Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / compiler / libjpeg / main / jmemmgr.c
blobfe6d5fdff74d333530f09c918172af39101e03c4
1 /*
2 $Id$
3 */
5 /*
6 * jmemmgr.c
8 * Copyright (C) 1991-1998, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains the JPEG system-independent memory management
13 * routines. This code is usable across a wide variety of machines; most
14 * of the system dependencies have been isolated in a separate file.
15 * The major functions provided here are:
16 * * pool-based allocation and freeing of memory;
17 * * policy decisions about how to divide available memory among the
18 * virtual arrays;
19 * * control logic for swapping virtual arrays between main memory and
20 * backing storage.
21 * The separate system-dependent file provides the actual backing-storage
22 * access code, and it contains the policy decision about how much total
23 * main memory to use.
24 * This file is system-dependent in the sense that some of its functions
25 * are unnecessary in some systems. For example, if there is enough virtual
26 * memory so that backing storage will never be used, much of the virtual
27 * array control logic could be removed. (Of course, if you have that much
28 * memory then you shouldn't care about a little bit of unused code...)
31 #define JPEG_INTERNALS
32 #define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
33 #include "jinclude.h"
34 #include "jpeglib.h"
35 #include "jmemsys.h" /* import the system-dependent declarations */
37 #ifndef NO_GETENV
38 #ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
39 extern char * getenv JPP((const char * name));
40 #endif
41 #endif
45 * Some important notes:
46 * The allocation routines provided here must never return NULL.
47 * They should exit to error_exit if unsuccessful.
49 * It's not a good idea to try to merge the sarray, barray and darray
50 * routines, even though they are textually almost the same, because
51 * samples are usually stored as bytes while coefficients and differenced
52 * are shorts or ints. Thus, in machines where byte pointers have a
53 * different representation from word pointers, the resulting machine
54 * code could not be the same.
59 * Many machines require storage alignment: longs must start on 4-byte
60 * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
61 * always returns pointers that are multiples of the worst-case alignment
62 * requirement, and we had better do so too.
63 * There isn't any really portable way to determine the worst-case alignment
64 * requirement. This module assumes that the alignment requirement is
65 * multiples of sizeof(ALIGN_TYPE).
66 * By default, we define ALIGN_TYPE as double. This is necessary on some
67 * workstations (where doubles really do need 8-byte alignment) and will work
68 * fine on nearly everything. If your machine has lesser alignment needs,
69 * you can save a few bytes by making ALIGN_TYPE smaller.
70 * The only place I know of where this will NOT work is certain Macintosh
71 * 680x0 compilers that define double as a 10-byte IEEE extended float.
72 * Doing 10-byte alignment is counterproductive because longwords won't be
73 * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
74 * such a compiler.
77 #ifndef ALIGN_TYPE /* so can override from jconfig.h */
78 #define ALIGN_TYPE double
79 #endif
83 * We allocate objects from "pools", where each pool is gotten with a single
84 * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
85 * overhead within a pool, except for alignment padding. Each pool has a
86 * header with a link to the next pool of the same class.
87 * Small and large pool headers are identical except that the latter's
88 * link pointer must be FAR on 80x86 machines.
89 * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
90 * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
91 * of the alignment requirement of ALIGN_TYPE.
94 typedef union small_pool_struct * small_pool_ptr;
96 typedef union small_pool_struct {
97 struct {
98 small_pool_ptr next; /* next in list of pools */
99 size_t bytes_used; /* how many bytes already used within pool */
100 size_t bytes_left; /* bytes still available in this pool */
101 } hdr;
102 ALIGN_TYPE dummy; /* included in union to ensure alignment */
103 } small_pool_hdr;
105 typedef union large_pool_struct FAR * large_pool_ptr;
107 typedef union large_pool_struct {
108 struct {
109 large_pool_ptr next; /* next in list of pools */
110 size_t bytes_used; /* how many bytes already used within pool */
111 size_t bytes_left; /* bytes still available in this pool */
112 } hdr;
113 ALIGN_TYPE dummy; /* included in union to ensure alignment */
114 } large_pool_hdr;
118 * Here is the full definition of a memory manager object.
121 typedef struct {
122 struct jpeg_memory_mgr pub; /* public fields */
124 /* Each pool identifier (lifetime class) names a linked list of pools. */
125 small_pool_ptr small_list[JPOOL_NUMPOOLS];
126 large_pool_ptr large_list[JPOOL_NUMPOOLS];
128 /* Since we only have one lifetime class of virtual arrays, only one
129 * linked list is necessary (for each datatype). Note that the virtual
130 * array control blocks being linked together are actually stored somewhere
131 * in the small-pool list.
133 jvirt_sarray_ptr virt_sarray_list;
134 jvirt_barray_ptr virt_barray_list;
136 /* This counts total space obtained from jpeg_get_small/large */
137 long total_space_allocated;
139 /* alloc_sarray and alloc_barray set this value for use by virtual
140 * array routines.
