Fixed binary search: no more infinite loops when vendor is unknown.
[tangerine.git] / workbench / libs / mathieeesingtrans / ieeespasin.c
blobf2fd3dd1ebc369be5f9d339f4781aa7d09ed9d11
1 /*
2 Copyright © 1995-2003, The AROS Development Team. All rights reserved.
3 $Id$
4 */
5 /*
6 * ====================================================
7 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
9 * Developed at SunSoft, a Sun Microsystems, Inc. business.
10 * Permission to use, copy, modify, and distribute this
11 * software is freely granted, provided that this notice
12 * is preserved.
13 * ====================================================
16 #include "mathieeesingtrans_intern.h"
19 FUNCTION
20 Calculate arcussin of the given number
22 RESULT
23 IEEE single precision floating point number
26 flags:
27 zero : result is zero
28 negative : result is negative
29 overflow : fnum < -1 or fnum > 1
31 NOTES
33 EXAMPLE
35 BUGS
37 SEE ALSO
39 INTERNALS
41 HISTORY
44 AROS_LH1(float, IEEESPAsin,
45 AROS_LHA(float, y, D0),
46 struct Library *, MathIeeeSingTransBase, 19, MathIeeeSingTrans
49 AROS_LIBFUNC_INIT
51 /* 1> |x| >= 0.5 */
52 LONG t,w,p,q,c,r,s,ix;
53 ix = y & (IEEESPMantisse_Mask | IEEESPExponent_Mask); /* ix = |fnum| */
55 if (one == ix) /* |y| = 1 -> result = +-(pi/2) */
57 return (pio2 | (y & IEEESPSign_Mask ));
60 if (1 == IEEESPCmp(ix,one)) /* |y| > 1 */
62 SetSR(Overflow_Bit, Zero_Bit | Overflow_Bit | Negative_Bit);
63 return 0x7fffffff;
66 /* error: 1 ulp (unit in the last place)*/
67 if ( -1 == IEEESPCmp(ix, onehalf)) /* |y| < 0.5 */
69 t = IEEESPMul(y, y);
70 p = IEEESPMul(t, IEEESPAdd(pS0,
71 IEEESPMul(t, IEEESPAdd(pS1,
72 IEEESPMul(t, IEEESPAdd(pS2,
73 IEEESPMul(t, IEEESPAdd(pS3,
74 IEEESPMul(t, IEEESPAdd(pS4,
75 IEEESPMul(t, pS5) ))))))))));
76 q = IEEESPAdd(one,
77 IEEESPMul(t, IEEESPAdd(qS1,
78 IEEESPMul(t, IEEESPAdd(qS2,
79 IEEESPMul(t, IEEESPAdd(qS3,
80 IEEESPMul(t, qS4))))))));
81 w = IEEESPDiv(p, q);
83 return IEEESPAdd(y, IEEESPMul(y, w));
87 w = IEEESPSub(one, ix) ; /* w = 1 - fnum ; y = 1-x */
88 t = IEEESPMul(w, onehalf); /* t = w / 2 ; z = y/2 */
89 p = IEEESPMul(t,IEEESPAdd(pS0,
90 IEEESPMul(t,IEEESPAdd(pS1,
91 IEEESPMul(t,IEEESPAdd(pS2,
92 IEEESPMul(t,IEEESPAdd(pS3,
93 IEEESPMul(t,IEEESPAdd(pS4,
94 IEEESPMul(t,pS5)))))))))));
95 q = IEEESPAdd(one,
96 IEEESPMul(t,IEEESPAdd(qS1,
97 IEEESPMul(t,IEEESPAdd(qS2,
98 IEEESPMul(t,IEEESPAdd(qS3,
99 IEEESPMul(t,qS4))))))));
100 s = IEEESPSqrt(t); /* s = sqrt(t) ; s = sqrt(z) */
102 if(1 == IEEESPCmp(ix, 0x3f79999a /*0.975*/ )) /* |fnum| > 0.975 */
104 /*error: 2 ulp (4 ulp when |fnum| close to 1) */
105 w = IEEESPDiv(p, q); /* w = p / q; */
106 /* res = pi/2-(2*(s+s*w)) */
107 t = IEEESPSub(pio2, IEEESPMul(two,IEEESPAdd(s,IEEESPMul(s,w))));
109 else
111 /* error: 2 ulp */
112 w = s;
113 c = IEEESPDiv(IEEESPSub(t,IEEESPMul(w,w)),IEEESPAdd(s,w)); /* c=(t-w*w)/(s+w) */
114 r = IEEESPDiv(p,q);
115 p = IEEESPAdd(IEEESPAdd(c,c),IEEESPMul(IEEESPAdd(s,s),r));
116 q = IEEESPSub(pio4, IEEESPAdd(w,w));
117 t = IEEESPSub(pio4, IEEESPSub(p,q));
120 return (t | (y & IEEESPSign_Mask )) ;
122 AROS_LIBFUNC_EXIT