1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000_api.h"
30 #include "e1000_mac.h"
33 * e1000_init_mac_ops_generic - Initialize MAC function pointers
34 * @hw: pointer to the HW structure
36 * Setups up the function pointers to no-op functions
38 void e1000_init_mac_ops_generic(struct e1000_hw
*hw
)
40 struct e1000_mac_info
*mac
= &hw
->mac
;
41 DEBUGFUNC("e1000_init_mac_ops_generic");
44 mac
->ops
.init_params
= e1000_null_ops_generic
;
45 mac
->ops
.init_hw
= e1000_null_ops_generic
;
46 mac
->ops
.reset_hw
= e1000_null_ops_generic
;
47 mac
->ops
.setup_physical_interface
= e1000_null_ops_generic
;
48 mac
->ops
.get_bus_info
= e1000_null_ops_generic
;
49 mac
->ops
.read_mac_addr
= e1000_read_mac_addr_generic
;
50 mac
->ops
.remove_device
= e1000_remove_device_generic
;
51 mac
->ops
.config_collision_dist
= e1000_config_collision_dist_generic
;
52 mac
->ops
.clear_hw_cntrs
= e1000_null_mac_generic
;
54 mac
->ops
.cleanup_led
= e1000_null_ops_generic
;
55 mac
->ops
.setup_led
= e1000_null_ops_generic
;
56 mac
->ops
.blink_led
= e1000_null_ops_generic
;
57 mac
->ops
.led_on
= e1000_null_ops_generic
;
58 mac
->ops
.led_off
= e1000_null_ops_generic
;
60 mac
->ops
.setup_link
= e1000_null_ops_generic
;
61 mac
->ops
.get_link_up_info
= e1000_null_link_info
;
62 mac
->ops
.check_for_link
= e1000_null_ops_generic
;
63 mac
->ops
.wait_autoneg
= e1000_wait_autoneg_generic
;
65 mac
->ops
.check_mng_mode
= e1000_null_mng_mode
;
66 mac
->ops
.mng_host_if_write
= e1000_mng_host_if_write_generic
;
67 mac
->ops
.mng_write_cmd_header
= e1000_mng_write_cmd_header_generic
;
68 mac
->ops
.mng_enable_host_if
= e1000_mng_enable_host_if_generic
;
70 mac
->ops
.update_mc_addr_list
= e1000_null_update_mc
;
71 mac
->ops
.clear_vfta
= e1000_null_mac_generic
;
72 mac
->ops
.write_vfta
= e1000_null_write_vfta
;
73 mac
->ops
.mta_set
= e1000_null_mta_set
;
74 mac
->ops
.rar_set
= e1000_rar_set_generic
;
75 mac
->ops
.validate_mdi_setting
= e1000_validate_mdi_setting_generic
;
79 * e1000_null_ops_generic - No-op function, returns 0
80 * @hw: pointer to the HW structure
82 s32
e1000_null_ops_generic(struct e1000_hw
*hw
)
84 DEBUGFUNC("e1000_null_ops_generic");
89 * e1000_null_mac_generic - No-op function, return void
90 * @hw: pointer to the HW structure
92 void e1000_null_mac_generic(struct e1000_hw
*hw
)
94 DEBUGFUNC("e1000_null_mac_generic");
99 * e1000_null_link_info - No-op function, return 0
100 * @hw: pointer to the HW structure
102 s32
e1000_null_link_info(struct e1000_hw
*hw
, u16
*s
, u16
*d
)
104 DEBUGFUNC("e1000_null_link_info");
105 return E1000_SUCCESS
;
109 * e1000_null_mng_mode - No-op function, return false
110 * @hw: pointer to the HW structure
112 bool e1000_null_mng_mode(struct e1000_hw
*hw
)
114 DEBUGFUNC("e1000_null_mng_mode");
119 * e1000_null_update_mc - No-op function, return void
120 * @hw: pointer to the HW structure
122 void e1000_null_update_mc(struct e1000_hw
*hw
, u8
*h
, u32 a
, u32 b
, u32 c
)
124 DEBUGFUNC("e1000_null_update_mc");
129 * e1000_null_write_vfta - No-op function, return void
130 * @hw: pointer to the HW structure
132 void e1000_null_write_vfta(struct e1000_hw
*hw
, u32 a
, u32 b
)
134 DEBUGFUNC("e1000_null_write_vfta");
139 * e1000_null_set_mta - No-op function, return void
140 * @hw: pointer to the HW structure
142 void e1000_null_mta_set(struct e1000_hw
*hw
, u32 a
)
144 DEBUGFUNC("e1000_null_mta_set");
149 * e1000_null_rar_set - No-op function, return void
150 * @hw: pointer to the HW structure
152 void e1000_null_rar_set(struct e1000_hw
*hw
, u8
*h
, u32 a
)
154 DEBUGFUNC("e1000_null_rar_set");
159 * e1000_remove_device_generic - Free device specific structure
160 * @hw: pointer to the HW structure
162 * If a device specific structure was allocated, this function will
165 void e1000_remove_device_generic(struct e1000_hw
*hw
)
167 DEBUGFUNC("e1000_remove_device_generic");
169 /* Freeing the dev_spec member of e1000_hw structure */
170 e1000_free_dev_spec_struct(hw
);
174 * e1000_get_bus_info_pci_generic - Get PCI(x) bus information
175 * @hw: pointer to the HW structure
177 * Determines and stores the system bus information for a particular
178 * network interface. The following bus information is determined and stored:
179 * bus speed, bus width, type (PCI/PCIx), and PCI(-x) function.
181 s32
e1000_get_bus_info_pci_generic(struct e1000_hw
*hw
)
183 struct e1000_bus_info
*bus
= &hw
->bus
;
184 u32 status
= E1000_READ_REG(hw
, E1000_STATUS
);
185 s32 ret_val
= E1000_SUCCESS
;
188 DEBUGFUNC("e1000_get_bus_info_pci_generic");
191 bus
->type
= (status
& E1000_STATUS_PCIX_MODE
)
192 ? e1000_bus_type_pcix
193 : e1000_bus_type_pci
;
196 if (bus
->type
== e1000_bus_type_pci
) {
197 bus
->speed
= (status
& E1000_STATUS_PCI66
)
199 : e1000_bus_speed_33
;
201 switch (status
& E1000_STATUS_PCIX_SPEED
) {
202 case E1000_STATUS_PCIX_SPEED_66
:
203 bus
->speed
= e1000_bus_speed_66
;
205 case E1000_STATUS_PCIX_SPEED_100
:
206 bus
->speed
= e1000_bus_speed_100
;
208 case E1000_STATUS_PCIX_SPEED_133
:
209 bus
->speed
= e1000_bus_speed_133
;
212 bus
->speed
= e1000_bus_speed_reserved
;
218 bus
->width
= (status
& E1000_STATUS_BUS64
)
220 : e1000_bus_width_32
;
222 /* Which PCI(-X) function? */
223 e1000_read_pci_cfg(hw
, PCI_HEADER_TYPE_REGISTER
, &pci_header_type
);
224 if (pci_header_type
& PCI_HEADER_TYPE_MULTIFUNC
)
225 bus
->func
= (status
& E1000_STATUS_FUNC_MASK
)
226 >> E1000_STATUS_FUNC_SHIFT
;
234 * e1000_get_bus_info_pcie_generic - Get PCIe bus information
235 * @hw: pointer to the HW structure
237 * Determines and stores the system bus information for a particular
238 * network interface. The following bus information is determined and stored:
239 * bus speed, bus width, type (PCIe), and PCIe function.
241 s32
e1000_get_bus_info_pcie_generic(struct e1000_hw
*hw
)
243 struct e1000_bus_info
*bus
= &hw
->bus
;
246 u16 pcie_link_status
, pci_header_type
;
248 DEBUGFUNC("e1000_get_bus_info_pcie_generic");
250 bus
->type
= e1000_bus_type_pci_express
;
251 bus
->speed
= e1000_bus_speed_2500
;
253 ret_val
= e1000_read_pcie_cap_reg(hw
,
257 bus
->width
= e1000_bus_width_unknown
;
259 bus
->width
= (e1000_bus_width
)((pcie_link_status
&
260 PCIE_LINK_WIDTH_MASK
) >>
261 PCIE_LINK_WIDTH_SHIFT
);
263 e1000_read_pci_cfg(hw
, PCI_HEADER_TYPE_REGISTER
, &pci_header_type
);
264 if (pci_header_type
& PCI_HEADER_TYPE_MULTIFUNC
) {
265 status
= E1000_READ_REG(hw
, E1000_STATUS
);
266 bus
->func
= (status
& E1000_STATUS_FUNC_MASK
)
267 >> E1000_STATUS_FUNC_SHIFT
;
272 return E1000_SUCCESS
;
276 * e1000_clear_vfta_generic - Clear VLAN filter table
277 * @hw: pointer to the HW structure
279 * Clears the register array which contains the VLAN filter table by
280 * setting all the values to 0.
