1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include "e1000_api.h"
30 #include "e1000_phy.h"
32 /* Cable length tables */
33 static const u16 e1000_m88_cable_length_table
[] =
34 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
35 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
36 (sizeof(e1000_m88_cable_length_table) / \
37 sizeof(e1000_m88_cable_length_table[0]))
39 static const u16 e1000_igp_2_cable_length_table
[] =
40 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
41 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
42 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
43 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
44 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
45 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
46 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
47 104, 109, 114, 118, 121, 124};
48 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
49 (sizeof(e1000_igp_2_cable_length_table) / \
50 sizeof(e1000_igp_2_cable_length_table[0]))
53 * e1000_init_phy_ops_generic - Initialize PHY function pointers
54 * @hw: pointer to the HW structure
56 * Setups up the function pointers to no-op functions
58 void e1000_init_phy_ops_generic(struct e1000_hw
*hw
)
60 struct e1000_phy_info
*phy
= &hw
->phy
;
61 DEBUGFUNC("e1000_init_phy_ops_generic");
63 /* Initialize function pointers */
64 phy
->ops
.init_params
= e1000_null_ops_generic
;
65 phy
->ops
.acquire
= e1000_null_ops_generic
;
66 phy
->ops
.check_polarity
= e1000_null_ops_generic
;
67 phy
->ops
.check_reset_block
= e1000_null_ops_generic
;
68 phy
->ops
.commit
= e1000_null_ops_generic
;
69 phy
->ops
.force_speed_duplex
= e1000_null_ops_generic
;
70 phy
->ops
.get_cfg_done
= e1000_null_ops_generic
;
71 phy
->ops
.get_cable_length
= e1000_null_ops_generic
;
72 phy
->ops
.get_info
= e1000_null_ops_generic
;
73 phy
->ops
.read_reg
= e1000_null_read_reg
;
74 phy
->ops
.release
= e1000_null_phy_generic
;
75 phy
->ops
.reset
= e1000_null_ops_generic
;
76 phy
->ops
.set_d0_lplu_state
= e1000_null_lplu_state
;
77 phy
->ops
.set_d3_lplu_state
= e1000_null_lplu_state
;
78 phy
->ops
.write_reg
= e1000_null_write_reg
;
79 phy
->ops
.power_up
= e1000_null_phy_generic
;
80 phy
->ops
.power_down
= e1000_null_phy_generic
;
84 * e1000_null_read_reg - No-op function, return 0
85 * @hw: pointer to the HW structure
87 s32
e1000_null_read_reg(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
89 DEBUGFUNC("e1000_null_read_reg");
94 * e1000_null_phy_generic - No-op function, return void
95 * @hw: pointer to the HW structure
97 void e1000_null_phy_generic(struct e1000_hw
*hw
)
99 DEBUGFUNC("e1000_null_phy_generic");
104 * e1000_null_lplu_state - No-op function, return 0
105 * @hw: pointer to the HW structure
107 s32
e1000_null_lplu_state(struct e1000_hw
*hw
, bool active
)
109 DEBUGFUNC("e1000_null_lplu_state");
110 return E1000_SUCCESS
;
114 * e1000_null_write_reg - No-op function, return 0
115 * @hw: pointer to the HW structure
117 s32
e1000_null_write_reg(struct e1000_hw
*hw
, u32 offset
, u16 data
)
119 DEBUGFUNC("e1000_null_write_reg");
120 return E1000_SUCCESS
;
124 * e1000_check_reset_block_generic - Check if PHY reset is blocked
125 * @hw: pointer to the HW structure
127 * Read the PHY management control register and check whether a PHY reset
128 * is blocked. If a reset is not blocked return E1000_SUCCESS, otherwise
129 * return E1000_BLK_PHY_RESET (12).
131 s32
e1000_check_reset_block_generic(struct e1000_hw
*hw
)
135 DEBUGFUNC("e1000_check_reset_block");
137 manc
= E1000_READ_REG(hw
, E1000_MANC
);
139 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
140 E1000_BLK_PHY_RESET
: E1000_SUCCESS
;
144 * e1000_get_phy_id - Retrieve the PHY ID and revision
145 * @hw: pointer to the HW structure
147 * Reads the PHY registers and stores the PHY ID and possibly the PHY
148 * revision in the hardware structure.
150 s32
e1000_get_phy_id(struct e1000_hw
*hw
)
152 struct e1000_phy_info
*phy
= &hw
->phy
;
153 s32 ret_val
= E1000_SUCCESS
;
156 DEBUGFUNC("e1000_get_phy_id");
158 if (!(phy
->ops
.read_reg
))
161 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID1
, &phy_id
);
165 phy
->id
= (u32
)(phy_id
<< 16);
167 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID2
, &phy_id
);
171 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
172 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
179 * e1000_phy_reset_dsp_generic - Reset PHY DSP
180 * @hw: pointer to the HW structure
182 * Reset the digital signal processor.
184 s32
e1000_phy_reset_dsp_generic(struct e1000_hw
*hw
)
186 s32 ret_val
= E1000_SUCCESS
;
188 DEBUGFUNC("e1000_phy_reset_dsp_generic");
190 if (!(hw
->phy
.ops
.write_reg
))
193 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
197 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
204 * e1000_read_phy_reg_mdic - Read MDI control register
205 * @hw: pointer to the HW structure
206 * @offset: register offset to be read
207 * @data: pointer to the read data
209 * Reads the MDI control register in the PHY at offset and stores the
210 * information read to data.
212 s32
e1000_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
214 struct e1000_phy_info
*phy
= &hw
->phy
;
216 s32 ret_val
= E1000_SUCCESS
;
218 DEBUGFUNC("e1000_read_phy_reg_mdic");
220 if (offset
> MAX_PHY_REG_ADDRESS
) {
221 DEBUGOUT1("PHY Address %d is out of range\n", offset
);
222 ret_val
= -E1000_ERR_PARAM
;
227 * Set up Op-code, Phy Address, and register offset in the MDI
228 * Control register. The MAC will take care of interfacing with the
229 * PHY to retrieve the desired data.
231 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
232 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
233 (E1000_MDIC_OP_READ
));
235 E1000_WRITE_REG(hw
, E1000_MDIC
, mdic
);
238 * Poll the ready bit to see if the MDI read completed
239 * Increasing the time out as testing showed failures with
242 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
244 mdic
= E1000_READ_REG(hw
, E1000_MDIC
);
245 if (mdic
& E1000_MDIC_READY
)
248 if (!(mdic
& E1000_MDIC_READY
)) {
249 DEBUGOUT("MDI Read did not complete\n");
250 ret_val
= -E1000_ERR_PHY
;
253 if (mdic
& E1000_MDIC_ERROR
) {
254 DEBUGOUT("MDI Error\n");
255 ret_val
= -E1000_ERR_PHY
;
265 * e1000_write_phy_reg_mdic - Write MDI control register
266 * @hw: pointer to the HW structure
267 * @offset: register offset to write to
268 * @data: data to write to register at offset
270 * Writes data to MDI control register in the PHY at offset.