142 JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
143 } my_memory_mgr;
145 typedef my_memory_mgr * my_mem_ptr;
149 * The control blocks for virtual arrays.
150 * Note that these blocks are allocated in the "small" pool area.
151 * System-dependent info for the associated backing store (if any) is hidden
152 * inside the backing_store_info struct.
155 struct jvirt_sarray_control {
156 JSAMPARRAY mem_buffer; /* => the in-memory buffer */
157 JDIMENSION rows_in_array; /* total virtual array height */
158 JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
159 JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
160 JDIMENSION rows_in_mem; /* height of memory buffer */
161 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
162 JDIMENSION cur_start_row; /* first logical row # in the buffer */
163 JDIMENSION first_undef_row; /* row # of first uninitialized row */
164 boolean pre_zero; /* pre-zero mode requested? */
165 boolean dirty; /* do current buffer contents need written? */
166 boolean b_s_open; /* is backing-store data valid? */
167 jvirt_sarray_ptr next; /* link to next virtual sarray control block */
168 backing_store_info b_s_info; /* System-dependent control info */
171 struct jvirt_barray_control {
172 JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
173 JDIMENSION rows_in_array; /* total virtual array height */
174 JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
175 JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
176 JDIMENSION rows_in_mem; /* height of memory buffer */
177 JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
178 JDIMENSION cur_start_row; /* first logical row # in the buffer */
179 JDIMENSION first_undef_row; /* row # of first uninitialized row */
180 boolean pre_zero; /* pre-zero mode requested? */
181 boolean dirty; /* do current buffer contents need written? */
182 boolean b_s_open; /* is backing-store data valid? */
183 jvirt_barray_ptr next; /* link to next virtual barray control block */
184 backing_store_info b_s_info; /* System-dependent control info */
188 #ifdef MEM_STATS /* optional extra stuff for statistics */
190 LOCAL(void)
191 print_mem_stats (j_common_ptr cinfo, int pool_id)
193 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
194 small_pool_ptr shdr_ptr;
195 large_pool_ptr lhdr_ptr;
197 /* Since this is only a debugging stub, we can cheat a little by using
198 * fprintf directly rather than going through the trace message code.
199 * This is helpful because message parm array can't handle longs.
201 fprintf(stderr, "Freeing pool %d, total space = %ld\n",
202 pool_id, mem->total_space_allocated);
204 for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
205 lhdr_ptr = lhdr_ptr->hdr.next) {
206 fprintf(stderr, " Large chunk used %ld\n",
207 (long) lhdr_ptr->hdr.bytes_used);
210 for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
211 shdr_ptr = shdr_ptr->hdr.next) {
212 fprintf(stderr, " Small chunk used %ld free %ld\n",
213 (long) shdr_ptr->hdr.bytes_used,
214 (long) shdr_ptr->hdr.bytes_left);
218 #endif /* MEM_STATS */
221 LOCAL(void)
222 out_of_memory (j_common_ptr cinfo, int which)
223 /* Report an out-of-memory error and stop execution */
224 /* If we compiled MEM_STATS support, report alloc requests before dying */
226 #ifdef MEM_STATS
227 cinfo->err->trace_level = 2; /* force self_destruct to report stats */
228 #endif
229 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
234 * Allocation of "small" objects.
236 * For these, we use pooled storage. When a new pool must be created,
237 * we try to get enough space for the current request plus a "slop" factor,
238 * where the slop will be the amount of leftover space in the new pool.
239 * The speed vs. space tradeoff is largely determined by the slop values.
240 * A different slop value is provided for each pool class (lifetime),
241 * and we also distinguish the first pool of a class from later ones.
242 * NOTE: the values given work fairly well on both 16- and 32-bit-int
243 * machines, but may be too small if longs are 64 bits or more.
