1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
33 #include "e1000_api.h"
34 #include "e1000_82543.h"
36 static s32
e1000_init_phy_params_82543(struct e1000_hw
*hw
);
37 static s32
e1000_init_nvm_params_82543(struct e1000_hw
*hw
);
38 static s32
e1000_init_mac_params_82543(struct e1000_hw
*hw
);
39 static s32
e1000_read_phy_reg_82543(struct e1000_hw
*hw
, u32 offset
,
41 static s32
e1000_write_phy_reg_82543(struct e1000_hw
*hw
, u32 offset
,
43 static s32
e1000_phy_force_speed_duplex_82543(struct e1000_hw
*hw
);
44 static s32
e1000_phy_hw_reset_82543(struct e1000_hw
*hw
);
45 static s32
e1000_reset_hw_82543(struct e1000_hw
*hw
);
46 static s32
e1000_init_hw_82543(struct e1000_hw
*hw
);
47 static s32
e1000_setup_link_82543(struct e1000_hw
*hw
);
48 static s32
e1000_setup_copper_link_82543(struct e1000_hw
*hw
);
49 static s32
e1000_setup_fiber_link_82543(struct e1000_hw
*hw
);
50 static s32
e1000_check_for_copper_link_82543(struct e1000_hw
*hw
);
51 static s32
e1000_check_for_fiber_link_82543(struct e1000_hw
*hw
);
52 static s32
e1000_led_on_82543(struct e1000_hw
*hw
);
53 static s32
e1000_led_off_82543(struct e1000_hw
*hw
);
54 static void e1000_write_vfta_82543(struct e1000_hw
*hw
, u32 offset
,
56 static void e1000_mta_set_82543(struct e1000_hw
*hw
, u32 hash_value
);
57 static void e1000_clear_hw_cntrs_82543(struct e1000_hw
*hw
);
58 static s32
e1000_config_mac_to_phy_82543(struct e1000_hw
*hw
);
59 static bool e1000_init_phy_disabled_82543(struct e1000_hw
*hw
);
60 static void e1000_lower_mdi_clk_82543(struct e1000_hw
*hw
, u32
*ctrl
);
61 static s32
e1000_polarity_reversal_workaround_82543(struct e1000_hw
*hw
);
62 static void e1000_raise_mdi_clk_82543(struct e1000_hw
*hw
, u32
*ctrl
);
63 static u16
e1000_shift_in_mdi_bits_82543(struct e1000_hw
*hw
);
64 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw
*hw
, u32 data
,
66 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw
*hw
);
67 static void e1000_set_tbi_sbp_82543(struct e1000_hw
*hw
, bool state
);
69 struct e1000_dev_spec_82543
{
70 u32 tbi_compatibility
;
72 bool init_phy_disabled
;
76 * e1000_init_phy_params_82543 - Init PHY func ptrs.
77 * @hw: pointer to the HW structure
79 * This is a function pointer entry point called by the api module.
81 static s32
e1000_init_phy_params_82543(struct e1000_hw
*hw
)
83 struct e1000_phy_info
*phy
= &hw
->phy
;
84 s32 ret_val
= E1000_SUCCESS
;
86 DEBUGFUNC("e1000_init_phy_params_82543");
88 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
89 phy
->type
= e1000_phy_none
;
92 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
93 phy
->ops
.power_down
= e1000_power_down_phy_copper
;
97 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
98 phy
->reset_delay_us
= 10000;
99 phy
->type
= e1000_phy_m88
;
101 /* Function Pointers */
102 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
103 phy
->ops
.commit
= e1000_phy_sw_reset_generic
;
104 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_82543
;
105 phy
->ops
.get_cable_length
= e1000_get_cable_length_m88
;
106 phy
->ops
.get_cfg_done
= e1000_get_cfg_done_generic
;
107 phy
->ops
.read_reg
= (hw
->mac
.type
== e1000_82543
)
108 ? e1000_read_phy_reg_82543
109 : e1000_read_phy_reg_m88
;
110 phy
->ops
.reset
= (hw
->mac
.type
== e1000_82543
)
111 ? e1000_phy_hw_reset_82543
112 : e1000_phy_hw_reset_generic
;
113 phy
->ops
.write_reg
= (hw
->mac
.type
== e1000_82543
)
114 ? e1000_write_phy_reg_82543
115 : e1000_write_phy_reg_m88
;
116 phy
->ops
.get_info
= e1000_get_phy_info_m88
;
119 * The external PHY of the 82543 can be in a funky state.
120 * Resetting helps us read the PHY registers for acquiring
123 if (!e1000_init_phy_disabled_82543(hw
)) {
124 ret_val
= phy
->ops
.reset(hw
);
126 DEBUGOUT("Resetting PHY during init failed.\n");
132 ret_val
= e1000_get_phy_id(hw
);
137 switch (hw
->mac
.type
) {
139 if (phy
->id
!= M88E1000_E_PHY_ID
) {
140 ret_val
= -E1000_ERR_PHY
;
145 if (phy
->id
!= M88E1000_I_PHY_ID
) {
146 ret_val
= -E1000_ERR_PHY
;
151 ret_val
= -E1000_ERR_PHY
;
161 * e1000_init_nvm_params_82543 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
164 * This is a function pointer entry point called by the api module.
166 static s32
e1000_init_nvm_params_82543(struct e1000_hw
*hw
)
168 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
170 DEBUGFUNC("e1000_init_nvm_params_82543");
172 nvm
->type
= e1000_nvm_eeprom_microwire
;
174 nvm
->delay_usec
= 50;
175 nvm
->address_bits
= 6;
176 nvm
->opcode_bits
= 3;
178 /* Function Pointers */
179 nvm
->ops
.read
= e1000_read_nvm_microwire
;
180 nvm
->ops
.update
= e1000_update_nvm_checksum_generic
;
181 nvm
->ops
.valid_led_default
= e1000_valid_led_default_generic
;
182 nvm
->ops
.validate
= e1000_validate_nvm_checksum_generic
;
183 nvm
->ops
.write
= e1000_write_nvm_microwire
;
185 return E1000_SUCCESS
;
189 * e1000_init_mac_params_82543 - Init MAC func ptrs.
190 * @hw: pointer to the HW structure
192 * This is a function pointer entry point called by the api module.