272 s32
e1000_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
274 struct e1000_phy_info
*phy
= &hw
->phy
;
276 s32 ret_val
= E1000_SUCCESS
;
278 DEBUGFUNC("e1000_write_phy_reg_mdic");
280 if (offset
> MAX_PHY_REG_ADDRESS
) {
281 DEBUGOUT1("PHY Address %d is out of range\n", offset
);
282 ret_val
= -E1000_ERR_PARAM
;
287 * Set up Op-code, Phy Address, and register offset in the MDI
288 * Control register. The MAC will take care of interfacing with the
289 * PHY to retrieve the desired data.
291 mdic
= (((u32
)data
) |
292 (offset
<< E1000_MDIC_REG_SHIFT
) |
293 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
294 (E1000_MDIC_OP_WRITE
));
296 E1000_WRITE_REG(hw
, E1000_MDIC
, mdic
);
299 * Poll the ready bit to see if the MDI read completed
300 * Increasing the time out as testing showed failures with
303 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
305 mdic
= E1000_READ_REG(hw
, E1000_MDIC
);
306 if (mdic
& E1000_MDIC_READY
)
309 if (!(mdic
& E1000_MDIC_READY
)) {
310 DEBUGOUT("MDI Write did not complete\n");
311 ret_val
= -E1000_ERR_PHY
;
314 if (mdic
& E1000_MDIC_ERROR
) {
315 DEBUGOUT("MDI Error\n");
316 ret_val
= -E1000_ERR_PHY
;
325 * e1000_read_phy_reg_m88 - Read m88 PHY register
326 * @hw: pointer to the HW structure
327 * @offset: register offset to be read
328 * @data: pointer to the read data
330 * Acquires semaphore, if necessary, then reads the PHY register at offset
331 * and storing the retrieved information in data. Release any acquired
332 * semaphores before exiting.
334 s32
e1000_read_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
336 s32 ret_val
= E1000_SUCCESS
;
338 DEBUGFUNC("e1000_read_phy_reg_m88");
340 if (!(hw
->phy
.ops
.acquire
))
343 ret_val
= hw
->phy
.ops
.acquire(hw
);
347 ret_val
= e1000_read_phy_reg_mdic(hw
,
348 MAX_PHY_REG_ADDRESS
& offset
,
351 hw
->phy
.ops
.release(hw
);
358 * e1000_write_phy_reg_m88 - Write m88 PHY register
359 * @hw: pointer to the HW structure
360 * @offset: register offset to write to
361 * @data: data to write at register offset
363 * Acquires semaphore, if necessary, then writes the data to PHY register
364 * at the offset. Release any acquired semaphores before exiting.
366 s32
e1000_write_phy_reg_m88(struct e1000_hw
*hw
, u32 offset
, u16 data
)
368 s32 ret_val
= E1000_SUCCESS
;
370 DEBUGFUNC("e1000_write_phy_reg_m88");
372 if (!(hw
->phy
.ops
.acquire
))
375 ret_val
= hw
->phy
.ops
.acquire(hw
);
379 ret_val
= e1000_write_phy_reg_mdic(hw
,
380 MAX_PHY_REG_ADDRESS
& offset
,
383 hw
->phy
.ops
.release(hw
);
390 * e1000_read_phy_reg_igp - Read igp PHY register
391 * @hw: pointer to the HW structure
392 * @offset: register offset to be read
393 * @data: pointer to the read data
395 * Acquires semaphore, if necessary, then reads the PHY register at offset
396 * and storing the retrieved information in data. Release any acquired
397 * semaphores before exiting.
399 s32
e1000_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
401 s32 ret_val
= E1000_SUCCESS
;
403 DEBUGFUNC("e1000_read_phy_reg_igp");
405 if (!(hw
->phy
.ops
.acquire
))
408 ret_val
= hw
->phy
.ops
.acquire(hw
);
412 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
413 ret_val
= e1000_write_phy_reg_mdic(hw
,
414 IGP01E1000_PHY_PAGE_SELECT
,
417 hw
->phy
.ops
.release(hw
);
422 ret_val
= e1000_read_phy_reg_mdic(hw
,
423 MAX_PHY_REG_ADDRESS
& offset
,
426 hw
->phy
.ops
.release(hw
);
433 * e1000_write_phy_reg_igp - Write igp PHY register
434 * @hw: pointer to the HW structure
435 * @offset: register offset to write to
436 * @data: data to write at register offset
438 * Acquires semaphore, if necessary, then writes the data to PHY register
439 * at the offset. Release any acquired semaphores before exiting.
441 s32
e1000_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
443 s32 ret_val
= E1000_SUCCESS
;
445 DEBUGFUNC("e1000_write_phy_reg_igp");
447 if (!(hw
->phy
.ops
.acquire
))
450 ret_val
= hw
->phy
.ops
.acquire(hw
);
454 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
455 ret_val
= e1000_write_phy_reg_mdic(hw
,
456 IGP01E1000_PHY_PAGE_SELECT
,
459 hw
->phy
.ops
.release(hw
);
464 ret_val
= e1000_write_phy_reg_mdic(hw
,
465 MAX_PHY_REG_ADDRESS
& offset
,
468 hw
->phy
.ops
.release(hw
);
475 * e1000_read_kmrn_reg_generic - Read kumeran register
476 * @hw: pointer to the HW structure
477 * @offset: register offset to be read
478 * @data: pointer to the read data
480 * Acquires semaphore, if necessary. Then reads the PHY register at offset
481 * using the kumeran interface. The information retrieved is stored in data.
482 * Release any acquired semaphores before exiting.