246 static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
248 1600, /* first PERMANENT pool */
249 16000 /* first IMAGE pool */
252 static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
254 0, /* additional PERMANENT pools */
255 5000 /* additional IMAGE pools */
258 #define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
261 METHODDEF(void *)
262 alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
263 /* Allocate a "small" object */
265 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
266 small_pool_ptr hdr_ptr, prev_hdr_ptr;
267 char * data_ptr;
268 size_t odd_bytes, min_request, slop;
270 /* Check for unsatisfiable request (do now to ensure no overflow below) */
271 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
272 out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
274 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
275 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
276 if (odd_bytes > 0)
277 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
279 /* See if space is available in any existing pool */
280 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
281 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
282 prev_hdr_ptr = NULL;
283 hdr_ptr = mem->small_list[pool_id];
284 while (hdr_ptr != NULL) {
285 if (hdr_ptr->hdr.bytes_left >= sizeofobject)
286 break; /* found pool with enough space */
287 prev_hdr_ptr = hdr_ptr;
288 hdr_ptr = hdr_ptr->hdr.next;
291 /* Time to make a new pool? */
292 if (hdr_ptr == NULL) {
293 /* min_request is what we need now, slop is what will be leftover */
294 min_request = sizeofobject + SIZEOF(small_pool_hdr);
295 if (prev_hdr_ptr == NULL) /* first pool in class? */
296 slop = first_pool_slop[pool_id];
297 else
298 slop = extra_pool_slop[pool_id];
299 /* Don't ask for more than MAX_ALLOC_CHUNK */
300 if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
301 slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
302 /* Try to get space, if fail reduce slop and try again */
303 for (;;) {
304 hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
305 if (hdr_ptr != NULL)
306 break;
307 slop /= 2;
308 if (slop < MIN_SLOP) /* give up when it gets real small */
309 out_of_memory(cinfo, 2); /* jpeg_get_small failed */
311 mem->total_space_allocated += min_request + slop;
312 /* Success, initialize the new pool header and add to end of list */
313 hdr_ptr->hdr.next = NULL;
314 hdr_ptr->hdr.bytes_used = 0;
315 hdr_ptr->hdr.bytes_left = sizeofobject + slop;
316 if (prev_hdr_ptr == NULL) /* first pool in class? */
317 mem->small_list[pool_id] = hdr_ptr;
318 else
319 prev_hdr_ptr->hdr.next = hdr_ptr;
322 /* OK, allocate the object from the current pool */
323 data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
324 data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
325 hdr_ptr->hdr.bytes_used += sizeofobject;
326 hdr_ptr->hdr.bytes_left -= sizeofobject;
328 return (void *) data_ptr;
333 * Allocation of "large" objects.
335 * The external semantics of these are the same as "small" objects,
336 * except that FAR pointers are used on 80x86. However the pool
337 * management heuristics are quite different. We assume that each
338 * request is large enough that it may as well be passed directly to
339 * jpeg_get_large; the pool management just links everything together
340 * so that we can free it all on demand.
341 * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
342 * structures. The routines that create these structures (see below)
343 * deliberately bunch rows together to ensure a large request size.
346 METHODDEF(void FAR *)
347 alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
348 /* Allocate a "large" object */
350 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
351 large_pool_ptr hdr_ptr;
352 size_t odd_bytes;
354 /* Check for unsatisfiable request (do now to ensure no overflow below) */
355 if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
356 out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
358 /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
359 odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
360 if (odd_bytes > 0)
361 sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
363 /* Always make a new pool */
364 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
365 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
367 hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
368 SIZEOF(large_pool_hdr));
369 if (hdr_ptr == NULL)
370 out_of_memory(cinfo, 4); /* jpeg_get_large failed */
371 mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
373 /* Success, initialize the new pool header and add to list */
374 hdr_ptr->hdr.next = mem->large_list[pool_id];
375 /* We maintain space counts in each pool header for statistical purposes,
376 * even though they are not needed for allocation.
378 hdr_ptr->hdr.bytes_used = sizeofobject;
379 hdr_ptr->hdr.bytes_left = 0;
380 mem->large_list[pool_id] = hdr_ptr;
382 return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
387 * Creation of 2-D sample arrays.
388 * The pointers are in near heap, the samples themselves in FAR heap.
390 * To minimize allocation overhead and to allow I/O of large contiguous
391 * blocks, we allocate the sample rows in groups of as many rows as possible
392 * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
393 * NB: the virtual array control routines, later in this file, know about
394 * this chunking of rows. The rowsperchunk value is left in the mem manager
395 * object so that it can be saved away if this sarray is the workspace for
396 * a virtual array.
399 METHODDEF(JSAMPARRAY)
400 alloc_sarray (j_common_ptr cinfo, int pool_id,
401 JDIMENSION samplesperrow, JDIMENSION numrows)
402 /* Allocate a 2-D sample array */
404 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
405 JSAMPARRAY result;
406 JSAMPROW workspace;
407 JDIMENSION rowsperchunk, currow, i;
408 long ltemp;
410 /* Calculate max # of rows allowed in one allocation chunk */
411 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
412 ((long) samplesperrow * SIZEOF(JSAMPLE));
413 if (ltemp <= 0)
414 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
415 if (ltemp < (long) numrows)
416 rowsperchunk = (JDIMENSION) ltemp;
417 else
418 rowsperchunk = numrows;
419 mem->last_rowsperchunk = rowsperchunk;
421 /* Get space for row pointers (small object) */
422 result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
423 (size_t) (numrows * SIZEOF(JSAMPROW)));
425 /* Get the rows themselves (large objects) */
426 currow = 0;
427 while (currow < numrows) {
428 rowsperchunk = MIN(rowsperchunk, numrows - currow);
429 workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
430 (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
431 * SIZEOF(JSAMPLE)));
432 for (i = rowsperchunk; i > 0; i--) {
433 result[currow++] = workspace;
434 workspace += samplesperrow;
438 return result;
443 * Creation of 2-D coefficient-block arrays.
