509795579)
79 #define FIX_0_601344887 FIX(0.601344887)
80 #define FIX_0_720959822 FIX(0.720959822)
81 #define FIX_0_765366865 FIX(0.765366865)
82 #define FIX_0_850430095 FIX(0.850430095)
83 #define FIX_0_899976223 FIX(0.899976223)
84 #define FIX_1_061594337 FIX(1.061594337)
85 #define FIX_1_272758580 FIX(1.272758580)
86 #define FIX_1_451774981 FIX(1.451774981)
87 #define FIX_1_847759065 FIX(1.847759065)
88 #define FIX_2_172734803 FIX(2.172734803)
89 #define FIX_2_562915447 FIX(2.562915447)
90 #define FIX_3_624509785 FIX(3.624509785)
94 /* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
95 * For 8-bit samples with the recommended scaling, all the variable
96 * and constant values involved are no more than 16 bits wide, so a
97 * 16x16->32 bit multiply can be used instead of a full 32x32 multiply.
98 * For 12-bit samples, a full 32-bit multiplication will be needed.
101 #if BITS_IN_JSAMPLE == 8
102 #define MULTIPLY(var,const) MULTIPLY16C16(var,const)
104 #define MULTIPLY(var,const) ((var) * (const))
108 /* Dequantize a coefficient by multiplying it by the multiplier-table
109 * entry; produce an int result. In this module, both inputs and result
110 * are 16 bits or less, so either int or short multiply will work.
113 #define DEQUANTIZE(coef,quantval) (((ISLOW_MULT_TYPE) (coef)) * (quantval))
117 * Perform dequantization and inverse DCT on one block of coefficients,
118 * producing a reduced-size 4x4 output block.
122 jpeg_idct_4x4 (j_decompress_ptr cinfo
, jpeg_component_info
* compptr
,
124 JSAMPARRAY output_buf
, JDIMENSION output_col
)
126 INT32 tmp0
, tmp2
, tmp10
, tmp12
;
127 INT32 z1
, z2
, z3
, z4
;
129 ISLOW_MULT_TYPE
* quantptr
;
132 JSAMPLE
*range_limit
= IDCT_range_limit(cinfo
);
134 int workspace
[DCTSIZE
*4]; /* buffers data between passes */
137 /* Pass 1: process columns from input, store into work array. */
140 quantptr
= (ISLOW_MULT_TYPE
*) compptr
->dct_table
;
142 for (ctr
= DCTSIZE
; ctr
> 0; inptr
++, quantptr
++, wsptr
++, ctr
--) {
143 /* Don't bother to process column 4, because second pass won't use it */
144 if (ctr
== DCTSIZE
-4)
146 if (inptr
[DCTSIZE
*1] == 0 && inptr
[DCTSIZE
*2] == 0 &&
147 inptr
[DCTSIZE
*3] == 0 && inptr
[DCTSIZE
*5] == 0 &&
148 inptr
[DCTSIZE
*6] == 0 && inptr
[DCTSIZE
*7] == 0) {
149 /* AC terms all zero; we need not examine term 4 for 4x4 output */
150 int dcval
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]) << PASS1_BITS
;
152 wsptr
[DCTSIZE
*0] = dcval
;
153 wsptr
[DCTSIZE
*1] = dcval
;
154 wsptr
[DCTSIZE
*2] = dcval
;
155 wsptr
[DCTSIZE
*3] = dcval
;
162 tmp0
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]);
163 tmp0
<<= (CONST_BITS
+1);
165 z2
= DEQUANTIZE(inptr
[DCTSIZE
*2], quantptr
[DCTSIZE
*2]);
166 z3
= DEQUANTIZE(inptr
[DCTSIZE
*6], quantptr
[DCTSIZE
*6]);
168 tmp2
= MULTIPLY(z2
, FIX_1_847759065
) + MULTIPLY(z3
, - FIX_0_765366865
);
175 z1
= DEQUANTIZE(inptr
[DCTSIZE
*7], quantptr
[DCTSIZE
*7]);
176 z2
= DEQUANTIZE(inptr
