Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / workbench / libs / mathieeesingtrans / ieeespacos.c
blob8799a06e1e11faa50302ea5e49820388f2e27dfa
1 /*
2 Copyright © 1995-2003, The AROS Development Team. All rights reserved.
3 $Id$
4 */
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunSoft, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
16 #include "mathieeesingtrans_intern.h"
19 FUNCTION
20 Calculate arcuscos of the given number
22 RESULT
24 IEEE single precision floating point number
27 flags:
28 zero : result is zero
29 negative : 0 (not possible)
30 overflow : y < -1 or y > 1
32 NOTES
34 EXAMPLE
36 BUGS
38 SEE ALSO
40 INTERNALS
42 HISTORY
45 AROS_LH1(float, IEEESPAcos,
46 AROS_LHA(float, y, D0),
47 struct Library *, MathIeeeSingTransBase, 20, MathIeeeSingTrans
50 AROS_LIBFUNC_INIT
52 /* 1> |x| >= 0.5 */
53 LONG z,p,q,r,w,s,c,ix,df;
54 ix = y & (IEEESPMantisse_Mask | IEEESPExponent_Mask); /* ix = |y| */
56 z = IEEESPCmp(ix,one);
58 if (1==z) /* |y| > 1 */
60 SetSR(Overflow_Bit, Zero_Bit | Overflow_Bit | Negative_Bit);
61 return 0x7fffffff;
64 if (0==z) /* |y| = 1 */
66 if (y & IEEESPSign_Mask) /* y = -1 */ return pi;
67 SetSR(Zero_Bit, Zero_Bit | Overflow_Bit | Negative_Bit);
68 return 0;
71 /* error: 1 ulp (unit in the last place) */
72 if (-1 == IEEESPCmp(ix,onehalf)) /* |fnum1| < 0.5 */
74 z = IEEESPMul(y, y);
75 p = IEEESPMul(z, IEEESPAdd(pS0,
76 IEEESPMul(z, IEEESPAdd(pS1,
77 IEEESPMul(z, IEEESPAdd(pS2,
78 IEEESPMul(z, IEEESPAdd(pS3,
79 IEEESPMul(z, IEEESPAdd(pS4,
80 IEEESPMul(z, pS5)))))))))));
81 q = IEEESPAdd(one,
82 IEEESPMul(z, IEEESPAdd(qS1,
83 IEEESPMul(z, IEEESPAdd(qS2,
84 IEEESPMul(z, IEEESPAdd(qS3,
85 IEEESPMul(z, qS4))))))));
86 r = IEEESPDiv(p, q);
88 return (IEEESPSub(pio2,IEEESPAdd(y,IEEESPMul(y,r))));
91 /* error: 1 ulp */
92 if (y & IEEESPSign_Mask) /* y < -0.5 */
94 z = IEEESPMul(onehalf, IEEESPAdd(one, y));
95 p = IEEESPMul(z, IEEESPAdd(pS0,
96 IEEESPMul(z, IEEESPAdd(pS1,
97 IEEESPMul(z, IEEESPAdd(pS2,
98 IEEESPMul(z, IEEESPAdd(pS3,
99 IEEESPMul(z, IEEESPAdd(pS4,
100 IEEESPMul(z, pS5)))))))))));
101 q = IEEESPAdd(one,
102 IEEESPMul(z, IEEESPAdd(qS1,
103 IEEESPMul(z, IEEESPAdd(qS2,
104 IEEESPMul(z, IEEESPAdd(qS3,
105 IEEESPMul(z, qS4))))))));
106 s = IEEESPSqrt(z);
107 r = IEEESPDiv(p,q); /* r = p/q; */
108 w = IEEESPMul(r,s);
110 return IEEESPSub(pi, IEEESPMul(two, IEEESPAdd(s, w)));
113 /* fnum1 > 0.5 */
114 /* error : 1 ulp */
115 z = IEEESPMul(onehalf, IEEESPSub(one, y));
116 s = IEEESPSqrt(z);
117 df = s;
118 //df = df & 0xfff000ff;
119 c = IEEESPDiv(IEEESPSub(z, IEEESPMul(df,df)), IEEESPAdd(df,s) );
120 p = IEEESPMul(z, IEEESPAdd(pS0,
121 IEEESPMul(z, IEEESPAdd(pS1,
122 IEEESPMul(z, IEEESPAdd(pS2,
123 IEEESPMul(z, IEEESPAdd(pS3,
124 IEEESPMul(z, IEEESPAdd(pS4,
125 IEEESPMul(z, pS5)))))))))));
126 q = IEEESPAdd(one,
127 IEEESPMul(z, IEEESPAdd(qS1,
128 IEEESPMul(z, IEEESPAdd(qS2,
129 IEEESPMul(z, IEEESPAdd(qS3,
130 IEEESPMul(z, qS4))))))));
131 r = IEEESPDiv(p, q);
132 w = IEEESPAdd(c, IEEESPMul(r,s));
134 return IEEESPMul(two, IEEESPAdd(df,w));
136 AROS_LIBFUNC_EXIT