444 * This is essentially the same as the code for sample arrays, above.
447 METHODDEF(JBLOCKARRAY)
448 alloc_barray (j_common_ptr cinfo, int pool_id,
449 JDIMENSION blocksperrow, JDIMENSION numrows)
450 /* Allocate a 2-D coefficient-block array */
452 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
453 JBLOCKARRAY result;
454 JBLOCKROW workspace;
455 JDIMENSION rowsperchunk, currow, i;
456 long ltemp;
458 /* Calculate max # of rows allowed in one allocation chunk */
459 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
460 ((long) blocksperrow * SIZEOF(JBLOCK));
461 if (ltemp <= 0)
462 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
463 if (ltemp < (long) numrows)
464 rowsperchunk = (JDIMENSION) ltemp;
465 else
466 rowsperchunk = numrows;
467 mem->last_rowsperchunk = rowsperchunk;
469 /* Get space for row pointers (small object) */
470 result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
471 (size_t) (numrows * SIZEOF(JBLOCKROW)));
473 /* Get the rows themselves (large objects) */
474 currow = 0;
475 while (currow < numrows) {
476 rowsperchunk = MIN(rowsperchunk, numrows - currow);
477 workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
478 (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
479 * SIZEOF(JBLOCK)));
480 for (i = rowsperchunk; i > 0; i--) {
481 result[currow++] = workspace;
482 workspace += blocksperrow;
486 return result;
490 #ifdef NEED_DARRAY
493 * Creation of 2-D difference arrays.
494 * This is essentially the same as the code for sample arrays, above.
497 METHODDEF(JDIFFARRAY)
498 alloc_darray (j_common_ptr cinfo, int pool_id,
499 JDIMENSION diffsperrow, JDIMENSION numrows)
500 /* Allocate a 2-D difference array */
502 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
503 JDIFFARRAY result;
504 JDIFFROW workspace;
505 JDIMENSION rowsperchunk, currow, i;
506 long ltemp;
508 /* Calculate max # of rows allowed in one allocation chunk */
509 ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
510 ((long) diffsperrow * SIZEOF(JDIFF));
511 if (ltemp <= 0)
512 ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
513 if (ltemp < (long) numrows)
514 rowsperchunk = (JDIMENSION) ltemp;
515 else
516 rowsperchunk = numrows;
517 mem->last_rowsperchunk = rowsperchunk;
519 /* Get space for row pointers (small object) */
520 result = (JDIFFARRAY) alloc_small(cinfo, pool_id,
521 (size_t) (numrows * SIZEOF(JDIFFROW)));
523 /* Get the rows themselves (large objects) */
524 currow = 0;
525 while (currow < numrows) {
526 rowsperchunk = MIN(rowsperchunk, numrows - currow);
527 workspace = (JDIFFROW) alloc_large(cinfo, pool_id,
528 (size_t) ((size_t) rowsperchunk * (size_t) diffsperrow
529 * SIZEOF(JDIFF)));
530 for (i = rowsperchunk; i > 0; i--) {
531 result[currow++] = workspace;
532 workspace += diffsperrow;
536 return result;
539 #endif
543 * About virtual array management:
545 * The above "normal" array routines are only used to allocate strip buffers
546 * (as wide as the image, but just a few rows high). Full-image-sized buffers
547 * are handled as "virtual" arrays. The array is still accessed a strip at a
548 * time, but the memory manager must save the whole array for repeated
549 * accesses. The intended implementation is that there is a strip buffer in
550 * memory (as high as is possible given the desired memory limit), plus a
551 * backing file that holds the rest of the array.
553 * The request_virt_array routines are told the total size of the image and
554 * the maximum number of rows that will be accessed at once. The in-memory
555 * buffer must be at least as large as the maxaccess value.
557 * The request routines create control blocks but not the in-memory buffers.
558 * That is postponed until realize_virt_arrays is called. At that time the
559 * total amount of space needed is known (approximately, anyway), so free
560 * memory can be divided up fairly.
562 * The access_virt_array routines are responsible for making a specific strip
563 * area accessible (after reading or writing the backing file, if necessary).
564 * Note that the access routines are told whether the caller intends to modify
565 * the accessed strip; during a read-only pass this saves having to rewrite
566 * data to disk. The access routines are also responsible for pre-zeroing
567 * any newly accessed rows, if pre-zeroing was requested.
569 * In current usage, the access requests are usually for nonoverlapping
570 * strips; that is, successive access start_row numbers differ by exactly
571 * num_rows = maxaccess. This means we can get good performance with simple
572 * buffer dump/reload logic, by making the in-memory buffer be a multiple
573 * of the access height; then there will never be accesses across bufferload
574 * boundaries. The code will still work with overlapping access requests,
575 * but it doesn't handle bufferload overlaps very efficiently.