484 s32
e1000_read_kmrn_reg_generic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
487 s32 ret_val
= E1000_SUCCESS
;
489 DEBUGFUNC("e1000_read_kmrn_reg_generic");
491 if (!(hw
->phy
.ops
.acquire
))
494 ret_val
= hw
->phy
.ops
.acquire(hw
);
498 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
499 E1000_KMRNCTRLSTA_OFFSET
) | E1000_KMRNCTRLSTA_REN
;
500 E1000_WRITE_REG(hw
, E1000_KMRNCTRLSTA
, kmrnctrlsta
);
504 kmrnctrlsta
= E1000_READ_REG(hw
, E1000_KMRNCTRLSTA
);
505 *data
= (u16
)kmrnctrlsta
;
507 hw
->phy
.ops
.release(hw
);
514 * e1000_write_kmrn_reg_generic - Write kumeran register
515 * @hw: pointer to the HW structure
516 * @offset: register offset to write to
517 * @data: data to write at register offset
519 * Acquires semaphore, if necessary. Then write the data to PHY register
520 * at the offset using the kumeran interface. Release any acquired semaphores
523 s32
e1000_write_kmrn_reg_generic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
526 s32 ret_val
= E1000_SUCCESS
;
528 DEBUGFUNC("e1000_write_kmrn_reg_generic");
530 if (!(hw
->phy
.ops
.acquire
))
533 ret_val
= hw
->phy
.ops
.acquire(hw
);
537 kmrnctrlsta
= ((offset
<< E1000_KMRNCTRLSTA_OFFSET_SHIFT
) &
538 E1000_KMRNCTRLSTA_OFFSET
) | data
;
539 E1000_WRITE_REG(hw
, E1000_KMRNCTRLSTA
, kmrnctrlsta
);
542 hw
->phy
.ops
.release(hw
);
549 * e1000_copper_link_setup_m88 - Setup m88 PHY's for copper link
550 * @hw: pointer to the HW structure
552 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
553 * and downshift values are set also.
555 s32
e1000_copper_link_setup_m88(struct e1000_hw
*hw
)
557 struct e1000_phy_info
*phy
= &hw
->phy
;
561 DEBUGFUNC("e1000_copper_link_setup_m88");
563 if (phy
->reset_disable
) {
564 ret_val
= E1000_SUCCESS
;
568 /* Enable CRS on TX. This must be set for half-duplex operation. */
569 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
573 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
577 * MDI/MDI-X = 0 (default)
578 * 0 - Auto for all speeds
581 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
583 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
587 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
590 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
593 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
597 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
603 * disable_polarity_correction = 0 (default)
604 * Automatic Correction for Reversed Cable Polarity
608 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
609 if (phy
->disable_polarity_correction
== 1)
610 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
612 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
616 if (phy
->revision
< E1000_REVISION_4
) {
618 * Force TX_CLK in the Extended PHY Specific Control Register
621 ret_val
= phy
->ops
.read_reg(hw
,
622 M88E1000_EXT_PHY_SPEC_CTRL
,
627 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
629 if ((phy
->revision
== E1000_REVISION_2
) &&
630 (phy
->id
== M88E1111_I_PHY_ID
)) {
631 /* 82573L PHY - set the downshift counter to 5x. */
632 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
633 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
635 /* Configure Master and Slave downshift values */
636 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
637 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
638 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
639 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
641 ret_val
= phy
->ops
.write_reg(hw
,
642 M88E1000_EXT_PHY_SPEC_CTRL
,
648 /* Commit the changes. */
649 ret_val
= phy
->ops
.commit(hw
);
651 DEBUGOUT("Error committing the PHY changes\n");
660 * e1000_copper_link_setup_igp - Setup igp PHY's for copper link
661 * @hw: pointer to the HW structure
663 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
666 s32
e1000_copper_link_setup_igp(struct e1000_hw
*hw
)
668 struct e1000_phy_info
*phy
= &hw
->phy
;
672 DEBUGFUNC("e1000_copper_link_setup_igp");
674 if (phy
->reset_disable
) {
675 ret_val
= E1000_SUCCESS
;
679 ret_val
= e1000_phy_hw_reset(hw
);
681 DEBUGOUT("Error resetting the PHY.\n");
686 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
687 * timeout issues when LFS is enabled.
692 * The NVM settings will configure LPLU in D3 for
695 if (phy
->type
== e1000_phy_igp
) {
696 /* disable lplu d3 during driver init */
697 ret_val
= e1000_set_d3_lplu_state(hw
, FALSE
);
699 DEBUGOUT("Error Disabling LPLU D3\n");
704 /* disable lplu d0 during driver init */
705 ret_val
= e1000_set_d0_lplu_state(hw
, FALSE
);
707 DEBUGOUT("Error Disabling LPLU D0\n");
710 /* Configure mdi-mdix settings */
711 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
715 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
719 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
722 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
726 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
729 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
733 /* set auto-master slave resolution settings */
734 if (hw
->mac
.autoneg
) {
736 * when autonegotiation advertisement is only 1000Mbps then we
737 * should disable SmartSpeed and enable Auto MasterSlave
738 * resolution as hardware default.
740 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
741 /* Disable SmartSpeed */
742 ret_val
= phy
->ops
.read_reg(hw
,
743 IGP01E1000_PHY_PORT_CONFIG
,
748 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
749 ret_val
= phy
->ops
.write_reg(hw
,
750 IGP01E1000_PHY_PORT_CONFIG
,
755 /* Set auto Master/Slave resolution process */
756 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
760 data
&= ~CR_1000T_MS_ENABLE
;
761 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
766 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
770 /* load defaults for future use */
771 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
772 ((data
& CR_1000T_MS_VALUE
) ?
773 e1000_ms_force_master
:
774 e1000_ms_force_slave
) :
777 switch (phy
->ms_type
) {
778 case e1000_ms_force_master
:
779 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
781 case e1000_ms_force_slave
:
782 data
|= CR_1000T_MS_ENABLE
;
783 data
&= ~(CR_1000T_MS_VALUE
);
786 data
&= ~CR_1000T_MS_ENABLE
;
790 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
800 * e1000_copper_link_autoneg - Setup/Enable autoneg for copper link
801 * @hw: pointer to the HW structure
803 * Performs initial bounds checking on autoneg advertisement parameter, then
804 * configure to advertise the full capability. Setup the PHY to autoneg
805 * and restart the negotiation process between the link partner. If
806 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
808 s32
e1000_copper_link_autoneg(struct e1000_hw
*hw
)
810 struct e1000_phy_info
*phy
= &hw
->phy
;
814 DEBUGFUNC("e1000_copper_link_autoneg");
817 * Perform some bounds checking on the autoneg advertisement
820 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
823 * If autoneg_advertised is zero, we assume it was not defaulted
824 * by the calling code so we set to advertise full capability.
826 if (phy
->autoneg_advertised
== 0)
827 phy
->autoneg_advertised
= phy
->autoneg_mask
;
829 DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
830 ret_val
= e1000_phy_setup_autoneg(hw
);
832 DEBUGOUT("Error Setting up Auto-Negotiation\n");
835 DEBUGOUT("Restarting Auto-Neg\n");
838 * Restart auto-negotiation by setting the Auto Neg Enable bit and
839 * the Auto Neg Restart bit in the PHY control register.
841 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
845 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
846 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
851 * Does the user want to wait for Auto-Neg to complete here, or
852 * check at a later time (for example, callback routine).