282 void e1000_clear_vfta_generic(struct e1000_hw
*hw
)
286 DEBUGFUNC("e1000_clear_vfta_generic");
288 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
289 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, 0);
290 E1000_WRITE_FLUSH(hw
);
295 * e1000_write_vfta_generic - Write value to VLAN filter table
296 * @hw: pointer to the HW structure
297 * @offset: register offset in VLAN filter table
298 * @value: register value written to VLAN filter table
300 * Writes value at the given offset in the register array which stores
301 * the VLAN filter table.
303 void e1000_write_vfta_generic(struct e1000_hw
*hw
, u32 offset
, u32 value
)
305 DEBUGFUNC("e1000_write_vfta_generic");
307 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, value
);
308 E1000_WRITE_FLUSH(hw
);
312 * e1000_init_rx_addrs_generic - Initialize receive address's
313 * @hw: pointer to the HW structure
314 * @rar_count: receive address registers
316 * Setups the receive address registers by setting the base receive address
317 * register to the devices MAC address and clearing all the other receive
318 * address registers to 0.
320 void e1000_init_rx_addrs_generic(struct e1000_hw
*hw
, u16 rar_count
)
324 DEBUGFUNC("e1000_init_rx_addrs_generic");
326 /* Setup the receive address */
327 DEBUGOUT("Programming MAC Address into RAR[0]\n");
329 e1000_rar_set_generic(hw
, hw
->mac
.addr
, 0);
331 /* Zero out the other (rar_entry_count - 1) receive addresses */
332 DEBUGOUT1("Clearing RAR[1-%u]\n", rar_count
-1);
333 for (i
= 1; i
< rar_count
; i
++) {
334 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, (i
<< 1), 0);
335 E1000_WRITE_FLUSH(hw
);
336 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, ((i
<< 1) + 1), 0);
337 E1000_WRITE_FLUSH(hw
);
342 * e1000_check_alt_mac_addr_generic - Check for alternate MAC addr
343 * @hw: pointer to the HW structure
345 * Checks the nvm for an alternate MAC address. An alternate MAC address
346 * can be setup by pre-boot software and must be treated like a permanent
347 * address and must override the actual permanent MAC address. If an
348 * alternate MAC address is found it is saved in the hw struct and
349 * programmed into RAR0 and the function returns success, otherwise the
350 * function returns an error.
352 s32
e1000_check_alt_mac_addr_generic(struct e1000_hw
*hw
)
355 s32 ret_val
= E1000_SUCCESS
;
356 u16 offset
, nvm_alt_mac_addr_offset
, nvm_data
;
357 u8 alt_mac_addr
[ETH_ADDR_LEN
];
359 DEBUGFUNC("e1000_check_alt_mac_addr_generic");
361 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_ALT_MAC_ADDR_PTR
, 1,
362 &nvm_alt_mac_addr_offset
);
364 DEBUGOUT("NVM Read Error\n");
368 if (nvm_alt_mac_addr_offset
== 0xFFFF) {
369 ret_val
= -(E1000_NOT_IMPLEMENTED
);
373 if (hw
->bus
.func
== E1000_FUNC_1
)
374 nvm_alt_mac_addr_offset
+= ETH_ADDR_LEN
/sizeof(u16
);
376 for (i
= 0; i
< ETH_ADDR_LEN
; i
+= 2) {
377 offset
= nvm_alt_mac_addr_offset
+ (i
>> 1);
378 ret_val
= hw
->nvm
.ops
.read(hw
, offset
, 1, &nvm_data
);
380 DEBUGOUT("NVM Read Error\n");
384 alt_mac_addr
[i
] = (u8
)(nvm_data
& 0xFF);
385 alt_mac_addr
[i
+ 1] = (u8
)(nvm_data
>> 8);
388 /* if multicast bit is set, the alternate address will not be used */
389 if (alt_mac_addr
[0] & 0x01) {
390 ret_val
= -(E1000_NOT_IMPLEMENTED
);
394 for (i
= 0; i
< ETH_ADDR_LEN
; i
++)
395 hw
->mac
.addr
[i
] = hw
->mac
.perm_addr
[i
] = alt_mac_addr
[i
];
397 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.perm_addr
, 0);
404 * e1000_rar_set_generic - Set receive address register
405 * @hw: pointer to the HW structure
406 * @addr: pointer to the receive address
407 * @index: receive address array register
409 * Sets the receive address array register at index to the address passed
412 void e1000_rar_set_generic(struct e1000_hw
*hw
, u8
*addr
, u32 index
)
414 u32 rar_low
, rar_high
;
416 DEBUGFUNC("e1000_rar_set_generic");
419 * HW expects these in little endian so we reverse the byte order
420 * from network order (big endian) to little endian
422 rar_low
= ((u32
) addr
[0] |
423 ((u32
) addr
[1] << 8) |
424 ((u32
) addr
[2] << 16) | ((u32
) addr
[3] << 24));
426 rar_high
= ((u32
) addr
[4] | ((u32
) addr
[5] << 8));
428 /* If MAC address zero, no need to set the AV bit */
429 if (rar_low
|| rar_high
) {
430 if (!hw
->mac
.disable_av
)
431 rar_high
|= E1000_RAH_AV
;
434 E1000_WRITE_REG(hw
, E1000_RAL(index
), rar_low
);
435 E1000_WRITE_REG(hw
, E1000_RAH(index
), rar_high
);
439 * e1000_mta_set_generic - Set multicast filter table address
440 * @hw: pointer to the HW structure
441 * @hash_value: determines the MTA register and bit to set
443 * The multicast table address is a register array of 32-bit registers.
444 * The hash_value is used to determine what register the bit is in, the
445 * current value is read, the new bit is OR'd in and the new value is
446 * written back into the register.
448 void e1000_mta_set_generic(struct e1000_hw
*hw
, u32 hash_value
)
450 u32 hash_bit
, hash_reg
, mta
;
452 DEBUGFUNC("e1000_mta_set_generic");
454 * The MTA is a register array of 32-bit registers. It is
455 * treated like an array of (32*mta_reg_count) bits. We want to
456 * set bit BitArray[hash_value]. So we figure out what register
457 * the bit is in, read it, OR in the new bit, then write
458 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
459 * mask to bits 31:5 of the hash value which gives us the
460 * register we're modifying. The hash bit within that register
461 * is determined by the lower 5 bits of the hash value.
463 hash_reg
= (hash_value
>> 5) & (hw
->mac
.mta_reg_count
- 1);
464 hash_bit
= hash_value
& 0x1F;
466 mta
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, hash_reg
);
468 mta
|= (1 << hash_bit
);
470 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, hash_reg
, mta
);
471 E1000_WRITE_FLUSH(hw
);
475 * e1000_update_mc_addr_list_generic - Update Multicast addresses
476 * @hw: pointer to the HW structure
477 * @mc_addr_list: array of multicast addresses to program
478 * @mc_addr_count: number of multicast addresses to program
479 * @rar_used_count: the first RAR register free to program
480 * @rar_count: total number of supported Receive Address Registers
482 * Updates the Receive Address Registers and Multicast Table Array.
483 * The caller must have a packed mc_addr_list of multicast addresses.
484 * The parameter rar_count will usually be hw->mac.rar_entry_count
485 * unless there are workarounds that change this.
487 void e1000_update_mc_addr_list_generic(struct e1000_hw
*hw
,
488 u8
*mc_addr_list
, u32 mc_addr_count
,
489 u32 rar_used_count
, u32 rar_count
)
494 DEBUGFUNC("e1000_update_mc_addr_list_generic");
497 * Load the first set of multicast addresses into the exact
498 * filters (RAR). If there are not enough to fill the RAR
499 * array, clear the filters.
501 for (i
= rar_used_count
; i
< rar_count
; i
++) {
503 hw
->mac
.ops
.rar_set(hw
, mc_addr_list
, i
);
505 mc_addr_list
+= ETH_ADDR_LEN
;
507 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, i
<< 1, 0);
508 E1000_WRITE_FLUSH(hw
);
509 E1000_WRITE_REG_ARRAY(hw
, E1000_RA
, (i
<< 1) + 1, 0);
510 E1000_WRITE_FLUSH(hw
);
514 /* Clear the old settings from the MTA */
515 DEBUGOUT("Clearing MTA\n");
516 for (i
= 0; i
< hw
->mac
.mta_reg_count
; i
++) {
517 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
518 E1000_WRITE_FLUSH(hw
);
521 /* Load any remaining multicast addresses into the hash table. */
522 for (; mc_addr_count
> 0; mc_addr_count
--) {
523 hash_value
= e1000_hash_mc_addr(hw
, mc_addr_list
);
524 DEBUGOUT1("Hash value = 0x%03X\n", hash_value
);
525 hw
->mac
.ops
.mta_set(hw
, hash_value
);
526 mc_addr_list
+= ETH_ADDR_LEN
;
531 * e1000_hash_mc_addr_generic - Generate a multicast hash value
532 * @hw: pointer to the HW structure
533 * @mc_addr: pointer to a multicast address
535 * Generates a multicast address hash value which is used to determine
536 * the multicast filter table array address and new table value. See
537 * e1000_mta_set_generic()
539 u32
e1000_hash_mc_addr_generic(struct e1000_hw
*hw
, u8
*mc_addr
)
541 u32 hash_value
, hash_mask
;
544 DEBUGFUNC("e1000_hash_mc_addr_generic");
546 /* Register count multiplied by bits per register */
547 hash_mask
= (hw
->mac
.mta_reg_count
* 32) - 1;
550 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
551 * where 0xFF would still fall within the hash mask.