579 METHODDEF(jvirt_sarray_ptr)
580 request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
581 JDIMENSION samplesperrow, JDIMENSION numrows,
582 JDIMENSION maxaccess)
583 /* Request a virtual 2-D sample array */
585 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
586 jvirt_sarray_ptr result;
588 /* Only IMAGE-lifetime virtual arrays are currently supported */
589 if (pool_id != JPOOL_IMAGE)
590 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
592 /* get control block */
593 result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
594 SIZEOF(struct jvirt_sarray_control));
596 result->mem_buffer = NULL; /* marks array not yet realized */
597 result->rows_in_array = numrows;
598 result->samplesperrow = samplesperrow;
599 result->maxaccess = maxaccess;
600 result->pre_zero = pre_zero;
601 result->b_s_open = FALSE; /* no associated backing-store object */
602 result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
603 mem->virt_sarray_list = result;
605 return result;
609 METHODDEF(jvirt_barray_ptr)
610 request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
611 JDIMENSION blocksperrow, JDIMENSION numrows,
612 JDIMENSION maxaccess)
613 /* Request a virtual 2-D coefficient-block array */
615 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
616 jvirt_barray_ptr result;
618 /* Only IMAGE-lifetime virtual arrays are currently supported */
619 if (pool_id != JPOOL_IMAGE)
620 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
622 /* get control block */
623 result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
624 SIZEOF(struct jvirt_barray_control));
626 result->mem_buffer = NULL; /* marks array not yet realized */
627 result->rows_in_array = numrows;
628 result->blocksperrow = blocksperrow;
629 result->maxaccess = maxaccess;
630 result->pre_zero = pre_zero;
631 result->b_s_open = FALSE; /* no associated backing-store object */
632 result->next = mem->virt_barray_list; /* add to list of virtual arrays */
633 mem->virt_barray_list = result;
635 return result;
639 METHODDEF(void)
640 realize_virt_arrays (j_common_ptr cinfo)
641 /* Allocate the in-memory buffers for any unrealized virtual arrays */
643 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
644 long space_per_minheight, maximum_space, avail_mem;
645 long minheights, max_minheights;
646 jvirt_sarray_ptr sptr;
647 jvirt_barray_ptr bptr;
649 /* Compute the minimum space needed (maxaccess rows in each buffer)
650 * and the maximum space needed (full image height in each buffer).
651 * These may be of use to the system-dependent jpeg_mem_available routine.
653 space_per_minheight = 0;
654 maximum_space = 0;
655 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
656 if (sptr->mem_buffer == NULL) { /* if not realized yet */
657 space_per_minheight += (long) sptr->maxaccess *
658 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
659 maximum_space += (long) sptr->rows_in_array *
660 (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
663 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
664 if (bptr->mem_buffer == NULL) { /* if not realized yet */
665 space_per_minheight += (long) bptr->maxaccess *
666 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
667 maximum_space += (long) bptr->rows_in_array *
668 (long) bptr->blocksperrow * SIZEOF(JBLOCK);
672 if (space_per_minheight <= 0)
673 return; /* no unrealized arrays, no work */
675 /* Determine amount of memory to actually use; this is system-dependent. */
676 avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
677 mem->total_space_allocated);
679 /* If the maximum space needed is available, make all the buffers full
680 * height; otherwise parcel it out with the same number of minheights
681 * in each buffer.
683 if (avail_mem >= maximum_space)
684 max_minheights = 1000000000L;
685 else {
686 max_minheights = avail_mem / space_per_minheight;
687 /* If there doesn't seem to be enough space, try to get the minimum
688 * anyway. This allows a "stub" implementation of jpeg_mem_available().