194 static s32
e1000_init_mac_params_82543(struct e1000_hw
*hw
)
196 struct e1000_mac_info
*mac
= &hw
->mac
;
199 DEBUGFUNC("e1000_init_mac_params_82543");
202 switch (hw
->device_id
) {
203 case E1000_DEV_ID_82543GC_FIBER
:
204 case E1000_DEV_ID_82544EI_FIBER
:
205 hw
->phy
.media_type
= e1000_media_type_fiber
;
208 hw
->phy
.media_type
= e1000_media_type_copper
;
212 /* Set mta register count */
213 mac
->mta_reg_count
= 128;
214 /* Set rar entry count */
215 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
217 /* Function pointers */
219 /* bus type/speed/width */
220 mac
->ops
.get_bus_info
= e1000_get_bus_info_pci_generic
;
222 mac
->ops
.reset_hw
= e1000_reset_hw_82543
;
223 /* hw initialization */
224 mac
->ops
.init_hw
= e1000_init_hw_82543
;
226 mac
->ops
.setup_link
= e1000_setup_link_82543
;
227 /* physical interface setup */
228 mac
->ops
.setup_physical_interface
=
229 (hw
->phy
.media_type
== e1000_media_type_copper
)
230 ? e1000_setup_copper_link_82543
231 : e1000_setup_fiber_link_82543
;
233 mac
->ops
.check_for_link
=
234 (hw
->phy
.media_type
== e1000_media_type_copper
)
235 ? e1000_check_for_copper_link_82543
236 : e1000_check_for_fiber_link_82543
;
238 mac
->ops
.get_link_up_info
=
239 (hw
->phy
.media_type
== e1000_media_type_copper
)
240 ? e1000_get_speed_and_duplex_copper_generic
241 : e1000_get_speed_and_duplex_fiber_serdes_generic
;
242 /* multicast address update */
243 mac
->ops
.update_mc_addr_list
= e1000_update_mc_addr_list_generic
;
245 mac
->ops
.write_vfta
= e1000_write_vfta_82543
;
247 mac
->ops
.clear_vfta
= e1000_clear_vfta_generic
;
249 mac
->ops
.mta_set
= e1000_mta_set_82543
;
250 /* turn on/off LED */
251 mac
->ops
.led_on
= e1000_led_on_82543
;
252 mac
->ops
.led_off
= e1000_led_off_82543
;
254 mac
->ops
.remove_device
= e1000_remove_device_generic
;
255 /* clear hardware counters */
256 mac
->ops
.clear_hw_cntrs
= e1000_clear_hw_cntrs_82543
;
258 hw
->dev_spec_size
= sizeof(struct e1000_dev_spec_82543
);
260 /* Device-specific structure allocation */
261 ret_val
= e1000_alloc_zeroed_dev_spec_struct(hw
, hw
->dev_spec_size
);
265 /* Set tbi compatibility */
266 if ((hw
->mac
.type
!= e1000_82543
) ||
267 (hw
->phy
.media_type
== e1000_media_type_fiber
))
268 e1000_set_tbi_compatibility_82543(hw
, FALSE
);
275 * e1000_init_function_pointers_82543 - Init func ptrs.
276 * @hw: pointer to the HW structure
278 * The only function explicitly called by the api module to initialize
279 * all function pointers and parameters.
281 void e1000_init_function_pointers_82543(struct e1000_hw
*hw
)
283 DEBUGFUNC("e1000_init_function_pointers_82543");
285 hw
->mac
.ops
.init_params
= e1000_init_mac_params_82543
;
286 hw
->nvm
.ops
.init_params
= e1000_init_nvm_params_82543
;
287 hw
->phy
.ops
.init_params
= e1000_init_phy_params_82543
;
291 * e1000_tbi_compatibility_enabled_82543 - Returns TBI compat status
292 * @hw: pointer to the HW structure
294 * Returns the current status of 10-bit Interface (TBI) compatibility
295 * (enabled/disabled).
297 static bool e1000_tbi_compatibility_enabled_82543(struct e1000_hw
*hw
)
299 struct e1000_dev_spec_82543
*dev_spec
;
302 DEBUGFUNC("e1000_tbi_compatibility_enabled_82543");
304 if (hw
->mac
.type
!= e1000_82543
) {
305 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
309 dev_spec
= (struct e1000_dev_spec_82543
*)hw
->dev_spec
;
312 DEBUGOUT("dev_spec pointer is set to NULL.\n");
316 state
= (dev_spec
->tbi_compatibility
& TBI_COMPAT_ENABLED
)
324 * e1000_set_tbi_compatibility_82543 - Set TBI compatibility
325 * @hw: pointer to the HW structure
326 * @state: enable/disable TBI compatibility
328 * Enables or disabled 10-bit Interface (TBI) compatibility.
330 void e1000_set_tbi_compatibility_82543(struct e1000_hw
*hw
, bool state
)
332 struct e1000_dev_spec_82543
*dev_spec
;
334 DEBUGFUNC("e1000_set_tbi_compatibility_82543");
336 if (hw
->mac
.type
!= e1000_82543
) {
337 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
341 dev_spec
= (struct e1000_dev_spec_82543
*)hw
->dev_spec
;
344 DEBUGOUT("dev_spec pointer is set to NULL.\n");
349 dev_spec
->tbi_compatibility
|= TBI_COMPAT_ENABLED
;
351 dev_spec
->tbi_compatibility
&= ~TBI_COMPAT_ENABLED
;
358 * e1000_tbi_sbp_enabled_82543 - Returns TBI SBP status
359 * @hw: pointer to the HW structure
361 * Returns the current status of 10-bit Interface (TBI) store bad packet (SBP)
362 * (enabled/disabled).
364 bool e1000_tbi_sbp_enabled_82543(struct e1000_hw
*hw
)
366 struct e1000_dev_spec_82543
*dev_spec
;
369 DEBUGFUNC("e1000_tbi_sbp_enabled_82543");
371 if (hw
->mac
.type
!= e1000_82543
) {
372 DEBUGOUT("TBI compatibility workaround for 82543 only.\n");
376 dev_spec
= (struct e1000_dev_spec_82543
*)hw
->dev_spec
;
379 DEBUGOUT("dev_spec pointer is set to NULL.\n");
383 state
= (dev_spec
->tbi_compatibility
& TBI_SBP_ENABLED
)
391 * e1000_set_tbi_sbp_82543 - Set TBI SBP
392 * @hw: pointer to the HW structure
393 * @state: enable/disable TBI store bad packet
395 * Enables or disabled 10-bit Interface (TBI) store bad packet (SBP).