553 while (hash_mask
>> bit_shift
!= 0xFF)
557 * The portion of the address that is used for the hash table
558 * is determined by the mc_filter_type setting.
559 * The algorithm is such that there is a total of 8 bits of shifting.
560 * The bit_shift for a mc_filter_type of 0 represents the number of
561 * left-shifts where the MSB of mc_addr[5] would still fall within
562 * the hash_mask. Case 0 does this exactly. Since there are a total
563 * of 8 bits of shifting, then mc_addr[4] will shift right the
564 * remaining number of bits. Thus 8 - bit_shift. The rest of the
565 * cases are a variation of this algorithm...essentially raising the
566 * number of bits to shift mc_addr[5] left, while still keeping the
567 * 8-bit shifting total.
569 * For example, given the following Destination MAC Address and an
570 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
571 * we can see that the bit_shift for case 0 is 4. These are the hash
572 * values resulting from each mc_filter_type...
573 * [0] [1] [2] [3] [4] [5]
577 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
578 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
579 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
580 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
582 switch (hw
->mac
.mc_filter_type
) {
597 hash_value
= hash_mask
& (((mc_addr
[4] >> (8 - bit_shift
)) |
598 (((u16
) mc_addr
[5]) << bit_shift
)));
604 * e1000_pcix_mmrbc_workaround_generic - Fix incorrect MMRBC value
605 * @hw: pointer to the HW structure
607 * In certain situations, a system BIOS may report that the PCIx maximum
608 * memory read byte count (MMRBC) value is higher than than the actual
609 * value. We check the PCIx command register with the current PCIx status
612 void e1000_pcix_mmrbc_workaround_generic(struct e1000_hw
*hw
)
616 u16 pcix_stat_hi_word
;
619 DEBUGFUNC("e1000_pcix_mmrbc_workaround_generic");
621 /* Workaround for PCI-X issue when BIOS sets MMRBC incorrectly */
622 if (hw
->bus
.type
!= e1000_bus_type_pcix
)
625 e1000_read_pci_cfg(hw
, PCIX_COMMAND_REGISTER
, &pcix_cmd
);
626 e1000_read_pci_cfg(hw
, PCIX_STATUS_REGISTER_HI
, &pcix_stat_hi_word
);
627 cmd_mmrbc
= (pcix_cmd
& PCIX_COMMAND_MMRBC_MASK
) >>
628 PCIX_COMMAND_MMRBC_SHIFT
;
629 stat_mmrbc
= (pcix_stat_hi_word
& PCIX_STATUS_HI_MMRBC_MASK
) >>
630 PCIX_STATUS_HI_MMRBC_SHIFT
;
631 if (stat_mmrbc
== PCIX_STATUS_HI_MMRBC_4K
)
632 stat_mmrbc
= PCIX_STATUS_HI_MMRBC_2K
;
633 if (cmd_mmrbc
> stat_mmrbc
) {
634 pcix_cmd
&= ~PCIX_COMMAND_MMRBC_MASK
;
635 pcix_cmd
|= stat_mmrbc
<< PCIX_COMMAND_MMRBC_SHIFT
;
636 e1000_write_pci_cfg(hw
, PCIX_COMMAND_REGISTER
, &pcix_cmd
);
641 * e1000_clear_hw_cntrs_base_generic - Clear base hardware counters
642 * @hw: pointer to the HW structure
644 * Clears the base hardware counters by reading the counter registers.
646 void e1000_clear_hw_cntrs_base_generic(struct e1000_hw
*hw
)
650 DEBUGFUNC("e1000_clear_hw_cntrs_base_generic");
652 temp
= E1000_READ_REG(hw
, E1000_CRCERRS
);
653 temp
= E1000_READ_REG(hw
, E1000_SYMERRS
);
654 temp
= E1000_READ_REG(hw
, E1000_MPC
);
655 temp
= E1000_READ_REG(hw
, E1000_SCC
);
656 temp
= E1000_READ_REG(hw
, E1000_ECOL
);
657 temp
= E1000_READ_REG(hw
, E1000_MCC
);
658 temp
= E1000_READ_REG(hw
, E1000_LATECOL
);
659 temp
= E1000_READ_REG(hw
, E1000_COLC
);
660 temp
= E1000_READ_REG(hw
, E1000_DC
);
661 temp
= E1000_READ_REG(hw
, E1000_SEC
);
662 temp
= E1000_READ_REG(hw
, E1000_RLEC
);
663 temp
= E1000_READ_REG(hw
, E1000_XONRXC
);
664 temp
= E1000_READ_REG(hw
, E1000_XONTXC
);
665 temp
= E1000_READ_REG(hw
, E1000_XOFFRXC
);
666 temp
= E1000_READ_REG(hw
, E1000_XOFFTXC
);
667 temp
= E1000_READ_REG(hw
, E1000_FCRUC
);
668 temp
= E1000_READ_REG(hw
, E1000_GPRC
);
669 temp
= E1000_READ_REG(hw
, E1000_BPRC
);
670 temp
= E1000_READ_REG(hw
, E1000_MPRC
);
671 temp
= E1000_READ_REG(hw
, E1000_GPTC
);
672 temp
= E1000_READ_REG(hw
, E1000_GORCL
);
673 temp
= E1000_READ_REG(hw
, E1000_GORCH
);
674 temp
= E1000_READ_REG(hw
, E1000_GOTCL
);
675 temp
= E1000_READ_REG(hw
, E1000_GOTCH
);
676 temp
= E1000_READ_REG(hw
, E1000_RNBC
);
677 temp
= E1000_READ_REG(hw
, E1000_RUC
);
678 temp
= E1000_READ_REG(hw
, E1000_RFC
);
679 temp
= E1000_READ_REG(hw
, E1000_ROC
);
680 temp
= E1000_READ_REG(hw
, E1000_RJC
);
681 temp
= E1000_READ_REG(hw
, E1000_TORL
);
682 temp
= E1000_READ_REG(hw
, E1000_TORH
);
683 temp
= E1000_READ_REG(hw
, E1000_TOTL
);
684 temp
= E1000_READ_REG(hw
, E1000_TOTH
);
685 temp
= E1000_READ_REG(hw
, E1000_TPR
);
686 temp
= E1000_READ_REG(hw
, E1000_TPT
);
687 temp
= E1000_READ_REG(hw
, E1000_MPTC
);
688 temp
= E1000_READ_REG(hw
, E1000_BPTC
);
692 * e1000_check_for_copper_link_generic - Check for link (Copper)
693 * @hw: pointer to the HW structure
695 * Checks to see of the link status of the hardware has changed. If a
696 * change in link status has been detected, then we read the PHY registers
697 * to get the current speed/duplex if link exists.
699 s32
e1000_check_for_copper_link_generic(struct e1000_hw
*hw
)
701 struct e1000_mac_info
*mac
= &hw
->mac
;
705 DEBUGFUNC("e1000_check_for_copper_link");
708 * We only want to go out to the PHY registers to see if Auto-Neg
709 * has completed and/or if our link status has changed. The
710 * get_link_status flag is set upon receiving a Link Status
711 * Change or Rx Sequence Error interrupt.
713 if (!mac
->get_link_status
) {
714 ret_val
= E1000_SUCCESS
;
719 * First we want to see if the MII Status Register reports
720 * link. If so, then we want to get the current speed/duplex
723 ret_val
= e1000_phy_has_link_generic(hw
, 1, 0, &link
);
728 goto out
; /* No link detected */
730 mac
->get_link_status
= FALSE
;
733 * Check if there was DownShift, must be checked
734 * immediately after link-up
736 e1000_check_downshift_generic(hw
);
739 * If we are forcing speed/duplex, then we simply return since
740 * we have already determined whether we have link or not.
743 ret_val
= -E1000_ERR_CONFIG
;
748 * Auto-Neg is enabled. Auto Speed Detection takes care
749 * of MAC speed/duplex configuration. So we only need to
750 * configure Collision Distance in the MAC.
752 e1000_config_collision_dist_generic(hw
);
755 * Configure Flow Control now that Auto-Neg has completed.
756 * First, we need to restore the desired flow control
757 * settings because we may have had to re-autoneg with a
758 * different link partner.
760 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
762 DEBUGOUT("Error configuring flow control\n");
770 * e1000_check_for_fiber_link_generic - Check for link (Fiber)
771 * @hw: pointer to the HW structure
773 * Checks for link up on the hardware. If link is not up and we have
774 * a signal, then we need to force link up.