690 if (max_minheights <= 0)
691 max_minheights = 1;
694 /* Allocate the in-memory buffers and initialize backing store as needed. */
696 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
697 if (sptr->mem_buffer == NULL) { /* if not realized yet */
698 minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
699 if (minheights <= max_minheights) {
700 /* This buffer fits in memory */
701 sptr->rows_in_mem = sptr->rows_in_array;
702 } else {
703 /* It doesn't fit in memory, create backing store. */
704 sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
705 jpeg_open_backing_store(cinfo, & sptr->b_s_info,
706 (long) sptr->rows_in_array *
707 (long) sptr->samplesperrow *
708 (long) SIZEOF(JSAMPLE));
709 sptr->b_s_open = TRUE;
711 sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
712 sptr->samplesperrow, sptr->rows_in_mem);
713 sptr->rowsperchunk = mem->last_rowsperchunk;
714 sptr->cur_start_row = 0;
715 sptr->first_undef_row = 0;
716 sptr->dirty = FALSE;
720 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
721 if (bptr->mem_buffer == NULL) { /* if not realized yet */
722 minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
723 if (minheights <= max_minheights) {
724 /* This buffer fits in memory */
725 bptr->rows_in_mem = bptr->rows_in_array;
726 } else {
727 /* It doesn't fit in memory, create backing store. */
728 bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
729 jpeg_open_backing_store(cinfo, & bptr->b_s_info,
730 (long) bptr->rows_in_array *
731 (long) bptr->blocksperrow *
732 (long) SIZEOF(JBLOCK));
733 bptr->b_s_open = TRUE;
735 bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
736 bptr->blocksperrow, bptr->rows_in_mem);
737 bptr->rowsperchunk = mem->last_rowsperchunk;
738 bptr->cur_start_row = 0;
739 bptr->first_undef_row = 0;
740 bptr->dirty = FALSE;
746 LOCAL(void)
747 do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
748 /* Do backing store read or write of a virtual sample array */
750 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
752 bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
753 file_offset = ptr->cur_start_row * bytesperrow;
754 /* Loop to read or write each allocation chunk in mem_buffer */
755 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
756 /* One chunk, but check for short chunk at end of buffer */
757 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
758 /* Transfer no more than is currently defined */
759 thisrow = (long) ptr->cur_start_row + i;
760 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
761 /* Transfer no more than fits in file */
762 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
763 if (rows <= 0) /* this chunk might be past end of file! */
764 break;
765 byte_count = rows * bytesperrow;
766 if (writing)
767 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
768 (void FAR *) ptr->mem_buffer[i],
769 file_offset, byte_count);
770 else
771 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
772 (void FAR *) ptr->mem_buffer[i],
773 file_offset, byte_count);
774 file_offset += byte_count;
779 LOCAL(void)
780 do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
781 /* Do backing store read or write of a virtual coefficient-block array */
783 long bytesperrow, file_offset, byte_count, rows, thisrow, i;
785 bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
786 file_offset = ptr->cur_start_row * bytesperrow;
787 /* Loop to read or write each allocation chunk in mem_buffer */
788 for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
789 /* One chunk, but check for short chunk at end of buffer */
790 rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
791 /* Transfer no more than is currently defined */
792 thisrow = (long) ptr->cur_start_row + i;
793 rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
794 /* Transfer no more than fits in file */
795 rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
796 if (rows <= 0) /* this chunk might be past end of file! */
797 break;
798 byte_count = rows * bytesperrow;
799 if (writing)
800 (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
801 (void FAR *) ptr->mem_buffer[i],
802 file_offset, byte_count);
803 else
804 (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
805 (void FAR *) ptr->mem_buffer[i],
806 file_offset, byte_count);
807 file_offset += byte_count;
812 METHODDEF(JSAMPARRAY)
813 access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
814 JDIMENSION start_row, JDIMENSION num_rows,
815 boolean writable)
816 /* Access the part of a virtual sample array starting at start_row */
817 /* and extending for num_rows rows. writable is true if */
818 /* caller intends to modify the accessed area. */
820 JDIMENSION end_row = start_row + num_rows;
821 JDIMENSION undef_row;
823 /* debugging check */
824 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
825 ptr->mem_buffer == NULL)
826 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
828 /* Make the desired part of the virtual array accessible */
829 if (start_row < ptr->cur_start_row ||
830 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
831 if (! ptr->b_s_open)
832 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
833 /* Flush old buffer contents if necessary */
834 if (ptr->dirty) {
835 do_sarray_io(cinfo, ptr, TRUE);
836 ptr->dirty = FALSE;
838 /* Decide what part of virtual array to access.
839 * Algorithm: if target address > current window, assume forward scan,
840 * load starting at target address. If target address < current window,
841 * assume backward scan, load so that target area is top of window.
842 * Note that when switching from forward write to forward read, will have
843 * start_row = 0, so the limiting case applies and we load from 0 anyway.
845 if (start_row > ptr->cur_start_row) {
846 ptr->cur_start_row = start_row;
847 } else {
848 /* use long arithmetic here to avoid overflow & unsigned problems */
849 long ltemp;
851 ltemp = (long) end_row - (long) ptr->rows_in_mem;
852 if (ltemp < 0)
853 ltemp = 0; /* don't fall off front end of file */
854 ptr->cur_start_row = (JDIMENSION) ltemp;
856 /* Read in the selected part of the array.
857 * During the initial write pass, we will do no actual read
858 * because the selected part is all undefined.
860 do_sarray_io(cinfo, ptr, FALSE);
862 /* Ensure the accessed part of the array is defined; prezero if needed.
863 * To improve locality of access, we only prezero the part of the array
864 * that the caller is about to access, not the entire in-memory array.