397 static void e1000_set_tbi_sbp_82543(struct e1000_hw
*hw
, bool state
)
399 struct e1000_dev_spec_82543
*dev_spec
;
401 DEBUGFUNC("e1000_set_tbi_sbp_82543");
403 dev_spec
= (struct e1000_dev_spec_82543
*)hw
->dev_spec
;
405 if (state
&& e1000_tbi_compatibility_enabled_82543(hw
))
406 dev_spec
->tbi_compatibility
|= TBI_SBP_ENABLED
;
408 dev_spec
->tbi_compatibility
&= ~TBI_SBP_ENABLED
;
414 * e1000_init_phy_disabled_82543 - Returns init PHY status
415 * @hw: pointer to the HW structure
417 * Returns the current status of whether PHY initialization is disabled.
418 * True if PHY initialization is disabled else false.
420 static bool e1000_init_phy_disabled_82543(struct e1000_hw
*hw
)
422 struct e1000_dev_spec_82543
*dev_spec
;
425 DEBUGFUNC("e1000_init_phy_disabled_82543");
427 if (hw
->mac
.type
!= e1000_82543
) {
432 dev_spec
= (struct e1000_dev_spec_82543
*)hw
->dev_spec
;
435 DEBUGOUT("dev_spec pointer is set to NULL.\n");
440 ret_val
= dev_spec
->init_phy_disabled
;
447 * e1000_tbi_adjust_stats_82543 - Adjust stats when TBI enabled
448 * @hw: pointer to the HW structure
449 * @stats: Struct containing statistic register values
450 * @frame_len: The length of the frame in question
451 * @mac_addr: The Ethernet destination address of the frame in question
452 * @max_frame_size: The maximum frame size
454 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
456 void e1000_tbi_adjust_stats_82543(struct e1000_hw
*hw
,
457 struct e1000_hw_stats
*stats
, u32 frame_len
,
458 u8
*mac_addr
, u32 max_frame_size
)
460 if (!(e1000_tbi_sbp_enabled_82543(hw
)))
463 /* First adjust the frame length. */
466 * We need to adjust the statistics counters, since the hardware
467 * counters overcount this packet as a CRC error and undercount
468 * the packet as a good packet
470 /* This packet should not be counted as a CRC error. */
472 /* This packet does count as a Good Packet Received. */
475 /* Adjust the Good Octets received counters */
476 stats
->gorc
+= frame_len
;
479 * Is this a broadcast or multicast? Check broadcast first,
480 * since the test for a multicast frame will test positive on
483 if ((mac_addr
[0] == 0xff) && (mac_addr
[1] == 0xff))
484 /* Broadcast packet */
486 else if (*mac_addr
& 0x01)
487 /* Multicast packet */
491 * In this case, the hardware has overcounted the number of
494 if ((frame_len
== max_frame_size
) && (stats
->roc
> 0))
498 * Adjust the bin counters when the extra byte put the frame in the
499 * wrong bin. Remember that the frame_len was adjusted above.
501 if (frame_len
== 64) {
504 } else if (frame_len
== 127) {
507 } else if (frame_len
== 255) {
510 } else if (frame_len
== 511) {
513 } else if (frame_len
== 1023) {
516 } else if (frame_len
== 1522) {
525 * e1000_read_phy_reg_82543 - Read PHY register
526 * @hw: pointer to the HW structure
527 * @offset: register offset to be read
528 * @data: pointer to the read data
530 * Reads the PHY at offset and stores the information read to data.
532 static s32
e1000_read_phy_reg_82543(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
535 s32 ret_val
= E1000_SUCCESS
;
537 DEBUGFUNC("e1000_read_phy_reg_82543");
539 if (offset
> MAX_PHY_REG_ADDRESS
) {
540 DEBUGOUT1("PHY Address %d is out of range\n", offset
);
541 ret_val
= -E1000_ERR_PARAM
;
546 * We must first send a preamble through the MDIO pin to signal the
547 * beginning of an MII instruction. This is done by sending 32
548 * consecutive "1" bits.
550 e1000_shift_out_mdi_bits_82543(hw
, PHY_PREAMBLE
, PHY_PREAMBLE_SIZE
);
553 * Now combine the next few fields that are required for a read
554 * operation. We use this method instead of calling the
555 * e1000_shift_out_mdi_bits routine five different times. The format
556 * of an MII read instruction consists of a shift out of 14 bits and
557 * is defined as follows:
558 * <Preamble><SOF><Op Code><Phy Addr><Offset>
559 * followed by a shift in of 18 bits. This first two bits shifted in
560 * are TurnAround bits used to avoid contention on the MDIO pin when a
561 * READ operation is performed. These two bits are thrown away
562 * followed by a shift in of 16 bits which contains the desired data.
564 mdic
= (offset
| (hw
->phy
.addr
<< 5) |
565 (PHY_OP_READ
<< 10) | (PHY_SOF
<< 12));
567 e1000_shift_out_mdi_bits_82543(hw
, mdic
, 14);
570 * Now that we've shifted out the read command to the MII, we need to
571 * "shift in" the 16-bit value (18 total bits) of the requested PHY
574 *data
= e1000_shift_in_mdi_bits_82543(hw
);
581 * e1000_write_phy_reg_82543 - Write PHY register
582 * @hw: pointer to the HW structure
583 * @offset: register offset to be written
584 * @data: pointer to the data to be written at offset
586 * Writes data to the PHY at offset.
588 static s32
e1000_write_phy_reg_82543(struct e1000_hw
*hw
, u32 offset
, u16 data
)
591 s32 ret_val
= E1000_SUCCESS
;
593 DEBUGFUNC("e1000_write_phy_reg_82543");
595 if (offset
> MAX_PHY_REG_ADDRESS
) {
596 DEBUGOUT1("PHY Address %d is out of range\n", offset
);
597 ret_val
= -E1000_ERR_PARAM
;
602 * We'll need to use the SW defined pins to shift the write command
603 * out to the PHY. We first send a preamble to the PHY to signal the
604 * beginning of the MII instruction. This is done by sending 32
605 * consecutive "1" bits.