776 s32
e1000_check_for_fiber_link_generic(struct e1000_hw
*hw
)
778 struct e1000_mac_info
*mac
= &hw
->mac
;
782 s32 ret_val
= E1000_SUCCESS
;
784 DEBUGFUNC("e1000_check_for_fiber_link_generic");
786 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
787 status
= E1000_READ_REG(hw
, E1000_STATUS
);
788 rxcw
= E1000_READ_REG(hw
, E1000_RXCW
);
791 * If we don't have link (auto-negotiation failed or link partner
792 * cannot auto-negotiate), the cable is plugged in (we have signal),
793 * and our link partner is not trying to auto-negotiate with us (we
794 * are receiving idles or data), we need to force link up. We also
795 * need to give auto-negotiation time to complete, in case the cable
796 * was just plugged in. The autoneg_failed flag does this.
798 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
799 if ((ctrl
& E1000_CTRL_SWDPIN1
) && (!(status
& E1000_STATUS_LU
)) &&
800 (!(rxcw
& E1000_RXCW_C
))) {
801 if (mac
->autoneg_failed
== 0) {
802 mac
->autoneg_failed
= 1;
805 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
807 /* Disable auto-negotiation in the TXCW register */
808 E1000_WRITE_REG(hw
, E1000_TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
810 /* Force link-up and also force full-duplex. */
811 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
812 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
813 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
815 /* Configure Flow Control after forcing link up. */
816 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
818 DEBUGOUT("Error configuring flow control\n");
821 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
823 * If we are forcing link and we are receiving /C/ ordered
824 * sets, re-enable auto-negotiation in the TXCW register
825 * and disable forced link in the Device Control register
826 * in an attempt to auto-negotiate with our link partner.
828 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
829 E1000_WRITE_REG(hw
, E1000_TXCW
, mac
->txcw
);
830 E1000_WRITE_REG(hw
, E1000_CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
832 mac
->serdes_has_link
= TRUE
;
840 * e1000_check_for_serdes_link_generic - Check for link (Serdes)
841 * @hw: pointer to the HW structure
843 * Checks for link up on the hardware. If link is not up and we have
844 * a signal, then we need to force link up.
846 s32
e1000_check_for_serdes_link_generic(struct e1000_hw
*hw
)
848 struct e1000_mac_info
*mac
= &hw
->mac
;
852 s32 ret_val
= E1000_SUCCESS
;
854 DEBUGFUNC("e1000_check_for_serdes_link_generic");
856 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
857 status
= E1000_READ_REG(hw
, E1000_STATUS
);
858 rxcw
= E1000_READ_REG(hw
, E1000_RXCW
);
861 * If we don't have link (auto-negotiation failed or link partner
862 * cannot auto-negotiate), and our link partner is not trying to
863 * auto-negotiate with us (we are receiving idles or data),
864 * we need to force link up. We also need to give auto-negotiation
867 /* (ctrl & E1000_CTRL_SWDPIN1) == 1 == have signal */
868 if ((!(status
& E1000_STATUS_LU
)) && (!(rxcw
& E1000_RXCW_C
))) {
869 if (mac
->autoneg_failed
== 0) {
870 mac
->autoneg_failed
= 1;
873 DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n");
875 /* Disable auto-negotiation in the TXCW register */
876 E1000_WRITE_REG(hw
, E1000_TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
878 /* Force link-up and also force full-duplex. */
879 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
880 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
881 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
883 /* Configure Flow Control after forcing link up. */
884 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
886 DEBUGOUT("Error configuring flow control\n");
889 } else if ((ctrl
& E1000_CTRL_SLU
) && (rxcw
& E1000_RXCW_C
)) {
891 * If we are forcing link and we are receiving /C/ ordered
892 * sets, re-enable auto-negotiation in the TXCW register
893 * and disable forced link in the Device Control register
894 * in an attempt to auto-negotiate with our link partner.
896 DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n");
897 E1000_WRITE_REG(hw
, E1000_TXCW
, mac
->txcw
);
898 E1000_WRITE_REG(hw
, E1000_CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
900 mac
->serdes_has_link
= TRUE
;
901 } else if (!(E1000_TXCW_ANE
& E1000_READ_REG(hw
, E1000_TXCW
))) {
903 * If we force link for non-auto-negotiation switch, check
904 * link status based on MAC synchronization for internal
907 /* SYNCH bit and IV bit are sticky. */
909 if (E1000_RXCW_SYNCH
& E1000_READ_REG(hw
, E1000_RXCW
)) {
910 if (!(rxcw
& E1000_RXCW_IV
)) {
911 mac
->serdes_has_link
= TRUE
;
912 DEBUGOUT("SERDES: Link is up.\n");
915 mac
->serdes_has_link
= FALSE
;
916 DEBUGOUT("SERDES: Link is down.\n");
920 if (E1000_TXCW_ANE
& E1000_READ_REG(hw
, E1000_TXCW
)) {
921 status
= E1000_READ_REG(hw
, E1000_STATUS
);
922 mac
->serdes_has_link
= (status
& E1000_STATUS_LU
)
932 * e1000_setup_link_generic - Setup flow control and link settings
933 * @hw: pointer to the HW structure
935 * Determines which flow control settings to use, then configures flow
936 * control. Calls the appropriate media-specific link configuration
937 * function. Assuming the adapter has a valid link partner, a valid link
938 * should be established. Assumes the hardware has previously been reset
939 * and the transmitter and receiver are not enabled.
941 s32
e1000_setup_link_generic(struct e1000_hw
*hw
)
943 s32 ret_val
= E1000_SUCCESS
;
945 DEBUGFUNC("e1000_setup_link_generic");
948 * In the case of the phy reset being blocked, we already have a link.
949 * We do not need to set it up again.
951 if (hw
->phy
.ops
.check_reset_block
)
952 if (hw
->phy
.ops
.check_reset_block(hw
))
956 * If flow control is set to default, set flow control based on
957 * the EEPROM flow control settings.
959 if (hw
->fc
.type
== e1000_fc_default
) {
960 ret_val
= e1000_set_default_fc_generic(hw
);
966 * We want to save off the original Flow Control configuration just
967 * in case we get disconnected and then reconnected into a different
968 * hub or switch with different Flow Control capabilities.
970 hw
->fc
.original_type
= hw
->fc
.type
;
972 DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw
->fc
.type
);
974 /* Call the necessary media_type subroutine to configure the link. */
975 ret_val
= hw
->mac
.ops
.setup_physical_interface(hw
);
980 * Initialize the flow control address, type, and PAUSE timer
981 * registers to their default values. This is done even if flow
982 * control is disabled, because it does not hurt anything to
983 * initialize these registers.
985 DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
986 E1000_WRITE_REG(hw
, E1000_FCT
, FLOW_CONTROL_TYPE
);
987 E1000_WRITE_REG(hw
, E1000_FCAH
, FLOW_CONTROL_ADDRESS_HIGH
);
988 E1000_WRITE_REG(hw
, E1000_FCAL
, FLOW_CONTROL_ADDRESS_LOW
);
990 E1000_WRITE_REG(hw
, E1000_FCTTV
, hw
->fc
.pause_time
);
992 ret_val
= e1000_set_fc_watermarks_generic(hw
);
999 * e1000_setup_fiber_serdes_link_generic - Setup link for fiber/serdes
1000 * @hw: pointer to the HW structure
1002 * Configures collision distance and flow control for fiber and serdes
1003 * links. Upon successful setup, poll for link.
1005 s32
e1000_setup_fiber_serdes_link_generic(struct e1000_hw
*hw
)
1008 s32 ret_val
= E1000_SUCCESS
;
1010 DEBUGFUNC("e1000_setup_fiber_serdes_link_generic");
1012 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1014 /* Take the link out of reset */
1015 ctrl
&= ~E1000_CTRL_LRST
;
1017 e1000_config_collision_dist_generic(hw
);
1019 ret_val
= e1000_commit_fc_settings_generic(hw
);
1024 * Since auto-negotiation is enabled, take the link out of reset (the
1025 * link will be in reset, because we previously reset the chip). This
1026 * will restart auto-negotiation. If auto-negotiation is successful
1027 * then the link-up status bit will be set and the flow control enable
1028 * bits (RFCE and TFCE) will be set according to their negotiated value.
1030 DEBUGOUT("Auto-negotiation enabled\n");
1032 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1033 E1000_WRITE_FLUSH(hw
);
1037 * For these adapters, the SW definable pin 1 is set when the optics
1038 * detect a signal. If we have a signal, then poll for a "Link-Up"
1041 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
||
1042 (E1000_READ_REG(hw
, E1000_CTRL
) & E1000_CTRL_SWDPIN1
)) {
1043 ret_val
= e1000_poll_fiber_serdes_link_generic(hw
);
1045 DEBUGOUT("No signal detected\n");
1053 * e1000_config_collision_dist_generic - Configure collision distance
1054 * @hw: pointer to the HW structure
1056 * Configures the collision distance to the default value and is used
1057 * during link setup. Currently no func pointer exists and all
1058 * implementations are handled in the generic version of this function.