854 if (phy
->autoneg_wait_to_complete
) {
855 ret_val
= e1000_wait_autoneg(hw
);
857 DEBUGOUT("Error while waiting for "
858 "autoneg to complete\n");
863 hw
->mac
.get_link_status
= TRUE
;
870 * e1000_phy_setup_autoneg - Configure PHY for auto-negotiation
871 * @hw: pointer to the HW structure
873 * Reads the MII auto-neg advertisement register and/or the 1000T control
874 * register and if the PHY is already setup for auto-negotiation, then
875 * return successful. Otherwise, setup advertisement and flow control to
876 * the appropriate values for the wanted auto-negotiation.
878 s32
e1000_phy_setup_autoneg(struct e1000_hw
*hw
)
880 struct e1000_phy_info
*phy
= &hw
->phy
;
882 u16 mii_autoneg_adv_reg
;
883 u16 mii_1000t_ctrl_reg
= 0;
885 DEBUGFUNC("e1000_phy_setup_autoneg");
887 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
889 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
890 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
894 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
895 /* Read the MII 1000Base-T Control Register (Address 9). */
896 ret_val
= phy
->ops
.read_reg(hw
,
898 &mii_1000t_ctrl_reg
);
904 * Need to parse both autoneg_advertised and fc and set up
905 * the appropriate PHY registers. First we will parse for
906 * autoneg_advertised software override. Since we can advertise
907 * a plethora of combinations, we need to check each bit
912 * First we clear all the 10/100 mb speed bits in the Auto-Neg
913 * Advertisement Register (Address 4) and the 1000 mb speed bits in
914 * the 1000Base-T Control Register (Address 9).
916 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
917 NWAY_AR_100TX_HD_CAPS
|
918 NWAY_AR_10T_FD_CAPS
|
919 NWAY_AR_10T_HD_CAPS
);
920 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
922 DEBUGOUT1("autoneg_advertised %x\n", phy
->autoneg_advertised
);
924 /* Do we want to advertise 10 Mb Half Duplex? */
925 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
926 DEBUGOUT("Advertise 10mb Half duplex\n");
927 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
930 /* Do we want to advertise 10 Mb Full Duplex? */
931 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
932 DEBUGOUT("Advertise 10mb Full duplex\n");
933 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
936 /* Do we want to advertise 100 Mb Half Duplex? */
937 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
938 DEBUGOUT("Advertise 100mb Half duplex\n");
939 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
942 /* Do we want to advertise 100 Mb Full Duplex? */
943 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
944 DEBUGOUT("Advertise 100mb Full duplex\n");
945 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
948 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
949 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
) {
950 DEBUGOUT("Advertise 1000mb Half duplex request denied!\n");
953 /* Do we want to advertise 1000 Mb Full Duplex? */
954 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
955 DEBUGOUT("Advertise 1000mb Full duplex\n");
956 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
960 * Check for a software override of the flow control settings, and
961 * setup the PHY advertisement registers accordingly. If
962 * auto-negotiation is enabled, then software will have to set the
963 * "PAUSE" bits to the correct value in the Auto-Negotiation
964 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
967 * The possible values of the "fc" parameter are:
968 * 0: Flow control is completely disabled
969 * 1: Rx flow control is enabled (we can receive pause frames
970 * but not send pause frames).
971 * 2: Tx flow control is enabled (we can send pause frames
972 * but we do not support receiving pause frames).
973 * 3: Both Rx and Tx flow control (symmetric) are enabled.
974 * other: No software override. The flow control configuration
975 * in the EEPROM is used.
977 switch (hw
->fc
.type
) {
980 * Flow control (Rx & Tx) is completely disabled by a
981 * software over-ride.
983 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
985 case e1000_fc_rx_pause
:
987 * Rx Flow control is enabled, and Tx Flow control is
988 * disabled, by a software over-ride.
990 * Since there really isn't a way to advertise that we are
991 * capable of Rx Pause ONLY, we will advertise that we
992 * support both symmetric and asymmetric Rx PAUSE. Later
993 * (in e1000_config_fc_after_link_up) we will disable the
994 * hw's ability to send PAUSE frames.
996 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
998 case e1000_fc_tx_pause
:
1000 * Tx Flow control is enabled, and Rx Flow control is
1001 * disabled, by a software over-ride.
1003 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
1004 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
1008 * Flow control (both Rx and Tx) is enabled by a software
1011 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1014 DEBUGOUT("Flow control param set incorrectly\n");
1015 ret_val
= -E1000_ERR_CONFIG
;
1019 ret_val
= phy
->ops
.write_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1023 DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1025 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
1026 ret_val
= phy
->ops
.write_reg(hw
,
1028 mii_1000t_ctrl_reg
);
1038 * e1000_setup_copper_link_generic - Configure copper link settings
1039 * @hw: pointer to the HW structure
1041 * Calls the appropriate function to configure the link for auto-neg or forced
1042 * speed and duplex. Then we check for link, once link is established calls
1043 * to configure collision distance and flow control are called. If link is
1044 * not established, we return -E1000_ERR_PHY (-2).
1046 s32
e1000_setup_copper_link_generic(struct e1000_hw
*hw
)
1051 DEBUGFUNC("e1000_setup_copper_link_generic");
1053 if (hw
->mac
.autoneg
) {
1055 * Setup autoneg and flow control advertisement and perform
1058 ret_val
= e1000_copper_link_autoneg(hw
);
1063 * PHY will be set to 10H, 10F, 100H or 100F
1064 * depending on user settings.
1066 DEBUGOUT("Forcing Speed and Duplex\n");
1067 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1069 DEBUGOUT("Error Forcing Speed and Duplex\n");
1075 * Check link status. Wait up to 100 microseconds for link to become
1078 ret_val
= e1000_phy_has_link_generic(hw
,
1079 COPPER_LINK_UP_LIMIT
,
1086 DEBUGOUT("Valid link established!!!\n");
1087 e1000_config_collision_dist_generic(hw
);
1088 ret_val
= e1000_config_fc_after_link_up_generic(hw
);
1090 DEBUGOUT("Unable to establish link!!!\n");
1098 * e1000_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1099 * @hw: pointer to the HW structure
1101 * Calls the PHY setup function to force speed and duplex. Clears the
1102 * auto-crossover to force MDI manually. Waits for link and returns
1103 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1105 s32
e1000_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1107 struct e1000_phy_info
*phy
= &hw
->phy
;
1112 DEBUGFUNC("e1000_phy_force_speed_duplex_igp");
1114 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1118 e1000_phy_force_speed_duplex_setup(hw
, &phy_data
);
1120 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1125 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1126 * forced whenever speed and duplex are forced.