607 e1000_shift_out_mdi_bits_82543(hw
, PHY_PREAMBLE
, PHY_PREAMBLE_SIZE
);
610 * Now combine the remaining required fields that will indicate a
611 * write operation. We use this method instead of calling the
612 * e1000_shift_out_mdi_bits routine for each field in the command. The
613 * format of a MII write instruction is as follows:
614 * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
616 mdic
= ((PHY_TURNAROUND
) | (offset
<< 2) | (hw
->phy
.addr
<< 7) |
617 (PHY_OP_WRITE
<< 12) | (PHY_SOF
<< 14));
621 e1000_shift_out_mdi_bits_82543(hw
, mdic
, 32);
628 * e1000_raise_mdi_clk_82543 - Raise Management Data Input clock
629 * @hw: pointer to the HW structure
630 * @ctrl: pointer to the control register
632 * Raise the management data input clock by setting the MDC bit in the control
635 static void e1000_raise_mdi_clk_82543(struct e1000_hw
*hw
, u32
*ctrl
)
638 * Raise the clock input to the Management Data Clock (by setting the
639 * MDC bit), and then delay a sufficient amount of time.
641 E1000_WRITE_REG(hw
, E1000_CTRL
, (*ctrl
| E1000_CTRL_MDC
));
642 E1000_WRITE_FLUSH(hw
);
647 * e1000_lower_mdi_clk_82543 - Lower Management Data Input clock
648 * @hw: pointer to the HW structure
649 * @ctrl: pointer to the control register
651 * Lower the management data input clock by clearing the MDC bit in the
654 static void e1000_lower_mdi_clk_82543(struct e1000_hw
*hw
, u32
*ctrl
)
657 * Lower the clock input to the Management Data Clock (by clearing the
658 * MDC bit), and then delay a sufficient amount of time.
660 E1000_WRITE_REG(hw
, E1000_CTRL
, (*ctrl
& ~E1000_CTRL_MDC
));
661 E1000_WRITE_FLUSH(hw
);
666 * e1000_shift_out_mdi_bits_82543 - Shift data bits our to the PHY
667 * @hw: pointer to the HW structure
668 * @data: data to send to the PHY
669 * @count: number of bits to shift out
671 * We need to shift 'count' bits out to the PHY. So, the value in the
672 * "data" parameter will be shifted out to the PHY one bit at a time.
673 * In order to do this, "data" must be broken down into bits.
675 static void e1000_shift_out_mdi_bits_82543(struct e1000_hw
*hw
, u32 data
,
681 * We need to shift "count" number of bits out to the PHY. So, the
682 * value in the "data" parameter will be shifted out to the PHY one
683 * bit at a time. In order to do this, "data" must be broken down
689 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
691 /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
692 ctrl
|= (E1000_CTRL_MDIO_DIR
| E1000_CTRL_MDC_DIR
);
696 * A "1" is shifted out to the PHY by setting the MDIO bit to
697 * "1" and then raising and lowering the Management Data Clock.
698 * A "0" is shifted out to the PHY by setting the MDIO bit to
699 * "0" and then raising and lowering the clock.
701 if (data
& mask
) ctrl
|= E1000_CTRL_MDIO
;
702 else ctrl
&= ~E1000_CTRL_MDIO
;
704 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
705 E1000_WRITE_FLUSH(hw
);
709 e1000_raise_mdi_clk_82543(hw
, &ctrl
);
710 e1000_lower_mdi_clk_82543(hw
, &ctrl
);
717 * e1000_shift_in_mdi_bits_82543 - Shift data bits in from the PHY
718 * @hw: pointer to the HW structure
720 * In order to read a register from the PHY, we need to shift 18 bits
721 * in from the PHY. Bits are "shifted in" by raising the clock input to
722 * the PHY (setting the MDC bit), and then reading the value of the data out
725 static u16
e1000_shift_in_mdi_bits_82543(struct e1000_hw
*hw
)
732 * In order to read a register from the PHY, we need to shift in a
733 * total of 18 bits from the PHY. The first two bit (turnaround)
734 * times are used to avoid contention on the MDIO pin when a read
735 * operation is performed. These two bits are ignored by us and
736 * thrown away. Bits are "shifted in" by raising the input to the
737 * Management Data Clock (setting the MDC bit) and then reading the
738 * value of the MDIO bit.
740 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
743 * Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as
746 ctrl
&= ~E1000_CTRL_MDIO_DIR
;
747 ctrl
&= ~E1000_CTRL_MDIO
;
749 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
750 E1000_WRITE_FLUSH(hw
);
753 * Raise and lower the clock before reading in the data. This accounts
754 * for the turnaround bits. The first clock occurred when we clocked
755 * out the last bit of the Register Address.
757 e1000_raise_mdi_clk_82543(hw
, &ctrl
);
758 e1000_lower_mdi_clk_82543(hw
, &ctrl
);
760 for (data
= 0, i
= 0; i
< 16; i
++) {
762 e1000_raise_mdi_clk_82543(hw
, &ctrl
);
763 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
764 /* Check to see if we shifted in a "1". */
765 if (ctrl
& E1000_CTRL_MDIO
)
767 e1000_lower_mdi_clk_82543(hw
, &ctrl
);
770 e1000_raise_mdi_clk_82543(hw
, &ctrl
);
771 e1000_lower_mdi_clk_82543(hw
, &ctrl
);
777 * e1000_phy_force_speed_duplex_82543 - Force speed/duplex for PHY
778 * @hw: pointer to the HW structure
780 * Calls the function to force speed and duplex for the m88 PHY, and
781 * if the PHY is not auto-negotiating and the speed is forced to 10Mbit,
782 * then call the function for polarity reversal workaround.
784 static s32
e1000_phy_force_speed_duplex_82543(struct e1000_hw
*hw
)
788 DEBUGFUNC("e1000_phy_force_speed_duplex_82543");
790 ret_val
= e1000_phy_force_speed_duplex_m88(hw
);
794 if (!hw
->mac
.autoneg
&&
795 (hw
->mac
.forced_speed_duplex
& E1000_ALL_10_SPEED
))
796 ret_val
= e1000_polarity_reversal_workaround_82543(hw
);
803 * e1000_polarity_reversal_workaround_82543 - Workaround polarity reversal
804 * @hw: pointer to the HW structure
806 * When forcing link to 10 Full or 10 Half, the PHY can reverse the polarity
807 * inadvertently. To workaround the issue, we disable the transmitter on
808 * the PHY until we have established the link partner's link parameters.
810 static s32
e1000_polarity_reversal_workaround_82543(struct e1000_hw
*hw
)
812 s32 ret_val
= E1000_SUCCESS
;
817 if (!(hw
->phy
.ops
.write_reg
))
820 /* Polarity reversal workaround for forced 10F/10H links. */
822 /* Disable the transmitter on the PHY */
824 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0019);
827 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xFFFF);
831 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0000);
836 * This loop will early-out if the NO link condition has been met.
