Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / workbench / libs / mathieeedoubtrans / ieeedpsqrt.c
blobfeaa388abbf9b4267b3fcf787da89b4b77aea8cb
1 /*
2 Copyright © 1995-2003, The AROS Development Team. All rights reserved.
3 $Id$
4 */
6 #include "mathieeedoubtrans_intern.h"
8 /*
9 FUNCTION
10 Calculate square root of IEEE double precision floating point number
12 RESULT
13 Motorola fast floating point number
15 flags:
16 zero : result is zero
17 negative : 0
18 overflow : square root could not be calculated
20 NOTES
22 EXAMPLE
24 BUGS
26 SEE ALSO
28 INTERNALS
29 ALGORITHM:
30 <p>First check for a zero and a negative argument and take
31 appropriate action.</p>
33 <code>fnum = M * 2^E</code>
35 <p>Exponent is an odd number:</p>
37 <code>
38 fnum = ( M*2 ) * 2^ (E-1)
39 Now E' = E-1 is an even number and
40 -> sqrt(fnum) = sqrt(M) * sqrt(2) * sqrt (2^E')
41 = sqrt(M) * sqrt(2) * 2^(E'/2)
42 (with sqrt(M*2)>1)
43 = sqrt(M) * sqrt(2) * 2^(E'/2)
44 = sqrt(M) * 1/sqrt(2) * 2^(1+(E'/2))
45 = sqrt(M/2) * 2^(1+(E'/2))
47 </code>
49 <p>Exponent is an even number:</p>
51 <code>-> sqrt(fnum) = sqrt(M) * sqrt (2^E) =
52 = sqrt(M) * 2^(E/2)
53 </code>
55 <p>Now calculate the square root of the mantisse.
56 The following algorithm calculates the square of a number + delta
57 and compares it to the mantisse. If the square of that number +
58 delta is less than the mantisse then keep that number + delta.
59 Otherwise calculate a lower offset and try again.
60 Start out with number = 0;</p>
62 <code>
63 Exponent = -1;
64 Root = 0;
65 repeat
67 if ( (Root + 2^Exponent)^2 < Mantisse)
68 Root += 2^Exponent
69 Exponent --;
71 </code>
73 until you`re happy with the accuracy
75 HISTORY
78 AROS_LHQUAD1(double, IEEEDPSqrt,
79 AROS_LHAQUAD(double, y, D0, D1),
80 struct MathIeeeDoubTransBase *, MathIeeeDoubTransBase, 16, MathIeeeDoubTrans
83 AROS_LIBFUNC_INIT
85 QUAD Res, ResSquared, Delta, X, TargetMantisse, y2, tmp;
86 int z;
87 ULONG Exponent;
89 if (is_eqC(y, 0, 0)) /* 0 == y */
91 SetSR(Zero_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
92 Set_Value64C(Res, 0, 0);
93 return Res;
95 /* is fnum negative? */
96 if (is_lessSC(y, 0, 0)) /* y < 0 */
98 SetSR(Overflow_Bit, Zero_Bit | Negative_Bit | Overflow_Bit);
99 Set_Value64C(Res, IEEEDPNAN_Hi, IEEEDPNAN_Lo);
100 return Res;
103 /* we can calculate the square-root now! */
105 Set_Value64(y2, y);
106 AND64QC(y2, IEEEDPMantisse_Mask_Hi, IEEEDPMantisse_Mask_Lo);
107 OR64QC(y2, 0x00100000, 0x00000000 );
108 SHL64(TargetMantisse, y2, 11);
110 Exponent = (Get_High32of64(y) >> 1) & IEEEDPExponent_Mask_Hi;
112 /* do we have an odd exponent? */
113 if (Get_High32of64(y) & 0x00100000)
115 /* TargetMantisse = TargetMantisse / 2; */
116 SHRU64(TargetMantisse, TargetMantisse, 1); /* TargetMantisse >>= 1; */
117 Exponent += 0x20000000;
119 else
121 Exponent += 0x1ff00000;
124 Set_Value64C(Res, 0x0, 0x0);
125 Set_Value64C(ResSquared, 0x0, 0x0);
126 z = 0;
129 this calculates the sqrt of the mantisse. It`s short, isn`t it?
130 Delta starts out with 0.5, then 0.25, 0.125 etc.
132 while ( is_neq(ResSquared, TargetMantisse) && z < 53)
134 QUAD Restmp, Deltatmp;
135 Set_Value64C(Delta, 0x80000000, 0x00000000);
136 SHRU64(Delta, Delta, z); /* Delta >> = z */
139 X = (Res+Delta)^2 = Res^2 + 2*Res*Delta + Delta^2
141 SHRU64(Restmp, Res, z); /* Restmp = Res >> z */
142 z++;
143 SHRU64(Deltatmp, Delta, z); /* Deltatmp = Delta >> (z+1) */
145 /* X = ResSquared + (Res >> z) + (Delta >> ++z); */
146 Set_Value64(X, ResSquared);
147 ADD64Q(X, Restmp);
148 ADD64Q(X, Deltatmp);
150 if (is_leq(X, TargetMantisse)) /* X <= TargetMantisse */
152 //printf("setting a bit!\n");
153 //OUTPUT(X);OUTPUT(TargetMantisse);
154 ADD64(Res, Res, Delta ); /* Res += Delta */
155 Set_Value64(ResSquared, X); /* ResSquared = X; */
159 SHRU64(Res, Res, 11);
160 AND64QC(Res, IEEEDPMantisse_Mask_Hi, IEEEDPMantisse_Mask_Lo );
161 SHL32(tmp, Exponent, 32);
162 OR64Q(Res, tmp);
164 return Res;
166 AROS_LIBFUNC_EXIT