1128 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1132 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1133 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1135 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1139 DEBUGOUT1("IGP PSCR: %X\n", phy_data
);
1143 if (phy
->autoneg_wait_to_complete
) {
1144 DEBUGOUT("Waiting for forced speed/duplex link on IGP phy.\n");
1146 ret_val
= e1000_phy_has_link_generic(hw
,
1154 DEBUGOUT("Link taking longer than expected.\n");
1158 ret_val
= e1000_phy_has_link_generic(hw
,
1171 * e1000_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1172 * @hw: pointer to the HW structure
1174 * Calls the PHY setup function to force speed and duplex. Clears the
1175 * auto-crossover to force MDI manually. Resets the PHY to commit the
1176 * changes. If time expires while waiting for link up, we reset the DSP.
1177 * After reset, TX_CLK and CRS on Tx must be set. Return successful upon
1178 * successful completion, else return corresponding error code.
1180 s32
e1000_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1182 struct e1000_phy_info
*phy
= &hw
->phy
;
1187 DEBUGFUNC("e1000_phy_force_speed_duplex_m88");
1190 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1191 * forced whenever speed and duplex are forced.
1193 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1197 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1198 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1202 DEBUGOUT1("M88E1000 PSCR: %X\n", phy_data
);
1204 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1208 e1000_phy_force_speed_duplex_setup(hw
, &phy_data
);
1210 /* Reset the phy to commit changes. */
1211 phy_data
|= MII_CR_RESET
;
1213 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1219 if (phy
->autoneg_wait_to_complete
) {
1220 DEBUGOUT("Waiting for forced speed/duplex link on M88 phy.\n");
1222 ret_val
= e1000_phy_has_link_generic(hw
,
1231 * We didn't get link.
1232 * Reset the DSP and cross our fingers.
1234 ret_val
= phy
->ops
.write_reg(hw
,
1235 M88E1000_PHY_PAGE_SELECT
,
1239 ret_val
= e1000_phy_reset_dsp_generic(hw
);
1245 ret_val
= e1000_phy_has_link_generic(hw
,
1253 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1258 * Resetting the phy means we need to re-force TX_CLK in the
1259 * Extended PHY Specific Control Register to 25MHz clock from
1260 * the reset value of 2.5MHz.
1262 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1263 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1268 * In addition, we must re-enable CRS on Tx for both half and full
1271 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1275 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1276 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1283 * e1000_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1284 * @hw: pointer to the HW structure
1285 * @phy_ctrl: pointer to current value of PHY_CONTROL
1287 * Forces speed and duplex on the PHY by doing the following: disable flow
1288 * control, force speed/duplex on the MAC, disable auto speed detection,
1289 * disable auto-negotiation, configure duplex, configure speed, configure
1290 * the collision distance, write configuration to CTRL register. The
1291 * caller must write to the PHY_CONTROL register for these settings to
1294 void e1000_phy_force_speed_duplex_setup(struct e1000_hw
*hw
, u16
*phy_ctrl
)
1296 struct e1000_mac_info
*mac
= &hw
->mac
;
1299 DEBUGFUNC("e1000_phy_force_speed_duplex_setup");
1301 /* Turn off flow control when forcing speed/duplex */
1302 hw
->fc
.type
= e1000_fc_none
;
1304 /* Force speed/duplex on the mac */
1305 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1306 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1307 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1309 /* Disable Auto Speed Detection */
1310 ctrl
&= ~E1000_CTRL_ASDE
;
1312 /* Disable autoneg on the phy */
1313 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1315 /* Forcing Full or Half Duplex? */
1316 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1317 ctrl
&= ~E1000_CTRL_FD
;
1318 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1319 DEBUGOUT("Half Duplex\n");
1321 ctrl
|= E1000_CTRL_FD
;
1322 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1323 DEBUGOUT("Full Duplex\n");
1326 /* Forcing 10mb or 100mb? */
1327 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1328 ctrl
|= E1000_CTRL_SPD_100
;
1329 *phy_ctrl
|= MII_CR_SPEED_100
;
1330 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1331 DEBUGOUT("Forcing 100mb\n");
1333 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1334 *phy_ctrl
|= MII_CR_SPEED_10
;
1335 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1336 DEBUGOUT("Forcing 10mb\n");
1339 e1000_config_collision_dist_generic(hw
);
1341 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1345 * e1000_set_d3_lplu_state_generic - Sets low power link up state for D3
1346 * @hw: pointer to the HW structure
1347 * @active: boolean used to enable/disable lplu
1349 * Success returns 0, Failure returns 1
1351 * The low power link up (lplu) state is set to the power management level D3
1352 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1353 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1354 * is used during Dx states where the power conservation is most important.
1355 * During driver activity, SmartSpeed should be enabled so performance is
1358 s32
e1000_set_d3_lplu_state_generic(struct e1000_hw
*hw
, bool active
)
1360 struct e1000_phy_info
*phy
= &hw
->phy
;
1361 s32 ret_val
= E1000_SUCCESS
;
1364 DEBUGFUNC("e1000_set_d3_lplu_state_generic");
1366 if (!(hw
->phy
.ops
.read_reg
))
1369 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1374 data
&= ~IGP02E1000_PM_D3_LPLU
;
1375 ret_val
= phy
->ops
.write_reg(hw
,
1376 IGP02E1000_PHY_POWER_MGMT
,
1381 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1382 * during Dx states where the power conservation is most
1383 * important. During driver activity we should enable
1384 * SmartSpeed, so performance is maintained.
1386 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1387 ret_val
= phy
->ops
.read_reg(hw
,
1388 IGP01E1000_PHY_PORT_CONFIG
,
1393 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1394 ret_val
= phy
->ops
.write_reg(hw
,
1395 IGP01E1000_PHY_PORT_CONFIG
,
1399 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1400 ret_val
= phy
->ops
.read_reg(hw
,
1401 IGP01E1000_PHY_PORT_CONFIG
,
1406 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1407 ret_val
= phy
->ops
.write_reg(hw
,
1408 IGP01E1000_PHY_PORT_CONFIG
,
1413 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1414 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1415 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1416 data
|= IGP02E1000_PM_D3_LPLU
;
1417 ret_val
= phy
->ops
.write_reg(hw
,
1418 IGP02E1000_PHY_POWER_MGMT
,
1423 /* When LPLU is enabled, we should disable SmartSpeed */
1424 ret_val
= phy
->ops
.read_reg(hw
,
1425 IGP01E1000_PHY_PORT_CONFIG
,
1430 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1431 ret_val
= phy
->ops
.write_reg(hw
,
1432 IGP01E1000_PHY_PORT_CONFIG
,
1441 * e1000_check_downshift_generic - Checks whether a downshift in speed occurred
1442 * @hw: pointer to the HW structure
1444 * Success returns 0, Failure returns 1
1446 * A downshift is detected by querying the PHY link health.