837 * In other words, DO NOT use e1000_phy_has_link_generic() here.
839 for (i
= PHY_FORCE_TIME
; i
> 0; i
--) {
841 * Read the MII Status Register and wait for Link Status bit
845 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &mii_status_reg
);
849 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &mii_status_reg
);
853 if ((mii_status_reg
& ~MII_SR_LINK_STATUS
) == 0)
858 /* Recommended delay time after link has been lost */
859 msec_delay_irq(1000);
861 /* Now we will re-enable the transmitter on the PHY */
863 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0019);
867 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xFFF0);
871 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xFF00);
875 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0x0000);
879 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_PAGE_SELECT
, 0x0000);
884 * Read the MII Status Register and wait for Link Status bit
887 ret_val
= e1000_phy_has_link_generic(hw
, PHY_FORCE_TIME
, 100000, &link
);
896 * e1000_phy_hw_reset_82543 - PHY hardware reset
897 * @hw: pointer to the HW structure
899 * Sets the PHY_RESET_DIR bit in the extended device control register
900 * to put the PHY into a reset and waits for completion. Once the reset
901 * has been accomplished, clear the PHY_RESET_DIR bit to take the PHY out
902 * of reset. This is a function pointer entry point called by the api module.
904 static s32
e1000_phy_hw_reset_82543(struct e1000_hw
*hw
)
909 DEBUGFUNC("e1000_phy_hw_reset_82543");
912 * Read the Extended Device Control Register, assert the PHY_RESET_DIR
913 * bit to put the PHY into reset...
915 ctrl_ext
= E1000_READ_REG(hw
, E1000_CTRL_EXT
);
916 ctrl_ext
|= E1000_CTRL_EXT_SDP4_DIR
;
917 ctrl_ext
&= ~E1000_CTRL_EXT_SDP4_DATA
;
918 E1000_WRITE_REG(hw
, E1000_CTRL_EXT
, ctrl_ext
);
919 E1000_WRITE_FLUSH(hw
);
923 /* ...then take it out of reset. */
924 ctrl_ext
|= E1000_CTRL_EXT_SDP4_DATA
;
925 E1000_WRITE_REG(hw
, E1000_CTRL_EXT
, ctrl_ext
);
926 E1000_WRITE_FLUSH(hw
);
930 if (!(hw
->phy
.ops
.get_cfg_done
))
931 return E1000_SUCCESS
;
933 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
939 * e1000_reset_hw_82543 - Reset hardware
940 * @hw: pointer to the HW structure
942 * This resets the hardware into a known state. This is a
943 * function pointer entry point called by the api module.
945 static s32
e1000_reset_hw_82543(struct e1000_hw
*hw
)
948 s32 ret_val
= E1000_SUCCESS
;
950 DEBUGFUNC("e1000_reset_hw_82543");
952 DEBUGOUT("Masking off all interrupts\n");
953 E1000_WRITE_REG(hw
, E1000_IMC
, 0xffffffff);
955 E1000_WRITE_REG(hw
, E1000_RCTL
, 0);
956 E1000_WRITE_REG(hw
, E1000_TCTL
, E1000_TCTL_PSP
);
957 E1000_WRITE_FLUSH(hw
);
959 e1000_set_tbi_sbp_82543(hw
, FALSE
);
962 * Delay to allow any outstanding PCI transactions to complete before
963 * resetting the device
967 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
969 DEBUGOUT("Issuing a global reset to 82543/82544 MAC\n");
970 if (hw
->mac
.type
== e1000_82543
) {
971 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
974 * The 82544 can't ACK the 64-bit write when issuing the
975 * reset, so use IO-mapping as a workaround.
977 E1000_WRITE_REG_IO(hw
, E1000_CTRL
, ctrl
| E1000_CTRL_RST
);
981 * After MAC reset, force reload of NVM to restore power-on
982 * settings to device.
984 hw
->nvm
.ops
.reload(hw
);
987 /* Masking off and clearing any pending interrupts */
988 E1000_WRITE_REG(hw
, E1000_IMC
, 0xffffffff);
989 icr
= E1000_READ_REG(hw
, E1000_ICR
);
995 * e1000_init_hw_82543 - Initialize hardware
996 * @hw: pointer to the HW structure
998 * This inits the hardware readying it for operation.
1000 static s32
e1000_init_hw_82543(struct e1000_hw
*hw
)
1002 struct e1000_mac_info
*mac
= &hw
->mac
;
1003 struct e1000_dev_spec_82543
*dev_spec
;
1008 DEBUGFUNC("e1000_init_hw_82543");
1010 dev_spec
= (struct e1000_dev_spec_82543
*)hw
->dev_spec
;
1013 DEBUGOUT("dev_spec pointer is set to NULL.\n");
1014 ret_val
= -E1000_ERR_CONFIG
;
1018 /* Disabling VLAN filtering */
1019 E1000_WRITE_REG(hw
, E1000_VET
, 0);
1020 mac
->ops
.clear_vfta(hw
);
1022 /* Setup the receive address. */
1023 e1000_init_rx_addrs_generic(hw
, mac
->rar_entry_count
);
1025 /* Zero out the Multicast HASH table */
1026 DEBUGOUT("Zeroing the MTA\n");
1027 for (i
= 0; i
< mac
->mta_reg_count
; i
++) {
1028 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1029 E1000_WRITE_FLUSH(hw
);
1033 * Set the PCI priority bit correctly in the CTRL register. This
1034 * determines if the adapter gives priority to receives, or if it
1035 * gives equal priority to transmits and receives.
1037 if (hw
->mac
.type
== e1000_82543
&& dev_spec
->dma_fairness
) {
1038 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1039 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
| E1000_CTRL_PRIOR
);
1042 e1000_pcix_mmrbc_workaround_generic(hw
);
1044 /* Setup link and flow control */
1045 ret_val
= mac
->ops
.setup_link(hw
);
1048 * Clear all of the statistics registers (clear on read). It is
1049 * important that we do this after we have tried to establish link
1050 * because the symbol error count will increment wildly if there
1053 e1000_clear_hw_cntrs_82543(hw
);
1060 * e1000_setup_link_82543 - Setup flow control and link settings
1061 * @hw: pointer to the HW structure
1063 * Read the EEPROM to determine the initial polarity value and write the
1064 * extended device control register with the information before calling
1065 * the generic setup link function, which does the following:
1066 * Determines which flow control settings to use, then configures flow
1067 * control. Calls the appropriate media-specific link configuration
1068 * function. Assuming the adapter has a valid link partner, a valid link
1069 * should be established. Assumes the hardware has previously been reset
1070 * and the transmitter and receiver are not enabled.