1060 void e1000_config_collision_dist_generic(struct e1000_hw
*hw
)
1064 DEBUGFUNC("e1000_config_collision_dist_generic");
1066 tctl
= E1000_READ_REG(hw
, E1000_TCTL
);
1068 tctl
&= ~E1000_TCTL_COLD
;
1069 tctl
|= E1000_COLLISION_DISTANCE
<< E1000_COLD_SHIFT
;
1071 E1000_WRITE_REG(hw
, E1000_TCTL
, tctl
);
1072 E1000_WRITE_FLUSH(hw
);
1076 * e1000_poll_fiber_serdes_link_generic - Poll for link up
1077 * @hw: pointer to the HW structure
1079 * Polls for link up by reading the status register, if link fails to come
1080 * up with auto-negotiation, then the link is forced if a signal is detected.
1082 s32
e1000_poll_fiber_serdes_link_generic(struct e1000_hw
*hw
)
1084 struct e1000_mac_info
*mac
= &hw
->mac
;
1086 s32 ret_val
= E1000_SUCCESS
;
1088 DEBUGFUNC("e1000_poll_fiber_serdes_link_generic");
1091 * If we have a signal (the cable is plugged in, or assumed true for
1092 * serdes media) then poll for a "Link-Up" indication in the Device
1093 * Status Register. Time-out if a link isn't seen in 500 milliseconds
1094 * seconds (Auto-negotiation should complete in less than 500
1095 * milliseconds even if the other end is doing it in SW).
1097 for (i
= 0; i
< FIBER_LINK_UP_LIMIT
; i
++) {
1099 status
= E1000_READ_REG(hw
, E1000_STATUS
);
1100 if (status
& E1000_STATUS_LU
)
1103 if (i
== FIBER_LINK_UP_LIMIT
) {
1104 DEBUGOUT("Never got a valid link from auto-neg!!!\n");
1105 mac
->autoneg_failed
= 1;
1107 * AutoNeg failed to achieve a link, so we'll call
1108 * mac->check_for_link. This routine will force the
1109 * link up if we detect a signal. This will allow us to
1110 * communicate with non-autonegotiating link partners.
1112 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1114 DEBUGOUT("Error while checking for link\n");
1117 mac
->autoneg_failed
= 0;
1119 mac
->autoneg_failed
= 0;
1120 DEBUGOUT("Valid Link Found\n");
1128 * e1000_commit_fc_settings_generic - Configure flow control
1129 * @hw: pointer to the HW structure
1131 * Write the flow control settings to the Transmit Config Word Register (TXCW)
1132 * base on the flow control settings in e1000_mac_info.
1134 s32
e1000_commit_fc_settings_generic(struct e1000_hw
*hw
)
1136 struct e1000_mac_info
*mac
= &hw
->mac
;
1138 s32 ret_val
= E1000_SUCCESS
;
1140 DEBUGFUNC("e1000_commit_fc_settings_generic");
1143 * Check for a software override of the flow control settings, and
1144 * setup the device accordingly. If auto-negotiation is enabled, then
1145 * software will have to set the "PAUSE" bits to the correct value in
1146 * the Transmit Config Word Register (TXCW) and re-start auto-
1147 * negotiation. However, if auto-negotiation is disabled, then
1148 * software will have to manually configure the two flow control enable
1149 * bits in the CTRL register.
1151 * The possible values of the "fc" parameter are:
1152 * 0: Flow control is completely disabled
1153 * 1: Rx flow control is enabled (we can receive pause frames,
1154 * but not send pause frames).
1155 * 2: Tx flow control is enabled (we can send pause frames but we
1156 * do not support receiving pause frames).
1157 * 3: Both Rx and Tx flow control (symmetric) are enabled.
1159 switch (hw
->fc
.type
) {
1161 /* Flow control completely disabled by a software over-ride. */
1162 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
);
1164 case e1000_fc_rx_pause
:
1166 * Rx Flow control is enabled and Tx Flow control is disabled
1167 * by a software over-ride. Since there really isn't a way to
1168 * advertise that we are capable of Rx Pause ONLY, we will
1169 * advertise that we support both symmetric and asymmetric RX
1170 * PAUSE. Later, we will disable the adapter's ability to send
1173 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
1175 case e1000_fc_tx_pause
:
1177 * Tx Flow control is enabled, and Rx Flow control is disabled,
1178 * by a software over-ride.
1180 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_ASM_DIR
);
1184 * Flow control (both Rx and Tx) is enabled by a software
1187 txcw
= (E1000_TXCW_ANE
| E1000_TXCW_FD
| E1000_TXCW_PAUSE_MASK
);
1190 DEBUGOUT("Flow control param set incorrectly\n");
1191 ret_val
= -E1000_ERR_CONFIG
;
1196 E1000_WRITE_REG(hw
, E1000_TXCW
, txcw
);
1204 * e1000_set_fc_watermarks_generic - Set flow control high/low watermarks
1205 * @hw: pointer to the HW structure
1207 * Sets the flow control high/low threshold (watermark) registers. If
1208 * flow control XON frame transmission is enabled, then set XON frame
1209 * transmission as well.
1211 s32
e1000_set_fc_watermarks_generic(struct e1000_hw
*hw
)
1213 s32 ret_val
= E1000_SUCCESS
;
1214 u32 fcrtl
= 0, fcrth
= 0;
1216 DEBUGFUNC("e1000_set_fc_watermarks_generic");
1219 * Set the flow control receive threshold registers. Normally,
1220 * these registers will be set to a default threshold that may be
1221 * adjusted later by the driver's runtime code. However, if the
1222 * ability to transmit pause frames is not enabled, then these
1223 * registers will be set to 0.
1225 if (hw
->fc
.type
& e1000_fc_tx_pause
) {
1227 * We need to set up the Receive Threshold high and low water
1228 * marks as well as (optionally) enabling the transmission of
1231 fcrtl
= hw
->fc
.low_water
;
1232 if (hw
->fc
.send_xon
)
1233 fcrtl
|= E1000_FCRTL_XONE
;
1235 fcrth
= hw
->fc
.high_water
;
1237 E1000_WRITE_REG(hw
, E1000_FCRTL
, fcrtl
);
1238 E1000_WRITE_REG(hw
, E1000_FCRTH
, fcrth
);
1244 * e1000_set_default_fc_generic - Set flow control default values
1245 * @hw: pointer to the HW structure
1247 * Read the EEPROM for the default values for flow control and store the
1250 s32
e1000_set_default_fc_generic(struct e1000_hw
*hw
)
1252 s32 ret_val
= E1000_SUCCESS
;
1255 DEBUGFUNC("e1000_set_default_fc_generic");
1258 * Read and store word 0x0F of the EEPROM. This word contains bits
1259 * that determine the hardware's default PAUSE (flow control) mode,
1260 * a bit that determines whether the HW defaults to enabling or
1261 * disabling auto-negotiation, and the direction of the
1262 * SW defined pins. If there is no SW over-ride of the flow
1263 * control setting, then the variable hw->fc will
1264 * be initialized based on a value in the EEPROM.
1266 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_INIT_CONTROL2_REG
, 1, &nvm_data
);
1269 DEBUGOUT("NVM Read Error\n");
1273 if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) == 0)
1274 hw
->fc
.type
= e1000_fc_none
;
1275 else if ((nvm_data
& NVM_WORD0F_PAUSE_MASK
) ==
1277 hw
->fc
.type
= e1000_fc_tx_pause
;
1279 hw
->fc
.type
= e1000_fc_full
;
1286 * e1000_force_mac_fc_generic - Force the MAC's flow control settings
1287 * @hw: pointer to the HW structure
1289 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
1290 * device control register to reflect the adapter settings. TFCE and RFCE
1291 * need to be explicitly set by software when a copper PHY is used because
1292 * autonegotiation is managed by the PHY rather than the MAC. Software must
1293 * also configure these bits when link is forced on a fiber connection.
1295 s32
e1000_force_mac_fc_generic(struct e1000_hw
*hw
)
1298 s32 ret_val
= E1000_SUCCESS
;
1300 DEBUGFUNC("e1000_force_mac_fc_generic");
1302 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1305 * Because we didn't get link via the internal auto-negotiation
1306 * mechanism (we either forced link or we got link via PHY
1307 * auto-neg), we have to manually enable/disable transmit an
1308 * receive flow control.
1310 * The "Case" statement below enables/disable flow control
1311 * according to the "hw->fc.type" parameter.
1313 * The possible values of the "fc" parameter are:
1314 * 0: Flow control is completely disabled
1315 * 1: Rx flow control is enabled (we can receive pause
1316 * frames but not send pause frames).
1317 * 2: Tx flow control is enabled (we can send pause frames
1318 * frames but we do not receive pause frames).
1319 * 3: Both Rx and Tx flow control (symmetric) is enabled.
1320 * other: No other values should be possible at this point.