1448 s32
e1000_check_downshift_generic(struct e1000_hw
*hw
)
1450 struct e1000_phy_info
*phy
= &hw
->phy
;
1452 u16 phy_data
, offset
, mask
;
1454 DEBUGFUNC("e1000_check_downshift_generic");
1456 switch (phy
->type
) {
1458 case e1000_phy_gg82563
:
1459 offset
= M88E1000_PHY_SPEC_STATUS
;
1460 mask
= M88E1000_PSSR_DOWNSHIFT
;
1462 case e1000_phy_igp_2
:
1464 case e1000_phy_igp_3
:
1465 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1466 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1469 /* speed downshift not supported */
1470 phy
->speed_downgraded
= FALSE
;
1471 ret_val
= E1000_SUCCESS
;
1475 ret_val
= phy
->ops
.read_reg(hw
, offset
, &phy_data
);
1478 phy
->speed_downgraded
= (phy_data
& mask
) ? TRUE
: FALSE
;
1485 * e1000_check_polarity_m88 - Checks the polarity.
1486 * @hw: pointer to the HW structure
1488 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1490 * Polarity is determined based on the PHY specific status register.
1492 s32
e1000_check_polarity_m88(struct e1000_hw
*hw
)
1494 struct e1000_phy_info
*phy
= &hw
->phy
;
1498 DEBUGFUNC("e1000_check_polarity_m88");
1500 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1503 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1504 ? e1000_rev_polarity_reversed
1505 : e1000_rev_polarity_normal
;
1511 * e1000_check_polarity_igp - Checks the polarity.
1512 * @hw: pointer to the HW structure
1514 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1516 * Polarity is determined based on the PHY port status register, and the
1517 * current speed (since there is no polarity at 100Mbps).
1519 s32
e1000_check_polarity_igp(struct e1000_hw
*hw
)
1521 struct e1000_phy_info
*phy
= &hw
->phy
;
1523 u16 data
, offset
, mask
;
1525 DEBUGFUNC("e1000_check_polarity_igp");
1528 * Polarity is determined based on the speed of
1531 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1535 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1536 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1537 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1538 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1541 * This really only applies to 10Mbps since
1542 * there is no polarity for 100Mbps (always 0).
1544 offset
= IGP01E1000_PHY_PORT_STATUS
;
1545 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1548 ret_val
= phy
->ops
.read_reg(hw
, offset
, &data
);
1551 phy
->cable_polarity
= (data
& mask
)
1552 ? e1000_rev_polarity_reversed
1553 : e1000_rev_polarity_normal
;
1560 * e1000_wait_autoneg_generic - Wait for auto-neg completion
1561 * @hw: pointer to the HW structure
1563 * Waits for auto-negotiation to complete or for the auto-negotiation time
1564 * limit to expire, which ever happens first.
1566 s32
e1000_wait_autoneg_generic(struct e1000_hw
*hw
)
1568 s32 ret_val
= E1000_SUCCESS
;
1571 DEBUGFUNC("e1000_wait_autoneg_generic");
1573 if (!(hw
->phy
.ops
.read_reg
))
1574 return E1000_SUCCESS
;
1576 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1577 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1578 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1581 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1584 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1590 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1597 * e1000_phy_has_link_generic - Polls PHY for link
1598 * @hw: pointer to the HW structure
1599 * @iterations: number of times to poll for link
1600 * @usec_interval: delay between polling attempts
1601 * @success: pointer to whether polling was successful or not
1603 * Polls the PHY status register for link, 'iterations' number of times.
1605 s32
e1000_phy_has_link_generic(struct e1000_hw
*hw
, u32 iterations
,
1606 u32 usec_interval
, bool *success
)
1608 s32 ret_val
= E1000_SUCCESS
;
1611 DEBUGFUNC("e1000_phy_has_link_generic");
1613 if (!(hw
->phy
.ops
.read_reg
))
1614 return E1000_SUCCESS
;
1616 for (i
= 0; i
< iterations
; i
++) {
1618 * Some PHYs require the PHY_STATUS register to be read
1619 * twice due to the link bit being sticky. No harm doing
1620 * it across the board.
1622 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1625 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1628 if (phy_status
& MII_SR_LINK_STATUS
)
1630 if (usec_interval
>= 1000)
1631 msec_delay_irq(usec_interval
/1000);
1633 usec_delay(usec_interval
);
1636 *success
= (i
< iterations
) ? TRUE
: FALSE
;
1642 * e1000_get_cable_length_m88 - Determine cable length for m88 PHY
1643 * @hw: pointer to the HW structure
1645 * Reads the PHY specific status register to retrieve the cable length
1646 * information. The cable length is determined by averaging the minimum and
1647 * maximum values to get the "average" cable length. The m88 PHY has four
1648 * possible cable length values, which are:
1649 * Register Value Cable Length
1653 * 3 110 - 140 meters
1656 s32
e1000_get_cable_length_m88(struct e1000_hw
*hw
)
1658 struct e1000_phy_info
*phy
= &hw
->phy
;
1660 u16 phy_data
, index
;
1662 DEBUGFUNC("e1000_get_cable_length_m88");
1664 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1668 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1669 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1670 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1671 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+1];
1673 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1680 * e1000_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1681 * @hw: pointer to the HW structure
1683 * The automatic gain control (agc) normalizes the amplitude of the
1684 * received signal, adjusting for the attenuation produced by the
1685 * cable. By reading the AGC registers, which represent the
1686 * combination of coarse and fine gain value, the value can be put
1687 * into a lookup table to obtain the approximate cable length
1690 s32
e1000_get_cable_length_igp_2(struct e1000_hw
*hw
)
1692 struct e1000_phy_info
*phy
= &hw
->phy
;
1693 s32 ret_val
= E1000_SUCCESS
;
1694 u16 phy_data
, i
, agc_value
= 0;
1695 u16 cur_agc_index
, max_agc_index
= 0;
1696 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1697 u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] =
1698 {IGP02E1000_PHY_AGC_A
,
1699 IGP02E1000_PHY_AGC_B
,
1700 IGP02E1000_PHY_AGC_C
,
1701 IGP02E1000_PHY_AGC_D
};
1703 DEBUGFUNC("e1000_get_cable_length_igp_2");
1705 /* Read the AGC registers for all channels */
1706 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1707 ret_val
= phy
->ops
.read_reg(hw
, agc_reg_array
[i
], &phy_data
);
1712 * Getting bits 15:9, which represent the combination of
1713 * coarse and fine gain values. The result is a number
1714 * that can be put into the lookup table to obtain the
1715 * approximate cable length.