1072 static s32
e1000_setup_link_82543(struct e1000_hw
*hw
)
1078 DEBUGFUNC("e1000_setup_link_82543");
1081 * Take the 4 bits from NVM word 0xF that determine the initial
1082 * polarity value for the SW controlled pins, and setup the
1083 * Extended Device Control reg with that info.
1084 * This is needed because one of the SW controlled pins is used for
1085 * signal detection. So this should be done before phy setup.
1087 if (hw
->mac
.type
== e1000_82543
) {
1088 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1090 DEBUGOUT("NVM Read Error\n");
1091 ret_val
= -E1000_ERR_NVM
;
1094 ctrl_ext
= ((data
& NVM_WORD0F_SWPDIO_EXT_MASK
) <<
1095 NVM_SWDPIO_EXT_SHIFT
);
1096 E1000_WRITE_REG(hw
, E1000_CTRL_EXT
, ctrl_ext
);
1099 ret_val
= e1000_setup_link_generic(hw
);
1106 * e1000_setup_copper_link_82543 - Configure copper link settings
1107 * @hw: pointer to the HW structure
1109 * Configures the link for auto-neg or forced speed and duplex. Then we check
1110 * for link, once link is established calls to configure collision distance
1111 * and flow control are called.
1113 static s32
e1000_setup_copper_link_82543(struct e1000_hw
*hw
)
1119 DEBUGFUNC("e1000_setup_copper_link_82543");
1121 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
) | E1000_CTRL_SLU
;
1123 * With 82543, we need to force speed and duplex on the MAC
1124 * equal to what the PHY speed and duplex configuration is.
1125 * In addition, we need to perform a hardware reset on the
1126 * PHY to take it out of reset.
1128 if (hw
->mac
.type
== e1000_82543
) {
1129 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1130 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1131 ret_val
= hw
->phy
.ops
.reset(hw
);
1134 hw
->phy
.reset_disable
= FALSE
;
1136 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1137 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1140 /* Set MDI/MDI-X, Polarity Reversal, and downshift settings */
1141 ret_val
= e1000_copper_link_setup_m88(hw
);
1145 if (hw
->mac
.autoneg
) {
1147 * Setup autoneg and flow control advertisement and perform
1150 ret_val
= e1000_copper_link_autoneg(hw
);
1155 * PHY will be set to 10H, 10F, 100H or 100F
1156 * depending on user settings.
1158 DEBUGOUT("Forcing Speed and Duplex\n");
1159 ret_val
= e1000_phy_force_speed_duplex_82543(hw
);
1161 DEBUGOUT("Error Forcing Speed and Duplex\n");
1167 * Check link status. Wait up to 100 microseconds for link to become
1170 ret_val
= e1000_phy_has_link_generic(hw
,
1171 COPPER_LINK_UP_LIMIT
,
1179 DEBUGOUT("Valid link established!!!\n");
1180 /* Config the MAC and PHY after link is up */
1181 if (hw
->mac
.type
== e1000_82544
) {
1182 e1000_config_collision_dist_generic(hw
);
1184 ret_val
= e1000_config_mac_to_phy_82543(hw
);
1188 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
1190 DEBUGOUT("Unable to establish link!!!\n");
1198 * e1000_setup_fiber_link_82543 - Setup link for fiber
1199 * @hw: pointer to the HW structure
1201 * Configures collision distance and flow control for fiber links. Upon
1202 * successful setup, poll for link.
1204 static s32
e1000_setup_fiber_link_82543(struct e1000_hw
*hw
)
1209 DEBUGFUNC("e1000_setup_fiber_link_82543");
1211 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1213 /* Take the link out of reset */
1214 ctrl
&= ~E1000_CTRL_LRST
;
1216 e1000_config_collision_dist_generic(hw
);
1218 ret_val
= e1000_commit_fc_settings_generic(hw
);
1222 DEBUGOUT("Auto-negotiation enabled\n");
1224 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1225 E1000_WRITE_FLUSH(hw
);
1229 * For these adapters, the SW definable pin 1 is cleared when the
1230 * optics detect a signal. If we have a signal, then poll for a
1231 * "Link-Up" indication.
1233 if (!(E1000_READ_REG(hw
, E1000_CTRL
) & E1000_CTRL_SWDPIN1
)) {
1234 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
1236 DEBUGOUT("No signal detected\n");
1244 * e1000_check_for_copper_link_82543 - Check for link (Copper)
1245 * @hw: pointer to the HW structure
1247 * Checks the phy for link, if link exists, do the following:
1248 * - check for downshift
1249 * - do polarity workaround (if necessary)
1250 * - configure collision distance
1251 * - configure flow control after link up
1252 * - configure tbi compatibility
1254 static s32
e1000_check_for_copper_link_82543(struct e1000_hw
*hw
)
1256 struct e1000_mac_info
*mac
= &hw
->mac
;
1262 DEBUGFUNC("e1000_check_for_copper_link_82543");
1264 if (!mac
->get_link_status
) {
1265 ret_val
= E1000_SUCCESS
;
1269 ret_val
= e1000_phy_has_link_generic(hw
, 1, 0, &link
);
1274 goto out
; /* No link detected */
1276 mac
->get_link_status
= FALSE
;
1278 e1000_check_downshift_generic(hw
);
1281 * If we are forcing speed/duplex, then we can return since
1282 * we have already determined whether we have link or not.
1284 if (!mac
->autoneg
) {
1286 * If speed and duplex are forced to 10H or 10F, then we will
1287 * implement the polarity reversal workaround. We disable
1288 * interrupts first, and upon returning, place the devices
1289 * interrupt state to its previous value except for the link
1290 * status change interrupt which will happened due to the
1291 * execution of this workaround.
