8 * Copyright (C) 1991-1996, Thomas G. Lane.
9 * This file is part of the Independent JPEG Group's software.
10 * For conditions of distribution and use, see the accompanying README file.
12 * This file contains tables and miscellaneous utility routines needed
13 * for both compression and decompression.
14 * Note we prefix all global names with "j" to minimize conflicts with
15 * a surrounding application.
18 #define JPEG_INTERNALS
24 * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
25 * of a DCT block read in natural order (left to right, top to bottom).
28 #if 0 /* This table is not actually needed in v6a */
30 const int jpeg_zigzag_order
[DCTSIZE2
] = {
31 0, 1, 5, 6, 14, 15, 27, 28,
32 2, 4, 7, 13, 16, 26, 29, 42,
33 3, 8, 12, 17, 25, 30, 41, 43,
34 9, 11, 18, 24, 31, 40, 44, 53,
35 10, 19, 23, 32, 39, 45, 52, 54,
36 20, 22, 33, 38, 46, 51, 55, 60,
37 21, 34, 37, 47, 50, 56, 59, 61,
38 35, 36, 48, 49, 57, 58, 62, 63
44 * jpeg_natural_order[i] is the natural-order position of the i'th element
47 * When reading corrupted data, the Huffman decoders could attempt
48 * to reference an entry beyond the end of this array (if the decoded
49 * zero run length reaches past the end of the block). To prevent
50 * wild stores without adding an inner-loop test, we put some extra
51 * "63"s after the real entries. This will cause the extra coefficient
52 * to be stored in location 63 of the block, not somewhere random.
53 * The worst case would be a run-length of 15, which means we need 16
57 const int jpeg_natural_order
[DCTSIZE2
+16] = {
58 0, 1, 8, 16, 9, 2, 3, 10,
59 17, 24, 32, 25, 18, 11, 4, 5,
60 12, 19, 26, 33, 40, 48, 41, 34,
61 27, 20, 13, 6, 7, 14, 21, 28,
62 35, 42, 49, 56, 57, 50, 43, 36,
63 29, 22, 15, 23, 30, 37, 44, 51,
64 58, 59, 52, 45, 38, 31, 39, 46,
65 53, 60, 61, 54, 47, 55, 62, 63,
66 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
67 63, 63, 63, 63, 63, 63, 63, 63
72 * Arithmetic utilities
76 jdiv_round_up (long a
, long b
)
77 /* Compute a/b rounded up to next integer, ie, ceil(a/b) */
78 /* Assumes a >= 0, b > 0 */
80 return (a
+ b
- 1L) / b
;
85 jround_up (long a
, long b
)
86 /* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
87 /* Assumes a >= 0, b > 0 */
94 /* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
95 * and coefficient-block arrays. This won't work on 80x86 because the arrays
96 * are FAR and we're assuming a small-pointer memory model. However, some
97 * DOS compilers provide far-pointer versions of memcpy() and memset() even
98 * in the small-model libraries. These will be used if USE_FMEM is defined.
99 * Otherwise, the routines below do it the hard way. (The performance cost
100 * is not all that great, because these routines aren't very heavily used.)
103 #ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
104 #define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
105 #define FMEMZERO(target,size) MEMZERO(target,size)
106 #else /* 80x86 case, define if we can */
108 #define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
109 #define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
115 jcopy_sample_rows (JSAMPARRAY input_array
, int source_row
,
116 JSAMPARRAY output_array
, int dest_row
,
117 int num_rows
, JDIMENSION num_cols
)
118 /* Copy some rows of samples from one place to another.
119 * num_rows rows are copied from input_array[source_row++]
120 * to output_array[dest_row++]; these areas may overlap for duplication.
121 * The source and destination arrays must be at least as wide as num_cols.
124 register JSAMPROW inptr
, outptr
;
126 register size_t count
= (size_t) (num_cols
* SIZEOF(JSAMPLE
));
128 register JDIMENSION count
;
132 input_array
+= source_row
;
133 output_array
+= dest_row
;
135 for (row
= num_rows
; row
> 0; row
--) {
136 inptr
= *input_array
++;
137 outptr
= *output_array
++;
139 FMEMCOPY(outptr
, inptr
, count
);
141 for (count
= num_cols
; count
> 0; count
--)
142 *outptr
++ = *inptr
++; /* needn't bother with GETJSAMPLE() here */
149 jcopy_block_row (JBLOCKROW input_row
, JBLOCKROW output_row
,
150 JDIMENSION num_blocks
)
151 /* Copy a row of coefficient blocks from one place to another. */
154 FMEMCOPY(output_row
, input_row
, num_blocks
* (DCTSIZE2
* SIZEOF(JCOEF
)));
156 register JCOEFPTR inptr
, outptr
;
159 inptr
= (JCOEFPTR
) input_row
;
160 outptr
= (JCOEFPTR
) output_row
;
161 for (count
= (long) num_blocks
* DCTSIZE2
; count
> 0; count
--) {
162 *outptr
++ = *inptr
++;
169 jzero_far (void FAR
* target
, size_t bytestozero
)
170 /* Zero out a chunk of FAR memory. */
171 /* This might be sample-array data, block-array data, or alloc_large data. */
174 FMEMZERO(target
, bytestozero
);
176 register char FAR
* ptr
= (char FAR
*) target
;
177 register size_t count
;
179 for (count
= bytestozero
; count
> 0; count
--) {