1717 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1718 IGP02E1000_AGC_LENGTH_MASK
;
1720 /* Array index bound check. */
1721 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1722 (cur_agc_index
== 0)) {
1723 ret_val
= -E1000_ERR_PHY
;
1727 /* Remove min & max AGC values from calculation. */
1728 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1729 e1000_igp_2_cable_length_table
[cur_agc_index
])
1730 min_agc_index
= cur_agc_index
;
1731 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1732 e1000_igp_2_cable_length_table
[cur_agc_index
])
1733 max_agc_index
= cur_agc_index
;
1735 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1738 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1739 e1000_igp_2_cable_length_table
[max_agc_index
]);
1740 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1742 /* Calculate cable length with the error range of +/- 10 meters. */
1743 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1744 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1745 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1747 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1754 * e1000_get_phy_info_m88 - Retrieve PHY information
1755 * @hw: pointer to the HW structure
1757 * Valid for only copper links. Read the PHY status register (sticky read)
1758 * to verify that link is up. Read the PHY special control register to
1759 * determine the polarity and 10base-T extended distance. Read the PHY
1760 * special status register to determine MDI/MDIx and current speed. If
1761 * speed is 1000, then determine cable length, local and remote receiver.
1763 s32
e1000_get_phy_info_m88(struct e1000_hw
*hw
)
1765 struct e1000_phy_info
*phy
= &hw
->phy
;
1770 DEBUGFUNC("e1000_get_phy_info_m88");
1772 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
1773 DEBUGOUT("Phy info is only valid for copper media\n");
1774 ret_val
= -E1000_ERR_CONFIG
;
1778 ret_val
= e1000_phy_has_link_generic(hw
, 1, 0, &link
);
1783 DEBUGOUT("Phy info is only valid if link is up\n");
1784 ret_val
= -E1000_ERR_CONFIG
;
1788 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1792 phy
->polarity_correction
= (phy_data
& M88E1000_PSCR_POLARITY_REVERSAL
)
1796 ret_val
= e1000_check_polarity_m88(hw
);
1800 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1804 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
) ? TRUE
: FALSE
;
1806 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1807 ret_val
= e1000_get_cable_length(hw
);
1811 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
1815 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1816 ? e1000_1000t_rx_status_ok
1817 : e1000_1000t_rx_status_not_ok
;
1819 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1820 ? e1000_1000t_rx_status_ok
1821 : e1000_1000t_rx_status_not_ok
;
1823 /* Set values to "undefined" */
1824 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1825 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1826 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1834 * e1000_get_phy_info_igp - Retrieve igp PHY information
1835 * @hw: pointer to the HW structure
1837 * Read PHY status to determine if link is up. If link is up, then
1838 * set/determine 10base-T extended distance and polarity correction. Read
1839 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1840 * determine on the cable length, local and remote receiver.
1842 s32
e1000_get_phy_info_igp(struct e1000_hw
*hw
)
1844 struct e1000_phy_info
*phy
= &hw
->phy
;
1849 DEBUGFUNC("e1000_get_phy_info_igp");
1851 ret_val
= e1000_phy_has_link_generic(hw
, 1, 0, &link
);
1856 DEBUGOUT("Phy info is only valid if link is up\n");
1857 ret_val
= -E1000_ERR_CONFIG
;
1861 phy
->polarity_correction
= TRUE
;
1863 ret_val
= e1000_check_polarity_igp(hw
);
1867 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1871 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
) ? TRUE
: FALSE
;
1873 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1874 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1875 ret_val
= e1000_get_cable_length(hw
);
1879 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
1883 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
1884 ? e1000_1000t_rx_status_ok
1885 : e1000_1000t_rx_status_not_ok
;
1887 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
1888 ? e1000_1000t_rx_status_ok
1889 : e1000_1000t_rx_status_not_ok
;
1891 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1892 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1893 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1901 * e1000_phy_sw_reset_generic - PHY software reset
1902 * @hw: pointer to the HW structure
1904 * Does a software reset of the PHY by reading the PHY control register and
1905 * setting/write the control register reset bit to the PHY.
1907 s32
e1000_phy_sw_reset_generic(struct e1000_hw
*hw
)
1909 s32 ret_val
= E1000_SUCCESS
;
1912 DEBUGFUNC("e1000_phy_sw_reset_generic");
1914 if (!(hw
->phy
.ops
.read_reg
))
1917 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
1921 phy_ctrl
|= MII_CR_RESET
;
1922 ret_val
= hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
1933 * e1000_phy_hw_reset_generic - PHY hardware reset
1934 * @hw: pointer to the HW structure
1936 * Verify the reset block is not blocking us from resetting. Acquire
1937 * semaphore (if necessary) and read/set/write the device control reset
1938 * bit in the PHY. Wait the appropriate delay time for the device to
1939 * reset and release the semaphore (if necessary).
1941 s32
e1000_phy_hw_reset_generic(struct e1000_hw
*hw
)
1943 struct e1000_phy_info
*phy
= &hw
->phy
;
1944 s32 ret_val
= E1000_SUCCESS
;
1947 DEBUGFUNC("e1000_phy_hw_reset_generic");
1949 ret_val
= phy
->ops
.check_reset_block(hw
);
1951 ret_val
= E1000_SUCCESS
;
1955 ret_val
= phy
->ops
.acquire(hw
);
1959 ctrl
= E1000_READ_REG(hw
, E1000_CTRL
);
1960 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
1961 E1000_WRITE_FLUSH(hw
);
1963 usec_delay(phy
->reset_delay_us
);
1965 E1000_WRITE_REG(hw
, E1000_CTRL
, ctrl
);
1966 E1000_WRITE_FLUSH(hw
);
1970 phy
->ops
.release(hw
);
1972 ret_val
= phy
->ops
.get_cfg_done(hw
);
1979 * e1000_get_cfg_done_generic - Generic configuration done
1980 * @hw: pointer to the HW structure
1982 * Generic function to wait 10 milli-seconds for configuration to complete
1983 * and return success.