1293 if (mac
->forced_speed_duplex
& E1000_ALL_10_SPEED
) {
1294 E1000_WRITE_REG(hw
, E1000_IMC
, 0xFFFFFFFF);
1295 ret_val
= e1000_polarity_reversal_workaround_82543(hw
);
1296 icr
= E1000_READ_REG(hw
, E1000_ICR
);
1297 E1000_WRITE_REG(hw
, E1000_ICS
, (icr
& ~E1000_ICS_LSC
));
1298 E1000_WRITE_REG(hw
, E1000_IMS
, IMS_ENABLE_MASK
);
1301 ret_val
= -E1000_ERR_CONFIG
;
1306 * We have a M88E1000 PHY and Auto-Neg is enabled. If we
1307 * have Si on board that is 82544 or newer, Auto
1308 * Speed Detection takes care of MAC speed/duplex
1309 * configuration. So we only need to configure Collision
1310 * Distance in the MAC. Otherwise, we need to force
1311 * speed/duplex on the MAC to the current PHY speed/duplex
1314 if (mac
->type
== e1000_82544
)
1315 e1000_config_collision_dist_generic(hw
);
1317 ret_val
= e1000_config_mac_to_phy_82543(hw
);
1319 DEBUGOUT("Error configuring MAC to PHY settings\n");
1325 * Configure Flow Control now that Auto-Neg has completed.
1326 * First, we need to restore the desired flow control
1327 * settings because we may have had to re-autoneg with a
1328 * different link partner.
1330 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
1332 DEBUGOUT("Error configuring flow control\n");
1336 * At this point we know that we are on copper and we have
1337 * auto-negotiated link. These are conditions for checking the link
1338 * partner capability register. We use the link speed to determine if
1339 * TBI compatibility needs to be turned on or off. If the link is not
1340 * at gigabit speed, then TBI compatibility is not needed. If we are
1341 * at gigabit speed, we turn on TBI compatibility.
1343 if (e1000_tbi_compatibility_enabled_82543(hw
)) {
1344 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1346 DEBUGOUT("Error getting link speed and duplex\n");
1349 if (speed
!= SPEED_1000
) {
1351 * If link speed is not set to gigabit speed,
1352 * we do not need to enable TBI compatibility.
1354 if (e1000_tbi_sbp_enabled_82543(hw
)) {
1356 * If we previously were in the mode,
1359 e1000_set_tbi_sbp_82543(hw
, FALSE
);
1360 rctl
= E1000_READ_REG(hw
, E1000_RCTL
);
1361 rctl
&= ~E1000_RCTL_SBP
;
1362 E1000_WRITE_REG(hw
, E1000_RCTL
, rctl
);
1366 * If TBI compatibility is was previously off,
1367 * turn it on. For compatibility with a TBI link
1368 * partner, we will store bad packets. Some
1369 * frames have an additional byte on the end and
1370 * will look like CRC errors to to the hardware.
1372 if (!e1000_tbi_sbp_enabled_82543(hw
)) {
1373 e1000_set_tbi_sbp_82543(hw
, TRUE
);
1374 rctl
= E1000_READ_REG(hw
, E1000_RCTL
);
1375 rctl
|= E1000_RCTL_SBP
;
1376 E1000_WRITE_REG(hw
, E1000_RCTL
, rctl
);
1385 * e1000_check_for_fiber_link_82543 - Check for link (Fiber)
1386 * @hw: pointer to the HW structure
1388 * Checks for link up on the hardware. If link is not up and we have
1389 * a signal, then we need to force link up.
1391 static s32
e1000_check_for_fiber_link_82543(struct e1000_hw
*hw
)
1393 struct e1000_mac_info
*mac
= &hw
->mac
;
1394 u32 rxcw
, ctrl
, status
;
1395 s32 ret_val
= E1000_SUCCESS
;
1397 DEBUGFUNC("e1000_check_for_fiber_link_82543");
1399 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1400 status
= E1000_READ_REG(hw
, E1000_STATUS
);
1401 rxcw
= E1000_READ_REG(hw
, E1000_RXCW
);
1404 * If we don't have link (auto-negotiation failed or link partner
1405 * cannot auto-negotiate), the cable is plugged in (we have signal),
1406 * and our link partner is not trying to auto-negotiate with us (we
1407 * are receiving idles or data), we need to force link up. We also
1408 * need to give auto-negotiation time to complete, in case the cable
1409 * was just plugged in. The autoneg_failed flag does this.
1411 /* (ctrl & E1000_CTRL_SWDPIN1) == 0 == have signal */
1412 if ((!(ctrl
& E1000_CTRL_SWDPIN1
)) &&
1413 (!(status
& E1000_STATUS_LU
)) &&
1414 (!(rxcw
& E1000_RXCW_C
))) {
1415 if (mac
->autoneg_failed
== 0) {
1416 mac
->autoneg_failed
= 1;
1420 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
1422 /* Disable auto-negotiation in the TXCW register */
1423 E1000_WRITE_REG(hw
, E1000_TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1425 /* Force link-up and also force full-duplex. */
1426 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1427 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1428 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1430 /* Configure Flow Control after forcing link up. */
1431 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
1433 DEBUGOUT("Error configuring flow control\n");
1436 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
1438 * If we are forcing link and we are receiving /C/ ordered
1439 * sets, re-enable auto-negotiation in the TXCW register
1440 * and disable forced link in the Device Control register
1441 * in an attempt to auto-negotiate with our link partner.
1443 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
1444 E1000_WRITE_REG(hw
, E1000_TXCW
, mac
->txcw
);
1445 E1000_WRITE_REG(hw
, E1000_CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1447 mac
->serdes_has_link
= TRUE
;
1455 * e1000_config_mac_to_phy_82543 - Configure MAC to PHY settings
1456 * @hw: pointer to the HW structure
1458 * For the 82543 silicon, we need to set the MAC to match the settings
1459 * of the PHY, even if the PHY is auto-negotiating.
1461 static s32
e1000_config_mac_to_phy_82543(struct e1000_hw
*hw
)
1464 s32 ret_val
= E1000_SUCCESS
;
1467 DEBUGFUNC("e1000_config_mac_to_phy_82543");
1469 if (!(hw
->phy
.ops
.read_reg
))
1472 /* Set the bits to force speed and duplex */
1473 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1474 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1475 ctrl
&= ~(E1000_CTRL_SPD_SEL
| E1000_CTRL_ILOS
);
1478 * Set up duplex in the Device Control and Transmit Control
1479 * registers depending on negotiated values.