[DCTSIZE
*5], quantptr
[DCTSIZE
*5]);
177 z3
= DEQUANTIZE(inptr
[DCTSIZE
*3], quantptr
[DCTSIZE
*3]);
178 z4
= DEQUANTIZE(inptr
[DCTSIZE
*1], quantptr
[DCTSIZE
*1]);
180 tmp0
= MULTIPLY(z1
, - FIX_0_211164243
) /* sqrt(2) * (c3-c1) */
181 + MULTIPLY(z2
, FIX_1_451774981
) /* sqrt(2) * (c3+c7) */
182 + MULTIPLY(z3
, - FIX_2_172734803
) /* sqrt(2) * (-c1-c5) */
183 + MULTIPLY(z4
, FIX_1_061594337
); /* sqrt(2) * (c5+c7) */
185 tmp2
= MULTIPLY(z1
, - FIX_0_509795579
) /* sqrt(2) * (c7-c5) */
186 + MULTIPLY(z2
, - FIX_0_601344887
) /* sqrt(2) * (c5-c1) */
187 + MULTIPLY(z3
, FIX_0_899976223
) /* sqrt(2) * (c3-c7) */
188 + MULTIPLY(z4
, FIX_2_562915447
); /* sqrt(2) * (c1+c3) */
190 /* Final output stage */
192 wsptr
[DCTSIZE
*0] = (int) DESCALE(tmp10
+ tmp2
, CONST_BITS
-PASS1_BITS
+1);
193 wsptr
[DCTSIZE
*3] = (int) DESCALE(tmp10
- tmp2
, CONST_BITS
-PASS1_BITS
+1);
194 wsptr
[DCTSIZE
*1] = (int) DESCALE(tmp12
+ tmp0
, CONST_BITS
-PASS1_BITS
+1);
195 wsptr
[DCTSIZE
*2] = (int) DESCALE(tmp12
- tmp0
, CONST_BITS
-PASS1_BITS
+1);
198 /* Pass 2: process 4 rows from work array, store into output array. */
201 for (ctr
= 0; ctr
< 4; ctr
++) {
202 outptr
= output_buf
[ctr
] + output_col
;
203 /* It's not clear whether a zero row test is worthwhile here ... */
205 #ifndef NO_ZERO_ROW_TEST
206 if (wsptr
[1] == 0 && wsptr
[2] == 0 && wsptr
[3] == 0 &&
207 wsptr
[5] == 0 && wsptr
[6] == 0 && wsptr
[7] == 0) {
208 /* AC terms all zero */
209 JSAMPLE dcval
= range_limit
[(int) DESCALE((INT32
) wsptr
[0], PASS1_BITS
+3)
217 wsptr
+= DCTSIZE
; /* advance pointer to next row */
224 tmp0
= ((INT32
) wsptr
[0]) << (CONST_BITS
+1);
226 tmp2
= MULTIPLY((INT32
) wsptr
[2], FIX_1_847759065
)
227 + MULTIPLY((INT32
) wsptr
[6], - FIX_0_765366865
);
234 z1
= (INT32
) wsptr
[7];
235 z2
= (INT32
) wsptr
[5];
236 z3
= (INT32
) wsptr
[3];
237 z4
= (INT32
) wsptr
[1];
239 tmp0
= MULTIPLY(z1
, - FIX_0_211164243
) /* sqrt(2) * (c3-c1) */
240 + MULTIPLY(z2
, FIX_1_451774981
) /* sqrt(2) * (c3+c7) */
241 + MULTIPLY(z3
, - FIX_2_172734803
) /* sqrt(2) * (-c1-c5) */
242 + MULTIPLY(z4
, FIX_1_061594337
); /* sqrt(2) * (c5+c7) */
244 tmp2
= MULTIPLY(z1
, - FIX_0_509795579
) /* sqrt(2) * (c7-c5) */
245 + MULTIPLY(z2
, - FIX_0_601344887
) /* sqrt(2) * (c5-c1) */
246 + MULTIPLY(z3
, FIX_0_899976223
) /* sqrt(2) * (c3-c7) */
247 + MULTIPLY(z4
, FIX_2_562915447
); /* sqrt(2) * (c1+c3) */
249 /* Final output stage */
251 outptr
[0] = range_limit
[(int) DESCALE(tmp10
+ tmp2
,
252 CONST_BITS
+PASS1_BITS
+3+1)
254 outptr
[3] = range_limit
[(int) DESCALE(tmp10
- tmp2
,
255 CONST_BITS
+PASS1_BITS
+3+1)
257 outptr
[1] = range_limit
[(int) DESCALE(tmp12
+ tmp0
,
258 CONST_BITS
+PASS1_BITS
+3+1)
260 outptr
[2] = range_limit
[(int) DESCALE(tmp12
- tmp0
,
261 CONST_BITS
+PASS1_BITS
+3+1)
264 wsptr
+= DCTSIZE
; /* advance pointer to next row */
270 * Perform dequantization and inverse DCT on one block of coefficients,
271 * producing a reduced-size 2x2 output block.