1985 s32
e1000_get_cfg_done_generic(struct e1000_hw
*hw
)
1987 DEBUGFUNC("e1000_get_cfg_done_generic");
1991 return E1000_SUCCESS
;
1995 * e1000_phy_init_script_igp3 - Inits the IGP3 PHY
1996 * @hw: pointer to the HW structure
1998 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2000 s32
e1000_phy_init_script_igp3(struct e1000_hw
*hw
)
2002 DEBUGOUT("Running IGP 3 PHY init script\n");
2004 /* PHY init IGP 3 */
2005 /* Enable rise/fall, 10-mode work in class-A */
2006 hw
->phy
.ops
.write_reg(hw
, 0x2F5B, 0x9018);
2007 /* Remove all caps from Replica path filter */
2008 hw
->phy
.ops
.write_reg(hw
, 0x2F52, 0x0000);
2009 /* Bias trimming for ADC, AFE and Driver (Default) */
2010 hw
->phy
.ops
.write_reg(hw
, 0x2FB1, 0x8B24);
2011 /* Increase Hybrid poly bias */
2012 hw
->phy
.ops
.write_reg(hw
, 0x2FB2, 0xF8F0);
2013 /* Add 4% to Tx amplitude in Gig mode */
2014 hw
->phy
.ops
.write_reg(hw
, 0x2010, 0x10B0);
2015 /* Disable trimming (TTT) */
2016 hw
->phy
.ops
.write_reg(hw
, 0x2011, 0x0000);
2017 /* Poly DC correction to 94.6% + 2% for all channels */
2018 hw
->phy
.ops
.write_reg(hw
, 0x20DD, 0x249A);
2019 /* ABS DC correction to 95.9% */
2020 hw
->phy
.ops
.write_reg(hw
, 0x20DE, 0x00D3);
2021 /* BG temp curve trim */
2022 hw
->phy
.ops
.write_reg(hw
, 0x28B4, 0x04CE);
2023 /* Increasing ADC OPAMP stage 1 currents to max */
2024 hw
->phy
.ops
.write_reg(hw
, 0x2F70, 0x29E4);
2025 /* Force 1000 ( required for enabling PHY regs configuration) */
2026 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x0140);
2027 /* Set upd_freq to 6 */
2028 hw
->phy
.ops
.write_reg(hw
, 0x1F30, 0x1606);
2030 hw
->phy
.ops
.write_reg(hw
, 0x1F31, 0xB814);
2031 /* Disable adaptive fixed FFE (Default) */
2032 hw
->phy
.ops
.write_reg(hw
, 0x1F35, 0x002A);
2033 /* Enable FFE hysteresis */
2034 hw
->phy
.ops
.write_reg(hw
, 0x1F3E, 0x0067);
2035 /* Fixed FFE for short cable lengths */
2036 hw
->phy
.ops
.write_reg(hw
, 0x1F54, 0x0065);
2037 /* Fixed FFE for medium cable lengths */
2038 hw
->phy
.ops
.write_reg(hw
, 0x1F55, 0x002A);
2039 /* Fixed FFE for long cable lengths */
2040 hw
->phy
.ops
.write_reg(hw
, 0x1F56, 0x002A);
2041 /* Enable Adaptive Clip Threshold */
2042 hw
->phy
.ops
.write_reg(hw
, 0x1F72, 0x3FB0);
2043 /* AHT reset limit to 1 */
2044 hw
->phy
.ops
.write_reg(hw
, 0x1F76, 0xC0FF);
2045 /* Set AHT master delay to 127 msec */
2046 hw
->phy
.ops
.write_reg(hw
, 0x1F77, 0x1DEC);
2047 /* Set scan bits for AHT */
2048 hw
->phy
.ops
.write_reg(hw
, 0x1F78, 0xF9EF);
2049 /* Set AHT Preset bits */
2050 hw
->phy
.ops
.write_reg(hw
, 0x1F79, 0x0210);
2051 /* Change integ_factor of channel A to 3 */
2052 hw
->phy
.ops
.write_reg(hw
, 0x1895, 0x0003);
2053 /* Change prop_factor of channels BCD to 8 */
2054 hw
->phy
.ops
.write_reg(hw
, 0x1796, 0x0008);
2055 /* Change cg_icount + enable integbp for channels BCD */
2056 hw
->phy
.ops
.write_reg(hw
, 0x1798, 0xD008);
2058 * Change cg_icount + enable integbp + change prop_factor_master
2059 * to 8 for channel A
2061 hw
->phy
.ops
.write_reg(hw
, 0x1898, 0xD918);
2062 /* Disable AHT in Slave mode on channel A */
2063 hw
->phy
.ops
.write_reg(hw
, 0x187A, 0x0800);
2065 * Enable LPLU and disable AN to 1000 in non-D0a states,
2068 hw
->phy
.ops
.write_reg(hw
, 0x0019, 0x008D);
2069 /* Enable restart AN on an1000_dis change */
2070 hw
->phy
.ops
.write_reg(hw
, 0x001B, 0x2080);
2071 /* Enable wh_fifo read clock in 10/100 modes */
2072 hw
->phy
.ops
.write_reg(hw
, 0x0014, 0x0045);
2073 /* Restart AN, Speed selection is 1000 */
2074 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x1340);
2076 return E1000_SUCCESS
;
2080 * e1000_get_phy_type_from_id - Get PHY type from id
2081 * @phy_id: phy_id read from the phy
2083 * Returns the phy type from the id.
2085 e1000_phy_type
e1000_get_phy_type_from_id(u32 phy_id
)
2087 e1000_phy_type phy_type
= e1000_phy_unknown
;
2090 case M88E1000_I_PHY_ID
:
2091 case M88E1000_E_PHY_ID
:
2092 case M88E1111_I_PHY_ID
:
2093 case M88E1011_I_PHY_ID
:
2094 phy_type
= e1000_phy_m88
;
2096 case IGP01E1000_I_PHY_ID
: /* IGP 1 & 2 share this */
2097 phy_type
= e1000_phy_igp_2
;
2099 case GG82563_E_PHY_ID
:
2100 phy_type
= e1000_phy_gg82563
;
2102 case IGP03E1000_E_PHY_ID
:
2103 phy_type
= e1000_phy_igp_3
;
2106 case IFE_PLUS_E_PHY_ID
:
2107 case IFE_C_E_PHY_ID
:
2108 phy_type
= e1000_phy_ife
;
2111 phy_type
= e1000_phy_unknown
;
2118 * e1000_power_up_phy_copper - Restore copper link in case of PHY power down
2119 * @hw: pointer to the HW structure
2121 * In the case of a PHY power down to save power, or to turn off link during a
2122 * driver unload, or wake on lan is not enabled, restore the link to previous
2125 void e1000_power_up_phy_copper(struct e1000_hw
*hw
)
2129 /* The PHY will retain its settings across a power down/up cycle */
2130 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2131 mii_reg
&= ~MII_CR_POWER_DOWN
;
2132 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2136 * e1000_power_down_phy_copper - Restore copper link in case of PHY power down
2137 * @hw: pointer to the HW structure
2139 * In the case of a PHY power down to save power, or to turn off link during a
2140 * driver unload, or wake on lan is not enabled, restore the link to previous
2143 void e1000_power_down_phy_copper(struct e1000_hw
*hw
)
2147 /* The PHY will retain its settings across a power down/up cycle */
2148 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2149 mii_reg
|= MII_CR_POWER_DOWN
;
2150 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);