866 if (ptr->first_undef_row < end_row) {
867 if (ptr->first_undef_row < start_row) {
868 if (writable) /* writer skipped over a section of array */
869 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
870 undef_row = start_row; /* but reader is allowed to read ahead */
871 } else {
872 undef_row = ptr->first_undef_row;
874 if (writable)
875 ptr->first_undef_row = end_row;
876 if (ptr->pre_zero) {
877 size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
878 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
879 end_row -= ptr->cur_start_row;
880 while (undef_row < end_row) {
881 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
882 undef_row++;
884 } else {
885 if (! writable) /* reader looking at undefined data */
886 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
889 /* Flag the buffer dirty if caller will write in it */
890 if (writable)
891 ptr->dirty = TRUE;
892 /* Return address of proper part of the buffer */
893 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
897 METHODDEF(JBLOCKARRAY)
898 access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
899 JDIMENSION start_row, JDIMENSION num_rows,
900 boolean writable)
901 /* Access the part of a virtual block array starting at start_row */
902 /* and extending for num_rows rows. writable is true if */
903 /* caller intends to modify the accessed area. */
905 JDIMENSION end_row = start_row + num_rows;
906 JDIMENSION undef_row;
908 /* debugging check */
909 if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
910 ptr->mem_buffer == NULL)
911 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
913 /* Make the desired part of the virtual array accessible */
914 if (start_row < ptr->cur_start_row ||
915 end_row > ptr->cur_start_row+ptr->rows_in_mem) {
916 if (! ptr->b_s_open)
917 ERREXIT(cinfo, JERR_VIRTUAL_BUG);
918 /* Flush old buffer contents if necessary */
919 if (ptr->dirty) {
920 do_barray_io(cinfo, ptr, TRUE);
921 ptr->dirty = FALSE;
923 /* Decide what part of virtual array to access.
924 * Algorithm: if target address > current window, assume forward scan,
925 * load starting at target address. If target address < current window,
926 * assume backward scan, load so that target area is top of window.
927 * Note that when switching from forward write to forward read, will have
928 * start_row = 0, so the limiting case applies and we load from 0 anyway.
930 if (start_row > ptr->cur_start_row) {
931 ptr->cur_start_row = start_row;
932 } else {
933 /* use long arithmetic here to avoid overflow & unsigned problems */
934 long ltemp;
936 ltemp = (long) end_row - (long) ptr->rows_in_mem;
937 if (ltemp < 0)
938 ltemp = 0; /* don't fall off front end of file */
939 ptr->cur_start_row = (JDIMENSION) ltemp;
941 /* Read in the selected part of the array.
942 * During the initial write pass, we will do no actual read
943 * because the selected part is all undefined.
945 do_barray_io(cinfo, ptr, FALSE);
947 /* Ensure the accessed part of the array is defined; prezero if needed.
948 * To improve locality of access, we only prezero the part of the array
949 * that the caller is about to access, not the entire in-memory array.
951 if (ptr->first_undef_row < end_row) {
952 if (ptr->first_undef_row < start_row) {
953 if (writable) /* writer skipped over a section of array */
954 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
955 undef_row = start_row; /* but reader is allowed to read ahead */
956 } else {
957 undef_row = ptr->first_undef_row;
959 if (writable)
960 ptr->first_undef_row = end_row;
961 if (ptr->pre_zero) {
962 size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
963 undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
964 end_row -= ptr->cur_start_row;
965 while (undef_row < end_row) {
966 jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
967 undef_row++;
969 } else {
970 if (! writable) /* reader looking at undefined data */
971 ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
974 /* Flag the buffer dirty if caller will write in it */
975 if (writable)
976 ptr->dirty = TRUE;
977 /* Return address of proper part of the buffer */
978 return ptr->mem_buffer + (start_row - ptr->cur_start_row);
983 * Release all objects belonging to a specified pool.
986 METHODDEF(void)
987 free_pool (j_common_ptr cinfo, int pool_id)
989 my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
990 small_pool_ptr shdr_ptr;
991 large_pool_ptr lhdr_ptr;
992 size_t space_freed;
994 if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
995 ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
997 #ifdef MEM_STATS
998 if (cinfo->err->trace_level > 1)
999 print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
1000 #endif
1002 /* If freeing IMAGE pool, close any virtual arrays first */
1003 if (pool_id == JPOOL_IMAGE) {
1004 jvirt_sarray_ptr sptr;
1005 jvirt_barray_ptr bptr;
1007 for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
1008 if (sptr->b_s_open) { /* there may be no backing store */
1009 sptr->b_s_open = FALSE; /* prevent recursive close if error */
1010 (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
1013 mem->virt_sarray_list = NULL;
1014 for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
1015 if (bptr->b_s_open) { /* there may be no backing store */
1016 bptr->b_s_open = FALSE; /* prevent recursive close if error */
1017 (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
1020 mem->virt_barray_list = NULL;
1023 /* Release large objects */
1024 lhdr_ptr = mem->large_list[pool_id];
1025 mem->large_list[pool_id] = NULL;
1027 while (lhdr_ptr != NULL) {
1028 large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
1029 space_freed = lhdr_ptr->hdr.bytes_used +
1030 lhdr_ptr->hdr.bytes_left +
1031 SIZEOF(large_pool_hdr);
1032 jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
1033 mem->total_space_allocated -= space_freed;
1034 lhdr_ptr = next_lhdr_ptr;
1037 /* Release small objects */
1038 shdr_ptr = mem->small_list[pool_id];
1039 mem->small_list[pool_id] = NULL;
1041 while (shdr_ptr != NULL) {
1042 small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
1043 space_freed = shdr_ptr->hdr.bytes_used +
1044 shdr_ptr->hdr.bytes_left +
1045 SIZEOF(small_pool_hdr);
1046 jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
1047 mem->total_space_allocated -= space_freed;
1048 shdr_ptr = next_shdr_ptr;
1054 * Close up shop entirely.