275 jpeg_idct_2x2 (j_decompress_ptr cinfo
, jpeg_component_info
* compptr
,
277 JSAMPARRAY output_buf
, JDIMENSION output_col
)
279 INT32 tmp0
, tmp10
, z1
;
281 ISLOW_MULT_TYPE
* quantptr
;
284 JSAMPLE
*range_limit
= IDCT_range_limit(cinfo
);
286 int workspace
[DCTSIZE
*2]; /* buffers data between passes */
289 /* Pass 1: process columns from input, store into work array. */
292 quantptr
= (ISLOW_MULT_TYPE
*) compptr
->dct_table
;
294 for (ctr
= DCTSIZE
; ctr
> 0; inptr
++, quantptr
++, wsptr
++, ctr
--) {
295 /* Don't bother to process columns 2,4,6 */
296 if (ctr
== DCTSIZE
-2 || ctr
== DCTSIZE
-4 || ctr
== DCTSIZE
-6)
298 if (inptr
[DCTSIZE
*1] == 0 && inptr
[DCTSIZE
*3] == 0 &&
299 inptr
[DCTSIZE
*5] == 0 && inptr
[DCTSIZE
*7] == 0) {
300 /* AC terms all zero; we need not examine terms 2,4,6 for 2x2 output */
301 int dcval
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]) << PASS1_BITS
;
303 wsptr
[DCTSIZE
*0] = dcval
;
304 wsptr
[DCTSIZE
*1] = dcval
;
311 z1
= DEQUANTIZE(inptr
[DCTSIZE
*0], quantptr
[DCTSIZE
*0]);
312 tmp10
= z1
<< (CONST_BITS
+2);
316 z1
= DEQUANTIZE(inptr
[DCTSIZE
*7], quantptr
[DCTSIZE
*7]);
317 tmp0
= MULTIPLY(z1
, - FIX_0_720959822
); /* sqrt(2) * (c7-c5+c3-c1) */
318 z1
= DEQUANTIZE(inptr
[DCTSIZE
*5], quantptr
[DCTSIZE
*5]);
319 tmp0
+= MULTIPLY(z1
, FIX_0_850430095
); /* sqrt(2) * (-c1+c3+c5+c7) */
320 z1
= DEQUANTIZE(inptr
[DCTSIZE
*3], quantptr
[DCTSIZE
*3]);
321 tmp0
+= MULTIPLY(z1
, - FIX_1_272758580
); /* sqrt(2) * (-c1+c3-c5-c7) */
322 z1
= DEQUANTIZE(inptr
[DCTSIZE
*1], quantptr
[DCTSIZE
*1]);
323 tmp0
+= MULTIPLY(z1
, FIX_3_624509785
); /* sqrt(2) * (c1+c3+c5+c7) */
325 /* Final output stage */
327 wsptr
[DCTSIZE
*0] = (int) DESCALE(tmp10
+ tmp0
, CONST_BITS
-PASS1_BITS
+2);
328 wsptr
[DCTSIZE
*1] = (int) DESCALE(tmp10
- tmp0
, CONST_BITS
-PASS1_BITS
+2);
331 /* Pass 2: process 2 rows from work array, store into output array. */
334 for (ctr
= 0; ctr
< 2; ctr
++) {
335 outptr
= output_buf
[ctr
] + output_col
;
336 /* It's not clear whether a zero row test is worthwhile here ... */
338 #ifndef NO_ZERO_ROW_TEST
339 if (wsptr
[1] == 0 && wsptr
[3] == 0 && wsptr
[5] == 0 && wsptr
[7] == 0) {
340 /* AC terms all zero */
341 JSAMPLE dcval
= range_limit
[(int) DESCALE((INT32
) wsptr
[0], PASS1_BITS
+3)
347 wsptr
+= DCTSIZE
; /* advance pointer to next row */
354 tmp10
= ((INT32
) wsptr
[0]) << (CONST_BITS
+2);
358 tmp0
= MULTIPLY((INT32
) wsptr
[7], - FIX_0_720959822
) /* sqrt(2) * (c7-c5+c3-c1) */
359 + MULTIPLY((INT32
) wsptr
[5], FIX_0_850430095
) /* sqrt(2) * (-c1+c3+c5+c7) */
360 + MULTIPLY((INT32
) wsptr
[3], - FIX_1_272758580
) /* sqrt(2) * (-c1+c3-c5-c7) */
361 + MULTIPLY((INT32
) wsptr
[1], FIX_3_624509785
); /* sqrt(2) * (c1+c3+c5+c7) */
363 /* Final output stage */
365 outptr
[0] = range_limit
[(int) DESCALE(tmp10
+ tmp0
,
366 CONST_BITS
+PASS1_BITS
+3+2)
368 outptr
[1] = range_limit
[(int) DESCALE(tmp10
- tmp0
,
369 CONST_BITS
+PASS1_BITS
+3+2)
372 wsptr
+= DCTSIZE
; /* advance pointer to next row */
378 * Perform dequantization and inverse DCT on one block of coefficients,
379 * producing a reduced-size 1x1 output block.
383 jpeg_idct_1x1 (j_decompress_ptr cinfo
, jpeg_component_info
* compptr
,
385 JSAMPARRAY output_buf
, JDIMENSION output_col
)
388 ISLOW_MULT_TYPE
* quantptr
;
389 JSAMPLE
*range_limit
= IDCT_range_limit(cinfo
);
392 /* We hardly need an inverse DCT routine for this: just take the
393 * average pixel value, which is one-eighth of the DC coefficient.
395 quantptr
= (ISLOW_MULT_TYPE
*) compptr
->dct_table
;
396 dcval
= DEQUANTIZE(coef_block
[0], quantptr
[0]);
397 dcval
= (int) DESCALE((INT32
) dcval
, 3);
399 output_buf
[0][output_col
] = range_limit
[dcval
& RANGE_MASK
];
402 #endif /* IDCT_SCALING_SUPPORTED */