1322 DEBUGOUT1("hw->fc.type = %u\n", hw
->fc
.type
);
1324 switch (hw
->fc
.type
) {
1326 ctrl
&= (~(E1000_CTRL_TFCE
| E1000_CTRL_RFCE
));
1328 case e1000_fc_rx_pause
:
1329 ctrl
&= (~E1000_CTRL_TFCE
);
1330 ctrl
|= E1000_CTRL_RFCE
;
1332 case e1000_fc_tx_pause
:
1333 ctrl
&= (~E1000_CTRL_RFCE
);
1334 ctrl
|= E1000_CTRL_TFCE
;
1337 ctrl
|= (E1000_CTRL_TFCE
| E1000_CTRL_RFCE
);
1340 DEBUGOUT("Flow control param set incorrectly\n");
1341 ret_val
= -E1000_ERR_CONFIG
;
1345 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1352 * e1000_config_fc_after_link_up_generic - Configures flow control after link
1353 * @hw: pointer to the HW structure
1355 * Checks the status of auto-negotiation after link up to ensure that the
1356 * speed and duplex were not forced. If the link needed to be forced, then
1357 * flow control needs to be forced also. If auto-negotiation is enabled
1358 * and did not fail, then we configure flow control based on our link
1361 s32
e1000_config_fc_after_link_up_generic(struct e1000_hw
*hw
)
1363 struct e1000_mac_info
*mac
= &hw
->mac
;
1364 struct e1000_phy_info
*phy
= &hw
->phy
;
1365 s32 ret_val
= E1000_SUCCESS
;
1366 u16 mii_status_reg
, mii_nway_adv_reg
, mii_nway_lp_ability_reg
;
1369 DEBUGFUNC("e1000_config_fc_after_link_up_generic");
1372 * Check for the case where we have fiber media and auto-neg failed
1373 * so we had to force link. In this case, we need to force the
1374 * configuration of the MAC to match the "fc" parameter.
1376 if (mac
->autoneg_failed
) {
1377 if (hw
->phy
.media_type
== e1000_media_type_fiber
||
1378 hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1379 ret_val
= e1000_force_mac_fc_generic(hw
);
1381 if (hw
->phy
.media_type
== e1000_media_type_copper
)
1382 ret_val
= e1000_force_mac_fc_generic(hw
);
1386 DEBUGOUT("Error forcing flow control settings\n");
1391 * Check for the case where we have copper media and auto-neg is
1392 * enabled. In this case, we need to check and see if Auto-Neg
1393 * has completed, and if so, how the PHY and link partner has
1394 * flow control configured.
1396 if ((hw
->phy
.media_type
== e1000_media_type_copper
) && mac
->autoneg
) {
1398 * Read the MII Status Register and check to see if AutoNeg
1399 * has completed. We read this twice because this reg has
1400 * some "sticky" (latched) bits.
1402 ret_val
= phy
->ops
.read_reg(hw
, PHY_STATUS
, &mii_status_reg
);
1405 ret_val
= phy
->ops
.read_reg(hw
, PHY_STATUS
, &mii_status_reg
);
1409 if (!(mii_status_reg
& MII_SR_AUTONEG_COMPLETE
)) {
1410 DEBUGOUT("Copper PHY and Auto Neg "
1411 "has not completed.\n");
1416 * The AutoNeg process has completed, so we now need to
1417 * read both the Auto Negotiation Advertisement
1418 * Register (Address 4) and the Auto_Negotiation Base
1419 * Page Ability Register (Address 5) to determine how
1420 * flow control was negotiated.
1422 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
,
1426 ret_val
= phy
->ops
.read_reg(hw
, PHY_LP_ABILITY
,
1427 &mii_nway_lp_ability_reg
);
1432 * Two bits in the Auto Negotiation Advertisement Register
1433 * (Address 4) and two bits in the Auto Negotiation Base
1434 * Page Ability Register (Address 5) determine flow control
1435 * for both the PHY and the link partner. The following
1436 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
1437 * 1999, describes these PAUSE resolution bits and how flow
1438 * control is determined based upon these settings.
1439 * NOTE: DC = Don't Care
1441 * LOCAL DEVICE | LINK PARTNER
1442 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
1443 *-------|---------|-------|---------|--------------------
1444 * 0 | 0 | DC | DC | e1000_fc_none
1445 * 0 | 1 | 0 | DC | e1000_fc_none
1446 * 0 | 1 | 1 | 0 | e1000_fc_none
1447 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1448 * 1 | 0 | 0 | DC | e1000_fc_none
1449 * 1 | DC | 1 | DC | e1000_fc_full
1450 * 1 | 1 | 0 | 0 | e1000_fc_none
1451 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1453 * Are both PAUSE bits set to 1? If so, this implies
1454 * Symmetric Flow Control is enabled at both ends. The
1455 * ASM_DIR bits are irrelevant per the spec.
1457 * For Symmetric Flow Control:
1459 * LOCAL DEVICE | LINK PARTNER
1460 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1461 *-------|---------|-------|---------|--------------------
1462 * 1 | DC | 1 | DC | E1000_fc_full
1465 if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1466 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
)) {
1468 * Now we need to check if the user selected Rx ONLY
1469 * of pause frames. In this case, we had to advertise
1470 * FULL flow control because we could not advertise RX
1471 * ONLY. Hence, we must now check to see if we need to
1472 * turn OFF the TRANSMISSION of PAUSE frames.
1474 if (hw
->fc
.original_type
== e1000_fc_full
) {
1475 hw
->fc
.type
= e1000_fc_full
;
1476 DEBUGOUT("Flow Control = FULL.\r\n");
1478 hw
->fc
.type
= e1000_fc_rx_pause
;
1479 DEBUGOUT("Flow Control = "
1480 "RX PAUSE frames only.\r\n");
1484 * For receiving PAUSE frames ONLY.
1486 * LOCAL DEVICE | LINK PARTNER
1487 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1488 *-------|---------|-------|---------|--------------------
1489 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
1491 else if (!(mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1492 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1493 (mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1494 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1495 hw
->fc
.type
= e1000_fc_tx_pause
;
1496 DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
1499 * For transmitting PAUSE frames ONLY.
1501 * LOCAL DEVICE | LINK PARTNER
1502 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
1503 *-------|---------|-------|---------|--------------------
1504 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
1506 else if ((mii_nway_adv_reg
& NWAY_AR_PAUSE
) &&
1507 (mii_nway_adv_reg
& NWAY_AR_ASM_DIR
) &&
1508 !(mii_nway_lp_ability_reg
& NWAY_LPAR_PAUSE
) &&
1509 (mii_nway_lp_ability_reg
& NWAY_LPAR_ASM_DIR
)) {
1510 hw
->fc
.type
= e1000_fc_rx_pause
;
1511 DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
1514 * Per the IEEE spec, at this point flow control
1515 * should be disabled.
1517 hw
->fc
.type
= e1000_fc_none
;
1518 DEBUGOUT("Flow Control = NONE.\r\n");
1522 * Now we need to do one last check... If we auto-
1523 * negotiated to HALF DUPLEX, flow control should not be
1524 * enabled per IEEE 802.3 spec.
1526 ret_val
= mac
->ops
.get_link_up_info(hw
, &speed
, &duplex
);
1528 DEBUGOUT("Error getting link speed and duplex\n");
1532 if (duplex
== HALF_DUPLEX
)
1533 hw
->fc
.type
= e1000_fc_none
;
1536 * Now we call a subroutine to actually force the MAC
1537 * controller to use the correct flow control settings.
1539 ret_val
= e1000_force_mac_fc_generic(hw
);
1541 DEBUGOUT("Error forcing flow control settings\n");
1551 * e1000_get_speed_and_duplex_copper_generic - Retrieve current speed/duplex
1552 * @hw: pointer to the HW structure
1553 * @speed: stores the current speed
1554 * @duplex: stores the current duplex
1556 * Read the status register for the current speed/duplex and store the current
1557 * speed and duplex for copper connections.
1559 s32
e1000_get_speed_and_duplex_copper_generic(struct e1000_hw
*hw
, u16
*speed
,
1564 DEBUGFUNC("e1000_get_speed_and_duplex_copper_generic");
1566 status
= E1000_READ_REG(hw
, E1000_STATUS
);
1567 if (status
& E1000_STATUS_SPEED_1000
) {
1568 *speed
= SPEED_1000
;
1569 DEBUGOUT("1000 Mbs, ");
1570 } else if (status
& E1000_STATUS_SPEED_100
) {
1572 DEBUGOUT("100 Mbs, ");
1575 DEBUGOUT("10 Mbs, ");
1578 if (status
& E1000_STATUS_FD
) {
1579 *duplex
= FULL_DUPLEX
;
1580 DEBUGOUT("Full Duplex\n");
1582 *duplex
= HALF_DUPLEX
;
1583 DEBUGOUT("Half Duplex\n");
1586 return E1000_SUCCESS
;
1590 * e1000_get_speed_and_duplex_fiber_generic - Retrieve current speed/duplex
1591 * @hw: pointer to the HW structure
1592 * @speed: stores the current speed
1593 * @duplex: stores the current duplex
1595 * Sets the speed and duplex to gigabit full duplex (the only possible option)
1596 * for fiber/serdes links.