1481 ret_val
= hw
->phy
.ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1485 ctrl
&= ~E1000_CTRL_FD
;
1486 if (phy_data
& M88E1000_PSSR_DPLX
)
1487 ctrl
|= E1000_CTRL_FD
;
1489 e1000_config_collision_dist_generic(hw
);
1492 * Set up speed in the Device Control register depending on
1493 * negotiated values.
1495 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
)
1496 ctrl
|= E1000_CTRL_SPD_1000
;
1497 else if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_100MBS
)
1498 ctrl
|= E1000_CTRL_SPD_100
;
1500 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1507 * e1000_write_vfta_82543 - Write value to VLAN filter table
1508 * @hw: pointer to the HW structure
1509 * @offset: the 32-bit offset in which to write the value to.
1510 * @value: the 32-bit value to write at location offset.
1512 * This writes a 32-bit value to a 32-bit offset in the VLAN filter
1515 static void e1000_write_vfta_82543(struct e1000_hw
*hw
, u32 offset
, u32 value
)
1519 DEBUGFUNC("e1000_write_vfta_82543");
1521 if ((hw
->mac
.type
== e1000_82544
) && (offset
& 1)) {
1522 temp
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, offset
- 1);
1523 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
1524 E1000_WRITE_FLUSH(hw
);
1525 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
- 1, temp
);
1526 E1000_WRITE_FLUSH(hw
);
1528 e1000_write_vfta_generic(hw
, offset
, value
);
1533 * e1000_mta_set_82543 - Set multicast filter table address
1534 * @hw: pointer to the HW structure
1535 * @hash_value: determines the MTA register and bit to set
1537 * The multicast table address is a register array of 32-bit registers.
1538 * The hash_value is used to determine what register the bit is in, the
1539 * current value is read, the new bit is OR'd in and the new value is
1540 * written back into the register.
1542 static void e1000_mta_set_82543(struct e1000_hw
*hw
, u32 hash_value
)
1544 u32 hash_bit
, hash_reg
, mta
, temp
;
1546 DEBUGFUNC("e1000_mta_set_82543");
1548 hash_reg
= (hash_value
>> 5);
1551 * If we are on an 82544 and we are trying to write an odd offset
1552 * in the MTA, save off the previous entry before writing and
1553 * restore the old value after writing.
1555 if ((hw
->mac
.type
== e1000_82544
) && (hash_reg
& 1)) {
1556 hash_reg
&= (hw
->mac
.mta_reg_count
- 1);
1557 hash_bit
= hash_value
& 0x1F;
1558 mta
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, hash_reg
);
1559 mta
|= (1 << hash_bit
);
1560 temp
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, hash_reg
- 1);
1562 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, hash_reg
, mta
);
1563 E1000_WRITE_FLUSH(hw
);
1564 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, hash_reg
- 1, temp
);
1565 E1000_WRITE_FLUSH(hw
);
1567 e1000_mta_set_generic(hw
, hash_value
);
1572 * e1000_led_on_82543 - Turn on SW controllable LED
1573 * @hw: pointer to the HW structure
1575 * Turns the SW defined LED on. This is a function pointer entry point
1576 * called by the api module.
1578 static s32
e1000_led_on_82543(struct e1000_hw
*hw
)
1580 u32 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1582 DEBUGFUNC("e1000_led_on_82543");
1584 if (hw
->mac
.type
== e1000_82544
&&
1585 hw
->phy
.media_type
== e1000_media_type_copper
) {
1586 /* Clear SW-definable Pin 0 to turn on the LED */
1587 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1588 ctrl
|= E1000_CTRL_SWDPIO0
;
1590 /* Fiber 82544 and all 82543 use this method */
1591 ctrl
|= E1000_CTRL_SWDPIN0
;
1592 ctrl
|= E1000_CTRL_SWDPIO0
;
1594 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1596 return E1000_SUCCESS
;
1600 * e1000_led_off_82543 - Turn off SW controllable LED
1601 * @hw: pointer to the HW structure
1603 * Turns the SW defined LED off. This is a function pointer entry point
1604 * called by the api module.
1606 static s32
e1000_led_off_82543(struct e1000_hw
*hw
)
1608 u32 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1610 DEBUGFUNC("e1000_led_off_82543");
1612 if (hw
->mac
.type
== e1000_82544
&&
1613 hw
->phy
.media_type
== e1000_media_type_copper
) {
1614 /* Set SW-definable Pin 0 to turn off the LED */
1615 ctrl
|= E1000_CTRL_SWDPIN0
;
1616 ctrl
|= E1000_CTRL_SWDPIO0
;
1618 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1619 ctrl
|= E1000_CTRL_SWDPIO0
;
1621 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1623 return E1000_SUCCESS
;
1627 * e1000_clear_hw_cntrs_82543 - Clear device specific hardware counters
1628 * @hw: pointer to the HW structure
1630 * Clears the hardware counters by reading the counter registers.
1632 static void e1000_clear_hw_cntrs_82543(struct e1000_hw
*hw
)
1636 DEBUGFUNC("e1000_clear_hw_cntrs_82543");
1638 e1000_clear_hw_cntrs_base_generic(hw
);
1640 temp
= E1000_READ_REG(hw
, E1000_PRC64
);
1641 temp
= E1000_READ_REG(hw
, E1000_PRC127
);
1642 temp
= E1000_READ_REG(hw
, E1000_PRC255
);
1643 temp
= E1000_READ_REG(hw
, E1000_PRC511
);
1644 temp
= E1000_READ_REG(hw
, E1000_PRC1023
);
1645 temp
= E1000_READ_REG(hw
, E1000_PRC1522
);
1646 temp
= E1000_READ_REG(hw
, E1000_PTC64
);
1647 temp
= E1000_READ_REG(hw
, E1000_PTC127
);
1648 temp
= E1000_READ_REG(hw
, E1000_PTC255
);
1649 temp
= E1000_READ_REG(hw
, E1000_PTC511
);
1650 temp
= E1000_READ_REG(hw
, E1000_PTC1023
);
1651 temp
= E1000_READ_REG(hw
, E1000_PTC1522
);
1653 temp
= E1000_READ_REG(hw
, E1000_ALGNERRC
);
1654 temp
= E1000_READ_REG(hw
, E1000_RXERRC
);
1655 temp
= E1000_READ_REG(hw
, E1000_TNCRS
);
1656 temp
= E1000_READ_REG(hw
, E1000_CEXTERR
);
1657 temp
= E1000_READ_REG(hw
, E1000_TSCTC
);
1658 temp
= E1000_READ_REG(hw
, E1000_TSCTFC
);