1055 * Note that this cannot be called unless cinfo->mem is non-NULL.
1058 METHODDEF(void)
1059 self_destruct (j_common_ptr cinfo)
1061 int pool;
1063 /* Close all backing store, release all memory.
1064 * Releasing pools in reverse order might help avoid fragmentation
1065 * with some (brain-damaged) malloc libraries.
1067 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1068 free_pool(cinfo, pool);
1071 /* Release the memory manager control block too. */
1072 jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
1073 cinfo->mem = NULL; /* ensures I will be called only once */
1075 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1080 * Memory manager initialization.
1081 * When this is called, only the error manager pointer is valid in cinfo!
1084 JGLOBAL(void)
1085 jinit_memory_mgr (j_common_ptr cinfo)
1087 my_mem_ptr mem;
1088 long max_to_use;
1089 int pool;
1090 size_t test_mac;
1092 cinfo->mem = NULL; /* for safety if init fails */
1094 /* Check for configuration errors.
1095 * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
1096 * doesn't reflect any real hardware alignment requirement.
1097 * The test is a little tricky: for X>0, X and X-1 have no one-bits
1098 * in common if and only if X is a power of 2, ie has only one one-bit.
1099 * Some compilers may give an "unreachable code" warning here; ignore it.
1101 if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
1102 ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
1103 /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
1104 * a multiple of SIZEOF(ALIGN_TYPE).
1105 * Again, an "unreachable code" warning may be ignored here.
1106 * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
1108 test_mac = (size_t) MAX_ALLOC_CHUNK;
1109 if ((long) test_mac != MAX_ALLOC_CHUNK ||
1110 (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
1111 ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
1113 max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
1115 /* Attempt to allocate memory manager's control block */
1116 mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
1118 if (mem == NULL) {
1119 jpeg_mem_term(cinfo); /* system-dependent cleanup */
1120 ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
1123 /* OK, fill in the method pointers */
1124 mem->pub.alloc_small = alloc_small;
1125 mem->pub.alloc_large = alloc_large;
1126 mem->pub.alloc_sarray = alloc_sarray;
1127 mem->pub.alloc_barray = alloc_barray;
1128 #ifdef NEED_DARRAY
1129 mem->pub.alloc_darray = alloc_darray;
1130 #endif
1131 mem->pub.request_virt_sarray = request_virt_sarray;
1132 mem->pub.request_virt_barray = request_virt_barray;
1133 mem->pub.realize_virt_arrays = realize_virt_arrays;
1134 mem->pub.access_virt_sarray = access_virt_sarray;
1135 mem->pub.access_virt_barray = access_virt_barray;
1136 mem->pub.free_pool = free_pool;
1137 mem->pub.self_destruct = self_destruct;
1139 /* Make MAX_ALLOC_CHUNK accessible to other modules */
1140 mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK;
1142 /* Initialize working state */
1143 mem->pub.max_memory_to_use = max_to_use;
1145 for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
1146 mem->small_list[pool] = NULL;
1147 mem->large_list[pool] = NULL;
1149 mem->virt_sarray_list = NULL;
1150 mem->virt_barray_list = NULL;
1152 mem->total_space_allocated = SIZEOF(my_memory_mgr);
1154 /* Declare ourselves open for business */
1155 cinfo->mem = & mem->pub;
1157 /* Check for an environment variable JPEGMEM; if found, override the
1158 * default max_memory setting from jpeg_mem_init. Note that the
1159 * surrounding application may again override this value.
1160 * If your system doesn't support getenv(), define NO_GETENV to disable
1161 * this feature.
1163 #ifndef NO_GETENV
1164 { char * memenv;
1166 if ((memenv = getenv("JPEGMEM")) != NULL) {
1167 char ch = 'x';
1169 if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
1170 if (ch == 'm' || ch == 'M')
1171 max_to_use *= 1000L;
1172 mem->pub.max_memory_to_use = max_to_use * 1000L;
1176 #endif