1598 s32
e1000_get_speed_and_duplex_fiber_serdes_generic(struct e1000_hw
*hw
,
1599 u16
*speed
, u16
*duplex
)
1601 DEBUGFUNC("e1000_get_speed_and_duplex_fiber_serdes_generic");
1603 *speed
= SPEED_1000
;
1604 *duplex
= FULL_DUPLEX
;
1606 return E1000_SUCCESS
;
1610 * e1000_get_hw_semaphore_generic - Acquire hardware semaphore
1611 * @hw: pointer to the HW structure
1613 * Acquire the HW semaphore to access the PHY or NVM
1615 s32
e1000_get_hw_semaphore_generic(struct e1000_hw
*hw
)
1618 s32 ret_val
= E1000_SUCCESS
;
1619 s32 timeout
= hw
->nvm
.word_size
+ 1;
1622 DEBUGFUNC("e1000_get_hw_semaphore_generic");
1624 /* Get the SW semaphore */
1625 while (i
< timeout
) {
1626 swsm
= E1000_READ_REG(hw
, E1000_SWSM
);
1627 if (!(swsm
& E1000_SWSM_SMBI
))
1635 DEBUGOUT("Driver can't access device - SMBI bit is set.\n");
1636 ret_val
= -E1000_ERR_NVM
;
1640 /* Get the FW semaphore. */
1641 for (i
= 0; i
< timeout
; i
++) {
1642 swsm
= E1000_READ_REG(hw
, E1000_SWSM
);
1643 E1000_WRITE_REG(hw
, E1000_SWSM
, swsm
| E1000_SWSM_SWESMBI
);
1645 /* Semaphore acquired if bit latched */
1646 if (E1000_READ_REG(hw
, E1000_SWSM
) & E1000_SWSM_SWESMBI
)
1653 /* Release semaphores */
1654 e1000_put_hw_semaphore_generic(hw
);
1655 DEBUGOUT("Driver can't access the NVM\n");
1656 ret_val
= -E1000_ERR_NVM
;
1665 * e1000_put_hw_semaphore_generic - Release hardware semaphore
1666 * @hw: pointer to the HW structure
1668 * Release hardware semaphore used to access the PHY or NVM
1670 void e1000_put_hw_semaphore_generic(struct e1000_hw
*hw
)
1674 DEBUGFUNC("e1000_put_hw_semaphore_generic");
1676 swsm
= E1000_READ_REG(hw
, E1000_SWSM
);
1678 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
1680 E1000_WRITE_REG(hw
, E1000_SWSM
, swsm
);
1684 * e1000_get_auto_rd_done_generic - Check for auto read completion
1685 * @hw: pointer to the HW structure
1687 * Check EEPROM for Auto Read done bit.
1689 s32
e1000_get_auto_rd_done_generic(struct e1000_hw
*hw
)
1692 s32 ret_val
= E1000_SUCCESS
;
1694 DEBUGFUNC("e1000_get_auto_rd_done_generic");
1696 while (i
< AUTO_READ_DONE_TIMEOUT
) {
1697 if (E1000_READ_REG(hw
, E1000_EECD
) & E1000_EECD_AUTO_RD
)
1703 if (i
== AUTO_READ_DONE_TIMEOUT
) {
1704 DEBUGOUT("Auto read by HW from NVM has not completed.\n");
1705 ret_val
= -E1000_ERR_RESET
;
1714 * e1000_valid_led_default_generic - Verify a valid default LED config
1715 * @hw: pointer to the HW structure
1716 * @data: pointer to the NVM (EEPROM)
1718 * Read the EEPROM for the current default LED configuration. If the
1719 * LED configuration is not valid, set to a valid LED configuration.
1721 s32
e1000_valid_led_default_generic(struct e1000_hw
*hw
, u16
*data
)
1725 DEBUGFUNC("e1000_valid_led_default_generic");
1727 ret_val
= hw
->nvm
.ops
.read(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1729 DEBUGOUT("NVM Read Error\n");
1733 if (*data
== ID_LED_RESERVED_0000
|| *data
== ID_LED_RESERVED_FFFF
)
1734 *data
= ID_LED_DEFAULT
;
1741 * e1000_id_led_init_generic -
1742 * @hw: pointer to the HW structure
1745 s32
e1000_id_led_init_generic(struct e1000_hw
* hw
)
1747 struct e1000_mac_info
*mac
= &hw
->mac
;
1749 const u32 ledctl_mask
= 0x000000FF;
1750 const u32 ledctl_on
= E1000_LEDCTL_MODE_LED_ON
;
1751 const u32 ledctl_off
= E1000_LEDCTL_MODE_LED_OFF
;
1753 const u16 led_mask
= 0x0F;
1755 DEBUGFUNC("e1000_id_led_init_generic");
1757 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
1761 mac
->ledctl_default
= E1000_READ_REG(hw
, E1000_LEDCTL
);
1762 mac
->ledctl_mode1
= mac
->ledctl_default
;
1763 mac
->ledctl_mode2
= mac
->ledctl_default
;
1765 for (i
= 0; i
< 4; i
++) {
1766 temp
= (data
>> (i
<< 2)) & led_mask
;
1768 case ID_LED_ON1_DEF2
:
1769 case ID_LED_ON1_ON2
:
1770 case ID_LED_ON1_OFF2
:
1771 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1772 mac
->ledctl_mode1
|= ledctl_on
<< (i
<< 3);
1774 case ID_LED_OFF1_DEF2
:
1775 case ID_LED_OFF1_ON2
:
1776 case ID_LED_OFF1_OFF2
:
1777 mac
->ledctl_mode1
&= ~(ledctl_mask
<< (i
<< 3));
1778 mac
->ledctl_mode1
|= ledctl_off
<< (i
<< 3);
1785 case ID_LED_DEF1_ON2
:
1786 case ID_LED_ON1_ON2
:
1787 case ID_LED_OFF1_ON2
:
1788 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1789 mac
->ledctl_mode2
|= ledctl_on
<< (i
<< 3);
1791 case ID_LED_DEF1_OFF2
:
1792 case ID_LED_ON1_OFF2
:
1793 case ID_LED_OFF1_OFF2
:
1794 mac
->ledctl_mode2
&= ~(ledctl_mask
<< (i
<< 3));
1795 mac
->ledctl_mode2
|= ledctl_off
<< (i
<< 3);
1808 * e1000_setup_led_generic - Configures SW controllable LED
1809 * @hw: pointer to the HW structure
1811 * This prepares the SW controllable LED for use and saves the current state
1812 * of the LED so it can be later restored.
1814 s32
e1000_setup_led_generic(struct e1000_hw
*hw
)
1817 s32 ret_val
= E1000_SUCCESS
;
1819 DEBUGFUNC("e1000_setup_led_generic");
1821 if (hw
->mac
.ops
.setup_led
!= e1000_setup_led_generic
) {
1822 ret_val
= -E1000_ERR_CONFIG
;
1826 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1827 ledctl
= E1000_READ_REG(hw
, E1000_LEDCTL
);
1828 hw
->mac
.ledctl_default
= ledctl
;
1830 ledctl
&= ~(E1000_LEDCTL_LED0_IVRT
|
1831 E1000_LEDCTL_LED0_BLINK
|
1832 E1000_LEDCTL_LED0_MODE_MASK
);
1833 ledctl
|= (E1000_LEDCTL_MODE_LED_OFF
<<
1834 E1000_LEDCTL_LED0_MODE_SHIFT
);
1835 E1000_WRITE_REG(hw
, E1000_LEDCTL
, ledctl
);
1836 } else if (hw
->phy
.media_type
== e1000_media_type_copper
) {
1837 E1000_WRITE_REG(hw
, E1000_LEDCTL
, hw
->mac
.ledctl_mode1
);
1845 * e1000_cleanup_led_generic - Set LED config to default operation
1846 * @hw: pointer to the HW structure
1848 * Remove the current LED configuration and set the LED configuration
1849 * to the default value, saved from the EEPROM.
1851 s32
e1000_cleanup_led_generic(struct e1000_hw
*hw
)
1853 s32 ret_val
= E1000_SUCCESS
;
1855 DEBUGFUNC("e1000_cleanup_led_generic");
1857 if (hw
->mac
.ops
.cleanup_led
!= e1000_cleanup_led_generic
) {
1858 ret_val
= -E1000_ERR_CONFIG
;
1862 E1000_WRITE_REG(hw
, E1000_LEDCTL
, hw
->mac
.ledctl_default
);
1869 * e1000_blink_led_generic - Blink LED
1870 * @hw: pointer to the HW structure
1872 * Blink the LEDs which are set to be on.
1874 s32
e1000_blink_led_generic(struct e1000_hw
*hw
)
1876 u32 ledctl_blink
= 0;
1879 DEBUGFUNC("e1000_blink_led_generic");
1881 if (hw
->phy
.media_type
== e1000_media_type_fiber
) {
1882 /* always blink LED0 for PCI-E fiber */
1883 ledctl_blink
= E1000_LEDCTL_LED0_BLINK
|
1884 (E1000_LEDCTL_MODE_LED_ON
<< E1000_LEDCTL_LED0_MODE_SHIFT
);
1887 * set the blink bit for each LED that's "on" (0x0E)
1890 ledctl_blink
= hw
->mac
.ledctl_mode2
;
1891 for (i
= 0; i
< 4; i
++)
1892 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1893 E1000_LEDCTL_MODE_LED_ON
)
1894 ledctl_blink
|= (E1000_LEDCTL_LED0_BLINK
<<
1898 E1000_WRITE_REG(hw
, E1000_LEDCTL
, ledctl_blink
);
1900 return E1000_SUCCESS
;
1904 * e1000_led_on_generic - Turn LED on
1905 * @hw: pointer to the HW structure
1909 s32
e1000_led_on_generic(struct e1000_hw
*hw
)
1913 DEBUGFUNC("e1000_led_on_generic");
1915 switch (hw
->phy
.media_type
) {
1916 case e1000_media_type_fiber
:
1917 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1918 ctrl
&= ~E1000_CTRL_SWDPIN0
;
1919 ctrl
|= E1000_CTRL_SWDPIO0
;
1920 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1922 case e1000_media_type_copper
:
1923 E1000_WRITE_REG(hw
, E1000_LEDCTL
, hw
->mac
.ledctl_mode2
);
1929 return E1000_SUCCESS
;
1933 * e1000_led_off_generic - Turn LED off
1934 * @hw: pointer to the HW structure
1938 s32
e1000_led_off_generic(struct e1000_hw
*hw
)
1942 DEBUGFUNC("e1000_led_off_generic");
1944 switch (hw
->phy
.media_type
) {
1945 case e1000_media_type_fiber
:
1946 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1947 ctrl
|= E1000_CTRL_SWDPIN0
;
1948 ctrl
|= E1000_CTRL_SWDPIO0
;
1949 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1951 case e1000_media_type_copper
:
1952 E1000_WRITE_REG(hw
, E1000_LEDCTL
, hw
->mac
.ledctl_mode1
);
1958 return E1000_SUCCESS
;
1962 * e1000_set_pcie_no_snoop_generic - Set PCI-express capabilities
1963 * @hw: pointer to the HW structure
1964 * @no_snoop: bitmap of snoop events
1966 * Set the PCI-express register to snoop for events enabled in 'no_snoop'.
1968 void e1000_set_pcie_no_snoop_generic(struct e1000_hw
*hw
, u32 no_snoop
)
1972 DEBUGFUNC("e1000_set_pcie_no_snoop_generic");
1974 if (hw
->bus
.type
!= e1000_bus_type_pci_express
)
1978 gcr
= E1000_READ_REG(hw
, E1000_GCR
);
1979 gcr
&= ~(PCIE_NO_SNOOP_ALL
);
1981 E1000_WRITE_REG(hw
, E1000_GCR
, gcr
);
1988 * e1000_disable_pcie_master_generic - Disables PCI-express master access
1989 * @hw: pointer to the HW structure
1991 * Returns 0 (E1000_SUCCESS) if successful, else returns -10
1992 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not caused
1993 * the master requests to be disabled.
1995 * Disables PCI-Express master access and verifies there are no pending
1998 s32
e1000_disable_pcie_master_generic(struct e1000_hw
*hw
)
2001 s32 timeout
= MASTER_DISABLE_TIMEOUT
;
2002 s32 ret_val
= E1000_SUCCESS
;
2004 DEBUGFUNC("e1000_disable_pcie_master_generic");
2006 if (hw
->bus
.type
!= e1000_bus_type_pci_express
)
2009 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
2010 ctrl
|= E1000_CTRL_GIO_MASTER_DISABLE
;
2011 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
2014 if (!(E1000_READ_REG(hw
, E1000_STATUS
) &
2015 E1000_STATUS_GIO_MASTER_ENABLE
))
2022 DEBUGOUT("Master requests are pending.\n");
2023 ret_val
= -E1000_ERR_MASTER_REQUESTS_PENDING
;
2032 * e1000_reset_adaptive_generic - Reset Adaptive Interframe Spacing
2033 * @hw: pointer to the HW structure
2035 * Reset the Adaptive Interframe Spacing throttle to default values.
2037 void e1000_reset_adaptive_generic(struct e1000_hw
*hw
)
2039 struct e1000_mac_info
*mac
= &hw
->mac
;
2041 DEBUGFUNC("e1000_reset_adaptive_generic");
2043 if (!mac
->adaptive_ifs
) {
2044 DEBUGOUT("Not in Adaptive IFS mode!\n");
2048 if (!mac
->ifs_params_forced
) {
2049 mac
->current_ifs_val
= 0;
2050 mac
->ifs_min_val
= IFS_MIN
;
2051 mac
->ifs_max_val
= IFS_MAX
;
2052 mac
->ifs_step_size
= IFS_STEP
;
2053 mac
->ifs_ratio
= IFS_RATIO
;
2056 mac
->in_ifs_mode
= FALSE
;
2057 E1000_WRITE_REG(hw
, E1000_AIT
, 0);
2063 * e1000_update_adaptive_generic - Update Adaptive Interframe Spacing
2064 * @hw: pointer to the HW structure
2066 * Update the Adaptive Interframe Spacing Throttle value based on the
2067 * time between transmitted packets and time between collisions.
2069 void e1000_update_adaptive_generic(struct e1000_hw
*hw
)
2071 struct e1000_mac_info
*mac
= &hw
->mac
;
2073 DEBUGFUNC("e1000_update_adaptive_generic");
2075 if (!mac
->adaptive_ifs
) {
2076 DEBUGOUT("Not in Adaptive IFS mode!\n");
2080 if ((mac
->collision_delta
* mac
->ifs_ratio
) > mac
->tx_packet_delta
) {
2081 if (mac
->tx_packet_delta
> MIN_NUM_XMITS
) {
2082 mac
->in_ifs_mode
= TRUE
;
2083 if (mac
->current_ifs_val
< mac
->ifs_max_val
) {
2084 if (!mac
->current_ifs_val
)
2085 mac
->current_ifs_val
= mac
->ifs_min_val
;
2087 mac
->current_ifs_val
+=
2089 E1000_WRITE_REG(hw
, E1000_AIT
, mac
->current_ifs_val
);
2093 if (mac
->in_ifs_mode
&&
2094 (mac
->tx_packet_delta
<= MIN_NUM_XMITS
)) {
2095 mac
->current_ifs_val
= 0;
2096 mac
->in_ifs_mode
= FALSE
;
2097 E1000_WRITE_REG(hw
, E1000_AIT
, 0);
2105 * e1000_validate_mdi_setting_generic - Verify MDI/MDIx settings
2106 * @hw: pointer to the HW structure
2108 * Verify that when not using auto-negotiation that MDI/MDIx is correctly
2109 * set, which is forced to MDI mode only.
2111 s32
e1000_validate_mdi_setting_generic(struct e1000_hw
*hw
)
2113 s32 ret_val
= E1000_SUCCESS
;
2115 DEBUGFUNC("e1000_validate_mdi_setting_generic");
2117 if (!hw
->mac
.autoneg
&& (hw
->phy
.mdix
== 0 || hw
->phy
.mdix
== 3)) {
2118 DEBUGOUT("Invalid MDI setting detected\n");
2120 ret_val
= -E1000_ERR_CONFIG
;
2129 * e1000_write_8bit_ctrl_reg_generic - Write a 8bit CTRL register
2130 * @hw: pointer to the HW structure
2131 * @reg: 32bit register offset such as E1000_SCTL
2132 * @offset: register offset to write to
2133 * @data: data to write at register offset
2135 * Writes an address/data control type register. There are several of these
2136 * and they all have the format address << 8 | data and bit 31 is polled for
2139 s32
e1000_write_8bit_ctrl_reg_generic(struct e1000_hw
*hw
, u32 reg
,
2140 u32 offset
, u8 data
)
2142 u32 i
, regvalue
= 0;
2143 s32 ret_val
= E1000_SUCCESS
;
2145 DEBUGFUNC("e1000_write_8bit_ctrl_reg_generic");
2147 /* Set up the address and data */
2148 regvalue
= ((u32
)data
) | (offset
<< E1000_GEN_CTL_ADDRESS_SHIFT
);
2149 E1000_WRITE_REG(hw
, reg
, regvalue
);
2151 /* Poll the ready bit to see if the MDI read completed */
2152 for (i
= 0; i
< E1000_GEN_POLL_TIMEOUT
; i
++) {
2154 regvalue
= E1000_READ_REG(hw
, reg
);
2155 if (regvalue
& E1000_GEN_CTL_READY
)
2158 if (!(regvalue
& E1000_GEN_CTL_READY
)) {
2159 DEBUGOUT1("Reg %08x did not indicate ready\n", reg
);
2160 ret_val
= -E1000_ERR_PHY
;